Dr. Mehul Bhatt, Dr. Oliver Kutz, Dr. Thomas Schneider

WS 2011/12

From syllogism to common sense . . . Exercise Sheet 8: Modal logic

To be discussed on 26 January 2012

- **1.** Consider the frame F = (W, R) with $W = \{x_1, \ldots, x_5\}$ and $R = \{(x_i, x_j) \mid i = 1, 2, 3, 4\}$, and the valuation β with $\beta(p) = \{x_2, x_3\}$, $\beta(q) = \{x_1, \ldots, x_5\}$, and $\beta(r) = \emptyset$. Let $M = (F, \beta)$. Which of the following claims hold, which don't? Use the definition of "\models" on Slide 8.
 - a) $M_{x_1} \models \Diamond \Box p$
 - b) $M_{x_1} \models \Diamond \Box p \rightarrow p$
 - c) $M_{x_2} \models \Diamond (p \land \neg r)$
 - d) $M_{x_1} \models q \land \diamondsuit(q \land \diamondsuit(q \land \diamondsuit(p \land \diamondsuit q)))$
- **2.** a) Show that $\Box \varphi$ is equivalent to $\neg \Diamond \neg \varphi$, for any formula φ .

That is, use the definition of " \models " on Slide 8 to show: for all pointed models M_x , it holds that $M_x \models \Box \varphi$ if and only if $M_x \models \neg \Diamond \neg \varphi$.

- b) Show: $\Box(\varphi \lor \psi) \to (\Box \varphi \lor \Box \psi)$ is equivalent to $\neg (\Box(\varphi \lor \psi) \land \Diamond \neg \varphi \land \Diamond \neg \psi)$. Use only known propositional equivalences and the equivalence in a).
- **3.** Show that the necessitation rule preserves validity, i.e., $\models \varphi$ implies $\models \Box \varphi$ for all formulas φ .

Remember the "four layers" of satisfaction/validity:

- $M_x \models \varphi$, for pointed models M_x , is given on Slide 8.
- $M \models \varphi$, for a model $M = (W, R, \beta)$: for all $x \in W$, $M_x \models \varphi$.
- $F \models \varphi$, for a frame F = (W, R): for all models $M = (W, R, \beta), M \models \varphi$.
- $\models \varphi$: for all frames $F, F \models \varphi$.
- **4.** Use the tableau method (Slides 10–15) to show that the following formula is unsatisfiable: $p \to (\Diamond (p \land q) \land \Diamond (p \land \neg q) \land \Box (p \to q))$
- 5. Show that each of the following formulas is not valid, using tableaux.
 - a) $\Box \perp$ (as in propositional logic, \perp abbreviates $p \land \neg p$)
 - b) $\Diamond p \to \Box p$
 - c) $p \to \Box \Diamond p$
 - d) $\Diamond \Box p \to \Box \Diamond p$

For each formula, find a non-empty set of frames on which it is valid.