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Abstract. We perform an exhaustive study of the complexity of
subsumption in the EL family of lightweight description logics w.r.t.
acyclic and cyclic TBoxes. It turns out that there are interesting mem-
bers of this family for which subsumption w.r.t. cyclic TBoxes is
tractable, whereas it is EXPTIME-complete w.r.t. general TBoxes.
For other extensions that are intractable w.r.t. general TBoxes, we
establish intractability already for acyclic and cyclic TBoxes.

1 MOTIVATION
Description logics (DLs) are a popular family of KR languages that
can be used for the formulation of and reasoning about ontolo-
gies [5]. Traditionally, the DL research community has strived for
identifying more and more expressive DLs for which reasoning is
still decidable. In recent years, however, there have been two lines
of development that have led to significant popularity also of DLs
with limited expressive power. First, a number of novel and useful
lightweight DLs with tractable reasoning problems has been iden-
tified, see e.g. [3, 8]. And second, many large-scale ontologies that
are formulated in such lightweight DLs have emerged from practical
applications. Prominent examples include the Systematized Nomen-
clature of Medicine, Clinical Terms (SNOMED CT), which under-
lies the systematized medical terminology used in the health systems
of the US, the UK, and other countries [19]; and the gene ontology
(GO), which aims at consistent descriptions of gene products in dif-
ferent databases [20].

In this paper, we are concerned with the EL family of lightweight
DLs, which consists of the basic DL EL and its extensions. Mem-
bers of this family underly many large-scale ontologies including
SNOMED CT and GO. The DL counterpart of an ontology is called a
TBox, and the most important reasoning task in DLs is subsumption.
In particular, computing subsumption allows to classify the concepts
defined in the TBox/ontology according to their generality [5]. In
the DL literature, different kinds of TBoxes have been considered.
In decreasing order of expressive power, the most common ones are
general TBoxes, (potentially) cyclic TBoxes, and acyclic TBoxes.
For the EL family, the complexity of subsumption w.r.t. general
TBoxes has exhaustively been analyzed in [3] and its recent succes-
sor [4]. In all of the considered cases, subsumption is either tractable
or EXPTIME-complete. However, the study of general TBoxes does
not reflect common practice of ontology design, as most ontologies
from practical applications correspond to cyclic or acyclic TBoxes.
For example, SNOMED CT and GO both correspond to so-called
acyclic TBoxes. Since cyclic and acyclic TBoxes are often prefer-
able in terms of computational complexity [7, 14], the question arises
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whether there are useful extensions of EL for which reasoning w.r.t.
such TBoxes is computationally cheaper than reasoning w.r.t. general
TBoxes.

The goal of the current paper is to analyse the computational com-
plexity of subsumption in the EL family of description logics w.r.t.
acyclic TBoxes and cyclic TBoxes, with a special emphasis on the
border of tractability. In our analysis, we omit extensions of EL
for which tractability w.r.t. general TBoxes has already been estab-
lished. Our results exhibit a more varied complexity landscape than
in the case of general TBoxes: we identify cases in which reason-
ing is tractable, co-NP-complete, PSPACE-complete, and EXPTIME-
complete. Notably, we identify two maximal extensions of EL for
which subsumption w.r.t. cyclic TBoxes is tractable, whereas it is
EXPTIME-complete w.r.t. general TBoxes. In particular, these exten-
sions include primitive negation and at-least restrictions. They also
include concrete domains, but fortunately do not require the strong
convexity condition that was needed in the case of general TBoxes to
guarantee tractability [3]. For other extensions of EL such as inverse
roles and functional roles, we show intractability results already w.r.t.
acyclic TBoxes. Compared to the case of general TBoxes, it is often
necessary to develop new approaches to lower bound proofs. We also
show that the union of the two identified tractable fragments is not
tractable. Detailed proofs are provided in [10].

2 DESCRIPTION LOGICS

The two types of expressions in a DL are concepts and roles, which
are built inductively starting from infinite sets NC and NR of concept
names and role names, and applying concept constructors and role
constructors. The basic description logic EL provides the concept
constructors top (>), conjunction (C uD) and existential restriction
(∃r.C), and no role constructors. Here and in what follows, we de-
note the elements of NC with A and B, the elements of NR with r
and s, and concepts with C and D. The semantics of concepts and
roles is given in terms of an interpretation I = (∆I , ·I), with ∆I a
non-empty set called the domain and ·I the interpretation function,
which maps everyA ∈ NC to a subsetAI of ∆I and every role name
r to binary relation rI of over ∆I .

Extensions of EL are characterized by the additional concept and
role constructors that they offer. Figure 1 lists all relevant construc-
tors, concept constructors in the upper part and role constructors in
the lower part. The left column gives the syntax, and the right col-
umn shows how to inductively extend interpretations to composite
concepts and roles. In the presence of role constructors, composite
roles can be used inside existential restrictions. In atleast restrictions
(≥ n r) and atmost restrictions (≤ n r) , we use n to denote a non-
negative integer. The concrete domain constructor p(f1, . . . , fk) de-



Syntax Semantics

> ∆I

¬C ∆I \ CI

C uD CI ∩DI

C tD CI ∪DI

(≤ n r) {x |#{y | (x, y) ∈ rI} ≤ n}
(≥ n r) {x |#{y | (x, y) ∈ rI} ≥ n}
∃r.C {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
∀r.C {x | ∀y : (x, y) ∈ rI → y ∈ CI}

p(f1, . . . , fk)
{x | ∃d1, . . . , dk : fI1 (x) = d1 ∧ . . .∧

fIk (x) = dk ∧ (d1, . . . , dk) ∈ pD}

r ∩ s rI ∩ sI

r ∪ s rI ∪ sI

r− {(x, y) | (y, x) ∈ rI}
r+

S
i>0(r

I)i

Figure 1. Syntax and semantics of concept and role constructors.
serves further explanation, to be given below. To denote extensions
of EL, we use the symbol of the added constructors in superscript.
For example, ELt,∪,− denotes the extension of EL with concept
disjunction (C tD), role disjunction (r∪ s), and inverse roles (r−).

The concrete domain constructor permits reference to concrete
data objects such as strings and integers. It provides the interface
to a concrete domain D = (∆D,ΦD), which consists of a domain
∆D and a set of predicates ΦD [13]. Each p ∈ ΦD is associated with
a fixed arity n and a fixed extension pD ⊆ ∆n

D . In the presence of
a concrete domain D, we assume that there is an infinite set NF of
feature names disjoint from NR and NC. In Figure 1 and in general,
f1, . . . , fk are from NF and p ∈ ΦD . An interpretation I maps every
f ∈ NF to a partial function fI from ∆I to ∆D . We use EL(D) to
denote the extension of EL with the concrete domain D.

In this paper, a TBox T is a finite set of concept definitionsA ≡ C,
where A ∈ NC and C is a concept. We require that the left-hand side
of all concept definitions in a TBox are unique. A concept nameA ∈
NC is defined if it occurs on the left-hand side of a concept definition
in T , and primitive otherwise. A TBox T is acyclic if there are no
concept definitions A1 ≡ C1, . . . , Ak ≡ Ck ∈ T such that Ai+1

occurs in Ci for 1 ≤ i ≤ k, where Ak+1 := A1. An interpretation I
is a model of T iff AI = CI for all A ≡ C ∈ T .

The main reasoning task considered in this paper is subsumption.
A concept C is subsumed by a concept D w.r.t. a TBox T , written
T |= C v D, if CI ⊆ DI for all models I of T . If T is empty
or missing, we simply write C v D. Sometimes, we also consider
satisfiability of concepts. A conceptC is satisfiable w.r.t. a TBox T if
there is a model of T such that CI 6= ∅. For many extensions of EL,
satisfiability is trivial because there are no unsatisfiable concepts.

3 TRACTABLE EXTENSIONS

We identify two extensions of EL for which subsumption w.r.t.
TBoxes is tractable: EL∪,(¬)(D) and EL≥,∪. This should be con-
trasted with the results in [3] which imply that subsumption w.r.t.
general TBoxes is EXPTIME-complete in both extensions. In Sec-
tion 4.1, we show that taking the union of the two extensions results
in intractability already w.r.t. acyclic TBoxes.

(C1) LT (B) ⊆ LT (A)

(C2) For each ∃rB .B
′ ∈ ET (B) there is ∃rA.A

′ ∈ ET (A)
such that rA ⊆ rB and (A′, B′) ∈ S

(C3) ConD(A) implies ConD(B)

Figure 2. EL∪,(¬)(D): Conditions for adding (A, B) to S.

3.1 Role Disjunction, Primitive Negation, and
Concrete Domains

We show that subsumption in EL∪,(¬)(D) w.r.t. (acyclic and cyclic)
TBoxes is tractable. The superscript ·(¬) indicates primitive negation,
i.e., negation can only be applied to concept names. The following is
an example of an EL∪,(¬)(D)-TBox, where has age is a feature, and
≥13 and ≤19 are unary predicates of the concrete domain D:

Parent ≡ Human u ∃(has child ∪ has adopted).>
Mother ≡ Parent u Female u ¬Male

Teenager ≡ Human u ≥13(has age) u ≤19(has age)

To guarantee tractability, we require the concrete domain D to sat-
isfy a standard condition. Namely, we require D to be p-admissibile,
i.e., satisfiability of and implication between concrete domain ex-
pressions of the form p1(v

1
1 , . . . , v

1
n1)∧ · · ·∧pm(vm

1 , . . . , v
m
nm

) are
decidable in polynomial time, where the vi

j are variables that range
over ∆D . In [3], it is shown that a much stronger condition is re-
quired to achieve tractability in EL(D) with general TBoxes. This
condition is convexity, which requires that if a concrete domain atom
p(v1, . . . , vn) implies a disjunction of such atoms, then it implies
one of the disjuncts. For our result, there is no need to impose con-
vexity.

When deciding subsumption, we only consider concept names in-
stead of composite concepts. This is sufficient since T |= C v D
iff T ′ |= A v B, where T ′ := T ∪ {A ≡ C,B ≡ D} andA andB
do not occur in T .

The subsumption algorithm requires the input TBox T to be in the
following normal form. In each A ≡ C ∈ T , C is of the form

u
1≤i≤k

Li u u
1≤i≤`

∃ri.Bi u u
1≤i≤m

pi(f
i
1, . . . , f

i
ni

)

where the Li are primitive literals, i.e., possibly negated primitive
concept names; the ri are of the form r1 ∪ . . . ∪ rn; and the Bi are
defined concept names. In the following, we refer to the set of literals
occurring in C with LT (A), to the set of existential restrictions as
ET (A), and define the following concrete domain expression, which
for simplicity uses features as variables:

ConD(A) := p1(f
1
1 , . . . , f

1
n1) ∧ · · · ∧ pm(fm

1 , . . . , f
m
nm

).

To ease notation, we confuse a role ri = r1 ∪ . . . ∪ rn with the set
{r1, . . . , rn}.

It is easy to see how to adapt the algorithm given in [2] to convert
an EL∪,(¬)(D)-TBox into normal form in quadratic time. During the
normalization, we check for unsatisfiable concepts. This is easy since
a defined concept name A with A ≡ C ∈ T is unsatisfiable w.r.t. T
iff one of the following three conditions holds: (i) there is a primitive
concept P with {P,¬P} ∈ LT (A); (ii) ConD(A) is unsatisfiable;
or (iii) there is an ∃r.B ∈ ET (A) with B unsatisfiable.

Suppose we want to decide whether A is subsumed by B w.r.t. a
TBox T in normal form. If A is unsatisfiable, the algorithm answers



(C1) PT (B) ⊆ PT (A)

(C2) For each ∃rB .B
′ ∈ ET (B) there is ∃rA.A

′ ∈ ET (A)
such that rA ⊆ rB and (A′, B′) ∈ S

(C3) For each (≥mr) ∈ NT (B), there is (≥n r) ∈ NT (A)
such that n ≥ m.

Figure 3. EL≥,∪: Conditions for adding (A, B) to S.

“yes”. Otherwise and if B is unsatisfiable, it answers “no”. If A and
B are both satisfiable, it computes a binary relation S on the defined
concept names of T . The relation S is initialized with the identity
relation and then completed by exhaustively adding pairs (A,B) for
which the conditions in Figure 2 are satisfied.

It is easily seen that the algorithm runs in time polynomial w.r.t.
the size of the input TBox. Let S0, . . . , Sn be the sequence of rela-
tions that it produces. To show soundness, it suffices to prove that if
(A,B) ∈ Si, i ≤ n, then T |= A v B. This is straightforward by
induction on i. To prove completeness, we have to exhibit a model
I of T with AI \ BI 6= ∅. Such a model is constructed in a two-
step process. First, we start with an instance of A, and then “apply”
the concept definitions in the TBox as implications from left to right,
constructing a potentially infinite, tree-shaped interpretation. In the
second step, we apply the concept definitions from right to left, fill-
ing up the interpretation of defined concepts. Both steps involve some
careful bookkeeping which ensures that the constructed instance of
A is not an instance of B.

Theorem 1 Subsumption in EL∪,(¬)(D) w.r.t. TBoxes is in PTIME.

This result still holds if we additionally allow role conjunction (r∩s)
and require that composite roles are in disjunctive normal form (with-
out DNF, subsumption becomes co-NP-hard).It is worth mentioning
that, in the presence of general TBoxes, extending EL with each sin-
gle one of (i) primitive negation, (ii) role disjunction, and (iii) any
non-convex concrete domain results in EXPTIME-hardness [3]. Note
that convexity of a concrete domain is a rather strong restriction, and
it is pleasant that we do not need it to achieve tractability. We point
out that it should be possible to enhance the expressive power of
EL∪,(¬)(D) by enriching it with additional constructors of the DL
EL++ [3]. Examples include nominals and transitive roles.

3.2 Role Disjunction and At-Least Restrictions

In EL≥,∪, we allow role disjunction only in existential restric-
tions, but not in number restrictions. To show that subsumption w.r.t.
TBoxes is tractable, we use a variation of the algorithm in the previ-
ous section. In the following, we only list the differences. A TBox is
in normal form if, in each A ≡ C ∈ T , C is of the form

u
1≤i≤k

Pi u u
1≤i≤`

∃ri.Bi u u
1≤i≤m

(≥ ni si)

where the Pi are primitive concept names, the ri are of the form
r1 ∪ . . . ∪ rn, the Bi are defined concept names, and the si are role
names. We use PT (A) to refer to the set of primitive concept names
occurring in C, ET (A) is as in the previous section, and NT (A) is
the set of number restrictions in C. The conditions for adding a pair
(A,B) to the relation S are given in Figure 3.

Theorem 2 Subsumption in EL≥,∪ w.r.t. TBoxes is in PTIME.

In the extension of EL with only at-least restrictions (≥ n r), sub-
sumption w.r.t. general TBoxes is EXPTIME-complete [3]. As we
will show in Section 4.3, EL extended with at-most restrictions
(≤ n r) is intractable already w.r.t. acyclic TBoxes.

4 INTRACTABLE EXTENSIONS
We identify extensions of EL for which subsumption is intractable
w.r.t. acyclic and cyclic TBoxes.

4.1 Primitive Negation and At-Least Restrictions
We show that taking the union of the DLs EL∪,(¬)(D) and EL≥,∪

from Sections 3.1 and 3.2 results in intractability. To this end, we
consider EL≥,(¬) and show that subsumption w.r.t. the empty TBox
is CO-NP-complete. It is easy to establish the lower bound also
for EL≥(D) as long as there are two concepts p(f1, . . . , fn) and
p′(f ′1, . . . , f

′
m) that are mutually exclusive. This is the case for most

practically useful concrete domains D.
For the lower bound, we reduce 3-colorability of graphs to non-

subsumption. Given an undirected graph G = (V,E), reserve one
concept name Pv for each node v ∈ V , and a single role name r.
Then, G is 3-colorable iff CG 6v (≥ 4 r), where

CG := u
v∈V

∃r.
„
Pv u u

{v,w}∈E
¬Pw

«
Intuitively, if d ∈ CIG \ (≥ 4 r)I , then d has at most three r-
successors, each describing one of the three colors. The use of primi-
tive negation inCG ensures that no two adjacent nodes have the same
color.

A matching upper bound can be derived from the CO-NP-upper
bound for subsumption in ALUN , which has the concept construc-
tors top, bottom (⊥), value restriction (∀r.C), conjunction, disjunc-
tion, primitive negation, number restrictions, and unqualified exis-
tential restriction [11]. Given two EL≥,(¬)-concepts C,D, we have
C v D iff ¬D v ¬C. It remains to observe that bringing ¬C and
¬D into negation normal form yields two ALUN -concepts.

Theorem 3 Subsumption in EL≥,(¬) is CO-NP-complete.

4.2 Inverse Roles
In [1], it is shown that subsumption w.r.t. the empty TBox is tractable
in (an extension of) EL−. We prove that, w.r.t. acyclic TBoxes, sub-
sumption in EL− is PSPACE-complete. Since the upper bound fol-
lows from PSPACE-completeness of subsumption in ALCI [5], we
concentrate on the lower bound.

We reduce validity of quantified Boolean formulas (QBFs). Let
ϕ = Q1v1 · · ·Qkvk.ψ be a QBF, whereQi ∈ {∀, ∃} for 1 ≤ i ≤ k.
W.l.o.g., we may assume that ψ = c1 ∧ · · · ∧ cn is in conjunctive
normal form. We construct an acyclic TBox Tϕ and select two con-
cept names L0 and E0 such that ϕ is valid iff Tϕ |= L0 v E0.
Intuitively, a model of L0 and Tϕ is a binary tree of depth k that is
used to evaluate ϕ. In the tree, a transition from a node at level i to
its left successor corresponds to setting vi+1 to false, and a transition
to the right successor corresponds to setting vi+1 to true. Thus, each
node on level i corresponds to a truth assignment to the variables
v1, . . . , vi. In Tϕ, we use a single role name r and the following con-
cept names:

• L0, . . . , Lk represent the level of nodes in the tree model;



• Ci,j , 1 ≤ i ≤ n and 1 ≤ j ≤ k, represents truth of the clause ci
on level j of the tree model;

• E0, . . . , Ek are used for evaluating ψ, and the index again refers
to the level.

For 1 ≤ i ≤ k, we use Pj to denote the conjunction of all concept
namesCi,j , 1 ≤ i ≤ n, such that vj occurs positively in ci; similarly,
Nj denotes the conjunction of all concept names Ci,j , 1 ≤ i ≤ n,
such that vj occurs negatively in ci. Now, the TBox Tϕ is as follows:

L0 ≡ ∃r.(L1 u P1) u ∃r.(L1 uN1)
· · ·

Lk−1 ≡ ∃r.(Lk u Pk) u ∃r.(Lk uNk)
Ci,j ≡ ∃r−.Ci,j−1 for 1 ≤ i ≤ n and 1 < j ≤ k
Ek ≡ C1,k u · · · u Cn,k

Ei ≡ ∃r.Ei+1 for 0 ≤ i < k where Qi+1 = ∃
Ei ≡ ∃r.(Pi+1 u Ei+1) u ∃r.(Ni+1 u Ei+1)

for 0 ≤ i < k where Qi+1 = ∀

The definitions forL0, . . . , Lk−1 build up the tree. The use of P1 and
N1 in these definitions together with the definition of Ci,j sets the
truth value of the clause ci according to a partial truth assignment of
length j. Finally, the definitions of E0, . . . , Ek evaluate ϕ according
to its matrix formula ψ and quantifier prefix. It can be checked that
ϕ is valid iff Tϕ |= L0 v E0.

Theorem 4 Subsumption in EL− w.r.t. acyclic TBoxes is PSPACE-
complete.

We leave the case of cyclic TBoxes as an open problem. In this
case, the lower bound from Theorem 4 is complemented only by
the EXPTIME upper bound for subsumption in EL− w.r.t. general
TBoxes from [3].

4.3 Functional Roles

Let ELf be EL extended with functional roles, i.e., there is a count-
ably infinite subset NF ⊆ NR such that all elements of NF are in-
terpreted as partial functions. It is shown in [3] that subsumption in
ELf w.r.t. general TBoxes is EXPTIME-complete. We show that it is
co-NP-complete w.r.t. acyclic TBoxes and PSPACE-complete w.r.t.
cyclic ones.

We use ELF to denote the variation of ELf in which all role
names are interpreted as partial functions. It has been observed in [3]
that there is a close connection between ELF and FL0, which pro-
vides the concept constructors conjunction and value restriction. It is
easy to exploit this connection to transfer the known co-NP-hardness
(PSPACE-hardness) from subsumption in FL0 w.r.t. acyclic (cyclic)
TBoxes as proved in [16, 12] to ELF . We omit details for brevity.
Since the described approach is not very illuminating regarding the
source of intractability, however, we give a dedicated proof of co-
NP-hardness of subsumption in ELF w.r.t. acyclic TBoxes using a
reduction from 3-SAT to non-subsumption.

Let ϕ = c1∧ . . .∧ck be a 3-formula in the propositional variables
p1, . . . , pn and with cj = `j1 ∨ `

j
2 ∨ `

j
3 for 1 ≤ j ≤ k. We construct

a TBox Tϕ and select concept names Aϕ and B1 such that ϕ is sat-
isfiable iff Tϕ 6|= Aϕ v B1. In the reduction, we use two role names
r0 and r1 to represent falsity and truth of variables. More precisely,
a path rv1 · · · rvn with rvi ∈ {r0, r1} corresponds to the valuation
pi 7→ vi, 1 ≤ i ≤ n. Additionally, we use a number of auxiliary

concept names. The TBox Tϕ is as follows:

Aj
i ≡

8<:
∃r0.Aj

i+1 if pi ∈ {`j1, `
j
2, `

j
3}

∃r1.Aj
i+1 if ¬pi ∈ {`j1, `

j
2, `

j
3}

∃r0.Aj
i+1 u ∃r1.A

j
i+1 otherwise

Aj
n+1 ≡ >
Aϕ ≡ u

1≤j≤k
Aj

1

Bi ≡ ∃r0.Bi+1 u ∃r1.Bi+1 Bn+1 ≡ >

If I is a model of Tϕ and d ∈ (Aj
1)
I , 1 ≤ j ≤ k, then d is the root of

a tree in I whose edges are labelled with r0 and r1 and whose paths
are the valuations that make the clause cj false. Due to functionality
of r0 and r1, each d ∈ AIϕ is thus the root of a (single) tree whose
paths are precisely the valuations that make any clause in ϕ false.
Finally, d ∈ BI

1 means that d is the root of a full binary tree of depth
n whose paths describe all valuations. It follows that ϕ is satisfiable
iff Tϕ 6|= Aϕ v B1.

To prove matching upper bounds for ELf , we exploit the fact that,
due to the FL0-connection, subsumption in ELF is easily shown to
be in CO-NP w.r.t. acyclic TBoxes and in PSPACE w.r.t. cyclic ones.
We give an algorithm for subsumption in ELf that uses subsump-
tion in ELF as a subprocedure. Like the algorithms in Section 3, it
computes a binary relation S on the set of defined concept names
by repeatedly adding pairs (A,B) such that the input TBox entails
A v B. The algorithm works for both acyclic and cyclic TBoxes,
giving us the desired upper bound in both cases.

We assume the input TBox T to be in the same normal form as
described in Section 3.2, but without concepts of the form (≥n r).
Let S be a binary relation on the defined concept names in T . For
every concept ∃r.A occurring in T with r /∈ NF, introduce a fresh
concept name Xr,A such that Xr,A = Xr′,A′ iff r = r′, (A,A′) ∈
S, and (A′, A) ∈ S. Now let the ELF -TBox TS be obtained from T
by (i) replacing every concept ∃r.A where r /∈ NF with Xr,A, and
(ii) for each ∃r.A in T with r /∈ NF, adding the concept definition

Xr.A ≡ Xr,B1 u · · · uXr,Bn u Zr,A

where B1, . . . , Bn are all concept names with (A,Bi) ∈ S and
(Bi, A) /∈ S; and Zr,A is a fresh concept name. The algorithm starts
with S as the identity relation and then exhaustively performs the fol-
lowing step: add (A,B) to S if TS |= A v B. It returns “yes” if the
input concepts form a pair in S, and “no” otherwise. Additionally,
we can show that subsumption in ELf without TBoxes is in PTIME

by a reduction to subsumption in EL.

Theorem 5 Subsumption in ELf is in PTIME, CO-NP-complete
w.r.t. acyclic TBoxes and PSPACE-complete w.r.t. cyclic TBoxes.

It is not hard to see that the lower bounds carry over to EL≤.

4.4 Booleans
We consider extensions of EL with Boolean constructors, starting
with negation. Since EL¬ is a notational variant of ALC, we obtain
the following from the results in [17, 18].

Theorem 6 Satisfiability and subsumption in EL¬ is PSPACE-
complete without TBoxes and w.r.t. acyclic TBoxes, and EXPTIME-
complete w.r.t. cyclic TBoxes.

Now for disjunction. It has been shown in [6] that subsumption in
ELt is CO-NP-complete without TBoxes. In order to establish lower



bounds for subsumption w.r.t. TBoxes, we reduce satisfiability in
EL¬ to non-subsumption in ELt. An EL¬-TBox T is in normal
form if for each A ≡ C ∈ T , C is of the form >, P , ¬B, ∃r.B, or
B1 u B2 with P primitive and B,B1, B2 defined. It is straightfor-
ward to show that any EL¬-TBox T can be transformed into normal
form in linear time such that all (non-)subsumptions are preserved.
Thus, let T = {A1 ≡ C1, . . . , An ≡ Cn} be an EL¬-TBox in
normal form. Since the proofs underlying Theorem 6 use only a sin-
gle role name, we may assume w.l.o.g. that T contains only a sin-
gle role name r. We convert T into an ELt-TBox T ′ by introduc-
ing fresh concept names A1, . . . , An representing the negations of
A1, . . . , An and replacing every A ≡ ¬Aj ∈ T with A ≡ Aj and
every Ai ≡ ∃r.Aj ∈ T with

Ai ≡ ∃r.(Aj u u
1≤k≤n

(Ak tAk)).

The additional conjunct ensures thatAi andAi cover the domain. To
additionally ensure that they are disjoint, we add to T ′ the concept
definition

M ≡t0≤i<nt1≤j≤n ∃r. . . . ∃r.| {z }
i times

(Aj uAj) if T is acyclic

M ≡ ∃r.M tt1≤i≤n(Ai uAi) if T is cyclic.

In both cases, M is a fresh concept name. Then a defined concept
name A is satisfiable w.r.t. T iff T ′ 6|= A u u

1≤i≤n
(Ai t Ai) v M.

We obtain the following result.

Theorem 7 Subsumption in ELt is PSPACE-complete w.r.t. acyclic
TBoxes and EXPTIME-complete w.r.t. cyclic TBoxes.

4.5 Transitive Closure
We consider EL+, the extension of EL with transitive closure of
roles. Using a result by Miklau and Suciu on query containment
in a fragment of XPath [15], it is easy to show that subsumption
in EL+ is co-NP-complete. By reusing the techniques from Miklau
and Suciu’s lower bound proof, we can establish PSPACE-hardness
(EXPTIME-hardness) of subsumption in EL+ w.r.t. acyclic (cyclic)
TBoxes. More precisely, this is achieved by a reduction of satisfiabil-
ity in EL¬ to non-subsumption in EL+, similar to the one described
in Section 4.4. A corresponding EXPTIME upper bound for the case
of cyclic TBoxes is obtained by a straightforward reduction to satis-
fiability in propositional dynamic logic (PDL). For acyclic TBoxes,
we obtain a PSPACE upper bound by a less straightforward reduction
to subsumption in ELt w.r.t. acyclic TBoxes, c.f. Theorem 7.

Theorem 8 Subsumption in EL+ is CO-NP-complete, PSPACE-
complete w.r.t. acyclic TBoxes and EXPTIME-complete w.r.t. cyclic
ones.

5 CONCLUSION
The complexity landscape for acyclic/cyclic TBoxes is much less
uniform than for general TBoxes. For the case of general TBoxes,
non-existence of a unique minimal model of a TBox (in the sense
that it can be homomorphically embedded into any other model) was
a sufficient (but not necessary) condition for intractability. This is not
the case here: in EL∪,(¬)(D) and EL≥,∪, such models do not exist.
It is also interesting to note that we did not find a single case in which
subsumption is tractable w.r.t. acyclic TBoxes, but intractable w.r.t.
cyclic ones.

EL with no TBox acyclic cyclic

¬C PSPACE PSPACE EXPTIME

¬A PTIME PTIME PTIME

C tD CO-NP PSPACE EXPTIME

functionality PTIME CO-NP PSPACE

(≥ n r) PTIME PTIME PTIME

p(f1, . . . , fk) PTIME PTIME PTIME

r ∩ s PTIME PTIME PTIME

r ∪ s PTIME PTIME PTIME

r− PTIME PSPACE EXPTIME

r+ CO-NP PSPACE EXPTIME

Figure 4. Complexity of subsumption in extensions of EL. Light gray cell
background indicates membership in class, dark gray completeness for class.
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