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Abstract

In computer science, ontologies are dynamic entities: to adapt
them to new and evolving applications, it is necessary to fre-
quently perform modifications such as the extension with new
axioms and merging with other ontologies. We argue that,
after performing such modifications, it is important to know
whether the resulting ontology is a conservative extension of
the original one. If this is not the case, then there may be
unexpected consequences when using the modified ontology
in place of the original one in applications. In this paper, we
propose and investigate new reasoning problems based on the
notion of conservative extension, assuming that ontologies
are formulated as TBoxes in the description logi€C. We
show that the fundamental such reasoning problems are de-
cidable and 2EPTIME-complete. Additionally, we perform

a finer-grained analysis that distinguishes between the size of
the original ontology and the size of the additional axioms. In
particular, we show that there are algorithms whose runtime
is ‘only’ exponential in the size of the original ontology, but
double exponential in the size of the added axioms. If the size
of the new axioms is small compared to the size of the ontol-
ogy, these algorithms are thus not significantly more complex
than the standard reasoning services implemented in modern
description logic reasoners. If the extension of an ontology
is not conservative, our algorithm is capable of computing a
concept that witnesses non-conservativeness. We show that
the computed concepts are of (worst-case) minimal size.
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the concept’ in models of the ontology ?” (subsumption
C C D).

In many application domains of DL ontologies such as
the semantic web, medical informatics, and bio-informatics,
ontologies are not static (Baader, Horrocks, & Sattler 2005;
Serafini, Stuckenschmidt, & Wache 2005). The necessity
to maintain, refine, customize, and integrate ontologies fre-
guently requires revisions, extensions, and mergings with
other ontologies. When such operations are performed on
well-established and tested ontologies, it is of prime impor-
tance for the ontology developer to have control of the con-
sequences of her modifications. In particular, it frequently
happens that unintended consequences are introduced, and
such consequences can be far from obvious. There appears
to be consensus that the reasoning services provided by cur-
rent DL reasoners do not provide sufficient support to verify
whether a modified ontology behaves as intended. In this
paper, we address this shortcoming and propose novel DL
reasoning services that support the user in understanding the
consequences ektendingandmergingexisting ontologies.

To illustrate what kind of reasoning is desirable in the con-
text of ontology extension and merging, we discuss two ex-
ample scenarios. First, suppose that an ontology developer
maintains a well-tested ontolod¥ that formalizes an ap-
plication domain. Assume that she wants to exténdith
a number of additional axioms that describe the terminol-
ogy of a part of the domain that was not yet covered/by

Ontologies are used to define the terminology of application Moreover, the developer wants to use the extended ontology
domains. As modern applications require ontologies of large in an application that requires computing subsumptions be-
scale and complex structure whose design and maintenancetween concepts, and for which she has previously dsed

is a challenging task, there is a need to support ontology de- To avoid unexpected results in such applications when using
velopers by automated reasoning tools. This need explains the extended ontology, the existing part®fshould not be

the success of description logics (DLs) as an underlying compromised by the new axioms. In particular, the extended
formalism for ontologies: powerful and theoretically well- ontology should not entail new subsumptions between con-
founded reasoning systems for DLs are readily available. cepts that are formulated in the signature of the old ontol-
In particular, DL reasoners such as Racer, Fact and Pellet ogy, where the term “signature” refers to the concept and
offer reasoning services such as deciding satisfiability and role names used. An automated reasoning tool should sup-
subsumption of concepts w.r.t. an ontology. In other words, port the ontology developer in checking whether any such
these tools are capable of answering queries like “Can the additional subsumptions have been generated by the exten-
concepC have any instances in models of the ontol@gy’ sion.

(satisfiability ofC’) and “Is the concepb more general than Second, assume that there are two well-established on-

tologies7; and7; that describe different and largely inde-
pendent aspects of an application domain, but nevertheless
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have an overlap in signature. To ugand7; together in an upper-level ontology (Guarino 1998)) that by no means
the same application, one would like to merge them by sim- should be corrupted, and of other parts for which a non-
ply taking their union. Similarly to the case of ontology ex- conservative extension is acceptable or even intended. In this
tensions, it is then important to know whether the merging case, the required reasoning problem is the following:

operation compromises the component ontologies: are theres - Gjyen a sel” of concept names and roles, and ontologies
any subsumptlons in the S|gnature7éf_enta!led by, U T3 7 and 7’ such that? C 77, is there a concept in the
that are not entailed by, alone, and likewise fof. Intu- signaturel” that is unsatisfiable w.r.Z”, but not w.r.t7?
itively, the entailment of such subsumptions means thatthere ¢ so, provide a witness concept.

may be unexpected resilts when using the merged ontology This problem clearly subsumes Problems 1 to 3. Again, we

inpl f th t ontologies.
In prace ot the component ontologies prove decidability and establish tight bounds on the length of

The reasoning problems suggested by these two examples, iness concepts. Concerning the computational complex-

can be conveniently formalized using the notion of a con- ity, we show that Problems 1 and 2 are easier than Prob-
servative extension, which has been widely studied and ap- Ie|:n 4.

plied in mathematical logic and in the philosophy of science.
In software engineering, conservative extensions have been Preliminaries
suggested to define the notion of a refinement of a speci- ) o , ) .
fication (Turski & Maibaum 1987). In a similar spirit and ~ We introduce the description l0gi¢LC and define a notion
following (Antoniou & Kehagias 2000), we use them in the of conservative extensions in the context of DLs. Netand

context of ontologies. Formally, an ontology is aconser-  Nr be disjoint and countably infinite sets bncept names
vative extensionf an ontology7 iff every subsumption in androle namesThen, ALC conceptsare formed according
the signature ol entailed by7” is already entailed by to the following syntax rule:

(equivalently, iff every concept in the signatureBbfthat is C,D—T|A|-C|CND|3rC

unsatisfiable w.r.t7” is already unsatisfiable w.rf.). We

use conservative extensions to phrase two fundamental rea-Where A ranges over concept names ancanges over role
soning problems for ontology extension and merging: names. The concept constructdrs, andvr.C' are defined
as abbreviationst stands for-T, C U D for =(=C' M —-D)

andvr.C' abbreviates-3r.—-C.

) _ The representation of ontologies in description logics is
2. Is the merged ontolog¥; U 7 a conservative extension  pased on TBoxes, and we will from now on use these two
of its parts? terms interchangeably. Formally, lBox is a finite set of
While these reasoning tasks already provide the ontology concept implicationg€' C D. For the sake of completeness,
designer with relevant information, we can be even more in- we briefly illustrate the use of TBoxes as an ontology for-
formative: assume that the given extension of the ontology malism: the following TBox provides an (extremely simpli-

turns outnot to be a conservative extension of the original fied) ontology of web services, whefe= D is an abbrevi-
one. This may or may not be intended, and it is up to the de- ation for the two concept implications = D andD C C:
veloper to decide whether the new ontology faithfully repre- . . .
sents the domain under consideration. To support her in this webservice L Sprovider. T [1Jinput. T M output. T
decision, it is useful to computsitness concepis.e., ex- amazonservice = webservice [ Iprovider.amazon

amples of concepts that were satisfiable before_, but not after The upper line describes necessary conditions for being a
the extension. Thus, we obtain another reasoning service: \yep service: every web services has to have at least one
3. If 7 C 7', and7” is not a conservative extension Bf provider, input, and output. The lower line provides both
compute witness concepts that are as small as possible. necessary and sufficient conditions for being a web service
The purpose of this paper is provide a first formal analy- of Amazon: a web service is an Amazon web service if and

sis of reasoning problems based on conservative extensions®"Y if its provider is Amazon. Note, however, that concept

in the basic propositionally closed description logitCC mplica}ions in TBoxes are not required to have atomic left-
(Schmidt-Schauf & Smolka 199Ljore precisely, we show ~ hand sides.

that Problems 1 and 2 are decidable and that witness con- The semantics of ACC concepts is defined set-
cepts from Problem 3 are computable, we pinpoint the exact theoretically in terms of interpretations. Amterpretationis
computational complexity of Problems 1 and 2, and we de- a pairZ = (A%,.7), whereA” is a non-empty set (theo-
termine tight bounds on the (worst-case) length of witness main) and-Z is theinterpretation functionassigning to each
concepts. In this way, we lay a foundation for the creation of concept named a setA” C A, and to each role namea
automated reasoning tools that support ontology developers binary relationr* C A* x A”. The interpretation function
during ontology extension and merging. is inductively extended to concepts as follows:

We also consider a further refinement of our reasoning T — AZ
problems that is motivated by the observation that non- (-C)F = AT\ (T
conservative extensions and mergings of ontologies are T
sometimes intended and completely acceptable. Suppose (CTD)* = C*nD*

)

the original ontologyZ consists of a core ontology (e.g., (3r.C)r = {de AT|3e.(d,e) erT Nee CT}

1. Is the extensiorY’ of the ontology7 a conservative ex-
tension of7?



An interpretatiorZ satisfiesan implicationC' C D if CT C
D?, andZ is amodelof a TBox7 if it satisfies all implica-
tions in7. A conceptC is satisfiablerelative to a TBoxZ
if there exists a moded of T such thatC? £ . A concept
C is subsumedby a concepD relative to a TBoxZ (written
7T E C C D)ifevery modelZ of 7 satisfies the implication
CCD.

We now introduce conservative extensions of TBoxes. A
finite setl’ C N¢ U Ng of concept and role names is called
asignature Thesignaturesig(7) of a TBox7 is the set of
concept and role names occurringdn Given a signature
I, we useALC(T") to denote the set ol LC-concepts using
only concept and role names frdm

Definition 1. Let7; and7; be TBoxes and lef C sig(77).
Then

1. 7; U5 is a conservative extension &f w.r.t. I if, for all
C1,0y € ALC(T),we havel; | C; C Cyiff T1UT,
C:1 C Cs.

2. T U7, is a conservative extension @ if 7; U 75 is a
conservative extension @ w.r.t.sig(77).

It is well-known that subsumption can be reduced to satis-
fiability and vice versaZ = C' C D holds iff C =D is
unsatisfiable relative td andC' is unsatisfiable relative t6

iff 7 |= C C L. Therefore; U7, is conservative extension
of 7; w.r.t. T if and only if each concepf’ € ALC(T) that

is satisfiable relative t@; is satisfiable relative t@; U 75:

The two kinds of conservative extensions introduced in
Definition 1 give rise to two reasoning problems:

e Deciding conservative extensiongeans, given TBoxes
7, and 75, to decide whethef; U 75 is a conservative
extension off;

e Deciding relativized conservative extensiomseans,
given TBoxesT;, 7> and a signatur& C sig(77), to de-
cide whether7; U 75 is a conservative extension @f
w.rt.T.

As discussed in the introduction, it is likely that users ask
for evidence if7; U 75 turns outnot to be a conservative
extension of7;. Such evidence can be provided by witness
concepts: a concept € ALC(T) is called awitness con-
ceptfor (71, 73,T) if C is satisfiable relative td@7, but not
relative to7; U 75. A witness concefdbr (77, 73) is simply
defined as a witness concept @, 75, sig(71)).

To illustrate the use of conservative extensions for con-
trolling the consequences of ontology extensions, we give a
simple example. The following ontolod¥; describes web
services on a general level (like the OWL-S ontology (Mar-
tin et al. 2004)). For simplicity, our7; consists only of a
single concept implication:

webservice T Jprovider. T M Jinput. T M Joutput. T.

Suppose that an ontology developer wants to refine the TBox
7, for a special class of web services that take an integer and
an array as input. This can be done by taking the unidh of
and the following TBoxZ5:

mywebservice [ webservice M Jdinput.integer

Mdinput.array

L —array

integer

Itis not difficult to check tha; U7; is a conservative exten-
sion of both7; and7;. Therefore, the developer can be sure
that, in every application that uses only the concept name
web_service and the role nameprovider, input, andout-

put, she can safely replace the TB@x by its refinement

7, U75. In a next step, the developer further extefigds) 7

with the following TBox73:

mywebservice L Jinput.user_id
user_id C —array
user_.id C -integer

Then,7; U7, U735 is not a conservative extensionbfU 7,
as is shown by the witness concept

mywebservice M Vinput.(integer L array).

By inspecting the witness concept, the developer has to de-
cide whether or not non-conservativeness of the extension
was intended. In any case, non-conservativeness indicates
that applications using the TB&x U7; have to be inspected

for compatibility with the new TBox?; U 75 U 73.

In passing, we note thdf U7; is nota conservative exten-
sion of 77 if withess concepts are allowed to be formulated
in ALCN, the extension ofALC with number restrictions
(Baader & Sattler 1999; Baadet al. 2003a): in this case,

a witness concept isvebservice M (< 1 input). This shows

that being a conservative extension strongly depends on the
DL under consideration. Some more discussion of this issue
is provided in the conclusion.

It is easily seen that the standard reasoning tasks satisfi-
ability and (non-)subsumption can be polynomially reduced
to deciding conservative extensions: first, subsumption can
be polynomially reduced to satisfiability. Now assume that
we want to check whethet’ is satisfiable relative t@.
W.l.o.g., we may assume that € ALC(sig(7)). Then,C
is satisfiable relative t@ iff 7 U{—=C = T} is not a conser-
vative extension of’ . It follows that deciding conservative
extensions is at least as hard as deciding subsumption, i.e.,
ExPTIME-hard in the case afALC (Baaderet al. 2003a;
Schild 1991).

It is interesting to note that the reduction of satisfiabil-
ity to conservative extensions can be reversed if the added
concept implications do not introduce new concept or role
names. Assume that we want to check whetheu 7 is a
conservative extension @i, wheresig(7) C sig(7;7). This
can be done by first convertir, into the form{T = C7},
and then deciding whetherC' is unsatisfiable w.r.t7;. As
implied by the complexity results obtained in the following
section, such a (polynomial) reduction is not possibl&if
introduces additional vocabulary.

Results

The purpose of this section is to summarize the main re-
sults of this paper. Some hints to the proofs are then given in
the next two sections. We start with a basic result about the
complexity of deciding conservative extensions and an up-
per bound on the length of witness concepts. In the follow-
ing, we denote byC| the length of a concept’. Similarly,

thesize|7 | of a TBox7 is defined a$” .-, (|C|+|D]).



Theorem 2. Itis 2EXPTIME-complete to decide relativized  TBox resulting fron; by replacing every implicatiof’; C
and non-relativized conservative extensions. In both cases, C; € T, withCy M B T Cs. Let7; = {B = T}. Then the
if input TBoxes are/; and 7> and the extension is not con-  following are equivalent, for every € ALC(T):

servative, then there exists a witness concgpff length at
most 3-exponential iff; U 73| that can be computed in time
polynomial in|C.

As we will see later, the upper bound on the length of wit- . . . .
ness concepts given in Theorem 2 is tight. We now refine 't fo”ogs that7, U 7 is a conservative extension of iff
Theorem 2 by distinguishing between the size of the TBoxes Z1Y72” U7Zs is aconservative extensionbfU7,” w.rt.I'
7, and7;. Such a more fine-grained analysis is rewarding if Together with Theorem 3, Lemma 4 allows us to estab-
the sizes of/; and7; can be expected to differ substantially.  lish the desired 2EPTIME lower bound. A matching upper
This will usually be the case if an existing TBox is extended bound is obtained from Theorem 2. Using Theorem 3 and
with a set of new concept implications: thdffy| is small Lemma 4, we can also establish a lower bound on the size of
compared tg7;]|. In contrast, when merging two existing  witness concepts that tsple exponential in the size df;.
TBoxes, then no obvious assumption can be made concern-This should be contrasted with the upper bound on witness
ing the relative size of; and7;. concepts given in Theorem 3 for the case of non-relativized
It turns out that, when discriminating the size Bf and _conservative extensions, which is only double exponential
T, a difference in computational complexity emerges be- N 7.
tween deciding non-relativized and relativized conservative Theorem 5. Let 7’ be a TBox of the ford B = T}, with
extensions. We first consider the former and show that there B a concept name. Then
exists a decision procedure that is only exponential in the
size of 7y, but double exponential in the size Bf. Clearly,

e (' is satisfiable relative t@; but not relative td7; U 7;

e (C is satisfiable relative tal; U 7,7 but not relative to
TLUTBUT.

(i) itis 2ExPTIME-complete to decide, given a TBBx and
> 4 . .
we cannot expect a better bound in the siz&ofit follows asignaturd’ C sig(7:), whether7;UT" is a conservative

from the reduction of satisfiability given in the previous sec- extensmp oty wrt T .
tion (and the fact that already the satisfiability of concept(il) there exist families of TBoxeg,),~0 and signatures

namesrelative to TBoxes is EPTIME-hard) that deciding (Cn)n>0, S_UCh that, for alb, >0, _

conservative extensions iskBTIME-hard even if7; is as- — 7, U7’ is not a conservative extensionff w.r.t.T',,,
sumed to be constant. We also provide a refined upper bound  — |7,,| € O(n?), and

for the length of witness concepts by proving thaf;ifJ 7; — every witness concept f¢f;,, 7/, T,,) is of length at

is not a conservative extensiondf, then one can compute (2m22™ )1
witness concepts of size ‘only’ 2-exponential in the size of least2 :

71, but 3-exponential in the size @f. A matching lower In what follows we are going to present sketches of the
bound on the size of witness concepts is established as well. proofs of these results. Full proofs can be found in the
accompanying technical report (Ghilardi, Lutz, & Wolter

Theorem 3. 2006h).

(i) There exists a deterministic algorithm for deciding
conservative extensions whose runtime is bounded by

2p(ITi) %2720 itk 1 a polynomial.
(i) For all TBoxes7; and 7y, if 7; U 75 is not a conserva-
tive extension of, then there exists a witness concept of

w2l T2l
length at mosg2 """ 7

Upper bounds for witness concepts

We prove the upper bound on the size of withess concepts
for relativized conservative extensions given in Theorem 2
and the refined bound on the size of witness concepts for
non-relativized conservative extensions given in Part (ii) of

(iii) There exist families of TBox€d,,),~o and (7,)),>o, Theorem 3. Note that the latter implies the upper bound for
such that, for alln > 0, nonrelativized conservative extensions stated in Theorem 2.
— 7, U7/ is not a conservative extensiondf, Conceptually simple algorithms that decide the satisfia-
—|T| € O(n?), |T!| € O(n?), and bility of DL concepts relative to TBoxes in (worst-case) op-

timal time are often based on the notiontgpes i.e., sets
of formulas that satisfy some basic Boolean closure condi-
tions. Types are also frequently used in modal and temporal

We now refine our analysis of relativized conservative ex- 109ic (Vardi & Wolper 1986; Pratt 1979). Building on this
tensions. In contrast to the previous case, we can prove thattradition, the procedures for constructing witness concepts
there exists no decision procedure that is only single expo- and deciding conservative extensions are also type-based.
nential in the size of;: even for a fixed TBoxX/», the com- We first consider the case of non-relativized conservative
plexity of deciding whethe¥; U 75 is a conservative exten-  extensions. For a TBo¥, we denote by!(7) the closure
sion of 7; w.r.t. T is 2EXPTIME-hard. The proofis based on  under single negation of the set of subconcepts of concepts
the following reduction. that occur in7. A 7-typeis a subset ofl(7) such that

Lemma 4. Let7; and 7; be TBoxesI" = sig(77), and B e C1NCy etiff Cr etandCy € ¢, forall C; 10y €
a concept name not used i and 7. Denote byZ.? the c(T);

— every witness concept f¢7,,, 7)) is of length at least
9(2"x22")~1



o ~C etiff C ¢t forall -C € cl(T).
Observe that, given an interpretatidrandd € AZ, the set

tI(d) = {C e cl(T)|d e Ct}

is a7 -type. In what follows we will not always distinguish
between the type and the conjunctior |, D over all
members of.

To get a first idea of witness concepts, suppose that there
exists af; -typet that

e is satisfiable relative t@; and

e cannot be extended (by adding concepts)To@7;-type
that is satisfiable relative t6, U 75.

Then7; U 75 is not a conservative extension Bf and the
conjunction over all concepts inis a witness concept. Un-
fortunately, the existence of such a type is only a necessary
condition for non-conservativeness, but not a sufficient one:
in general, witness concepts can be more complicated. To

Lemma 8. 7; U 7, is not a conservative extension df

iff there exists & -tree ¥ whose outdegree is bounded by
71|+ | 72|21 72! and whose depth is bounded B§: | x 22'™'
such thatliag(¥) is satisfiable relative t@;, but not relative

to 77 UTs.

Clearly, the “if” direction of the lemma is trivial. To present
the idea behind the proof of the “only if” direction, we in-
troduce the following notion.

Definition 9 (Realizable pair). A pair (¢,U) consisting of
a7;-typet and a set offx>-typesU is realized bya 7;-treeT
with rootw if

o L(w)=t,
o diag(?) is satisfiable relative t@;, and

e U consists of precisely thosg,-typess for which s M
diag(¥) is satisfiable relative t@; U 75.

A pair (¢, U) is realizableif there is a7; -tree realizing it.

nevertheless obtain witness concepts that are semantically ntuitively, if (¢, U) is a pair realizable by &;-tree<, then

transparent, we now generalize the notion Gf-&ype to the
notion of a7 -tree. Similar notions have been developed in
(Visser 1996; Ghilardi 1995), see also the section on related
work.

Definition 6 (7 -tree). A T-treeT = (W, <, L) is a finite
intransitive treg(TV, <) such that each node € W is la-
belled by a7 -type L(w), each edgéw, w’) is labelled by a
role nameL (w, w’) occurring in7, and the following hold:

e for eachw € W, L(w) is satisfiable relative t@;

o for each non-leafv and conceptr.C' € ¢l(7), we have
Ir.C' € L(w) iff there exists a successor of w such that
L(w,w") =randC € L(w’).

A T-tree¥ = (W, <, L) is calledsingleton-treaf W has

exactly one element.

There is a close connection betwegrtrees and concepts
formulated in the signaturég(7 ), as explicated by the fol-
lowing definition.

Definition 7 (Diagram). For each7-tree¥ = (W, <, L)
we define theliagramdiag(¥) € ALC(sig(7)) inductively
as follows:

o if wis aleaf of%, thendiag(%) =[] L(w).

e If wis a non-leaf with successofsy, . .., w,_1 } and¥;
is the subtree of generated by; (i < n), thendiag(%)

is
[1Zw)n [] [']
{i<n|L(w,w;)=r}

réesig(7T)
MV gy (o)) diag(‘Zi)).

Clearly, the diagram of a singletdh-tree is (the conjunc-
tion of all elements of ) & -type.

Our aim is to prove the following lemma, which clearly
implies the upper bounds for the length of witness concepts
in Part (ii) of Theorem 3.

Ir.diag(%;)

(t,U) describes everything we need to know abdiag (%)
as a potential witness concept: thetypet that instances of
diag(%) have in models of; as well as the séf of all pos-
sible 7,-types that instances dfag(%) may have in models
of 7; U 75. Note thatdiag(%) is formulated in the signature
of 71, and thus there may be more than one stgltype.
Indeed, it is not hard to see thdibg(¥) is a witness concept
iff U = 0.

We now give the proof of the “only if” direction of
Lemma 8. Note that every -tree realizes at most a single
pair (¢, U). We use this fact in what follows.

Proof. (i) Suppose thaf; U 75 is not a conservative exten-
sion of 7;. Then take a witness conce@tfor (7;,72) and

a modelZ of C and7;, unravelZ into a tree model’, and
read of a7Z;-tree fromZ’. Since7;-trees have to be finite,
we stop the reading-off process at thée depthof C' which

is defined as the nesting depth of existential restrictions in
C. In a second step, the obtain@g-tree ¥ is modified as
follows in order to satisfy the constraints formulated in the
lemma:

To obtain a tree of depth bounded b¥1! x 2 we
exhaustively perform the following operation: if there are
nodesv andv’ with associated subtre&s, and%,, such
thatv <* ' and¥, realizes the same pair &5,, then
replacet, with T,. Itis possible to show that this opera-
tion preserves the pair realized by the whole tree. Clearly,
the depth of the resulting tree is bounded by the number

of realizable pairs which is bounded Bif:! x 22'™'.

T2
[ ] 22'

To obtain a tree whose outdegree is boundedZ&y +
|T2/2/721, we exhaustively perform the following opera-
tion: if there are nodes andv’ with associated subtrees
%, and%,  such that’ is a direct successor efand¥,
realizes the same pair as the tree obtained ffgnby
dropping the subtre®,,, then drop this subtree.

O



When constructing witness concepts felativizedconser-
vative extensions, we follow the same strategy. However,
most notions have to be slightly extended because we have
the additional parametdr that describes the signature of
withess concepts.

A (T, T)-typeis defined analogously t-types, but con-
tains only concepts fromi(7) N ALC(T'). In analogy to
what was done above, the simplest form of withess concepts
are induced byT', 7; )-typest that

e can be extended toA -type that is satisfiable relative to
7, and

e cannot be extended to B U 7Z>-type that is satisfiable
relative to7; U 7.

Generalizing this basic case, we def{fie 7 )-trees in anal-
ogy with 7 -trees, the only differences being that nodes are
labelled with (I, 7)-types and that edge labels must be
from I". Diagrams for such trees are defined in the obvious
way. The following lemma implies the upper bound on the
size of witness concepts stated in Theorem 2.

Lemma 10. 7; U 75 is not a conservative extension Df
w.r.t. T iff there exists gT', 7;)-tree ¥ whose outdegree is

bounded by|7; U 75|2!71%72| and whose depth is bounded

by 22%2' "™/ sych thatdiag(%) is satisfiable relative td7,
but not relative tal; U 75.

The proof of Lemma 10 is analogous to that of Lemma 8.
The main difference is that we replace realizable pairs by
realizable triples.

Definition 11 (Realizable triple). A triple (¢,Uy,Us),

wheret is a(T', 77 )-type,U; is a non-empty set df; -types,

andUs is a set of7; U To-types, isrealizedby a (T, 7;)-tree

< with rootw if

o L(w)=t;

e U is the set off;-typess such that M diag(T) is satisfi-
able relative tdl;

e U is the set of7; U To-typess such thats M diag(%) is
satisfiable relative t@; U 73;

Since we are now interested in witness concelig(¥)
formulated in the signaturE, there is no unique/;-type
that instances adiag(¥) have in models off;. Instead, we
only have a uniqué'-typet that instances odiag(¥) have

in all models, and aet of 7;-typesU,; that instances of
diag(%) may have in models df;. Observe that demanding
U, to be non-empty corresponds to demanding satisfiability
of diag(%) w.r.t. 7;. The component/, of realizable triples
plays the same role as the componEnin realizable pairs.

To prove Lemma 8, we can now proceed as for Lemma 10,
exchanging realizable pairs by realizable triples. Since the
number of realizable triples is double exponential in the size
of 7; (whereas the number of realizable pairs is only single
exponential), we obtain a tréeof depth double exponential

in |73.

The decision procedures

We develop algorithms for deciding relativized and non-
relativized conservative extensions. In this way, we prove the

Suppose TBoxe$; and7; are given.

. Determine the seR of pairs that are realizable by si
gleton7;-trees. IfR is empty, ther; U 75 is a consert
vative extension of;. Otherwise,

. if Ro contains a paift, U) such thal/ = ), then7; U7
is not a conservative extensionff. Otherwise

. generate the sequen®y, Ro, ... of sets of pairs such
that

=Y

N

w

Riv1 =R; U R;7
whereR/, is the set of realizable pairs that can be
tained in one step from a subset®f that has at mog
|71 | + | T2|2/72! members. Continue untR; = R; UR),
or there exists a paitt,U) € R} such thaty/ = 0. In
the latter casel; U 75 is not a conservative extension
7,. Otherwise, it is.

ob-

of

Figure 1: Deciding conservative extensions.

upper complexity bounds for deciding relativized and non-

relativized conservative extensions given in Theorem 2, and
the refined upper complexity bound for non-relativized con-

servative extensions in Part (i) of Theorem 3. We start with

the non-relativized case.

Deciding conservative extensions

The decision procedure rests on the notion of a diagram and
of a realizable pair. More precisely, the algorithm generates
all realizable pairs for the input TBoxe§ and7; and re-
turns “7; U 75 is not a conservative extension of” if one

of the realizable pairs is of the fortn, U') with U = (. If no

such pair is found, the algorithm returrig,'U7; is a conser-
vative extension of;”. To construct the set of all realizable
pairs, we start with pairs realizable in singletbrtrees and
then add pairs realized by more complex trees in a step-wise
manner. Each step is defined as follows.

Definition 12 (One step). We say that a paift, U) can be
obtained in one stefrom a set of pairsR if there exists a
Ti-tree¥ = (W, <, L) with rootw that realizeg¢, U) such
that, for eachv’ € W with w < w’, the pair realized by the
subtree oft generated by’ is included inR.

Now, the decision procedure is given in Figure 1. It is not
difficult to show that, if it terminates in Step 1, théh has

no models (see below). If this does not happen, the algorithm
looks for a realizable paift, U) with U = () because, as has
already been noted, the diagram ¢fiatree¥ realizing such
a pair is a witness concept.

Below, we sketch proofs of the correctness of the algo-
rithm and of the fact that the algorithm requires time at most
exponential in the size &f; and at most 2-exponential in the
size of75.

Correctnesslf the algorithm terminates returningy U 7
is not a conservative extensiondf’ (which may happen in
Step 2 or 3), then there exists a realizable g&it/) with
U = 0. It follows immediately from the definition of realiz-



able pairs that, in this cas&; U 7 is indeed not a conser-
vative extension of.

Conversely, suppose th&i U 75 is not a conservative
extension of7;. By Lemma 8, we find &;-tree ¥ such
that diag(¥) is satisfiable relative t@; but not relative to
7, U 75 and such that the outdegree ‘6fdoes not exceed
|7:| + |71|2!72!. Sincediag(%) is satisfiable relative td7,
there is a pai(t, U) realized by%. Sincediag(%) is not sat-
isfiable relative t&/; U7, U = . To show that the algorithm
returns “7; U 75 is not a conservative extension df”, we
have to show that

(i) it does not terminate in Step 1 and

(i) (t,U) € R, for somei > 0.
To prove (i), take a moddl of 7; (which clearly exists) and
ad € AZ. Then define the paift? (d), U’), whereU’ is
the set of all7; typest’ such that’ M t;[l (d) is satisfiable
w.r.t. 73 U 75. Itis easy to see that this pair is realizable by a
singleton7; -tree, and thus the algorithm does not terminate
in Step 1.

To establish (ii), we can show by induction éthat, for
every nodew in ¥ on leveldepth(%) — i, the pair(t.,, Uy)
realized by the subtree Gf generated by is in R;. There-
fore, forn = 2!71 x 22" we know thatR, containg(t, U).
Thus, the algorithm confirms thd U 75 is not a conserva-
tive extension of7;.

Complexity We show that, if the computation of the step
from R; to R, in Step 3 of the algorithm is realized in a
suitable way, then the algorithm requires time at most expo-
nential in7; and at most 2-exponential ify. First, Step 1
can be implemented by enumerating &jttypest, check-
ing whethert is satisfiable relative t@;, and if this is the
case computing the correspondibgas the set of alll5-
typess such that M s are satisfiable relative t6, U 75. The
pairs (¢, U) obtained in this way are precisely the pairs re-
alizable in a singletorf; -tree. It follows that Steps 1 and 2
of the algorithm stay within the required time bounds. Sec-
ond, suppose thak; has been computed. Then its size is
bounded by the number of paifs U), i.e. by2/7:! x 22",
Thus, the number of subse&of R, of cardinality at most
|| + |72|2!72! is single exponential if7; | and double ex-
ponential in|73|. Consider such a set of paiR and a pair
(t,U). We have to show that it can be decided in time expo-
nential in|7;| and double exponential iffz| whether(t, U)

can be obtained in one step froR To this end, it can be
shown that the latter is the case iff for each sig(7;7 ) there
exists a successor seic,, C 2™ such that

e forall 3r.D € cl(7y), we havedr.D c t iff there exists
(t',U") € suc, andD € ¢’ and

o for all 75-typess, we haves € U iff the following condi-
tions hold:

— if 3r.C € s, then there exists @', U’) € suc, and an
s’ € U’ suchthatC € s’ and, for all concepts3r.D €
s,D¢&s.

— for every(t',U’) € suc,, there exists ar’ € U’ such
that{—D | -3r.D € s} C ¢'.

Suppose TBoxeg; and7;, and a signatur&€ C sig(7;)
are given.

1. Determine the seR of triples that are realized by sip-
gleton (T, 7;)-trees. IfRy = 0, then7; U 75 is a conA
servative extension df; w.r.t.T". Otherwise,

2. if Ry contains a triplét, Uy, Us) such thal/, = (), then
71 U 75 is not a conservative extension @f w.r.t. I".
Otherwise,

3. generate the sequenBq, Ro, . .
that

. of sets of triples such

Riv1 =R; U R;7
whereR} is the set of realizable triples that can be
tained in one step from a subset ®f that has cardi+
nality at most2|7; U 75|2!71V %I, Continue untitR; =
R; UR] or there exists a triplét, U1, Uz) € R such
thatU, = (. In the latter case]; U 75 is not a conser
vative extension of; w.r.t. T". Otherwise, it is.

Figure 2: Deciding relativized conservative extensions.

— s Ut is satisfiable relative t@; U 75.

To check whetheft, U) can be obtained in one step frd®)

we can thus enumerate all the possible sets (separately
for each roler € sig(77)), and check the listed conditions.
In this way, Step 3 can be executed within the required time
bounds. Observe thatic, is called “successor set” since a
T:- tree that realize&, U) can be constructed by takirig-
trees that realize sets #mc, and adding a new root. How-
ever, a single successor for each elementiof may not be
sufficient, see (Ghilardi, Lutz, & Wolter 2006b) for details.

Deciding relativized conservative extensions

The decision procedure for relativized conservative exten-
sions is quite similar to the procedure for non-relativized
ones. As in the case of upper bounds on the size of witness
concepts, the main change is that we have to move from real-
izable pairs to realizable triples. In analogy to Definition 12,
we then say that a triplé&, U, Us) can beobtained in one
stepfrom a set of triplesR if there exists aT", 77 )-tree T

that realizeq(t, Uy, Usz) such that, for eaclw’ € W with

w < w', the triple realized by the subtree ®fgenerated by

w’ is included inR.

The modified decision procedure is given in Figure 2.
Correctness and termination within the required time bound
(i.e., double exponential in the size of bdth and7;) can
be shown similar to what was done in the previous section.
When adapting the complexity proof, the componelits
andU. of realizable triples are treated in precisely the same
way as the componeit of realizable pairs is treated in the
original proofs. Since the decision procedure given in the
previous section is double exponentialZa and the main
modification was to replac€ (which is related td/z) with
U, (related to7;) and U, (related to7s), it should not be
surprising that we obtain an algorithm that is double expo-
nential w.r.t. both7; | and|75|.



Lower Bounds on Witness Concepts T T C Vr—ANVs.—A 1)
We prove the lower bound on the size of withess concepts B C B (2)
stated in Point (iii) of Theorem 3. To do this, we start with
a 2-exponential lower bound and then improve this bound T A C AnC=0) ©)
to a 3-exponential one. There are two reasons for this incre- " n -
mental approach. The first one is didactic: the TBoxes used A ne<2'-1) E W'((’;‘H') 3 /VS.(C—F—}—)(‘]-)
for the 2-exponential lower bound are smaller and more in- nc<2"-1) £ vrA UVs.A 5)
tuitive than the TBoxes underlying the 3-exponential bound, A’ nc=2"-1) C B (6)
and the latter can be seen as a refinement of the former. The
second reason is that, as will be discussed in more detail Figure 3: The TBoxe§ and7.

later, the 3-exponential bound does not properly subsume
the 2-exponential one.

{4, B, r, s} than what was stated above. For example, there

2-Exponential Witness Concepts can be no model of/ in which an instance ofl has anr-

We are going to prove the following successor that is also an instancedofHowever, concepts
Theorem 13. There exists a TBoX and a family of TBoxes ~ such asA 1 3r.A should not qualify as a witness concept.
()0, such that, for all > 0, This explains Line (1) of/ : by enforcing thatd holds only

in points with nor- and s-predecessors, we guarantee that,
N , B already in models of , there are no two instancesandy of

(i) |7,/ € O(n%), and A such thaty is w-reachable fromr for somew € {r, s}*.

; Y 2" -1

(iii) every witness concept 67, 7,,) is of length> 2° . It is possible to show thaf and 7, indeed behave as

To sketch the proof of Theorem 13, we first need a bit of described above. This is used in the proof of the following
notation. Letr and s be role names. For an interpretation lemma.

(i) 7 U7/ is nota conservative extensiondf

T, a sequence = wy,...,wx_1 € {r,s}*, and elements L 14
x,y € AT, we say thay is w-reachablerom z if there exist emma 14.
elementse, . ..,z; € AT such thatey = z, =, = y, and 1. A conceptC that is satisfiable w.r.t7” and such that all
(zi,2541) € w? forall i < k. Now, the TBoxe<I and7, models ofC and7 are n-violating is a withess concept
from Theorem 13 can be described as follows: for 7 and7;;
e apart from a technical trick to be described below, the 2. if aconcepiC is a witness concept faF and 7/, then all
TBox 7 is used only to fix the signature of witness con-  tree models of’ and7 are n-violating.
cepts: they may use concept namésand B, and role By Point 1 of Lemma 14, the concept» defined in the
names- ands. following is a witness concept fof and7,. This shows
e in the signaturd A, B, r, s}, the TBox7, expresses that  that7 U 7, is indeed not a conservative extensior7of
its modelsZ are notn-violating, where an interpretatidh
is n-violating if there exist elements,, € AZ, forallw € Dy:==B D1 :=3r.D;N3s.D; Ci:=AND;
* n H
gést}rug length smaller tha@™, such that the following Note that the concept®; are introduced only as abbrevi-
' ations, and not as concept names in a TBox. It is not hard
(a) z. € AT, to see that the length . is ©O(22"). To establish Theo-
(0) (Tw,rw) €t ifw =w-o,forallo e {r,s}; rem 13, it remains to prove }Lhat each witness concepf for
(©) 2o ¢ BY if wis of length2" — 1. and7, is of length at least?” ~!. By Line (1) of Figure 3,

if A is satisfied in a tree model, then it is satisfied in the
root. Thus, Point 2 of Corollary 14 implies that every wit-
ness concept fof and7, satisfies the preconditions of the
following lemma, which yields the required lower bound on
the size of witness concepts.

Thus, a witness concept for 7 and7, has to enforce that
all its models arer-violating. Intuitively, this means that the
concept must enforce an instanceAthat is the root of a
binary tree of deptR2™ such that left children are connected
with the roler, right children are connected with the role
and all leafs are instances of3. The fact that the number ~ Lemma 15. Let P be the set of all sequencesc {r, s}* of
of nodes in such a tree is 2-exponentiahircan be used to  length2™ —1, and letC' be a concept such that the following
show that the size of witness concepts forand 7, is at holds:

least 2-exponential in as well. () Cis satisfiable w.rt7;

) ) ,
foJr?de i?]reli?gsueréog.nrr:g't/locvgf Ltjrsli ';B&ﬁjsr;réggﬁtgnfgre (ii) for all tree modelsZ of C and 7 with rootr € A%, we

A
counting modula2™. The counter is based on the concept haver € (AN[,cp3w.T)".

namesCy, ..., C,_; representing the bits of’. The ex- . on_q
pressiori/r.(C++) is an abbreviation for the usual concept ThenC'is of length at leas? '
stating that the value of’ is incremented when going to  In the lemma,3w.C with w = w;---w, abbreviates

r-successors. Note thdf, enforces more in the signature  Jw;.3w,. - - - Jw,.C, and3e.C is justC.



3-Exponential Witness Concepts

We now improve the 2-exponential lower bound to the 3-
exponential one stated in Part(iii) of Theorem 3. Note that,
in contrast to Theorem 13, the size of the unprimed TBox
grows withn instead of being fixed. Therefore, Theorem 3
(iii) does notimply Theorem 13. We leave it as an open prob-
lem whether Theorem 3 (jii) can be strengthened such that
the unprimed TBox is fixed.

The idea for constructing,, and 7,/ is very similar to
what was done in the previous section, only that witness
concepts must now enforce binary trees of defuthbleex-
ponential inn. To achieve this increase of the depth, we
need a counteX that counts modul@?”. Obviously, such

a counter cannot be realized using one concept name for ev-

ery bit as this would result in a TBox of size exponential
in n. Therefore, we use a different form of counting: a sin-
gle value ofX is described using aX -sequencegi.e., a se-
quencery,...,ron € AT such that(z;, z;11) € rF U s?

for all i < 2™. Each element; represents the truth value
of one bit of the counter value via the concept nakhé To
describe the position of the bit represented by an elemgnt
we use a binary counter that is based on concept names
Co,-..,C,_1 and counts from to 2" — 1 along eachX-
sequence, thus assigning bit positions to elements.

The TBoxes7, and 7, are given in Figure 4, where
we useV(r U s).C' as an abbreviation fovr.C' 11 Vs.C.
We first discuss7,,. Lines (7) and (8) are identical to
Lines (1) and (2) of the TBo¥ from the previous section,
and Line (9) ensures that the countércounts correctly.
Lines (10) to (12) guarantee that-sequences starting at in-
stances ofA encode the value null, and that all elements of
such sequences are marked with the concept n&n(ier
“first counter value”). The purpose of Lines (13) to (15) is to
ensure that, if an elementis part of anX-sequence, then
x € Z7 if and only if the X-sequence has a null-value for
some bit strictly lower than that representeciby

The TBox 7, uses a third counteb that counts mod-
ulo 2™ using concept hamely, ..., D,,_1. This counter is
used to ensure thaf counts correctly in models of withess
concepts. Before we go into detail, we give a semantic char-
acterization of the interplay betweéh and7, . LetZ be an
interpretation. For eaclh = wy ---wy € {r,s}*, we call
a sequence,...,r,y; € A? a w-path starting atz if
r = x and, forl < i < k, (i, 241) € w?. If wis not
important, we simply speak ofgath Forn > 0, an inter-
pretationZ is calledstrongly n-violating iff there exists an
x € AZ such that the following two properties are satisfied,
wherem := 2" . 22",

(P1) for all pathsz, .. .,z in Z starting atr of length at most
m, the X values ofzq, ...,z describe the firsk bits of
the consecutive values oR&-bit counter that counts from
0t022" — 1 (each value represented with lowest bit first);

(P2) there exist elements,, € AZ, for all w € {r,s}* of
length at mostn — 1, such that the following are true:

We deliberately confuse the name of the counter and the name
of the concept name representing the truth value of bits.

(a) . € A%
(0) (T, Ty) €t ifw =w-oforalloc {r, s},
(¢) =, ¢ BT if wis of lengthm — 1.

Intuitively, Property (P1) guarantees that the counkér
counts correctly, and (P2) is the double-exponential version
of what was called 7i-violating” in the previous section.

In (P2), we use the bounek — 1 since the counteX has

22" possible values, each value &f is represented by an
X-sequence of lengt?” — 1, and any two consecutiv -
sequences are connected by an additional s-edge.

To ensure that withess concepts enforce models that are
stronglyn-violating, 7,, has to express that each instance of
Aviolates either (P1) or (P2). Letbe such aninstance. The
purpose of Line (16) is to decide whether (P1) or (P2) is vi-
olated atr. If the latter is chosen, the violation is enforced
via Lines (28) and (29) similar to what was done in the pre-
vious section. If (P1) is chosen, Lines (17) to (27) ensure
that there is a path;, ...,z in Z starting atr of length at
mostm such that theX-values along this path daot de-
scribe the first: bits of the consecutive values of2&-bit
counter counting frond to 22 — 1. Due to Lines (9) to (12)
of 7,,, we know that the firs™ X-values alongeq, ...,z
are null as required. Hence, a failure of counting on the path
x1,..., T can only be due to a failure of incrementing the
counterX.

Lines (17) and (18) mark the place where incrementation
fails using the concept name/,. More precisely, the do-
main element marked with/, is a bit such that the corre-
sponding bit in the consecutivE-sequence violates incre-
mentation. There are two ways in which this may happen:
first, there may be no 0-bit lower than the bit marked with
My, but the corresponding bit in the following-sequence
is not toggled. Second, there may be a 0-bit lower than the bit
marked withM,, but the corresponding bit in the following
X-sequence is toggled. These two cases are distinguished by
Lines (21) and (22). In the first case, the cas&af stored
in N X. In the second case, the toggled valueXofs stored
in NX. The countetD is reset in Line (19) and incremented
in Line (22) to identify the corresponding bit in the follow-
ing X-sequence. Through lines (23) and (24), the value of
N X is passed on all the way to this bit. Finally, Lines (16)
and (26) ensure that th&-value of the corresponding bit
coincides withV X .

Lemma 16.

1. A conceptC that is satisfiable w.r.tZ,, and such that all
models ofC' and 7 are stronglyn-violating is a witness
concept for7,, and7,/;

7', then

2. If a conceptC is a witness concept fdf,, and 7./,
all tree models of” and 7T are stronglyn-violating.

We now define a witness concept fiy and7,,, thus show-
ing that7,, U7,/ is indeed not a conservative extensiorypf
Forl < i < m, letb; denote the-th bit of a2"-bit counter

counting from0 to 22" — 1. Then we set:

Dy
Ditq

-B
E'T’D7 [ HSDZ



A C PUP, (16)
P C MyU3r.PU3s. P (17)
T C Vr—Anvs—A 7 pnC=2"-1 C Zu-X (18)
C
B £ B ® My, © Mn(D=0) (19)
T C V(rUs).(C++) ) Moyn-z E NXoX (20)
A C (C=0nF (10) MonZ C NX X (21)
Fr(C<2") C Y(rus).F (11) Mn(D<2") C V(rus).(D++) (22)
F C -X (12) Mn(D<2")NMNX C 3(rus).(MNNX) (23)
MnN(D<2")N=-NX LC 3FJ(rus).(MN-NX) (24)
(C=0 E -Z (13) MMND=2"-1)NMNX C X (25)
XUz L Vr(-(C=0)—2) (14 MMO(D=2"-1)N-NX C -X (26)
Xn-z C Vr(=(C=0)—~2)(15) MOMD<2"—1)nN({C=2"-1) C ZuU-X (27)
PBNnE-C=2"-1)UuZUu-X) C VrPUVs.P (28)
pnC=2"-1)Nn-ZnNnX C B (29)
Figure 4: The TBoxe§,, (left) and7, (right).
C; = AnND;n |_| Yw.—X Definition 17 (Uniform interpolants for TBoxes). Given
we{rs},1<i<n,bi=0 a TBox7 and a signatur& C sig(7), we call a TBox7r
Vo X oversig(7) — T" auniform interpolant of7” with respect to
x |_| w- I" if the following conditions hold:

we{r,s}4,1<i<n,b;=1

It can be checked that the length@f is O(22"2" ). To es-
tablish Part (iii) of Theorem 3, it remains to prove that each
witness concept fof,, and 7,/ is of length at leasg™ 1.

This can be done by establishing an analogue of Lemma 15.

Lower Complexity Bounds

Theorem 2 states that, given two TBox&sand 7s, it is
2EXPTIME-hard to decide whethéf, U 7; is a conservative
extension of7;. To prove this, we can build on the construc-
tion of triple exponential witness concepts in the previous
section to reduce the word problem of exponentially space-
bounded Alternating Turing Machines (ATMs). Given such
an ATM M and a wordw, we can refine the TBoxes given
in Figure 4 into TBoxed; and7; such that such that mod-

o TETn

e for every implicationC T D such that no symbol from
I’ occurs inC, D, we have thatZ = C T D implies
Tr=CLCD.

Itis not difficult to see thaf; U7; is a conservative extension
of 77 if and only if 7; is a uniform interpolant foZ; U 75
with respect taig(73) — sig(71). Thus, if it is the case that,
for every TBox7 and signaturd’, there exists a uniform
interpolantZr of 7 w.r.t.T" (and it is computable), then we
have a procedure deciding whetl¥rJ 75 is a conservative
extension of7;: compute the uniform interpolant and check
whether it is logically equivalent t@;. The most important
logics known to have uniform interpolation are intuitionis-
tic logic, the Gdel-Loeb logic, Grzegorczyk-logic, the
calculus, and the modal logi¢(Visser 1996; Ghilardi 1995;

els of witness concepts encode successful computations of D’Agostino & Lenzi 2005; Pitts 1992). On the other hand,

M onw. Then,7; U 75 is a conservative extension &f iff
M acceptsw. For reasons of space limitation, we refer to
(Ghilardi, Lutz, & Wolter 2006b) for details.

Related work

The problem to decide for two TBox&€§ and7; whether

7, U 75 is a conservative extension @f is closely related

to the notion of auniform interpolant This, in turn, is an
extension of the standard Craig interpolants requiring that
the interpolant is uniform for all possible formulas in the an-
tecedent (Pitts 1992). As uniform interpolation appears to be
the most important notion related to the algorithmic problem
we are concerned with in this paper and results on uniform
interpolation might be useful for future research on conser-
vative extensions in DLs, we briefly discuss the connection.

classical first-order logic, modal logic S4 and dynamic logic
PDL do not have uniform interpolation (Ghilardi & Zawad-
owski 2002; 1995).

Unfortunately, we show in (Ghilardi, Lutz, & Wolter
2006b) that uniform interpolants for TBoxes need not exist.
More precisely, if7 is the TBox

B C IrC, ¢ C dr.B
B C E, C C -FLE.

andT’ = {B, (Y}, then there exists no uniform interpolant
of 7 w.r.t. T'. Thus, the uniform interpolation approach to
conservative extensions fails fagr£C with TBoxes.

Recently, (Marx, Conradie, & ten Cate 2006) have estab-
lished an exponential time procedure for computing uniform



interpolants fotd£LC-concepts without reference to TBoxes
(or, in modal logic terms, the local consequence relation of
modal logicK). The paper also establishes an exponential
upper bound for the size of uniform interpolants. This re-
sultis used in (Ghilardi, Lutz, & Wolter 2006a) to show that
the following decision problem is co-N®TIME-complete:
given two ALC-concepts”; andCsy, is Cq M Cy a conserva-
tive extension of’; ? In other words, does the following hold
for every concepD in the signature of’;: if the subsump-
tion relationC; M Cy C D is valid, then the subsumption
relationC; C D is valid.

Outlook

We have proposed several reasoning problems that are suit-
able for providing automated reasoning support when de-
ciding whether a given extension of an ontology is well-
behaved. Still, substantial research remains to be carried out
to achieve feasibility of this approach in practice. First, one
should try to refine the worst-case optimal algorithms pre-
sented in this paper into more practical algorithms that can
be implemented and tested on real-world ontologies. Sec-
ond, the complexity analysis should be extended fré8C

to the more expressive DLs currently supported by DL rea-
soners such aSHZ Q. We believe that, as long at the DL
under consideration has the tree-model property, modifica-
tions of the techniques introduced in this paper can form the
basis of such a complexity analysis.

Additionally, the results presented in this paper suggest to
search for more pragmatic reasoning problems that are simi-
lar to the ones proposed here, but computationally less com-
plex. For example, a developer might be interested in having
a conservative extension not for all concepts over a given
signature, but only for concepts of a certain form (e.g., pos-
itive concepts, existential concepts, and universal concepts).

In a similar spirit, when considering DLs with number
restrictions, the user might want to achieve a conserva-
tive extension regarding concepts not containing number
restrictions and, at the same time, intend to obtain a non-
conservative extension when concepts containing qualified
number restrictions are involved. To see that there is a con-
siderable difference between the two cases, we refer back to
the example about web services given in this paper.
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