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ABSTRACT XPath expressions is a prominent subject in research about XML

gprocessing. In particulacontainmentandsatisfiabilityhave been
investigated for a variety of XPath fragments, and a wealth of com-

complete foiCoreXPath, the navigational core of XPath 1.0. Much ~ PIexity results has been obtained over the last few years (e.g., [21,

less is known about query containment in (fragments of) the richer 12, 1]). Many of these results also take into a_cgount a schema lan-
language XPath 2.0. In this paper, we consider extensions of 9Uad€, most notably DTDs, and analyze their impact on the com-
CoreXPath with the following operators, which are all part of plexity of query contal_m(_ant and Satls.f'ab'“ty'

XPath 2.0 (except the last): path intersection, path equality, path Almost al] of.the existing complexity results for XPath concern
complementation, for-loops, and transitive closure. For each com- the 1.0 version instead of the more recent and richer XPath 2.0. The

bination of these operators, we determine the complexity of query wor!<.of Hidders [12] is a notable_exception, but .it addresses o.nly
containment, both with and without DTDs. It turns out to range positive fragments of XPath 2.0, i.e., fragments in which negation

from ExPTIME (for extensions with path equality) and %ETIME of n_ode expressions is not admitted. In this paper, we consid_er a
(for extensions with path intersection) to non-elementary (for ex- 'amily of fragments of XPath 2.0 that form a hierarchy regarding
tensions with path complementation far-loops). In almost all EXpressive power, all of them |_nclud|ng ne_gatlon. We provide a d?'
cases, adding transitive closure on top has no further impact on thetalled qnaly3|s of the complexity of contalnmgnt and r.elated static
complexity. We also investigate the effect of dropping the upward analysis prob_lt_ems in these fragments, both with af‘d V\."thom DTDs.
and/or sibling axes, and show that this sometimes leads to a reduc- _ More specifically, we extendoreXPath, the navigational core
tion in complexity. Since the languages we study include negation of XPat_h 10 [7h' 8], W'thhthe foIIovv_lng |ngred|hents thiat were |r_1tro-
and conjunction in filters, our complexity results can equivalently duced in XPath 2.0path intersection(n), path complementation

be stated in terms of satisfiability. We also analyze the above lan- (f)’ and|tgrgt|on(for). Besides these thrgg operators, we also con-
guages in terms of succinctness sidertransitive closurg(x) andpath equalitieg=, also known as

node set equalitieand not to be confused witlhata value equali-

Query containment has been studied extensively for fragments o
XPath 1.0. For instance, the problem is known to beeEIME-

Categories and Subject Descriptors ties). Path equalities are not part of XPath 2.0 as a primitive con-
H.2.3 [Database Management]: Languages struct, but can be expressed. They have been studied in [4, 2, 22,
General Terms 25]. Transitive closure is not part of XPath 2.0 and cannot be ex-
Languages, Algorithms pressed, but it extends the expressive power of XPath in a very nat-

ural way, see e.g. [16, 25, 6]. These five addition€eoeXPath
are not all independent: path equalities can be expressed using path
intersection, which can in turn be expressed using path complemen-
tation, which can again be expressed using iteration. The expres-
1. INTRODUCTION sivity hierarchy for these languages is depicted in Figure 1, based
The growing popularity of XML as a standard for representing on expressivity results from [17, 18, 25].
semi-structured data has led to the definition of a large number of ~ For each of the languages shown in Figure 1, we determine the
XML-related formalisms, most notably schema languages such ascomplexity of the containment problem, which ranges frorPE
DTDs and XML Schema, and query and transformation languages TIME to non-elementary. Our main results are summarized in Ta-
such as XQuery and XSLT. Located at the heart of most of these ble 1 and Figure 1. They apply to satisfiability as well, since con-
is XPath the basic formalism for navigating through XML docu- tainment and (non-)satisfiability are polynomially inter-reducible
ments. Because of the central role of XPath, the static analysis ofin the XPath dialects considered here. Moreover, since DTDs can
be expressed iQoreXPath(x) with only a linear blowup in size,
all upper bounds from Table 1 generalize to containment and satis-
fiability in the presence of DTDs
Permission to make digital or hard copies of all or part of thaknfor Our results show thats and x never increase the complex-
personal or classroom use is granted without fee providatidbpies are ity of the containment problem, with one exception: adding
not made or distributed for profit or commercial advantage aatldbpies the downward fragment aforeXPath(N) increases the complex-
bear this notice and the full citation on the first page. Toyootherwise, to . . .
republish, to post on servers or to redistribute to listguies prior specific ity from EXP_SPACE to 2_'EXPT'ME' Adding N us_ually Increases
permission and/or a fee. the complexity of containment by one exponential, even thaugh
PODS'07 June 11-14, 2007, Beijing, China. does not give more expressive power than Finally, the effects
Copyright 2007 ACM 978-1-59593-685-1/07/00085..00.
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e Table 1: Summary of our complexity results
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Figure 1: Hierarchy of XPath languages All results also apply in the presence of DTDs.

2. PRELIMINARIES

of adding path complementation ésr are rather devastating, as We review the syntax and semantics(@freXPath and several

it renders containment non-elementary hard. In other words, the of its e_xtensmns. We also introduce and compare various static

amenities of XPath 2.0 come at the price of a considerable increase@nlysis problems for XPath.

in computational complexity, at least in the presence of negation. 21 Syntax and semantics oforeXPath

We can also conclude th&loreXPath(x,~) is a rather well be- . .

haved fragment. Among all languages studied in this paper, it is . AN XML document, for present purposes, is a finite node-

the most expressive one for which containment is still decidable in 2Pelled sibling-ordered unranked tree.

ExpTIME and thus not more difficult than i@oreXPath, and this DEFINITION 1 (TREE MODELY. Fix a countably infinite

holds even in the presence of DTDs. Note that even for the positive set 3 of labels (or tagy. A tree modelis a structure

downward fragment o€oreXPath containment in the presence of (N, R|, R_., Lab), where (N, R,) is a finite tree (withR, the

DTDs is already EPTIME-hard [21]. child-relation), R_. linearly orders siblings in this tree, anfab :
We also present some observations concersimginctnesswWe N — ¥ assigns a label to each node.

show thatCoreXPath(N) is exactly exponentially more succinct

than CoreXPath and CoreXPath(~), explaining the higher com-

putational complexity of the former. Likewis€oreXPath(x,N)

is exactly exponentially more succinct th@areXPath(x, ). Fi-

We will use Ry and R to denote the converse & andR_.. We
do not associate data values with nodes since data value comparison
is not considered in this paper.

naIIy, CoreXPath(*, —) is non-elementarily more succinct than DEFINITION 2 (&NTAX AND SEMANTICS OF CoreXPath).
CoreXPath(x,N) and CoreXPath(for) is at least exponentially  The primary expressions GbreXPath are path expressionsvhich
more succinct tha@oreXPath(—). define binary relations. Inside the path expressions, one can use

node expressionsvhich define sets of nodes. The two types of
Related work.A considerable number of papers is concerned expressions are defined by simultaneous induction.
with the complexity of static analysis for fragmentsX®ath 1.0
see [23, 4, 19, 28, 16, 21, 1]. The work of Hidders [12], which
we already mentioned, studies satisfiability for positive fragments » Node expressionsp ::= p | (@) | T | ~¢ | ¢ A%
of XPath 2.0. _The present paper can be seen as a_continuation ofyherer € {1.1,—, <}, p € 2, aandg are path expressions and
the work _of Hldders_. Our setting is more general in _several '€, andv are node expressions.
spects: (i) we consider languages that include negation of node . .
expressions, (ii) our results also cover containment and other static The semantics oforeXPath, relative to a tree modeM =

H H : M M
analysis tasks, and (i) we also study these tasks in the presence of Vs Ry, R, Lab), is given by two funCt'onMF’Expf and.[[']]NEXP" .
a DTD. Our results also relate to [2], where closure under intersec- mapping path expressions and node expressions to binary relations

tion and complementation is studied for XPath fragments that do anq sets, respect_ively. These fu_r_u:tions are defined as follows (we
not explicitly contain these operators. omit the superscripd/ for readability):

» Pathexpressionsy == 7 | 7" | . | /B | aUB | alg]

The most important feature of XPath that we wot study is [7]Pexpr = R,
data value comparison. Note that already for the extension of  [7*]pexor = the reflexive transitive closure §f]pexpr
CoreXPath with data value comparisons of the foray@a = [-TrExpr = {(n,n)|n €N}
£/@Qbanda/@a = ‘¢, containment is undecidable [1]. lo/Blrexor = [a]pexpr cOmposed with3]pexpr

In [26], complete axiomatizations are presented for [aUBlrexpr = [a]pexpr U [Blrexpr

CoreXPath(N, —) andCoreXPath(N, —, for). [ Trexer {(n,m) € [a]pexpr | M € [@Inexpr}



[PINExpr {n € N | Lab(n) = p}

[{) InExpr = {neN|3ImeN.(n,m)eE [a]rexp}
[[T]]NExpr = N
[[ﬁﬂo]]NExpr = N\ [[QO]]NExpr

[[50 A wHNEXpr [[‘P]]NExpr N [[wﬂNExpr

Forr € {|,T,—, <}, we will user™ as shorthand for/7* (the
proper transitive closure of). Also, we will use|, as a shorthand
for |[=(<)] (the first-child relation), andf, for .[-~(<)]/T (the
converse of, ;). Finally, we will usepy = v as a shorthand for the
node expressiof(p A —1).

The original version oforeXPath as introduced in [7, 8] does
not include thenon-transitive sibling axes— and —. We have
included them, but all our results hold independently of whether
these axes are present or not.

2.2 ExtendingCoreXPath

We consider extensions @breXPath with the following:

» Path equalities4). A path equality is a node expression of the
form a ~ 3, for «, 3 path expressions, interpretegiistentially

HO‘ ~ ﬁ]]NExpr = {n eEN | dm € N-(n, m) € [[a]]PExprﬂ[[ﬂ]]PExpr}-
Path equalities have been studied in [4, 2, 22, 25].

» Path intersectionr). For any path expressions /3,

[[a N B]]PExpr = [[OZHPExpr N [[BHPExpr-

Path equalities can be seen as a special case of path intersectio
a =~ (s equivalent tola. N 3).

» Path complementation). For any path expressioas 3,

[[0‘ - ﬂ]] PExpr = [[Oé]]PExpr \ [[ﬂ]]PExpr

Path intersection can be defined in terms of path complementation
anp=U—- (U —-a)U (U — ), whereU is shorthand for the
path expressiof*/|* (which defines the universal relation).

» Iteration (for).
set of node variables$i, $7, ..

This extension involves a countably infinite
., that can be bound using the

rEatisfiability and node satisfiability in the

» Node satisfiability given a node expressiop, is there a tree
model M such thafp] g,y # 07?

For the languages we consider, these problems all have the same
complexity. Indeed, the proof of the following is not difficult.

PROPOSITION 3. Let L be any of the languages mentioned in
Table 1. Then any two gbath containmentpath unsatisfiability
and node unsatisfiabilitre polynomially inter-reducible.

The same holds for some other problems such asdheempty
intersectionproblem for path expressions [11]. Throughout this
paper, we state our results in termgpath containmentHowever,
many of the proofs make use of Proposition 3 and are formulated
in terms of node satisfiability.

Each of the above problems can be relativised @ogument
Type Definition(DTD). As in [1], we abstract away from DTD fea-
tures such as default values and attributes, and define a DTD to
be a triple(E, P, r), where (1)E C X is a set ofelement types
(2) r € E is theroot type and (3) P is a function that assigns
to each element off a regular expression ovéf. A tree model
M conforms toa DTD D = (E, P,r) if the root of M is labeled
with r, each node is labeled with a label fraih and for each node
n with childrenni, ..., ng, the wordLab(n1), ..., Lab(nk) be-
longs to the language generatedByLab(n)).

Thepath containment problem in the presence of DTdss fol-
lows: given two path expressions 8 and a DTDD, is it true that
for all tree models\/ conforming toD, [o]pgr € [Blpexp? Path
presence of DTDs are de-
fined analogously. For each of these decision problems, the DTD-
relativised version is at least as complex as the general version. For
extensions ofCoreXPath(x), it is not more complex either, as is
implied by the following:

THEOREM4 ([16]). For each DTD D, there is a
CoreXPath(x) node expressiongp such that for all tree
modelsM, M conforms taD iff the root of M satisfiespp.

Thus, all upper bounds in Table 1 immediately generalize to the

for-construct. One can test equality of the current node and a DTD-relativised case, except for thexESPACE-upper bound for

variable $i using a node test of the form.1s $i". More in-
formation on the precise syntax and semantics will be given in
Section 7. For now, we only remark that path complementa-
tion can be expressed using iteration: — 3 is equivalent to
for $i in a return .[=(B[. is $i])] /77 /1*[. is $1].

» Transitive closure ). CoreXPath only supports the transitive
closure of the atomic path expressidng, <, —-. If transitive clo-
sure is adde@s an operator on arbitrary path expressiomaths
like (|/])* (“"descendant at even distance”) become expressible.

ForanyX C {~,N,—,for,x}, we denote byCoreXPath(X) the

extension ofCoreXPath with the operators inX. We denote by
CoreXPath| (X) the downwardfragment ofCoreXPath(X), i.e.,

having only the downward axds |* (and *’). Similarly, we de-

note byCoreXPath 1 (X) andCoreXPath, _, (X) theverticaland

forward fragment ofCoreXPath(X).

2.3 Static analysis

We consider the following decision problems, which play an im-
portant role in the static analysis of XPath expressions:
» Path containmentgiven two path expressions (3, is it true that
for all tree models\/, [o]pgpr € [BlPexpr?

» Path satisfiability given a path expression, is there a tree
modelM such thafo]pg,,, # 02

CoreXPath| (N), for which we will prove it by hand. In fact, in
both cases, we could even handigéended DTDga formalism rich
enough to capture the schema languages XSchema and RELAX
NG) andancestor based patterfg0, 15].

3. CoreXPath(x, ~) IS IN EXPTIME

We show that path containment can be decidedXxrEME for
CoreXPath(*, ~) using two way alternating tree automata.

To simplify the proof, we will work with a different, but equally
expressive version o€oreXPath(x,~). This version differs in
four aspects from the original one. First, we replagavith the
path operatotoop, which tests whether a node is reachable from
itself along a given path:

HlOOP(a)ﬂﬁIEXpr ={n|(n,n) € [[a]]ééxm}
Note thatloop(«) can be expressed as =~ . and, conversely,
a =~ [ can be written asoop(a/37), where 3~ is the con-
verse of (defined inductively) [25]. Second, we drop the oper-
ator (o). This can be done w.l.o.g. sinder) can be expressed
asloop(a/17/1*). Third, we replace the axesand 1 with the
first-child step (,) and its conversef(). Note that| is equiv-
alent to|,/—" and |, is equivalent to|[—(<)]. Likewise for
1 and?;. Fourth, we replace path expressions with NFAs (non-
deterministic finite automata) whose alphabet is comprised of the



basic axes,, T;, <, — and node tests of the forrfy]. This is jus-
tified by the observation that path expression€@feXPath(x, ~)

are just regular expressions over this alphabet if we replace sub-

expression of the forna[y] with a/.[¢]. It is well known that
NFAs offer a succinct representation of such regular expressions.

To make things precise, we give a formal definition of the result-
ing version of XPath.

DEFINITION 5 (CoreXPathnra(, loop)). The node expres-
sions and path automata QoreXPathnra (*, loop) are defined by
simultaneous induction.

» Node expressions: Every lahele ¥ is a node expression, and
for every path automaton, loop(«) is a node expression. ¢f and
) are node expressions, then so atg andy A .

» Path automata: A path automaton is a tuple= (Q, d, g0, qs),
whereQ is a finite set of states} C™ Q x ({|,,1,,—, <} U
{.[¢] | ¥ is a node expressign x @, andgo and gy indicate the
initial and final state.

Note that sinceskip transitions can be defined 3], we can do
with only one final state in the definition of NFAs. For a path au-
tomatonr = (Q, 4, qo, gf) and stateg, ¢’ € @, we will usery 4

as shorthand fofQ, 4, ¢, ¢'). Thelengthof a path automaton is the
number of states plus the total length of all node expressions
curring in transitions of the forny, .[¢], ¢').

Our aim is to translat€oreXPathnra (*, loop) node expressions
into two-way alternating tree automata (2ATAs). To prepare for this
translation, we give an inductive characterizatiotoof.

LEMMA 6 (INDUCTIVE CHARACTERIZATION OF loop). Let
m = (Q,9,qo, qr) be aCoreXPathnra(*, loop) path automaton,
and let M = (N,R;,R_,Lab) be any tree model. Define
LoorPs, C N x @Q x Q to be the smallest relation satisfying

» (n,q,q) € LOOPS; foralln € N andq € Q

» Whenever(n, gi,q;) € LOOPS:, (gj,.[¢],qr), andn €
[[Wﬂlj\luExprl then(n, gi, qx) € LOOPS:.

» Whenever(n, gj,qx) € LOOPS:, 0(gi,.[¢],q;) and n €
[[LP}]II\\I/IExprl then(n, g, qx) € LOOPS:.

» WhenevernR,m, (m,q;,qx) € LOOPS:, 0(qi,T,¢q;),
and 6(qx,7,q¢), then (n,qi,q¢) € LOOPS. (where T €
{l4,1,, <, —} andT is the converse of)

» Wheneveltn, g;, q;) € LOOPS; and(n, g;, qx) € LOOPS, then
(n, @i, qr) € LOOPS;.

Then(n,q,q’) € LOOPS: iff n |= loop(my ).

PROOF SkeTCH The only difficult direction is the right-to-left
direction. It is proved by induction on the length of the witnessing
run of the NFA, using the crucial observation that, if the automaton
starts at a node and afterwards passes through another nade
the tree, in order to return to it will have to pass through: again
(this holds due to the fact that we chosg 1,, < and— as our
basic axes). [J

Since we use a slightly non-standard version of 2ATAs, we give
a brief introduction. Our 2ATAs work directly on tree mod-
els. They traverse such a model using theSIC-STEPS =
{14,171, —, <, €}, where the first four steps correspond to the basic
axes ofCoreXPathyra (%, loop) ande means staying at the current
node. For any node of a tree modelpOSsIBLESTEPSn) de-
notes the set of basic steps that can be performed#rofor each

a € POSSIBLESTEPSn) we will denote byn - a the node reached
from n by performing the basic step

DEFINITION 7 (2ATA). A two way alternating tree automa-
ton (2ATA) is a tupleA = (Q, 3, qo, Acc), where

» ( is afinite set of states

> §: (Q x = x p(BASIC-STEPY) — BT (BASIC-STEPSX Q) is
the transition function. We require that all basic steps occurring in
d(g,0,S) belong toS.

» qo is the initial state

» Acc: @ — N specifies a “parity acceptance condition”.

Here, () denotes powerset and 8/ X, we refer to the set of all
positive Boolean formulas over variables frakh including true
andfalse.

Note that the alphabef of 2ATAs is the same as the alpha-
bet underlying tree models (i.e., XML documents). Intuitively,
0(q,0,A) = 1 means that if the automaton is in statereads
o, and the current node allows exactly the basic stepd,ithen
the transition is as described By in the usual sense of alternating
automata. It follows from the results in [27] that for our version of
2ATAs, emptiness can be decided ix# IME. More details are
given in Appendix A.

THEOREM 8. Satisfiability ofCoreXPathnra (, loop) node ex-
pressions is decidable iIBXPTIME.

PROOF By reduction to the non-emptiness problem for 2ATAs.
Let ¢ be anyCoreXPathnra(*,loop) node expression, and let
¢ = |"/p. Note thaty is satisfiable iff¢’ is satisfiable at the
root of a tree model. Lef'l(¢’) be the smallest set of node expres-
sions containingy’” such that

» Cl(¢') is closed under taking subformulas and single negations

» For allloop(r) € Cl(¢") andgy, g¢ states ofr, loop(m(g, ,q,))
also belongs t@’l(¢")

Note that the size ofl(¢’) and the length of its elements is
bounded polynomially in the length gf. We now define the 2ATA
A, tobe(X,Q, 6, qo, Acc), where@Q = {qy | ¥ € Cl(¢')}, 6
is defined as in Table 2j0 = ¢/, Acc assignsl to all states of
the formgieop(a), and2 to all others (in other words, no state of the
form gieep(a) May occur forever on a path in the run).

Using the inductive characterization dbop provided by
Lemma 6, it is not hard to show that tree model belongs)';gp,
iff it satisfiesy’ at the root. Thusyp is satisfiable iffy’ is root-
satisfiable iffL 4, is non-empty. [

By Proposition 3, together with the facts that (i) there is a linear
translation fromCoreXPath(x, x) to CoreXPathyra (*, loop) and

(i) containment is already & TiME-hard for CoreXPath [1], we
thus obtain

COROLLARY 9. Containment forCoreXPath(x,~) is EXP-
TIME-complete.

Together with known results about alternating automata [27], the
proof of Theorem 8 also yields the following, which will come in
handy later on.

THEOREM 10. Every satisfiableCoreXPath(x,~) node ex-
pressiony is satisfied in a tree model of si2€¥D.



Table 2: Transition function of the automaton A, used in the proof of Theorem 8

{,qp, POSSIBLESTEPY =
{,q-p, POSSIBLESTEPY =

o(
o(
0(€, gynx,POSSIBLESTEPY =
§(€, G- (pry), POSSIBLESTEPY =
(

8L dioop(r(, ;) POSSIBLESTEPY

Tif £ = p, L otherwise
L if £ = p, T otherwise

(67 qw) A (67 QX)
(67 Qﬁ’l’) v (67 qﬁX)

T if go = gy, otherwise

vé(qi ,T+4k):6(qe,7,q;5), T EPOSSIBLESTEPS (7—7 q'°°P(7f(qk ) ) )

vV

5(qis?xqk)

((67 X) A (67 QIoop(Tr(qk,qj))))

\ vé(ka?quj) ((6, X) A (67 QIoop(w(qi’qk))))
\ \/qkeQ ((67 QIoop(Tr(qi7qk))) A (67 QIoop(ﬂ(qk’qj))))

5(€,qﬁ|oop(ﬁ(qi,qj>),POSSIBLESTEPS =

L if go = ¢y, otherwise

/\6(qi,-r,qk.),(;(qg,?,qj),TEPOSSIBLESTEPS (T7 qﬁloop(ﬂ'(qk,qk)))
A Aa(qi,?x,qk) ((e; =) V (e, q_‘IOOP(ﬂ'(qk,(Ij))))

A A&(qk,?x,qj) ((6? —x) V (€, q_‘loop(ﬂ-((]i,qk))))

A /\qkeQ ((e, qﬂloop(mqi,qk))) V (e, q_‘IOOP(ﬂ'(qk,qj))))

4. CoreXPath(x,N) IS IN 2-EXPTIME

We present exponential translations froforeXPath(N) to
CoreXPath and from CoreXPath(x,N) to CoreXPath(x,=).

(m,n) € [a]pt and(m, n) € [Blpty- There is a unique cycle-

free path fromm to n in the graph(V, R, , R—.), and if we disre-
gard loops, then every witnessing tracexadr 3 from m to n must

From these translations, we derive upper bounds on the complexitytravel exactly along this path in order to reacfrom m.

and succinctness @foreXPath(N) andCoreXPath(x, N).

THEOREM 11. There is a single exponential translation from

CoreXPath(N) path expressions tGoreXPath path expressions.

This intuition drives our construction afbelow: we uséoop to
cut all loops made by and/3, so that the trip fromn to n made by
« andg can be performed synchronously. To be precise, we define
yas(Q x Q',6%,{q,q0), {ar, q}s)), where the transition function

PROOF. The proof is along the same lines as in [2], where itis  5* contains the following transitions:

shown that positiv&€oreXPath(N) path expressions can be trans-
lated to positiveCoreXPath path expressions with an exponential

blowup.

We will show how to do the translation f@oreXPath(N) path
expressions that do not contaiminside qualifiers (here, bgual-
ifier we mean a path modifier of the forfp]). The general case

follows by applying the translation repeatedly, in a bottom-up way.

Let « be aCoreXPath(N) path expression not containimgin-
side qualifiers. Introduce a unary predicdlg for each node ex-
pressiony that occurs ina as a test. Following [2}x can be

translated in linear time to a positive existential first-order formula

»(z,y) in the vocabulary consisting a®|, R «, R—. and R_.«

and theP,’s, such thatx and¢(x,y) define the same binary re-
lation. Next, as shown in [1, 9]p(z,y) can be translated into a
(positive) CoreXPath path expressiofy of exponential size, where

the P,’s may occur in3 as node tests. As a final step, we replace

eachPy, in 8 back by the original node expressign [

The situation is less clear f@foreXPath(x,N). In fact, we do
not know whether it is possible to translaereXPath(x,N) path

expressions t€oreXPath(x) at all. However, we do have a trans-

lation to CoreXPath(x, ~).
As in the previous section, it will

CoreXPathyra (*, loop).

LEMMA 12. For all CoreXPathnra (*, loop) path automatax
and 3, there is aCoreXPathyra (*, loop) path expressiony of
lengthO(|a - |3]) that is equivalent tex N S.

PROOF Leta = (Q,6,q0,q7) ands = (Q’, 4", q0,q}). Be-
fore we definey, let us first provide the basic intuition. Sup-
posem andn are nodes in a tree modé&l = (N,...) such that

be convenient to
work with the equally expressive but more succinct language

» 0*({q,q"), T, {r,7")) whenever 6(q,7,7) and & (¢ ,7,7")
(fOr TE {lla Tl? ) H})

> 0% ((q,q'), -[loop(ev(q,m)] (r,d"))
> o (<Q7 q/>v '[loop(ﬁ(q’,'r’))L <qa Tl>)

It should be clear from the above discussion thalefines exactly
the intersection of the binary relations defineddogndsg. [

THEOREM 13. There is a single exponential translation from
CoreXPath(x*,N) path expressions tGoreXPath(x, loop) path ex-
pressions.

ProoFk It follows from Lemma 12 that, for all
CoreXPath(x*,loop) path expressionse and 3, there is a
CoreXPath(x, loop) expressiony of length 20Ul18D that is
equivalent tax N 5 (simply apply the usual exponential translation
from NFAs to regular expressions). Applying this repeatedly, in a
bottom-up fashion, we can translate ayreXPath(x, N) path ex-
pression into an exponentially long equival€oteXPath(x, loop)
path expression. (]

COROLLARY 14. Containment foiCoreXPath(x,N) is decid-
able in2-ExPTIME. Itis decidable inExPTIME if there is a bound
on the nesting depth of intersection.

PrROOF The first half of the statement follows directly from
Theorem 13. As for the second half, if there is a bound on the nest-
ing depth of intersection, then Lemma 12 gives us a polynomial
translation fromCoreXPath(x, N) to CoreXPathyra (*, loop). By
Theorem 8, the latter is decidable ixETiME. [



A matching lower bound will be proved in Section 6. The
above translations frororeXPath(N) to CoreXPath and from
CoreXPath(x,N) to CoreXPath(x, =) also allow to derive results
about the relative succinctness of these languages. We will come
back to this in Section 8.

5. CoreXPath,(N) IS IN EXPSPACE

We will now show that containment can be decided in
ExPSPACE for CoreXPath(Nn), the downward fragment of
CoreXPath(N) (evenif there is no bound on the nesting depth of in-
tersection). As before, we will use Proposition 3, and prove the up-
per bound only for node satisfiability. Our proof is inspired by Lad-
ner's P$Acealgorithm for testing satisfiability of modal formulas
[13]. The heart of the argument lies in Lemma 16 below, which
shows that we can restrict attention to tree models whose depth is
bounded exponentially in the length of the ingldreXPath (N)
expression.

As afirst step, we show how we can get rid of union and intersec-
tion in path expressions, at the expense of an exponential blowup.
We call aCoreXPath | (N) path expressiosimpleif it is of the form
a1/ -+ /ay, Where eacla; is of the form/, |* or.[]. We usd |
to denote the length of a path expressio(the number of symbols
needed to write it), and likewise for node expressions.

LEmmA 15. For every CoreXPath|(N) path expression,
there is a set of simpl€oreXPath | (N) path expressiongist(«a)
such that

(i) [inst(c)] is 20021,
(i) foreachp € inst(a), |8] <4 |af,
(i) «is equivalent tq Jinst(«), and

(iv) eachs € inst(«) contains only node expressions that occur
in a.

The proof is based on a careful case distinction. Details can be
found in Appendix B.

For any simple path expression= «1/--- /., we will use
suff(«) to denote the sefa;/ - /an | 1 < i < n}. For any
node expressiom, sub(y) is the set of all sub-expressions @f
i.e., node expressions that occur as a subterg(@bssibly nested
inside a path sub-expression occurring:in Finally, aux(¢) is the
set of all node expressions of the fok) with 5 € suff(inst(«))
for some(a) € sub(y). Intuitively, sub(y) U aux(y) contains all

guess a conpl ete ¢o-type t;
if po¢&t then return ‘No’ else return check(t,0);

procedure check(t, 1i):

if ¢>2pr(vol) then return ‘No' el se continue;

for each demand ¢ €t¢ do

| et the remai nder of ¢ be ¢';

guess a conplete ¢p-type t';

if o ¢t or t#t or check(t,i+1)=" No’
return ' No’ el se continue;

t hen

return ’'Yes’;

Figure 2: Non-deterministic exponential space algorithm for
testing satisfiability of a CoreXPath (N) node expressionyy.

DEFINITION 17 (COMPLETETYPE). Let o be any
CoreXPath| (M) node expression. Aomplete po-type is any
t C cl(yo) satisfying the following conditions:

» ¢ contains at most one label frol as an element.

» Forall = € cl(p), p € tiff np & t.

» Forall (p Av) € cl(po), (p A1) € tiff o € tandy € t.

» For all (a) € sub(yo), (o) € tiff there is ag € inst(a) such
that (3) € t.

» Forall (.[¢0]/3) € aux(po), {.[¢]/B) € tiff ¢ € tand(B) € t.
» Forall (|*/8) € aux(yo), if (3) € tthen(|*/3) € t.

Lett be a complete,-type. Aformulay € tis called ademandn
t if either (i) ¢ is of the form(| /&), or (ii) ¢ is of the form(|* /«)
andt does not contaire). In the first case, theemainderof v is
(a), and in the second case, the remaindep @ v itself.

Given two completepo-types,t, t’, we writet = ¢’ if the fol-
lowing two conditions hold:

» forall (| /a) € aux(po), if (a) € ' then(]/a) € t;
» forall (|*/a) € aux(po), if (|*/a) € t' then(|*/a) €t

Intuitively, ¢ = ¢ means that we can consistently thinktbfas
being the type of a child of a node with type

The (non-deterministic) algorithm for node satisfiability in
CoreXPath | (N) is given in Figure 2. It takes as input a node ex-
pressionyy, and it tries to recursively construct a model for the

those node expressions that might be needed in order to computeEXPression, while keeping in memory at any point only a single

inductively the set of nodes that satigfy

LEMMA 16. Every satisfiableCoreXPath| (M) node expres-
sion e is satisfiable in a tree of heigh®(#ol”),

The proof of this lemma consists of a slightly intricate manipula-
tion of tree models. The basic idea is to describe each nddea

tree model by @aypewhich includes (a subset of) the node expres-
sions fromsub(y) U aux(¢) true atn. Although there are doubly
exponentially many such types, a careful counting argument shows
that only singly exponentially many types can be realized on each
individual branch of a tree. Moreover, if a branch contains two

branch of length at most*{/oD | wherep is the precise polyno-
mial of Lemma 16. The correctness of the algorithm is proved in
Appendix B. Since NEPSPACE = EXPSPACE by Savitch’s theo-
rem, we obtain tha€oreXPath | (N) is in EXPSPACE.

The above construction can be extended to the case with DTDs,
giving us an EPSPACE algorithm for testing containment for
CoreXPath| (N) in the presence of DTDs. In the case relative to
aDTDD = (E, P,r), thecheck procedure, when called with in-
put typet, has to guess not just a type for each demaridhnt also
a word belonging taP(a), wherea is the unique label belonging
to t. Extended DTDs and ancestor based patterns can be handled

nodes that have the same type, the model can be contracted into §° well.

smaller one. Details are given in Appendix B.
To present the decision procedure, we need a few further prelim-
inaries. For anyCoreXPath | (N) node expressiom, let cl(¢) =

{1, =1 | ¥ € sub(p) Uaux(p)}.

THEOREM 18. Containment forCoreXPath| (M) in the pres-
ence of DTDs is decidable BXPSPACE.

A matching lower bound will be proved in the next section.



6. LOWER BOUNDS FOR CoreXPath(x,N)

We now provide matching lower bounds for the upper bounds
from the previous sections: containment iSHSPACE-hard for
CoreXPath| (N), and itis 2-ExPTIME-hard forCoreXPath(N, ).

In fact, we show that the 2BTiME lower bound holds
for the fragments CoreXPath;;(N), CoreXPath;_.(N) and

CoreXPath| (x,N). This shows that the J&>SPACE upper bound
for CoreXPath | (N) cannot be generalized in any easy way.

As usual, we concentrate on satisfiability of node expressions.
By Proposition 3, the results carry over to containment for path
expressions. It is convenient to work with a generalization of tree

-r

Figure 3: Successor configurations irCoreXPath 1(N).

models in which nodes can satisfy more than one label, i.e., wherep o € I'is true in a leaf: of a configuration tree i is the symbol

the labelling functionLab of models is a function froniV to 2E

We call such modelgee models with multi-labelsThe following
lemma shows that, in proving our lower bounds, we can safely use
tree-models with multi-labels.

LEmmMA 19. Satisfiability ofCoreXPath| (M) node expressions
on tree-models with multi-labels can be reduced in polynomial
time to satisfiability of CoreXPath;(N) node expressions on
standard tree models. The same holds €reXPath| (x,N),
CoreXPath;(N) and CoreXPath|_. (N).

The lemma is proved via an easy encoding of the multi-labels of
a noden through the (standard) labels of additional childremof
similar to what is done in [8]. Details are given in Appendix C. In
the remainder of this section, we only consider tree models with
multi-labels. Our first aim is to prove the following result.

is

THEOREM 20. Containment  for

2-ExPTIME-hard.

CoreXPath 1 (N)

The proof is by reduction of the word problem for exponentially
space bounded alternating Turing machines (ATMs). Recall that an
ATMiis of the formM = (Q, A, T, qo, A), whereQ = Q3W Qv
{¢.} W {q-} is the set ofstates partitioned intoexistential states
from @3, universal statesrom Qv, anaccepting state,, and a
rejecting statey,; A is theinput alphabeiandI” thework alphabet
containing eblank symbol] and satisfying\ C T"; g0 € Q3 U Qv
is the starting state; and theransition relation A is of the form
A C QxT xQxT x{L,R}. We will write A(g,a) for
{(¢',0,M) | (q,a,q',b, M) € A}.

There exists an exponentially space bounded ATWMI =
(Q,A\,T, g0, A) whose word problem is 2-8TIME-hard [3]. We
may assume that the length of every computationbbnw € A*

is bounded b)QQk, and all the configurationsigw’ in such com-
putations satisfjww’| < 2*. We may also assume w.l.0.g. that
M never attempts to move left on the left-most tape cell. Let
w = ap---ax—1 € A" be an input taM. We construct a node
expressionp ., of CoreXPath | 1(N) such thatw € L(M) iff
M, w IS satisfiable.

In models ofp .., NOdes are used to represent tape cells and

on the tape cell represented by

» ris used to identify the roots of configuration trees and is impor-
tant for “travelling” between successor configurations using path
expressions;

» co,...,cr—1 describe a counté? in binary coding for counting
the 2~ tape cells of configurations, with the leftmost cell having
counter value”' = 0;

In the following, we us€a ! ¢} as an abbreviation for (a[—¢]),

i.e., the semantics is

= {neN|VmeN.(n,m) € [a]pexpr
impliesm € [¢]nexpr}-

This abbreviation corresponds to thex operatorof modal logic.
We first establish, underneath eachode, a tree in which we find
every tape cell (i.e., counter value ©f at least once as a leaf. For
all ¢ < k, define:

= A/ (e AdLl=al) A
Ne; = L) A(me = {L=e}) )}

J<i

[{o! SD}HNExpr

Ptree

where |* denotes theé-fold composition|/---/|. Since we are
only allowed to travel up and down, we cannot ensure that every
value of C' occursat mostonce among the leaves. Instead, we
ensure that cells with identicdl' values are labelled in the same
way. Define for alla,b € T"and alli < k:

[al/1%/1*1b]
(Leil/T%/1Fead) U (meil /15 /15 e

Now, the path expressian—,, travels between any two leafs of a
configuration tree with the sant value andp,, ensures unique

Qab

O —j

labels.
A=cur = m (o)
i<k
Puni = /\ “<l*[r]/lk/(aab N a:cur)>
a,bel’,a#b

subtrees are used to represent configurations. This is illustrated in

Figure 3, in which the triangles denatenfiguration treesi.e., bi-
nary trees of deptft whose leaves encode a configuration. The
figure shows a configuration (left tree) with two successor config-
urations (middle and right tree). Theand—r labels are used as

It is easy to construct a node expressiag,. which ensures that

(i) every tape cell is marked with at least (and thus exactly) one
symbol fromI" and never with two different states, (ii) each config-
uration has at most one cell marked with the tape head (which in-

markers, as explained later on. In the reduction, we use the set ofvolves a path expressian..,, similar toa—.r above), and (iii) the

labelsQ U T U {r, co,...,cr_1}, whose intuitive meaning is as
follows (recall that we work with multi-label trees):

» ¢ € @ is true in a leah of a configuration tree if in this config-
uration, the head oM is on the tape cell represented dynd the
machine is in state;

initial configuration is such that the head is on the left-most tape
cell, the ATM is in stateyy, and the tape is labelled with the input
word followed by blanks. Details are left to the reader. We now
say that cells not underneath the head are labelled with the same
alphabet symbol in the consecutive configuration. A central role is
played by the path expression...:, which travels from leafs of a



Figure 4: Successor configurations irCoreXPath | . (N).

box) together with two successor configurations (right boxes). We
can access neighboring cells in the same configuration by travelling
to the right, and we can access cells in successor configurations by
means of the path expressien”[—(—)]/|"/—".

All relevant properties can in fact be described
CoreXPath_.(N) without using the one-step sibling axes
(which is not present in the original version GbreXPath). To
ensure that each horizontal sequence is of the appropriate length,
we use the countet', enforcing that (i) every non-leaf has a child
with counter value 0; (ii) each node with counter value< 2F
sees via—" a node with counter value + 1; and (iii) there is
no node that sees via* a node with the same counter value. To

in

configuration to leafs of the successor configurations that representachieve (i)-(iii), we use the following node expression:

the same tape cell.

Qmnxe = ﬂ (/e /1 /A=) L)V M [e]) v
(U1 =ed /1 L=/ L)V [e))
Pid = /\ ((=hAa) = {a=nc'a})

acl’

Observe that we use the additional root labeltedof successor
configurations (c.f. Figure 3) to distinguish them from the current
configuration.

Next, we have to ensure that the transitions are according to the
transition table. To this end, we need path expressiags and
areur that are similar tev—c,r, but travel to the left and right neigh-
boring cell in the current configuration. We only gis@c,,:

QRcur = ﬂ (aflipfi U Oékeepfi)
i<k
Qfiip—i = Jeo N Acim1]/oz
Qkeep—i = .[7co V-V 2cioa]/a=i

wherea; is defined analogously @—;. Now, the following node
expression takes care of proper transitions:

pa = {l*[r]/lk !
/\ ( qNa= \/ <Oé:nxt[b A {CYIVIcur! p}]> ) A

q€Q3,a€l (p,b,M)EA(q,a)

/\ (gha= /\ (a=mxt[b A {anreur ! P}]) ) }

4EQy,acl (p,b,M)€eA(q,a)

It remains to describe acceptance of the machine. Since all com-
putations of M are finite, it suffices to require that the rejecting
stateg, never appearspac. := [|*]—q,. Altogether, the machine’s
behaviour is described by the node expression

PM,w = Ptree A Puni N Ptape A Pid N PA A Pacc

Itis not hard to show that € L(M) iff ¢4, is satisfiable, which
establishes Theorem 20.

The following result is proved similarly, again by a reduction of
the word problem of exponentially space-bounded ATMs.
is

THEOREM 21. Containment  for

2-ExXPTIME-hard.

CoreXPath|_,(N)

We only illustrate the most important ideas of the reduction. It

pine = {71 (1) = ([0 A Amerma])) A
(“C() VeV ackg—1 = <ai7Lc n —>*>) A
~an—) }

Qine = U (.[Co/\~~-/\ci71 /\—\Ci] /

i<k
| ﬂ ((c/="es) U (mei /=" [=es)) /

.[ﬁC1 AN AN7ci—1 A\ Cl])

It is straightforward to adapt the node expressignse, vid, ¥A,
and .. to the new setup. The expressiapg. andyun are not
needed.

Adding transitive closure t@oreXPath (N) also makes con-
tainment 2-&PTIME. This in fact follows from a known result.
CoreXPath| (x,N) can be seen as a notational variantpodpo-
sitional dynamic logic with intersectiofiPDL). It was proved in
[14] that satisfiability of IPDL formulas in finite tree models (with
multi-labels) is 2-&PTIME-hard. Thus, we obtain

THEOREM 22. Containment for CoreXPath(x,N) is 2-
ExPTIME-hard.

Finally, we consider thelownwards fragmen€oreXPath (N)
and provide a matching»®SpAcE lower bound for Theorem 18.

THEOREM 23. Containment for CoreXPath(N) is EXxp-
SPACE-hard.

The proof is by a reduction of the word problem of exponentially
time-bounded ATMs. According to [3], there is an exponentially
time bounded ATMM whose word problem is ¥SPACE-hard.
We may assume that the length of every computatiooVdfon

w € A* is bounded by*, and that all configurationsqw’ in such
computations satisfjww’| < 2F. As in the previous reductions,
we also assume that never attempts to move left on the left-most
tape cell. Letw = ao - - - ax—1 € A™ be an input toM. We sketch
the construction of a node expressipn,., of CoreXPath(N)
such thatw € L(M) iff o, is satisfiable.

Figure 5 shows how we represent a configuration and two suc-
cessor configurations. Each box encloses a configuration, which is
represented by a downward sequence of lea§jtiThe two lower
boxes represent the successor configuration of the upper box. We
use the labels from the previous reductions and introduce additional
labelsdy, . . ., di—1 for implementing a second countér. While

uses the same labels as in the previous reduction, except that wehe purpose of” is still to count the tape cells of a configuration,

dropr. In CoreXPath| _, (N), configurations have to be represented
in a different way than before. This is illustrated in Figure 4, in
which the horizontal sequences are of lengthand represent a

configuration. As before, the figure shows one configuration (left

the purpose oD is to count successive configurations. Both coun-
ters are initialized with value 0. With each child-stép,s incre-
mented modul@”. If the value ofC changes from2* — 1 to 0, the
counterD is incremented as well, otherwise it stays the same.



Similarly, satisfiability is non-elementary fdr. This improves
on a result from [12], which shows thatsatisfiability isnP-hard.
Next, let us consideCoreXPath(for). The for-construct in
XPath 2.0, allows iteration over a node set, using a bound variable.
Formally, CoreXPath(for) is obtained by introducing a countably
infinite set of node variables $i, $j, ..., and extending the syntax
- and semantics dforeXPath in the following way:

» All node and path expressions are interpratgdtive to an as-
signmenyy of nodes to the variables

o - » We allow node tests of the form is $:”, interpreted as follows:
[-is Silag = {n | n = g($i)}

» We allow path expressions of the fornfof $i ina return 87,
interpreted as follows:

Figure 5: Successor configurations irCoreXPath (N).

For piq and oA, we need a path expression that accesses the
corresponding tape cell in successor configurations, i.e., the node  [for $i in « return 5]%’;{“ = {(n,m) | there is a nodé
whose(C value is the same as the curretitvalue, and whosé® Mg M, g[8i—k]
value is the currenD value plus one. Such a path expression is such tha(n, k) € [a]peqy and(n,m) € [Blpgr ™}

easy to find, by analogy @—c.. anda zc.- above. with g[$i — k] the assignment that agrees witlon all node vari-

ables excepti, and that send$i to k.
7. PATH COMPLEMENTATION AND FOR- As usual, the downward fragment©éreXPath(for) is denoted by
LOOPS CoreXPath (for).

We now consider two extensions @breXPath for which path
containment is non-elementary. Recall that a decision problem THEOREM 25. Containment for CoreXPath (for) is non-
is callednon-elementaryf the time needed to solve it cannot be €lementary, even if only one variable is used in the expressions.
bounded by any exponential tower of constant height.

First, we consideCoreXPath(—), the extension o€oreXPath
with path complementation. Path containment is non-elementary
even for a small fragmerft of CoreXPath(—), in which path ex-
pressions are formed as follows:

aw= 1 | 1T |a/B|a-p

for p € ¥ and with | ™ abbreviating| /| *. Note thatZ has only 8. SUCCINCTNESS
downward axes, lacks complex node tests, and lacks union as a We have seen in Section 4 that there are exponential translations

PROOF Using a single variable, we can express complementa-
tion: if a, 8 are downward path expressions, then- 3 is equiv-
alent tofor $i in « return.[—(B][. is $i])]/1*[. is $]. It follows
that containment fo€oreXPath | (for) is at least as complex as for
CoreXPath| (—), i.e., non-elementary. []

primitive operator. from CoreXPath(N) to CoreXPath and from CoreXPath(x,N)
) ) to CoreXPath(x,~).  This shows thatCoreXPath(N) and
THEOREM 24. Containment fotl. is non-elementary. CoreXPath(*,N) are at most exponentially more succinct than
PROOF We now give a reduction from the non-emptiness prob- CoreXPath and CoreXPath(x, ), respectively. They are indeed
lem for star-free expressions:= a | (') | (r U ') | —r, which preciselyexponentially more succinct.

is well-known to be non-elementary [24]. First, note that usingthe ~ Suppose two languages; and L', have the same expressive
path complementation operator, we can define path intersection and?ower. We say thak is exponentially(or, non-elementarilymore
union: succinctthan L', if there is a sequence of expressiaiis )icn
such that eachy; is of length polynomial ini and every sequence
anp (@ —(a—p)) of equivalent L’-expressions grows at least exponentially (non-
aUp = =a)n (1" = 8))

elementarily) ini.
The exponential blowup involved in this definition of union is of no
importance, as our intention is merely to show non-elementarity. =~ THEOREM 26.
Also, for the latter equivalence, note that all path expressiors of

define a subrelation of*. e CoreXPath(n) is exponentially more succinct than
Star-free expressions can nowtbanslated intd_: CoreXPath(~).
tr(a) = |la] e CoreXPath(x,N) is exponentially more succinct than
tr(rr’) = tr(r)/tr(r) CoreXPath(x, ~).
/ _ /
E:Ei%r ) B ZL(QL;E;()T ) PROOF We may w.l.0.g. restrict our attention to any subset of
N the set of all finite tree models. L&}, be the class of tree models

It can be shown by induction on that, for anytree modelM in which each node has at most one child, and each node is labelled
with nodesn,m, and for any star-free expression (n,m) € by eitherp or q. In otherwordsTp{q is the set of all words over the
[[tr(r)]]é,‘éxpr iff there aren1 R n2R| - - - R ny such thatn; = n, alphabef{p, ¢}. Given such a word, we useto denote the number
ni = m, and the word(Lab(nz), ..., Lab(nk)) belongs to the of nodes in the tree and; to denote the-th node counting from
language defined by. It follows thatr defines a non-empty lan-  the root (forl < i < n). For eacht € N, let o, be the following
guage ifftr(r) is not contained i ™ — | . O property, where= means that two nodes have the same tag name:



9.

Foralli,j < n — 2k, if w;, wiy1,u;,uj+1 all have

tag namep, andu;12¢ = u;12¢ for all ¢ < k, then [
Ui42k = Uj42k-
Claim 1. OnTp{q, pr can be expressed by a nodd expression of 2

CoreXPath(N) of size quadratic irk.

To see this, first note that is defined by the path expression
(pl/1*/1" ) U ([a]/17 /1" [a]) and# is defined by the path ex-
pression(.[p]/1%/1"[q) U (.[q]/17/1"[p]) Next, leta, andc, be
the path expressior(g)?’/ = /(1)%* and(])?**/ # /(1)*, defin-
ing the binary relation that hold betweepandu; if 7,5 < n—2¢
andui12¢ = ujyoe (respectivelyu; 1o # ujroe). Finally, the
node expressiopy, is

pA(Lpl) = ([ ae N a)[p A (LpD))-

(5]

<k [7]
Claim 2. EveryCoreXPath(x, =) node expression, and in fact ev-
ery CoreXPathnra (*, loop) node expression expressipg on7,), 18]
must be of lengti® (2").
We already saw that eve@GoreXPathyra (, loop) node expression [9]
can be translated in polynomial time to a 2ATA. Since we are work-
ing with words, we can translate into a two-way alternating/s [10]

automaton on words rather than on trees. Each such automaton can
be translated into an equivalent NFA at the cost of a single expo- [11]
nential blowup [27]. Now, Etessami, Vardi and Wilke [5] proved

that any automaton of the latter kind definipg has at lease?”
many states. The claim follows.[]

[12]

[13]
THEOREM 27. CoreXPath(x,—) is non-elementarily more
succinct tharCoreXPath(x, N)
ProoF It follows from Theorem 24 that the size of the small-
est tree model for a satisfiabléoreXPath(—) node expression
o cannot be bounded elementarily in the lengthsofindeed, if
there were an elementary bound, then this would easily yield an
elementary decision procedure for testiigreXPath(—) satisfi-
ability: try all models). This means that there is a sequence of [16]
CoreXPath(—) formulas (y;)icn Of length linear ini and such
that eachy is satisfiable but such that the smallest tree model fo
i cannot be bounded by an elementary functioh @n the other
hand, we know from Theorem 10 and Theorem 13 that every sat-
isfiable CoreXPath(x, N) expressiony is satisfied in a tree model
of size doubly exponential in the length g¢f Therefore, any se-
quence(y});en of CoreXPath(*, N) formulas such that eachy, is
equivalent tap; must grow non-elementarily in length ]

[14]

[15]

¢ 17
[18]
[19]

[20]

THEOREM 28. CoreXPath(for) is (at least) exponentially
more succinct thaoreXPath(—).

PROOF. Let F'O be the first-order language, interpreted on tree
models, that has atomic binary relatioRs, R, ., R—., R~ and a
unary predicate?, for eachp € . There is a linear translation
from CoreXPath(—) into the three variable fragment &fO, and
there is a linear translation from fulfO into CoreXPath(for). It
was shown in [10] that, on tree modelsQ is exponentially more
succinct than its three variable fragment (in fact, the proof does not
even involve unary predicates). It follows tHadreXPath(for) is
also exponentially more succinct th@oreXPath(—). [
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APPENDIX B. MISSING PROOFS
A. ALTERNATING TREE AUTOMATA LEMMA 15. For everyCoreXPath | (N) path expressiomn, there

) ) ] i is a set of simple€CoreXPath(N) path expressionst(«) such
We give more details regarding the two-way alternating tree pat

automata used in Section 3. Recall th@4sic-STEPS = o - o0(al?)
{1y, 1,,—, <, €} are the possible moves of the automaton, and () [inst(a)]is2 '

that for any node: of a tree modelpOsSIBLESTEPSn) denotes (i) foreachg € inst(a), || < 4-|al,
the set of basic steps that can be performed. aflso recall that

n - a denotes the node reached franby performing the basic step (i) s equivalenttq Jinst(c), and

a. For convenience, we repeat the definition of 2ATAs. (iv) eachs € inst(«) contains only node expressions that occur
DEFINITION 7 (2ATA). A two way alternating tree automaton n o

(2ATA) is a tupled = (Q, 6, qo, Acc), where PROOF We proceed in two steps. First, we show that the inter-
» Qs a finite set of states section of two simple path expressions can be written as a union

of simple path expressions. To simplify the presentation, we will

. _ + _ .
> 5 : (Q x 3 X p(BASIC-STEPY — BT (BASIC-STEPSX Q) is usee to denote a simple path expression of length zero (i.e., a con-

the transition function. We require that all basic steps occurring in catenation of zero steps), and we tra as identical tax. Fora

o(q, a., S) b.eI(.)ﬁg toS. andp simple path expressionsit{«, 3} is defined inductively, as
» qo is the initial state follows.

» Acc: Q — N specifies a “parity acceptance condition”. int{e, .[¢]/8}

é-[sﬁ}/v | v €int{e, B}}

Here, byB™ X, we refer to the set of all positive Boolean formulas  int{e, | /3}

over variables fromX (includingtrue andfalse). int{e, |*/0} = int{e, 8}
int{. - = {. . € int{«c,
DEFINITION 29 (ACCEPTING RUNY. An accepting runof ;:tﬂﬁéz L[;Z%ﬁ} _ Hz%ﬁ%giZt{ami%}f}}
a 2ATA A = '(Q,(s,qo,Acc) on a tree modeIM_ = int{.[pl/a, 1/8} = {l¢l/v |7 €intia, |*/B} Uint{a, 3}}
(N,R;,R_., Lab) is a tree whose nodes are labelled with pairs int{|/a, | /3} = {I/y|~€int{a,B}}
(n,q) € N x @, such that the following conditions hold: int{i/a: 1*/8} — int{l/a, B} U ’
» (Initial configuration) o {1/7 1 € int{a, B}} Uint{e, |*/5}}
The root of the run is labelled biy-ootr, o). int{{"/a, 1"/6} = {I"/y[v€int{l"/a, 6}}U
» (Respecting the transition function {1/7 ]y €int{a, I7/5}}
If a node z in the run is labelled by (n,q), and An inductive argument shows thifint{ca, 3} is equivalent to
§(q, Lab(n),POSSIBLESTEPSn)) = 0, then there is a set o g, [int{a, 8}| is 2°0=+18D, and eachy € int{a, 3} satisfies
S C (POsSSIBLESTEPSn) x Q) makingd true, such that for each vl < la| + |4].
(a,q) € S,z has achild labelledn - a, q). Next, for anyCoreXPath | (N) path expression, we define the
» (Acceptance conditiohn set of simple path expressionst(«) inductively, as follows:
For each infinite path in the run, the lowest number assigned by . _ f fthe f N
Acc to a state occurring infinitely often on that patheisen ;:ziéi‘[)w]) B E‘/} [Z]r}a of the form|, |*, or.[¢]
A acceptsa tree modelM if it has an accepting run o/. L4 is inst(|*[e]) = {l"/.[¢]}
the set of tree models acceptedy inst(.) = {[T]}
_ inst(a1 /a2) = {aj/ab | eachaj € inst(a;)}
THEOREM30 (EMPTINESS IS INEXPTIME). Given a 2ATA inst(aq Uaa) = inst(an) Uinst(az)
A, itis decidable in exponential time wheth€y is empty. inst(a1 Naz) = {int{a},ab} | eacha) € inst(c)}

PROOF We give a polynomial reduction of the emptiness prob- . ) . ) .
lem for our version of 2ATAs to the emptiness problem of standard An inductive argument shows thefinst(c) is equivalent ta,
2ATAs on infinite binary ranked trees with parity acceptance con- |inst()| is 2°(¢1") and eachy € inst(«) satisfiesy| < 4 - |a.
dition. The latter is well-known to beX@TiME-complete [27]. Moreover, all node expressions occurring in expressions from

For a tree modell/, define thedecorationof M to be the inst(«) occur ina.  [J
tree modeld/¢ whose node labels are from the St := % x

BASIC-STEPS
2Lab’ (n) is i%?;gfég;?g;f dEer’ a:hseetsceg?rt]ri ec ?nrgz(;?se 2}1 of LEMMA 16. Every satisfiabIeCoreXPaSth 1(N) node expression
is the set of decorations of trees/n o is satisfiable in a tree of height’(701").

We can view the elements @’ as a special case of binary trees PROOF. The basic idea of the proof is that every sufficiently
with two partial successor function§, f2, corresponding to the  |ong branch in a model satisfying, must contain two nodes, say
first child and next siblingrelations. These binary trees have the R .m, that are of the same “type”. Then, we can shorten the path
special properties that (i) they are finite, and (i) the root has no by replacing the subtree rooted hywith the subtree rooted by,
Jf2-successor (i.e., it has no siblings). while preserving the truth afo. The main difficulty is to formulate

From this perspective, we can view a 2ATA on tree models as a the right notion of a “type” of a node. Roughly speaking, it con-
2ATA on binary trees over the alphahgt. By intersection with  tains the following information: (i) it specifies which subformulas
a 2ATA that ensures (i), (i), and a proper labelling in the second of ¢, are satisfied at, as well as at each ancestormofwithin a

component, we obtain a 2ATA on binary trees acce_pﬁﬁginte_r- certain small distance, (ii) whenever(or one of the mentioned
section is trivial for alternating automata). Cleady’ is empty iff ancestors) satisfies a subexpressioppbf the form{«), the type
L is, and thus we obtain the desired reductiofl function indicates a witnessing-path.
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We must first define some auxiliary notions.witness function
for a tree modelM will be a functionr assigning to each node
a set of node expressions that are true,auch that the following
conditions hold for all nodes:

e If n satisfies someéw) € sub(ypo), thenm(n) includes a for-
mula(3) with 8 € inst(c).

e Forall(.[¢]/B3) € w(n), also(B) € 7(n).

e Forall(3/3") € m(n) with 3 € {],|*}, there is a node’
such thatnRgn' and(3’) € w(n’).

A witness function can be constructed for any matieas follows:

start with the function that assigns to each node the empty set, and

Finally, multiplying the numbers, we obtain that at most

20(%0>) many types can be realized on any bran&nd of proof
of claim.

Claim 2: If M satisfiespo at the root and contains distinct nodes
xR +y that have the same type, then the following contraction will
preserve truth ofp, at the root:

as long as one of the three above conditions is not satisfied, keep

extending the sets as required. For instance, if a nodatisfies
(c) € sub(po) but there is n@3 € inst(«a) for which (5) € 7(n),
then pick any sucki3) true atn (which exists by the semantics) and
add it torr(n). Any witness function fof\/ constructed in this way
will be called aminimal witness functignas it contains no more
information than needed.

Fix any modelM, and fix any minimal witness functianfor M .
For any noden and integerk > 0, letn — k denote the ancestor
of n at distanceé: (thus,n — 0isn, n — 1 is the parent of:, etc.).
Letd = 4 - |po| (because of Lemma 15(ii)). Lelux;=(¢) be
the subset ofux(y) containing thos€a) € aux(yp) that are of
the form (|*/a’). For any noden, we definetype(n) to be the
following set of node expressions:

{(k,v) €{0,...,d} x (sub(po) Uaux = (v0)) |
n — k exists and satisfieg} U 7(n)

type(n) =

Note that(0,v) € type(n) iff n satisfiesy, for ¢ € sub(po) U
aux, = (o).

Claim 1: On each branch ol, at most2°(I#0!") distinct types
can be realized.

Proof of claim: Since|sub(yo)| < |¢o|, there are at most!#°!
many distinct subsets efib(¢o) to be realized in the model. Like-
wise, while|aux, - (¢o)] is 20(1#01*) (cf. Lemma 15), on each sin-
gle branch inM at most|aux, - (¢o)| many subsets afux, - (¢o)

can be realized. This is due to the volatile natural of these ex-
pressions: if an expression of the fory*/---) is false at a
noden, it remains false at all descendantsraf Thus, at most
20(20) . 90(I#0l) = 20(0l*) subsets ofub(yo) x aux(yo) can

be realized on each branch. However, since the type of a node also

specifies which formulas isub(y) Uaux(po) are satisfied by the
k-th ancestor for all k < d, this number should further be raised

to the powelO(|¢o|), giving us a bound, so far, @ (l#0l*)

Finally, consider the node expressions assigned to the nodes by

the witness functiom. It is not hard to see that, sin@eis minimal,
eachy € w(n) can be traced back in a finite number of steps to
some(a) € sub(ypo) being true at an ancestef of n. Now, fix

a branch inM and let the length of this path Be Then each of
thek nodes can contain at mdsiy| many expressions of the form
(o) € sub(po), and each of those expressions will cause at most
O(]eo|) many aux(po)-expressions to belong te-sets of nodes
on the branch. Thus, all-together, at méstO(|yo|*) many ex-
pressions can occur as elementsgefalues of nodes on the branch.
This means that, for nodeson the branch, the average(n)| will

be at mosO(|¢o|?). It follows by basic combinatorics that there

can be no more thaz®(#0>) many nodes with distinet-values
(the basic combinatorial fact being that there is no family‘df*
distinct subsets of1, 2, ..., j} of average cardinality less thah
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“remove the subtree rooted:atand replace it by the subtree
rooted aty”

Proof of claim: We will prove something stronger, namely that in
the contracted model, all remaining nodes still satisfy the same
sub(yo)-expressions) as in the original model. The proof goes
by induction. The only difficult case is wheteis of the form(«).
Letn be any node in the contracted model.

[=] Supposen satisfies(«) in the original model. Then there
mustbe & = (81/--- /Bk) € inst(a) such thatg) € w(n). One
can show by induction ok thatn still satisfies(3) (and hencéa))
in the contracted model. The base case, wketel, clearly holds.
As for the inductive step, we can distinguish three cases:

o 3 .[ip] for somew) € sub(yo). In this case, by the
definition of =, n satisfies+ in the original model, and
(B2/ -+ /Bx) € w(n). It follows by the induction hypoth-
esis, that satisfies) and(32/ - - - /Bx), and hence als@3),
in the contracted model.

e 31 = |. Then, by the definition ofr, there must be a
child n’ of n such that{32/--- /Bk) € w(n'). If n’ # z
then it follows from the induction hypothesis thatsatisfies
(B2/ -+ /Br) in the contracted model, and heneesatisfies
(B) in the contracted model. If, on the other hand,= =,
then, asr andy have the same typés./ - -- /3,) must be
satisfied byy in the original model. It follows by the induc-
tion hypothesis thaj satisfies3./ - - - /8x) in the contracted
model, and therefore satisfies(3) in that model.

e 31 = |*. Then by the definition of-, there must be a descen-
dantn’ of n such that{3z/--- /Bx) € w(n’). If n’ belongs
to the contracted model, then we can infer from the induction
hypothesis that’ satisfies(32/--- /8) in the contracted
model, and hence satisfies(3) in the contracted model. If,
on the other handy’ is removed during the contraction, then
it must be a descendant of which implies thatr satisfies
(6). Since(B) € aux;=(po), it follows thaty also satisfies
(B), and hence there is a descendantbfof y satisfying
(B2/ -+ /Bk). Since the submodel rootedsats not affected
by the contractiony must still satisfy(52/---/0«) in the
contracted model. We also know thdt is a descendant of,
and hence: satisfies(3) in the contracted model.

[«] Suppose: satisfies/«) in the contracted model. Then there
must be a3 € inst(«) such that: satisfies(3) in the contracted
model. We will show that satisfies(3) in the original model,
again by induction on the number of stepsdn We distinguish
two cases: ifg is of the form(|*/¥), then some descendant
of n satisfies(y) in the contracted model. But thed is also a
descendant af in the original model, and by induction hypothesis,
it satisfies(7). Thereforepn satisfies(3) in the original model.



It remains to consider the case whereloesnot start with a| *
step. Letd = (B1/---/Br/7), with k > 1, such that eacls; is
of the form | or .[¢)], and+ is either empty or starts with*. Let
no, . ..,k be nodes in the contracted model such that= n and
(ns:,mit1) belongs tog; in the contracted model, far < k. We
distinguish two cases:

e Eithern; # yforalli < k, orng = y. In this case, the same
pathng, ..., n, exists also in the original model. Moreover,
whenevep; is of the form.[+], then, by induction hypothesis,
n; satisfiesy in the original model as well. Thug/) must
be true atr in the original model.

n; = y for somei < k, andno # y. It follows that the
sequenceu, . . ., ny is actually of the forme — ¢,... x —
1,y,...,y + m, where/ < d. Define a new sequence
ng, ..., ny by replacing each: — i by y — i. Thus, the re-
sulting sequencey, ..., n} is of the formy — ¢,...,y —
1,y,...,y + m. Sincex andy have the same type in the
original model,n; andn/ agree on all node expressions from
sub(¢o) (in the original model). Moreover, whenevgy is

of the form.[¢], then, by induction hypothesis, we know that
n; satisfiesy) in the original model as well. Together this
implies that(y — ¢, y +m) satisfieg31/ - - - / Bk ) in the orig-
inal model. Finally, by induction hypothesis;, = n,, satis-
fies () in the original model. We conclude thaf, satisfies
(B) and hencéc) in the original model. Finally, using once
more the fact that: andy have the same type in the origi-
nal model, we conclude that, must also satisfy«) in the
original model.

End of proof of claim.

Finally, the main argument to establish Lemma 16:dgtbe any
satisfiableCoreXPath| (N) node expression\/ a tree model satis-
fying ¢ at the root. IfM contains a branch of length greater than
2p(l¥ol) with p the precise polynomial from Claim 1, then there is
a tree with fewer nodes thal in which ¢y is still satisfied. Since
tree models are finite, this shows thais satisfiable in a tree model

of depth20(l#0>) . O

The following theorem states correctness of the algorithm devel-
oped in Section 5.

THEOREM 31. The algorithm has an accepting run on ingait
iff o is satisfiable.

PROOF [=] Suppose the algorithm has an accepting run on
input 9. LetT = (N,R;,R_.,7) be the recursion tree of
one such accepting run, i..N, R, R_) is a finite sibling or-
dered tree (the sibling order is in fact irrelevant), aneéssigns
to each node the completgy-type that is the first argument of
the corresponding recursive call oheck. Take the tree model
M = (N,R|,R_,Lab), whereLab : N — X assigns to each
noden € N the unique label fronXt that belongs ta-(n), if there
is one, or otherwise any label notsnb (o).

It can be proved thatfor atl € N andy € cl(0), 1 € [Nk
iff » € 7(n). In particular, sincepy € 7(r), for r the root of M,
we have that € [¢o]agxr- The proof is by induction on the well-
founded ordering< oncl(ypo) generated by:

e » < 1 wheneverp € sub(v));

e (3) < (a) whenever(a) € sub(yo), (8) € aux(y¢o), and
B € inst(a);

o (B") < (8/8) forall (3/8") € aux(¢))
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We leave the details to the reader.

[«<] Supposey is satisfiable. Then, by Lemma 16 is sat-
isfied at the root of a tree model of depth at me&t*". For
any noden of this tree model, let-(n) = {¢ € cl(po) | n €
[[<p]],{,véxp,}. To show that the algorithm has an accepting run on in-
put o, we associate to each calloheck(t, ) a “witnessing”
noden in the tree, at distancefrom the root, satisfying(n) = t.
Initially, we let the algorithm pickr(r), for r the root of the tree
model (thusy itself is the witnessing node). Next, suppose that at
some pointheck( ¢, ¢) is called, and lek be a witnessing node
(i.e., 7(n) = t andn lies at distance from the root), and con-
sider any demang € ¢. There must be at least one chittlof n
satisfying the remaindep’ of ¢ (this follows simply from the se-
mantics ofCoreXPath). We let the algorithm choose precisely the
typet’ = 7(n’). In this way, we have that’ € ¢, ¢t = ¢', andn’
is a witness for check(, i + 1). It is easy to see that the algorithm
returns ‘Yes’ on inputpy, when all non-deterministic choices are
made according to this strategyl ]

C. MULTI-LABELS

LEmmA 19.  Satisfiability of CoreXPath;(N) node expres-
sions on tree-models with multi-labels can be reduced in poly-
nomial time to satisfiability oforeXPath|(N) node expressions
on standard tree models. The same holds@oreXPath | (x, N),
CoreXPath1(N) and CoreXPath| . (N).

PROOF The main idea is as follows: we can turn a multi-
labelled tree model into a standard tree model by adding(n)|
extra children to each nodeand labelling each with a different el-
ement ofLab(n). To distinguish these auxiliary nodes from “real”
document nodes, we label the latter with a special node label

Following this idea, we can transform eve@oreXPath, (N)
node expressiop into anotherCoreXPath| (M) node expression
¢, such thaty’ is satisfiable in a standard tree modelfiis sat-
isfiable in a tree model with multi-labelsy’ is defined as fol-
lows: let o™ be obtained fromp by (i) replacing every occur-
rence of| or |*, by |[z] or |*[z], respectively; and (ii) replac-
ing every occurrence of a node labelwith (|[p]). Then set
o =" Az A —(A=({]*[-x]/]) (the last conjunct o’ ensures
that all auxiliary nodes are leafs).

Similar reductions can be given foCoreXPath,(x,N),
CoreXPath1(N) and CoreXPath;_.(N). In the case of
CoreXPath|_, (N), ¢’ needs to be extended with an additional con-
junct = (| *[~z]/—"[x]), ensuring that the auxiliary nodes are al-
ways to the right of “real” sibling nodes.[]

D. ALTERNATING TURING MACHINES

We introduce alternating Turing machines as used in Section 6.
An Alternating Turing Machine (ATM)s of the form M =
(Q7 A7 F7 qo, A) The set OBtateSQ = QH W QV W {qa} @ {qT}
consists okxistential stateffom @3, universal statefrom Qv, an
accepting state,, and arejecting statey,; A is theinput alphabet
andI” thework alphabetcontaining ablank symbol] and satisfy-
ing A CT; qo € Q3 U Qy is thestarting state; and théransition
relation A is of the formA C Q@ xI'x Q x I' x {L, R}. We
will write A(q, a) for {(¢’,b, M) | (¢,a,q’,b, M) € A}.

A configurationof an ATM is a wordwqw’ with w,w’ € T*
andq € Q. The intended meaning is that the (one-side infinite) tape
contains the worayw’ with only blanks behind it, the machine is in
stateg, and the head is on the leftmost symbot©df Thesuccessor
configurationsof a configurationvgw’ are defined in the usual way
in terms of the transition relatio. A halting configurationis of
the formwqw’ with ¢ € {qa, ¢}



A computationof an ATM M on a wordw is a (finite or infi-
nite) sequence of configuratios,, Ko, ... such thatk; = gow
and K41 is a successor configuration &f; for all ¢ > 0. The
ATMs considered in the following have onfinite computations
on any input. Since this case is simpler than the general one, we
define acceptance for ATMs with finite computations, only, and re-
fer to [3] for the full definition. LetM be such an ATM. A halting
configuration isacceptingiff it is of the form wq,w’. For other
configurationsk = wquw’, the acceptance behaviour depends on
q: if ¢ € @3, thenK is accepting iff at least one successor configu-
ration is accepting; iff € Qv, thenK is accepting iff all successor
configurations are accepting. Finally, the ATM( with starting
stateqo acceptshe inputw iff the initial configurationgow is ac-
cepting. We usé (M) to denote the language acceptedVay i.e.,
L(M) = {w € A* | M acceptav}.
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