
Is Tractable Reasoning in Extensions of the
Description Logic EL Useful in Practice?

Franz Baader, Carsten Lutz, Boontawee Suntisrivaraporn

Theoretical Computer Science, TU Dresden, Germany
{baader,lutz,meng}@tcs.inf.tu-dresden.de

Abstract. Extensions of the description logic EL have recently been
proposed as lightweight ontology languages. The most important feature
of these extensions is that, despite including powerful expressive means
such as general concept inclusion axioms, reasoning can be carried out in
polynomial time. In this paper, we consider one of these extensions, EL+,
and introduce a refinement of the known polynomial-time classification
algorithm for this logic, which was implemented in our CEL reasoner. We
describe the results of several experiments with CEL on large ontologies
from practice, which show that even a relatively straightforward im-
plementation of the described algorithm outperforms highly optimized,
state-of-the-art tableau reasoners for expressive description logics.

1 Introduction and Motivation

The quest for tractable (i.e., polynomial-time decidable) description logics (DLs),
which started in the 1980s after the first intractability results for DLs were shown
[5, 18], was until recently restricted to DLs extending the basic language FL0,
which allows for conjunction (u) and value restrictions (∀r.C). The main reason
was that, when clarifying the logical status of property arcs in semantic networks
and slots in frames, the decision was taken that arcs/slots should be read as value
restrictions rather than existential restrictions (∃r.C).

Unfortunately, as soon as terminologies (also called TBoxes or DL ontologies)
were taken into consideration, tractability turned out to be unattainable in FL0:
even classifying the simplest form of TBoxes that admit only acyclic concept
definitions was shown to be coNP-hard [19]. If the most general form of TBoxes
is admitted, which consists of general concept inclusion axioms (GCIs) supported
by all modern DL systems, then classification in FL0 even becomes ExpTime-
complete [2].

For these reasons, and also because of the need for expressive DLs in appli-
cations, from the mid 1990s on, the DL community has mainly given up on the
quest of finding tractable DLs. Instead, it investigated more and more expres-
sive DLs, for which reasoning is worst-case intractable. The goal was then to find
practical reasoning procedures, i.e., algorithms that are easy to implement and
optimize, and which—though worst-case exponential or even worse—behave well
in practice (see, e.g., [17]). This line of research has resulted in the availability of

highly optimized DL systems for expressive DLs based on tableau algorithms [14,
10], and successful applications: most notably the recommendation by the W3C
of the DL-based language OWL [16] as the ontology language for the Semantic
Web.

Recently, the choice of value restrictions as a sine qua non of DLs has been
reconsidered. On the one hand, it was shown that the DL EL, which allows for
conjunction and existential restrictions, has better algorithmic properties than
FL0. Classification of both acyclic and cyclic EL TBoxes is tractable [1], and
this remains so even if general TBoxes with GCIs are admitted [6]. On the other
hand, there are applications where value restrictions are not needed, and where
the expressive power of EL or small extensions thereof appear to be sufficient.
In fact, SNOMED, the Systematized Nomenclature of Medicine, employs EL
with an acyclic TBox [23]. Large parts of the Galen medical knowledge base can
also be expressed in EL with GCIs and transitive roles [21]. Finally, the Gene
Ontology [7] can be seen as an acyclic EL TBox with one transitive role.

The tractability results for EL together with the bio-medical applications
mentioned above have motivated our research on extensions of EL: the leitmo-
tif for this research was to extend EL as far as possible by adding standard
DL constructors available in ontology languages like OWL, while still retaining
polynomial-time reasoning in the presence of GCIs. This has resulted in the
tractable DL EL++ [2], which includes transitive roles, so-called right-identities
[23] on roles, nominals (and thus ABoxes), and disjointness constraints on con-
cepts. The purpose of the research presented in the present paper was to evaluate
whether or not the polynomial-time algorithms for reasoning in EL and its ex-
tensions are suitable as a basis for implementing a DL reasoning system that can
handle large bio-medical ontologies, and whether such a reasoner outperforms
existing high-optimized DL reasoners for expressive DLs.

At first sight, one might think that a polynomial-time algorithm is always
better suited for implementation than worst-case exponential-time algorithms
such as the ones underlying modern DL reasoners. However, due to the plethora
of sophisticated optimization techniques that have been developed for tableau
algorithms over the last decade [15], it is far from obvious whether a straight-
forward implementation of the polynomial-time algorithm can compete with
highly-optimized implementations of tableau algorithms. A case in point is our
experience with implementing the polynomial-time classification algorithms for
cyclic EL TBoxes introduced in [1]: direct implementations of both the algorithm
for subsumption w.r.t. descriptive semantics (based on a reduction to satisfiabil-
ity of propositional Horn formulae [9]) and the algorithm for subsumption w.r.t.
greatest fixpoint semantics (based on computing the greatest simulation on a
graph [11]) did not lead to satisfactory results on the Gene Ontology [24].

In this paper, we consider a restriction of the polynomial-time classification
algorithm for EL++ [2] to the fragment EL+ of EL++. This fragment differs
from EL++ in that nominals and the bottom concept are disallowed. The reason
for considering this fragment was that none of the bio-medical ontologies men-
tioned above use nominals or the bottom concept. We describe a refined version

of this algorithm that is tailored toward implementation. The purpose of this
refinement is to remove an obvious obstacle for efficient implementation of the
algorithm as given in [2]: the uninformed, brute-force search for applicable com-
pletion rules. With (almost) no further optimizations, we have implemented the
refined algorithm in our CEL (Classifier for EL) reasoner. We have performed
several experiments to compare the performance of CEL with the performance
of state-of-the-art DL systems based on tableau algorithms. It turns out that
CEL can compete with modern DL systems and often outperforms them. We
view these results as a serious encouragement for further research into optimized
implementations of DL reasoners based on polynomial-time algorithms for the
EL family of DLs.

2 The Description Logic EL+

In DLs, concept descriptions are inductively defined with the help of a set of
constructors, starting with a set NC of concept names and a set NR of role
names. EL+ concept descriptions are formed using the constructors shown in
the upper part of Table 1. An EL+ ontology is a finite set of general concept
inclusions (GCIs) and role inclusions (RIs), whose syntax is shown in the lower
part of Table 1.

The semantics of EL+ is defined in terms of interpretations I = (∆I , ·I),
where the domain ∆I is a non-empty set of individuals, and the interpretation
function ·I maps each concept name A ∈ NC to a subset AI of ∆I and each role
name r ∈ NR to a binary relation rI on ∆I . The extension of ·I to arbitrary
concept descriptions is inductively defined as shown in the semantics column of
Table 1. An interpretation I is a model of an ontology O if, for each inclusion
in O, the conditions given in the semantics column of Table 1 are satisfied.

Name Syntax Semantics

top > ∆I

conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

general concept inclusion C v D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

Table 1. Syntax and semantics of EL+.

One main use of GCIs in EL+ is to give definitions of concept names in
terms of complex concept descriptions. Therefore, we introduce concept defini-
tions A ≡ C, with A a concept name, as an abbreviation for the two GCIs
A v C and C v A. Intuitively, C describes the necessary and sufficient condi-
tions for being an instance of A. GCIs of the form A v C, with A a concept

Pericardium v Tissue u ∃contained-in.Heart

Pericarditis v Inflammation u ∃has-location.Pericardium

Inflammation v Disease u ∃acts-on.Tissue

Heartdisease
.
= Disease u ∃has-location.Heart

Heartdisease v ∃has-state.NeedsTreatment

has-location ◦ contained-in v has-location

Fig. 1. An example EL+ ontology.

name, are called primitive concept definitions.1 They give only necessary (but
no sufficient) conditions for being an instance of A. In DL, a finite set of GCIs is
commonly called a general TBox, and a finite set of (possibly primitive) concept
definitions with unique left-hand sides is called a TBox. We call a TBox primi-
tive if it contains only primitive concept definitions and acyclic if there are no
concept names A0, . . . , An−1 such that A(i+1) modn occurs on the right hand of
the (possibly primitive) concept definition of Ai, for all i < n.

It is worthwhile to note that the role inclusions available in EL+ generalize
a number of standard expressive means: role inclusions of the form r v s are
commonly called role hierarchies; transitivity of a role r can be expressed by
writing r◦r v r; finally, RIs can express right-identity rules r◦s v r, which play
an important role in medical ontologies [23]. An example ontology formulated
in EL+ can be found in Figure 1, where all uppercase words are concept names,
and all lowercase words are role names.

The basic inference problem for DL concept descriptions is concept subsump-
tion: a concept C is subsumed by a concept D w.r.t. an ontology O (written
C vO D) if CI ⊆ DI in every model I of O. The basic inference problem for
DL ontologies is classification: compute the subsumption hierarchy of all concept
names occurring in the ontology O. In our example ontology, it is not hard to see
that Pericarditis is classified as Heartdisease (i.e., Pericarditis vO Heartdisease),
and thus needs treatment.

3 Classifying an EL+ Ontology

A polynomial-time algorithm for classification in EL with GCIs and role hier-
archies has been proposed in [6], and this algorithm was extended to the more
powerful DL EL++ in [2]. We introduce the restriction of the algorithm from [2]
to EL+, and then propose a refined version for implementation purposes.

Both in tableau-based DL systems and in earlier DL systems based on struc-
tural subsumption algorithms, the subsumption hierarchy is computed by per-
forming multiple subsumption tests. In addition to optimizing the single sub-
sumption tests, such systems can also be optimized by trying to minimize the

1 despite not actually defining anything.

number of subsumption tests needed to compute the whole hierarchy [3]. In con-
trast, the classification algorithm in [2] simultaneously computes the subsump-
tion relationships between all pairs of concept names in the input ontology.

To classify an ontology, the algorithm first transforms it into normal form,
which requires that all GCIs and RIs are of one of the forms shown in the left part
of Figure 2. By introducing new concept and role names and applying a number
of straightforward rewriting rules, any EL+ ontology O can be transformed into
a normalized one such that subsumption between the concept names occurring
in O is preserved. The normalization can be carried out in linear time, yielding
an ontology whose size is linear in the size of the original one [2, 24].

Normal Form Completion Rules

A v B CR1 If A ∈ S(X), A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

A1 uA2 v B CR2 If A1, A2 ∈ S(X), A1 uA2 v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B CR3 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B CR4 If (X,Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

r v s CR5 If (X,Y) ∈ R(r), r v s ∈ O, and (X,Y) /∈ R(s)
then R(s) := R(s) ∪ {(X,Y)}

r ◦ s v t CR6 If (X,Y) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O,
and (X,Z) /∈ R(t)

then R(t) := R(t) ∪ {(X,Z)}

Fig. 2. Normal Form and Completion Rules

For the rest of this section, we assume without loss of generality that the
input ontology O is in normal form. Let NCO be the set of all concept names
occurring in O including >, and NRO be the set of all role names occurring in
O. The algorithm computes

– a mapping S assigning to each element of NCO a subset of NCO, and
– a mapping R assigning to each element of NRO a binary relation on NCO.

The intuition is that these mappings make implicit subsumption relationships
explicit in the sense that B ∈ S(A) implies A vO B, and (A,B) ∈ R(r) implies
A vO ∃r.B. The mappings are initialized by setting S(A) := {A,>} for each
A ∈ NCO and R(r) := ∅ for each r ∈ NRO. Then the sets S(A) and R(r) are
extended by applying the completion rules shown in the right part of Figure 2
until no more rule applies. The algorithm has been proved sound and complete
in [2], i.e., after termination we have B ∈ S(A) iff A vO B, for all concept

names A,B occurring in O. It has also been proved that the algorithm always
terminates in time polynomial in the size of the input ontology.

One of the main problems to be solved when implementing the described
algorithm is to develop a good approach for finding the next rule to be applied.
If this is realized by a näıve brute-force search for applicable completion rules,
then one cannot expect an acceptable runtime behavior on large inputs. As a
solution to this problem, we propose a refined version of the algorithm, which
is inspired by the linear-time algorithm for satisfiability of propositional Horn
formulas proposed in [9]. This version uses a set of queues, one for each concept
name appearing in the input ontology, to guide the application of completion
rules. Intuitively, the queues list modifications to the data structure (i.e. to the
sets S(A) and R(r)) that still have to be carried out. The possible entries of the
queues are of the form

B, B → B′, and ∃r.B

with B and B′ concept names, and r a role name. The entry B ∈ queue(A)
means that the concept name B has to be added to S(A). Similarly, B → B′ ∈
queue(A) means that B′ has to be added to S(A) if S(A) already contains B,
and ∃r.B ∈ queue(A) means that (A,B) has to be added to R(r). The fact that
such an addition triggers other rules will be taken into account by appropriately
extending the queues when the addition is performed.

To facilitate describing the manipulation of the queues, we view the (normal-
ized) input ontology O as a mapping Ô from concepts to sets of queue entries
as follows: for each concept name A (including the case A = >), Ô(A) is the
minimal set of queue entries such that

– if A v B ∈ O, then B ∈ Ô(A);
– if A uA′ v B ∈ O or A′ uA v B ∈ O, then A′ → B ∈ Ô(A);
– if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries such
that, if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A).

Now, we can describe how the queues are used: since the sets S(A) are ini-
tialized with {A,>}, we initialize queue(A) with Ô(A) ∪ Ô(>), i.e., we add to
the queues the immediate consequences of being an instance of A and >. Then,
we repeatedly fetch (and thereby remove) entries from the non-empty queues
and process them using the procedure process displayed in Figure 3. To be more
precise, process(A,X) is called when we are currently treating the concept name
A, and X is the next element on queue(A). Observe that the second if-clause
implements CR1 and (part of) CR4, the first if-clause is a pre-processing step ad-
dressing the CR2 rule and delegating the real work to the second if-clause, and
the third if-clause implements CR3, (the other part of) CR4, as well as CR5 and
CR6. The procedure process-new-edge(A, r,B) handles the effects of adding a new
pair (A,B) to R(r). The notation v∗O used in its top-most for-loop stands for
the reflexive-transitive closure of the role hierarchy statements.

procedure process(A,X)
begin

if X = B → B′ then
if B ∈ S(A) then

continue with X := B′;
else return; {do nothing}

if X is a concept name and X /∈ S(A) then
S(A) := S(A) ∪ {X};
queue(A) := queue(A) ∪ Ô(X);
for all concept names B and role names r with (B,A) ∈ R(r) do

queue(B) = queue(B) ∪ Ô(∃r.X);
if X is an existential restriction ∃r.B and (A,B) /∈ R(r) then

process-new-edge(A, r,B)
end;

procedure process-new-edge(A, r,B)
begin

for all role names s with r v∗O s do
R(s) := R(s) ∪ {(A,B)};
queue(A) := queue(A) ∪

⋃
{B′|B′∈S(B)} Ô(∃s.B′);

for all concept names A′ and role names t, u with
t ◦ s v u ∈ O and (A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do
process-new-edge(A′, u,B);

for all concept names B′ and role names t, u with
s ◦ t v u ∈ O and (B,B′) ∈ R(t) and (A,B′) 6∈ R(u) do
process-new-edge(A, u,B′);

end;

Fig. 3. Processing the queue

Queue processing is continued until all queues are empty. Observe that the
refined algorithm need not perform any search to check which completion rules
are applicable. It can be proved that the refined algorithm is still sound and
complete, and that it terminates in polynomial time.

4 Implementation and Evaluation

Modern DL reasoners are usually based on tableau-based subsumption algo-
rithms [4]. Although such algorithms are exponential in the worst case, the de-
velopment of a whole plethora of sophisticated optimization techniques has led
to a quite good runtime behavior in practice. In this section we will show that,
nevertheless, even a relatively näıve implementation of the refined algorithm de-
scribed above can compete with, and even outperform, modern tableau-based
DL systems.

We have implemented the refined algorithm described in the previous section
in the CEL reasoner. CEL is written in Common LISP and accepts input based

on a small extension of the KRSS syntax [20]. For details about the use of the
system, refer to the CEL manual.2 To test whether CEL can compete with modern
tableau-based reasoners, we have conducted a number of experiments based on
three important bio-medical ontologies: the Gene Ontology (Go) [7], the Galen
medical knowledge base (Galen) [21], and the Systematized Nomenclature of
Medicine (Snomed) [8].
Go. The Gene Ontology provides a controlled vocabulary to describe gene and
gene product attributes in any organism. It currently consists of 16,803 con-
cepts and a single, transitive role “part-of”. The original distribution of Go

used a frame-like formalism without formal semantics. For example, the concept
Polarisome is described as follows:

[Term]
id: GO:0000133
name: polarisome
namespace: cellular component
def: "Protein complex playing a role in determining cell polarity"
is a: GO:0043234 ! protein complex
relationship: part of GO:0005938 ! cell cortex
relationship: part of GO:0030427 ! site of polarized growth

The most natural approach to translate Go concept definitions into an EL+

ontology is to use primitive concept definitions. For example, the above Go

concept would be defined as

GO0000133 v GO0043234 u ∃part of.GO0005938 u ∃part of.GO0030427.

This translation gives us OGo

prim, an acyclic, primitive TBox with one role in-
clusion part of ◦ part of v part of. It coincides with the OWL version of Go

contained in recent distributions of the gene ontology. However, as an ontology
for testing DL systems, OGo

prim is not well-suited since it is too simple. Actually,
computing subsumption in an acyclic, primitive TBox is relatively easy: it sim-
ply means computing the transitive closure over the explicitly told subsumption
relationships. In the above example, GO0000133 v GO0043234 is such an explicit
relationship. It should be noted however, that neither tableau-based systems nor
our implementation directly use this fact.

To obtain an ontology based on Go that is harder to classify, we also consider
the translation of Go into non-primitive concept definitions, i.e., the above Go

concept would be defined as

GO0000133 ≡ GO0043234 u ∃part of.GO0005938 u ∃part of.GO0030427.

The result OGo

def is an acyclic TBox with the same additional role inclusion as
above. In OGo

def , subsumption cannot be computed as the transitive closure of
told subsumptions. However, OGo

def is a relatively unusual ontology: due to the

2 The CEL reasoner and the manual are available at
http://lat.inf.tu-dresden.de/systems/cel

assumption that concept definitions also provide sufficient conditions, which has
not been intended by the Go developers, there are large groups of concepts that
turn out to be equivalent (i.e., subsume each other).

Galen. This ontology aims to promote the sharing and re-use of medical data.
It was originally formulated in the language Grail and has been translated into
description logic by Ian Horrocks [12]. In that translation, Galen is formulated
in EL extended with GCIs, role hierarchies, transitive roles, functional roles, and
inverse roles. Since EL+ and CEL do not support inverse roles and functional
roles, we have removed inverse role axioms and treat functional roles as ordinary
ones. In this way, we obtain the EL+ ontology OGalen that contains 1,214 GCIs
as well as 2,041 primitive and 699 non-primitive concept definitions. It refers
to 413 roles, of which 26 are declared transitive. Moreover, there are 412 role
hierarchy axioms.

Snomed is the systematized nomenclature of medicine, a standardization of
medical terminology used in the health systems of the US and the UK. The cur-
rent version of Snomed comprises 379,691 concept and 52 role names. Snomed

is formulated as an acyclic EL TBox that contains 38,719 concept definitions
and 340,972 primitive concept definitions. There are no transitive roles,3 but
11 role hierarchy statements and one right-identity rule of the form r ◦ s v r.
This gives us the ontology OSnomed. To get a smaller version of Snomed that
can be handled by standard DL reasoners, we also consider the fragment that
is obtained by keeping only the non-primitive concept definitions. We call the
resulting ontology OSnomed

core .

The CEL reasoner reads the input ontology, converts each concept definition
(if any) into a pair of GCIs, normalizes the resulting ontology, and then starts
the refined algorithm described in the previous section. When performing ex-
periments with the initial version of CEL, we found that it could classify only
the ontologies OGo

prim, OGalen, and OSnomed

core , but not OGo

def and OSnomed. In the
latter two cases, the problem is that the data structures become too big due to
too many computed subsumption relationships. A more careful analysis revealed
that the problem has different origins for the two ontologies. In the case of OGo

def ,
the many subsumption relationships are due to the presence of large groups of
equivalent concepts: this is problematic as n equivalent concepts give rise to n2

subsumption relationships. In addition, if there is a subsumption between two
equivalence classes of size n and m, then we must store n ·m subsumption rela-
tionships. In the case of OSnomed, many additional concept names are introduced
during the normalization phase, for which we also compute all subsumption re-
lationships. These observations led us to adopting the following improvements
of the original implementation.
Synonyms identification. Told synonyms are concept names A,B that are ex-
plicitly stated to be equivalent by a concept definition A ≡ B. We improved
3 Actually, Snomed needs transitive roles, but since the commercial reasoner used by

the developers cannot handle transitivity, they have simulated it in an incomplete
way using the approach described in [22].

the algorithm by choosing and keeping only a single representative for each
equivalence class of told synonyms. All the dropped synonyms are stored in a
cost-effective union-find data structure to allow the identification of their repre-
sentative. This is needed for answering subsumption queries that involve dropped
synonyms. The removal of synonyms reduces the number of concept names by
more than half in the case of OGo

def and enables classification of this ontology by
CEL.
Improved normal form. Here, the goal is to reduce the number of additional
concept names introduced through normalization. This is achieved in two ways.
First, the purpose of additional concept names introduced during normalization
is to replace complex concept descriptions in GCIs. The general pattern is that
we introduce a concept name A as replacement for a complex concept C, and
then add one of A v C and A w C to the ontology, depending on whether
C was replaced on the left-hand side or on the right-hand side of a GCI. In
the improved normalization, we keep track of the concept descriptions C for
which an abbreviation has already been introduced, and avoid the introduction
of multiple concept names for the same concept description.

Second, in the improved normal form we admit n-ary conjunction on the
left-hand side of GCIs, thus avoiding the introduction of n − 1 concept names
for each left-hand side n-ary conjunction. Of course, the Completion Rule CR2

has to be generalized accordingly:

CR2 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

Also, queue entries of the form B → B′ are now replaced by the more gen-
eral entries B1, · · · , Bn → B′ with the obvious meaning. It is straightforward
to generalize the process function given in Figure 3 to the new type of queue
entries. These two modifications had a drastic effect when normalizing OSnomed:
whereas the original normalization approach introduced 401,830 new concepts,
the improved one introduced “only” 114,658. We have compared the perfor-

OGo

prim OGo

def OGalen OSnomed

core OSnomed

No. of CDefs. 0 16,803 699 38,719 38,719

No. of PCDefs. 16,803 0 2041 0 340,972

No. of GCIs 0 0 1214 0 0

No. of role axioms 1 1 438 0 12

|CNO| 16,806 16,806 2,740 53,234 379,691

|RNO| 1 1 413 52 52

CEL 25 10,833 16 1,360 12,772

FaCT 117 11 19 unattainable unattainable

RACER 36 unattainable 25 84,917 unattainable

Table 2. Benchmarks and Evaluation Results

mance of CEL with two of the most advanced tableau-based reasoning systems:
FaCT (v2.32.17) and RACER (v1.7.6). Both systems implement expressive DLs in
which subsumption is ExpTime-complete. All experiments have been performed
on a PC with 2.4GHz Intel Pentium 4 processor and 2GB memory running Red-
Hat Linux 7.2. In the case of Galen, for the sake of fairness also FaCT and
RACER have been used with the restricted version of Galen that includes nei-
ther functional nor inverse roles. In the case of Snomed, the right-identity rule
was passed to CEL, but not to FaCT and RACER, as the latter do not support
right identities.

The results of our experiments are summarized in the lower part of Table 2,
where unattainable means that the reasoner failed due to exhaustion of memory.
Notably, CEL outperforms both FaCT and RACER in all benchmarks except
OGo

def , where FaCT needs only 11 seconds (we currently have no explanation for
the good behavior of FaCT on OGo

def). Moreover, CEL was the only reasoner that
was able to classify the whole Snomed ontology.4

5 Conclusion

We have proposed a refined classification algorithm for the description logic
EL+, implemented it in the CEL reasoner, and then used CEL to show that even
a relatively straightforward implementation of this algorithm can compete with,
and usually even outperform, highly optimized tableau-based DL reasoners. We
view this result as a strong argument for the use of tractable DLs, provided that
their expressive power is sufficient for the application in question. We also be-
lieve that, when more powerful optimization techniques are developed, reasoners
based on the refined algorithm presented in this paper can be made much more
efficient than our current implementation CEL. Such additional optimizations
may include the following:

Currently, we explicitly compute and store all the subsumption relationships
between concepts names, rather than just computing and storing the Hasse-
diagram of the subsumption hierarchy, as done by the other DL systems. Stor-
ing only the Hasse-diagram will definitely save space, but it is not yet clear
how much time overhead (for computing subsumption relationships from this
representation) this will cause.

Closely related to the previous point is the question whether we can use
the well-known techniques for avoiding calls to the subsumption algorithm used
by other DL systems while computing the Hasse-diagram (see [3]). With the
current algorithm, this does not really make sense since a single call to our sub-
sumption algorithm already computes the whole hierarchy. Thus, one must first
modify our classification algorithm into a goal-directed subsumption algorithm
that checks, with minimum efforts, only whether two given concept names are
in a subsumption relationship.
4 We have recently heard that the optimizations described in [13] have the effect that

FaCT++ is now also capable of classifying OSnomed. We were, however, not yet able
to verify this claim with the version of FaCT++ available for download.

Another technique used by other DL systems is to determine some obvious
(non-)subsumption relationships (such as told subsumers) before calling the ac-
tual subsumption algorithm. It is not clear yet how this kind of information
can be used in our type of algorithm, but one could try to adopt the approach
described in [13].

As shown by our experiments, the reduction of the number of concept names
is a crucial issue for the efficiency of our algorithm. Therefore, any techniques
that make such a reduction is promising candidates for further optimizations. It
is clear that the two simple optimizations described in this paper can further be
improved, but there may also be other, more sophisticated approaches to reduce
the number of concepts to be considered.

Finally, we plan to extend our implementation CEL to the description logic
EL++ [2].

References

1. Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

2. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Proc. IJCAI’05, 2005.

3. Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard Nebel, and Hans-
Jürgen Profitlich. An empirical analysis of optimization techniques for termino-
logical representation systems or: Making KRIS get a move on. Applied Artificial
Intelligence. Special Issue on Knowledge Base Management, 4:109–132, 1994.

4. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69:5–40, 2001.

5. Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in
frame-based description languages. In Proc. AAAI’84, 1984.

6. Sebastian Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

7. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

8. R.A. Cote, D.J. Rothwell, J.L. Palotay, R.S. Beckett, and L. Brochu. The sys-
tematized nomenclature of human and veterinary medicine. Technical report,
SNOMED International, Northfield, IL: College of American Pathologists, 1993.

9. William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. J. Logic Programming, 1(3):267–284,
1984.

10. Volker Haarslev and Ralf Möller. RACER system description. In Proc. IJCAR’01,
2001.

11. Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing
simulations on finite and infinite graphs. In 36th Annual Symposium on Founda-
tions of Computer Science, 1995.

12. Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

13. Dmitry Tsarkov and Ian Horrocks. Optimised classification for taxonomic knowl-
edge bases. In Proc. DL’05, 2005.

14. Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc.
KR’98, 1998.

15. Ian Horrocks. Implementation and optimization techniques. In Franz Baader,
Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

16. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

17. Ian Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning for very ex-
pressive description logics. J. of the IGPL, 8(3):239–264, 2000.

18. Bernhard Nebel. Computational complexity of terminological reasoning in BACK.
Artificial Intelligence, 34(3):371–383, 1988.

19. Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235–249, 1990.

20. Peter F. Patel-Schneider and Bill Swartout. Description-logic knowledge represen-
tation system specification from the KRSS group of the ARPA knowledge sharing
effort. Technical report, DARPA Knowledge Representation System Specification
(KRSS) Group of the Knowledge Sharing Initiative, 1993.

21. Alan Rector and Ian Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In
Proceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium
(AAAI’97), Stanford, CA, 1997. AAAI Press.

22. Stefan Schulz, Martin Romacker, and Udo Hahn. Part-whole reasoning in medical
ontologies revisited: Introducing SEP triplets into classification-based description
logics. Journal of the American Medical Informatics Association (JAMIA), pages
830–834, 1998.

23. Kent A. Spackman. Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. J. of the American
Medical Informatics Association, 2000. Fall Symposium Special Issue.

24. Boontawee Suntisrivaraporn. Optimization and implementation of subsumption
algorithms for the description logic EL with cyclic TBoxes and general concept
inclusion axioms. Master thesis, TU Dresden, Germany, 2005.

