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Abstract

In computer science, ontologies are dynamic entities: to adapt
them to new and evolving applications, it is necessary to fre-
quently perform modifications such as the extension with new
axioms and merging with other ontologies. We argue that,
after performing such modifications, it is important to know
whether the resulting ontology is a conservative extension of
the original one. If this is not the case, then there may be
unexpected consequences when using the modified ontology
in place of the original one in applications. In this paper, we
propose and investigate new reasoning problems based on the
notion of conservative extension, assuming that ontologies
are formulated as TBoxes in the description logicALC. We
show that the fundamental such reasoning problems are de-
cidable and 2EXPTIME-complete. Additionally, we perform
a finer-grained analysis that distinguishes between the size of
the original ontology and the size of the additional axioms. In
particular, we show that there are algorithms whose runtime
is ‘only’ exponential in the size of the original ontology, but
double exponential in the size of the added axioms. If the size
of the new axioms is small compared to the size of the ontol-
ogy, these algorithms are thus not significantly more complex
than the standard reasoning services implemented in modern
description logic reasoners. If the extension of an ontology
is not conservative, our algorithm is capable of computing a
concept that witnesses non-conservativeness. We show that
the computed concepts are of (worst-case) minimal size.

Introduction
Ontologies are used to define the terminology of application
domains. As modern applications require ontologies of large
scale and complex structure whose design and maintenance
is a challenging task, there is a need to support ontology de-
velopers by automated reasoning tools. This need explains
the success of description logics (DLs) as an underlying
formalism for ontologies: powerful and theoretically well-
founded reasoning systems for DLs are readily available.
In particular, DL reasoners such as Racer, Fact and Pellet
offer reasoning services such as deciding satisfiability and
subsumption of concepts w.r.t. an ontology. In other words,
these tools are capable of answering queries like “Can the
conceptC have any instances in models of the ontologyT ?”
(satisfiability ofC) and “Is the conceptD more general than
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the conceptC in models of the ontologyT ?” (subsumption
C v D).

In many application domains of DL ontologies such as
the semantic web, medical informatics, and bio-informatics,
ontologies are not static (Baader, Horrocks, & Sattler 2005;
Serafini, Stuckenschmidt, & Wache 2005). The necessity
to maintain, refine, customize, and integrate ontologies fre-
quently requires revisions, extensions, and mergings with
other ontologies. When such operations are performed on
well-established and tested ontologies, it is of prime impor-
tance for the ontology developer to have control of the con-
sequences of her modifications. In particular, it frequently
happens that unintended consequences are introduced, and
such consequences can be far from obvious. There appears
to be consensus that the reasoning services provided by cur-
rent DL reasoners do not provide sufficient support to verify
whether a modified ontology behaves as intended. In this
paper, we address this shortcoming and propose novel DL
reasoning services that support the user in understanding the
consequences ofextendingandmergingexisting ontologies.

To illustrate what kind of reasoning is desirable in the con-
text of ontology extension and merging, we discuss two ex-
ample scenarios. First, suppose that an ontology developer
maintains a well-tested ontologyT that formalizes an ap-
plication domain. Assume that she wants to extendT with
a number of additional axioms that describe the terminol-
ogy of a part of the domain that was not yet covered byT .
Moreover, the developer wants to use the extended ontology
in an application that requires computing subsumptions be-
tween concepts, and for which she has previously usedT .
To avoid unexpected results in such applications when using
the extended ontology, the existing part ofT should not be
compromised by the new axioms. In particular, the extended
ontology should not entail new subsumptions between con-
cepts that are formulated in the signature of the old ontol-
ogy, where the term “signature” refers to the concept and
role names used. An automated reasoning tool should sup-
port the ontology developer in checking whether any such
additional subsumptions have been generated by the exten-
sion.

Second, assume that there are two well-established on-
tologiesT1 andT2 that describe different and largely inde-
pendent aspects of an application domain, but nevertheless



have an overlap in signature. To useT1 andT2 together in
the same application, one would like to merge them by sim-
ply taking their union. Similarly to the case of ontology ex-
tensions, it is then important to know whether the merging
operation compromises the component ontologies: are there
any subsumptions in the signature ofT1 entailed byT1 ∪ T2

that are not entailed byT1 alone, and likewise forT2. Intu-
itively, the entailment of such subsumptions means that there
may be unexpected results when using the merged ontology
in place of the component ontologies.

The reasoning problems suggested by these two examples
can be conveniently formalized using the notion of a con-
servative extension, which has been widely studied and ap-
plied in mathematical logic and in the philosophy of science.
In software engineering, conservative extensions have been
suggested to define the notion of a refinement of a speci-
fication (Turski & Maibaum 1987). In a similar spirit and
following (Antoniou & Kehagias 2000), we use them in the
context of ontologies. Formally, an ontologyT ′ is aconser-
vative extensionof an ontologyT iff every subsumption in
the signature ofT entailed byT ′ is already entailed byT
(equivalently, iff every concept in the signature ofT that is
unsatisfiable w.r.t.T ′ is already unsatisfiable w.r.t.T ). We
use conservative extensions to phrase two fundamental rea-
soning problems for ontology extension and merging:

1. Is the extensionT ′ of the ontologyT a conservative ex-
tension ofT ?

2. Is the merged ontologyT1 ∪ T2 a conservative extension
of its parts?

While these reasoning tasks already provide the ontology
designer with relevant information, we can be even more in-
formative: assume that the given extension of the ontology
turns outnot to be a conservative extension of the original
one. This may or may not be intended, and it is up to the de-
veloper to decide whether the new ontology faithfully repre-
sents the domain under consideration. To support her in this
decision, it is useful to computewitness concepts, i.e., ex-
amples of concepts that were satisfiable before, but not after
the extension. Thus, we obtain another reasoning service:

3. If T ⊆ T ′, andT ′ is not a conservative extension ofT ,
compute witness concepts that are as small as possible.

The purpose of this paper isto provide a first formal analy-
sis of reasoning problems based on conservative extensions
in the basic propositionally closed description logicALC
(Schmidt-Schauß & Smolka 1991). More precisely, we show
that Problems 1 and 2 are decidable and that witness con-
cepts from Problem 3 are computable, we pinpoint the exact
computational complexity of Problems 1 and 2, and we de-
termine tight bounds on the (worst-case) length of witness
concepts. In this way, we lay a foundation for the creation of
automated reasoning tools that support ontology developers
during ontology extension and merging.

We also consider a further refinement of our reasoning
problems that is motivated by the observation that non-
conservative extensions and mergings of ontologies are
sometimes intended and completely acceptable. Suppose
the original ontologyT consists of a core ontology (e.g.,

an upper-level ontology (Guarino 1998)) that by no means
should be corrupted, and of other parts for which a non-
conservative extension is acceptable or even intended. In this
case, the required reasoning problem is the following:

4. Given a setΓ of concept names and roles, and ontologies
T andT ′ such thatT ⊆ T ′, is there a concept in the
signatureΓ that is unsatisfiable w.r.t.T ′, but not w.r.t.T ?
If so, provide a witness concept.

This problem clearly subsumes Problems 1 to 3. Again, we
prove decidability and establish tight bounds on the length of
witness concepts. Concerning the computational complex-
ity, we show that Problems 1 and 2 are easier than Prob-
lem 4.

Preliminaries
We introduce the description logicALC and define a notion
of conservative extensions in the context of DLs. LetNC and
NR be disjoint and countably infinite sets ofconcept names
androle names. Then,ALC conceptsare formed according
to the following syntax rule:

C,D −→ > | A | ¬C | C uD | ∃r.C
whereA ranges over concept names andr ranges over role
names. The concept constructors⊥,t, and∀r.C are defined
as abbreviations:⊥ stands for¬>, C tD for ¬(¬C u ¬D)
and∀r.C abbreviates¬∃r.¬C.

The representation of ontologies in description logics is
based on TBoxes, and we will from now on use these two
terms interchangeably. Formally, aTBox is a finite set of
concept implicationsC v D. For the sake of completeness,
we briefly illustrate the use of TBoxes as an ontology for-
malism: the following TBox provides an (extremely simpli-
fied) ontology of web services, whereC

.= D is an abbrevi-
ation for the two concept implicationsC v D andD v C:

webservice v ∃provider.> u ∃input.> u ∃output.>
amazonservice

.= webservice u ∃provider.amazon

The upper line describes necessary conditions for being a
web service: every web services has to have at least one
provider, input, and output. The lower line provides both
necessary and sufficient conditions for being a web service
of Amazon: a web service is an Amazon web service if and
only if its provider is Amazon. Note, however, that concept
implications in TBoxes are not required to have atomic left-
hand sides.

The semantics ofALC concepts is defined set-
theoretically in terms of interpretations. Aninterpretationis
a pairI = (∆I , ·I), where∆I is a non-empty set (thedo-
main) and·I is theinterpretation function, assigning to each
concept nameA a setAI ⊆ ∆I , and to each role namer a
binary relationrI ⊆ ∆I ×∆I . The interpretation function
is inductively extended to concepts as follows:

>I := ∆I

(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI

(∃r.C)I := {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}



An interpretationI satisfiesan implicationC v D if CI ⊆
DI , andI is amodelof a TBoxT if it satisfies all implica-
tions inT . A conceptC is satisfiablerelative to a TBoxT
if there exists a modelI of T such thatCI 6= ∅. A concept
C is subsumedby a conceptD relative to a TBoxT (written
T |= C v D) if every modelI of T satisfies the implication
C v D.

We now introduce conservative extensions of TBoxes. A
finite setΓ ⊆ NC ∪ NR of concept and role names is called
a signature. Thesignaturesig(T ) of a TBoxT is the set of
concept and role names occurring inT . Given a signature
Γ, we useALC(Γ) to denote the set ofALC-concepts using
only concept and role names fromΓ.
Definition 1. Let T1 andT2 be TBoxes and letΓ ⊆ sig(T1).
Then
1. T1 ∪T2 is a conservative extension ofT1 w.r.t. Γ if, for all

C1, C2 ∈ ALC(Γ), we haveT1 |= C1 v C2 iff T1∪T2 |=
C1 v C2.

2. T1 ∪ T2 is a conservative extension ofT1 if T1 ∪ T2 is a
conservative extension ofT1 w.r.t. sig(T1).

It is well-known that subsumption can be reduced to satis-
fiability and vice versa:T |= C v D holds iff C u ¬D is
unsatisfiable relative toT andC is unsatisfiable relative toT
iff T |= C v ⊥. Therefore,T1∪T2 is conservative extension
of T1 w.r.t. Γ if and only if each conceptC ∈ ALC(Γ) that
is satisfiable relative toT1 is satisfiable relative toT1 ∪ T2:

The two kinds of conservative extensions introduced in
Definition 1 give rise to two reasoning problems:
• Deciding conservative extensionsmeans, given TBoxes
T1 andT2, to decide whetherT1 ∪ T2 is a conservative
extension ofT1

• Deciding relativized conservative extensionsmeans,
given TBoxesT1, T2 and a signatureΓ ⊆ sig(T1), to de-
cide whetherT1 ∪ T2 is a conservative extension ofT1

w.r.t. Γ.
As discussed in the introduction, it is likely that users ask
for evidence ifT1 ∪ T2 turns outnot to be a conservative
extension ofT1. Such evidence can be provided by witness
concepts: a conceptC ∈ ALC(Γ) is called awitness con-
cept for (T1, T2,Γ) if C is satisfiable relative toT1, but not
relative toT1 ∪ T2. A witness conceptfor (T1, T2) is simply
defined as a witness concept for(T1, T2, sig(T1)).

To illustrate the use of conservative extensions for con-
trolling the consequences of ontology extensions, we give a
simple example. The following ontologyT1 describes web
services on a general level (like the OWL-S ontology (Mar-
tin et al. 2004)). For simplicity, ourT1 consists only of a
single concept implication:

webservice v ∃provider.> u ∃input.> u ∃output.>.

Suppose that an ontology developer wants to refine the TBox
T1 for a special class of web services that take an integer and
an array as input. This can be done by taking the union ofT1

and the following TBoxT2:

mywebservice v webservice u ∃input.integer
u∃input.array

integer v ¬array

It is not difficult to check thatT1∪T2 is a conservative exten-
sion of bothT1 andT2. Therefore, the developer can be sure
that, in every application that uses only the concept name
web service and the role namesprovider, input, andout-
put, she can safely replace the TBoxT1 by its refinement
T1∪T2. In a next step, the developer further extendsT1∪T2

with the following TBoxT3:

mywebservice v ∃input.user id
user id v ¬array
user id v ¬integer

Then,T1∪T2∪T3 is not a conservative extension ofT1∪T2,
as is shown by the witness concept

mywebservice u ∀input.(integer t array).

By inspecting the witness concept, the developer has to de-
cide whether or not non-conservativeness of the extension
was intended. In any case, non-conservativeness indicates
that applications using the TBoxT1∪T2 have to be inspected
for compatibility with the new TBoxT1 ∪ T2 ∪ T3.

In passing, we note thatT1∪T2 isnota conservative exten-
sion ofT1 if witness concepts are allowed to be formulated
in ALCN , the extension ofALC with number restrictions
(Baader & Sattler 1999; Baaderet al. 2003a): in this case,
a witness concept iswebservice u (6 1 input). This shows
that being a conservative extension strongly depends on the
DL under consideration. Some more discussion of this issue
is provided in the conclusion.

It is easily seen that the standard reasoning tasks satisfi-
ability and (non-)subsumption can be polynomially reduced
to deciding conservative extensions: first, subsumption can
be polynomially reduced to satisfiability. Now assume that
we want to check whetherC is satisfiable relative toT .
W.l.o.g., we may assume thatC ∈ ALC(sig(T )). Then,C
is satisfiable relative toT iff T ∪{¬C

.= >} is not a conser-
vative extension ofT . It follows that deciding conservative
extensions is at least as hard as deciding subsumption, i.e.,
EXPTIME-hard in the case ofALC (Baaderet al. 2003a;
Schild 1991).

It is interesting to note that the reduction of satisfiabil-
ity to conservative extensions can be reversed if the added
concept implications do not introduce new concept or role
names. Assume that we want to check whetherT1 ∪ T2 is a
conservative extension ofT1, wheresig(T2) ⊆ sig(T1). This
can be done by first convertingT2 into the form{> .= C},
and then deciding whether¬C is unsatisfiable w.r.t.T1. As
implied by the complexity results obtained in the following
section, such a (polynomial) reduction is not possible ifT2

introduces additional vocabulary.

Results
The purpose of this section is to summarize the main re-
sults of this paper. Some hints to the proofs are then given in
the next two sections. We start with a basic result about the
complexity of deciding conservative extensions and an up-
per bound on the length of witness concepts. In the follow-
ing, we denote by|C| the length of a conceptC. Similarly,
thesize|T | of a TBoxT is defined as

∑
CvD∈T (|C|+ |D|).



Theorem 2. It is 2EXPTIME-complete to decide relativized
and non-relativized conservative extensions. In both cases,
if input TBoxes areT1 andT2 and the extension is not con-
servative, then there exists a witness conceptC of length at
most 3-exponential in|T1∪T2| that can be computed in time
polynomial in|C|.
As we will see later, the upper bound on the length of wit-
ness concepts given in Theorem 2 is tight. We now refine
Theorem 2 by distinguishing between the size of the TBoxes
T1 andT2. Such a more fine-grained analysis is rewarding if
the sizes ofT1 andT2 can be expected to differ substantially.
This will usually be the case if an existing TBox is extended
with a set of new concept implications: then,|T2| is small
compared to|T1|. In contrast, when merging two existing
TBoxes, then no obvious assumption can be made concern-
ing the relative size ofT1 andT2.

It turns out that, when discriminating the size ofT1 and
T2, a difference in computational complexity emerges be-
tween deciding non-relativized and relativized conservative
extensions. We first consider the former and show that there
exists a decision procedure that is only exponential in the
size ofT1, but double exponential in the size ofT2. Clearly,
we cannot expect a better bound in the size ofT1: it follows
from the reduction of satisfiability given in the previous sec-
tion (and the fact that already the satisfiability of concept
namesrelative to TBoxes is EXPTIME-hard) that deciding
conservative extensions is EXPTIME-hard even ifT2 is as-
sumed to be constant. We also provide a refined upper bound
for the length of witness concepts by proving that, ifT1 ∪T2

is not a conservative extension ofT1, then one can compute
witness concepts of size ‘only’ 2-exponential in the size of
T1, but 3-exponential in the size ofT2. A matching lower
bound on the size of witness concepts is established as well.

Theorem 3.
(i) There exists a deterministic algorithm for deciding

conservative extensions whose runtime is bounded by
2p(|T1|)×2p(|T2|) , with p a polynomial.

(ii) For all TBoxesT1 andT2, if T1 ∪ T2 is not a conserva-
tive extension ofT1, then there exists a witness concept of

length at most22|T1|×2|T2|

.
(iii) There exist families of TBoxes(Tn)n>0 and (T ′

n)n>0,
such that, for alln > 0,
– Tn ∪ T ′

n is not a conservative extension ofTn,
– |Tn| ∈ O(n2), |T ′

n| ∈ O(n2), and
– every witness concept for(Tn, T ′

n) is of length at least

2(2n×22n
)−1.

We now refine our analysis of relativized conservative ex-
tensions. In contrast to the previous case, we can prove that
there exists no decision procedure that is only single expo-
nential in the size ofT1: even for a fixed TBoxT2, the com-
plexity of deciding whetherT1 ∪ T2 is a conservative exten-
sion ofT1 w.r.t. Γ is 2EXPTIME-hard. The proof is based on
the following reduction.

Lemma 4. Let T1 andT2 be TBoxes,Γ = sig(T1), andB
a concept name not used inT1 and T2. Denote byT B

2 the

TBox resulting fromT2 by replacing every implicationC1 v
C2 ∈ T2 with C1 u B v C2. LetT3 = {B = >}. Then the
following are equivalent, for everyC ∈ ALC(Γ):

• C is satisfiable relative toT1 but not relative toT1 ∪ T2;
• C is satisfiable relative toT1 ∪ T B

2 but not relative to
T1 ∪ T B

2 ∪ T3.

It follows thatT1 ∪ T2 is a conservative extension ofT1 iff
T1∪T B

2 ∪T3 is a conservative extension ofT1∪T B
2 w.r.t.Γ.

Together with Theorem 3, Lemma 4 allows us to estab-
lish the desired 2EXPTIME lower bound. A matching upper
bound is obtained from Theorem 2. Using Theorem 3 and
Lemma 4, we can also establish a lower bound on the size of
witness concepts that istriple exponential in the size ofT1.
This should be contrasted with the upper bound on witness
concepts given in Theorem 3 for the case of non-relativized
conservative extensions, which is only double exponential
in T1.

Theorem 5. Let T ′ be a TBox of the form{B = >}, with
B a concept name. Then

(i) it is 2EXPTIME-complete to decide, given a TBoxT1 and
a signatureΓ ⊆ sig(T1), whetherT1∪T ′ is a conservative
extension ofT1 w.r.t. Γ.

(ii) there exist families of TBoxes(Tn)n>0 and signatures
(Γn)n>0, such that, for alln > 0,
– Tn ∪ T ′ is not a conservative extension ofTn w.r.t. Γn,
– |Tn| ∈ O(n2), and
– every witness concept for(Tn, T ′,Γn) is of length at

least2(2n·22n
)−1.

In what follows we are going to present sketches of the
proofs of these results. Full proofs can be found in the
accompanying technical report (Ghilardi, Lutz, & Wolter
2006b).

Upper bounds for witness concepts
We prove the upper bound on the size of witness concepts
for relativized conservative extensions given in Theorem 2
and the refined bound on the size of witness concepts for
non-relativized conservative extensions given in Part (ii) of
Theorem 3. Note that the latter implies the upper bound for
non-relativized conservative extensions stated in Theorem 2.

Conceptually simple algorithms that decide the satisfia-
bility of DL concepts relative to TBoxes in (worst-case) op-
timal time are often based on the notion oftypes, i.e., sets
of formulas that satisfy some basic Boolean closure condi-
tions. Types are also frequently used in modal and temporal
logic (Vardi & Wolper 1986; Pratt 1979). Building on this
tradition, the procedures for constructing witness concepts
and deciding conservative extensions are also type-based.

We first consider the case of non-relativized conservative
extensions. For a TBoxT , we denote bycl(T ) the closure
under single negation of the set of subconcepts of concepts
that occur inT . A T -typeis a subset ofcl(T ) such that

• C1 u C2 ∈ t iff C1 ∈ t andC2 ∈ t, for all C1 u C2 ∈
cl(T );



• ¬C ∈ t iff C 6∈ t, for all ¬C ∈ cl(T ).

Observe that, given an interpretationI andd ∈ ∆I , the set

tTI (d) = {C ∈ cl(T ) | d ∈ CI}

is aT -type. In what follows we will not always distinguish
between the typet and the conjunction

d
D∈t D over all

members oft.

To get a first idea of witness concepts, suppose that there
exists aT1-typet that

• is satisfiable relative toT1 and

• cannot be extended (by adding concepts) to aT1∪T2-type
that is satisfiable relative toT1 ∪ T2.

ThenT1 ∪ T2 is not a conservative extension ofT1 and the
conjunction over all concepts int is a witness concept. Un-
fortunately, the existence of such a type is only a necessary
condition for non-conservativeness, but not a sufficient one:
in general, witness concepts can be more complicated. To
nevertheless obtain witness concepts that are semantically
transparent, we now generalize the notion of aT -type to the
notion of aT -tree. Similar notions have been developed in
(Visser 1996; Ghilardi 1995), see also the section on related
work.

Definition 6 (T -tree). A T -treeT = (W,<,L) is a finite
intransitive tree(W,<) such that each nodew ∈ W is la-
belled by aT -typeL(w), each edge(w,w′) is labelled by a
role nameL(w,w′) occurring inT , and the following hold:

• for eachw ∈ W , L(w) is satisfiable relative toT ;

• for each non-leafw and concept∃r.C ∈ cl(T ), we have
∃r.C ∈ L(w) iff there exists a successorw′ of w such that
L(w,w′) = r andC ∈ L(w′).

A T -treeT = (W,<,L) is calledsingleton-treeif W has
exactly one element.

There is a close connection betweenT -trees and concepts
formulated in the signaturesig(T ), as explicated by the fol-
lowing definition.

Definition 7 (Diagram). For eachT -treeT = (W,<,L)
we define thediagramdiag(T) ∈ ALC(sig(T )) inductively
as follows:

• if w is a leaf ofT, thendiag(T) =
d

L(w).
• If w is a non-leaf with successors{w0, . . . , wn−1} andTi

is the subtree ofT generated bywi (i < n), thendiag(T)
is
l

L(w) u
l

r∈sig(T )

( l

{i<n|L(w,wi)=r}

∃r.diag(Ti)

u ∀r.
⊔
{i<n|L(w,wi)=r} diag(Ti)

)
.

Clearly, the diagram of a singleton-T -tree is (the conjunc-
tion of all elements of ) aT -type.

Our aim is to prove the following lemma, which clearly
implies the upper bounds for the length of witness concepts
in Part (ii) of Theorem 3.

Lemma 8. T1 ∪ T2 is not a conservative extension ofT1

iff there exists aT1-tree T whose outdegree is bounded by
|T1|+ |T2|2|T2| and whose depth is bounded by2|T1|×22|T2|

such thatdiag(T) is satisfiable relative toT1, but not relative
to T1 ∪ T2.

Clearly, the “if” direction of the lemma is trivial. To present
the idea behind the proof of the “only if” direction, we in-
troduce the following notion.

Definition 9 (Realizable pair). A pair (t, U) consisting of
aT1-typet and a set ofT2-typesU is realized byaT1-treeT
with rootw if

• L(w) = t,

• diag(T) is satisfiable relative toT1, and

• U consists of precisely thoseT2-typess for which s u
diag(T) is satisfiable relative toT1 ∪ T2.

A pair (t, U) is realizableif there is aT1-tree realizing it.

Intuitively, if (t, U) is a pair realizable by aT1-treeT, then
(t, U) describes everything we need to know aboutdiag(T)
as a potential witness concept: theT1-typet that instances of
diag(T) have in models ofT1 as well as the setU of all pos-
sibleT2-types that instances ofdiag(T) may have in models
of T1 ∪ T2. Note thatdiag(T) is formulated in the signature
of T1, and thus there may be more than one suchT2-type.
Indeed, it is not hard to see thatdiag(T) is a witness concept
iff U = ∅.

We now give the proof of the “only if” direction of
Lemma 8. Note that everyT -tree realizes at most a single
pair (t, U). We use this fact in what follows.

Proof. (i) Suppose thatT1 ∪ T2 is not a conservative exten-
sion ofT1. Then take a witness conceptC for (T1, T2) and
a modelI of C andT1, unravelI into a tree modelI ′, and
read of aT1-tree fromI ′. SinceT1-trees have to be finite,
we stop the reading-off process at therole depthof C which
is defined as the nesting depth of existential restrictions in
C. In a second step, the obtainedT1-treeT is modified as
follows in order to satisfy the constraints formulated in the
lemma:

• To obtain a tree of depth bounded by2|T1| × 22|T2| , we
exhaustively perform the following operation: if there are
nodesv andv′ with associated subtreesTv andTv′ such
that v <∗ v′ andTv realizes the same pair asTv′ , then
replaceTv with Tv′ . It is possible to show that this opera-
tion preserves the pair realized by the whole tree. Clearly,
the depth of the resulting tree is bounded by the number
of realizable pairs which is bounded by2|T1| × 22|T2| .

• To obtain a tree whose outdegree is bounded by|T1| +
|T2|2|T2|, we exhaustively perform the following opera-
tion: if there are nodesv andv′ with associated subtrees
Tv andTv′ such thatv′ is a direct successor ofv andTv

realizes the same pair as the tree obtained fromTv by
dropping the subtreeTv′ , then drop this subtree.

❏



When constructing witness concepts forrelativizedconser-
vative extensions, we follow the same strategy. However,
most notions have to be slightly extended because we have
the additional parameterΓ that describes the signature of
witness concepts.

A (Γ, T )-typeis defined analogously toT -types, but con-
tains only concepts fromcl(T ) ∩ ALC(Γ). In analogy to
what was done above, the simplest form of witness concepts
are induced by(Γ, T1)-typest that

• can be extended to aT1-type that is satisfiable relative to
T1 and

• cannot be extended to aT1 ∪ T2-type that is satisfiable
relative toT1 ∪ T2.

Generalizing this basic case, we define(Γ, T )-trees in anal-
ogy with T -trees, the only differences being that nodes are
labelled with (Γ, T )-types and that edge labels must be
from Γ. Diagrams for such trees are defined in the obvious
way. The following lemma implies the upper bound on the
size of witness concepts stated in Theorem 2.

Lemma 10. T1 ∪ T2 is not a conservative extension ofT1

w.r.t. Γ iff there exists a(Γ, T1)-tree T whose outdegree is
bounded by2|T1 ∪ T2|2|T1∪T2| and whose depth is bounded

by22×2|T1∪T2| such thatdiag(T) is satisfiable relative toT1,
but not relative toT1 ∪ T2.

The proof of Lemma 10 is analogous to that of Lemma 8.
The main difference is that we replace realizable pairs by
realizable triples.

Definition 11 (Realizable triple). A triple (t, U1, U2),
wheret is a(Γ, T1)-type,U1 is a non-empty set ofT1-types,
andU2 is a set ofT1 ∪T2-types, isrealizedby a(Γ, T1)-tree
T with rootw if

• L(w) = t;
• U1 is the set ofT1-typess such thatsu diag(T) is satisfi-

able relative toT1;
• U2 is the set ofT1 ∪ T2-typess such thats u diag(T) is

satisfiable relative toT1 ∪ T2;

Since we are now interested in witness conceptsdiag(T)
formulated in the signatureΓ, there is no uniqueT1-type
that instances ofdiag(T) have in models ofT1. Instead, we
only have a uniqueΓ-type t that instances ofdiag(T) have
in all models, and aset of T1-typesU1 that instances of
diag(T) may have in models ofT1. Observe that demanding
U1 to be non-empty corresponds to demanding satisfiability
of diag(T) w.r.t. T1. The componentU2 of realizable triples
plays the same role as the componentU in realizable pairs.
To prove Lemma 8, we can now proceed as for Lemma 10,
exchanging realizable pairs by realizable triples. Since the
number of realizable triples is double exponential in the size
of T1 (whereas the number of realizable pairs is only single
exponential), we obtain a treeT of depth double exponential
in |T1|.

The decision procedures
We develop algorithms for deciding relativized and non-
relativized conservative extensions. In this way, we prove the

Suppose TBoxesT1 andT2 are given.

1. Determine the setR0 of pairs that are realizable by sin-
gletonT1-trees. IfR0 is empty, thenT1∪T2 is a conser-
vative extension ofT1. Otherwise,

2. if R0 contains a pair(t, U) such thatU = ∅, thenT1∪T2

is not a conservative extension ofT1. Otherwise

3. generate the sequenceR1,R2, . . . of sets of pairs such
that

Ri+1 = Ri ∪R′
i,

whereR′
i is the set of realizable pairs that can be ob-

tained in one step from a subset ofRi that has at most
|T1|+ |T2|2|T2| members. Continue untilRi = Ri ∪R′

i
or there exists a pair(t, U) ∈ R′

i such thatU = ∅. In
the latter case,T1∪T2 is not a conservative extension of
T1. Otherwise, it is.

Figure 1: Deciding conservative extensions.

upper complexity bounds for deciding relativized and non-
relativized conservative extensions given in Theorem 2, and
the refined upper complexity bound for non-relativized con-
servative extensions in Part (i) of Theorem 3. We start with
the non-relativized case.

Deciding conservative extensions

The decision procedure rests on the notion of a diagram and
of a realizable pair. More precisely, the algorithm generates
all realizable pairs for the input TBoxesT1 andT2 and re-
turns “T1 ∪ T2 is not a conservative extension ofT1” if one
of the realizable pairs is of the form(t, U) with U = ∅. If no
such pair is found, the algorithm returns “T1∪T2 is a conser-
vative extension ofT1”. To construct the set of all realizable
pairs, we start with pairs realizable in singletonT1-trees and
then add pairs realized by more complex trees in a step-wise
manner. Each step is defined as follows.

Definition 12 (One step). We say that a pair(t, U) can be
obtained in one stepfrom a set of pairsR if there exists a
T1-treeT = (W,<,L) with rootw that realizes(t, U) such
that, for eachw′ ∈ W with w < w′, the pair realized by the
subtree ofT generated byw′ is included inR.

Now, the decision procedure is given in Figure 1. It is not
difficult to show that, if it terminates in Step 1, thenT1 has
no models (see below). If this does not happen, the algorithm
looks for a realizable pair(t, U) with U = ∅ because, as has
already been noted, the diagram of aT1-treeT realizing such
a pair is a witness concept.

Below, we sketch proofs of the correctness of the algo-
rithm and of the fact that the algorithm requires time at most
exponential in the size ofT1 and at most 2-exponential in the
size ofT2.

Correctness. If the algorithm terminates returning “T1 ∪ T2

is not a conservative extension ofT1” (which may happen in
Step 2 or 3), then there exists a realizable pair(t, U) with
U = ∅. It follows immediately from the definition of realiz-



able pairs that, in this case,T1 ∪ T2 is indeed not a conser-
vative extension ofT1.

Conversely, suppose thatT1 ∪ T2 is not a conservative
extension ofT1. By Lemma 8, we find aT1-tree T such
that diag(T) is satisfiable relative toT1 but not relative to
T1 ∪ T2 and such that the outdegree ofT does not exceed
|T1| + |T1|2|T2|. Sincediag(T) is satisfiable relative toT1,
there is a pair(t, U) realized byT. Sincediag(T) is not sat-
isfiable relative toT1∪T2, U = ∅. To show that the algorithm
returns “T1 ∪ T2 is not a conservative extension ofT1”, we
have to show that

(i) it does not terminate in Step 1 and

(ii) (t, U) ∈ Ri for somei ≥ 0.

To prove (i), take a modelI of T1 (which clearly exists) and
a d ∈ ∆I . Then define the pair(tT1

I (d), U ′), whereU ′ is
the set of allT2 typest′ such thatt′ u tT1

I (d) is satisfiable
w.r.t.T1 ∪T2. It is easy to see that this pair is realizable by a
singletonT1-tree, and thus the algorithm does not terminate
in Step 1.

To establish (ii), we can show by induction oni that, for
every nodew in T on leveldepth(T) − i, the pair(tw, Uw)
realized by the subtree ofT generated byw is inRi. There-
fore, forn = 2|T1|×22|T2| we know thatRn contains(t, U).
Thus, the algorithm confirms thatT1 ∪ T2 is not a conserva-
tive extension ofT1.

Complexity. We show that, if the computation of the step
from Ri to Ri+1 in Step 3 of the algorithm is realized in a
suitable way, then the algorithm requires time at most expo-
nential inT1 and at most 2-exponential inT2. First, Step 1
can be implemented by enumerating allT1-typest, check-
ing whethert is satisfiable relative toT1, and if this is the
case computing the correspondingU as the set of allT2-
typess such thattu s are satisfiable relative toT1 ∪T2. The
pairs(t, U) obtained in this way are precisely the pairs re-
alizable in a singleton-T1-tree. It follows that Steps 1 and 2
of the algorithm stay within the required time bounds. Sec-
ond, suppose thatRi has been computed. Then its size is
bounded by the number of pairs(t, U), i.e. by2|T1|× 22|T2| .
Thus, the number of subsetsR of Ri of cardinality at most
|T1| + |T2|2|T2| is single exponential in|T1| and double ex-
ponential in|T2|. Consider such a set of pairsR and a pair
(t, U). We have to show that it can be decided in time expo-
nential in|T1| and double exponential in|T2| whether(t, U)
can be obtained in one step fromR. To this end, it can be
shown that the latter is the case iff for eachr ∈ sig(T1) there
exists a successor setsucr ⊆ 2R such that

• for all ∃r.D ∈ cl(T1), we have∃r.D ∈ t iff there exists
(t′, U ′) ∈ sucr andD ∈ t′ and

• for all T2-typess, we haves ∈ U iff the following condi-
tions hold:

– if ∃r.C ∈ s, then there exists a(t′, U ′) ∈ sucr and an
s′ ∈ U ′ such thatC ∈ s′ and, for all concepts¬∃r.D ∈
s, D 6∈ s′.

– for every(t′, U ′) ∈ sucr, there exists ans′ ∈ U ′ such
that{¬D | ¬∃r.D ∈ s} ⊆ s′.

Suppose TBoxesT1 andT2, and a signatureΓ ⊆ sig(T1)
are given.

1. Determine the setR0 of triples that are realized by sin-
gleton(Γ, T1)-trees. IfR0 = ∅, thenT1 ∪ T2 is a con-
servative extension ofT1 w.r.t. Γ. Otherwise,

2. if R0 contains a triple(t, U1, U2) such thatU2 = ∅, then
T1 ∪ T2 is not a conservative extension ofT1 w.r.t. Γ.
Otherwise,

3. generate the sequenceR1,R2, . . . of sets of triples such
that

Ri+1 = Ri ∪R′
i,

whereR′
i is the set of realizable triples that can be ob-

tained in one step from a subset ofRi that has cardi-
nality at most2|T1 ∪ T2|2|T1∪T2|. Continue untilRi =
Ri ∪ R′

i or there exists a triple(t, U1, U2) ∈ R′
i such

thatU2 = ∅. In the latter case,T1 ∪ T2 is not a conser-
vative extension ofT1 w.r.t. Γ. Otherwise, it is.

Figure 2: Deciding relativized conservative extensions.

– s ∪ t is satisfiable relative toT1 ∪ T2.

To check whether(t, U) can be obtained in one step fromR,
we can thus enumerate all the possible setssucr (separately
for each roler ∈ sig(T1)), and check the listed conditions.
In this way, Step 3 can be executed within the required time
bounds. Observe thatsucr is called “successor set” since a
T1- tree that realizes(t, U) can be constructed by takingT1-
trees that realize sets insucr and adding a new root. How-
ever, a single successor for each element ofsucr may not be
sufficient, see (Ghilardi, Lutz, & Wolter 2006b) for details.

Deciding relativized conservative extensions

The decision procedure for relativized conservative exten-
sions is quite similar to the procedure for non-relativized
ones. As in the case of upper bounds on the size of witness
concepts, the main change is that we have to move from real-
izable pairs to realizable triples. In analogy to Definition 12,
we then say that a triple(t, U1, U2) can beobtained in one
stepfrom a set of triplesR if there exists a(Γ, T1)-treeT
that realizes(t, U1, U2) such that, for eachw′ ∈ W with
w < w′, the triple realized by the subtree ofT generated by
w′ is included inR.

The modified decision procedure is given in Figure 2.
Correctness and termination within the required time bound
(i.e., double exponential in the size of bothT1 andT2) can
be shown similar to what was done in the previous section.
When adapting the complexity proof, the componentsU1

andU2 of realizable triples are treated in precisely the same
way as the componentU of realizable pairs is treated in the
original proofs. Since the decision procedure given in the
previous section is double exponential inT2 and the main
modification was to replaceU (which is related toT2) with
U1 (related toT1) andU2 (related toT2), it should not be
surprising that we obtain an algorithm that is double expo-
nential w.r.t. both|T1| and|T2|.



Lower Bounds on Witness Concepts
We prove the lower bound on the size of witness concepts
stated in Point (iii) of Theorem 3. To do this, we start with
a 2-exponential lower bound and then improve this bound
to a 3-exponential one. There are two reasons for this incre-
mental approach. The first one is didactic: the TBoxes used
for the 2-exponential lower bound are smaller and more in-
tuitive than the TBoxes underlying the 3-exponential bound,
and the latter can be seen as a refinement of the former. The
second reason is that, as will be discussed in more detail
later, the 3-exponential bound does not properly subsume
the 2-exponential one.

2-Exponential Witness Concepts
We are going to prove the following

Theorem 13. There exists a TBoxT and a family of TBoxes
(T ′

n)n>0, such that, for alln > 0,

(i) T ∪ T ′
n is not a conservative extension ofT ,

(ii) |T ′
n| ∈ O(n2), and

(iii) every witness concept for(T , T ′
n) is of length≥ 22n−1.

To sketch the proof of Theorem 13, we first need a bit of
notation. Letr and s be role names. For an interpretation
I, a sequencew = w0, . . . , wk−1 ∈ {r, s}∗, and elements
x, y ∈ ∆I , we say thaty is w-reachablefrom x if there exist
elementsx0, . . . , xk ∈ ∆I such thatx0 = x, xk = y, and
(xi, xi+1) ∈ wI

i for all i < k. Now, the TBoxesT andT ′
n

from Theorem 13 can be described as follows:

• apart from a technical trick to be described below, the
TBox T is used only to fix the signature of witness con-
cepts: they may use concept namesA and B, and role
namesr ands.

• in the signature{A,B, r, s}, the TBoxT ′
n expresses that

its modelsI are notn-violating, where an interpretationI
isn-violating if there exist elementsxw ∈ ∆I , for all w ∈
{r, s}∗ of length smaller than2n, such that the following
are true:

(a) xε ∈ AI ;
(b) (xw, xw′) ∈ σI if w′ = w · σ, for all σ ∈ {r, s};
(c) xw /∈ BI if w is of length2n − 1.

Thus, a witness conceptC for T andT ′
n has to enforce that

all its models aren-violating. Intuitively, this means that the
concept must enforce an instance ofA that is the root of a
binary tree of depth2n such that left children are connected
with the roler, right children are connected with the roles,
and all leafs are instances of¬B. The fact that the number
of nodes in such a tree is 2-exponential inn can be used to
show that the size of witness concepts forT andT ′

n is at
least 2-exponential inn as well.

The precise formulation of the TBoxesT andT ′
n can be

found in Figure 3. InT ′
n, we use a binary counterC for

counting modulo2n. The counter is based on the concept
namesC0, . . . , Cn−1 representing the bits ofC. The ex-
pression∀r.(C++) is an abbreviation for the usual concept
stating that the value ofC is incremented when going to
r-successors. Note thatT ′

n enforces more in the signature

T : > v ∀r.¬A u ∀s.¬A (1)

B v B (2)

T ′
n : A v A′ u (C = 0) (3)

A′ u (C < 2n − 1) v ∀r.(C++) u ∀s.(C++)(4)

A′ u (C < 2n − 1) v ∀r.A′ t ∀s.A′ (5)

A′ u (C = 2n − 1) v B (6)

Figure 3: The TBoxesT andT ′
n.

{A,B, r, s} than what was stated above. For example, there
can be no model ofT ′

n in which an instance ofA has anr-
successor that is also an instance ofA. However, concepts
such asA u ∃r.A should not qualify as a witness concept.
This explains Line (1) ofT : by enforcing thatA holds only
in points with nor- ands-predecessors, we guarantee that,
already in models ofT , there are no two instancesx andy of
A such thaty is w-reachable fromx for somew ∈ {r, s}∗.

It is possible to show thatT and T ′
n indeed behave as

described above. This is used in the proof of the following
lemma.

Lemma 14.
1. A conceptC that is satisfiable w.r.t.T and such that all

models ofC andT are n-violating is a witness concept
for T andT ′

n;

2. if a conceptC is a witness concept forT andT ′
n, then all

tree models ofC andT aren-violating.

By Point 1 of Lemma 14, the conceptC2n defined in the
following is a witness concept forT andT ′

n. This shows
thatT ∪ T ′

n is indeed not a conservative extension ofT :

D0 := ¬B Di+1 := ∃r.Di u ∃s.Di Ci := A uDi

Note that the conceptsDi are introduced only as abbrevi-
ations, and not as concept names in a TBox. It is not hard
to see that the length ofC2n is O(22n

). To establish Theo-
rem 13, it remains to prove that each witness concept forT
andT ′

n is of length at least22n−1. By Line (1) of Figure 3,
if A is satisfied in a tree model, then it is satisfied in the
root. Thus, Point 2 of Corollary 14 implies that every wit-
ness concept forT andT ′

n satisfies the preconditions of the
following lemma, which yields the required lower bound on
the size of witness concepts.

Lemma 15. LetP be the set of all sequencesw ∈ {r, s}∗ of
length2n−1, and letC be a concept such that the following
holds:

(i) C is satisfiable w.r.t.T ;

(ii) for all tree modelsI of C andT with root r ∈ ∆I , we

haver ∈
(
A u

d
w∈P ∃w.>

)I
.

ThenC is of length at least22n−1.

In the lemma,∃w.C with w = w1 · · ·wn abbreviates
∃w1.∃w2. · · · ∃wn.C, and∃ε.C is justC.



3-Exponential Witness Concepts
We now improve the 2-exponential lower bound to the 3-
exponential one stated in Part(iii) of Theorem 3. Note that,
in contrast to Theorem 13, the size of the unprimed TBox
grows withn instead of being fixed. Therefore, Theorem 3
(iii) does not imply Theorem 13. We leave it as an open prob-
lem whether Theorem 3 (iii) can be strengthened such that
the unprimed TBox is fixed.

The idea for constructingTn and T ′
n is very similar to

what was done in the previous section, only that witness
concepts must now enforce binary trees of depthdoubleex-
ponential inn. To achieve this increase of the depth, we
need a counterX that counts modulo22n

. Obviously, such
a counter cannot be realized using one concept name for ev-
ery bit as this would result in a TBox of size exponential
in n. Therefore, we use a different form of counting: a sin-
gle value ofX is described using anX-sequence, i.e., a se-
quencex1, . . . , x2n ∈ ∆I such that(xi, xi+1) ∈ rI ∪ sI

for all i < 2n. Each elementxi represents the truth value
of one bit of the counter value via the concept nameX.1 To
describe the position of the bit represented by an elementxi,
we use a binary counterC that is based on concept names
C0, . . . , Cn−1 and counts from0 to 2n − 1 along eachX-
sequence, thus assigning bit positions to elements.

The TBoxesTn and T ′
n are given in Figure 4, where

we use∀(r ∪ s).C as an abbreviation for∀r.C u ∀s.C.
We first discussTn. Lines (7) and (8) are identical to
Lines (1) and (2) of the TBoxT from the previous section,
and Line (9) ensures that the counterC counts correctly.
Lines (10) to (12) guarantee thatX-sequences starting at in-
stances ofA encode the value null, and that all elements of
such sequences are marked with the concept nameF (for
“first counter value”). The purpose of Lines (13) to (15) is to
ensure that, if an elementx is part of anX-sequence, then
x ∈ ZI if and only if theX-sequence has a null-value for
some bit strictly lower than that represented byx.

The TBox T ′
n uses a third counterD that counts mod-

ulo 2n using concept namesD0, . . . , Dn−1. This counter is
used to ensure thatX counts correctly in models of witness
concepts. Before we go into detail, we give a semantic char-
acterization of the interplay betweenTn andT ′

n. LetI be an
interpretation. For eachw = w1 · · ·wk ∈ {r, s}∗, we call
a sequencex1, . . . , xk+1 ∈ ∆I a w-path starting atx if
x = x1 and, for1 ≤ i ≤ k, (xi, xi+1) ∈ wI

i . If w is not
important, we simply speak of apath. For n ≥ 0, an inter-
pretationI is calledstronglyn-violating iff there exists an
x ∈ AI such that the following two properties are satisfied,
wherem := 2n · 22n

.

(P1) for all pathsx1, . . . , xk in I starting atx of length at most
m, theX values ofx1, . . . , xk describe the firstk bits of
the consecutive values of a2n-bit counter that counts from
0 to 22n − 1 (each value represented with lowest bit first);

(P2) there exist elementsxw ∈ ∆I , for all w ∈ {r, s}∗ of
length at mostm− 1, such that the following are true:

1We deliberately confuse the name of the counter and the name
of the concept name representing the truth value of bits.

(a) xε ∈ AI ;
(b) (xw, xw′) ∈ σI if w′ = w · σ for all σ ∈ {r, s};
(c) xw /∈ BI if w is of lengthm− 1.

Intuitively, Property (P1) guarantees that the counterX
counts correctly, and (P2) is the double-exponential version
of what was called “n-violating” in the previous section.
In (P2), we use the boundm − 1 since the counterX has
22n

possible values, each value ofX is represented by an
X-sequence of length2n − 1, and any two consecutiveX-
sequences are connected by an additionalr- or s-edge.

To ensure that witness concepts enforce models that are
stronglyn-violating,T ′

n has to express that each instance of
A violates either (P1) or (P2). Letx be such an instance. The
purpose of Line (16) is to decide whether (P1) or (P2) is vi-
olated atx. If the latter is chosen, the violation is enforced
via Lines (28) and (29) similar to what was done in the pre-
vious section. If (P1) is chosen, Lines (17) to (27) ensure
that there is a pathx1, . . . , xk in I starting atx of length at
mostm such that theX-values along this path donot de-
scribe the firstk bits of the consecutive values of a2n-bit
counter counting from0 to 22n − 1. Due to Lines (9) to (12)
of Tn, we know that the first2n X-values alongx1, . . . , xk

are null as required. Hence, a failure of counting on the path
x1, . . . , xk can only be due to a failure of incrementing the
counterX.

Lines (17) and (18) mark the place where incrementation
fails using the concept nameM0. More precisely, the do-
main element marked withM0 is a bit such that the corre-
sponding bit in the consecutiveX-sequence violates incre-
mentation. There are two ways in which this may happen:
first, there may be no 0-bit lower than the bit marked with
M0, but the corresponding bit in the followingX-sequence
is not toggled. Second, there may be a 0-bit lower than the bit
marked withM0, but the corresponding bit in the following
X-sequence is toggled. These two cases are distinguished by
Lines (21) and (22). In the first case, the case ofX is stored
in NX. In the second case, the toggled value ofX is stored
in NX. The counterD is reset in Line (19) and incremented
in Line (22) to identify the corresponding bit in the follow-
ing X-sequence. Through lines (23) and (24), the value of
NX is passed on all the way to this bit. Finally, Lines (16)
and (26) ensure that theX-value of the corresponding bit
coincides withNX.

Lemma 16.
1. A conceptC that is satisfiable w.r.t.Tn and such that all

models ofC andT are stronglyn-violating is a witness
concept forTn andT ′

n;

2. If a conceptC is a witness concept forTn andT ′
n, then

all tree models ofC andT are stronglyn-violating.

We now define a witness concept forTn andT ′
n, thus show-

ing thatTn∪T ′
n is indeed not a conservative extension ofTn.

For 1 ≤ i ≤ m, let bi denote thei-th bit of a2n-bit counter
counting from0 to 22n − 1. Then we set:

D0 := ¬B
Di+1 := ∃r.Di u ∃s.Di



> v ∀r.¬A u ∀s.¬A (7)

B v B (8)

> v ∀(r ∪ s).(C++) (9)

A v (C = 0) u F (10)

F u (C < 2n) v ∀(r ∪ s).F (11)

F v ¬X (12)

(C = 0) v ¬Z (13)

¬X t Z v ∀r.(¬(C = 0) → Z) (14)

X u ¬Z v ∀r.(¬(C = 0) → ¬Z) (15)

A v P1 t P2 (16)

P1 v M0 t ∃r.P1 t ∃s.P1 (17)

P1 u (C = 2n − 1) v Z t ¬X (18)

M0 v M u (D = 0) (19)

M0 u ¬Z v NX ↔ X (20)

M0 u Z v NX ↔ ¬X (21)

M u (D < 2n) v ∀(r ∪ s).(D++) (22)

M u (D < 2n) uNX v ∃(r ∪ s).(M uNX) (23)

M u (D < 2n) u ¬NX v ∃(r ∪ s).(M u ¬NX) (24)

M u (D = 2n − 1) uNX v X (25)

M u (D = 2n − 1) u ¬NX v ¬X (26)

M u (D < 2n − 1) u (C = 2n − 1) v Z t ¬X (27)

P2 u (¬(C = 2n − 1) t Z t ¬X) v ∀r.P2 t ∀s.P2 (28)

P2 u (C = 2n − 1) u ¬Z uX v B (29)

Figure 4: The TBoxesTn (left) andT ′
n (right).

Ci := A uDi u
l

w∈{r,s}i,1≤i≤n,bi=0

∀w.¬X

u
l

w∈{r,s}i,1≤i≤n,bi=1

∀w.X

It can be checked that the length ofCn isO(22n·22n

). To es-
tablish Part (iii) of Theorem 3, it remains to prove that each
witness concept forTn andT ′

n is of length at least2m−1.
This can be done by establishing an analogue of Lemma 15.

Lower Complexity Bounds
Theorem 2 states that, given two TBoxesT1 andT2, it is
2EXPTIME-hard to decide whetherT1∪T2 is a conservative
extension ofT1. To prove this, we can build on the construc-
tion of triple exponential witness concepts in the previous
section to reduce the word problem of exponentially space-
bounded Alternating Turing Machines (ATMs). Given such
an ATM M and a wordw, we can refine the TBoxes given
in Figure 4 into TBoxesT1 andT2 such that such that mod-
els of witness concepts encode successful computations of
M onw. Then,T1 ∪ T2 is a conservative extension ofT1 iff
M acceptsw. For reasons of space limitation, we refer to
(Ghilardi, Lutz, & Wolter 2006b) for details.

Related work
The problem to decide for two TBoxesT1 andT2 whether
T1 ∪ T2 is a conservative extension ofT1 is closely related
to the notion of auniform interpolant. This, in turn, is an
extension of the standard Craig interpolants requiring that
the interpolant is uniform for all possible formulas in the an-
tecedent (Pitts 1992). As uniform interpolation appears to be
the most important notion related to the algorithmic problem
we are concerned with in this paper and results on uniform
interpolation might be useful for future research on conser-
vative extensions in DLs, we briefly discuss the connection.

Definition 17 (Uniform interpolants for TBoxes). Given
a TBoxT and a signatureΓ ⊆ sig(T ), we call a TBoxTΓ

over sig(T ) − Γ a uniform interpolant ofT with respect to
Γ if the following conditions hold:

• T |= TΓ;
• for every implicationC v D such that no symbol from

Γ occurs inC,D, we have thatT |= C v D implies
TΓ |= C v D.

It is not difficult to see thatT1∪T2 is a conservative extension
of T1 if and only if T1 is a uniform interpolant forT1 ∪ T2

with respect tosig(T2)− sig(T1). Thus, if it is the case that,
for every TBoxT and signatureΓ, there exists a uniform
interpolantTΓ of T w.r.t. Γ (and it is computable), then we
have a procedure deciding whetherT1 ∪T2 is a conservative
extension ofT1: compute the uniform interpolant and check
whether it is logically equivalent toT1. The most important
logics known to have uniform interpolation are intuitionis-
tic logic, the G̈odel-Loeb logic, Grzegorczyk-logic, theµ-
calculus, and the modal logicK (Visser 1996; Ghilardi 1995;
D’Agostino & Lenzi 2005; Pitts 1992). On the other hand,
classical first-order logic, modal logic S4 and dynamic logic
PDL do not have uniform interpolation (Ghilardi & Zawad-
owski 2002; 1995).

Unfortunately, we show in (Ghilardi, Lutz, & Wolter
2006b) that uniform interpolants for TBoxes need not exist.
More precisely, ifT is the TBox

> v ∀r.¬A A v B
B v ∃r.C, C v ∃r.B
B v E, C v ¬E.

andΓ = {B,C}, then there exists no uniform interpolant
of T w.r.t. Γ. Thus, the uniform interpolation approach to
conservative extensions fails forALC with TBoxes.

Recently, (Marx, Conradie, & ten Cate 2006) have estab-
lished an exponential time procedure for computing uniform



interpolants forALC-concepts without reference to TBoxes
(or, in modal logic terms, the local consequence relation of
modal logicK). The paper also establishes an exponential
upper bound for the size of uniform interpolants. This re-
sult is used in (Ghilardi, Lutz, & Wolter 2006a) to show that
the following decision problem is co-NEXPTIME-complete:
given twoALC-conceptsC1 andC2, isC1 uC2 a conserva-
tive extension ofC1? In other words, does the following hold
for every conceptD in the signature ofC1: if the subsump-
tion relationC1 u C2 v D is valid, then the subsumption
relationC1 v D is valid.

Outlook
We have proposed several reasoning problems that are suit-
able for providing automated reasoning support when de-
ciding whether a given extension of an ontology is well-
behaved. Still, substantial research remains to be carried out
to achieve feasibility of this approach in practice. First, one
should try to refine the worst-case optimal algorithms pre-
sented in this paper into more practical algorithms that can
be implemented and tested on real-world ontologies. Sec-
ond, the complexity analysis should be extended fromALC
to the more expressive DLs currently supported by DL rea-
soners such asSHIQ. We believe that, as long at the DL
under consideration has the tree-model property, modifica-
tions of the techniques introduced in this paper can form the
basis of such a complexity analysis.

Additionally, the results presented in this paper suggest to
search for more pragmatic reasoning problems that are simi-
lar to the ones proposed here, but computationally less com-
plex. For example, a developer might be interested in having
a conservative extension not for all concepts over a given
signature, but only for concepts of a certain form (e.g., pos-
itive concepts, existential concepts, and universal concepts).

In a similar spirit, when considering DLs with number
restrictions, the user might want to achieve a conserva-
tive extension regarding concepts not containing number
restrictions and, at the same time, intend to obtain a non-
conservative extension when concepts containing qualified
number restrictions are involved. To see that there is a con-
siderable difference between the two cases, we refer back to
the example about web services given in this paper.
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