
The Complexity of Conjunctive Query
Answering in Expressive Description Logics

Carsten Lutz

Institut für Theoretische Informatik
TU Dresden, Germany

lutz@tcs.inf.tu-dresden.de

Abstract. Conjunctive query answering plays a prominent role in ap-
plications of description logics (DLs) that involve instance data, but its
exact complexity was a long-standing open problem. We determine the
complexity of conjunctive query answering in expressive DLs between
ALC and SHIQ, and thus settle the problem. In a nutshell, we show
that conjunctive query answering is 2ExpTime-complete in the presence
of inverse roles, and only ExpTime-complete without them.

1 Introduction

Description logics (DLs) originated in the late 1970ies as knowledge represen-
tation (KR) formalisms, and nowadays play an important role as ontology lan-
guages [1]. Traditionally, DLs are used for the representation of and reasoning
about the conceptual modeling of an application domain. Most KR applica-
tions of DLs are of this kind, and also the majority of ontologies focusses on
conceptual modeling. In contrast, more recent applications of DLs additionally
involve (potentially large amounts of) instance data. In particular, instance data
plays an important role when using DL ontologies for data-integration and in
ontology-mediated data access.

In DLs, a TBox is used to represent conceptual information, and instance
data is stored in the ABox. Consequently, traditional DL research has mainly
concentrated on TBox reasoning, where the main reasoning services are sub-
sumption and satisfiability. In the presence of ABoxes, additional reasoning ser-
vices are required to query the instance data. The most basic such service is
instance retrieval, i.e., to return all certain answers to a query that has the form
of a DL concept. Instance retrieval can be viewed as a well-behaved generaliza-
tion of subsumption and satisfiability: it is usually possible to adapt algorithms
in a straightforward way, and the computational complexity coincides in al-
most all cases (but see [20] for an exception). A more powerful way to query
ABoxes is conjunctive query answering, as first studied in the context of DLs by
Calvanese et al. in 1998 [2]. Roughy speaking, conjunctive query answering gen-
eralizes instance retrieval by admitting also queries whose relational structure
is not tree-shaped. This generalization is both natural and useful because the
relational structure of ABoxes is usually not tree-shaped either.

Conjunctive queries have been studied extensively in the DL literature, see
for example [2–4, 6, 7, 9–11, 17, 21]. In contrast to the case of instance retrieval,
developing algorithms for conjunctive query answering requires novel techniques.
In particular, all hitherto known algorithms for conjunctive query answering in
the basic propositionally closed DL ALC and its extensions require double expo-
nential time. In contrast, subsumption, satisfiability, and instance checking (the
decision problem corresponding to instance retrieval) are ExpTime-complete
even in the expressive DL SHIQ, which is a popular extension of ALC [8]. It
follows that, in DLs between ALC and SHIQ, the complexity of conjunctive
query entailment (the decision problem corresponding to conjunctive query an-
swering) is between ExpTime and 2ExpTime. However, the exact complexity
of this important problem has been open for a long time. In particular, it was
unclear whether the generalization of instance retrieval to conjunctive query
answering comes with an increase in computational complexity.

In this paper, we settle the problem and determine the exact complexity of
conjunctive query entailment in DLs between ALC and SHIQ. More precisely,
we show that
(1) Conjunctive query entailment in ALCI, the extension of ALC with inverse
roles, is 2ExpTime-hard. With the upper bound from [7], conjunctive query
answering is thus 2ExpTime-complete for any DL between ALCI and SHIQ.
(2) Conjunctive query entailment in SHQ is in ExpTime. With the ExpTime
lower bound for instance checking in ALC, conjunctive query entailment is thus
ExpTime-complete for any DL between ALC and SHQ.
In short, conjunctive query entailment is one exponential harder than instance
checking in the presence of inverse roles, but not without them. Result (2) was
proved independently and in parallel for the DL ALCH in [18], and generalized
to also include transitive roles (under some restrictions) in [19].

We also consider the special case of conjunctive query entailment where the
query is rooted, i.e., it is connected and contains at least one answer variable.
We prove matching lower and upper bounds to show that
(3) Rooted conjunctive query entailment is NExpTime-complete for any DL
between ALCI and SHIQ.
Thus, rootedness reduces the complexity of query entailment in the presence of
inverse roles (but not without them). In the upper bounds of (2) and (3), we
disallow transitive and other so-called non-simple roles in the query. We also
show that rooted conjunctive query entailment in ALCI with transitive roles
becomes 2ExpTime-complete if transitive roles are admitted in the query.

This paper is organized as follows. In Section 2, we briefly review some pre-
liminaries. We then establish the lower bounds, starting with the NExpTime
one of (3) in Section 3. The 2ExpTime lower bound of (1) builds on that, but
we have to confine ourselves to a brief sketch in Section 4. This section also
establishes 2ExpTime-hardness of ALCI with transitive roles in the query. In
Section 5, we prove the ExpTime upper bound of (2). In Section 6, we give
some further discussion of transitive roles in the query. This paper is based on
the workshop papers [15] and [16].

2 Preliminaries

We assume standard notation for the syntax and semantics of SHIQ knowledge
bases [8]. In particular, NC, NR, and NI are countably infinite and disjoint sets
of concept names, role names, and individual names. A TBox is a set of concept
inclusions C v D, role inclusions r v s, and transitivity statements Trans(r),
and a knowledge base (KB) is a pair (T ,A) consisting of a TBox T and an ABox
A. We write K |= s v r if the role inclusion s v r is true in all models of K, and
similarly for K |= Trans(r). It is easy to see and well-known that “K |= s v r”
and “K |= Trans(r)” are decidable in polytime [8]. As usual, a role is called simple
if there is no role s such that K |= s v r, and K |= Trans(s). We write Ind(A) to
denote the set of all individual names in an ABox A. Throughout the paper, the
number n inside number restrictions (≥n r C) and (≤n r C) is assumed to be
coded in binary. ALC is the fragment of SHIQ that disallows role hierarchies,
transitive roles, inverse roles, and number restrictions.

Let NV be a countably infinite set of variables. An atom is an expression C(v)
or r(v, v′), where C is a SHIQ concept, r is a simple (but possibly inverse)
role, and v, v′ ∈ NV. A conjunctive query q is a finite set of atoms. We use
Var(q) to denote the set of variables occurring in the query q. For each query q,
the set Var(q) is partitioned into answer variables and (existentially) quantified
variables. Let A be an ABox, I a model of A, q a conjunctive query, and π :
Var(q) → ∆I a total function. such that for every answer variable v ∈ Var(q),
there is an a ∈ NI such that π(v) = aI . We write I |=π C(v) if π(v) ∈ CI and
I |=π r(v, v′) if (π(v), π(v′)) ∈ rI . If I |=π at for all at ∈ q, we write I |=π q and
call π a match for I and q. We say that I satisfies q and write I |= q if there
is a match π for I and q. If I |= q for all models I of a KB K, we write K |= q
and say that K entails q.

The query entailment problem is, given a knowledge base K and a query q, to
decide whether K |= q. This is the decision problem corresponding to query an-
swering, see e.g. [7] for details. Observe that we do not admit the use of individual
constants in conjunctive queries. This assumption is only for simplicity, as such
constants can easily be simulated by introducing additional concept names [7].
We speak of rooted query entailment when the query q is rooted, i.e., when q is
connected and contains at least one answer variable.

3 Rooted Query Entailment in ALCI and SHIQ

ALCI is the extension of ALC with inverse roles, and thus a fragment of SHIQ.
The aim of this section is to show that rooted query entailment in ALCI is
NExpTime-complete in all DLs between ALCI and SHIQ. To comply with
space limitations, we concentrate on the lower bound. It applies even to the case
where TBoxes are empty.

Let ALCrs be the variation of ALC in which all roles are interpreted as
reflexive and symmetric relations. Our proof of the NExpTime lower bound
proceeds by first polynomially reducing rooted query entailment in ALCrs w.r.t.

the empty TBox to rooted query entailment in ALCI w.r.t. the empty TBox.
Then, we prove co-NExpTime-hardness of rooted query entailment in ALCrs.
Regarding the first step, the idea is to replace each symmetric role s with the
composition of r− and r, with r a role of ALCI. Although r is not interpreted
in a symmetric relation, the composition of r− and r is clearly symmetric. To
achieve reflexivity, we ensure that ∃r−.> is satisfied by all relevant individuals
and for all relevant roles r. Then, every domain element can reach itself by first
travelling r− and then r, which corresponds to a reflexive s-loop. Since we are
working without TBoxes and thus cannot use statements such as > v ∃r−.>, a
careful manipulation of the ABox and query is needed. Details are given in [15].

Before we prove co-NExpTime-hardness of rooted query entailment in ALCrs

with empty TBoxes, we discuss a preliminary. An interpretation I of ALCrs is
tree-shaped if there is a bijection f from ∆I into the set of nodes of a finite
undirected tree (V,E) such that (d, e) ∈ sI , for some role name s, implies that
d = e or {f(d), f(e)} ∈ E. The proof of the following result is standard, using
unravelling.

Lemma 1. If A is an ALCrs-ABox and q a conjunctive query, then A 6|= q
implies that there is a tree-shaped model I of A such that I 6|= q.

Thus, we can concentrate on tree-shaped interpretations throughout the proof.
We now give a reduction from a NExpTime-complete variant of the tiling prob-
lem to rooted query non-entailment in ALCrs.

Definition 1 (Domino System). A domino system D is a triple (T,H, V),
where T = {0, 1, . . . , k−1}, k ≥ 0, is a finite set of tile types and H,V ⊆ T ×T
represent the horizontal and vertical matching conditions. Let D be a domino
system and c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A
mapping τ : {0, . . . , 2n+1− 1}×{0, . . . , 2n+1− 1} → T is a solution for D and c
iff for all x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):
(i) if τ(x, y) = t and τ(x⊕2n+1 1, y) = t′, then (t, t′) ∈ H; (ii) if τ(x, y) = t and
τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V ; (iii) τ(i, 0) = ci for i < n.

For NExpTime-hardness of this problem see, e.g., Corollary 4.15 in [13]. We
show how to translate a given domino system D and initial condition c =
c0 · · · cn−1 into an ABox AD,c and query qD,c such that each tree-shaped model
I of AD,c that satisfies I 6|= qD,c encodes a solution to D and c, and con-
versely, each solution to D and c gives rise to a (tree-shaped) model of AD,c

with I 6|= qD,c. The ABox AD,c contains only the assertion CD,c(a), with CD,c

a conjunction C1
D,c u · · · u C7

D,c whose conjuncts we define in the following. For
convenience, let m = 2n+2. The purpose of the first conjunct C1

D,1 is to enforce
a binary tree of depth m whose leaves are labelled with the numbers 0, . . . , 2m−1
of a binary counter implemented by the concept names A0, . . . , Am−1. We use
concept names L0, . . . , Lm to distinguish the different levels of the tree. This is
necessary because we work with reflexive and symmetric roles. In the following

∀si.C denotes the i-fold nesting ∀s. · · · ∀s.C. In particular, ∀s0.C is C.

C1
D,c := L0 u u

i<m
∀si.

(
Li →

(
∃s.(Li+1 uAi) u ∃s.(Li+1 u ¬Ai)

))
u

u
i<m

∀si. u
j<i

(
(Li uAj) → ∀s.(Li+1 → Aj) u

(Li u ¬Aj) → ∀s.(Li+1 → ¬Aj)
)

From now on, leafs in this tree are called Lm-nodes. Each Lm-node corresponds
to a position in the 2n+1×2n+1-grid that we have to tile: the counter Ax realized
by the concept names A0, . . . , An binarily encodes the horizontal position, and
the counter Ay realized by An+1, . . . , Am encodes the vertical position. We now
extend the tree with some additional nodes. Every Lm-node gets three successor
nodes labelled with F , and each of these F -nodes has a successor node labelled G.
To distinguish the three different G-nodes below each Lm-node, we additionally
label them with the concept names G1, G2, G3.

C2
D,c := ∀sm.

(
Lm →

(u
1≤i≤3

∃s.(F u ∃s.(G uGi))
))

We want that each G1-node represents the grid position identified by its ancestor
Lm-node, the sibling G2 node represents the horizontal neighbor position in the
grid, and the sibling G3-node represents the vertical neighbor.

C3
D,c := ∀sm.

(
Lm →

(u
i≤n

(
(Ai → ∀s2.(G1 tG3 → Ai)) u

(¬Ai → ∀s2.(G1 tG3 → ¬Ai))
)
u

u
n<i<m

(
(Ai → ∀s2.(G1 tG2 → Ai)) u

(¬Ai → ∀s2.(G1 tG2 → ¬Ai))
)
u

E2 u E3

))
where E2 is an ALC-concept ensuring that the Ax value at each G2-node is
obtained from the Ax-value of its G-node ancestor by incrementing modulo 2n+1;
similarly, E3 expresses that the Ay value at each G3-node is obtained from the
Ay-value of its G-node ancestor by incrementing modulo 2n+1. It is not hard to
work out the details of these concepts, see e.g. [14] for more details. The grid
representation that we have enforced is shown in Figure 1. To represent tiles, we
introduce a concept name Di for each i ∈ T . It is now easy to define concepts
C4

D,c and C5
D,c which enforce that every G-node is labeled with exactly one tile

type, and that the initial condition is satisfied—details are left to the reader. To
enforce the matching conditions, we proceed in two steps. First we ensure that
they are satisfied locally, i.e., among the three G-nodes below each Lm-node:

C6
D,c := ∀sm+2.

(
Lm →

(u
i∈T

(
∃s2.(G1 uDi) → ∀s2.(G2 → t

(i,j)∈H
Dj)

)
u

u
i∈T

(
∃s2.(G1 uDi) → ∀s2.(G3 → t

(i,j)∈V
Dj)

)))
Second, we enforce the following condition, which together with local satisfaction
of the matching conditions ensures their global satisfaction:

· · ·
Lm

L0

L2

L1

.

.

.

Lm

G1 G2 G3
G G G

represents (i, j)

represents (i + 1, j)

represents (i, j + 1)

F FF

Fig. 1. The structure encoding the 2n+1 × 2n+1-grid.

(∗) if the Ax and Ay-values of two G-nodes coincide, then their tile types coin-
cide.

In (∗), a G-node can by any of a G1-, G2-, or G3-node. To enforce (∗), we use
the query. Before we give details, let us finish the definition of the concept CD,c.
The last conjunct C7

D,c enforces two technical conditions that will be explained
later: if d is an F -node and e its G-node successor, then
T1 d satisfies Ai iff e satisfies ¬Ai, for all i < m;
T2 if d satisfies Dj , then e satisfies D0, . . . , Dj−1,¬Dj , Dj+1, . . . , Dk−1, for all

j < k.

Details of C7
D,c are left to the reader.

We now construct the query qD,c that does not match the grid representation
iff (∗) is satisfied. In other words, qD,c matches the grid representation iff there
are two G-nodes that agree on the value of the counters Ax and Ay, but are
labelled with different tile types.

The construction of qD,c is in several steps, starting with the query qi
D,c on

the left-hand side of Figure 2, where i ∈ {0, . . . ,m− 1}. In the queries qi
D,c, all

the edges represent the role s and vans is the only answer variable. The edges are
undirected because we are working with symmetric roles. Formally,

qi
D,c := { s(vi,0, vi,1), . . . , s(vi,2m+2, vi,2m+3),

s(v′i,0, v
′
i,1), . . . , s(v

′
i,2m+2, v

′
i,2m+3),

s(vi,0, v
′
i,0), s(vi,2m+3, v

′
i,2m+3),

s(v, vi,0), s(v, v′i,0),
s(v′, vi,2m+3), s(v′, v′i,2m+3),
s(vans, vi,m+1), s(vans, vi,m+2), s(vans, v

′
i,m+1), s(vans, v

′
i,m+2),

G(v), G(v′), Ai(vi,0),¬Ai(v′i,0),¬Ai(vi,2m+3), Ai(v′i,2m+3) }

.

.

.
.
.
.

v′
m+1

v′
m+2

v′
2m+2

vm+1

vm+2

v2m+2

v2m+3

v′

¬Ai

G

Ai

.

.

.

vm+1 = v′
m

G

¬Ai

Ai

.

.

.

G

v2m+2 = v′
2m+3Ai

¬Ai

v′ = v′
2m+3

v2m+2 = v′
2m+1

v2m+3 = v′

.

.

.

G
v0 = vAi

¬Ai .
.
.
v1 = v′

2

v = v′
0

G

v0 = v′
1Ai

v1 = v′
0.

.

.
.
.
.

v0

v1

v

Ai

v′
1

v′
0
¬Ai

G

vans

vans = vm+2 = v′
m+1

vans = vm+1 = v′
m+2

vm+2 = v′
m+3

v2m+3 = v′
2m+2v′

2m+3

¬Ai

Fig. 2. The query qi
D,a (left) and two of its collapsings (middle and right).

Observe that we dropped the index “i” to variables in Figure 2. Also observe
that all the queries qi

D,c, i < m, share the variables v, v′, and vans.
The purpose of the query qi

D,a is to relate any two G-nodes that agree on
the value of the concept name Ai. To explain how this works, we need a few
preliminaries. First, a cycle in a query is a sequence of distinct nodes v0, . . . , vn

such that n ≥ 2, and s(vi, vi+1) ∈ q or s(vi+1, vi) ∈ q for all i ≤ n, where vn+1 :=
v0. A query q′ is a collapsing of a query q if q′ is obtained from q by identifying
variables. Each match of qi

D,c in our tree-structured grid representation gives rise
to a collapsing of qi

D,c that does not comprise any cycles. To explain how qi
D,c

works, it is helpful to analyze its cycle-free collapsings. We start with the two
cycles v, v0, v

′
0 and v′, v2m+3, v

′
2m+3. For eliminating each of these, we have two

options:

– to remove the upper cycle, we can identify v with v0 or v′0;
– to remove the lower cycle, we can identify v′ with v2m+3 or v′2m+3.

Observe that if we identify v0 and v′0 (or v2m+3 and v′2m+3) to collapse the cycle,
there will be no matches of the query in any model.

Together, this gives four options for removing the two mentioned length-
three cycles. However, two of these options are ruled out because the resulting
collapsings have no match in the grid representation. The first such case is when
we identify v with v0 and v′ with v2m+3. To see that there is no match, first
observe that v0 and v2m+3 have to satisfy G. Then make a case distinction on
the two options that we have for eliminating the cycle {vans, vm+1, vm+2}.
Case (1). If we identify vans and vm+1, the path from the G-variable v0 to vans is
only of length m + 1. In our grid representation, all paths from a G-node to an
ABox individual (i.e., the root) are of length m + 2, so there can be no match
of this collapsing.

Case (2). If we identify vans and vm+2, the path from vans to the G-variable v2m+3

is only of length m + 1 and again there is no match.
We can argue analogously for the case where we identify v with v′0 and and v′

with v′2m+3. Therefore, the two remaining collapsings for eliminating the cycles
{v, v0, v

′
0} and {v′, v2m+3, v

′
2m+3} are the following:

(a) identify v with v0 and v′ with v′2m+3;
(b) identify v with v′0 and v′ with v2m+3.

In the first case, we further have to identify vans with vm+2 and v′m+1, for oth-
erwise we can argue as above that there is no match. In the second case, we
have to identify vans with vm+1 and v′m+2. After this has been done, there is
only one way to eliminate the cycle v = v0, . . . , v2m+3, v

′ = v′2m+3, . . . , v
′
0 such

that the result is a chain of length 2m + 4 with the G-variables at both ends
and the answer variable exactly in the middle (any other way to collapse means
that there are no matches). The reflexive loops at the endpoints of the resulting
chain and at vans can simply be dropped since we work with reflexive roles. The
resulting cycle-free queries are shown in the middle and right part of Figure 2.

Note that the middle query has Ai at both ends of the chain, and the right
one has ¬Ai at the ends. According to our above argumentation, the original
query qi

D,c has a match in the grid representation iff one of these two collapsings
has a match. Thus, every match π of qi

D,c in the grid representation is such that
π(v) and π(v′) are (not necessarily distinct) instances of G that agree on the
value of Ai.

At this point, a technical remark is in order. Observe that, in the two relevant
collapsings of qi

D,c, the end nodes of the chain and their immediate neighbors
are labeled dually w.r.t. Ai and ¬Ai. This is an artifact of query construction
and cannot be avoided. To deal with it, we have introduced F -nodes into our
grid representation and ensured that they satisfy Property T1.

Now set qcnt :=
⋃

i<m qi
D,c. It is not hard to see that every match π of qcnt in

the grid representation is such that π(v) and π(v′) are (not necessarily distinct)
instances of G that have the same Ai-value, for all i < m. The query qcnt is
almost the desired query qD,c. Recall that we want to enforce Condition (∗)
from above, and thus also need to talk about tile types in the query. The query
qtile is given in the left-hand side of Figure 3 for the case of three tiles, i.e.,
T = {0, 1, 2}. In general, for T = {0, . . . , k − 1}, we define

qtile :=
⋃
i<k

{s(wi,0, wi,1), . . . , s(wi,2m+2, wi,2m+3),
s(vans, wi,m+1), s(vans, wi,m+2),
s(v, wi,0), s(v′, wi,2m+3),
Di(wi,0), Di(wi,2m+3)}

∪
⋃

i<j<k

{s(wi,0, wj,0), s(wi,2m+3, wj,2m+3)}

∪ {G(v), G(v′)}

Observe that qcnt and qtile share the variables v, v′, and vans. Also observe that
qtile is very similar to the queries qi

D,c, the main difference being the number of

.

.

.
w2,m+1

.

.

.
w2,m+2

w2,2m+2

w2,2m+3

w2,1

v = w0,0

G

w0,1 = w1,0 = w2,0

.

.

.

w0,m+1 = w1,m = w2,m

w0,2m+2 = w1,2m+1 = w2,2m+1

w0,2m+3 = w1,2m+2

.

.

.

vans = w0,m+2 = w1,m+1 = w2,m+1

w1,2m+3 = v′

G

D0

D1

D2

= w2,2m+2 = w2,2m+3

D1, D2

D0, D2

w0,1 w1,1.
.
.

.

.

.
w0,m+1 w1,m+1

vans

w0,m+2 w1,m+2.
.
.

.

.

.
w0,2m+2

D0 w0,2m+3

D2
w1,2m+3

w1,2m+2

v
G

v′

G

D1

D1

w1,0 w2,0w0,0
D0

Fig. 3. The query qtile (left) and one of its collapsings (right).

vertical chains. Whereas the queries qi
D,c have two collapsings that are cycle-

free and can have matches in the grid representation, qtile has k · (k − 1) such
collapsings: for all i, j ∈ T with i 6= j, there is a collapsing into a linear chain
of length 2m + 4 whose two end nodes are labelled Di and Dj , respectively. An
example of such a collapsing is presented on the right-hand side of Figure 3. The
arguments for how to obtain these collapsing from qtile and why other collapsings
have no match in the grid representation are similar to the line of argumentation
used for qi

D,c and involves Property T2. We refer to [15] for details.
Now, the desired query qD,c is simply the union of qcnt and qtile. From what

was already said about qcnt and qtile, it is easily derived that qD,c does not match
the grid representation iff Property (∗) is satisfied. It is possible to show that
there is a solution for D and c iff (∅,AD,c) 6|= qD,c. We have thus proved that
rooted query entailment in ALCI is co-NExpTime-hard. A matching upper
bound can be obtained by adapting the techniques in [7]. More details are given
in [16].

Theorem 1. Rooted query entailment in ALCI is co-NExpTime-complete. The
lower bound holds even if the TBox is empty and the ABox is of the form {C(a)}.

4 2ExpTime-hardness Results

Theorem 1 shows that, already in the case of rooted queries, conjunctive query
entailment in DLs between ALCI and SHIQ is more difficult than instance
checking. In the general case, conjunctive query entailment in these DLs is even
2ExpTime-complete. The proof is by a reduction of the word problem of ex-
ponentially space bounded alternating Turing machines (ATMs) [5], and reuses
many ideas from the reduction given in Section 3. Because of space limitations,
we can only give a very rough sketch of the proof.

T1

T2

T3 T4

· · · · · ·

s

s s

Fig. 4. Representing ATM computations.

The main idea is to represent each configuration of an ATM by the leafs of a
tree of depth n, similar to the grid representation in Section 3. Trees represent-
ing configurations are then interconnected to form a larger tree that represents
a computation. This is illustrated in Figure 4. Each of the Ti is a tree of depth
n whose leafs represent a configuration. The tree T1 represents an existential
configuration, and thus has only one successor configuration T2. In contrast, the
tree T2 represents a universal configuration with two successor configurations T3

and T4. The difficult part of the reduction is to relate the content of a tape cell in
one configuration to the content of the corresponding cell in the successor con-
figurations. The solution is to use queries that are very similar to the query qD,c

employed in the previous section. A few additional technical tricks are needed
to achieve directedness (i.e., talking only about successor configurations, but
not about predecessor configurations) since we work with symmetric roles. More
details of the reduction can be found in [15]. A 2ExpTime upper bound was
established in [7] (where also non-simple roles are allowed in the query).

Theorem 2. Query entailment in ALCI is 2ExpTime-complete. The lower
bound holds even for queries without answer variables and for ABoxes of the
form {C(a)}.

Using Theorem 2, it is also easy to show that admitting transitive roles in the
query destroys the better computational properties of rooted query entailment.
ALCIR+ is the extension of ALCI with transitive roles.

Theorem 3. Rooted query entailment in ALCIR+ is 2ExpTime-complete if
transitive roles are admitted in the query. The lower bound holds even if the
TBox contains only transitivity statements and role inclusions, and the ABox is
of the form {C(a), r(a, a)}.

Proof. (sketch) By Theorem 2, it suffices to establish the lower bound. We
reduce non-rooted query entailment in ALCI, which is 2ExpTime-hard by The-
orem 2. Let K = (T ,A) and q be given, withA = {C(a)}. Our aim is to construct
a knowledge base K′ = (T ′,A′) and rooted query q′ such that K |= q iff K′ |= q′.
Let CT = uDvE∈T ¬D t E. Fix a role name t not occurring in K and q, and a

variable v0 not occurring in q. Then set

T ′ := {Trans(t)} ∪ {r v t, r− v t | r ∈ NR occurs in K}
A′ := {C u ∀t.CT (a), t(a, a)}
q′ := q ∪ {t(v0, v) | v ∈ NV occurs in q}.

We make v0 an answer variable in q′. It is not hard to prove that T ′, A′, and q′

are as required. ❏

The results proved in this section and the preceeding one show that con-
junctive query entailment is computationally hard in fragments of SHIQ that
contain ALCI. In the next section, we prove that inverse roles are indeed the cul-
prit for the high complexity: in SHQ (SHIQ without inverse roles), conjunctive
query entailment is only ExpTime-complete and thus of the same complexity
as instance checking.

5 Query Entailment in SHQ is ExpTime-complete

We give an algorithm for query entailment in SHQ that runs in ExpTime and is
inspired by the 2ExpTime algorithm for conjunctive query entailment in SHIQ
given in [7]. The general idea is to (Turing-)reduce query entailment in SHQ
to ABox consistency in SHQ∩, i.e., SHQ extended with role conjunction: given
a SHQ-knowledge base K and a query q, we produce SHQ∩-knowledge bases
K1, . . . ,Kn such that K 6|= q iff any of the Ki is consisent. The construction
ensures that n is exponential in the size of K and q, and the size of each Ki is
polynomial in the size of K and q. Since knowledge base consistency in SHQ∩

can be decided in ExpTime, we obtain the desired ExpTime upper bound for
query entailment in SHQ. Proof details for the lemmas presented in this section
can be found in [16].

We start with proving an SHQ counterpart of Lemma 1. Let J be an in-
terpretation. A forest base J is an interpretation that interprets transitive roles
in an arbitrary way (i.e., not necessarily transitively) and where (i) ∆J is a
prefix-closed subset of N+ and (ii) if (d, e) ∈ rJ , then e, d ∈ N or e = d · c for
some c ∈ N. Elements of ∆J ∩N are called the roots of J . An interpretation I
is the K-closure of J if I is identical to J except that, for all roles r, we have

rI = rJ ∪
⋃

K|=svr∧K|=Trans(s)

(sJ)+.

A model I of a knowledge base K = (T ,A) is a forest model of K if (iii) I is
the K-closure of a forest base J , and (iv) for every root d of J , there is an
a ∈ Ind(A) such that aI = d. The roots of I are defined as the roots of J . The
following proposition shows that, when deciding conjunctive query entailment
in SHQ, it suffices to concentrate on forest models.

Proposition 1. Let K be an SHQ-knowledge base and q a conjunctive query.
If K 6|= q, then there is a forest model I of K such that I 6|= q.

Throughout this section, we will sometimes view a conjunctive query as a di-
rected graph Gq = (Vq, Eq) with Vq = Var(q) and Eq = {(v, v′) | r(v, v′) ∈ q for
some r ∈ NR}. We call q tree-shaped if Gq is a tree. If q is tree-shaped and v is
the root of Gq, we call v the root of q.

In the following, we introduce three notions that are central to the construc-
tion of the knowledge bases K1, . . . ,Kn: fork rewritings, splittings, and spoilers.
We start with fork rewritings, and say that

– q′ is obtained from q by fork elimination if q′ is obtained from q by selecting
two atoms r(v′, v) and s(v′′, v) with v′ 6= v′′ and identifying v′ and v′′;

– q′ is a fork rewriting of q if q′ is obtained from q by repeated (but not
necessarily exhaustive) fork elimination;

– q′ is a maximal fork rewriting of q if q′ is a fork rewriting and no further
fork elimination is possible in q′.

The following lemma allows us to speak of the maximal fork rewriting of a
conjunctive query.

Lemma 2. Modulo variable renaming, every conjunctive query has a unique
maximal fork rewriting.

Now for splittings, which are partitions of the variables in (a fork rewriting of)
the input query. Intuitively, a splitting is induced by each match π for some
forest model I of the input KB K and the input query q. More precisely, each
variable v ∈ Var(q) is either

(a) mapped to a root π(v) of I;
(b) mapped to a non-root π(v) of I such that there is a variable v′ mapped to

a root π(v′) of I and with v reachable from v′ in Gq;
(c) mapped to a non-root π(v) of I, but does not satisfy Condition (b).

The purpose of splittings is to describe such a partition without reference to
a concrete model I and a concrete match π. Let K be an SHQ-knowledge
base. A splitting of q w.r.t. K is a tuple Π = 〈R, T, S1, . . . , Sn, µ, ν〉, where
R, T, S1, . . . , Sn is a partitioning of Var(q), µ : {1, . . . , n} → R assigns to each
set Si a variable µ(i) in R, and ν : R → Ind(A) assigns to each variable in R
an individual in A. A splitting has to satisfy the following conditions, where q|V
denotes the restriction of q to V ⊆ Var(q):

1. the query q|T is a variable-disjoint union of tree-shaped queries;
2. the queries q|Si

, 1 ≤ i ≤ n, are tree-shaped;
3. if r(v, v′) ∈ q, then one of the following holds: (i) v, v′ belong to the same

set R, T, S1, . . . , Sn or (ii) v ∈ R, µ(i) = v, and v′ ∈ Si is the root of q|Si ;
4. for 1 ≤ i ≤ n, there is an atom r(µ(i), v0) ∈ q, with v0 the root of q|Si

.

Intuitively, the R component of a splitting corresponds to Case (a) above, the
S1, . . . , Sn correspond to Case (b), and T corresponds to Case (c). Before we
introduce spoilers, we establish a central lemma about splittings. We start with
a preliminary. Let q be a tree-shaped conjunctive query. We define a SHQ∩-
concept Cq,v for each variable v ∈ Var(q):

– if v is a leaf in Gq, then Cq,v = u
C(v)∈q

C;

– otherwise, Cq,v = u
C(v)∈q

C u u
(v,v′)∈Eq

∃(
⋂

s(v,v′)∈q

s).Cq,v′).

If v is the root of q, we use Cq to abbreviate Cq,v. Observe that, since we allow
only simple roles in a query q, all concepts Cq involve only simple roles inside
role conjunction. The following lemma establishes a connection between forest
models and splittings of fork rewritings.

Lemma 3. Let K = (T ,A) be a knowledge base, I a forest model of K, and q
a conjunctive query. Then I |= q iff there exists a fork rewriting q′ of q and a
splitting 〈R, T, S1, . . . , Sn, µ, ν〉 of q′ w.r.t. K such that

1. for each disconnected component q̂ of T , there is a d ∈ ∆I with d ∈ (Cbq)I ;
2. if C(v) ∈ q′ with v ∈ R, then ν(v)I ∈ CI ;
3. if r(v, v′) ∈ q′ with v, v′ ∈ R, then (ν(v)I , ν(v′)I) ∈ rI ;
4. for 1 ≤ i ≤ n, we have ν(µ(i))I ∈

(
∃(

⋂
s(µ(i),v0)∈q′ s).Cq′|Si

)I with v0 root
of the tree-shaped query q′|Si .

Now for the definition of spoilers, which exploit Lemma 3 to prevent matches
of the input query q in forest-models of the input KB K = (T ,A). We first define
spoilers of specific splittings, and then spoilers of the query (i.e., of all splittings).
Let Π = 〈R, T, S1, . . . , Sn, µ, ν〉 be a splitting of q w.r.t. K such that q1, . . . , qk

are the (tree-shaped) disconnected components of q|T . A SHQ∩-knowledge base
(T ′,A′) is a spoiler for q, K, and Π if one of the following conditions hold:

1. > v ¬Cqi
∈ T ′, for some i with 1 ≤ i ≤ k;

2. there is an atom C(v) ∈ q with v ∈ R and ¬C(ν(v)) ∈ A′;
3. there is an atom r(v, v′) ∈ q with v, v′ ∈ R and ¬r(ν(v), ν(v′)) ∈ A′;
4. ¬D(ν(µ(i))) ∈ A′ for some i ∈ {1, . . . , n}, and where D = ∃(

⋂
s(µ(i),v0)∈q

s).Cq|Si

with v0 root of q|Si .

A SHQ∩-knowledge base K′ = (T ′,A′) is a spoiler for q and K if (i) for every
fork rewriting q′ of q and every splitting Π of q′ w.r.t. K, K′ is a spoiler for q′,
K, and Π; and (ii) K′ is minimal with Property (i). The proof of the following
lemma is based on the correspondence between Conditions 1-4 of spoilers and
Conditions 1-4 of Lemma 3.

Lemma 4. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then K 6|= q iff there is a spoiler (T ′,A′) for q and K such that (T ∪T ′,A∪A′)
is consistent.

Lemma 4 suggests the following algorithm for deciding conjunctive query entail-
ment in SHQ: given K = (T ,A) and q, enumerate all spoilers (T ′,A′) for q and
K, return “yes” if for all such spoilers, (T ∪T ′,A∪A′) is inconsistent, and “no”
otherwise. To prove that this algorithm runs in ExpTime, we first note that
consistency of SHQ∩-KBs is ExpTime-complete. Since only simple roles occur
inside role conjunctions, this can be proved by an easy variation of Lemma 6.19
in [22]. It thus suffices to establish the following.

Lemma 5. Let K = (T ,A) be a SHQ-knowledge base and q a conjunctive query.
Then the number of spoilers for q and K is exponential in the size of q and K
and the set of all spoilers can be computed in time exponential in the size of q
and K.

The proof of this lemma is a key ingredient to our ExpTime upper bound. The
upper bound on the number of spoilers is established by showing that (i) all
individual names and role names occurring in spoilers also occur in the input
KB and input query, and (ii) there are only polynomially many different concepts
that can occur in spoilers. While (i) is trivial, (ii) is not. Define

Trees(q) := {q|Reachq(v) | v ∈ Var(q) and q|Reachq(v) is tree-shaped}.

The proof of (ii) proceeds by showing that if C occurs in a spoiler of K and q and
q∗ is the maximal fork rewriting of q, then there is a q̂ ∈ Trees(q) with C = Cq.
Details are given in [16].

Summing up, we have established the following result, where the lower bound
is trivial by a reduction of instance checking in SHQ.

Theorem 4. Conjunctive query entailment in SHQ is ExpTime-complete.

6 Conclusion

We have carried out a detailed investigation of the complexity of conjunctive
query entailment in DLs between ALC and SHIQ. In particular, we have proved
that conjunctive query entailment is more complex than instance checking when
inverse roles are present (2ExpTime vs ExpTime), and that the complexity
coincides without inverse roles (ExpTime). Our two upper bound proofs (The-
orem 1 and 4) do not apply to the case where transitive roles are admitted in
the query. As shown by Theorem 3, the NExpTime upper bound from Theo-
rem 1 cannot be generalized to this case. It remains an open problem whether
or not the ExpTime upper bound in Theorem 4 can be adapted to SHQ with
transitive roles in the query. An ExpTime upper bound for a fragment of this
problem is established in [19].

References

1. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

2. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS’98, pages 149–158, 1998.

3. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of KR’06, pages
260–270. AAAI Press, 2006.

4. D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive
description logics: an automata-theoretic approach. In Proc. of AAAI’07. AAAI
Press, 2007.

5. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

6. B. Glimm, I. Horrocks, I., and U. Sattler. Conjunctive query entailment for SHOQ.
In Proc. of DL’07, volume 250 of CEUR-WS, 2007.

7. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Answering conjunctive queries in
the SHIQ description logic. JAIR, 31:150–197, 2008.

8. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer, 1999.

9. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In Proc. of CADE-17, number 1831 in LNCS, pages 482–496.
Springer, 2000.

10. I. Horrocks and S. Tessaris. A conjunctive query language for description logic
ABoxes. In Proc. of AAAI’00. AAAI Press, 2000.

11. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very ex-
pressive description logics. In Proc. of IJCAI’05, pages 466–471. Professional Book
Center, 2005.

12. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable
fragment of OWL 1.1. In Proc. of ISWC’07, volume 4825 of LNCS, pages 310-323.
Springer, 2007.

13. C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG
Theoretical Computer Science, RWTH Aachen, Germany, 2002.

14. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete
domains. Journal of Artificial Intelligence Research (JAIR), 23:667–726, 2005.

15. C. Lutz. Inverse roles make conjunctive queries hard. In Proc. of DL2007, volume
250 of CEUR-WS, 2007. Full version http://lat.inf.tu-dresden.de/∼clu/papers/

16. C. Lutz. Two upper bounds for conjunctive query answering in SHIQ. In Proc. of
DL2008, CEUR-WS, 2008. Full version http://lat.inf.tu-dresden.de/∼clu/papers/

17. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for conjunc-
tive query answering in expressive description logics. In Proc. of AAAI’06. AAAI
Press, 2006.

18. M. Ortiz, M. Šimkus, and T. Eiter. Worst-case optimal conjunctive query an-
swering for an expressive description logic without inverses. In Proc. of AAAI’08.
AAAI Press, 2008.

19. M. Ortiz, M. Šimkus, and T. Eiter. Conjunctive query answering in SH using
knots. In Proc. of DL’08. CEUR WS, 2008.

20. A. Schaerf. On the complexity of the instance checking problem in concept lan-
guages with existential quantification. JIIS, 2:265–278, 1993.

21. R. Rosati. On conjunctive query answering in EL. In Proc. of DL2007, volume
250 of CEUR-WS, 2007.

22. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

