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Abstract

We study the computational complexity of conjunc-
tive query answering w.r.t. ontologies formulated
in fragments of the description log€+Z Q. Our
main result is the identification of two new sources
of complexity: the combination of transitive roles
and role hierarchies which results in ZETIME-
hardness, and transitive roles alone which result
in co-NExPTIME-hardness. These bounds com-
plement the existing result that inverse roles make
query answering ilSHZ Q 2-ExpTIME-hard. We
also show that conjunctive query answering with
transitive roles, but without inverse roles and role
hierarchies, remains inXTIME if the ABox is
tree-shaped.
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subsumption which areX®TIME-complete; and (b) the com-
plexity drops to KPTIME-complete if inverse roles are disal-
lowed (SHZQ is replaced withSH Q) and, additionally, the
use of transitive roles in queries is disallowed or seripusi
stricted, cf[Lutz, 2008; Ortizet al., 20084.

While dropping inverse roles was known to be crucial for
obtaining an KPTIME upper bound, the restriction on tran-
sitive roles was not. From an application perspective, such
restriction is unsatisfactory as transitive roles play aticd
role in many ontologies and are used to represent fundamen-
tal relations such as “part offSattler, 2000 However, al-
gorithms for CQ entailment with unrestricted transitivéeso
in the query are much more intricate than without, see e.g.
[Glimm et al,, 2008b; Calvaneset al., 2007.

The aim of this paper is to study the computational com-
plexity of CQ entailment in fragments &fHZ Q with no re-
strictions on transitive roles in queries. Our main conitib
tion is to identify two novel sources of complexity: (1) the
combination of transitive roles and role hierarchies andq2

One of the main applications of ontologies in computer sci-2 1€sser degree, transitive roles alone. More precisely, we
ence is in data access, where an ontology formalizes corl'St Show that CQ entailment i§i7 (SHZQ without inverse

ceptual information about data that is stored in one or mulf0l€s and number restrictions) is ETIME-hard, and thus
tiple data sources, and this information is used to derive an-EXPTIME-complete. Thus, inverse roles amet the only

swers when querying the sources. This general setup ma%gason why CQ entailment ifH7Q is hard. Interestingly,

a central role e.g. in ontology-based information inteigrat 2-EXPTIME-hardness is hit already with a single role inclu-

and in peer-to-peer data management. In all these areas, DJON (Or alternatively with a single left identityo ¢ C ¢) and

scription Logics (DLs) and in particular those of the owL With an empty ABox (which contains the data). Secondly, we

standard by the W3C are popular ontology languages, anflove that CQ entailment i (SH without role hierarchies)
conjunctive queries (CQs) are used as a fundamental querf— co-NExPTIME-hard. The lower bound applies already to
ing mechanism; cf[Tessaris, 2001; Glimnet al, 2008b; he case where the TBox (conceptual mformaﬂop) is empty.
Ortiz et al, 20084 and references therein and below. On the other hand, we show that CQ entailmentSin

In spite of prominent applications, studying the Compu_ontolog|e.s where the ABoxes have a tree-shaped relational
tational complexity of answering CQs over OWL ontolo- structure is in KPTIME, and thus RPT|ME-_compI.et.e. Thls_
gies has only recently gained momentum. In particular, iresult is interesting for three reasons. Firstly, it is thstfi
was shown that inverse roles have an impact on complexity=XPTIME result for CQ entailment in an expressive DL with
(a) CQ entailment (the decisional variant of CQ answering)nrestricted transitive roles in queries. Secondly, todtést
over ontologies in the primary OWL fragme&HZQ is 2- of our knowledge, this is ;he f|r§t case where CQ entallmen_t
ExPTIME-completelGlimm et al, 2008b; Lutz, 200B thus for tree-shaped ABoxes is easier than the general case: in

harder than standard reasoning tasks such as satisfiaipitity all existing lower bounds for CQ entailment in fragments of
SHIQ, the ABox containsiorole assertions at all. Thirdly,

“This work has been partially supported by the Austrian Sci-EXPTIME membership may be viewed as an indication that
ence Fund (FWF) grant P20840, the Mexican National Council f the complexity in the general case is likely to be below 2-
Science and Technology (CONACYT) grant 187697, and the EUEXPTIME; a tight upper bound is currently open. Full proofs
project OntoRule (IST-2009-231875). can be found ifiEiteret al, 2009.



2 Preliminaries

Knowledge BasesWe assume standard notation for the syn-

tax and semantics a§H knowledge basefGlimm et al,
2008H. In particular,Nc, Ng, andN,; are countably infinite
and disjoint sets afoncept namesole namesandindividual
names Conceptsare inductively defined: (a) eache N¢ is
a concept, and (b) i€, D are concepts ande Ny is a role,
thenCn1 D, CuD, =C, Vr.C and3r.C" are concepts. A
TBoxis a set of concept inclusiorts C D, role inclusions
r C s, and transitivity statementsans(r). An ABoxis a set
of assertionsC'(a) andr(a,b). A knowledge base (KB}
a pair(7,.A) consisting of a TBoxZ and an ABoxA. We
useZ to denote an interpretation,” for its domain, and>*
andr? for the interpretation of a concept and of a roler,
respectively. We denote biyid(A) the set of all individual
names in an ABox4. S is the fragment o&’H that disallows
role inclusions.

Conjunctive Query Answering. Let Ny be a countably in-
finite set ofvariables A conjunctive querf{CQ) over a KB
K is a finite set of atoms of the fortd(v) or r(v,v’), where
v,v’ € Ny, A is a concept name andis a role, both occur-
ring in .1 For a CQq over K, let Var(q) denote the vari-
ables occurring ig. A match forg in an interpretatiornz is a
mappingr : Var(q) — AZ such that (i)r(v) € A% for each
A(v) € g, and (i) (7 (v), 7(v")) € r* for eachr(v,v’) € g. We
write Z = ¢ if there is a match fog in Z. If Z = ¢ for every
modelZ of K, thenkC entailsq, writtenK = ¢. Thequery en-
tailment problemnis to decide, giverlC andg, whetherC = q.

Forest Models.When studying CQ answering in t&84{Z QO
family of DLs, it suffices to consider models that have
forest-like shape; informally, such a modetonsists of two
parts: an ABox part that consists of the interpretatiohsf

the individualsz in IC and has an unrestricted relational struc-

ture, and a forest part that is a collection of trees whosesroo

Figure 1: The structure of models.

sequence of successive configurations that starts inthe
tial configuration with initial state gy and the input word
w on the tape, and ends in an accepting stgte. For
general ATMs, these sequences becdraesof configura-
tions, where branching is caused by universal states (there
a successive configuration for each transition (i, a) with
g € Qv). Such acomputation treas acceptingif qacc IS
reached on all paths. For details, §€bandreet al,, 1981.

For each inputv to M, we define a KBC,, and a queryj,
such thatM acceptsv iff IC\y, [~ ¢, In fact, forest modeld
of K., with Z (£ ¢, will represent an accepting computation
of M onw. More preciselyZ is an accepting computation
tree each of whose nodes is the root afamfiguration tree
The latter are binary trees of depth := |w| (length ofw)
that represent configurations using th&it leaves to store
the tape contents. This is illustrated in Figure 1; the ahiti
configuration tree is existential and thus has a single succe
sor configuration tree. This (magnified) successor is usaler
and has two successor configuration trees.

a To enforce this structure, we need some technical tricks.

In particular, each configuration tree will represemo con-
figurations: thecurrent configurationk;, and theprevious
configuration,,. We uselC,, to ensure locally at each con-
figuration tree thaf(}, is indeed a successor configuration of

are elements of the ABox part and that are otherwise disjoinf{,,. The queryg, is then used to globally guarantee that

from the ABox part. The following result can be found e.g.,
in [Glimm et al,, 20084.

Proposition 1. For everySH-knowledge base and Cq if
K £ q, thenK has a forest modél such thatZ = q.

3 Query Answering in SH

It follows from a number of existing results that CQ entail-
ment in SH is in 2-ExPTIME [Calvaneseet al, 2007;?;
Glimm et al, 2008a; Ortizet al, 2008(. We provide a
matching lower bound.

Theorem 1. CQ entailmentinSH is 2-EXPTIME-complete.

It is well-known that there is an exponentially space bowhde
Alternating Turing Machine (ATMM whose word problem
is 2-ExPTIME-hard [Chandraet al, 1981. To prove the

lower bound from Theorem 2, we reduce this word problem.

Recall that the state s€ of an ATM is partitioned into
existential(Q3) and universal (Qy) states. An ATM with

the K, value of each configuration tree is identical to fkig
value of the predecessor in the computation tree. We will cal
a computation treproperif it satisfies the latter condition.

We now give a precise definition of how configuration trees
and computation trees are represented as a model. A single,
non-transitive role is used for the edges of computation trees
and of configurationtrees. Observe that, as shown in Figure 1
we usetwo r-edges between two consecutive configuration
trees. We also use a transitive raleto be explained later.
The alphabet symbols of M and the state§) are used as
concept names. We also use the concept namesBom

{By,..., By} toencode addresses of tape cells in binary. For
anoden of a forest modef andi < 2, we writeadr” (n) =

i if the truth values of37, . . ., BZ atn encode the number

A tape cell with addressand content: € ¥ is represented
by a noden with adr” (n) = i that satisfies the concept name
a. If the head is currently on the cell and’s state isg, then

n also satisfieg; otherwisen satisfies the concept namé.

only existential states can be viewed as a standard non- 1° later on ensure properness using the query, we use ad-

deterministic TM, which accepts a word iff there exists a

Individuals ing can be simulated and queries with answer vari-

ables can be reduced to the considered Boolean CQs as usual.

ditional nodes and concept names. The latter Igge F,,
Fy, F,, Gp, andG,, used as markers; and the concept names
fromZ := {Z,, | a« € T'andg € Q U {nil}}. The addi-
tional nodes are attached to the leaves of configuratios,tree



as indicated on the left-hand side of Figure 1 and detailed ifProposition 3. Givenw, we can build in polynomial time a

the subsequent definition. Intuitively, nodes labelgdstore
the current configuration and nodes labelggdthe previous.

Definition 1 (i-cell). LetZ be an interpretation and< 2.
We calln € AT ani-cellif the following hold:

(a) n hasr-successors, andny, that respectively satisfy,

and Ej, with adr” (n,) = adr” (ns) =, and such that both
satisfy exactly one € X and exactly ong € @ U {nil}.

(b) n, (resp.np,) has anr-successorn;, (resp.y;,) that sat-
isfies £, (resp. ), with adr” (n)) = adr” (n}, ) the bit-wise
complement of, and such that for alt € 33, ¢ € Q U {nil}:

(i) ny, satisfiesZ, , iff n;, does not satisfy both andg;
(ii) ny, satisfiesZ, , iff n, does not satisfy both andg;
(i) nj, andn, satisfyZ, 4;

(c) n, (resp.,nj,) has at-successorn;, satisfyingG,, (resp.,
nj, satisfying G,) such thatn; (resp.,nj ) is also at-
successor of, (resp.,ny).

We simply speak of a cell ifis unimportant. Note that the
ability of SH to express (c) in Definition 1 via the axiomst

KB K., whose forest models are exactly the accepting com-
putation trees forw.

As already mentioned, we use the quegyto test whether
the tree is proper. More precisely, should have a match in
a computation tree iff that tree isot proper. We start with
a characterization of (im)properness in terms of the aaxili
concept names from above. In the following, we say that two
cellsn andn’ are A-conspicuouswith A a concept name, if

(t) Aistrue at theE,-node ofn and theE,-node ofr’, or
(f) Aistrue at theF},-node ofn and theF,-node ofn’.

Proposition 4. A computation tre& is not proper iff ) there
exists a celln in some configuratiodk and a celln’ in a
successor configuration @€ such that forallA e BUZ, n
andn’ are A-conspicuous.

The above proposition holds due to the way auxiliary labels
are defined. First note thatsif, n” are cells of two successive

configurationsiirZ, then the conditionsimposed edr” (-) in
Definition 1 imply thatadr” (n) = adr” (n/) iff forall A € B,

andtrans(¢) is crucial for the reduction. The same condition 7* @hdn’ areA-conspicuous; this is because bit-wise comple-

can be expressed via a so-callefi identityr o ¢ C ¢.

We now defin€g, a, i)-configuration nodes, which are the

ment is used for the addressedQf andF},-nodes.
Now suppose thaf is proper and let, n’ be cells of two

roots of configuration trees, and (models that encode) comrsuccessive configurations. If they are abtonspicuous for

putation trees. A node’ is anr™-successor of a node if
n' is reachable from by travelingm r-edges.

Definition 2 ((¢, a, i)-configuration node, Computation tree)
Let Z be an interpretation. We call € AZ a (q,a,i)-
configuration nodef (1) it has ans™-successor that is &
cell, for eachj < 2™ and (2) theE},-node of thei-cell satis-
fiesq anda, and all otherj-cells havenil in their £}, -nodes.
We callZ acomputation tredor w if Z is tree-shaped and

1. the roote of Z has anr-successor that is a(qo, a,0)-
configuration node whoskecells describe the initial configu-
ration for inputw;

2. for each(q, a, p)-configuration nodes, if ¢ € Q3 (resp.,
q € Qv), then for some (resp., for each) tuglg, a’, M) €
(g, a) we have:

(i) there exists anr2-successor node)’ that is an
(¢',a"”, p")-configuration node with’ = p + M, where
M € {—1,41} is the executed move,

(i) the E;, node of thep-cell of n’ satisfiess’, and,

(iii) for all j-cellsc of n’ wherej # p, if the E, node ofc
satisfiesu € X, then theE), node ofc also satisfies.

We callZ acceptingif ¢ = gacc in €ach(q, a, 7)-configuration
for which there are no successor configuratiahss proper,

if for each pair of successive configuration nodgsn, and
eachi < 2™, thei-cell of ny has the samég, a)-label in its
Ej-node as the-cell of ny in its E,-node.

someA € B then, as requiredx] is violated. If there is no
suchA € B, thenadr’ (n) = adr” (n'). AsT is proper, the
Ej,-node ofn and theE,-node ofn’ satisfy the same € @
anda € 3. By (b.i), Z, 4 is false at theE)-node ofn; by
(b.ii), Z, 4 is false at theF,-node ofn’. Hence,n,n’ are
not Z, 4,-conspicuous andxf is violated. Conversely, lef
be improper. Then there exist twoecellsn andn’ of two
successive configurations such that fyenode ofn and the
E,-node ofn’ satisfy different pair§q,a) and(¢’,a’). As
adr? (n) = adr (n’), n andn’ are A-conspicuous for ali €
B. By (b.iii), Z,, is true at theF},-node ofn; by (b.ii) and
since(q,a) # (¢',a’), Zy,4 is also true at thé’,-node ofn’.
We can argue symmetrically thay , is true at thel,-node
of n and theE,-node ofn’. For(q”,a") ¢ {(q,a),(¢',a")},
Zar o holds at theEy,-, E,-, F,-, and F},-nodes of botm
andn’. In summaryyn andn’ are A-conspicuous for all €
Z and thugx) is satisfied.

It thus remains to find a query, that has a match iffx) is
satisfied. The structure qf, is displayed in Figure 2(II).

We obtaing,, by taking, for eactd € B UZ, a copy of the
basic queryg(A, u,v) in Figure 2(I) such that the different
copies share only the variablesandv, and then taking the
union. Intuitively,q(A4, u,v) deals withA-conspicuousness,
and the shared variablasv ensure that the different compo-
nent queries speak about the same aells’. In more detalil,
letn,n’ be cells of two successive configurations thatdre
conspicuous for ald € B U Z. We can find a match fay,

Itis not hard to verify that there is a one-to-one corresponys follows: start with matching on theG),-node ofn andv

dence between accepting proper computation trees fomd
accepting computations ¢¥1 onw.

Proposition 2. M acceptsw iff there exists an accepting
proper computation tree fow.

It is not too difficult to show the following.

on theG,-node ofn’. Now take anA € BUZ. If (1) applies,
then matchy;} ., on theE,-node ofn andz;: ., on theE,-
node ofn/; if (1) applies, then matcjyt;j‘l+1 on theFj,-node of

n andz;, , on theF,-node ofn’. The matches of all other
variables are now uniquely determined by the (non-trareiti
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Figure 2: The basic query A, u,v) and the final query,,.

role edges in the query. In particular, the lengths of the rol exponentially many subqueries have to be considered when
chains in the query ensure that will be matched to the root  transitive roles are admitted.

of n in case ) and to the root’s predecessor in cage Ob- As we show next, the described effect vanishes in the
serve that the paths labeled withvariables are exactly two case of tree-shaped ABoxes. This case is relevant, e.g.,
steps longer than those labeled wjttvariables, and thus the when the ABox is obtained by translating an XML docu-
query only relates andr’ if they belong to successor con- ment. An ABoxA is tree-shapedf the directed graph with
figurations. In summary, it is possible to show that nodesind(A) and edged(a,b)|r(a,b)eA} is a tree and
r(a,b),r’(a,b) € Aimply r = . We aim to show

Together with Propositions 2 and 3, this yields the desireqlg%?(reesmar% trcég_seﬁat\glégem inS is ExPTIME-complete if

reduction, establishing the lower bound from Theorem 2. ] ) o
Itis well-known that CQ entailment i is ExPTIME-hard

P even with empty ABoxes and thus it remains to show the up-
4 Query Answering inS per bound. We start with a simple observation.

The reduction |n_the previous sectlon_cruually eprong th Proposition 6. For a KB K= (T,.A), where A is tree-
phreS(incet of roI: mcIusu?[ﬂs ?r}?rgransltl_\(/je ro]ler_. In p?ialc shaped, we can build in polynomial time a KB =
the structure shown on the left-hand side of Figure 1 canno, e o

be enforced if either of these expressive means is dropped. ’{OA(a)_}) such .thatIC Faiff K'=q for every CQy. )
Role hierarchies alone do not suffice to make CQ entaillt thus suffices to give anXTiME algorithm for CQ entail-
ment harder than satisfiability checking and othepEime- ~ Mentins with ABoxes of the form{Co(a)}. From now on,
complete standard reasoning tasks: it is well known that C3et K = (7,{Co(a)}) be a KB andg a CQ for which we
entailment inALCH, which isSH without transitive roles, ~decidek = q.

is only ExPTIME-complete[Lutz, 2008; Ortizet al., 2008H. We setTr(K) := {r € Ng | trans(r) € T}. We as-
In contrast and as we show next, transitive roles alone sufficSume w.1.0.g. tha€’s is in negation normal forn{NNF), i.e.

to make CQ answering harder than standard reasoning. ~ N€gation is only applied to concept names, and thdtas
the form{T C C7} with C7 in NNF. We may also assume

Theorem 2. CQ entailmentirs isco-NExPTIME-hardeven | o g. that CQs are connected (a disconnected query can be
without TBoxes and with acyclic ABoxes. answered by separately posing each connected subquery).
This result is shown by a reduction to CQ non-entailment We can limit our attention to certain canonical models and
from a NExPTIME-complete variant of the tiling problem a certain kind of query that we callgseudo-tree query

where the task is to tile 2" x 2"-torus. The reduction uses Dpefinition 3 (Canonical Model) We usesub(K) to denote
Only aSlngIe transitive role and no other rOIe, no TBox, amd a the set of all Subconcepts of Concepts OccurringC[n A
ABox whose relational structure is a directed acyclic graphcanonical modefor K is a model of A such that (i) satis-
but not a tree. Because of space limitation, we refdEiter fies all concept inclusions iff (but not necessarily the transi-
etal, 2009 for a detailed construction and give only a roughttivity axioms); (ii) (AZ, |, .. %) is a tree with root” and
idea why transitive roles make CQ entailment hard. Viewed,ose out-degree is boaendRed by the cardinalitgudf(K);
on a high level of abstraction, most algorithms for CQ entalil (i) X N sT = 0 whenever # s; (iv) for all ¥¢.C' € sub(IC)'

ment exploit forest models and work by splitting the problemith + < Tr(k d all (d 4 vt.C\Z imoli
into a number of subproblems: one for each individuah \2”6 (Vt%)zr_( Jandall(de) € 7, d & (v£.C)" implies

the input ABox.A. This splitting also involves splitting the L . ) ,
input queryy into subqueries: a match gfin a forest model Due to the non-transitivity of transitive roIe; in canonica
7 may send some variables to the subtree belamd some modelsZ, we have to work with a relaxed version gf_a match
variables to other parts @, and we obtain a subquery by in- that becomes a match when, for every: Tr(K), r~ is re-
cluding only variables of the former kind. Now, the crucial Placed with its transitive closure.

observation is as follows: without transitive roles, onbiyp Definition 4 (Pre-match) Let Z be a canonical model &f.
nomially many subqueries are generated for eagihereas We call 7:Vars(q) — AZ a pre-matchfor ¢ in Z if (a)

Proposition 5. A computation tre€ is proper iffZ (£ q.,.



m(u) € A for eachA(u) € ¢, (b) (m(u),n(v)) € r for each  (2) if Vr.C € 1, thenC € 7' for all (r,7') € S;
r(u,v) € g with » € Tr(K), and (c) for eacht(u, v) € ¢ with i / Nege
LETr(K), there is a sequencd.....d, € A7 such that (3) if Vr.Cer AreTr(K), thenvr.Ce 7 for all (r,7/)€S;
do=m(u), d, =7(v) and(d;,d;+1) €t for all i < n. We (4) [S] < [sub(K)].
write Z =P g, if there is a pre-match fayin Z. A knot k= (7,.5) can be viewed as describing a fragment of
We now define pseudo-tree queries. a canonical model that consists of a node which satisfies the
L. concepts inr and its successors, as describedshyOur al-
Definition 5 (Role Cluster, Pseudo-tree Queryjet g be @ gorithm will represent canonical models as a set of knots. In
CQ. Foreacht € Tr(K), ~ denote§ the smallest equwal/ence fact, it is not hard to come up with conditions which guaran-
relation overVar(q) such that(v,v') € g impliesv ~; v'.  ee that a given set of knots can be assembled into a canoni-
An equivalence class; of ~; is called a(transitive) cluster 5| model. The difficulty is to ensure that, in the represginte
of g. For each non-transitive roke a(non-transitive) cluster  canonical model, there is no pre-matchyof

of g is a setc, = {u, v} with s(u,v) € ¢. Now, a connected  The general idea to overcome this difficulty is as follows.

CQq is apseudo-tree query it satisfies: Consider a top-down walk though a (tree-shaped!) canonical
(@) if ¢, is a cluster ofg and s(u,v), s’ (v/,v") €q with  modelZ. To avoid a pre-match of the pseudo-tree qugmye
v,v' €c, ands, s’ # r,thens=s", u=u',v=1"; ‘track’ ¢ through the tree, switching to a subqueryafhen-

(b) ¢ is acyclic, i.e., it does not contain atomg(vo,v1), ever we are able to m;’;\tch at least or)e variable. For exam-
e (U, Ongt) With 0,41 = 0. ple, if ¢ = {A(vo), B(vp), r(vo, v1), (v, v1)} with r tran-
AT Tner L) TR . _ sitive and we are currently considering an elemért A”
A cluster ¢, of ¢ is initial if no v€c¢, has an incoming gych thatd ¢ AZ \ BZ, then we switch fromy to ¢/ :=
edger’(v',v) € g with r 7 1. {B(v}), (v}, v1)} becausey, (but notv)) can be matched
Intuitively, a pseudo-tree can be viewed as a tree of clsisterto d; we then track;’ starting from all--successors af in Z;
with an additional root; the root is a predecessor of eveiry in if e is such a successor with¢ BZ, condition (c) of pre-
tial cluster (there can be more than one) and there is an edgeatches forces us to continue to tra¢kwithout any modi-
between two clusters if they share an element. It is easy técations sincey, cannot be matched aj} at ther-successors
see that clusters cannot share more than one element. Eaghe; and so on. When we are left with a query that consists
transitive cluster in a pseudo-tree query describes a suipqu of only one variable, we ensure that this variable matches
that is an acyclic directed graph. nowhere In summary, we thus use aager matchingp-
proach (matching variables as early as possible) to ensate t
obtained fromg by fork elimination if ¢’ results fromg by ¢ Matches nowhere . This general idea is complicated by
one of the following operations: the mixture of transitive and non-transitive roles in theiy,
) and by the fact that we have to implement it in terms of knots
e selectr(u,v),r(u',v) € g with u7#u" andr Tr(K),  rather than directly in terms of models.

Definition 6. Let ¢, ¢’ be conjunctive queries. Thepl is

and identifyu andu’; To track subqueries af, we need a means to identify such
e selectr(u,v),r(u',v') € g with v#£+" andv,?’ ina  subqueries.
clusterc, of g with s # r, and identifyv andv’. Definition 8 (Query Pointer) A query pointerfor ¢ is a pair
We say that is amaximal fork rewritingof ¢ if ¢ is obtained (¢, V') with ¢, a cluster ofg andV' C ¢, nonempty. Ifc,. is
from ¢ by exhaustive fork elimination. a cluster ofg, v € ¢,, and there is an(v,v’) € g with s #

It can be shown that the maximal fork rewriting is uniqueEﬂgr%szieqﬂg,e)gcrﬁé?éer(%’ Cvf,?thsvp?fselgle from, wherec, Is
and computable in polynomial time. Moreover, it can be S q_ ’ 5
checked in polynomial time whether a query is a pseudo-tree Intuitively, a query pointer” = (c,, V') represents the
query. Hence, the following proposition allows us to restri Subquery ofy generated by the variables that are reachable
our attention to canonical models and pseudo-tree queries. Iromt the vapables in. EYéief";‘)'tlo(f; of C|U3;fef5' Fthere a(;e

o . wo types of query pointer&:;,., V): (i) r non-transitive an

Proposition 7. Letg be a CQ, and Ieé;’.be the maximal fork |[V| €{1,2}; and (ii)r transitive and” of any cardinality> 1.
rewriting O.'.c 4 T::eenllc ~ qiff () ¢ IS not a pseudo-tree Clearly, a pre-match of a query can concern more than a
query, or (i) Z =" ¢’ for some canonical modgl of . single knot. To implement the tracking of queries based on
In what follows, assume that the input querys a pseudo-  knots, we thus extend knots with bookkeeping information.
tree query. We want to decide whether there is a canonicg).finition 9 (Marked Knot) A g-markingfor ¢ is a setl’
modelZ of K such thatl [P ¢'. Our approach is based on o qery pointers such that for all clustersof ¢, there is at
knots[Ortiz et al, 20084. most one pointefc,, V) € I'. A marked knots a pair(x, v),
Definition 7 (Knot). A T-typeis a setr Csub(7) that satis- wherex = (7, S) is a knot and’ assigns @-marking to each
fies, for allC, D e sub(7T): (a) C e T implies—-C ¢, (b) if  elementinS U {e}.
CnbDer, then{C,D}Cr, (c)if CUDeT, thenC e or As a conventiony(¢) is the marking of the root of. In-
Der, and(d)Cr €7. Aknot forT ',S a pairs = (7, 5) with tuitively, (¢, V) € V((s))means that we are currently tracking
7 a7-type ands a set of pairgr, 7') such thatr is arole  the sybquery of identified by(c,, V') at the element of the
name that occurs iff, 7’ is a7 -type, and in addition: model that is identified by the root node of the knot, and sim-
(1) if 3r.C €1, thenC € 7’ for some(r, 7’) € S ilarly for (¢, V) € v(s, 7).



procedure Knot-Elim(KC, ¢) with IC = (7, {Co(a)})

Compute the se, of markedg-avoiding knots
1 :=0
repeat
1:=14+1
Ri=Ri-1 \{(k,v) € Ri_1 | (k,v)badink;_1}
until &; = K;_1
if there is a(k, v) € R; with k = (7, 5) s.t.Cy € 7 then
return “XC does not entailg”
else return“C entailsq”

Figure 3: The knot elimination algorithm.

To ensure that the query is properly tracked, we propagat

markings from the root of a knot to its successors. Fot

Vars(q), we usemin(V') C Vars(q) to denote the set of those

v €V for which there exists no(v’, v) € g with v’ € V.
Definition 10 (¢-avoiding) A marked knot(x, v) with xk =

(1,5) is g-avoiding if (I) v(¢) contains a query pointer
(¢r, V') with ¢, initial; and (I1) the following conditions hold

for each(c,, V) e v(e):

1.

Ifr & Tr(K), V = {v,v'}, andr(v,v’) € ¢, then

(a) for someA, we haveA(v) € gandA ¢ T, or

(b) (¢r,{v'}) € v(r,7") forall (r,7") € S;

If r & Tr(K) andV = {v}, then either

(a) for someA, we haveA(v) € gandA ¢ T, or

(b) P’ € v(e) for a query pointe”’ possible frony;

. Ifr e Tr(K), then there is some s@f C min(V) s.t.

(a) for eachv € min(V') \ M, either (i) for some4, we
haveA(v) € gandA ¢ 7, or (ii) P’ € v(e) for some
query pointerP’ possible fronvw, and

(b) there is a non-empty” C V \ M with (¢, V') €
v(r,7") forall (r,7') € S.

Intuitively, Definition 10 implements the tracking gfde-

size of C andq. Letn be the size ofC andm the size ofy.
Then the number df -types is bounded b3 and the number

of knots by29(™*) (note condition (7.4)); the number of query
pointers is bounded b3° (") and the number of-markings
by 20(m*) It follows that there ar@®(™*™*) marked knots.

5 Related Work and Conclusions

We have shown that CQ entailment in the BIH, which
supports transitive roles and role hierarchies, isX2BEME-
hard, and thus provably harder than standard reasoning
tasks such as satisfiability and instance checking, whieh ar
EXPTIME-Complete. We have also shown that the problem
IS in EXPTIME for S when ABoxes are tree-shaped, loat
NEXPTIME-hard in general. A tight bound remains open, but
we consider it likely that CQ entailment & is simpler than
2-ExPTIME, with co-NEXPTIME being a good candidate.

The 2-ExPTIME hardness foiSH and for ALCT [Lutz,
2009 matches known upper bounds fonions of CQsn
SHZQ [Glimm et al,, 2008 and for the even more expres-
sive two-way positive regular path querieés ALCQTb,.,
[Calvaneset al., 2007. This shows that once either inverse
roles or role hierarchies and transitivity are allowed,hbot
the query language and the DL can be significantly extended
without further increase of the worst case complexity.
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