CARSTEN LUTZ A Tableau Decision

HOLGER STURM Algorithm for Modalized
FRANK WOLTER ALC with Constant
MICHAEL ZAKHARYASCHEV Domains

Abstract. The aim of this paper is to construct a tableau decision algorithm for the
modal description logic K 4¢¢ with constant domains. More precisely, we present a tableau
procedure that is capable of deciding, given an ALC-formula ¢ with extra modal oper-
ators (which are applied only to concepts and TBox axioms, but not to roles), whether
 is satisfiable in a model with constant domains and arbitrary accessibility relations.
Tableau-based algorithms have been shown to be ‘practical’ even for logics of rather high
complexity. This gives us grounds to believe that, although the satisfiability problem for
Kuare is known to be NEXPTIME-complete, by providing a tableau decision algorithm
we demonstrate that highly expressive description logics with modal operators have a
chance to be implementable. The paper gives a solution to an open problem of Baader
" and Laux [5].

Keywords: modal logics, description logics, tableaux, combining systems, decidability,
complexity.

1. Introduction

Description logics are logical formalisms intended for representing knowl-
edge about static application domains in a structured way (see e.g. [11] and
references therein). In the basic description logic ALC [31], for example, we
can use the concept

Person 1M dlives_in.Bavaria M Vdrinks.Beer

to describe the persons living in Bavaria and drinking only beer. (Here
Person, Bavaria, and Beer are concept names (unary predicates), and lives_in
and drinks are role names (binary predicates).) The knowledge that all peo-
ple living in Bavaria drink only beer and, conversely, that all people drinking
only beer live in Bavaria can be represented then by the terminological axiom

Person M Jlives_in.Bavaria = Person M Vdrinks.Beer. (1)

Modal logics are formal systems intended for reasoning with necessity-
like and possibility-like operators, in particular, for reasoning about agents’
knowledge of their knowledge bases and about the evolution of these knowl-
edge bases in time (see e.g. [12] and references therein). Using the modal

Studia Logice T2: 199-232, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

200 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

operators [Tom believes| and [always]|, we can relativize axiom (1) to rep-
resent the knowledge of an agent ‘Tom’ and also add to it some temporal
flavor:

[Tom believes] (Person I Jlives_in.Bavaria =
Person M [always|Vdrinks.Beer) (2)

i.e.,, Tom believes that those people who live in Bavaria and nobody else
drink only beer at any given moment of time. As just demonstrated, modal-
ized description logics provide means for representing distributed knowledge
about dynamic application domains. Such logics were constructed e.g. in
[10, 30, 5, 6, 35, 37, 38, 39].

Both description logics and modal logics are featured as ‘a compromise
between expressiveness and effectiveness’, which led to the implementation
of many of them as representation and reasoning systems [15, 20, 28]. De-
scription logics with modal operators are not so well-behaved. The interac-
tion between description logic constructs and modalities can substantially
increase the complexity of reasoning tasks and even make them undecidable
[6, 37, 27]. The series of papers [35, 37, 38, 39, 36] identified the follow-
ing syntactical and semantical ‘limits’ within which interactions between
the modal and the description parts of the combined logics usually preserve
decidability:

e Modal operators can be applied to both concepts and terminological ax-
joms (as in the example above) but not to roles.

e In the worlds of a Kripke model interpreting the modal operators, each
object and concept name of the description logic can be interpreted both
globally (i.e., by the same object or, respectively, set of objects in all
worlds) and locally (i.e., by arbitrary objects or sets of objects).! Role
names can be interpreted only locally.

e The domains of the worlds (on which we interpret the description logic
component) can be assumed to be constant; the expressive power of the
combined language makes it possible to simulate the varying or ezpanding
domain assumptions which presuppose less interaction.

By allowing modalized or/and global roles, one can easily construct unde-
cidable description logics with epistemic and temporal operators [36].

! If we represent a person, say Tom, by the object name tom then we most likely
assume that this name is global, while the object name president_of_the_USA, representing
the current president of the United States, should clearly be local.

Tableau for Modalized ALC with Constant Domains 201

The proofs of decidability in [35, 38, 39] are based on a semantical ap-
proach. They do not give any ‘practical’ decision procedures having a po-
tential to be implemented in reasoning systems which are reasonably fast on
reasonably large sets of problems.

The aim of this paper is to construct a tableau decision algorithm for
the modal description logic K 4¢¢ with constant domains. More precisely,
we present a tableau procedure which is capable of deciding, given a formula
@ of the form (2) (in which modal operators are applied only to concepts and
TBox axioms, but not to roles), whether ¢ is satisfiable in a model with con-
stant domains. Tableau-based algorithms have been shown to be ‘practical’
even for logics of rather high complexity [14, 19, 21]. This gives us grounds
to believe that, although the satisfiability problem for K 47¢ is known to
be NEXPTIME-complete [27], by providing a tableau decision algorithm we
demonstrate that highly expressive description logics with modal operators
have a chance to be implementable.

The logic K g4rc with expanding domains was first considered by Baader
and Laux [5] who proved its decidability by designing a tableau satisfiability-
checking algorithm. However, they failed to construct such an algorithm
working under the constant domain assumption, having left this as an open
problem and explained some principle difficulties. Somewhat simplified, the
idea of constructing tableaux for K 4.¢ with expanding domains is as follows.
Given a formula @, we first apply to it the rules of a tableau system for ALC,
thus constructing an ALC-model for the non-modal part of ¢ in the initial
world wg. Then we apply the rules of a tableau system for K to the modalized
concepts and formulas in this model and construct a number of new worlds
w; ‘populated’ by the same objects as in wy. After that we use the ALC-
rules in the worlds w; and possibly eztend their domains. And so forth. This
straightforward approach does not work in the case of models with constant
domains. Having expanded the domain of w; with a new object a, we have
to add e to the domain of wy which, in turn, may force us to expand this
domain, and so the domains of the w; as well, with some new objects, and
so on (for more details consult [5] and Section 3 below).

The main technical contribution of the paper is that it shows how to
design a machinery for constructing tableaux with constant domains. The
fundamental difference from the approach of [5] is that our tableau algo-
rithm constructs not a model itself but its representation in the form of a
quasimodel, the worlds in which are ‘populated’ by types of objects rather
than real objects. Quasimodels were first introduced in [35] and used in
[32] for designing a tableau procedure for temporal description logics with
expanding domains. In fact, the transference of the notion of quasimodels

202 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

from model-theory in [35] to proof-theory in [32] and the present paper pro-
vides a nice example of how an ‘abstract’ decidability proof can serve as an
important basis for an implementable decidability proof.

We have chosen the basic modal description logic K 4.¢ for treating in
this paper only in order to make the ideas of the tableaux and the employed
techniques as clear as possible. The developed methods can be extended to
more sophisticated logics, say, 84 or temporal logics based on ALC. More-
over, the approach developed in this paper can be generalized to the monodic
fragments of first-order modal and temporal logics [16, 40] by combining
tableau procedures for their first-order and modal components in a modular
way; for details visit http://wuw.dcs.kcl.ac.uk/staff/mz.

It is worth also noting that K 4.¢ is closely related to the Cartesian
product K x S5 (cf. [13, 34]). Thus we obtain for free a tableau-based
decision procedure for K x 85 as well.

The paper is organized in the following way. In the next section we
introduce the syntax and the semantics of K 4.¢c with constant domains.
Section 3 discusses difficulties in designing tableau procedures for modal-
ized description logics under the constant domain assumption and gives an
overview of the tableau algorithm developed in this paper. In Section 4 we
define constraint systems for K 4c¢-formulas, and Section 5 shows how to
encode K 4rc-models in the form of quasimodels. The tableau decision algo-
rithm is presented in Section 6 and its termination and correctness is proved
in Section 7. We conclude the paper with a discussion of obtained results
and related problems.

2. Preliminaries

In this section, we define the syntax and the semantics of the modal descrip-
tion logic K arc.

DEFINITION 1 (syntax). Let Ng, Ng, and Np be countably infinite sets
of concept names, role names, and object names, respectively. The set of
K acc-concepts is defined inductively as follows:

1. All concept names as well as the logical constant T are concepts.

2. If C and D are concepts, R is a role name, and i < w, then the following
expressions are concepts:

~C, CnD, CuD, 3RC, YRC, <0, 0C.

Tableau for Modalized ALC with Constant Domains 203

K acc-formulas are also defined inductively:

3. If C and D are concepts and a is an object name, then C = D and a: C
are (atomic) formulas.

4. If ¢ and v are formulas and ¢ < w, then the following expressions are
formulas:

e, A, eV, Oup, Oip

Throughout the paper, we denote concept names by A, role names by
R, and object names by a. Arbitrary concepts are denoted by C, D, and E,
and formulas by ¢, ¢, and 9.

The semantics of K 4¢¢ is a natural hybrid of the possible world semantics
for K and the standard set-theoretic semantics for ALC.

DEFINITION 2 (semantics). An ALC-interpretation is a pair T = (Az,-T),
where Az is a non-empty set called the domain of T and T maps each
concept name A to a subset AT of Az, each role name R to a binary relation
RZ on Az, and each object name a to an element a” in Az.

A K grc-model is a triple of the form 9 = (W, <, I), where

e W is a non-empty set (of worlds),
e <] is a map associating with each ¢ < w a binary relation <; on W, and
e [associates with each w € W an ALC-interpretation
I(w) = (B, "™)
such that, for any w,w’ € W, we have

- Ay = Ay and
— a!®) = oI(®") for all @ € Np.
We now define the value C1®) of a concept C in a world w in 9 by taking
TIW) = A,
(~CY') = Ay \ €T,
(cn D)I(W) o) n pIw)
(C LU D)™ = clw) y pIw)
(AR.C)I™ = {d e A, | 3d' € CT™) (dRT™) ¢},
(VR.C)'®) = {d € A, | Vd € Ay (dR'™d = d' € CT™)},
(©iC)
(0:0)

I(“’)-{dEAwHw EW(quw & dECI(w))}
I(‘w)‘—{dEAwi\V’w EW(qufw :>d601(w))}

204 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

The truth-relation (M, w) |= ¢ for a K grc-formula ¢ is defined as follows:

(M, w) = C = D iff ¢1®) = pIw),

(M, w) = a: Ciff /@) e 0T,

(M) |~ i (0,)

(M) b= o A Iff (M, w) = and (0,) = .

() = o Vb I (,0) = 0 o (T,) =

(O, w) = Oz iff there is w' € W such that w <; w' and (M, w') k= .
(O, w) = Oy iff (M, w') = @ for all w’' € W such that w <; w'.

Remark 1. We do not make the unique name assumption (UNA): for two
distinct object names a,b € Np, we may have a!®) = (@) for some w € W.
However, with minor changes, all the results in this paper can be proved for
models satisfying UNA. Note that the object names are assumed to be global,
i.e., for all a € Np and w,w’ € W, we have a!®) = o/®') On the contrary,
the values of concept names are defined locally. Neither of these assumptions
is essential; in particular, global concepts can be defined via local ones: for
a formula ¢, define paths(p) inductively as follows

C = D) = paths(a : C) = {e},
—p) = paths(+p),

)
%1 Apg) = paths(p1 V 2) = paths(yp1) U paths(thz),
Cip) = paths(O;9) = {e} U {iw | w € paths().

For any w € paths(p) with w = 41 --- i, we use O, to denote the nesting
0, -+ O;,. Now let ¢ be a formula containing a concept name A that should
be global and let 41, ... ,%; be the modal indices occurring in ¢. It is not hard
to see that globality of A (at least w.r.t. those worlds that are “relevant”
for evaluating ¢) can be enforced by taking the conjunction of ¢ and the
formula A, ¢ pathsie) Nicgin,...iny Do (T = (FAUD;4) N (AU T;-4))).

Let us return to the discussion of the semantics. By requiring A,, = Ay
for all w,w' € W, we choose models with constant domains. In models
with ezpanding domains we would only have A, C A, for any w,w’ €¢ W
such that w <; w' for some i < w. Models with varying domains impose
no restrictions on the domains at all. As noted in the introduction, both

varying domains and expanding domains can be simulated using constant
domains [37]. -

Tableau for Modalized ALC with Constant Domains 205

We are interested in the following inference problems.

DEFINITION 3 (inference). A formula ¢ is satisfiable if there exist a model
M = (W,<,I) and a world w € W such that (I, w) = ¢. A concept C
is satisfiable if there exist M = (W, <, I) and w € W such that CT(®) £ ¢,
A concept C is subsumed by a concept D if CT(®) C DI®) for all models
M= (W,<,I)and all w e W.

Remark 2. Note that concept satisfiability and concept subsumption can be
reduced to the satisfiability of formulas. A concept C is satisfiable iff the
formula a : C is satisfiable and a concept C subsumes a concept D iff the
formula a : (D N —C) is unsatisfiable.

In the DL literature, concept satisfiability and subsumption are often
considered w.r.t. TBoxes, i.e., sets of concept equations C = D. It is easily
seen that reasoning w.r.t. TBoxes can also be reduced to formula satisfiabil-
ity. Note, however, that TBoxes encoded via formulas are local in the same
way as concept names are: the TBox encoded into the formula is only valid
for the “root” world, all other worlds have their own set of valid C = D
equations. In contrast to concept names, global TBoxes cannot be defined.
See the conclusion for more comments on this issue.

In what follows, we only consider the satisfiability of formulas. |

Say that a formula ¢ is equivalent to a formula 1 when (I, w) = ¢ iff
(T, w) = ¢ for every model M and every world w in it. Similarly, a concept
C is equivalent to a concept D if 1) = DI(®) for all models 9t = (W, <, I)
and all w e W.

The formula C = D is clearly equivalent to (-CUD)N(-DUC)=T.
So without loss of generality we can assume that in every atomic formula
of the form C' = D the concept D is T. Furthermore, we generally assume
formulas and concepts to be in negation normal form.

DEFINITION 4 (negation normal form). A concept C is said to be in negation
normal form (NNF) if negation occurs in C only in front of concept names.
A formula ¢ is in negation normal form if negation occurs in ¢ only in front
of concept names and atomic formulas of the form C = D.

Each concept C can be transformed into an equivalent concept in NNF
by pushing negation inwards with the help of de Morgan’s law, the duality
between 3 and V, and between ¢ and 0. The NNF of —-C will be denoted
by ~C. Similarly, each formula can be transformed into an equivalent one
in NNF by employing de Morgan’s law, the duality between < and O, and
the fact that —(a : C) is equivalent to a : —C.

206 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

3. Tableau algorithms and constant domains

In this section, we introduce tableau algorithms in general, discuss difficul-
ties in designing such algorithms for modalized description logics under the
constant domain assumption, and give an overview of the tableau procedure
developed in this paper.

To decide whether a given formula 4 is satisfiable, a tableau algorithm
tries to construct a model for 4 by repeatedly applying completion rules to an
appropriate data structure. In the case of ALC, this data structure is usually
a constraint system [4, 5, 17|, consisting of constraints which are formulas,
expressions of the form z : C, or expressions of the form (z,z') : R, where z
and 7' are variables or object names from Np. For now, it is convenient to
think of variables and object names as representing domain objects.

In the case of K 4r¢, a more complex data structure is needed. In this
paper, it is a completion tree whose edges represent accessibility relations
and whose nodes are labeled with constraint systems representing ALC inter-
pretations. The tableau algorithm starts with a completion tree containing
only a single node labeled with a constraint system containing only ¥ (and
possibly some additional constraints required for some technical reasons).
The completion rules are applied until (i) a contradictory completion tree is
obtained or (ii) a contradiction-free completion tree is found which is com-
plete in the sense that no more rule is applicable to it. Here, a completion
tree contains a contradiction if, for example, one of its nodes is labeled with
a constraint system containing both z : A and z : - A. To illustrate how
completion rules look like, we sketch some standard rules which can be found
in most tableau algorithms for description logics (see e.g., [4, 5, 17, 23]).

1. If a constraint system S contains the formula C' = T and a variable or
an object name z, then we add z : C' to S.

2. If a constraint system S contains z : C'LU D, then we add to § either z : C
orz:D.

3. If a constraint system S contains z : IR.C, then we add to S two con-
straints v : C and (z,v) : R, where v is a fresh variable that was not used
in S before.

4. If the label S of a node g in a completion tree T' contains the constraint
z : O;C, then we add to T a new node g’ as a successor of g and label it

with the constraint system containing z : C' and z : D for every z : 0;D
in S.

The second rule above is nondeterministic: its application yields more than
one possible outcome. In the presence of nondeterministic rules, a tableau

Tableau for Modalized ALC with Constant Domains 207

algorithm terminates successfully if the completion rules can be applied in
such a way that the result is a complete and contradiction-free completion
tree.

To illustrate some difficulties in designing a tableau algorithm for K 4.¢
with constant domains, we consider here an example from [5]. Suppose that
we have a completion tree T' with one node g labeled with the constraint
system

L(gy={v:T, (&;FR.C)=T}

An application of the first rule above yields an additional constraint
v : &;3R.C. By applying the fourth rule, we construct a new node ¢’ in T
with the label £(g') = {v : 3R.C}, which is then extended to

L(g") ={v:3R.C, (v,v"): R, v': C}

by an application of the third rule. Since we assume constant domains and
since the variables represent domain objects, the presence of v' in L(g')
forces us to add v’ to L£(g). This can be done by extending L£(g) with the
constraint v’ : T, which triggers the first rule again: now it adds v : ¢;3R.C
to L£(g). This constraint and the fourth rule give a new node g” with label
L(g") = {v' : AR.C} which is then extended by the third rule with (v',v") : R
and v" : C. Thus we obtain a new variable v” which has to be added to
L(g) and L(g"). As these steps are to be repeated infinitely many times, the
algorithm does not terminate.

A standard way to overcome termination problems of this kind is to use
blocking (see e.g., [5, 22, 23]). For a constraint system S and a variable or
an object name v, let tg(v) denote the set of all concepts C such that §
contains v : C. A variable v is said to be blocked in S if there is another
variable or an object name z such that tg(v) C tg(z) and z was introduced
earlier than v. For example, in the completion tree constructed above, we
could regard the variable v’ as blocked in £(g) because after the introduction
of v’ to L(g) we have t.(4(v') C t,(g)(v). No completion rule is applied to
blocked variables, which yields termination. By using blocking, the tableau
algorithm constructs a representation of a model rather than the model itself.

In the case of K 4.¢, it turned out to be difficult to find a proper blocking
strategy. Baader and Laux [5] experimented with several such strategies,
but failed to identify a suitable one that ensures termination, soundness and
completeness of the resulting algorithm. The interested reader is referred to
[5] for a thorough discussion and examples.

Instead of using blocking in the classical sense, the algorithm presented
in this paper pursues a more general approach. In our algorithm, variables

208 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

represent partial types of domain objects rather than domain objects them-
selves. Given an ALC-interpretation (Az,-Z), by the type of a domain object
d € A7 we mean the set of all concepts C such that d € C%. Since this set
is infinite, we restrict attention only to those concepts that are ‘relevant’ to
constructing a model for the input formula (for more details see the next
section). Blocking then becomes much easier. The completion rules have to
ensure that no (partial) type t is introduced into a constraint system already
containing a supertype of {. More precisely, if an application of a rule leads
to an introduction of a new variable v to a completion system £(g) such that
in the resulting completion system S’ we have ts/(v) C tp(g)(z), for some
variable or object name z, then the variable v is not introduced to L(g).
Dealing only with types, the algorithm constructs not a model satisfying the
input formula, but its representation known as a quasimodel [35].

We illustrate the use of quasimodels by the following example. Suppose
that T is a completion tree consisting of a single node g labeled with

L(g) ={0;D =T,v:;3R.C,v : 0;~C,v : 0; D},

An application of the fourth rule above generates a successor node ¢’ of g
with the label {v : 3R.C,v : =C,v : D}, which is then extended by the third
rule to

L(g") ={v:3IR.C,v: =C,v: D,v' : C}.

Note that in quasimodels we do not need to keep trace of how roles connect
objects—in our case (v,v') : R—this information can be recovered in a
canonical way later. The constructed completion tree represents models
with a set of worlds W = {w,w'} such that

o <= {(w,vw)},
e in the interpretation I(w), there are domain objects ‘of type v’, and

e in the interpretation I(w'), there are domain objects of type v and of
type v'.

Let us see now how the algorithm copes with constant domains. Fix a model
described by the completion tree and let d be an object in I(w') of type v'.
As we make the constant domain assumption, d is also an element of the
domain of I(w). However, in I(w) this element cannot be of type v because
otherwise d would satisfy —C in I(w'), which is impossible, since it also
satisfies C. A straightforward approach to attack this problem would be to
introduce a new type to £(g) (thus overruling blocking). But then again we
would face the problem of termination. We take a different way.

Tableau for Modalized ALC with Constant Domains 209

Our solution is to generate a set of minimal partial types in each con-
straint system £(g) so that every domain object in the corresponding ALC-
interpretation I(w) be of exactly one of the types in the set. To this end
we distinguish between two kinds of variables. A variable may be marked in
a constraint system, which indicates that it represents a minimal (partial)
type, or it may be unmarked, which means that the variable represents an
‘ordinary’ type. We illustrate the difference between marked and unmarked
variables as well as the role of minimal partial types by reconsidering the
example above.

According to the minimal type strategy, we have to introduce to £(g) a
marked variable vy, together with the constraint v, : T before generating
the node ¢’. For nearly all completion rules (a notable exception is the
second rule above), marked variables are treated like unmarked ones. An
application of the first rule adds vy, : 0;D to L(g). This constraint means
that every domain object in the ALC-interpretation I(w) is in (O0;D)1(®).
After that we construct the node g’ and the variable v' as above. In models
described by the resulting completion tree, domain objects may be of types
v and v’ in I(w') and of types v and vy, in I(w). Again, we face the problem
of finding a ‘predecessor type’ for ¢/, i.e., a type for objects in I(w) which
are of type v’ in I(w'). According to the minimal type strategy, we must
choose this predecessor among the marked variables in £(g), in our case this
can only be v,,. However, since the constraint v, : ;D is in £(g) and
vm Was chosen as the predecessor type for v/, we must add v’ : D to L(g').
Figure 1 shows the resulting completion tree. Note that with the minimal
type strategy, there is no need to reconsider constraint systems that have
already been treated, which helps to avoid termination problems.

To conclude this section, we give a brief overview of how the set of
minimal types is generated. Consider a completion tree consisting of a node
g labeled with

Lg)={A=T,BUC=T,v:C}

Again we start by introducing a single marked variable v,, together with the
constraint v, : T. Applications of the first rules above add both v, : A4
and vy, : BU C. According to the second rule, we must now decide where
to put vy, to B or to C. However, it may be the case that neither of these
two choices is the correct one: that all domain objects in interpretations
corresponding to L(g) satisfy B U C does not imply that all of them satisfy
B or that all of them satisfy C. So for marked variables disjunction must be
treated in a special way. Namely, first we introduce a new marked variable

v}, which is a ‘copy’ of vy, i.e., we have v/, : A and v/, : BUC in L(g).

210 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

g (——__ﬁ g’/‘——_"‘ﬁ
0;,D=T
v:<AR.C , v:3R.C
v 0;=C L o U:-C
v: ;D v:D
S T v C
U s 0D wv' 1D
. predecessor type for
minimal type

Figure 1. The fully expanded completion tree (see text).

And then we add constraints v, : B and v}, : C saying that each object
is either of type v, and so belongs to B, or of type v/,, and so belongs
to C. To be more precise, we need a nondeterministic rule. In one case,
we explore both disjuncts as has been just described; in the two additional
cases, we explore only one of the disjuncts (which is necessary to deal with
disjuncts that lead to a contradiction). Similar modifications are required
for all nondeterministic rules dealing with marked variables.

4. Constraint systems

Let us now define formally what we mean by a constraint system for a given
K prc-formula . Denote by

e ob(¥) the set of all object names occurring in ¥;

e con(?) the set of all concepts occurring in ¥,

e for(«) the set of all subformulas of ¥.

The fragment (of K 4z¢) induced by 9 is defined as the set
Fg(9) = ob(®#) U for(d) Ucon() U{~C | C € con(®)} U{T}.

Fix a countably infinite set V of (individual) variables so that V N Np = 0.
The variables in V' and the object names in ob(#) will be called terms for
¥. We will assume that No UV is well-ordered by an order <y, uy. Given
a non-empty subset X of No UV, we denote by min(X) the first variable
in X with respect to <y,uy. Throughout this paper, we denote variables
with v and © and terms with z and y.

Tableau for Modalized ALC with Constant Domains 211

DEFINITION 5 (constraint system). A constraint for 4 is either a formula in
for(9) or an atom of the form z : C, where C is a concept in Fg(d) and z
a term for Y. A constraint system for 9 is a finite set S of constraints for ¢
such that

1. each variable occurring in S is either marked or unmarked;
2. a: T isin S for every a € ob(?),

3. S contains at least one atom of the form z : C.
A variable v is called fresh for S if v does not occur in S.

Remark 3. Note that our constraint systems do not contain constraings of the
form (z,2') : R. The reason for this is that our tableau algorithm constructs
quasimodels which do not explicitly provide interpretations for the roles. ™

The completion rules of the tableau algorithm are divided into two classes:

e local rules operate exclusively on constraint systems, while

e global rules operate on completion trees; they involve more than one con-
straint system.

The local rules are shown in Fig. 2, where the operation ‘+’ is defined as
follows.

DEFINITION 6 (‘+’ operation). Let S be a constraint system and ® a set of
concepts. Then

e S+ ®is S, if S contains a marked variable v for which
d={E|v:Ee€S}
e S+®is SU{v: E| E € ®} otherwise, where v is fresh for S and marked
in S+ @.

Note that we have two rules dealing with the LI constructor. The rule
Ry is standard; it takes care of unmarked variables. The need for the rule
Ry operating with marked variables was explained in the previous section.
Suppose S = {v : C U D} and v is marked. This means that each domain
object in models Z described by S belongs to (C'LiD)Z. The addition of v : C
(or v: D) to S, i.e., option (i) in R_y, would mean then that each object of
7T belongs to CT (or, respectively, to D?). This excludes from consideration
models Z in which some objects are in C7 and some in D?. That is why
we need option (ii) which creates a marked copy v’ of v and then adds to S
both v : C and v' : D to say that every domain object in models described
by §8'={v:CUD,v:C,v : D} is either of type v or of type v'.

212 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

Local rules on formulas

Ry If (pAt) € Sand {p,¢} £ 5,
then set S := SU {y,9}.

Ry If(pVey) €S and {p,9}NS =0,
then set S := S U {6}, where 8 = ¢ or § = 1.

Local non-generating rules on concepts

Rhn If(z:CnND)eSforatermzand {z:C,z:D} ¢S,
then set S:=SU{z:C,z: D}.

Ry If(z:CUD)eS for unmarked z and
{z:C,z:D}NS =0, thenset S:=SU{z:E},
where E =C or E = D.

Ry If (v:CUD)e S for a marked variable v
and {v: C,v: D} NS =0, then either
(i) set S:=SU{v: E}, where E=C or E= D, or
(ii) set S = (SU{v:C}H +({D}U{E | (v: E) € S}).

R If(C=T)eS, aterm z occurs in S, but (z:C) ¢ S,
then set S:=SU{z:C}.

Local generating rules

Ry If -(C =T) € S and there is no term z in S such that
(z : ~C) € S, then choose a fresh variable v for S and set
S := 8 U {v:~C} with unmarked v.

Ry If (z:3R.C) € S and there is no term y in §
such that {C}U{D | (z:VR.D)e S} C{D | (y:D) € S},
then choose a fresh variable v for S and set
S:=SU{v:C}U{v:D|(z:VR.D) € S} with unmarked v.

Figure 2. Local completion rules for Karc.

Tableau for Modalized ALC with Constant Domains 213

The majority of tableau algorithms for description logics contain two
separate rules for dealing with the 3 and V constructors (see, e.g., [4, 5, 17,
23]). Our (local) set of rules contains only a single rule R3 which deals with
both constructors. The reason for this is that we don’t keep track of role
relationships among objects.

The following definition introduces complete constraint systems and
specifies what it means for a constraint system to have a clash.

DEFINITION 7 (clash). Say that a constraint system S contains a clash if
either of the two conditions holds:

1. {z: A,z :—=A} C S for some term z and some concept name A,

2. £:~T is in S for some term z.

Otherwise we say that S is clash-free.

A constraint system S is complete if no completion rule is applicable
to S.

5. Quasimodels

In this section we show how K 4.¢-models can be represented in the form
of quasimodels. Unlike [35], here we characterize quasimodels syntactically

(cf. [32]).
DEFINITION 8 (quasiworld). Let ¥ be a K 4rc-formula. A guasiworld for

9 is a complete clash-free constraint system for 4 all variables in which are
unmarked.

A frame § = (W, <) whose worlds are (labeled with) quasiworlds for ¥
will be called a 9-frame. More precisely, a ¥-frame is a triple § = (W, <, o),
where W # 0, < gives a binary relation <; on W for every i < w, and o is
a map from W into the set of quasiworlds for 9.

DEFINITION 9 (run). Let § = (W, <,0) be a d-frame. A run r in § is
a function associating with every w € W a term r(w) occurring in the
quasiworld o(w) in such a way that

e if (r(w) : O;C) € o(w) then there exists a w' € W such that w <; w' and
(r(w') : C) € o(w');

o if (r(w) : 0;C) € o(w) and w <; ', then (r(w') : C) € o(w').

DEFINITION 10 (quasimodel). A 9-frame § = (W, <, o) is called a quasimodel

for 9 if the following conditions hold:

1. for every object name a € ob(¥), the function r, defined by r,(w) = a
for w € W, is a run in §;

3

214 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

2. for every w € W and every variable v in o(w), there exists a run r in §
such that r(w) = v;

3. for every w € W and every Oz € o(w), there exists a w’ € W such that
w < w and ¢ € o(w');

4. for every w € W and every O;p € o(w), if w <; w' then ¢ € a(w').

We say that ¥ is quasi-satisfiable if there is a quasimodel § = (W, ,0) for
¥ such that 9 € o(w) for some w € W.

THEOREM 1. A K gcc-formula ¥ in NNF is satisfiable iff it is quasi-satisfi-
able.

PROOF. (=) Suppose ¥ is satisfiable. Then there is a model M = (W, <, I)
such that (9, wy) |= ¥ for some wy € W. Let A be the domain of 9. For
allw e W and d € A we put

1)) = {C e Fg(®¥) | d € CT™)}.
Let
Ty = {r'®(d) | d € A}.

For each ¢t = 7/(*)(d), take an individual variable v, and define a constraint
system o(w) as the union of the following sets:

o {pefor(d) | (M w) ¢},
e {a:C|a€ob(®), CcFg®), a!™ ¢ cTw)},
o {v,:C|C et} forteT,.

All variables are unmarked in o(w). We show that § = (W, <,0) is a
quasimodel for 4.

It should be clear that the o(w) are quasiworlds for ¢ and that § satisfies
conditions (1), (3), and (4) in Definition 10. Let us check (2). Suppose that
w € W and v; is a variable from o(w). Take a d € A with 7/(®)(d) = ¢t
and define a function r with domain W by putting r(u) = V,1(u)(g), for each
u € W. It is easy to see that r is a run in § coming through v;. That ¥ is
quasi-satisfiable follows from ¥ € o(wy).

(«<=) Suppose that 9 is quasi-satisfied in a world wy € W of a quasimodel
(W, <,0), ie., 9 € o(wy).
Define a K azc-model 9 = (W, <, I) with I(w) = (A, -I(“’)> as follows:

e A is the set of all runs in (W, <, 0);
o a/®) = ¢, for all a € ob(d);

Tableau for Modalized ALC with Constant Domains 215

o AIW) = {r e A| (r(w): A) € o(w)}, for all concept names A in Fg(d);
e for every pair 71,72 € A and every role name R, we have r; RT(®r, iff

{C € con(¥) | (r1(w) : VR.C) € o(w)} C
{C € con(B) | (re(w) : C) € o(w)}.

We claim that 9 is satisfied in 901.
Let us observe first that

(I) for all w € W, C € Fg(¥), and r € A, if (r(w) : C) € o(w) then
re clw),

The proof is by induction on the construction of C. The ounly non-trivial
steps are C = dR.D, C = &;D, and C = 0;D.

Suppose C = AR.D and (r(w) : AR.D) € o(w). As o(w) is closed under
the rule R3, we can find a term z such that (z : D) € o(w) and

{E | (r(w) :VR.E) € o(w)} C{E | (z: E) € o(w)}.

Moreover, there must be a run ' such that r'(w) = z. But then rR!(®)y/
and, by the induction hypothesis, 7' € D), Therefore, r € (AR.D) @),

Now suppose that C = ;D and (r{w) : &;D) € o(w). By the first clause
in Definition 9, there exists w' € W such that w<;w’ and (r(w') : D) € o(w').
So, by the induction hypothesis, r € D' @) from which r € (0; D)),

Finally, let C = 0;D. By the second clause of Definition 9, we then have
(r(w') : D) € o(w'), and so r € D'®) for all w' € W such that w <; w'. It
follows that r € (0; D)),

Our second observation is that

(IT) for every w € W and every @ € for(9), if ¢ € o(w) then (M, w) = ¢.

This is also proved by induction. Let ¢ be atomic and ¢ € o(w). Consider
two cases. First, suppose ¢ = (a : C). By the first clause of Definition 10,
we have (rq(w) : C) € o(w). Hence, by (I), 7, € C®). Recall that o)
was defined as r,. So (M, w) = a: C. Second, assume ¢ = (C' = T). Let
r € A. As o(w) is closed under R—, we then have (r(w) : C) € o(w). It
follows from (I) that r € CT®),

Next, let ¢ = —) with atomic . Since ¥ is in NNF, 9 has the form
(C =T). As o(w) is closed under R, we have (z : ~C) € o(w) for some
z. By the second clause in Definition 10, there exists a run r such that
r(w) = z. Moreover, it follows from (I) that r € (~C)!®). So there is a
d € A such that d € (~C) @) from which (9, w) = =(C =T).

216 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

The induction step is rather straightforward (it is based on (3) and (4)
in Definition 10); we leave the details to the reader.
It follows from (II) that (9, wy) = 9.]

6. The algorithm

We are in a position now to define completion trees, the global completion
rules, and the tableau algorithm itself. Fix a countably infinite set N of
nodes.

DEFINITION 11 (completion tree). A completion tree for a K 4zc-formula
is a tree T' whose nodes g € N are labeled with constraint systems L(g) for
¢ and whose edges (g, ¢') are labeled with natural numbers 7 such that <&; or
O; occurs in 9. If (g, ¢') is labeled with 7 then we say that ¢’ is an i-successor
of ginT.

The global completion rules operate on completion trees. To introduce
the rules we require the following definitions. Given a constraint system S
and ¢ < w, define an equivalence relation Nfg on the set of variables (not
terms) occurring in S by taking

vty iff {C](v:D;C) eS8 ={C| (W :00) e S}.

Denote by [v] the equivalence class (with respect to ~%) generated by a
variable v and put
so= U {min(wlh)}
v occurs in S

The global completion rules intended for constructing a completion tree for
a formula ¥ are shown in Fig. 3. The Re s rule adds successors to completion
trees due to the existence of formulas ¢;¢ and the Ro. rule adds successors
due to the existence of constraints a : ¢;C and v : &;C. The Ry and R/ rules
implement the choice of predecessor types among marked variables, where
Ry chooses predecessor types for unmarked variables and Ry for marked
variables. Analogously to the case of R, and Ry, we need two different rules
since R is nondeterministic. More precisely, in the case of marked variables
it is not sufficient to choose a single predecessor type, but we must consider
arbitrary combinations of choices of predecessor types. The interested reader
may check that, e.g., the satisfiable formula

(T =0;0,Cu0,0D) A(a: 0;0;(3IR.-C T dR.-D))

is judged unsatisfiable iff the R rule is used for marked variables instead of
the R/ rule.

Tableau for Modalized ALC with Constant Domains

217

Global generating rules

Roy If Oip € L(g) and ¢ ¢ L(g'), for all i-successors g’ of g,

R<>c

then construct a new i-successor g’ of g and set L(g') to
the union of the following sets:

{o} {¥|0pellg) {a:Tlacob(@)} {v:T}
{a:Cl(a:00)€L(g} |J {v:C|u:0:0) € Lig)}
ue(L(9))%

where v is the only marked variable in £(¢') and v ¢ (L(g))

7

If (z : ©;C) € L(g) and for all i-successors g’ of g and

terms y, {C}U{E | (z: O;E) € L(9)} L {E | (y: E) € L(¢)},
then construct a new i-successor g’ of g and set £(g') to

the union of the following sets:

{v':C} {y|0xpeL(g)} {v':D](x:0:D)eL(g)}

{a:T|aecob®))} {v:T}
{a:C|(a:0;C) € L(g)} U {u:C|@:0:0) € Lg)}
u€(L(g)L

where v is the only marked variable in £(g'), v # v/,
and v, v’ ¢ (£(g))%.

Global non-generating rules

Ry

If ¢’ is an i-successor of g, v an unmarked variable in £(g'),
and for no term z in £(g) we have

{Clz:TC) e L@} c{C]|(v:C) e Lg},
then nondeterministically choose a marked variable v’ in £(g)
and set L(g') := L(g")U{v:C| (v : 0,C) € L(g)}.
If ¢’ is an i-successor of g, v a marked variable in £(g'),
for no term z in £(g) we have
{Cl(z:0C) e L9} C{C|(v:C) € L(d)},
and X is the set of marked variables occurring in L(g),
then nondeterministically choose a non-empty subset
Y ={v1,...,vp} of X and set
S1:=L(gYU{v: D| (v1: B:D) € L(g)},
Sj =81+ ({D | (v;: OiD) € L(9)} U{E | (v: E) € L(¢)}),
forall 1 < j <k, and L(¢') := Sk.

Figure 3. Global completion rules for K asc.

218 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

define procedure sat(T)

if T contains a clash then
return unsatisfiable

if a completion rule r different from Re; and R, is applicable to T
then apply r to T
return sat(T)

if a completion rule r which is either R¢; or Re, is applicable to T’
then apply r to T'
return sat(7T)

return satisfiable

Figure 4. The satisfiability-checking algorithm for K acc.

We say that a completion tree T contains a clash if there exists a node
g in T such that £(g) contains a clash; otherwise T is called clash-free. T
is said to be complete if no completion rule is applicable to T'.

To decide whether a given formula 9 in negation normal form is satisfi-
able, we form the initial completion tree Ty consisting of a single node gq
labeled with the initial constraint system

Sy={9}U{a:T |acob(@}U{v: T}

where v is a marked individual variable. After that we repeatedly apply
both local and global completion rules in such a way that the Ro; and Ro,
rules are applied only if no other rule is applicable. The tableau algorithm is
shown in Fig. 4 in a pseudocode notation. Note that, if the rules R3, Rz, Ry,
and R/ are applied with higher precedence than Re ¢ and Re,. but with lower
precedence than all the remaining rules, the introduction of duplicate types
is prevented. This is, however, not crucial for termination and correctness
of the algorithm.

7. Termination and correctness

In this section we show that the algorithm described above terminates and
that it is sound and complete.

By the length |p| of a formula ¢ we mean the number of symbols used to
construct . The modal depth md(p) of @ is the length of the longest chain
of nested modal operators in ¢ (both in subformulas and subconcepts); the
modal depth md(z : C) of a constraint z : C is defined analogously. The
modal depth md(S) of a constraint system S is the maximal modal depth of
constraints in S.

Tableau for Modalized ALC with Constant Domains 219

The depth of a tree is the number of edges in its longest branch; the
outdegree is the maximal number of immediate successors of nodes in the
tree.

LEMMA 1. Let T be a completion tree for a formula ¥ constructed by the
algorithm and let g be a node in T. g’hen the number of constraints of the
form z : C in L(g) is bounded by 21" where c is a constant.

PROOF. Let us first determine an upper bound for the number of distinct
terms per node label. By the definition of completion trees and constraint
systems, all object names occurring in node labels are from ob(#). So the
number of distinct object names in a label does not exceed |¢|.

At the moment of its generation, the node g (its label, to be more pre-
cise) contains not more than 2%% distinct unmarked variables and a single
marked one (see the definitions of the Ry and R, rules and that of Fg(s9)).
Consider now the rules that can introduce new variables in £(g). First for
the unmarked variables: R can add at most || new variables and R3 at
most 22?1 (i.e., not more than the number of distinct subsets of concepts in
Fg(¥)). We now consider marked variables, which are introduced by the Ry
and R/ rules. Define a tree T' whose nodes are the marked variables in £(g)
and whose edges are labeled with either Ry or R/ as follows:

e The root node is the initial marked variable in £(g).

e If a completion rule » € {R,R/} is applied to a marked variable v
generating new marked variables vy, ..., v, then v; is successor of v in T
and the edge between v and v; is labelled with r for 1 <7 < k.

Using the definition of R v, Ry, and of Fg(#), it is not hard to see that the
depth of T is bounded by 2 |9|. Moreover, each node has at most 2 |¢#] + 227!
successors: at most 2 |9| outgoing edges labelled with R,y and at most 2219
outgoing edges labelled with R;;. Hence, the number of nodes in the tree

is bounded by (29| + 22?29+ 1 < 981%° which is hence the maximum
number of marked variables in £(g).

To sum up, we can have at most 2 |¢] + 2 - 227 + 281%° distinct terms in
L(g), and so at most

219] - (2]89] + 2 - 22171 4 2819
distinct constraints of the form z : C. B

LEMMA 2. Let T be a completion tree for 9 constructed by the algorithm.
Then the depth of T is bounded by |9| and the outdegree of T does not exceed
24191 where d is a constant.

220 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

PROOF. If ¢’ is a successor of g in T, then clearly
md(L(g")) 5 md(L(g)).

So the depth of T is at most md(¥) < |9|.

Now we compute the outdegree. Let g be a node in T'. Each successor of
g in T is generated by an application of the Re rule to some formula ;¢
or by an application of the Ro rule to some constraint z : &;C in L(g). The
number of applications of the R¢ s rule is obviously bounded by the number
of distinct formulas in L(g), i.e., by |¢#|. Moreover, by definition of the Re,
rule, the number of applications of this rule is bounded by 22/°I (i-e., the
number of distinct subsets of concepts in Fg(#)). Thus, the outdegree of T
does not exceed |9] + 227 =

We are in a position now to prove termination.

THEOREM 2. Having started on the initial completion tree Ty, the (nonde-

terministic) completion algorithm terminates after at most 919 steps, where
d is a constant.

PrOOF. In view of Lemma 2, there is a constant f such that the number of
nodes in each completion tree constructed by the algorithm is at most 2l
As every global generating rule adds a new node, the number of applications
of such rules is bounded by the same number.

Now let us compute the number of applications of local rules on formulas.
Since |for(d)| < |9|, formulas are never deleted from node labels, and since
each local rule on formulas introduces a new formula to a node label, there
may be at most |9| applications of rules of this type per node. So the total
number of applications of local rules on formulas is bounded by 29l . 19].

Finally, each of the local non-generating rules on concepts, local gen-
erating rules and global non-generating rules adds a new constraint of the
form z : C to a constraint system L£(g). By Lemma 1, the number of such
constraints per node is bounded by 2eP%” for some constant c. Thus, the
number of applications of these rules per node is at most 2¢9* " The total
number of such rule applications is then bounded by 9lol" . geldl®, []

Theorem 2 states that the nondeterministic tableau algorithm terminates
after exponentially many steps (in the length of the input formula). Together
with the soundness and completeness yet to be established, this provides
us with a NEXPTIME satisfiability-checking procedure for K 4.¢-formulas.
Since the satisfiability problem for K 4,¢-formulas is NEXPTIME-complete
[27], our algorithm is optimal with respect to the worst case complexity.

Tableau for Modalized ALC with Constant Domains 221

Let us now turn to soundness.

DEFINITION 12 (local correctness). Say that a d-frame § = (W, <,0) is
locally correct if it satisfies the following conditions:

(i) if (O4p) € o(w) for some w € W, then there exists a w’' € W such that
w <; w' and ¢ € o(w');
(ii) if (a : ©;C) € o(w) for some w € W and a € ob(¥), then there exists
a w' € W such that w <; w’ and (a : C) € o(w');
(iii) if (v : ©;C) € o(w) for some w € W and ¥ = {E | (v: O;E) € o(w)},
then there exist a world w’ € W and a term z such that w <; w' and

VU{C}C{E|(z: E)eo(w)};

(iv) if w <; w' then:

(a) (O;9) € o(w) implies ¢ € o(w'),

(b) {E|(a: E)€o(w)} C{E | (a: E) € o(w')} for all a € ob(sF),

(c) for each variable v in o(w), there exists a term z in o(w') such that
{E](v:0:E) €o(w)} C{E | (z: E) € o(w')},

(d) for each variable v in o(w'), there exists a term z in o(w) such that
{E|(z:O;E)ec(w)} C{E | (v: E) € o(v')}.

It is not hard to see that each quasimodel for ¢ is also a locally correct
P-frame. However, the converse does not hold. Consider, for example, the
P-frame § = (W, <, 0) with

e W={w,u'},

o <= {{w,w)},
e o(w)={v:<0;C,v:<0;D} and o(w') = {v: C,v': D}

(it does not matter how ¥ actually looks like). § is obviously locally correct,
but it cannot be a quasimodel for ¢: there exists no run r with r(w) = v,
because whatever choice r{w') = v or r(w') = v' we make, the first property
in the definition of runs does not hold.

However, it is not difficult to modify § and convert it in a quasimodel.
Indeed, construct a new ¥-frame §' by duplicating the world w' in §, i.e., by
adding a new world w” to § in such a way that w <; w" and o(w") = o(w').
It should be clear that § is both a locally correct 9-frame and a quasimodel
for . The next lemma generalizes this observation.

222 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

LEMMA 3. A K ycc-formula ¥ is quasi-satisfiable iff there exists a locally
correct 9-frame § = (W, <, 0) with a world wg € W such that ¥ € o(wy).

PROOF. The implication (=) is trivial. Let us prove (<). As in the example
above, we construct a quasimodel § satisfying 9 by duplicating worlds in
the given locally correct J-frame §.

Let W be a set containing 2 - [con(d)| + 1 ‘copies’ w(V), ... w®lcon@)+1)
of each world w € W, i.e.,

W = {w® |weWand1<4<2-|con(d)| +1}.

By |w(®]| we denote the ‘parent’ w € W of w(®.
Define a thread p in § as a pair of sequences

1 PN 3 and il,---,ik—l

with z1,...,7; € W and iy,...,45_ integers such that z; = wqgl) and
lz;] <4, |zj11] in §, for 1 < j < k. Denote by tail(p) the last world in
p (i-e., 7 in our case) and, whenever |tail(p)] <, [Tky1], let P*zky1 be
the thread

Tlyeeey Ty Tht1 and ’il, “ e ,’l:k_l,’l:k.

Now we define a 9J-frame §' = (W', <’, ¢’} by taking

e W' to be the set of all threads in §,
e p<piff p’ = p'z for some z € W,

e o'(p) = o(|tail(p)]).

It is readily seen that <[} N <} = () whenever i # j and that the structure
(W,Ui<p <G) is an intransitive tree.

Using the fact that § is a locally correct 9¥-frame, it is straightforward
to show that §' is a locally correct ¥-frame as well (the proof is left to the
reader). Moreover, it is easy to see that § satisfies the following stronger
version of condition (iii) in the definition of locally correct ¥-frames:

(iii") If (v : ©;C) € o'(w), for some w € W', then there exist pairwise

distinct wy, ..., wx € W' such that k = 2 |con(9)] + 1, w <} w; for
1 <7 <k, and there are terms z1,...,z; for which

{E|(v:0,E) ed’(w)}U{C} C{E| (zj : E) € o' (wj)}.

Tableau for Modalized ALC with Constant Domains 223

We now show that §' is a quasimodel for 9, i.e., that it satisfies conditions 1-
4 from Definition 10. Conditions 1, 3, and 4 follow immediately from (ii),
(i), and (iv) in Definition 12.

Let us prove condition 2 claiming that, for every variable v in every
o'(wg), wo € W', there is a run r coming through v. We construct r by
induction. To begin with, we put r(wg) = v. Now two cases are possible.

Case |: Suppose that r(w') has been already defined and w <t} w’ with
undefined r(w). By (iv.d) in Definition 12, there is a term z such that

{E|(z:0E) € o' (w)} C{E| (r(w'): E) € o'(w')}.

Then we put r(w) = z. We proceed with Case | till (in finitely many steps)
we reach the root of §’. After that we switch to

Case 1: Suppose that r(w) has already been defined, but there is w' >iw
with undefined r(w'). Let <4, Ch, . .., i, Cy be all distinct concepts in Fg(¥9)
of the form <;C' such that (r(w) : ©4,Cj) € o'(w), 1 < j < k By definition
of Fg, we have k < 2 - |con(#)|. For every such O;,C; we choose by (iii’) a
world w; with undefined r(w;) and a term z; such that

{E|(v:0,E) € o'(w)} U{Cj} C{E | (z; : E) € o' (w))}

and w; # w; whenever j # . Put r(w;) = z;. If we still have a world
w' >} w with undefined r(w'), then we use condition (iv.c) in Definition 12,
according to which there is a term z such that

{E| (r(w) : ;E) € o' (w)} C{E | (z: E) € o'(w')}.

Then we set r(w') = .

It should be clear from the definition that r is a run in §' coming through
v in o'(w). Thus ' is a quasimodel for 9. That ¥ is satisfied in §' follows
from ¥ € o(wy). |

THEOREM 3 (soundness). If there is a complete and clash-free completion
tree for a K acc-formula 9, then 9 is satisfiable.

PRrOOF. Let T be a complete and clash-free completion tree for ¥. Define a
structure § = (W, <, o) by taking
e W to be the set of nodes in T,

e w <; w iff w' is an i-successor of w in T,
e o(w) = unmark(L(w)),

224 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

where unmark(L(w)) is the constraint system obtained by ‘unmarking’ the
marked variables in £(w). By Lemma 3 and Theorem 1, it is sufficient to
show that § is a locally correct ¥-frame.

Clearly, every o(w), for w € W, is a saturated clash-free constraint
system, i.e., a quasiworld for . So ¥ is a ¥-frame. Let us see why it is
locally correct. Conditions (i)—(iii) are satisfied simply because the rules
Ros and Re, are not applicable to T in view of its completeness.

Let (O;0) € L(w) and w <; w'. Then w' has been generated by an
application of a global generating rule (either Ros or Rec). As these rules
are applied only when no other rule is applicable, ;¢ was already in £(w)
by the moment of the application of that rule, and so ¢ € L(w'). This
proves (iv.a). Conditions (iv.b) and (iv.c) are proved analogously, and (iv.d)
follows from that the rules R; and R}, are not applicable to T'.]

THEOREM 4 (completeness). If a K gzc-formula 9 is satisfiable then, having
started from Ty, the satisfiability-checking algorithm for K 4rc will construct
a complete and clash-free completion tree for 9.

PRrOOF. If 9 is satisfiable then it is quasi-satisfiable, and so by Lemma, 3,
there are a locally correct 9-frame § = (W, <,0) and a world wy € W such
that 9 € wy. We use § as a ‘guide’ for applications of the non-deterministic
rules to construct a complete and clash-free completion tree for . We as-
sume that, for every w € W, (z : T) € o(w) whenever z is a variable
which occurs in o(w). (This is achieved by adding (z : T) to o(w) whenever
necessary. The resulting structure is still a locally correct ¥-frame.)

Say that a completion tree T for 1 is §-compatible if the following holds:

1. there is a map 7 from the set of nodes in T to W such that

e if ¢’ is an i-successor of g in T, then 7(g) <; 7(¢') and
e if ¢ € L(g) then ¢ € o(n(g)), for every ¢ € for();

2. for each node g in T, there is a total surjective function 7, from the set
of terms in o(n(g)) to the set of marked variables in £(g) such that if
(v:C) € L(g) and 14(z) = v then (z : C) € o(n(g)), and

3. for each node g in T, there is a total function 7,4 from the set of unmarked
terms in £(g) to the set of terms in o(n(g)) such that if (z : C) € L(g)
then (my(z) : C) € o(n(g))-

Claim. If a completion tree T for 9 is F-compatible and T’ is the result of
an application of a rule R to T, then T" is F-compatible as well.

Tableau for Modalized ALC with Constant Domains 225

Proof. Let T be an §-compatible completion tree, g a node in T, and let
T, Tg, and my be the functions supplied by the definition of §-compatibility.
Consider all possible cases for R.

Suppose that the R rule is applicable to a formula ¢ A in L(g). Since
T is §-compatible, (¢ A1) € o(n(g)) and since § is a J-frame, o(7(g)) is
saturated, which means, in particular, that {¢,1%} C o(w(g)). The applica-
tion of Rx to L(g) adds ¢ and % to L(g). Then the very same functions m,
74, and 7, ensure that the resulting completion tree T" is F-compatible.

Suppose that the Ry rule is applicable to a formula ¢V in L(g). Then,
as we know, (¢ V1) € o(n(g)), and so either ¢ or ¢ is in o(n(g)). By
applying the Ry rule to £(g) accordingly, we clearly obtain an F-compatible
completion tree.

Suppose that the R rule is applicable to a constraint z : CM D in L(g).
Let y be a term in o(n(g)) such that either n4(z) = y (= is unmarked in
L(g)) or 74(y) = = (z is marked in £(g)). In both cases we have

(y: CN D)€ o(n(g))

The non-applicability of Rn to o(7(g)) means that {y : C,y : D} C a(rn(g)).
The application of the Rn rule adds z : C and z : D to L(g). Hence, the
functions , 74, and 7, are as required for the resulting completion tree 7".

Suppose the R, rule is applicable to a constraint z : CUD in £(g). Then
z is unmarked in L(g). Clearly, either 7y4(z) : C or my(z) : D is in o(7(g)).
By applying the R, rule to £(g) accordingly, we see that the functions m,
Tg, and 74 are as required (since z is unmarked in £(g), there is no term y
in o(m(g)) such that 74(y) = z).

Suppose that the Ry rule is applicable to v : C'U D in £(g). Then v is
marked in £(g). Let Y be the set of terms y in o(n(g)) for which 7,(y) = v.
Since 74 is surjective, Y is non-empty. The non-applicability of the R, rule
to o(m(g)) (recall that all variables in o(n(g)) are unmarked) means that
{y:C,y:D}No(n(g)) # 0 for each y € Y. Put

Ye={yeY|(y:0)€oa(nlg)}
Yp=Y\Ye.

The application of Ry adds either (i) v : C or (ii) v : D to L(g), or (iii)
it creates ‘a marked copy’ v' of v, for which, additionally, (v' : D) € L(g)
holds, and then adds v : C to L(g). If Yo = 0, apply the rule in such a
way that v : D is added. If Yp = 0, apply the rule so that v : C is added.
Otherwise we apply the rule in the third possible way. In the first two cases,

226 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

7, Ty, and 7,4 are as required for the resulting completion tree T'. In the
third case, define
/ v’ ifyeYp
7y(W) = { 74(y) otherwise
and 7, = 73, for all b # g. The functions =, my, and 7, ensure that T" is
F-compatible.
Suppose that the R_ rule is applicable to a formula C = T and a term
z in L(g). Then (C = T) € o(n(g)). Let y be a term in o(n(g)) such that
either m,(z) = y (2 is unmarked in £(g)) or 74(y) = = (z is marked in L(g)).
Non-applicability of R— to o(n(g)) means that (y : C) € o(n(g)). Hence,
after the application of R— (which adds z : C to £(g)), the functions =, 7,
and 7y will be as required for the resulting completion tree 7.
Suppose R is applicable to =(C = T) in £L(g). Then

=(C=T) € oa(n(g)

and there is a term y in o(7(g)) such that (y : ~C) € o(n(g)). By applying
Rz to L(g), we introduce a new (unmarked) variable z. Define m, as the
extension of 7y to x with my(x) = y, and put m, = mp, for all h # g. The func-
tions m, 74, and w; are then as required for the resulting completion tree T".

Let R3 be applicable to z : R.C in L(g). Let y be a term in o(n(g)) such
that either 7y(z) = y (= is unmarked in L(g)) or 7,(y) = z (= is marked in
L(g)). In both cases, we have (y : IR.C) € o(n(g)) and can proceed as in the
Ry case (note that the newly generated variable is unmarked in any case).

Now we come to the global rules and suppose that Re; is applicable to
O in L(g). Let n(g) = w. Then (Ojp) € o(w). The rule application
generates an i-successor ¢’ of g. In view of (i) in Definition 12, there is a
w' € W such that w<;w’ and ¢ € o(w'). Set w(¢g') = w'. It remains to define
ny and 7y. The terms occurring in £(g’) are the object names in ob(x}), one
marked variable v, and a set of unmarked variables vy, ...,v;. Set

1. mg(a) = a for every a € ob(d),

2. mg(v;) =min{z | {E]| (v;: E) € L{¢")} C{E | (z : E) € o(w')}} for
1<j <k, and

3. ¢ (z) = v for every term z in o(w).

The function 7y is well-defined for all unmarked variables vy, ..., v; in £(g).

Indeed, fix a j € {1,...,k}. By the definition of the R¢y rule, there is a
variable v such that

{E|(v:0:E) € L(9)} ={E| (v; : E) € L(g)}.

Tableau for Modalized ALC with Constant Domains 227

By the definition of §-compatibility and (iv.b), (iv.c) in Definition 12, it
follows that there is a term z such that

{E|(v;: E) € L(g)} C{E | (z: E) € o(w')}.

It is easy to see that the defined functions =, 7,4, and 7, are as required. The
case of Re, is considered analogously.

Suppose that Ry is applicable to a variable v in a £(g’) and #(¢') = w'.
Then v is unmarked in £(g') and there is a node g such that ¢’ is i-successor
of ginT. Let my(v) = z and 7(g) = w. By the definition of F-compatibility,
we have w <; w', and by (iv.d) in Definition 12, there is a term y such that

{E|(y:0E) €ow)} C{E|(z: E) €o(w)}.

The rule application nondeterministically chooses a marked variable v’ in
L(g) and augments L(g') by {v: D | (v' : O;D) € L(g)}. Take v' = 74(y)
(which exists, since 7, is total). The functions m, 74, and 7, are as required
for the resulting completion tree T'. Indeed, let (v/ : 0;D) € L(g). Since
v' = 74(y), we have (y : 0;D) € o(w) by the definition of F-compatibility.
By the choice of y, (z : D) € o(w') and, since 7y (v) = z, we can safely add
v:D to L(g').

Finally, assume that the R/ rule is applicable to a marked variable v;
in £(g') and that n(¢') = w'. Then there is a node g such that ¢’ is an
i-successor of g. Let X be the set of terms z in o(n(g’)) for which 74 (z) = v
and let 7(g) = w. As 7y is surjective, X # 0. For each z € X, fix a term
Yz such that

{E|(y: :OF) €o(w)} C{E| (z: E) € o(v')}

(such terms exist by (iv.d) in Definition 12). The rule application chooses a
non-empty subset Y of the marked variables in £(g). Let

Y={]|3z€X.1(y;) =7}
Since 74 is total, ¥ is non-empty. Let vi,..., v} be all its elements. The
application of R/ does the following:
e it generates k — 1 ‘marked copies’ va,...,v; of v1 and then
e augments £(g') with {v; : D | (v; : O;D) € L(g)} for 1 < j < k.

Put
o (z) = v if z € X and 74(ys) = v}
9¥" | 74(z) otherwise
and 74 = 7, if h # g. It is obvious that the functions = and =, are as
required for the resulting completion tree T' (note that my(v;) is undefined

228 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

for 1 < j < k). We show that T!I] is also as required. Assume that the rule
application added a constraint (v; : D) to £(g') and fix a term z such that
Ty(z) = vj. Then (v; : O,D) € L(g). By the definition of X and 74, we
have 7,(yz) = v}, which yields (y, : 0;D) € o(w). By the choice of y,, we
then obtain (z : D) € o(w'). The claim is proved.

Now, returning to the proof of the completeness theorem, we show that
it follows from the claim above. Let Ty be the initial completion tree for 9, g
the node in Ty, and v the marked variable in £(g). Set w(g) = wy (recall that
we have 9 € wy), 74(z) = v for all z in o(w), and 7y4(a) = a for all a € ob(¥).
It is readily checked that these functions ensure that Ty is §-compatible.

By the claim above, the completion rules can be applied in such a way
that the resulting completion trees are §-compatible. According to Theo-
rem 2, we then eventually construct a complete §F-compatible completion
tree T. It remains to show that T is clash-free. Suppose otherwise. Let m,
74, and 7y (g a node in T') be the functions supplied by the definition of
F-compatibility. Two cases are possible.

Case 1: there is a node g in T such that {z : A,z : -A} C L(g) for some
term z and concept name A. Suppose first that x is unmarked. Then we
have {ny(z) : A,m4(zx) : A} C o(w(g)), contrary to § being a ¥-frame. Now
assume that z is marked. Since 7, is surjective, there is a term y in o(7(g))
such that 7,(y) = z. But then {y : A,y : A} C o(n(g)), which is again a
contradiction.

Case 2: Clashes of the form -~ T € L(g) or (z : =T) € L(g) are considered
analogously. B

8. Conclusion

In this paper, we developed a tableau algorithm that is capable of reasoning
with a modalized description logic under the constant domain assumption.
The presented work can be extended in at least two interesting directions.
First, the considered logic K 4.¢ is still too weak for many application
areas. For adequate temporal reasoning or reasoning about knowledge and
belief, we are interested in extending our results to modalized DLs with a dif-
ferent modal component, such as, e.g., S4, KD45, or Since/Until Logic. We
conjecture that the ideas underlying our algorithm can be applied to many
modalized DLs. One such extension is already available: in [26], we develop
a tableau algorithm for Until Logic based on ALC with constant domains.
To do this, it was necessary to combine the ideas of marked variables and
duplication of nondeterministic rules presented in this paper with blocking
in the modal component as performed in [32]. Since a combination of these

Tableau for Modalized ALC with Constant Domains 229

two techniques succeeded and blocking in the modal component is precisely
what is needed for global TBoxes, it should be clear that we can extend
K 4cc with global TBoxes without loosing decidability (see Section 2).
Second, it would be interesting to investigate our claim of the presented
tableau algorithm to be “practicable” in more detail. A straightforward im-
plementation of the algorithm as described in this paper cannot be expected
to have an acceptable run-time behavior. However, since the algorithm in
this paper differs in several aspects from standard DL tableau algorithms,
it is not clear if and how the known optimizations for tableau algorithms
(see, e.g., [18, 19]) can be applied. Moreover, because of some of its unusual
aspects, the presented algorithm may be amenable to new optimization tech-
niques. For example, the marked variables could be used for early clash de-
tection: Assume that constraints involving marked variables are expanded
before constraints containing unmarked terms are expanded. If, during the
expansion of constraints with unmarked variables, a constraint v : C for
some concept C is obtained and we have v' : —=C for all marked variables v’
in the constraint system, then a clash can be reported immediately. An alter-
native strategy could be to delay the expansion of constraints with marked
variables as long as possible. This means generating the minimal types ‘on
demand’, i.e., only if the R rule needs to be applied. The application of
this rule itself also calls for optimization, i.e., it seems possible to develop
heuristics for guiding the nondeterministic choice of variables in this rule.

Acknowledgment. The work in this paper was supported by the DFG
Projects Bal122/3-1 and Wo583/3-1 on “Combinations of Modal and De-
scription Logics”.

References

[1] ARTALE, A., and E. FRANCONI, ‘A temporal description logic for reasoning about
actions and plans’, Journal of Artificial Intelligence Research (JAIR) 9, 1998.

[2] ARTALE, A, and C. LuTz, ‘A correspondence between temporal description logics’,
in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Mbller,
P. Patel-Schneider), CEUR-WS, 1999, pp. 145-149.

[3] BAADER, F., M. BucHHEIT, and B. HOLLUNDER, ‘Cardinality restrictions on con-
cepts’, Artificial Intelligence 88:195-213, 1996.

[4] BAADER, F., and P. HANSCHKE, ‘A scheme for integrating concrete domains into
concept languages’, in Proceedings of IJCAI-91 (eds.: J. Mylopoulos, R. Reiter),
Morgan Kaufmann, pp. 452-457, 1991.

230 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

[5] BAADER, F., and A. LAux, ‘Terminological logics with modal operators’, in Pro-
‘ ceedings of the 14th International Joint Conference on Artificial Intelligence (ed.:
C. Mellish), Morgan Kaufmann, 1995, pp. 808-814.

[6] BAADER, F., and H.-J. OHLBACH, ‘A multi-dimensional terminological knowledge
representation language’, Journal of Applied Non-Classical Logics 5:153-197, 1995.

[7] CaLvaNEsg, D., G. DE GiacoMo, and M. LENZERINI, ‘Reasoning in expressive de-
scription logics with fixpoints based on automata on infinite trees’, in Proceedings of
IJCAI-99 (ed.: T. Dean), 1999, pp. 84-89.

[8] DE Giacomo, G., and M. LENZERINI, ‘TBox and ABox reasoning in expressive
description logics’, in Proceedings of KR-96, Morgan Kaufmann, 1996, pp. 316-327.

[9] DevanBu, P.T., and D. J. LITMAN, ‘Taxonomic plan reasoning’, Artificial Intelligence
84:1-35, 1996.

[10] Donini, F.M., M. LENZERINI, D. NARDI, and A. SCHAERF, ‘Adding epistemic-
operators to concept languages’, in Proceedings of the 3rd International Conference
on Principles of Knowledge Representation and Reasoning (eds.: W. Nebel, B. Rich,
C. Swartout), Morgan Kaufmann, 1992, pp. 342-356.

[11] Donini, F. M., M. LENZERINI, D. NARDI, and A. SCHAERF, ‘Reasoning in descrip-
tion logics’, in Foundation of Knowledge Representation (ed.: G. Brewka), CSLI
Publications, 1996, pp. 191-236.

[12] FaGiN, R., J. HALPERN, Y. MOSES, and M. VARDI, Reasoning About Knowledge, MIT
Press, 1995.

[13] GaBBAY, D., and V. SHEHTMAN, ‘Products of modal logics, part I, Logic Journal of
the IGPL 6:73-146, 1998.

[14] HAARSLEV, V., and R. MOLLER, ‘An empirical evaluation of optimization strategies
for ABox reasoning in expressive description logics’, in Proceedings of DL-99 (eds.:
P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, P. Patel-Schneider), CEUR-WS,
1999, pp. 115-119.

[15] HaARsLEV, V., and R. MOLLER, ‘RACE system description’ in Proceedings of DL-99
(eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Méller, P. Patel-Schneider), CEUR-
WS, 1999, pp. 140-141.

[16] HODKINSON, L, F. WOLTER, and M. ZAKHARYASCHEV, ‘Decidable fragments of first-
order temporal logics’, Annals of Pure and Applied Logic 106:85-134, 2000.

[17] HOLLUNDER, B., and W. NUTT, ‘Subsumption algorithms for concept languages’,
DFKI Research Report RR-90-04, Deutsches Forschungszentrum fiir Kiinstliche In-
telligenz, Kaiserslautern, 1990.

[18] Horrocks, I., ‘Optimising tableaux decision procedures for description logics’, PhD
thesis, University of Manchester, 1997.

Tableau for Modalized ALC with Constant Domains 231

[19]

[20]

(21]

[22]

(23]

[24]

[25]

28]

[29]

[30]

(31]

(32]

HoORROCKS, 1., ‘Using an expressive description logic: fact or fiction?’, in Proceedings
of KR-98 (eds.: A. Cohn, L. Schubert, S.C. Shapiro), Morgan Kaufmann, 1998,
pp. 636-647.

Horrocks, I, ‘FaCT and iFaCT’, in Proceedings of DL-99 (eds.: P. Lambrix,
A. Borgida, M. Lenzerini, R. Méller, P. Patel-Schneider), CEUR-WS, 199¢, pp. 133
135.

HORROCKS, 1., P. PATEL-SCHNEIDER, and R. SEBASTIANI, ‘An analysis of empirical
testing for modal decision procedures’, Logic Journal of the IGPL 8:293-323, 2000.

Horrocks, 1., and U. SATTLER, ‘A description logic with transitive and inverse roles
and role hierarchies’, Journal of Logic and Computation 9(3), 1999.

Horrocks, I., U. SATTLER, and S. ToBIES, ‘Practical reasoning for expressive de-
scription logics’, in Proceedings of LPAR-99 (eds.: H. Ganzinger, D. McAllester,
A. Voronkov), Lecture Notes in Artificial Intelligence 1705, Springer-Verlag, 1999,
pp. 161-180.

HugHES, G., and M. CRESSWELL, A New Introduction to Modal Logic, Methuen,
London, 1996.

HustapT, U., and R.A. SCHMIDT, ‘Issues of decidability for description logics in
the framework of resolution’, in Automated Deduction in Classical and Non-classical
Logic (eds.: R. Caterra, G. Salzer), Lecture Notes in Artificial Intelligence 1761,
Springer-Verlag, 1996, pp. 191-205.

Lurz, C., H. STURM, F. WOLTER, and M. ZAKHARYASCHEV, ‘Tableaux for tempo-
ral description logic with constant domain’, in Proceedings of IJCAR-2001 (eds.:
R. Gore, A. Leitsch, T. Nipkow), Siena, Italy, 2001, pp. 121-136, LNAI no. 2083.

Mosurovic, M., and M. ZAKHARYASCHEV, ‘On the complexity of description logics
with modal operators’, in Proceedings of the 2nd Panhellenic Logic Symposion (eds.:
P. Kolaitos, G. Koletos), Delphi, Greece, 1999, pp. 166-171.

PATEL-SCHNEIDER, P., ‘DLP’, in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida,
M. Lenzerini, R. Méller, P. Patel-Schneider), CEUR-WS, 1999, pp. 140-141.

ScuiLD, K.D., ‘A correspondence theory for terminological logics: preliminary re-
port’, in Proceedings of IJCAI-91, Sydney, Australia, 1991, pp. 466-471.

ScuiLp, K.D., ‘Combining terminological logics with tense logic’, in Progress in
Artificial Intelligence — 6th Portuguese Conference on Artificial Intelligence, EPIA-
93 (eds.: M. Filgueiras, L. Damas), Lecture Notes in Artificial Intelligence, Springer-
Verlag, 1993, pp. 105-120.

ScHMIDT-SCHAUSS, M., and G. SMOLKA, ‘Attributive concept descriptions with com-
plements’, Artificial Intelligence 48:1-26, 1991.

STurM, H., and F. WOLTER ‘A tableau calculus for temporal description logic: the
expanding domain case’, Journal of Logic and Computation, to appear.

232 C. Lutz, H. Sturm, F. Wolter, M. Zakharyaschev

[33] vaN BENTHEM, J., ‘Temporal logic’, in Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 4 (eds.: D. Gabbay, C. Hogger, J. Robinson), Oxford
Scientific Publishers, 1996, pp. 241-350.

[34] WOLTER, F., ‘The product of converse PDL and polymodal K’, Journal of Logic and
Computation 10:223-251, 2000.

[35] WOLTER, F., and M. ZAKHARYASCHEV, ‘Satisfiability problem in description logics
with modal operators’, in Proceedings of KR-98 (eds.: A.G. Cohn, L. Schubert,
S. C. Shapiro), Morgan Kaufmann, 1998, pp. 512-523.

[36] WOLTER, F., and M. ZAKHARYASCHEV, ‘Modal description logics: modalizing roles’.
Fundamenta Informaticae 39:411-438, 1999.

[37] WOLTER, F., and M. ZAKHARYASCHEV, ‘Multi-dimensional description logics’, in
Proceedings of IJCAI-99, Volume 1 (ed.: D. Thomas), Morgan Kaufmann, 1999,
pp- 104-109.

[38] WOLTER, F., and M. ZAKHARYASCHEV, ‘Temporalizing description logic’, in Frontiers
of Combining Systems (eds.: D. Gabbay, M. de Rijke), Studies Press/Wiley, 1999,
pp. 379-402.

[39] WOLTER, F., and M. ZAKHARYASCHEV, ‘Dynamic description logic’, In Advances
in Modal Logic, Volume 2 (eds.: K. Segerberg, M. de Rijke, H. Wansing, M. Za-
kharyaschev), CSLI Publications, 2000, pp. 431 —446.

[40] WOLTER, F., and M. ZAKHARYASCHEV, ‘Decidable fragments of first-order modal
logics’, Journal of Symbolic Logic 66: 14151438, 2001.

CARSTEN LuTz

LuFG Theoretical Computer Science, RWTH Aachen,
Ahornstrafie 55, 52074 Aachen, Germany
lutz@cs.rwth-aachen.de

HoLGER STURM and FRANK WOLTER

Institut fiir Informatik

Universitit Leipzig,

Augustus-Platz 10-11, 04109 Leipzig, Germany
{hsturm,wolter }@informatik.uni-leipzig.de

MICHAEL ZAKHARYASCHEV
Department of Computer Science
King’s College

Strand, London WC2R 2LS, U.K.
mz@dcs.kel.ac.uk

