
Two Upper Bounds for Conjunctive Query

Answering in SHIQ

Carsten Lutz

Institut für Theoretische Informatik
TU Dresden, Germany

lutz@tcs.inf.tu-dresden.de

Abstract. We have shown recently that, in extensions of ALC that
involve inverse roles, conjunctive query answering is harder than satis-
fiability: it is 2-ExpTime-complete in general and NExpTime-hard if
queries are connected and contain at least one answer variable [9]. In
this paper, we show that, in SHIQ without inverse roles (and with-
out transitive roles in the query), conjunctive query answering is only
ExpTime-complete and thus not harder than satisfiability. We also show
that the NExpTime-lower bound from [9] is tight.

1 Introduction

When description logic (DL) knowledge bases are used in applications with a
large amount of instance data, ABox querying is the most important reasoning
service. The basic query mechanism for ABoxes is instance retrieval, i.e., to re-
turn all the individuals from an ABox that are known to be instances of a given
query concept. Instance retrieval can be viewed as a well-behaved generalization
of subsumption and satisfiability, which are the standard reasoning problems
on TBoxes. In particular, algorithms for the latter can typically be adapted to
instance retrieval in a straightforward way, and the computational complexity
coincides in almost all cases (see [13] for an exception). In 1998, Calvanese et al.
introduced conjunctive query answering as a more powerful query mechanism for
DL ABoxes. Since then, conjunctive queries have received considerable interest
in the DL community, see for example the papers [1–4, 6, 7, 11]. In a nutshell, con-
junctive query answering generalizes instance retrieval by admitting also queries
whose relational structure is not tree-shaped. This generalization is both natural
and useful because the relational structure of ABoxes is usually not tree-shaped
either.

In contrast to the case of instance retrieval, developing algorithms for con-
junctive query answering is not merely a matter of extending algorithms for
satisfiability, but requires developing new techniques. In particular, all hitherto
known algorithms for DLs that include ALC as a fragment run in deterministic
double exponential runtime, in contrast to algorithms for deciding subsumption
and satisfiability which require only exponential time even for DLs much more
expressive than ALC. In the recent paper [9], we have shown that this increase in

2

runtime cannot be avoided in extensions of ALC that include inverse roles. More
precisely, we have proved the following two results about ALCI, the extension
of ALC with inverse roles:

(1) Conjunctive query answering in ALCI is 2-ExpTime-complete.

(2) Rooted conjunctive query answering in ALCI is co-NExpTime-hard.

Here, rooted means that conjunctive queries are required to be connected and
contain at least one answer variable. The name “rooted” derives from the fact
that every match of such a query is rooted in at least one ABox individual.

This paper is intended as a sequel to [9], providing the upper bounds that
have been announced in [9] but not proved in detail. We show that

(3) Conjunctive query answering in SHQ, i.e., SHIQ without inverse roles, is
ExpTime-complete.

(4) Rooted conjunctive query answering in SHIQ is in co-NExpTime, thus
co-NExpTime-complete.

In particular, (3) shows that inverse roles are indeed the culprit for 2-ExpTime-
hardness of conjunctive query answering in ALCI and SHIQ. For both (3) and
(4), we assume that non-simple roles (a common generalization of transitive roles
in SHIQ) are disallowed in the conjunctive query. We have learned that (3) has
been proved independently and in parallel in [12] for the description logic ALCH.

2 Preliminaries

We assume standard notation for the syntax and semantics of SHIQ knowledge
bases [5]. In particular, NC, NR, and NI are countably infinite and disjoint sets
of concept names, role names, and individual names. A TBox is a set of concept
inclusions C v D, role inclusions r v s, and transitivity statements Trans(r),
and a knowledge base (KB) is a pair (T ,A) consisting of a TBox T and an ABox
A. We write K |= s v r if the role inclusion s v r is true in all models of K, and
similarly for K |= Trans(r). It is easy to see and well-known that “K |= s v r”
and “K |= Trans(r)” are decidable in polytime [5]. As usual, a role is called simple
if there is no role s such that K |= s v r, and K |= Trans(s). We write Ind(A)
to denote the set of all individual names in an ABox A. Throughout the paper,
the number n inside number restrictions (≥n r C) and (≤n r C) is assumed to
be coded in binary.

Let NV be a countably infinite set of variables. An atom is an expression
C(v) or r(v, v′), where C is a SHIQ concept, r is a (possibly inverse) role, and
v, v′ ∈ NV. A conjunctive query q is a finite set of atoms. We use Var(q) to denote
the set of variables occurring in the query q. The set Var(q) is partitioned into
answer variables and (existentially) quantified variables. Let A be an ABox, I a
model of A, q a conjunctive query, and π : Var(q) → ∆I a total function such that
for every answer variable v ∈ Var(q), there is an a ∈ NI such that π(v) = aI .
We write I |=π C(v) if π(v) ∈ CI and I |=π r(v, v′) if (π(v), π(v′)) ∈ rI . If
I |=π at for all at ∈ q, we write I |=π q and call π a match for I and q. We say

3

that I satisfies q and write I |= q if there is a match π for I and q. If I |= q
for all models I of a KB K, we write K |= q and say that K entails q. The
query entailment problem is, given a knowledge base K and a query q, to decide
whether K |= q. This is the decision problem corresponding to query answering
(which is a search problem), see e.g. [4] for details. Observe that we do not
admit the use of individual constants in conjunctive queries. This assumption
is only for simplicity, as such constants can easily be simulated by introducing
additional concept names [4].

It has been observed many times that, when deciding conjunctive query an-
swering in a DL, it suffices to concentrate on certain regular models of the input
knowledge base K. In the following, we describe these models for SHQ. Let J
be an interpretation. A forest base J is an interpretation that interprets transi-
tive roles in an arbitrary way (i.e., not necessarily transitively) and satisfies the
following conditions:

(i) ∆J is a prefix-closed subset of
� +;

(ii) if (d, e) ∈ rJ , then e, d ∈
�

or e = d · c for some c ∈
�

.

Elements of ∆J ∩
�

are the roots of J . An interpretation I is called the K-closure
of J if I is identical to J except that, for all roles r, we have

rI = rJ ∪
⋃

K|=svr∧K|=Trans(s)

(sJ)+.

A model I of a knowledge base K = (T ,A) is a forest model of K if

(iii) I is the K-closure of a forest base interpretation J , and
(iv) for every root d of J , there is an a ∈ Ind(A) such that aI = d.

The roots of I are defined as the roots of J .

Proposition 1. Let K be an SHQ-knowledge base and q a conjunctive query.
If K 6|= q, then there is a forest model I of K such that I 6|= q.

3 Query Entailment in SHQ is in ExpTime

We give an algorithm for query entailment in SHQ that runs in ExpTime,
and thus establish ExpTime-completeness of this problem. Our algorithm is
inspired by the 2ExpTime algorithm for conjunctive query entailment in SHIQ
with non-simple roles allowed in the query, as given in [4]. On the one hand, our
algorithm is simpler because we allow only simple roles in the query. On the other
hand, we aim at an ExpTime upper bound which poses additional challenges. In
this section, it is convenient to assume that conjunctive queries do not contain
answer variables. This assumption can be made w.l.o.g. since answer variables
can be simulated using quantified variables and an additional concept name.

The general idea of the algorithm is to (Turing-)reduce query entailment in
SHQ to ABox consistency in SHQ∩, i.e., SHQ extended with role conjunction:

4

given a SHQ-knowledge base K and a query q, we produce SHQ∩-knowledge
bases K1, . . . ,Kn such that K 6|= q iff any of the Ki is consisent. This is done such
that n is exponential in the size of K and q, and the size of each knowledge base
is polynomial in the size of K and q. Since knowledge base consistency in SHQ∩

can be decided in ExpTime, we obtain the desired ExpTime upper bound for
query entailment in SHQ.

Throughout this section, we will sometimes view a conjunctive query as a
directed graph Gq = (Vq, Eq) with Vq = Var(q) and Eq = {(v, v′) | r(v, v′) ∈ q
for some r ∈ NR}. We call q tree-shaped if Gq is a tree. If q is tree-shaped and v
is the root of Gq, we call v the root of q.

In the following, we introduce three notions that are central to the construc-
tion of the knowledge bases K1, . . . ,Kn: fork rewritings, splittings, and spoilers.
We start with fork rewritings, and say that

– q′ is obtained from q by fork elimination if q′ is obtained from q by selecting
two atoms r(v′, v) and s(v′′, v) with v′ 6= v′′ and identifying v′ and v′′;

– q′ is a fork rewriting of q if q′ is obtained from q by repeated (but not
necessarily exhaustive) fork elimination;

– q′ is a maximal fork rewriting of q if q′ is a fork rewriting and no further
fork elimination is possible in q′.

The following lemma allows us to speak of the maximal fork rewriting of a
conjunctive query. It is proved in the appendix.

Lemma 1. Modulo variable renaming, every conjunctive query has a unique
maximal fork rewriting.

The purpose of splittings is to describe such a partition without reference to
a concrete model I and a concrete match π. Let K be an SHQ-knowledge
base. A splitting of q w.r.t. K is a tuple Π = 〈R, T, S1, . . . , Sn, µ, ν〉, where
R, T, S1, . . . , Sn is a partitioning of Var(q), µ : {1, . . . , n} → R assigns to each
set Si a variable µ(i) in R, and ν : R → Ind(A) assigns to each variable in R
an individual in A. A splitting has to satisfy the following conditions, where q|V
denotes the restriction of q to V ⊆ Var(q):

(a) some variables v are mapped to a root π(v) of I;
(b) other variables v are mapped to a non-root π(v) of I, and there is a variable

v′ such that v is reachable from v′ in the directed graph Gq and v′ is mapped
to a root π(v′) of I;

(c) yet other variables v are mapped to non-roots π(v) of I, but do not satisfy
Condition (b).

The purpose of splittings is to describe such a partition without reference to
a concrete model I and a concrete match π. Let K be an SHQ-knowledge
base. A splitting of q w.r.t. K is a tuple Π = 〈R, T, S1, . . . , Sn, µ, ν〉, where
R, T, S1, . . . , Sn is a partitioning of Var(q), µ : {1, . . . , n} → R assigns to each
set Si a variable µ(i) in R, and ν : R → Ind(A) assigns to each variable in R
an individual in A. A splitting has to satisfy the following conditions, where q|V
denotes the restriction of q to V ⊆ Var(q):

5

1. the query q|T is a variable-disjoint union of tree-shaped queries;
2. the queries q|Si

, 1 ≤ i ≤ n, are tree-shaped;
3. if r(v, v′) ∈ q, then one of the following holds: (i) v, v′ belong to the same

set R, T, S1, . . . , Sn or (ii) v ∈ R, µ(i) = v, and v′ ∈ Si is the root of q|Si
;

4. for 1 ≤ i ≤ n, there is an atom r(µ(i), v0) ∈ q, with v0 the root of q|Si
.

Intuitively, the R component of a splitting corresponds to Case (a) above, the
S1, . . . , Sn correspond to Case (b), and T corresponds to Case (c).

Before we introduce spoilers, we establish a central lemma about splittings.
We start with some preliminaries. As already noted, we use SHQ∩ to denote the
extension of SHQ with a role conjunction operator “∩”. However, we restrict
the use of role conjunction to simple roles. Let q be a tree-shaped conjunctive
query. We define a SHQ∩-concept Cq,v for each variable v ∈ Var(q):

– if v is a leaf in Gq, then Cq,v = u
C(v)∈q

C;

– otherwise,

Cq,v = u
C(v)∈q

C u u
(v,v′)∈Eq

∃(
⋂

s(v,v′)∈q

s).Cq,v′).

If v is the root of q, we use Cq to abbreviate Cq,v. The following lemma establishes
a connection between forest models and splittings of fork rewritings.

Lemma 2. Let K = (T ,A) be a knowledge base, I a forest model of K, and q
a conjunctive query. Then I |= q iff there exists a fork rewriting q′ of q and a
splitting 〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K such that

1. for each disconnected component q̂ of T , there is a d ∈ ∆I with d ∈ (Cbq)
I ;

2. if C(v) ∈ q′ with v ∈ R, then ν(v)I ∈ CI ;
3. if r(v, v′) ∈ q′ with v, v′ ∈ R, then (ν(v)I , ν(v′)I) ∈ rI ;
4. for 1 ≤ i ≤ n, we have

ν(µ(i))I ∈
(
∃(

⋂

s(µ(i),v0)∈q′

s).Cq′|Si

)I

with v0 root of q′|Si
.

Proof. For the “only if” direction, let I |=π q. We construct a fork rewriting q′

of q by exhaustively eliminating all forks r(v′, v), s(v′′, v) ∈ q with v′ 6= v′′ and
π(v′) = π(v′′). Now define a splitting Π = 〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K
as follows:

– v ∈ R iff π(v) is a root of I; set ν(v) to some individual name a ∈ Ind(A)
such that aI = π(v) (such an a exists by Point (iv) of the definition of forest
models);

– v ∈ T iff there is no variable v′ such that π(v′) is a root of I and v is
reachable from v′ in the directed graph Gq′ ;

– for each variable v such that π(v) is a non-root of I and there is an r(v′, v) ∈
q′ with π(v′) a root of I, generate a set Si. The elements of Si are those
variables that are reachable in the directed graph Gq′ from v. We set µ(i) :=
v′ (this v′ is unique by the construction of q′ from q).

6

It is not hard to see that R, T, S1, . . . , Sn is a partition of Var(q′). In particular,
the S1, . . . , Sn are mutually disjoint and disjoint from R since I is a forest model.
To show that Π is a splitting of q′ w.r.t. K, we prove that Conditions 1 to 4 of
splittings are satisfied. Conditions 1 and 2 are a consequence of I being a forest
model and the fact that q contains only simple roles. Condition 3 is due to the
forest shape of I and Condition 4 is obvious by construction of Π. It remains
to show that Conditions 1 to 4 of Lemma 2 are satisfied. Conditions 2 and 3 are
obvious by construction of Π. And finally, Conditions 1 and 4 follow from the
construction of Π and the fact that if I |=π q̂ where q̂ is a tree-shaped query
with root v, then π(v) ∈ (Cbq)

I .
Conversely, assume that there is a fork rewriting q′ of q and a splitting

〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K such that Conditions 1 to 4 of Lemma 2 are
satisfied. Using Conditions 1-4 of splittings and the definition of the concepts Cbq

and Cq′|Si
, it is straightforward to construct a match π such that I |=π q. The

construction starts with setting π(v) = ν(v)I for all v ∈ R, and then proceeds
along edges r(v, v′) in the tree-shaped queries q|S1

, . . . , q|Sn
and the tree-shaped

components of q|T . o

Let K = (T ,A) be a SHQ-knowledge base, q a conjunctive query, and Π =
〈R, T, S1, . . . , Sn, µ, ν〉 a splitting of q w.r.t. K such that q1, . . . , qk are the (tree-
shaped) disconnected components of q|T . A SHQ∩-knowledge base (T ′,A′) is a
spoiler for q, K, and Π if one of the following conditions hold:

1. > v ¬Cqi
∈ T ′, for some i with 1 ≤ i ≤ k;

2. there is an atom C(v) ∈ q with v ∈ R and ¬C(ν(v)) ∈ A′;
3. there is an atom r(v, v′) ∈ q with v, v′ ∈ R and ¬r(ν(v), ν(v′)) ∈ A′;
4. ¬D(ν(µ(i))) ∈ A′ for some i with 1 ≤ i ≤ n, and where

D = ∃(
⋂

s(µ(i),v0)∈q

s).Cq|Si
with v0 root of q|Si

.

A SHQ∩-knowledge base K′ = (T ′,A′) is a spoiler for q and K if (i) for every
fork rewriting q′ of q and every splitting Π of q′ w.r.t. K, K′ is a spoiler for q′,
K, and Π; and (ii) K′ is minimal with Property (i).

Lemma 3. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then K 6|= q iff there is a spoiler (T ′,A′) for q and K such that (T ∪T ′,A∪A′)
is consistent.

Proof. (sketch) Assume that K 6|= q and let I be a model of K with I 6|= q. By
Proposition 1, we may assume that I is a forest model. We can now assemble
a spoiler K′ = (T ′,A′) for q and K such that (T ∪ T ′,A ∪ A′) is consistent
by doing the following for every fork rewriting q′ of q and every splitting Π =
〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K. By Lemma 2, I 6|= q implies that, for q′

and Π, at least one of Conditions 1 to 4 of Lemma 2 are violated. By the
corresponding condition from the definition of a spoiler for q′, K, and Π, this
gives us an axiom to add to K′ such that K′ is a spoiler for q′, K, and Π.

7

Conversely, assume that there is a spoiler K′ = (T ′,A′) for q and K such
that (T ∪T ′,A∪A′) is consistent, and let I be a model of (T ∪T ′,A∪A′). We
can w.l.o.g. assume that I is a forest model. Since I is a model of K, it suffices
to show that I 6|= q. Assume to the contrary that I |= q. By Lemma 2, there is
a fork rewriting q′ of q and a splitting Π = 〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K
such that Conditions 1 to 4 of Lemma 2 are satisfied. By definition of spoilers
and since I is a model of K′, this means that K′ is not a spoiler for q′, K, and
Π. This is a contradiction to K′ being a spoiler for q and K. o

Lemma 3 suggests the following algorithm for deciding conjunctive query en-
tailment in SHQ: given K = (T ,A) and q, enumerate all spoilers (T ′,A′) for
q and K, return “yes” if for all such spoilers, (T ∪ T ′,A ∪ A′) is inconsistent,
and “no” otherwise. To prove that this algorithm runs in ExpTime, we have to
show that there are at most exponentially many spoilers for q and K (which can
be computed in exponential time), that each spoiler is of size polynomial in the
size of q and K, and that consistency of SHQ∩-knowledge bases can be decided
in ExpTime. The latter can be proved by an easy variation of Lemma 6.19 in
[14]. It relies on the fact that we restrict the application of role conjunction to
simple roles.

Proposition 2. Consistency of SHQ∩-KBs is ExpTime-complete.

Now for the number and size of spoilers for q and K. We start with a central
lemma about fork rewritings. For a conjunctive query q and v ∈ Var(q), let
Reachq(v) denote the set of all variables in Var(q) that are reachable from v in
the directed graph Gq. Define

Trees(q) := {q|Reachq(v) | v ∈ Var(q) and q|Reachq(v) is tree-shaped}.

Clearly,

(†) for q∗ the maximal fork rewriting of q, the cardinality of Trees(q∗) is polyno-
mial in the size of q.

Together with the following lemma, this is a crucial observation. The lemma is
proved in the appendix.

Lemma 4. Let q be a conjunctive query, q′ a fork rewriting of q, and Π =
〈R, T, Sv1

, . . . , Svn
, µ, ν〉 a splitting of q′ with q′1, . . . , q

′
k the disconnected com-

ponents of q′|T . Moreover, let q∗ be the maximal fork rewriting of q. Then
q′i ∈ Trees(q∗) for 1 ≤ i ≤ k and q′|Si

∈ Trees(q∗) for 1 ≤ i ≤ n.

Together with (†), the next lemma implies that the size of each spoiler is polyno-
mial in the size of K and q. We say that a role conjunction s1 ∩ · · ·∩ sp occurs in
a conjunctive query q if there are v, v′ such that {r | r(v, v′) ∈ q} = {s1, . . . , sp}.
The proof of the following lemma is based on the direct correspondence between
Points 1-4 of Lemma 5 and q Points 1-4 of the definition of spoilers for q and K.

Lemma 5. Let K = (T ,A) be a SHQ-knowledge base, q a conjunctive query,
q∗ its maximal fork rewriting, and K′ = (T ′,A′) a spoiler for q and K. Then K′

contains only axioms of the following form:

8

1. > v ¬Cq′ with q′ ∈ Trees(q∗);
2. ¬C(a, b) with a, b ∈ Ind(A) and C occurring in q;
3. ¬r(a, b) with a, b ∈ Ind(A) and r occurring in q;
4. ¬D(a) with a ∈ Ind(A) and D = ∃(s1 ∩ · · · ∩ sp).Cq′ , where s1 ∩ · · · ∩ sp

occurs in q∗ and q′ ∈ Trees(q∗);

It is now easy to establish the intended upper bounds on the number of spoil-
ers. The set of all spoilers can be computed by a straightforward enumeration
approach.

Lemma 6. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then the number of spoilers for q and K is exponential in the size of q and K
and the set of all spoilers can be computed in time exponential in the size of q
and K

Proof. The number of spoilers for q and K is exponential in the size of q and
K by Lemma 5 and since (i) the cardinality of Ind(a) is bounded polynomially
in the size of K; (ii) the number of role conjunctions occurring in the maximal
fork rewriting q∗ of q is bounded polynomially in the size of q∗ and thus of q;
and (iii) by (†), the cardinality of Trees(q∗) is polynomial in the size of q.

To compute all spoilers in exponential time, we can proceed as follows. Enu-
merate all exponentially many candidates for spoilers, i.e., all knowledge bases
K′ satisfying the conditions listed in Lemma 5. To check whether such a K′ is
a spoiler, enumerate all fork rewritings q′ of q, of which there are exponentially
many in the size of q. Then enumerate all splittings Π of q′ w.r.t. K. Their
number is polynomial in the size of K and exponential in the size of q. Finally,
it can be checked in time polynomial in q and K whether K′ is a spoiler for q′,
K, and Π. If the test succeeds for every q′ and Π, K′ is a spoiler for q and K.
Otherwise, it is not. o

We have thus established the desired ExpTime upper bound. A corresponding
lower bound is trivial to show by a reduction of concept satisfiability.

Theorem 1. Conjunctive query entailment in SHQ is ExpTime-complete.

4 Rooted Query Entailment in SHIQ is in co-NExpTime

We show that rooted query entailment in SHIQ is in co-NExpTime. Together
with the lower bound in [9], we thus obtain co-NExpTime-completeness.

We start with some preliminaries. A relaxed forest base is defined in the same
way as a forest base, except that Condition (ii) is relaxed as follows:

(ii)′ if (d, e) ∈ rJ , then e, d ∈
�

or e = d · c or d = e · c for some c ∈
�

.

A relaxed forest model is then defined analogously to a forest model, but based
on a relaxed forest base instead of a forest base. The degree of a relaxed forest
base I is the maximum cardinality of any set N ⊆

�
such that, for some d ∈

� ∗,
we have {d · c | c ∈ N} ⊆ ∆I , and the degree of a relaxed forest model is that of

9

the underlying relaxed forest base. Note that if I is of degree k, it can have at
most k roots. We use |K| to denote the size of the knowledge base K, i.e., the
number of symbols needed to write it. Just as for Proposition 3, the proof of the
following result is standard.

Proposition 3. Let K be a SHIQ-knowledge base and q a conjunctive query.
If K 6|= q, then there is a relaxed forest model I of K with degree at most 2|K|

and such that I 6|= q.

The main idea of our NExpTime-algorithm for query non-entailment in SHIQ
is as follows. Let K be a knowledge base and q a conjunctive query. To show that
K 6|= q, by Proposition 3 it suffices to find a forest model I of K with degree
at most 2|K| such that I 6|= q. Now, the crucial observation is that I 6|= q can
be checked by looking only at an “initial part” of I. To see this, assume that
I |=π q. For d ∈ ∆I , the depth ||d|| of d in I is the length of the word d minus
1. Since we are interested in rooted query containment and I is a forest model,
q has at least one answer variable v and thus π(v) is a root of I. Since q is
connected and contains only simple roles, ||π(u)|| is bounded by the size |q| of q
for every u ∈ var(q). It follows that we can check whether I |= q by looking only
at elements d ∈ ∆I with ||d|| ≤ |q|.

Thus, we can decide non-entailment of a query q by a knowledge base K by
guessing an initial part J of a forest model of K such that J is of degree at most
2|K| and of depth at most |q|, and then verifying that (i) J does not match q and
(ii) J can indeed be extended to a full forest model I of K. When guessing the
initial part J , we also have to guess some additional information that is used to
ensure (ii). To describe this additional information, we introduce the notion of
a type.

W.l.o.g., we assume that all concepts in the input knowledge base K = (T ,A)
are in NNF, i.e., negation occurs only in front of concept names. For each concept
C in NNF, we use ∼C to denote the NNF of ¬C, and clK(C) to denote the
smallest set such that

1. C ∈ clK(C),
2. clK(C) is closed under subconcepts and ∼, and
3. if ∀r.D ∈ clK(C), K |= Trans(s), and K |= s v r, then ∀s.D ∈ clK(C);

Let CT = uDvE∈T (∼D t E). The closure cl(K) of K is defined as clK(CT) ∪⋃
C(a)∈A clK(C).

Definition 1. Let K = (T ,A) be a knowledge base in NNF with T = {> v CT }.
A type for K is a set t ⊆ cl(K) such that

– A ∈ t iff ¬A /∈ t, for all concept names A ∈ cl(K);
– C u D ∈ t implies C ∈ t and D ∈ t, for all C u D ∈ cl(K);
– C t D ∈ t implies C ∈ t or D ∈ t, for all C t D ∈ cl(K);
– ∀r.D ∈ t, K |= Trans(s), and K |= s v r implies ∀s.D ∈ t;
– CT ∈ t.

10

We now formalize the initial part of a forest model guessed by the algorithm,
which we call a K, q-witness. In what follows, the depth of a finite forest base I
is the maximum depth of all elements of ∆I .

Definition 2. Let K = (T ,A) be a knowledge base in NNF and q a conjunctive
query. A K, q-witness is a pair (I, σ) with I a finite forest base of degree at most
2|K| and depth at most |q| and σ a mapping that assigns to each d ∈ ∆I a type
σ(d) for K such that for all d, e ∈ ∆I ,

1. d ∈ AI iff A ∈ σ(d), for all concept names A ∈ cl(K);
2. if ∃r.C ∈ σ(d) and ||d|| < |q|, then there is an e ∈ ∆I such that (d, e) ∈ rI

and C ∈ σ(e);
3. if ∀r.C ∈ σ(d) and (d, e) ∈ rI , then C ∈ σ(d);
4. if ∀r.C ∈ σ(d), (d, e) ∈ rI , and K |= Trans(r), then ∀r.C ∈ σ(e);
5. if (> n r C) ∈ σ(d) and ||d|| < |q|, then there are at least n distinct elements

e1, . . . , en such that (d, ei) ∈ rI and C ∈ σ(ei) for 1 ≤ i ≤ n;
6. if (6 n r C) ∈ σ(d), then there are at most n distinct elements e1, . . . , en

such that (d, ei) ∈ rI and C ∈ σ(ei) for 1 ≤ i ≤ n;
7. if r(a, b) ∈ A, then (aI , bI) ∈ rI ;
8. if C(a) ∈ A, then C ∈ σ(aI);
9. if r v s ∈ T , then rI ⊆ sI ;

10. I 6|= q.

Fix a concept name Az and a role name rz not occurring in K. Moreover, let
RK be the set of all roles occurring in K. For d ∈ ∆I with d = e · c, c ∈

�
, and

||d|| = |q|, define

Cd := u
C∈σ(d)

C u ∃rz.(u
C∈σ(e)

C u Az) u u
r∈RK|(d,e)/∈rI

∀r.¬Az

The K, q-witness (I, σ) is good iff for all d = e·c ∈ ∆I as above, Cd is satisfiable
w.r.t. the TBox T ∪ {rz v r | (d, e) ∈ rI}.

Intuitively, a K, q-witness being “good” means that it can be extended to a full
forest model of K. The use of both d and e in the definition of Cd is similar to
the use of double blocking in tableau algorithms for SHIQ, see e.g. [5].

For proving the following lemma, we need the notion of a tree model. An
interpretation J is called a tree base if it is a forest base and there is a unique
c ∈

�
such that c ∈ ∆J (called the root of J). A model I of a concept C is a

tree model if I is the K-closure of a tree base J with root c and c ∈ CI .

Lemma 7. Let K be a knowledge base in NNF and q a conjunctive query. We
have K 6|= q iff there is a good K, q-witness (I, q).

Proof. (sketch) For the “only if” direction, assume that K 6|= q. By Proposi-
tion 3, there is a forest model I of K of degree at most 2|K| such that I 6|= q.
Let J be the forest base underlying I, and let J ′ be the restriction of J to the
elements of ∆J that are of depth at most |q|. Define a mapping σ, which assigns
to each d ∈ ∆J ′

the set σ(d) := {C ∈ cl
+(K) | d ∈ CI}. It can be verified that

(J ′, σ) is a good K, q-witness.

11

For the “if” direction, assume that there is a good K, q-witness (I, σ). Let
d1, . . . , dk be the elements in ∆I such that ||di|| = |q|. Moreover, let di = ei · ci

for 1 ≤ i ≤ k. Since (I, σ) is good, we know that there are models I1, . . . , Ik for
Cd1

, . . . , Cdk
, respectively. We may w.l.o.g. assume that these models are tree

models. For 1 ≤ i ≤ k, let ri be the root of Ii and let wi ∈ ∆Ii be such that

(ri, wi) ∈ rIi
z and wi ∈ (u

C∈σ(e)
C u Az)

Ii .

Such wi exist by definition of Cdi
. Modify I1, . . . , Ik into interpretations I ′

1, . . . , I
′
k

by dropping from each Ii the root ri and all elements from {wi}·
� ∗. Now rename

the elements of I ′
1, . . . , I

′
k such that, for 1 ≤ i < j ≤ k, we have ∆I′

i ∩ ∆I = ∅

and ∆I′

i ∩∆I′

j = ∅. Define a new interpretation J as the disjoint union of I and
I ′

1, . . . , I
′
k. Next, modify J into an interpretation J ′ by setting

rJ := rJ
′

∪ {(di, d) | (ri, d) ∈ rIi and 1 ≤ i ≤ k}

∪ {(d, di) | (d, ri) ∈ rIi and 1 ≤ i ≤ k}.

Finally, let I ′ be the K-closure of J ′. It is possible to show that I ′ is a model
of K and I ′ 6|= q. o

By Lemma 7, the following algorithm decides non-entailment of a query q by
a knowledge base K: guess a pair (I, σ) with I a forest base of degree at most
2|K| and depth at most |q| and σ a mapping that assigns to each d ∈ ∆I a type
σ(d) for K. Then check whether (I, σ) is a good K, q-witness, return “yes” if it
is and “no” otherwise. Since the degree of I is at most 2|K| and the depth at
most |q|, the size of (I, σ) is exponential in |K| + |q|. Checking whether (I, σ)
is a K, q-witness by verifying Conditions 1-12 from Definition 2 can be done in
time exponential in |K| + |q|. Since the concepts Cd are of size polynomial in
|K| + |q| and satisfiability in SHIQ can be decided in ExpTime, we can check
in exponential time whether (I, q) is good. We thus obtain the following result.

Theorem 2. Rooted query entailment in SHIQ is co-NExpTime-complete.

References

1. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS’98, pages 149–158, 1998.

2. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of KR’06, pages
260–270. AAAI Press, 2006.

3. B. Glimm, I. Horrocks, I., and U. Sattler. Conjunctive query entailment for SHOQ.
In Proc. of DL’07, volume 250 of CEUR-WS, 2007.

4. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Answering conjunctive queries in
the SHIQ description logic. JAIR, 31:150–197, 2008.

5. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer, 1999.

12

6. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In Proc. of CADE-17, number 1831 in LNCS, pages 482–496.
Springer, 2000.

7. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very ex-
pressive description logics. In Proc. of IJCAI’05, pages 466–471. Professional Book
Center, 2005.

8. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable
fragment of OWL 1.1. In Proc. of ISWC’07, volume 4825 of LNCS, pages 310-323.
Springer, 2007.

9. C. Lutz. Inverse roles make conjunctive queries hard. In Proc. of DL2007, volume
250 of CEUR-WS, 2007.

10. C. Lutz. Two Upper Bounds for Conjunctive Query Answering in (Fragments of)
SHIQ. Available from http://lat.inf.tu-dresden.de/∼clu/papers/

11. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing Data Complexity for Con-
junctive Query Answering in Expressive Description Logics. In Proc. of AAAI’07.
AAAI Press, 2007.

12. M. Ortiz, M. Šimkus, and T. Eiter. Worst-case Optimal Conjunctive Query An-
swering for an Expressive Description Logic without Inverses. In Proc. of AAAI’08.
AAAI Press, 2008.

13. A. Schaerf. On the complexity of the instance checking problem in concept lan-
guages with existential quantification. JIIS, 2:265–278, 1993.

14. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. PhD thesis, RWTH Aachen, 2001.

13

A Proof of Lemmas 1 and 4

Throughout the appendix, we adopt a special naming scheme for variables in
conjunctive queries. Before any fork elimination has taken places, we assume
the variables in a conjunctive query to be singleton subsets of a fixed (countably
infinite) set Θ. When two variables v and v′ are identified during fork elimination,
they are both replaced with the variable v∪v′. In this way, each fork elimination
carries information about the fork eliminations by which it has been produced
(without order). We start with proving two technical lemmas.

Lemma 8. Let q be a conjunctive query, q′ a fork rewriting of q, v, v′ ∈ Var(q′),
C a concept, and r a role name. Then

1. C(v) ∈ q′ iff there is a ξ ∈ v with C({ξ}) ∈ q;

2. r(v, v′) ∈ q′ iff there are ξ ∈ v and ξ′ ∈ v′ with r({ξ}, {ξ′}) ∈ q.

Proof. Straightfoward by induction on the number of fork eliminations that are
used during the construction of q′ from q. o

Lemma 9. Let q be a conjunctive query, q′ a fork rewriting of q, and q∗ a
maximal fork rewriting of q. Then for every v ∈ Var(q′), there is a u ∈ Var(q∗)
with v ⊆ u.

Proof. The proof is by induction on the number of fork eliminations that are
used during the construction of q′ from q. The induction start (i.e., q′ = q)
is trivial by our naming scheme for variables. For the induction step, let q′

be obtained from q′′ by eliminating a fork r(v1, v0), s(v2, v0) ∈ q′′. Since the
induction hypothesis applies to q′′ and all other variables remain unchanged, it
suffices to prove that there is a u ∈ Var(q∗) with v1 ∪ v2 ⊆ u. By induction
hypothesis, there are u0, u1, u2 ∈ Var(q∗) with vi ⊆ ui for i ∈ {0, 1, 2}. It is
not hard to see that r(v1, v0), s(v2, v0) ∈ q′′ implies r(u1, u0), s(u2, u0) ∈ q∗: by
Point 2 of Lemma 8, r(v1, v0), s(v2, v0) ∈ q′′ implies that there are ξ0, ξ

′
0, ξ1, ξ2 ∈

Θ such that r({ξ1}, {ξ0}), s({ξ2}, {ξ
′
0}) ∈ q, ξ′0 ∈ v0, and ξi ∈ vi for i ∈ {0, 1, 2}.

Thus ξ′0 ∈ u0, ξi ∈ ui for i ∈ {0, 1, 2}, and another application of Point 2
of Lemma 8 yields r(u1, u0), s(u2, u0) ∈ q∗. Since q∗ contains no forks, we get
u1 = u2. Clearly, v1 ∪ v2 ⊆ u1 = u2 and we are done. o

We now come to the proof of Lemmas 1 and 4.

Lemma 1. Modulo variable renaming, every conjunctive query has a unique
maximal fork rewriting.

Proof. It suffices to prove that, under our naming scheme, there is a unique
maximal fork rewriting of every conjunctive query q. Let q∗ and q∗∗ be two
maximal fork rewritings of q. By Lemma 9, Var(q∗) = Var(q∗∗). By Lemma 8,
we are done. o

14

Lemma 4. Let q be a conjunctive query, q′ a fork rewriting of q, and Π =
〈R, T, Sv1

, . . . , Svn
, µ, ν〉 a splitting of q′ with q′1, . . . , q

′
k the disconnected com-

ponents of q′|T . Moreover, let q∗ be the maximal fork rewriting of q. Then
q′i ∈ Trees(q∗) for 1 ≤ i ≤ k and q′|Si

∈ Trees(q∗) for 1 ≤ i ≤ n.

Proof. Let q0 = q′ and q0, . . . , qm be the sequence of queries obtained from q′

be exhaustively applying fork elimination. By Lemma 1, qm = q∗. We show by
induction on ` that the following conditions are satisfied for all ` ≤ m, 1 ≤ i ≤ k,
and 1 ≤ j ≤ n:

1. T ⊆ Var(q`) and q′|T = q`|T ;
2. q|T is a disconnected component of q`;
3. Sj ⊆ Var(q`) and q′|Sj

= q`|Sj
;

4. if r(v, v′) ∈ q` with {v, v′}∩Sj 6= ∅, then v′ is the root of (tree-shaped) q′|Sj

and v is the (unique) variable in Var(q`) with µ(j) ⊆ v.

The induction start is trivial by definition of splittings. For the induction step,
we concentrate on Points 3 and 4 (the proof for Points 1 and 2 is similar).
Fix an Sj with 1 ≤ j ≤ n and assume that Points 3 and 4 have already been
proved for Sj and q`−1. Let q` be obtained from q`−1 by eliminating the fork
r(v′, v), s(v′′, v) ∈ q`−1. Since q`−1 satisfies Point 3 and q′|Sj

is tree-shaped by
Condition 2 of splittings, none of v, v′, v′′ is in Sj . It follows that Sj ⊆ Var(q`)
and, by Lemma 8, q`|Sj

= q`−1|Sj
= q′|Sj

. Since q`−1 satisfies Point 4, it also
follows that q` satisfies Point 4. This finishes the proof of Points 1 to 4.

It is now simple to show that q′i ∈ Trees(q∗) for 1 ≤ i ≤ k and q′|Si
∈ Trees(q∗)

for 1 ≤ i ≤ n. Again, we concentrate on the q′|Si
. By Point 3, q′|Si

= q∗|Si
. It

remains to recall that, by Condition 2 of splittings, q′|Si
is tree-shaped. o

