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Abstract

The notion of a conservative extension plays a
central role in ontology design and integration:
it can be used to formalize ontology refinements,
safe mergings of two ontologies, and independent
modules inside an ontology. Regarding reasoning
support, the most basic task is to decide whether
one ontology is a conservative extension of an-
other. It has recently been proved that this prob-
lem is decidable and 2ExpTime-complete if on-
tologies are formulated in the basic description
logic ALC. We consider more expressive descrip-
tion logics and begin to map out the boundary
between logics for which conservativity is decid-
able and those for which it is not. We prove that
conservative extensions are 2ExpTime-complete in
ALCQTZ, but undecidable indLCOZO. We also
show that if conservative extensions are defined
model-theoretically rather than in terms of the con-
sequence relation, they are undecidable already in
ALC.

Introduction

is a DL TBox, and a consequence of a TBox is a subsump-
tion relationship between two concepts which follows from
the TBox. Intuitively,7; U 75 is a conservative extension of

7; w.rt. T if adding 75 to 7; does not change the ontology
7, as far as concepts built only from concept and role names
in " are concerned. We give three examples of ontology re-
lated tasks that can be understood in terms of conservative
extensions.

— Ontology refinementDuring ontology design, a frequent
task is to add more details to a part of the ontology that has
not yet been sufficiently described. Intuitively, such a refine-
ment should have no impact on other, unrelated parts of the
ontology. This requirement can be formalized by demand-
ing that the refined ontology is a conservative extension of
the original one w.r.t. the concept and role names that do not
belong to the refined pak4; 1].

— Ontology merging The most straightforward way to inte-
grate two ontologies is to simply take their union. Such a
merging should not compromise the original ontologies. One
possible formalization of this requirement is to demand that
the united ontology is a conservative extension of the com-
ponent ontologies w.r.t. the set of all concept and role names
used in the respective components. Weaker formalizations are
obtained by excluding from the signature concept and role

The design and integration of ontologies formulated in mod-hames for which an interaction between the component on-
ern ontology languages such as OWL is a serious challengélogies is expected (and intenddd).

Experience shows. that principled meth_odologies as well as Defining Modules A module inside an ontolog§™ that
automated reasoning support are required to ensure that tiscribes an independent part of the application domain can

resulting ontologies are well-structurg@]. In the recent pa-

be defined as a subsg&t of 7 such that7 is a conservative

pers[4; 5; 3; 1, conservative extensions have been identifietbytension of7” w.r.t. the concept names and role names that
as a crucial notion for formalizing central tasks in ontology pe|ong to7” [5).

design and integration.

provide valuable support for the ontology designer.

Formally, an ontologyZ; U 75 is a conservative extension
of an ontologyZ; w.r.t. a signaturé’ iff every consequence of

7, U 75 formulated inl" is already a consequenceff. For

example, assume that ontologies are formalized in a descri;ﬁ:—
tion logic (DL) such as OWL-DL and its fragmerl@. Then
a signature is a set of concept and role nhames, an ontolo

Consequently, conservative exte
sions can play a key role in design and integration method-
ologies[3], and reasoning about conservative extensions ca

r]I:he most basic reasoning task regarding conservative exten-

ﬁions is as follows: given ontologids and7; and a signature

, decide whethef; U 75 is a conservative extension @f
w.r.t.T. In the following, we refer to this task aeciding con-
servative extensionsn [4], this decision problem is investi-
gated for the basic DLALC and proved to be 2ETIME-
omplete. The aim of the current paper isneestigate con-
servative extensions in more expressive DLs such as the ones
derlying the ontology language OWL-DL and to map out

e boundary between decidable and undecidablgr main

*Partially supported by the EU IST-2005-7603 FET Projectresults are as follows: (i) ildLCQZ, the extension ofALC
TONES

with inverse roles and qualifying number restrictions, decid-



Name | Syntax | Semantics | interchangeably. Formally, BBoxis a finite set of concept
inverserole | 7~ ] (rT) ! | implicationsC C D.

nominal {a} (o} The semantics oﬂﬁCQ%O-Zconcepts is (_Jlefir%e_d in terms
- T AT of aninterpretationZ = (A*,-*). ThedomainA~* is a non-
negation -C AT\ C f individual d th ion f T
——— ooD DT empty set of individuals and thiaterpretation function
conjunction _ maps each concept narec N to a subseti of AZ, each
at-most number (<nr0) {d | #{e|(de) € A role namer € Ng to a binary relation” on AZ, and each
restriction e€C7}<n} individual namea € N, to an individualaZ € AZ. The ex-

tension of-Z to inverse roles and arbitrary concepts is defined
inductively as shown in the third column of Figure 1.

An interpretationZ satisfiesan implicationC T D if
_ _ o C? C DT, andZ is amodelof a TBox 7 if it satisfies all
ing conservative extensions is #ETIME complete and thus  jmplications in7. A conceptC is satisfiable relative to a
not more difficult than inA£C; and (ii) if we further extend  TBox7 if there exists a model of 7 such thatCZ # (). A
ALC QT with nominals, conservative extensions in the result-conceptC is subsumed by a concept relative to a TBoxZ”

ing DL ALCQTO are undecidable. This shows that con- (written 7 = C' C D) if every modelZ of 7 satisfies the
servative extensions in OWL-DL, of whicdLCQZO is a  jmplicationC C D.

Figure 1: Syntax and semantics 42C Q7 O.

fragment, is also undecidable. It also identifié¢£C Q7 as Despite the fact that individual names are closer to con-
a significant fragment of OWL-DL in which conservative ex- stants than to predicates, we henceforth use the peeuhi-
tensions are still decidable. catesto refer to elements dfic U Ng U N;. A signatureis a

In mathematical logic, there exist (at least) two versions offinite set of predicates. The signatisig(7) of a TBox7 is
conservative extensions. One is based on the consequence fige set of all predicates that occurin Given a description
lation as sketched above. An alternative, stronger version igic £ and a signatur&, we use£(T) to denote the set of
defined in a model-theoretic way. We also consider decidingc-concepts that use only predicates frdm
the latter kind of conservative extensions and show that, al- ) .
ready inALC, this problem is highly undecidable. Details of Definition 1 (Conservative Extension)Let 7, and 7, be

all proofs can be found in the technical repksi. TBoxes formulated in a DL, and letl’ C sig(7;) be a sig-
nature. TherZ; U 75 is aI'-conservative extension @f; if

L . forall C1,Cy € L(T'), we havel; = Cq C Cy iff T3 U T5
2 Preliminaries e e () I ECGEGIRfTUTL E

In DLs, conceptsre inductively defined with the help ofaset  D€ciding conservative extensionseans to decide, given
of constructorsstarting with a sellc of concept names set (WO TBoxes/; and7; and a signaturd” C sig(7, ), whether

Nr of role namesand (possibly) a sé¥, of individual names ~ 71 U 7z is al’-conservative extension .

In this paper, we consider the DULCQTO and its frag- If I' = sig(7:), we simply drop” and only talk about conser-
ments. The constructors available ©CCQZ© are shown Vvative extensions. It is not difficult to see that an alternative
in Figure 1. There, the inverse constructor is the only roledefinition of conservative extensions is as folloWs:u 7; is
constructor, whereas the remaining constructors are conceptl -conservative extension df iff each conceptC € L(T')
constructors. In Figure 1 and the remainder of this paper, wéhat is satisfiable relative th is satisfiable relative t6; U7.
use#S to denote the cardinality of a s&t « andb to denote  Therefore, a concepit ¢ £(I') that is satisfiable relative to
individual namesy ands to denote roles (i.e., role names and 71, but not relative td; U 7, witnesses thaf; U 7 is nota
inverses thereof)4, B to denote concept names, aéflD  conservative extension @f. We call such a concept\ait-

to denote (possibly complex) concepts. For an inverse rol@ess concept

s = r~ we sets™ := r. As usual, we us& as abbreviation Let us give an example for conservative extensions in the
for an arbitrary (but fixed) propositional tautology,for =T,  description logicALC QZ. Assume thaf; is a TBox formal-

LI, —, and« for the usual Boolean abbreviatioris; n r C) izing knowledge about universities:

(at-least restrictiof for ~(< n — 1 r C) if n > 0 and for

Tifn=0,(=nrC)for (<nrC)AEnrC),IC Lecture LT dhas_subject.Subject M Jgiven_by.Lecturer
(existential restrictiopfor (> 1 » C), andvr.C (universal ~ 'Ntro-TCS & Lecture
restriction) for (< 0 r ~C). We assume that the numbers | .ijer C Professor LI TeachingAssistant
inside number restrictions are coded in binary. Lecturer O Jemployed_by.University
The DL that allows only for negation, conjunction, disjunc- University C Vemployed_by ~.(Academic LI Admin)

tion, and universal and existential restrictions is calle.
The availability of additional constructors is indicated by con-The upper part off; describes university lectures, saying,
catenation of a corresponding lette@ stands for number e.g., that every introductory lecture on theoretical computer
restrictions;Z stands for inverse roles, afd for nominals.  science (TCS) is a lecture. The lower part%f describes
This explains the namd £LC Q7 O, and also allows us to re- universities and their employees. Suppose now that we want
fer to its sublanguages in a simple way. to refine the part of the ontology that is concerned with lec-

The formulation of ontologies in description logics is basedtures. We extend the signature by adding the concept names
on TBoxes, and we will from now on use these two termsAutomataTheory andComplexity Theory and state ir; that



these subjects are discussed in every introductory TCS ledt is not hard to see thaf; U 75 is a deductive conservative
ture. We also say that automata theory and complexity theorgxtension of7; if ALC (or evenALC Q7) is the language for
are different things: witness concepts, but it is not a model conservative extension.
The stronger notion of model conservative extensions is of
, ! interest forquery answering modulo ontologie® this case,
Intro.TCS Jhas_subject.Complexity Theory one might want to ensure that under the addition of any ABox
B AutomataTheory I ComplexityTheory A (over the signature df;) the answers to queries (over the
Intuitively, this addition should have an impact on the up-Signature off;) to 7, U7; U A coincide with those td; U A.
per part of7; since it adds information about lectures, but it 1his immedialy follows if7, U 7, is a model conservative
should not affect the lower part which is not concerned withextension of7;, but it does not follow if7, U 7; is just a
lectures. This intuition can be formally captured by conservad€ductive conservative extension@f
tive extensions: if we chooséto be the set of all predicates _However, from an algorithmic viewpoint model conserva-
used in the lower part df;, then7; U T, is al-conservative  tive extensions are a problematic choice: we show that they
extension of7;. Thus, the lower part of; is not affected  @ré highly undecidable even in the basic description logic
by the addition ofZ;. If we choosel to be the predicates ALC (and therefore also in all its extensions). The proof of

in the upper part off;, then7; U 7 is not al'-conservative the following result is by a reduction from the semantic con-
extension, a witness concept being sequence problem in modal logic and can be fouri@fin

Intro. TCS LC Jhas_subject.AutomataTheory
C
-

IntroTCS M (< 1 has_subject T). Theorem 3 It is I1}-hard to decide whether for two given
ALC TBoxesZ; and 75, the TBox7; U 75 is a model con-
By considering these two cases of conservative extensionservative extension df .
the ontology designer can thus verify that his modification
changes the TBox (only) in the intended way. . A
This example also shows that conservative extensions d&@ Decidability in ALCQOT

pend on the descripion logi€: the TBoxes7; and7; are  we give a tight complexity bound for deciding conservative
actually formulated inALCZ and we have seen thatlifis  extensions ind£LCQOZ. We use/C| to denote the length of a

the set of predicates in the upper part®f then7, UT;  conceptC, and|7 | to denote thesizeY" . . (|C| + |D|)
is not al’-conservative extension @fi. However, this only 4t 3 TBox 7. =

holds since we assumedZCQ7 to be the underlying DL

and thus allowed number restrictions in the witness concepiTheorem 4 It is 2-EXPTIME-complete to decide conserva-
If we switch the underlying DL todLCZ, then7; U 75 isa  tive extensions ildLCQZ. In the case thatl; U 75 is not
I'-conservative extension df;, for the samd’. In the next a conservative extension Bf, there exists a witness concept
section, we investigate a purely model-theoretic version of” of length at most 3-exponential |{; U 73| that can be
convervative extension, which does not depend on the lareomputed in time polynomial ii¢/|.

guage. The lower bound can be proved exactly in the same way as
21 Model Conservative Extensions the 2-EXPTIME lower bound for conservative extensions in

: ALC [4]. However, the lower bounds fror£C do not sim-
In mathematical logic and software specificati®), there  ply transferto ALCQT and it is necessary to walk through
are two different kinds of conservative extensions: one thathe proof in[4] and check that it also works for the case of
is based on the consequence relatipsi' ‘as in Definition 1 A£CQ7Z. In the following, we concentrate on proving the
and one that is based on models only . For simplicity, weupper bound. It is established by devising a 2PEIME al-
formulate this second notion only for the case whEre=  gorithm that, for convenience, decidesn-conservative ex-
sig(7y). tensions.
We start by reminding thatl£LC QT has the tree model

Definition 2 (Model Conservative Extension)Let 7; and ; : i ;
property. More precisely, &ee interpretationis an inter-

7, be TBoxes. We say th@f U 75 is a model conserva- . L - . .
tive extensiorof 7; iff for every modell of 77, there exists a prt_atatlor%I . (AI 3 é ) equped_W|thIanIad_d|t|onaI re-
model of7; U T, which can be obtained froh by modifying ~ 1ation <~ € A o A* such that ()(A*, <7) is a tree,
the interpretation of the predicates éig(7z) \ sig(7:) while (i) U,en, 7" U™~ = <U <, and (iii) s* andr* are
leaving the predicates isig(7; ) fixed. disjoint for all d|s_t|nct roless andr. In AECQI, every con-
To distinguish the two versions of conservative extensions, if€PLC that is satisfiable relative to a TBak is satisfiable in
this section we call the one based ¢a™a deductive conser- atree modebf 7, i.e., a model off’ that is a tree interpreta-
vative extensian tion [7]. In this section, when talking of an interpretation or

The notion of a model conservative extension is more stricfN0d€! of @ TBox we always mean a tree interpretation.
than the deductive one: if; U 75 is a model conservative 10 develop the algorithm for deciding non-conservative ex-
extension off;, then itis clearly aiso a deductive conservative [€NSions INALCQT, we introduce a new kind of witness for
extension of7;, but the converse does not hold. To see the'ON-conservativity. The new witnesses are very similar to fi-
latter. consider the TBoxes nite tree interpretations and easier to work with than witness
’ concepts. For a signatuig let aliteral type S for I be a
Ti={FITN3Is.T=T}, L={FrANIs—A=T} subset ofit(T") := {A4,-A | A € I'N N¢} such that for each



AeT'NNc, Ae Siff ~A ¢ S. AT-roleis a roler such
thatr orr—isinT.

Definition 5 (I-tree) AT-tree¥ = (W, <, L,0) is a finite
intransitive tree(W, <) such that each node € W is la-
beled by a literal type.(w) for T', each edgdw, w’) is la-
beled by al'-role L(w,w’), andO C W is a set of leafs of
(W, <).

Given an interpretatio andu € AZ, the set
tZ(u) ={C €c(T) |ueccCct}

is a7 -type. In what follows, we will not always distinguish
between the typeé and the conjunction of all members of
We now introduce a witness for the existence @f-tree that

is I'-embeddable into a model Gf, but not into any model
of 73 U 75. To avoid writing sub- and superscripts, from now

Essentially, al'-tree is a finite tree interpretation equipped on we assume the inpli, 7, andI" to be fixed.

with an additional unary predicat@ denoting a subset of the
leafs. The following definition provides a way to reldie
trees and actual interpretations.

Definition 6 (I'-embedding) Let¥ = (W, <, L, O) be al'-
tree with rootw € W, andZ an interpretation with rooti €
AT, AT-embeddingf : ¥ — T is an injection fromi¥ to
A7 such that
o f(w)=d,
o L(v,v') = riff f(v)rf f(v'), forallv,v’ € W andT-
rolesr,
e C € L(v)iff f(v) e C%,forallv e W andC € lit(T"),
e if v & O, then everyl’ € AT with f(v)rZd’ for some
T-role r is in the range off.
¥ is calledT'-embeddable int@ if there is al’-embedding
f:¥—-1T.
The definition illustrates that-trees represent a (finite) initial

Definition 9 (Root pair, Internal pair) A root pair (¢,U)
consists of &7 -typet and a setV of 7; U 7>-types. Arinter-
nal pair(t —, t,U) consists of &'-role r, 7;-typest’ and
t, and a functionU mapping eachl; U 75-type to a set of
T U T-types.
Intuitively, each (root or internal) pair encodes relevant infor-
mation about possible embeddings df-déree into models of
7, and7; U 75. This is made precise by the notion of realiz-
ability.
Definition 10 (Realizable root pair) Let¥ = (W, <, L,0)
be al'-tree. A root pair(t, U) is realizedby ¥ iff

1. there exist a model of 7; with rootd € tZ and aT-

embedding/ : T — 7;

2. for every7; U T5-types, we haves € U iff there exist a
modelZ of 7; U 75 with rootd < s? and al-embedding
-1

part of (potentially infinite) tree interpretations. This explains While root pairs encode information about possible embed-

the predicate) of ['-trees:O marks those leafs in thie-tree
that are not necessarily leafs in the tree interpretdfidhat
we embed into. We can now establiEHrees as witnesses
for non-conservativity.

Lemma 7 7; U 75 is not a conservative extensionBf w.r.t.
I iff there exists al-tree T = (W, <, L,0) which isT-
embeddable into a model @f but not into any model of
7L UTs.

dings of al'-tree into models of; and7; U 75, internal pairs
encode information about possible embeddings &f-taee
into rooted submodelsf models of7; and7; U 75. In the
following, if Z is a (tree) interpretation antlc AZ, we write
7, to denote the sub-tree interpretatioriZofooted atd.

Definition 11 (Realizable internal pair) Let ¥ =
(W, <, L,0) be al'-tree. An internal pair(t’ —,. ¢,U) is
realized by¥ iff

The general idea behind the algorithm is as follows: by e there exist a model of 7; andd’,d € A such that

Lemma 7, to decide whethér U 75 is not a conservative
extension of7y, it suffices to decide whether there exisfs-a
tree that id"-embeddable into a model @i, but not into any
model of7; U7;. This is what our algorithm will do. Alas, we

d € (t)%, d'rtd, d € t*, and there is d-embedding
f:% =1

o for all 7; U T3-typess, s, we haves’ € US,_S) iff there
exist a modell of 7; U 7; andd’,d € A* such that

conjecture that there are cases in which the smallest suchtree g ¢ ()7, @/yZd, d € sZ, and there is a-embedding
is 3-exponential in7; U 73|, and therefore a 2-exponential T 1.

algorithm cannot simply try to construct such a tree. Instead . - . . .

wg check the existen[c):g ofytmatree by searching for certain A (root or |.nterr'1al) pair isrealizablef there exists 4'-tree
withesses for the existence of such a tree. Before we can ir’(thCh reallzes_ it ) ) )

troduce these witnesses (which should not be confused witPPserve that internal pairs store information not only about

I-trees as witnesses for non-conservativity), we need to inthe elemeni € A to which the root of is mapped, but also
troduce the notion of a type. comprise the type’ of the predecessat’ of d in Z and the

_y (unigue!) roler which connectsl’ andd. This is necessary
Definition 8 (Type) Let 7 be a TBox. We usel(7) to de- 4,0 %5 the presence of inverse roles and number restrictions
note the smallest set that contains all concept§imand is

closed under single negations and under subconcepis: A and bears some similarity to tieuble blockingechnique in
VDot | bset ofl(T h that "™ tableau algorithms; sd&]. Also note that thé/-component
ypet is a subset of|(T) such tha of internal pairs is a function rather than a set because, intu-
o ~Cetiff C ¢t forall -C € cl(T), itively, the possible types af in models of7; U 7, depend
o« C1NCy € tiffCy €tandCy € t,forall C; MCy € ONthe type of the predecesstiin such models. .
cl(T). _Let us now describe the algorithm. By Lemma 7 and defi-
nition of realizability, there exists a realizable root pair of the



form (¢,0) iff 7; U 75 is not a conservative extension Bf Suppose TBoxeg; and 7, and a signatur&€ C sig(77)
w.rt.I'. The algorithm for deciding non-conservative exten-| 5o given. -

sions searches for such a root pair. The easiest case is that a ) ) ) _
root pair(t, 0) is realized by aingletonl'-tree, i.e., al'-tree 1. Determine the sek;, of root pairs realized by single-
that consists of only a single node. This special case is tested ~ tonI-trees. IfRg = 0, then reject the input (because
first. If the test is not successful, we must check whethef 71 iS not satisfied in any model). R, contains a root

there is a root paift, ) that is realized by a non-singleton pair (¢, U) such thatl/' = 0), then accept. Else,

tree¥ = (W, <, L, 0). Assume that this is the case and that| 2. Determine the seR, of internal pairs realizable by
the root ofT is w. Then each subtree Gfrooted at a succe- singletonT-trees. IfRy = 0, then reject the inpuf.
sor nodew’ of w realizes an internal pa{t’ — ¢,U) with Else,

t' = tand? = L(w,w'). Intuitively, this means thatwe can | 3 Generate the sequen@, R, ... of sets of internal
check realization of the root pajt, #) in T based on the re- pairs such that ’

alization of internal pairs in trees of strictly smaller height.

Similarly, we can check the realizability ofternal pairs in a Rit1=TR; URL,

I'-tree based on the realizability of internal pairdirees of
strictly smaller height. Based on these observations, our algo
rithm repeatedly generates internal pairs that are realized hy
I'-trees of larger and larger height until all such pairs are gen
erated. It then checks whether there exists a root (paii)
that is realizable based on the generated internal pairs. The
following definition formalizes one step of the algorithm in
which root pairs or new internal pairs are generated from an
existing set of internal pairs.

In the following, if ¥ is al-tree andw € W, we write’T,,
to denote the sub-tree @frooted atw.

where R is the set internal pairs which can be ob-
tained from some non-empty subsetfof of cardinal-
ity not exceedingn, 7, in one step. This is done unfil
R; = R; UR,. Then accept the input if there exists
a root pair(t,U) with U = () which can be obtained
in one step from some subset®f of cardinality not
exceedingny, 7,. If no such root pair exists, reject
the input.

Figure 2: Algorithm for non-conservativeness wF..

Definition 12 (One step) Let R be a set of internal pairs. The number of internal pairs is bounded double exponentially
A root pair (¢, U) (resp. internal pair(t’ —, t,U)) can be in the size of|7; U 75|. Therefore, the third step of the al-
obtained in one stefrom R if there exists al-tree T =  gorithm stabilizes after at most double exponentially many
(W, <, L, O) with rootw such that rounds. Together with Lemma 14, it follows that our algo-

o T realizes(t,U) (resp.(t' —, t,U)); rithm is a 2-ExpTime one.
Theorem 15 The algorithm in Figure 2 accepts inpf, 75,
I' iff 7; U 75 is not a conservative extensionbf w.r.t. T'. It
runs in 2-exponential time.
To show the upper bound on the size of witness concepts
The details of our algorithm are given in Figure 2, where ~ Stated in Theorem 4, we proceed as follows: first, we ob-
serve that if the algorithm finds a realizable root pair)),
mr, 1, =2 % [T, UTs| x 93x%|T1UT2| then_th|s pair is real_lzed by B-tree (_)f at most double expo-
’ nential depth and single exponential outdegree. Second, we
Intuitively, considering only a subset 62, of cardinality ~Show how to convert suchEtree into a witness concept of

mr, 7, means that we limit our attention fo-trees of out-  three-exponential size.
degreeny, 7,. This is justified by the following lemma. ) o
4 Undecidability in ALCQZO

Lemma 13 If 7, U 7, is not a conservative extensiontf  \ye show that conservative extensions are undecidable in

w.r.t. T, then there exists a root pajt, 0) realized by d-tree ALCQTO. The proof is by a reduction of the following un-
% of outdegree at mostir; 7, decidable tiling problem.

It remains to be shown that each step of the algorithm can, .. .. ; .
be carried out effectively and that the algorihm yields the Zfﬂ)eflmtlon 16 A domino systemD = (I’ i, V, i, L, T, B)

: .- consists of a finite sel’ of tiles, horizontal and vertical
ExXPTIME upper bound stated in Theorem 4. We_ start W'thmatching relations?, V C T x T, and setsR, LT, B C T
the former. The proof of the following lemma relies on the

o B : of right tiles, left tiles, top tiles, andbottomtiles. A so-
fact that satisfiability inA£C Q7 relative to TBoxes can be ; : ) y
decided in EPTIME [10]. lution to D is a triple (n,m,7) wheren,m € N and

7 :{0,...,n —1} x {0,...,m — 1} — T such that the
following hold:

o for all w' € W with w < w’, there exists an internal

pair p = (f —; £,U) € R such thati’ = t, 7 =
L(w,w’), andp is realized byX .

Lemma 14 It can be checked in 2-exponential time (in the o . _ .
size ofT;, T3) whether a (oot or internal) pair can be ob- 1. (7(i,7),7(i + 1,5)) € H, foralli < nandj < m;
tained in one step from a s& of realizable internal pairs 2. (1(i,§),7(i,j+ 1)) € V,foralli < nandj < m;

i <
with [R| < m;,75. 3. 7(0,75) € Landr(n,j) € R, forall j < m;



4. 7(4,0) € Bandr(i,m) € T, forall i <n.

Using proof methods fronb11], it is easy to show that it is

undecidable whether a given domino systBrhas a solution.
We show how to convert a domino systefhinto TBoxes
7, and 75 such thatD has a solution iff7; U 75 is not a

conservative extension @f . In particular, models of witness

concepts will correspond to solutions bf

LetD = (T,H,V,R,L,T, B) be a domino system. The

TBox 7; uses the following signature: an indidual name
role names-, andr,, concept namesop, bottom, left, and
right and each element @f as a concept name. The TB@x
contains the following:

e Theroles,, r,, and their inverses are functional:

TC(K1rT), forre {Tm,ry,r;,r;

e Every position in the: x m grid is labeled with exactly

one tile and the matching conditions are satisfied:

T c Uen )
teT tET, t'#t

T [e=c U von L v
teT (t,t')eH (tt)ev

e The conceptdeft, right, top, bottom mark the bound-
aries of the grid in the expected way:

right © —dr,. T MVry,.rightT] Vr;l.right
—right T Fr,. T

and similarly forleft, top, andbottom.
¢ The individual name marks the origin:
{0} C left M bottom.

The TBox7Z; introduces two new concept nam@sandP. It
contains the following two concept inclusions:

{0} CQC Ir,.QU3Ir,.QU 3Iry.3ry.P M 3Ir,3r,.—P)

Theorem 17 In ALCQZO, conservative extensions are un-
decidable.

Note that the theorem applies even to the case whete
sig(77) and we allow(< 1 » T) as the only form of number
restriction.

5 Conclusion

Although the high computational complexity suggests that ef-
ficient tools for deciding conservative extensions will be diffi-
cult to attain, our results and techniques lay theoretical foun-
dations that are important for practical applications of conser-
vative extensions. These could be based on approximations,
semi-decision procedures, and on syntactic restrictions in a
normative framework such 48]. Finally, transitive roles are

a main ingredient of DLs underlying OWL-DL. It remains
an important open problem to investigate conservative exten-
sions for DLs containing transitive roles and role hierarchies.
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