
Semantic Modularity and Module Extraction in
Description Logics

Boris Konev1 and Carsten Lutz2 and Dirk Walther1 and Frank Wolter1

Abstract. The aim of this paper is to study semantic no-
tions of modularity in description logic (DL) terminologies
and reasoning problems that are relevant for modularity. We
define two notions of a module whose independence is for-
malised in a model-theoretic way. Focusing mainly on the
DLs EL and ALC, we then develop algorithms for module
extraction, for checking whether a part of a terminology is
a module, and for a number of related problems. We also
analyse the complexity of these problems, which ranges from
tractable to undecidable. Finally, we provide an experimental
evaluation of our module extraction algorithms based on the
large-scale terminology Snomed ct.

1 Introduction
The main use of ontologies in computer science is to formalise
the vocabulary of an application domain, i.e., to fix the vo-
cabulary as a logical signature and to provide a logical theory
that defines the meaning of terms built from the vocabulary
and their relationships. To emphasise this usage, we speak of
terminologies rather than of ontologies. Current applications
lead to the development of large and comprehensive termi-
nologies, as witnessed, e.g., by the Systematized Nomencla-
ture of Medicine, Clinical Terms (Snomed ct), which com-
prises ∼0.4 million terms and underlies the systematised med-
ical vocabulary used in the health systems of the US, the UK,
and other countries [13]. When working with terminologies
of this size and complexity, often only a fragment of the de-
fined vocabulary is of interest. For example, a terminology
designer may want to reuse a part of a large terminology in-
side his own terminology without being forced to adopt it
completely. If the terminology is deployed in an application,
it is often also unwieldy to work with the whole terminology
compared to working only with the part that is relevant for
the application.

These observations illustrate the importance of the mod-
ule extraction problem for terminologies, as studied, e.g., in
[6, 2, 12, 4, 3]: given a relevant signature Σ and a terminology
T that defines, among others, the terms from Σ, extract a
minimal subset (module) T0 from T such that T0 can serve as
a substitute for T w.r.t. Σ. What it means that T0 can serve
as a substitute for T depends on the application at hand. In
this paper, we aim at minimal modules T0 that induce the
same dependencies between terms in Σ as the original ter-
minology T . We understand such dependencies in a model-

1 University of Liverpool, Liverpool, UK
2 TU Dresden, Dresden, Germany

theoretic way, identifying the dependencies between Σ-terms
with the class of all Σ-reducts of models satisfying the termi-
nology. Thus, two terminologies induce the same dependencies
between terms in Σ if the classes of Σ-reducts of their models
coincide. Applications for which the resulting type of module
is appropriate include (a) importing, instead of the whole ter-
minology, the module into another terminology; see also [6],
(b) computing the classification of only the terms in the signa-
ture Σ, and (c) querying a database using the module instead
of the whole terminology. The main advantage of our model-
theoretic approach compared to entailment-based notions of
dependencies [9, 11] is its robustness under changes to the
language in which terminologies and queries are formulated.

The contribution of this paper is as follows. We intro-
duce a model-theoretic notion of dependencies and explore
the complexity of basic reasoning problems such as checking
whether two terminologies induce the same dependencies and
whether a terminology induces any dependencies at all. Con-
sidering terminologies formulated in the standard description
logic (DL) ALC, the lightweight DL EL, and their extensions
with inverse roles, we find that the complexity ranges from
tractable via Πp

2-complete and coNexpNP-complete to unde-
cidable. Based on these notions of dependency, we introduce
two notions of a module and develop algorithms for module
extraction and checking whether a subset of a terminology is
a module. The algorithms work on acyclic terminologies for-
mulated in ALCI and ELI. The module extraction algorithm
for ELI has been implemented in a system called MEX, and
we present experimental results comparing modules extracted
from Snomed ct by MEX with modules extracted using the
⊥-local modules approach of [6].

Detailed proofs are provided in the technical report [8].

2 Preliminaries

In this paper, we consider the description logics EL, ELI,
ALC and ALCI. Let NC and NR be countably infinite and
disjoint sets of concept names and role names, respectively.
In ALC, composite concepts are built up starting from the
concept names in NC, and applying the concept constructors
shown in the upper four rows of Figure 1. In the figure and
in general, C and D denote concepts, and r denotes a role
name. As usual, we use ⊥ to abbreviate ¬#, $, →, and ↔ for
the usual Boolean connectives defined in terms of ¬ and ',
and ∀r.C for ¬∃r.¬C. EL is the fragment obtained from ALC
by dropping negation. We obtain ALCI from ALC and ELI
from EL by additionally allowing inverse roles inside existen-

Name Syntax Semantics

top-concept # #I = ∆I

negation ¬C ∆I \ CI

conjunction C 'D CI ∩DI

existential restriction ∃r.C {d ∈ ∆I | ∃d′ (d, d′) ∈ rI

∧ d′ ∈ CI}
inverse role r− {(e, d) | (d, e) ∈ rI}

Figure 1. Syntax and semantics.

tial restrictions, as shown in the bottom-most line of Figure 1.
The semantics of concepts is defined by means of interpre-

tations I = (∆I , ·I), where the interpretation domain ∆I is
a non-empty set, and ·I is a function mapping each concept
name A to a subset AI of ∆I and each role name rI to a
binary relation rI ⊆ ∆I ×∆I . The function ·I is inductively
expanded to composite concepts as shown in Figure 1.

A general TBox is a finite set of axioms, where an axiom
can be either a concept inclusion (CI) C / D or a concept
equality (CE) C ≡ D, with C and D concepts. If all concepts
used in T belong to a description logic L, then T is also called
a general L-TBox. An interpretation I satisfies a CI C / D
(written I |= C / D) if CI ⊆ DI ; it satisfies a CE C ≡ D
(written I |= C ≡ D) if CI = DI . I is a model of a general
TBox T if it satisfies all axioms in T . We write T |= C / D
(T |= C ≡ D) if every model of T satisfies C / D (C ≡ D).
A general TBox T is called a terminology if it satisfies the
following conditions:

• all CEs are of the form A ≡ C (concept definition) and all
CIs are of the form A / C (primitive concept definition),
where A is a concept name;

• no concept name occurs more than once on the left hand
side of an axiom.

Define the relation ≺T ⊆ NC × (NC ∪NR) by setting A ≺T X
iff there exists an axiom of the form A / C or A ≡ C in T
such that X occurs in C. Denote by ≺∗T the transitive closure
of ≺T and set dependT (A) = {X | A ≺∗T X}. Intuitively,
dependT (A) consists of all symbols X which are used in the
definition of A in T . A terminology T is called acyclic if A 3∈
dependT (A) for any A ∈ NC. In an acyclic terminology T , the
set Pr(T) of primitive symbols in T consists of all role names
and concept names that do not occur on the left hand side of
an axiom of T . The set PPr(T) of pseudo-primitive symbols
in T consists of all symbols primitive in T and all A such that
A / C ∈ T for some C.

A signature Σ is a finite subset of NC ∪ NR. The signature
sig(C) (sig(α), sig(T)) of a concept C (axiom α, TBox T)
is the set of concept and role names which occur in C (α,
T , respectively). If sig(C) ⊆ Σ, we call C a Σ-concept and
similarly for axioms and TBoxes.

3 Semantic modularity

We introduce the fundamental notions underlying semantic
dependencies and modules and give two definitions of a mod-
ule. In the following, we say that two interpretations I and J
coincide on a signature Σ, written I|Σ = J |Σ, iff ∆I = ∆J

and XI = XJ for all X ∈ Σ.

Definition 1. Let T0 and T1 be general TBoxes and Σ a
signature.

• T1 is a semantic Σ-consequence of T0, written T0 |=Σ T1, if
for every model I0 of T0, there exists a model I1 of T1 with
I0|Σ = I1|Σ;

• T0 and T1 are semantically Σ-inseparable, written T0 ≡Σ T1,
if T0 |=Σ T1 and T1 |=Σ T0;

• T1 is a model-conservative extension of T0 w.r.t. Σ if
T1 ⊇ T0 and T0 ≡Σ T1;

• T0 is a semantic Σ-tautology if T0 ≡Σ ∅.

Intuitively, two general TBoxes are semantically Σ-
inseparable if they induce the same dependencies between Σ-
concepts in a very strong sense: it can be shown that T0 ≡Σ T1

iff for every sentence ϕ of second-order logic which uses no
symbols from sig(T0 ∪ T1) \Σ, we have T0 |= ϕ iff T1 |= ϕ. We
give examples of typical applications of the notions introduced
above.

Example 2. Semantic Σ-inseparability of TBoxes T0 and T1

implies that

(∗) T0 ∪ T |= C / D iff T1 ∪ T |= C / D, for all TBoxes T
and CIs C / D with T , C, D formulated in any standard
description logic and not using symbols from sig(T0∪T1)\Σ.

Assume, for example, that T is a terminology describing terms
related to hospital administration which uses a set Σ of med-
ical terms from T1 = Snomed ct. If the designer of T knows
that T1 and another medical terminology T0 are semantically
Σ-inseparable, then it does not make any difference whether
he imports T1 or T0 into T . If T0 is much smaller than T1,
the latter might be preferable. Observe that the quantifica-
tion over T in (∗) ensures that this property does not break
when T evolves.

Example 3. It follows from (∗) that for any semantic Σ-
tautology T0, the following holds: for all TBoxes T and
CIs C / D such that T , C, and D use no symbols from
sig(T0 ∪ T1) \ Σ, T |= C / D iff T0 ∪ T |= C / D. Thus, one
can import into T0 any such T without changing the depen-
dencies that T induces between terms in Σ. If T0 is a terminol-
ogy for hospital administration and a semantic Σ-tautology
for a set Σ of medical terms defined in Snomed ct, then one
can import Snomed ct into T0 without corrupting the mean-
ing of medical terms defined in Snomed ct. This application
is discussed in detail in [6] under the name of safety for a
signature Σ.

To illustrate the difference between entailment-based notions
of inseparability as in [9, 11] and semantic Σ-inseparability
consider the following example. Let

Σ = {A, B} and T1 = {A / ∃r.B}.

Observe that, in models I of T1, AI 3= ∅ implies BI 3= ∅.
Thus, T1 is not a semantic Σ-tautology. However, this depen-
dency between A and B cannot be expressed in terms of a CI,
and T1 entails the same Σ-CIs as the empty TBox in all of the
DLs introduced in Section 2. Slightly more complex examples
show that even property (∗) above is not equivalent to se-
mantic Σ-inseparability. The exact relation between semantic

Σ-inseparability and entailment-based notions of conservative
extensions has been investigated in detail in [5, 6, 9, 11].

Throughout this paper, we consider two kinds of modules.

Definition 4. Let T0 ⊆ T1 be general TBoxes and Σ ⊇
sig(T0). Then T0 is a

• weak semantic Σ-module of T1 iff T1 is semantically Σ-
inseparable from T0;

• strong semantic Σ-module of T1 iff T1 \ T0 is a semantic
Σ-tautology.

The requirement that T0 only contains Σ-symbols reflects the
idea that modules should be self-contained: if an ontology T
induces a dependency between symbols occurring in T0, then
this dependency is induced by T0 already. Notions of a module
in which this is not the case are of interest as well and are
considered, e.g., in [2].

Lemma 5. Every strong semantic module is a weak semantic
module. The converse fails for acyclic EL-terminologies.

Proof. The first part is obvious. For the second part, let T0 =
{A ≡ #}, T1 = T0 ∪ {B / A}, and Σ = {A, B}. Then T0

is a weak semantic module of T1, but not a strong semantic
module.

Intuitively, the difference between weak and strong modules is
that strong modules additionally require the ontology without
the module to not induce any dependencies between symbols
in Σ.

4 Deciding semantic Σ-consequence
It has been observed in [6, 11, 9] that semantic notions of en-
tailment and inseparability as given in Definition 1 tend to be
computationally difficult. Indeed, we can prove a strong un-
decidability result for deciding semantic Σ-tautologies using
a reduction of the validity of a bimodal formula on a frame.

Theorem 6. Given an acyclic ALC-terminology T , it is un-
decidable whether T is a semantic Σ-tautology. This even
holds for acyclic ALC-terminologies of the form {A / C}
and for Σ = {A, r1, r2}.

By definition of modules, Theorem 6 implies that it is not
possible to decide, given acyclic ALC-terminologies T1 and
T0 ⊆ T1 and a signature Σ, whether T0 is a weak/strong se-
mantic Σ-module in T1. Thus, Theorem 6 and related results
explain why the notions of modularity from Definition 4 have
not yet found practical applications. Instead, applications use
notions of a module based on locality [6] or deductive ver-
sions of inseparability [2], or notions of a module that are not
logic-based [12, 4, 3]. One aim of this paper is to challenge
this approach by identifying relevant cases in which reason-
ing about modules as defined in Section 3 is decidable, and
sometimes even tractable. A first observation is that avoiding
roles in Σ improves the situation.

Theorem 7. Let L be ALC or ALCI. Given general L-
TBoxes T1 and T0 and a signature Σ with sig(Ti) ∩ Σ ⊆ NC

for i = 0, 1, it is

(1) coNExpNP-complete to decide whether T0 ≡Σ T1; if Σ is
fixed, then this problem is coNPNExp-complete;

(2) Πp
2-complete to decide whether T0 is a semantic Σ-

tautology. The lower bound applies already to acyclic TBoxes.

Observe that deciding semantic Σ-tautologies under the re-
strictions given in Theorem 7 is easier than deciding satisfia-
bility and subsumption in ALC w.r.t. acyclic TBoxes, which
is PSpace-complete [10].

We remark that Theorem 7 is also of interest when
analysing merged TBoxes, as it implies decidability of the
following problem: given general ALC-TBoxes T0 and T1 such
that the set of symbols Σ shared by T0 and T1 contains only
concept names, decide whether the union T0 ∪ T1 is semanti-
cally Σ-inseparable from T0 and T1.

5 Deciding semantic modules
Theorem 7 suggests that controlling the role names in Σ
can help to overcome undecidability of semantic modules. We
identify a syntactic restriction that is inspired by this observa-
tion and recovers decidability of semantic modules for acyclic
terminologies formulated in ALC and ALCI. It also provides
the basis for showing that, in EL and ELI, we can decide se-
mantic modules for acyclic terminologies without any further
restrictions.

Definition 8. Let T be an acyclic terminology and Σ, Σ1, Σ2

signatures. T contains a syntactic (Σ1, Σ2)-dependency if
there exists a concept name A ∈ Σ1 such that dependT (A) ∩
Σ2 3= ∅. A syntactic (Σ, Σ)-dependency is called a syntactic
Σ-dependency.

The notion of a syntactic (Σ1, Σ2)-dependency generalises the
notion of acyclicity (A 3∈ dependT (A)) to pairs of sets of sym-
bols. Syntactic Σ-dependencies give rise to a natural case in
which semantic modules in ALCI are decidable.

Theorem 9. Let L be ALC or ALCI. For acyclic L-
terminologies T1 ⊇ T0 and signature Σ ⊇ sig(T0) such that
T1 \ T0 contains no syntactic (Σ, Σ ∩ NR)-dependencies, it is

(1) decidable in coNExpNP whether T0 is a weak semantic
Σ-module of T1; this problem is coNExpTime-hard;

(2) Πp
2-complete to decide whether T0 is a strong semantic

Σ-module of T1.

We conjecture that the problem in Point (1) is actually
coNExpNP-complete. It is natural to consider also a stronger
syntactic condition, namely to disallow any Σ-dependency
instead of only (Σ, Σ ∩ NR)-dependencies. In this case, the
notions of strong and weak semantic modules coincide and
deciding modules is only Πp

2-complete for acyclic ALC- and
ALCI-terminologies.

Theorem 10. Let L be ALC or ALCI. For acyclic L-ter-
minologies T1 ⊇ T0 and a signature Σ ⊇ sig(T0) such that
T1 \ T0 contains no syntactic Σ-dependencies, the following
are equivalent:

• T0 is a strong semantic Σ-module of T1;
• T0 is a weak semantic Σ-module of T1;
• for all P ⊆ Σ ∩ (Pr(T0) \ Pr(T1)), the following concept is

satisfiable in a model of T1 \ T0 of cardinality 1:

CP =
!

A∈P

A '
!

A∈Σ∩(Pr(T0)\(Pr(T1)∪P))

¬A.

It is Πp
2-complete to decide whether T0 is a weak/strong se-

mantic module of T1.

Output “not module” if any of the two conditions applies,
and “module” otherwise:

1. there exists A ∈ Σ ∩ (Pr(T0) \ Pr(T1)) such that
dependT1\T0

(A) ∩ Σ 3= ∅;
2. there exists A ∈ Σ∩ (Pr(T0) \ Pr(T1)) such that A ≡ C ∈

T1 for some C and
[

B ∈ Σ ∩ (Pr(T0)

\(Pr(T1) ∪ {A}))

dependT1\T0
(B) ⊇ depend≡T1\T0

(A)∩PPr(T1\T0)

Figure 2. Module checking in ELI

We now consider EL and ELI. Theorems 6 and 9 show that,
in the case of acyclic ALCI-TBoxes, (Σ, Σ∩NR)-dependencies
are the culprit for undecidability of semantic Σ-tautologies. In
EL and ELI, the situation is rather different. Here, dealing
with Σ-dependencies (and thus also (Σ, Σ∩NR)-dependencies)
is trivial.

Lemma 11. Let L be EL or ELI. If T is an acyclic L-
terminology that contains a syntactic Σ-dependency, then T
is not a semantic Σ-tautology.

Proof. In any model I of an acyclic ELI-terminology T , from
X ∈ dependT (A) and XI = ∅ it follows that AI = ∅. The
lemma follows immediately.

Based on Lemma 11, we show that in EL and ELI, modules
can be decided and extracted in polytime. In what follows, we
work with acyclic EL-terminologies T that contain no trivial
axioms, i.e., no axiom in T is of the form A ≡ # (nor A ≡
' #, etc.). In acyclic EL-terminologies, any such A can be
eliminated by replacing it with #. Thus, it is harmless to
disregard trivial axioms.

Theorem 12. Let L be EL or ELI. For acyclic L-
terminologies T1 ⊇ T0 containing no trivial axioms and sig-
nature Σ ⊇ sig(T0), the following are equivalent:

• T0 is a strong semantic Σ-module of T1;
• T0 is a weak semantic Σ-module of T1.

It is decidable in polytime whether T0 is a weak/strong seman-
tic module of T1.

The polytime bound of Theorem 12 is established by the
algorithm in Figure 2, which takes as input acyclic ELI-
terminologies T1 ⊇ T0 and a signature Σ ⊇ sig(T0). In the
formulation of the algorithm, we use the following notation.
A concept name A ∈ NC directly ≡-depends on X ∈ NC ∪NR,
in symbols A ≺≡T X, iff there exists A ≡ C ∈ T such that
X occurs in C. Then, depend≡T (A) denotes the set of all X
such that (A, X) is in the transitive closure of ≺≡T . The algo-
rithm takes as input acyclic ELI-terminologies T1 ⊇ T0 and
a signature Σ ⊇ sig(T0).

Theorem 12 yields the interesting result that, for acyclic
ELI-terminologies, checking semantic modules is compu-
tationally simpler than subsumption, which is PSpace-
complete [7].

6 Module extraction
Based on the results given in the previous section, we de-
vise algorithms for extracting modules from acyclic ALCI-

Initialise: T0 = ∅.
Apply Rules 1 and 2 exhaustively, preferring Rule 1
Output T0.

1. if A ∈ Σ∪ sig(T0), α ∈ T1 \T0 has A on the left hand side,
and dependT1\T0

(A)∩(Σ∪sig(T0)) 3= ∅, set T0 := T0∪{α},
2. if α ∈ T1 \ T0 with A on the left-hand side and there is a

minimal subset Q ⊆ (Σ∪ sig(T0))∩ (Pr(T0) \Pr(T1)) such
that A ∈ Q and for some P ⊆ Q, the concept

CP,Q =
!

A∈P

A '
!

A∈Q\P

¬A

is not satisfiable in a one-point model of T1 \ T0, then
set T0 := T0 ∪ {α}.

Figure 3. Module extraction in ALCI

Initialise: T0 = ∅.
Apply Rules 1 and 2 exhaustively, preferring Rule 1
Output T0.

1. if A ∈ Σ∪ sig(T0), α ∈ T1 \T0 has A on the left hand side,
and dependT1\T0

(A)∩(Σ∪sig(T0)) 3= ∅, set T0 := T0∪{α}.
2. if A ∈ Σ ∪ sig(T0), A ≡ C ∈ T1 \ T0, and

[

B∈(Σ∪ sig(T0)) ∩ (Pr(T0)

\(Pr(T1) ∪ {A}))

dependT1\T0
(B) ⊇ depend≡T1\T0

(A)∩PPr(T1\T0),

set T0 := T0 ∪ {A ≡ C}.

Figure 4. Module extraction in ELI

and ELI-terminologies. We start with ALCI, for which an
extraction algorithm is given in Figure 3. It takes as input
an acyclic ALCI-terminology T1 and a signature Σ, and it
outputs a module T0 as described by the following theorem.

Theorem 13. Let T1 be an acyclic ALCI-terminology and
Σ a signature. The output T0 of the algorithm in Figure 3
is the unique smallest strong (equivalently, weak) semantic
Σ∪sig(T0)-module of T1 such that T1\T0 contains no syntactic
Σ-dependencies.

The condition that T1 \ T0 contains no syntactic Σ-
dependencies is essential. Without it, we would have smaller
modules, but cannot extract them automatically. The latter
follows from Theorem 6 and the fact that, without the men-
tioned condition, the smallest semantic Σ-module of a ter-
minology T1 is empty iff T1 is a semantic Σ-tautology. Also
observe that the module T0 extracted by the algorithm is not
necessarily formulated in Σ, but may contain additional sym-
bols. This is clearly unavoidable even in simple cases, e.g.
when extracting a semantic {A, B}-module from the termi-
nology {A / B ' B′}. If implemented carefully, the check
whether Rule 2 is applicable to a given axiom α ∈ T1 \ T0 can
be done in Σp

2 (and is also hard for Σp
2). Apart from this, the

algorithm runs in polynomial time.
The algorithm for module extraction in ALCI first checks

for syntactic Σ-dependencies and then applies (a variation
of) module checking. When extracting modules from ELI-

Figure 5. Sizes of ⊥-local modules and semantic modules

terminologies, we apply the same strategy. In contrast to
ALCI, we know from Lemma 11 that if T0 ⊆ T1 is such that
T1\T0 contains a Σ-dependency, then T0 is not a weak (equiva-
lently, strong) Σ-module of T1. It follows that we do not need
the additional condition on modules from Theorem 13, i.e.,
that T1 \ T0 contains no Σ-dependency. The extraction algo-
rithm for ELI is given in Figure 4. It takes as input an acyclic
ELI-terminology T1 and a signature Σ, and it outputs a se-
mantic module T0 as described by the following theorem.

Theorem 14. Let T1 be an acyclic ELI-terminology contain-
ing no trivial axioms and Σ a signature. The output T0 of the
algorithm in Figure 4 is the unique smallest strong (equiva-
lently, weak) semantic Σ ∪ sig(T)-module of T1.

Example 15. Consider again the scenario described in Ex-
ample 2, but now suppose that T0 is the output of the al-
gorithm of Figure 4 applied to Snomed ct and Σ. Then it
does not make any difference whether the user imports T0 or
Snomed ct into T . Experimental results in the next section
show that T0 is often much smaller than Snomed ct.

7 Experiments with MEX

To evaluate our approach to module extraction, we have car-
ried out a number of experiments on the medical terminol-
ogy Snomed ct, an acyclic EL-terminology that additionally
comprises role inclusion statements of the form r / s (role
hierarchies) and r ◦s / r (right identities). A variation of the
algorithm in Figure 4 that addresses this case is presented in
the technical report accompanying this paper. It was imple-
mented in the system MEX, which is written in OCaml.

The main aim of our experiments is to compare the size
of modules extracted by MEX with the size of minimal ⊥-
local modules as introduced in [6]. For EL, ⊥-local modules
coincide with the modules extracted by the extraction feature
of the CEL reasoner [14], which is used in the experiments
below. We have used the Snomed ct version of February
2005, which comprises 379 691 axioms. Experiments are based
on randomly selected signatures of size between 100 and 1 000
symbols and were carried out for 1 000 different signatures of
each size. Figure 5 shows the maximal, minimal, and average
module sizes depending on the size of the signature. Note that,
in every case, the largest semantic module is smaller than the
smallest ⊥-local module.

Additionally to generating small modules, MEX is rather ef-
ficient regarding runtime and memory consumption. We have
carried out the experiments on a PC with Intel R© CoreTM

2 CPU at 2.13 GHz and with 3 GB of RAM. For all signature
sizes in Figure 5, the average time of module extraction was
4.1 seconds and at most 124.7 MB of memory were consumed.
This performance does not significantly decrease with large
signature sizes: the average time and space consumed by MEX
when extracting a module for 10 000 symbols in 5 seconds and
121.7 MByte. For 100 000 symbols, it is merely 9.6 seconds
and 134.6 MByte.

8 Discussion
We have presented semantic notions of a module in a DL
terminology and algorithms for checking and extracting such
modules. Our experiments show that, at least in lightweight
DLs of the EL family, highly efficient practical implementa-
tions of our algorithms are possible. We are optimistic that
also the extraction algorithm for ALCI can be implemented
in a reasonably efficient way.

9 Acknowledgements
The authors were supported by EPSRC grant EP/E065279/1.

REFERENCES
[1] F. Baader and C. Lutz and B. Suntisrivaraporn, ‘CEL—A

Polynomial-time Reasoner for Life Science Ontologies’, in
Proc. of IJCAR’06, pp. 287–291, (2006).

[2] A. Borgida, ‘On importing knowdledge from DL ontologies:
some intuitions and problems’, in Proc. of DL-07, (2007).

[3] P. Doran, V. Tamma, and L.Iannone, ‘Ontology module ex-
traction for ontology reuse:an ontology engineering perspec-
tive’, in Proc. of CIKM-07, (2007).

[4] J. Gennari et al., ‘The evolution of protégé: an environment
for knowledge-based systems development’, Int. J. Hum.-
Comput. Stud., 58(1), 89–123, (2003).

[5] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler.,
‘A logical framework for modularity of ontologies’, in Proc of
IJCAI’07. AAAI Press, (2007).

[6] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler,
‘Just the right amount: extracting modules from ontologies’,
in Proc. of WWW-07, pp. 717–726, (2007).

[7] C. Haase and C. Lutz, ‘Complexity of subsumption in the
EL family of description logics: Acyclic and cyclic TBoxes’,
in Proc. of ECAI-08. (2008).

[8] B. Konev, C. Lutz, D. Walther, and F. Wolter, ‘Semantic
modularity and module extraction in description logics’, Tech-
nical Report, (2007).

[9] C. Lutz, D. Walther, and F. Wolter, ‘Conservative extensions
in expressive description logics’, in Proc. of IJCAI-07. AAAI
Press, (2007).

[10] C. Lutz, ‘Complexity of terminological reasoning revisited’,
in Proc. of LPAR’99, number 1705 in LNAI, pp. 181–200.
Springer, (1999).

[11] C. Lutz and F. Wolter, ‘Conservative extensions in the
lightweight description logic EL’, in Proc. of CADE-2007.
Springer, (2007).

[12] J. Seidenberg and A.L. Rector, ‘Web ontology segmentation:
analysis, classification and use’, in Proc. of WWW-06, pp.
13–22, (2006).

[13] K.A. Spackman, ‘Managing clinical terminology hierarchies
using algorithmic calculation of subsumption: Experience
with SNOMED-RT’, JAMIA, (2000).

[14] B. Suntisrivaraporn, ‘Module Extraction and Incremental
Classification: A Pragmatic Approach for EL+ Ontologies’,
in Proc. of ESWC-2008. Springer, (2008).

