
Is Tractable Reasoning in Extensions of the Description

Logic EL Useful in Practice?

Franz Baader, Carsten Lutz, Boontawee Suntisrivaraporn
Theoretical Computer Science, TU Dresden, Germany
{baader,lutz,meng}@tcs.inf.tu-dresden.de

Abstract. Extensions of the description logic EL have recently been proposed as
lightweight ontology languages. The most important feature of these extensions is
that, despite including powerful expressive means such as general concept inclusion
axioms, reasoning can be carried out in polynomial time. In this paper, we consider
one of these extensions, EL+, and introduce a refinement of the known polynomial-
time classification algorithm for this logic. This refined algorithm was implemented
in our CEL reasoner. We describe the results of several experiments with CEL on
large ontologies from practice, which show that even a relatively straightforward
implementation of the described algorithm outperforms highly optimized, state-of-
the-art tableau reasoners for expressive description logics.

Keywords: Description logic, tractable reasoning

1. Introduction and Motivation

The quest for tractable (i.e., polynomial-time decidable) description
logics (DLs) started in the 1980s after the first intractability results for
DLs were shown (Brachman and Levesque, 1984; Nebel, 1988). Until
recently, it was restricted to DLs that extend the basic language FL0,
which comprises the concept constructors conjunction (u) and value
restriction (∀r.C). The main reason for this focussing was that, when
clarifying the logical status of property arcs in semantic networks and
slots in frames (which are the ancestors of modern DLs), the decision
was taken that arcs/slots should be read as value restrictions rather
than existential restrictions (∃r.C).

In almost every application of DLs, it is crucial to reason with
terminologies (also called TBoxes or DL ontologies), rather than with
isolated concept descriptions. Unfortunately, as soon as TBoxes were
taken into consideration, tractability turned out to be unattainable in
FL0: even classifying the simplest form of TBoxes that admit only
acyclic concept definitions was shown to be coNP-hard (Nebel, 1990).
If the most general form of TBoxes is admitted, which consists of
general concept inclusion axioms (GCIs) as supported by all mod-
ern DL systems, then classification in FL0 even becomes ExpTime-
complete (Baader et al., 2005).

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

cel.tex; 20/04/2006; 15:58; p.1

2 Baader, Lutz, Suntisrivaraporn

For these reasons, and also because of the need for expressive DLs
in applications, from the mid 1990s on, the DL community has mainly
given up on the quest of finding tractable DLs. Instead, it investigated
more and more expressive DLs, for which reasoning is worst-case in-
tractable. The goal was then to find practical reasoning procedures,
i.e., algorithms that are easy to implement and optimize, and which—
though worst-case exponential or even worse—behave well in practice
(see, e.g., (Horrocks et al., 2000)). This line of research has resulted
in the availability of highly optimized DL systems for expressive DLs
based on tableau algorithms (Horrocks, 1998; Haarslev and Möller,
2001), and successful applications: most notably the recommendation
by the W3C of the DL-based language OWL (Horrocks et al., 2003) as
the ontology language for the Semantic Web.

Recently, the choice of value restrictions as a sine qua non of DLs
has been reconsidered. On the one hand, it was shown that the DL EL,
which allows for conjunction and existential restrictions, has better
algorithmic properties than FL0. Classification of both acyclic and
cyclic EL TBoxes is tractable (Baader, 2003), and this remains so
even if general TBoxes with GCIs are admitted (Brandt, 2004). On
the other hand, there are applications where value restrictions are not
needed, and where the expressive power of EL or small extensions
thereof appear to be sufficient. In fact, the Systematized Nomencla-
ture of Medicine (Snomed), employs EL with an acyclic TBox (Cote
et al., 1993; Spackman, 2000). The Gene Ontology (Go) (The Gene
Ontology Consortium, 2000) can be seen as an acyclic EL TBox with
one transitive role. Finally, large parts of the Galen Medical Knowledge
Base (Galen) can also be expressed in EL with GCIs, role hierarchy,
and transitive roles (Rector and Horrocks, 1997).

The tractability results for EL together with the bio-medical appli-
cations mentioned above have motivated our research on extensions of
EL: the leitmotif for this research was to extend EL as far as possible by
adding standard DL constructors available in ontology languages like
OWL, while still retaining polynomial-time reasoning in the presence
of GCIs. This has resulted in the tractable DL EL++ (Baader et al.,
2005), which includes transitive roles, so-called right-identities (Spack-
man, 2000) on roles, nominals (and thus ABoxes), and disjointness
constraints on concepts. The purpose of the research presented in the
present paper is to evaluate whether or not the polynomial-time algo-
rithms for reasoning in EL and its extensions are suitable as a basis
for implementing a DL reasoning system that can handle large bio-
medical ontologies, and whether such a reasoner outperforms existing
high-optimized DL reasoners for expressive DLs.

cel.tex; 20/04/2006; 15:58; p.2

Tractable Reasoning in EL+ 3

At first sight, one might think that a polynomial-time algorithm is
always better suited for implementation than worst-case exponential-
time algorithms such as the ones underlying modern DL reasoners.
However, due to the plethora of sophisticated optimization techniques
that have been developed for tableau algorithms over the last decade
(Horrocks, 2003), it is far from obvious whether a straightforward
implementation of the polynomial-time algorithm can compete with
highly-optimized implementations of tableau algorithms. A case in point
is our experience with implementing the polynomial-time classification
algorithms for cyclic EL TBoxes introduced in (Baader, 2003): direct
implementations of both the algorithm for subsumption w.r.t. descrip-
tive semantics (based on a reduction to satisfiability of propositional
Horn formulae (Dowling and Gallier, 1984)) and the algorithm for
subsumption w.r.t. greatest fixpoint semantics (based on computing
the greatest simulation on a graph (Henzinger et al., 1995)) did not
lead to satisfactory results on the Gene Ontology (Suntisrivaraporn,
2005).

In this paper, we consider a restriction of the polynomial-time clas-
sification algorithm for EL++ (Baader et al., 2005) to the fragment
EL+ of EL++. This fragment differs from EL++ in that nominals and
the bottom concept are disallowed. The reason for considering this
fragment was that none of the bio-medical ontologies mentioned above
use nominals or the bottom concept. We describe a refined version of
this algorithm that is tailored towards implementation. The purpose
of this refinement is to remove an obvious obstacle for efficient im-
plementation of the algorithm as given in (Baader et al., 2005): the
uninformed, brute-force search for applicable completion rules. With
(almost) no further optimizations, we have implemented the refined
algorithm in our CEL (Classifier for EL) reasoner. We have performed
several experiments to compare the performance of CEL with the per-
formance of state-of-the-art DL systems based on tableau algorithms.
It turns out that CEL can compete with modern DL systems and often
outperforms them. We view these results as a serious encouragement
for further research into optimized implementations of DL reasoners
based on polynomial-time algorithms for the EL family of DLs.

2. The Description Logic EL+

In DLs, concept descriptions are inductively defined with the help of
a set of constructors, starting with a set CN of concept names and a
set RN of role names. EL+ concept descriptions are formed using the
three constructors shown in the upper part of Table I. An EL+ ontology

cel.tex; 20/04/2006; 15:58; p.3

4 Baader, Lutz, Suntisrivaraporn

Table I. Syntax and semantics of EL+.

Name Syntax Semantics

top > ∆I

conjunction C u D CI ∩ DI

existential
restriction ∃r.C

{x ∈ ∆I | ∃y ∈ ∆I :
(x, y) ∈ rI ∧ y ∈ CI}

GCI C v D CI ⊆ DI

RI r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

is a finite set of general concept inclusions (GCIs) and role inclusions
(RIs), whose syntax is shown in the lower part of Table I.

The semantics of EL+ is defined in terms of interpretations I =
(∆I , ·I), where the domain ∆I is a non-empty set of individuals, and
the interpretation function ·I maps each concept name A ∈ CN to a
subset AI of ∆I and each role name r ∈ RN to a binary relation rI on
∆I . The extension of ·I to arbitrary concept descriptions is inductively
defined as shown in the semantics column of Table I. An interpretation
I is a model of an ontology O if, for each inclusion in O, the conditions
given in the semantics column of Table I are satisfied.

One main use of GCIs in EL+ is to give definitions of concept names
in terms of complex concept descriptions. Therefore, we introduce con-
cept definitions A ≡ C, with A a concept name, as an abbreviation
for the two GCIs A v C and C v A. Intuitively, C describes the
necessary and sufficient conditions for being an instance of A. GCIs of
the form A v C, with A a concept name, are called primitive concept
definitions.1 They give only necessary (but no sufficient) conditions for
being an instance of A. In DL, a finite set of GCIs is commonly called a
general TBox, and a finite set of (possibly primitive) concept definitions
with unique left-hand sides is called a TBox. We call a TBox primitive
if it contains only primitive concept definitions and acyclic if there are
no concept names A0, . . . , An−1 such that A(i+1) mod n

occurs on the

right hand of the (possibly primitive) concept definition of Ai, for all
i < n.

It is worthwhile to note that the role inclusions available in EL+

generalize a number of standard expressive means: role inclusions of
the form r v s are commonly called role hierarchies; transitivity of a

1 despite not actually defining anything.

cel.tex; 20/04/2006; 15:58; p.4

Tractable Reasoning in EL+ 5

Endocardium v Tissue u ∃cont-in.HeartWall u

∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃acts-on.Tissue

Heartdisease u ∃has-loc.HeartValve v CriticalDisease

Heartdisease
.
= Disease u ∃has-loc.Heart

part-of ◦ part-of v part-of

part-of v cont-in

has-loc ◦ cont-in v has-loc

Figure 1. An example EL+ ontology.

role r can be expressed by writing r ◦ r v r; finally, RIs can express
right-identity rules r ◦ s v r, which play an important role in medical
ontologies (Spackman, 2000).

The basic inference problem for DL concept descriptions is concept
subsumption: a concept C is subsumed by a concept D w.r.t. an on-
tology O (written C vO D) if CI ⊆ DI in every model I of O. The
basic inference problem for DL ontologies is classification: compute the
subsumption hierarchy of all concept names occurring in the ontology.

As an example, we consider the EL+ ontology O in Figure 1, which
is motivated by Galen and expresses medical knowledge about endo-
carditis (inflammation of the lining of the heart and the heart valves)
and some related concepts. In the figure, all capitalized words are
concept names and all lowercase words are role names. The ontology
contains five primitive concept definitions, one “real” GCI, one non-
primitive concept definition, and three RIs. The latter consist of one
transitivity statement, a role hierarchy statement, and a right-identity
axiom. It is not hard to see that, w.r.t. this ontology, endocarditis is
classified as a heart disease, i.e.,

Endocarditis vO Heartdisease.

To see this, note that Endocarditis implies Inflammation and thus Disease,
which yields the first conjunct in the definition of Heartdisease. More-
over, Endocarditis implies ∃has-loc.Endocardium which can be seen to
imply ∃has-loc.∃cont-in.∃part-of.Heart. In the presence of the last two
RIs, this implies ∃has-loc.Heart, which is second conjunct in the defini-
tion of Heartdisease.

cel.tex; 20/04/2006; 15:58; p.5

6 Baader, Lutz, Suntisrivaraporn

As a second example, it can also be seen that endocarditis is classi-
fied as a critical disease, i.e., Endocarditis vO CriticalDisease.

3. Classifying an EL+ Ontology

A polynomial-time algorithm for classification in EL with GCIs and role
hierarchies has been proposed in (Brandt, 2004), and this algorithm was
extended to the more powerful DL EL++ in (Baader et al., 2005). We
introduce the restriction of the algorithm from (Baader et al., 2005) to
EL+, and then propose a refined version for implementation purposes.

Both in tableau-based DL systems and in earlier DL systems based
on structural subsumption algorithms, the subsumption hierarchy is
computed by performing multiple subsumption tests. In addition to
optimizing the single subsumption tests, such systems can also be opti-
mized by trying to minimize the number of subsumption tests needed to
compute the whole hierarchy (Baader et al., 1994). In contrast, the clas-
sification algorithm in (Baader et al., 2005) simultaneously computes
the subsumption relationships between all pairs of concept names in
the input ontology.

3.1. A Normal Form for EL+
Ontologies

Before we can describe the polynomial-time classification algorithm for
EL+, we must introduce an appropriate normal form for EL+ ontolo-
gies. Given an ontology O, we write CN>

O and CNO to denote the sets
of concept names occurring in O with and without the top concept,
respectively. Then, O is in normal form if

1. all GCIs in O have one of the following forms, where Ai ∈ CN>
O

and B ∈ CNO:
A1 u · · · u An v B,

A1 v ∃r.A2,
∃r.A1 v B.

2. all role inclusions are of the form r v s or r1 ◦ r2 v s.

By introducing new concept and role names, any EL+ ontology O can
be turned into a normalized ontology O′ that is a conservative extension
of O, i.e., we have C vO D iff C vO′ D for all concept descriptions
C, D that are constructed from concept and role names occurring in O.

Lemma 1. Subsumption w.r.t. ontologies in EL+ can be reduced in
linear time to subsumption w.r.t. normalized ontologies in EL+.

cel.tex; 20/04/2006; 15:58; p.6

Tractable Reasoning in EL+ 7

NF1 r1 ◦ · · · ◦ rk v s Ã r1 ◦ · · · ◦ rk−1 v u, u ◦ rk v s

NF2 C1 u . . . u Ĉ u . . . u Cn v D Ã Ĉ v A,C1 u . . . u A u . . . u Cn v D

NF3 ∃r.Ĉ v D Ã Ĉ v A,∃r.A v D

NF4 Ĉ v D̂ Ã Ĉ v A,A v D̂

NF5 B v ∃r.Ĉ Ã B v ∃r.A,A v Ĉ

NF6 B v C u D Ã B v C,B v D

where Ĉ, D̂ /∈ CN>
O, Ci, C,D are arbitrary concept descriptions, B ∈ CN>

O,
u denotes a new role name, and A denotes a new concept name.

Figure 2. Normalization rules

Proof sketch: An EL+ ontology O can be converted into normal form
using the rewrite rules shown in Figure 2 in two phases:

1. exhaustively apply rules NF1 to NF3;

2. exhaustively apply rules NF4 to NF6.

Here, “rule application” means that the axiom on the left-hand side is
replaced with the axioms on the right-hand side. Note that the concepts
Ĉ and D̂ denote complex concepts, i.e., concepts that are not simply a
concept name or the top concept. It is easy to see that this normaliza-
tion generates a conservative extension O′ of the original ontology O
in the sense that a subsumption relationship between concept names
occurring in O holds w.r.t. O′ iff it holds w.r.t. O. In addition, it is not
difficult to verify that the size of the normalized ontology O′ is linear
in |O|, and that the computation needs only linear time. A detailed
proof can be found in (Suntisrivaraporn, 2005).

Note that the normal form introduced here slightly differs from the
one presented in (Baader et al., 2005; Suntisrivaraporn, 2005) in that
it admits n-ary conjunction of concept names on the left-hand side of
GCIs rather than only binary conjunction. The reason for this modifi-
cation is to avoid the introduction of n−2 new concept names for each
n-ary conjunction of concept names during normalization, and thus
to decrease the number of concept names in the normalized ontology.
This decrease can be quite large: for example, the normalized version of
the ontology Snomed 2 (which before normalization contains 379,691
concept names) contains 401,830 additional new concept names when

2
Snomed is discussed in more detail in Section 4.

cel.tex; 20/04/2006; 15:58; p.7

8 Baader, Lutz, Suntisrivaraporn

R1 If A1, . . . , An ∈ S(X), A1 u · · · u An v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X, B) /∈ R(r)
then R(r) := R(r) ∪ {(X, B)}

R3 If (X, Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R4 If (X, Y) ∈ R(r), r v s ∈ O, and (X, Y) /∈ R(s)
then R(s) := R(s) ∪ {(X, Y)}

R5 If (X, Y) ∈ R(r), (Y, Z) ∈ R(s), r ◦ s v t ∈ O, and (X, Z) /∈ R(t)
then R(t) := R(t) ∪ {(X, Z)}

Figure 3. Completion rules

the original normal form is used, and “only” 114,658 new concept names
with the modified one introduced above.

3.2. The Abstract Algorithm

In this section, we assume without loss of generality that the input
ontology O is in normal form. Let RNO be the set of all role names
occurring in O. The algorithm computes

− a mapping S assigning to each element A of CNO a subset S(A)
of CN>

O, and

− a mapping R assigning to each element r of RNO a binary relation
R(r) on CN>

O.

The intuition is that these mappings make implicit subsumption
relationships explicit in the sense that

− B ∈ S(A) implies A vO B, and

− (A, B) ∈ R(r) implies A vO ∃r.B.

The mappings are initialized by setting S(A) := {A,>} for each A ∈
CNO and R(r) := ∅ for each r ∈ RNO. Then the sets S(A) and R(r)
are extended by applying the completion rules shown in Figure 3 until
no more rule applies. The algorithm has been shown to be sound and
complete in (Baader et al., 2005) in the sense that, after termination,
we have B ∈ S(A) iff A vO B (for all A, B ∈ CN>

O). It has also been
proved that the algorithm always terminates in time polynomial in the
size of the input ontology.

cel.tex; 20/04/2006; 15:58; p.8

Tractable Reasoning in EL+ 9

3.3. The Refined Algorithm

One of the main problems to be solved when implementing the de-
scribed algorithm is to develop a good approach for finding the next
completion rule to be applied. If this is realized by a näıve brute-force
search, then one cannot expect an acceptable runtime behavior on large
inputs. As a solution to this problem, we propose a refined version of the
algorithm, which is inspired by the linear-time algorithm for satisfiabil-
ity of propositional Horn formulas proposed in (Dowling and Gallier,
1984). This version uses a set of queues, one for each concept name
appearing in the input ontology, to guide the application of completion
rules. Intuitively, the queues list modifications to the data structure
(i.e. to the sets S(A) and R(r)) that still have to be carried out. The
possible entries of the queues are of the form

B1 u · · · u Bn → B′ and ∃r.B

with B1, . . . , Bn, B, and B′ concept names, r a role name, and n ≥ 0.
For the case n = 0, we simply write the queue entry B1u· · ·uBn → B′

as B′. Intuitively,

− an entry B1 u · · · uBn → B′ in queue(A) means that B′ has to be
added to S(A) if S(A) already contains B1, . . . , Bn, and

− ∃r.B ∈ queue(A) means that (A, B) has to be added to R(r).

The fact that such an addition triggers other rules will be taken into
account by appropriately extending the queues when the addition is
performed.

To facilitate describing the manipulation of the queues, we view the
(normalized) input ontology O as a mapping Ô from concepts to sets

of queue entries as follows: for each concept name A ∈ CN>
O, Ô(A) is

the minimal set of queue entries such that

− if A1 u · · · u An v B ∈ O and A = Ai, then

A1 u · · · u Ai−1 u Ai+1 u · · · u An → B ∈ Ô(A);

− if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue

entries such that, if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A).
In the modified algorithm, the queues are used as follows: since the

sets S(A) are initialized with {A,>}, we initialize queue(A) with Ô(A)∪

Ô(>), i.e., we add to the queues the immediate consequences of being

cel.tex; 20/04/2006; 15:58; p.9

10 Baader, Lutz, Suntisrivaraporn

procedure process(A,X)
begin

if X = B1, . . . , Bn → B and B /∈ S(A) then
if {B1, . . . , Bn} ⊆ S(A) then

(P1) S(A) := S(A) ∪ {B};

(Q1) queue(A) := queue(A) ∪ Ô(B);
for all concept names A′ and role names r

with (A′, A) ∈ R(r) do

(Q2) queue(A′) := queue(A′) ∪ Ô(∃r.B);
if X = ∃r.B and (A,B) /∈ R(r) then

process-new-edge(A, r,B)
end;

procedure process-new-edge(A, r,B)
begin

for all role names s with r v∗
O s do

(P2) R(s) := R(s) ∪ {(A,B)};

(Q3) queue(A) := queue(A) ∪
⋃

{B′|B′∈S(B)} Ô(∃s.B′);

for all concept names A′ and role names t, u with
t ◦ s v u ∈ O and (A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do
process-new-edge(A′, u,B);

for all concept names B′ and role names t, u with
s ◦ t v u ∈ O and (B,B′) ∈ R(t) and (A,B′) 6∈ R(u) do
process-new-edge(A, u,B′);

end;

Figure 4. Processing the queue entries

an instance of A and >. Then, we repeatedly fetch (and thereby remove)
entries from the queues and process them using the procedure process

displayed in Figure 4. To be more precise, process(A, X) is called when
the queue of A was non-empty and we fetched the queue entry X
from queue(A) to be treated next. Observe that the first if-clause of
the procedure process implements R1 and (part of) R3, and the second
if-clause implements R2, (the rest of) R3, as well as R4 and R5. The
procedure process-new-edge(A, r, B) is called by process to handle the
effects of adding a new pair (A, B) to R(r). The notation v∗

O
used in its

top-most for-loop stands for the reflexive-transitive closure of the role
hierarchy axioms in O. Queue processing is continued until all queues
are empty. Observe that the refined algorithm need not perform any
search to check which completion rules are applicable.

cel.tex; 20/04/2006; 15:58; p.10

Tractable Reasoning in EL+ 11

Theorem 2. The refined algorithm runs in polynomial time, and it is
sound and complete, i.e., after it terminates on input O we have, for
all A, B ∈ CN>

O, that B ∈ S(A) iff A vO B.

The proof of this theorem can be found in Appendix A.

4. Implementation and Evaluation

Modern DL reasoners are usually based on tableau-based subsumption
algorithms for expressive DLs (Baader and Sattler, 2001). Although
such algorithms are (at least) exponential in the worst case, the devel-
opment of a whole plethora of sophisticated optimization techniques
has led to a quite good runtime behavior in practice. In this section
we will show that, nevertheless, even a relatively näıve implementation
of the refined algorithm described above can compete with, and even
outperform, modern tableau-based DL systems.

We have implemented the refined algorithm described in the previ-
ous section in the CEL reasoner. CEL is written in Common LISP and
accepts input based on a small extension of the KRSS syntax (Patel-
Schneider and Swartout, 1993). For details about using the system, we
refer to the CEL manual. Together with the reasoner, it is available for
download at

http://lat.inf.tu-dresden.de/systems/cel/.

To test whether CEL can compete with modern tableau-based reason-
ers, we have conducted a number of experiments based on three im-
portant bio-medical ontologies: the Gene Ontology Go (The Gene On-
tology Consortium, 2000), the Galen medical knowledge base (Rector
and Horrocks, 1997), and the Systematized Nomenclature of Medicine
Snomed (Cote et al., 1993; Spackman, 2000).

Go. The Gene Ontology provides a controlled vocabulary to describe
genes and gene products in any organism. It currently consists of 20,465
concepts and a single, transitive role “part-of”. The original distribu-
tion of Go used a frame-like formalism without formal semantics. For
example, the concept Polarisome is described as follows:

[Term]

id: GO:0000133

name: polarisome

namespace: cellular component

def: "Protein complex that plays a role in determining

cell polarity"

is a: GO:0043234 ! protein complex

cel.tex; 20/04/2006; 15:58; p.11

12 Baader, Lutz, Suntisrivaraporn

relationship: part of GO:0005938 !cell cortex

relationship: part of GO:0030427 !site of polarized growth

The most natural approach to translate Go concept definitions into
an EL+ ontology is to use primitive concept definitions. For example,
the above Go concept would be defined as

GO0000133 v GO0043234u∃part of.GO0005938u∃part of.GO0030427.

This translation gives us OGo, an acyclic, primitive TBox with one
role inclusion part of ◦ part of v part of. It coincides with the OWL
version of Go contained in recent distributions of the gene ontology.

Galen. This ontology aims to promote the sharing and re-use of med-
ical data. It was originally formulated in the language Grail and has
been translated into description logic by Ian Horrocks (Horrocks, 1997).
In that translation, Galen is formulated in EL extended with GCIs,
role hierarchies, transitive roles, functional roles, and inverse roles.
Since EL+ and CEL do not support inverse roles and functional roles, we
have removed inverse role axioms and treat functional roles as ordinary

ones. In this way, we obtain the EL+ ontology OGalen that contains
1,214 GCIs as well as 2,041 primitive and 699 non-primitive concept
definitions. It refers to 413 roles, of which 26 are declared transitive.
Moreover, there are 412 role hierarchy axioms.

Snomed. This acronym stands for the systematized nomenclature of
medicine, a standardization of medical terminology used in the health
systems of the US and the UK. The current version of Snomed com-
prises 379,691 concept and 52 role names. Snomed is formulated as an
acyclic EL TBox that contains 38,719 concept definitions and 340,972
primitive concept definitions. There are no transitive roles,3 but 11 role
hierarchy statements and one right-identity rule of the form r ◦ s v r.

This gives us the ontology OSnomed. To get a smaller version of
Snomed that can be handled by standard DL reasoners, we also con-
sider the fragment that is obtained by keeping only the non-primitive
concept definitions, but dropping both the primitive concept definitions

and the role inclusions. We call the resulting ontology OSnomed
core

.

The most important facts about our benchmark ontologies are sum-
marized in the upper part of Table II, where the first line gives the
number of non-primitive concept definitions, the second line the number
of primitive concept definitions, and the third line the number of GCIs

3 Actually, Snomed needs transitive roles, but since the Apelon reasoner used by
the developers cannot handle transitivity, they have simulated it in an incomplete
way using the approach described in (Schulz et al., 1998).

cel.tex; 20/04/2006; 15:58; p.12

Tractable Reasoning in EL+ 13

Table II. Benchmarks and Evaluation Results (runtime given in seconds)

OGo OGalen OSnomed
core

OSnomed

No. of CDefs. 0 699 38,719 38,719

No. of PCDefs. 20,465 2041 0 340,972

No. of GCIs 0 1214 0 0

No. of role axioms 1 438 0 11 + 1

|CNO| 20,465 2,740 53,234 379,691

|RNO| 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

that are not a concept definition. Lines five and six give the number of
concept names and role names, respectively. All these figures concern
the ontologies prior to normalization.

We have compared the performance of CEL on these ontologies
with that of the three most advanced tableau-based reasoning systems:
FaCT++ (v1.1.0), RacerMaster (v1.9.0), and Pellet (v1.3b). All these
systems implement tableau algorithms for expressive DLs in which
subsumption is ExpTime-hard. The experiments have been performed
on a PC with 2.8GHz Intel Pentium 4 processor and 512MB memory
running Linux v2.6.14. For Pellet, we used JVM v1.5 and set the Java
heap space to 256MB (as recommended by the implementor). In the
case of Galen, for the sake of fairness also the tableau reasoners have
been used with the restricted version of Galen that includes neither
functional nor inverse roles. In the case of Snomed, the only existing
right-identity rule was passed to CEL, but not to the other reasoners as
they do not support such axioms. The results of our experiments are
summarized in the lower part of Table II, where all classification times
are shown in seconds and unattainable means the reasoner failed due
to memory exhaustion.

We would like to highlight the following outcomes of our experimen-
tal results:

cel.tex; 20/04/2006; 15:58; p.13

14 Baader, Lutz, Suntisrivaraporn

1. CEL outperforms all the reasoners in all benchmarks (except for

the case of OGalen, where CEL and RacerMaster show the same
performance);

2. CEL and FaCT++ are the only reasoners that can classify OSnomed,
with CEL being more than twice as fast as FaCT++. In contrast,
RacerMaster and Pellet fail to classify this ontology. Pellet and the
original version of FaCT (not shown in the table) even fail to classify

OSnomed
core

.

Regarding the second point, it is interesting to observe that OSnomed

is only an acyclic TBox and, in particular, contains no real GCIs. The
relatively good performance of FaCT++ on this ontology seems to be

due to this fact: if we extend OSnomed with additional GCIs of the
simple form ∃r.A v B, where A and B are concept names randomly

chosen from OSnomed and r is a role name randomly chosen from

OSnomed, then FaCT++ needs about 3,000 more seconds to classify

OSnomed for each additional GCI. In contrast, the performance of
CEL does not change noticeably if we add such GCIs. We view this as
an indication that CEL’s computational behavior is more robust than
that of FaCT++.

5. Computing the Subsumption DAG

The innate classification output of CEL is simply the computed sets
S(A) for all concept names A. We call these sets subsumer sets in
what follows. In contrast, tableau-based reasoners usually employ the
enhanced traversal method from (Baader et al., 1994) to generate a
directed acyclic graph (DAG) describing the direct subsumption re-
lationships, i.e., for every concept name A they compute the sets of
its direct subsumers and subsumees, which are the sets of concept
names B such that A vO B (B vO A) and there is no concept name
B′ /∈ {A, B} with A vO B′ vO B (B vO B′ vO A). We will call this
graph the subsumption DAG. Since the subsumption relation is a quasi-
order rather than a partial order (i.e., in general not antisymmetric),
one node of the DAG actually corresponds to an equivalence class of
concept names rather than a single concept name. The advantage of
using subsumption DAGs over subsumer sets is that this format is more
compact, and it directly supports browsing the subsumption hierarchy
by going from a concept name to its direct subsumers or subsumees.
The disadvantage is that answering a subsumption question A v?

O
B

cel.tex; 20/04/2006; 15:58; p.14

Tractable Reasoning in EL+ 15

then requires to test reachability of B from A in the DAG, and not just
a look-up in the subsumer set S(A).

Since many applications require subsumption DAGs rather than (or
in addition to) subsumer sets, CEL allows to construct the former from
the latter in an efficient way. In principle, converting subsumer sets into
a subsumption DAG is easy. We can simply compute, for each concept
name A,

− the set SS (A) := {B ∈ S(A) | A /∈ S(B)} of strict subsumers of
A, i.e., subsumers of A that are not equivalent to A;

− the set DS (A) := SS (A) \ (
⋃

B∈SS(A) SS (B)) of direct subsumers
of A;

− the set DS−(A) := {B | A ∈ DS (B)} of direct subsumees of A.

Clearly, the sets DS (A) and DS−(A) yield a representation of the
subsumption DAG.

However, we do not use this direct construction since computing the
sets DS−(A) is expensive (it needs quadratic time) and it is possible to
avoid the direct computation of these sets according to the above defi-
nition by using an approach that is inspired by the enhanced traversal
method in (Baader et al., 1994). Another virtue of our alternative ap-
proach is that the potentially costly set operations in the computation
of DS (A) are replaced by an inexpensive marking algorithm.

In order to explain the main idea underlying our algorithm, assume
that we have already computed a restriction of the subsumption DAG
to some subset of the concept names, and that we now want to insert the
concept name A into this DAG. We start by computing the set SS (A) of
strict subsumers according to the definition given above. The elements
of S(A) \ SS (A) are the concepts that are equivalent to A. To find all
the direct subsumers of A among the elements of SS (A), we proceed as
follows. If all elements of SS (A) belong to the already computed DAG,
we can find the direct subsumers by using a simple graph traversal
algorithm to mark all the strict subsumers of elements of SS (A) in the
DAG. The direct subsumers of A are then those elements of SS (A) that
are not marked. If there are elements of SS (A) that do not belong to the
already computed DAG, then we simply first insert these elements into
the DAG (by issuing recursive calls of the insertion procedure) before
inserting A. By following this strategy, we ensure that, when inserting
a concept name A into the DAG, all subsumers of A are already in the
DAG, but no subsumee of A is. Hence, our algorithm need not compute
the direct subsumees explicitly. Instead, it is enough to extend the set of
direct subsumees of B by A in case B is found to be a direct subsumer
of A.

cel.tex; 20/04/2006; 15:58; p.15

16 Baader, Lutz, Suntisrivaraporn

Figure 5 shows a pseudo code representation of our algorithm. The
sets parents(A) are used to store the direct subsumers of A, the set
children(A) are used to store the direct subsumees of A, and the sets
equivalents(A) are used to store the concepts that are equivalent to A.
Note that the description of the algorithm is a bit sloppy in that we
do not distinguish between a concept name and the node in the DAG
representing (the equivalence class of) this name.

An algorithm similar to ours is obtained if we describe the subsumer
sets as a primitive TBox, i.e. a set of primitive concept definitions
A v uBi∈S(A)Bi for each concept name A, and then employ a simplified
version of the enhanced traversal method (Baader et al., 1994) using
told subsumer information and some of the optimizations described in
(Horrocks and Tsarkov, 2005) to compute the subsumption DAG from
the resulting TBox.

The time required by CEL for computing subsumption DAGs is very

small. For example, even in the case of OSnomed, which has almost
380,000 concepts and huge subsumer sets, it takes only 9 seconds. This
is negligible compared to the time needed to compute the subsumer

sets. In particular, if we add this time to CEL’s run-time on OSnomed

in Table II, CEL is still more than twice as fast as FaCT++.
There is an obvious alternative to first computing the full subsumer

sets, and only then deriving the subsumption DAG from them: we
could modify our classification algorithm, which computes the whole
subsumption hierarchy, into a subsumption algorithm that answers only
a single subsumption query, and then use this subsumption algorithm
inside a standard enhanced traversal algorithm as described in (Baader
et al., 1994). We have experimented with this strategy, which is closer
to the approach employed by tableau-based systems. To turn our algo-
rithm into a subsumption algorithm, we have developed a goal-directed
variant of it, which is based on activating a concept name if computing
its subsumer set is required for answering the subsumption question
at hand. If the aim is to answer the subsumption query A v?

O
B,

then initially only A is activated. Intuitively, completion rules are only
applied to activated names. We activate a concept name B ′ whenever
B′ is the second component of a tuple added to some R(r). The set
S(A′) and the queue of A′ is initialized only when the concept name be-
comes activated, and thus the subsumer sets of concept names that do
not become activated are not populated by the algorithm. During the
construction of the whole subsumption DAG, the enhanced traversal
procedure makes repeated calls to the subsumption algorithm. To avoid
redoing work, we retain the already computed parts of the mappings
S(·) and R(·) for such repeated calls.

cel.tex; 20/04/2006; 15:58; p.16

Tractable Reasoning in EL+ 17

procedure compute-dag

for all concept names X ∈ CN>
O do

classified(X) := false
parents(X) := children(X) := equivalents(A) := ∅

for each concept name A ∈ CN>
O do

if not classified(A) then
dag-classify(A);

end;

procedure dag-classify(A)
candidates := ∅;
for all subsumers B ∈ S(A) do

if A ∈ S(B) then
classified(B) := true;
equivalents(A) := equivalents(A) ∪ {B};

else
if not classified(B) then

dag-classify(B);
candidates := candidates ∪ {B};

dag-insert(A, candidates);
classified(B) := true;

end;

procedure dag-insert(A, candidates)

marked(X) := false for all X ∈ CN>
O;

for all B ∈ candidates do
for all X ∈ parents(B) do

marked(X) := true

while there are X,Y ∈ CN>
O with marked(X), Y ∈ parents(X), and

not marked(Y) do
marked(Y) := true

parents(A) := {B ∈ candidates | marked(B) = false};
for all B ∈ parents(A) do

children(B) := children(B) ∪ {A};
end;

Figure 5. Computing the DAG from the subsumer sets

However, our current implementation of this idea cannot compete
with the runtime of the original CEL implementation described before.

For example, the classification of OSnomed takes 3,750 seconds. This
is still slightly better than the performance of FaCT++, but more than
twice of the 1,791 seconds needed when first computing the subsumer
sets and then constructing the subsumption DAG. The reason is proba-

cel.tex; 20/04/2006; 15:58; p.17

18 Baader, Lutz, Suntisrivaraporn

bly that, in sum, the single subsumption tests do the same work as the
full classification algorithm, but then there is the additional overhead
of the enhanced traversal method (which is more complicated than the
simplified version employed to compute the subsumption DAG from
the subsumer sets).

6. Conclusion

The performance evaluations show that our tractable reasoner CEL

outperforms modern reasoners for intractable DLs based on tableau
algorithms. It should be noted that the good performance of CEL

is achieved with a relatively straightforward implementation of the
tractable algorithm, whereas the tableau-based systems are the result
of many years of research into optimization techniques. The robustness
and scalability of tractable reasoning is visible in the case of Snomed,
which comprises almost 380,000 concept definitions. Only CEL and
FaCT++ can classify this terminology, whereas RacerMaster, Pellet, and
the original version of FaCT fail. Additionally, FaCT++ shows a sig-
nificant degradation in performance if Snomed, which is an acyclic
TBox, is extended with GCIs. In contrast, the runtime of CEL is not
noticeably affected by such an extension.

Developing CEL is ongoing work. We plan to extend its capabilities
to the DL EL++ (Baader et al., 2005), with which one can express,
among other things, nominals and disjoint concepts. We also plan to im-
plement DIG and OWL interfaces,4 so that CEL can be used as a back-
end reasoner for ontology editors like OilEd5 and Protègè,6 which would
also make their more sophisticated graphical user-interfaces available
to users of CEL.

References

Baader, F.: 2003, ‘Terminological Cycles in a Description Logic with Existential
Restrictions’. In: G. Gottlob and T. Walsh (eds.): Proceedings of the 18th
International Joint Conference on Artificial Intelligence. pp. 325–330.

Baader, F., S. Brandt, and C. Lutz: 2005, ‘Pushing the EL Envelope’. In: Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). Edinburgh,
UK.

Baader, F., E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich: 1994, ‘An Em-
pirical Analysis of Optimization Techniques for Terminological Representation

4 See http://dl.kr.org/dig/ and http://www.w3.org/2004/OWL/
5 see http://oiled.man.ac.uk/
6 See http://protege.stanford.edu/

cel.tex; 20/04/2006; 15:58; p.18

Tractable Reasoning in EL+ 19

Systems or: Making KRIS get a move on’. Applied Artificial Intelligence. Special
Issue on Knowledge Base Management 4, 109–132.

Baader, F. and U. Sattler: 2001, ‘An Overview of Tableau Algorithms for Description
Logics’. Studia Logica 69, 5–40.

Brachman, R. J. and H. J. Levesque: 1984, ‘The Tractability of Subsumption in
Frame-Based Description Languages’. In: Proc. of the 4th Nat. Conf. on Artificial
Intelligence (AAAI’84). pp. 34–37.

Brandt, S.: 2004, ‘Polynomial Time Reasoning in a Description Logic with Exis-
tential Restrictions, GCI Axioms, and—What Else?’. In: R. L. de Mantáras
and L. Saitta (eds.): Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI-2004). pp. 298–302.

Cote, R., D. Rothwell, J. Palotay, R. Beckett, and L. Brochu: 1993, ‘The System-
atized Nomenclature of Human and Veterinary Medicine’. Technical report,
SNOMED International, Northfield, IL: College of American Pathologists.

Dowling, W. F. and J. Gallier: 1984, ‘Linear-time algorithms for testing the sat-
isfiability of propositional horn formulae’. Journal of Logic Programming 1(3),
267–284.

Haarslev, V. and R. Möller: 2001, ‘RACER System Description’. In: Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2001).

Henzinger, M. R., T. A. Henzinge, and P. W. Kopke: 1995, ‘Computing simulations
on finite and infinite graphs’. In: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS). pp. 453–462.

Horrocks, I.: 1997, ‘Optimising Tableaux Decision Procedures for Description
Logics’. Ph.D. thesis, University of Manchester.

Horrocks, I.: 1998, ‘Using an Expressive Description Logic: FaCT or Fiction?’.
In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98). pp. 636–647.

Horrocks, I.: 2003, ‘Implementation and Optimization Techniques’. In: F. Baader, D.
Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, pp. 306–346.

Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen: 2003, ‘From SHIQ and
RDF to OWL: The Making of a Web Ontology Language’. Journal of Web
Semantics 1(1), 7–26.

Horrocks, I., U. Sattler, and S. Tobies: 2000, ‘Practical Reasoning for Very Expressive
Description Logics’. J. of the Interest Group in Pure and Applied Logic 8(3),
239–264.

Horrocks, I. and D. Tsarkov: 2005, ‘Optimised Classification for Taxonomic Knowl-
edge Bases’. In: Proceedings of the 2005 International Workshop on Description
Logics (DL’05). pp. 184–191.

Nebel, B.: 1988, ‘Computational Complexity of Terminological Reasoning in BACK’.
Artificial Intelligence 34(3), 371–383.

Nebel, B.: 1990, ‘Terminological reasoning is inherently intractable’. Artificial
Intelligence 43, 235–249.

Patel-Schneider, P. and B. Swartout: 1993, ‘Description-Logic Knowledge Repre-
sentation System Specification from the KRSS Group of the ARPA Knowledge
Sharing Effort’. Technical report, DARPA Knowledge Representation System
Specification (KRSS) Group of the Knowledge Sharing Initiative.

Rector, A. and I. Horrocks: 1997, ‘Experience Building a Large, Re-usable Medical
Ontology using a Description Logic with Transitivity and Concept Inclusions’.

cel.tex; 20/04/2006; 15:58; p.19

20 Baader, Lutz, Suntisrivaraporn

In: Proceedings of the Workshop on Ontological Engineering, AAAI Spring
Symposium (AAAI’97). Stanford, CA.

Schulz, S., M. Romacker, and U. Hahn: 1998, ‘Part-Whole Reasoning in Medical
Ontologies Revisited: Introducing SEP Triplets into Classification-Based De-
scription Logics’. Journal of the American Medical Informatics Association
(JAMIA) pp. 830–834.

Spackman, K.: 2000, ‘Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT’. Journal of the
American Medical Informatics Association (JAMIA). Fall Symposium Special
Issue.

Suntisrivaraporn, B.: 2005, ‘Optimization and Implementation of Subsumption Al-
gorithms for the Description Logic EL with cyclic TBoxes and General Concept
Inclusion Axioms’. Master thesis, TU Dresden, Germany.

The Gene Ontology Consortium: 2000, ‘Gene Ontology: Tool for the Unification of
Biology’. Nature Genetics 25, 25–29.

cel.tex; 20/04/2006; 15:58; p.20

Tractable Reasoning in EL+ 21

Appendix

A. Correctness Proofs of the Refined Algorithm

Theorem 2 is an immediate consequence of the following three lemmas.

Lemma 3 (Soundness). After the refined algorithm terminates on
an ontology O, the following holds: if B ∈ S(A), then A vO B.

Proof. We introduce a number of invariants on the three interdepen-
dent data structures of the refined algorithm and then show that the
invariants hold throughout the computation.

INV1 If B ∈ S(A), then A vO B.

INV2 If (A, B) ∈ R(r), then A vO ∃r.B

INV3 If ∃r.B ∈ queue(A), then A vO ∃r.B

INV4 If B1, . . . , Bn → B ∈ queue(A), then

A vO B1 ∧ . . . ∧ A vO Bn implies A vO B.

Observe that, in case that n = 0, INV4 degenerates to “if B ∈ queue(A),
then A vO B”. Also note that satisfaction of INV1 throughout (and
after) the computation implies Lemma 3.

We start with showing that the invariants hold after the initialization
of the refined algorithm. Since the sets S(A) is initialized with {A,>}
and the sets R(A) with ∅, INV1 and INV2 are clearly satisfied. Now

suppose that ∃r.B ∈ queue(A). Since queue(A) is initialized as Ô(A),
the GCI A v ∃r.B belongs to O. This implies that A vO ∃r.B and thus
INV3 is satisfied. For INV4, assume that B1, . . . , Bn → B ∈ queue(A) =

Ô(A). Then there exists (up to commutativity of u) a GCI B1 u · · · u
Bn u A v B in O. Thus, INV4 is satisfied.

After the initialization, the data structures are manipulated by the
procedures process and process-new-edge in the lines marked P1, P2, Q1,
Q2, and Q3 in Figure 4. We show that each manipulation preserves the
invariants.

P1 This line adds B to S(A) when process(A, B1, . . . , Bn → B) is
invoked and we have {B1, . . . , Bn} ⊆ S(A). The former means
that B1, . . . , Bn → B was in the queue of A. By Invariant INV4,
we have that A vO B1 ∧ . . . ∧ A vO Bn implies A vO B. Because
of {B1, . . . , Bn} ⊆ S(A) and INV1, this yields A vO B. Thus, INV1

(the only invariant that could be invalidated by P1) is preserved.

cel.tex; 20/04/2006; 15:58; p.21

22 Baader, Lutz, Suntisrivaraporn

P2 This line adds (A, B) to R(s) when process-new-edge(A, r, B) is
invoked and r v∗

O
s. We make a case distinction according to the

three possible reasons for which process-new-edge can be invoked.

First, assume that process-new-edge(A, r, B) is called by the process

procedure. Then ∃r.B was in the queue of A and INV4 yields A vO

∃r.B. Since r v∗
O

s, this implies A vO ∃s.B and INV2 is preserved.

Second, assume that process-new-edge(A, r, B) is called recursively
by process-new-edge in the first inner for loop. Then there are
role names t, u and a concept name A′ such that t ◦ u v r ∈ O,
(A, A′) ∈ R(t) and (A′, B) ∈ R(u). By INV2, we have A vO ∃t.A′

and A′ vO ∃u.B. Together with t ◦ u v r ∈ O and r v∗
O

s, we get
A vO ∃s.B and thus INV2 is preserved.

Third, assume that process-new-edge(A, r, B) is called recursively
by process-new-edge in the second inner for loop. Then there are
role names t, u and a concept name B ′ such that u◦t v r, (B′, B) ∈
R(t), and (A, B′) ∈ R(u). We can continue in a similar fashion to
the previous case.

Q1 This line adds all the elements of Ô(B) to queue(A) when process

is invoked with arguments (A, B1, . . . , Bn → B). We have that
{B1, . . . , Bn} ⊆ S(A), and B has been added to S(A) in line P1.
By INV1, the latter implies A vO B. Thus, we may argue as for the
initialization step that INV3 and INV4 are preserved.

Q2 This line adds all the elements of Ô(∃r.B) to queue(A′) only if
B ∈ S(A) and (A′, A) ∈ R(r) for some concept name A′ and
role name r. By Invariants INV1 and INV2, we have A vO B and
A′ vO ∃r.A, implying A′ vO ∃r.B. The existence of an element
B′ ∈ Ô(∃r.B) implies that the GCI ∃r.B v B′ belongs to O.
Hence, we have A′ vO B′ and adding B′ to queue(A′) preserves
(the n = 0 case of) INV4.

Q3 This line adds the elements of Ô(∃s.B′) to queue(A) only if (A, B) ∈
R(s) and B′ ∈ S(B). With the same arguments as that in the
previous case, we have A vO ∃s.B vO ∃s.B′ vO B′′ for all B′′ ∈
Ô(∃s.B′). Thus, INV4 is preserved.

Lemma 4 (Completeness). If A vO B for some A, B ∈ CN>
O, then

we have B ∈ S(A) after termination of the refined algorithm.

cel.tex; 20/04/2006; 15:58; p.22

Tractable Reasoning in EL+ 23

Proof. Instead of proving completeness of the refined algorithm from
scratch, we want to use the completeness proof for the abstract algo-
rithm given in (Baader et al., 2005). This completeness proof shows the
following: if O is an ontology and S, R are mappings such that

− S assigning to each element A of CN>
O a subset S(A) of CN>

O,

− R assigning to each element r of RNO a binary relation R(r) on
CN>

O,

− S(A) contains > and A for all A ∈ CN>
O,

− the completion rules of Figure 3 do not apply to S, R,O,

then A vO B implies B ∈ S(A).
Since the our refined algorithm initializes he sets S(A) with {A,>}

and never removes elements from S(A), it is thus sufficient to show
that, after termination of the refined algorithm, none of the completion
rules is applicable. Assume, to the contrary of what has to be proved,
that there exists an applicable completion rule after termination of the
refined We make a case distinction according to the rule type, and show
that in each case our assumption leads to a contradiction.

R1 If this rule is applicable, then there exists an X ∈ CN>
O and an

A1 u · · · u An v B in O such that A1, . . . , An ∈ S(X) and B /∈
S(X). Let ` ≤ n be such that A` had been added to S(X) most
recently among the A1, . . . , An. When A` was added, the entry
A1, . . . , A`−1, A`+1, . . . , An → B ∈ Ô(A`) was added to queue(X),
due to the presence of the GCI A1 u · · · uAn v B in O. Since B /∈
S(X), the conditional entry has not yet been processed w.r.t. X,
implying that queue(X) is non-empty, which is a contradiction to
our assumption that the algorithm has terminated.

R2 If this rule is applicable, there exists an X ∈ CN>
O and a GCI A v

∃r.B in O such that A ∈ S(X) and (X, B) /∈ R(r). When A was

added to S(X), the entry ∃r.B ∈ Ô(A) was added to queue(X).
However, (X, B) /∈ R(r) means that this entry has not yet been
processed, and thus queue(X) is non-empty.

R3 If this rule is applicable, there are X, Y ∈ CN>
O and a GCI ∃r.A v B

in O such that (X, Y) ∈ R(r), A ∈ S(Y), and B /∈ S(X). We
distinguish the following two cases:

− (X, Y) had been added to R(r) before A was added to S(Y).

Then, the entry B ∈ Ô(∃r.A) was added to queue(X) when
A was added to S(Y). However, B /∈ S(X) means that this

cel.tex; 20/04/2006; 15:58; p.23

24 Baader, Lutz, Suntisrivaraporn

entry was not yet processed, implying the queue of X to be
non-empty.

− A had been added to S(Y) before (X, Y) was added to R(r).

Then, the entry B ∈ Ô(∃r.A) was added to queue(X) when
(X, Y) was added to R(r), and we can continue as in the
previous case.

R4 If this rule is applicable, there are X, Y ∈ CN>
O and an r v s in

O such that (X, Y) ∈ R(r) \R(s). The addition of (X, Y) to R(r)
took place in the process-new-edge procedure that was started with
arguments (X, t, Y) for some t such that t v∗

O
r. Since r v s in O,

we have t v∗
O

s, and (X, Y) is added to R(s) in the same call to
process-new-edge. We derive a contradiction to the applicability of
R4.

R5 If this rule is applicable, there are X, Y, Z ∈ CN>
O and a role inclu-

sion axiom r ◦ s v t in O such that (X, Y) ∈ R(r), (Y, Z) ∈ R(s),
and (X, Z) /∈ R(t). We distinguish two cases:

− (X, Y) had been added to R(r) before (Y, Z) was added to
R(s). The pair (Y, Z) is added to R(s) in the procedure
process-new-edge. Then the first inner for loop and the re-
cursive call to process-new-edge inside this loop ensure that
(X, Z) is added to R(t). This is a contradiction to the fact
that (X, Z) /∈ R(t).

− (Y, Z) had been added to R(s) before (X, Y) was added to
R(r). This case is analogous to the previous one with the
second inner for loop in place of the first.

If O is an ontology, we use |O| to denote its size, i.e., the number of
symbols needed to write it.

Lemma 5 (Termination). If the refined algorithm is applied to an
ontology O with |O| = n, then it terminates after O(n4) additions to
the data structures S(·), R(·), and queue(·).

Proof. To show termination, it suffices to show that there are at most n4

additions to the data structure since every infinite run of the algorithm
must clearly make infinitely many additions to the data structures. For
the sets S, R, every element can be added at most once and no element
is deleted. In the case of the queue(·) structure, however, entries can be

cel.tex; 20/04/2006; 15:58; p.24

Tractable Reasoning in EL+ 25

deleted, and the same entry can be added to a specific queue several
times.

We start with additions to the sets S(·). Since there are at most n
such sets, each set can contain at most n elements, and elements are
never deleted, there can be at most n2 additions. Analogously, we can
show that there can be at most n3 additions for the sets R(·). Now,
consider additions to queue(·). These are only made together with an
addition to S(·) or R(·). More precisely, each single addition to S(·)
comes together with at most n2 additions to queue(·): the algorithm
makes additions to at most number of concept names many queues
(which is bounded by n), and for each such queue a linear number of
additions is made. Each single addition to R(·) comes together with at
most n additions to queue(·): only one queue is extended, and again
the number of items added is linear in n.

Overall, this implies the bound of O(n4) for the total number of
additions.

cel.tex; 20/04/2006; 15:58; p.25

cel.tex; 20/04/2006; 15:58; p.26

