
Query Answering in Description Logics with Transitive Roles∗

Thomas Eiter1, Carsten Lutz2, Magdalena Ortiz1, Mantas Šimkus1

1 Institute of Information Systems 2 Fachbereich Mathematik und Informatik
Vienna University of Technology, Austria Universität Bremen, Germany

(eiter|ortiz|simkus)@kr.tuwien.ac.at clu@informatik.uni-bremen.de

Abstract

We study the computational complexity of conjunc-
tive query answering w.r.t. ontologies formulated
in fragments of the description logicSHIQ. Our
main result is the identification of two new sources
of complexity: the combination of transitive roles
and role hierarchies which results in 2-EXPTIME-
hardness, and transitive roles alone which result
in CO-NEXPTIME-hardness. These bounds com-
plement the existing result that inverse roles make
query answering inSHIQ 2-EXPTIME-hard. We
also show that conjunctive query answering with
transitive roles, but without inverse roles and role
hierarchies, remains in EXPTIME if the ABox is
tree-shaped.

1 Introduction

One of the main applications of ontologies in computer sci-
ence is in data access, where an ontology formalizes con-
ceptual information about data that is stored in one or mul-
tiple data sources, and this information is used to derive an-
swers when querying the sources. This general setup plays
a central role e.g. in ontology-based information integration
and in peer-to-peer data management. In all these areas, De-
scription Logics (DLs) and in particular those of the OWL
standard by the W3C are popular ontology languages, and
conjunctive queries (CQs) are used as a fundamental query-
ing mechanism; cf.[Tessaris, 2001; Glimmet al., 2008b;
Ortiz et al., 2008a] and references therein and below.

In spite of prominent applications, studying the compu-
tational complexity of answering CQs over OWL ontolo-
gies has only recently gained momentum. In particular, it
was shown that inverse roles have an impact on complexity:
(a) CQ entailment (the decisional variant of CQ answering)
over ontologies in the primary OWL fragmentSHIQ is 2-
EXPTIME-complete[Glimm et al., 2008b; Lutz, 2008], thus
harder than standard reasoning tasks such as satisfiabilityand

∗This work has been partially supported by the Austrian Sci-
ence Fund (FWF) grant P20840, the Mexican National Council for
Science and Technology (CONACYT) grant 187697, and the EU
project OntoRule (IST-2009-231875).

subsumption which are EXPTIME-complete; and (b) the com-
plexity drops to EXPTIME-complete if inverse roles are disal-
lowed (SHIQ is replaced withSHQ) and, additionally, the
use of transitive roles in queries is disallowed or seriously re-
stricted, cf.[Lutz, 2008; Ortizet al., 2008b].

While dropping inverse roles was known to be crucial for
obtaining an EXPTIME upper bound, the restriction on tran-
sitive roles was not. From an application perspective, sucha
restriction is unsatisfactory as transitive roles play a central
role in many ontologies and are used to represent fundamen-
tal relations such as “part of”[Sattler, 2000]. However, al-
gorithms for CQ entailment with unrestricted transitive roles
in the query are much more intricate than without, see e.g.
[Glimm et al., 2008b; Calvaneseet al., 2007].

The aim of this paper is to study the computational com-
plexity of CQ entailment in fragments ofSHIQ with no re-
strictions on transitive roles in queries. Our main contribu-
tion is to identify two novel sources of complexity: (1) the
combination of transitive roles and role hierarchies and (2) to
a lesser degree, transitive roles alone. More precisely, we
first show that CQ entailment inSH (SHIQ without inverse
roles and number restrictions) is 2-EXPTIME-hard, and thus
2-EXPTIME-complete. Thus, inverse roles arenot the only
reason why CQ entailment inSHIQ is hard. Interestingly,
2-EXPTIME-hardness is hit already with a single role inclu-
sion (or alternatively with a single left identityr ◦ t ⊑ t) and
with an empty ABox (which contains the data). Secondly, we
prove that CQ entailment inS (SH without role hierarchies)
is CO-NEXPTIME-hard. The lower bound applies already to
the case where the TBox (conceptual information) is empty.

On the other hand, we show that CQ entailment inS
ontologies where the ABoxes have a tree-shaped relational
structure is in EXPTIME, and thus EXPTIME-complete. This
result is interesting for three reasons. Firstly, it is the first
EXPTIME result for CQ entailment in an expressive DL with
unrestricted transitive roles in queries. Secondly, to thebest
of our knowledge, this is the first case where CQ entailment
for tree-shaped ABoxes is easier than the general case: in
all existing lower bounds for CQ entailment in fragments of
SHIQ, the ABox containsno role assertions at all. Thirdly,
EXPTIME membership may be viewed as an indication that
the complexity in the general case is likely to be below 2-
EXPTIME; a tight upper bound is currently open. Full proofs
can be found in[Eiteret al., 2009].

2 Preliminaries
Knowledge Bases.We assume standard notation for the syn-
tax and semantics ofSH knowledge bases[Glimm et al.,
2008b]. In particular,NC, NR, andNI are countably infinite
and disjoint sets ofconcept names, role names, andindividual
names. Conceptsare inductively defined: (a) eachA∈NC is
a concept, and (b) ifC, D are concepts andr∈NR is a role,
then C ⊓D, C ⊔D, ¬C, ∀r.C and∃r.C are concepts. A
TBox is a set of concept inclusionsC ⊑ D, role inclusions
r⊑ s, and transitivity statementstrans(r). An ABoxis a set
of assertionsC(a) andr(a, b). A knowledge base (KB)is
a pair(T ,A) consisting of a TBoxT and an ABoxA. We
useI to denote an interpretation,∆I for its domain, andCI

andrI for the interpretation of a conceptC and of a roler,
respectively. We denote byInd(A) the set of all individual
names in an ABoxA. S is the fragment ofSH that disallows
role inclusions.

Conjunctive Query Answering. Let NV be a countably in-
finite set ofvariables. A conjunctive query(CQ) over a KB
K is a finite set of atoms of the formA(v) or r(v, v′), where
v, v′ ∈NV, A is a concept name andr is a role, both occur-
ring in K.1 For a CQq overK, let Var(q) denote the vari-
ables occurring inq. A match forq in an interpretationI is a
mappingπ : Var(q) → ∆I such that (i)π(v)∈AI for each
A(v)∈ q, and (ii)(π(v), π(v′))∈ rI for eachr(v, v′)∈ q. We
write I |= q if there is a match forq in I. If I |= q for every
modelI of K, thenK entailsq, writtenK |= q. Thequery en-
tailment problemis to decide, givenK andq, whetherK |= q.

Forest Models.When studying CQ answering in theSHIQ
family of DLs, it suffices to consider models that have a
forest-like shape; informally, such a modelI consists of two
parts: an ABox part that consists of the interpretationsaI of
the individualsa in K and has an unrestricted relational struc-
ture, and a forest part that is a collection of trees whose roots
are elements of the ABox part and that are otherwise disjoint
from the ABox part. The following result can be found e.g.,
in [Glimm et al., 2008b].

Proposition 1. For everySH-knowledge base and CQq, if
K 6|= q, thenK has a forest modelI such thatI 6|= q.

3 Query Answering in SH
It follows from a number of existing results that CQ entail-
ment in SH is in 2-EXPTIME [Calvaneseet al., 2007; ?;
Glimm et al., 2008a; Ortizet al., 2008b]. We provide a
matching lower bound.

Theorem 1. CQ entailment inSH is 2-EXPTIME-complete.

It is well-known that there is an exponentially space bounded
Alternating Turing Machine (ATM)M whose word problem
is 2-EXPTIME-hard [Chandraet al., 1981]. To prove the
lower bound from Theorem 2, we reduce this word problem.

Recall that the state setQ of an ATM is partitioned into
existential(Q∃) and universal (Q∀) states. An ATM with
only existential states can be viewed as a standard non-
deterministic TM, which accepts a word iff there exists a

1Individuals inq can be simulated and queries with answer vari-
ables can be reduced to the considered Boolean CQs as usual.

r

r
r

r

. . .

depthm

r
r

rr

rr

Fh

Gh

Eh

t
t

Fp

tt

Gp

Ep

Figure 1: The structure of models.

sequence of successive configurations that starts in theini-
tial configuration, with initial stateq0 and the input word
w on the tape, and ends in an accepting stateqacc. For
general ATMs, these sequences becometreesof configura-
tions, where branching is caused by universal states (thereis
a successive configuration for each transition inδ(q, a) with
q ∈ Q∀). Such acomputation treeis acceptingif qacc is
reached on all paths. For details, see[Chandraet al., 1981].

For each inputw toM, we define a KBKw and a queryqw

such thatM acceptsw iff Kw 6|= qw. In fact, forest modelsI
of Kw with I 6|= qw will represent an accepting computation
of M on w. More precisely,I is an accepting computation
tree each of whose nodes is the root of aconfiguration tree.
The latter are binary trees of depthm := |w| (length ofw)
that represent configurations using their2m leaves to store
the tape contents. This is illustrated in Figure 1; the initial
configuration tree is existential and thus has a single succes-
sor configuration tree. This (magnified) successor is universal
and has two successor configuration trees.

To enforce this structure, we need some technical tricks.
In particular, each configuration tree will representtwo con-
figurations: thecurrent configurationKh and theprevious
configurationKp. We useKw to ensure locally at each con-
figuration tree thatKh is indeed a successor configuration of
Kp. The queryqw is then used to globally guarantee that
theKp value of each configuration tree is identical to theKh

value of the predecessor in the computation tree. We will call
a computation treeproper if it satisfies the latter condition.

We now give a precise definition of how configuration trees
and computation trees are represented as a model. A single,
non-transitive roler is used for the edges of computation trees
and of configuration trees. Observe that, as shown in Figure 1,
we usetwo r-edges between two consecutive configuration
trees. We also use a transitive rolet, to be explained later.
The alphabet symbolsΣ of M and the statesQ are used as
concept names. We also use the concept names fromB :=
{B1, . . ., Bm} to encode addresses of tape cells in binary. For
a noden of a forest modelI andi < 2m, we writeadr

I(n) =
i if the truth values ofBI

1 , . . . , BI
m atn encode the numberi.

A tape cell with addressi and contenta ∈ Σ is represented
by a noden with adr

I(n) = i that satisfies the concept name
a. If the head is currently on the cell andM’s state isq, then
n also satisfiesq; otherwise,n satisfies the concept namenil.

To later on ensure properness using the query, we use ad-
ditional nodes and concept names. The latter areEh, Ep,
Fh, Fp, Gh, andGp, used as markers; and the concept names
from Z := {Za,q | a ∈ Γ andq ∈ Q ∪ {nil}}. The addi-
tional nodes are attached to the leaves of configuration trees,

as indicated on the left-hand side of Figure 1 and detailed in
the subsequent definition. Intuitively, nodes labeledEh store
the current configuration and nodes labeledEp the previous.
Definition 1 (i-cell). Let I be an interpretation andi < 2m.
We calln ∈ ∆I ani-cell if the following hold:
(a) n hasr-successorsnp andnh that respectively satisfyEp

andEh, with adr
I(np)= adr

I(nh)= i, and such that both
satisfy exactly onea ∈ Σ and exactly oneq ∈ Q ∪ {nil}.

(b) np (resp.,nh) has anr-successorn′
p (resp.,n′

h) that sat-

isfiesFp (resp.,Fh), with adr
I(n′

p)= adr
I(n′

h) the bit-wise
complement ofi, and such that for alla∈Σ, q ∈Q∪{nil}:

(i) nh satisfiesZa,q iff nh does not satisfy botha andq;
(ii) n′

p satisfiesZa,q iff np does not satisfy botha andq;
(iii) n′

h andnp satisfyZa,q;

(c) n′
p (resp.,n′

h) has at-successorn′′
p satisfyingGp (resp.,

n′′
h satisfying Gh) such thatn′′

p (resp.,n′′
h) is also at-

successor ofnp (resp.,nh).
We simply speak of a cell ifi is unimportant. Note that the

ability of SH to express (c) in Definition 1 via the axiomsr⊑t
andtrans(t) is crucial for the reduction. The same condition
can be expressed via a so-calledleft identityr ◦ t ⊑ t.

We now define(q, a, i)-configuration nodes, which are the
roots of configuration trees, and (models that encode) com-
putation trees. A noden′ is anrm-successor of a noden, if
n′ is reachable fromn by travelingm r-edges.
Definition 2 ((q, a, i)-configuration node, Computation tree).
Let I be an interpretation. We calln ∈ ∆I a (q, a, i)-
configuration nodeif (1) it has ansm-successor that is aj-
cell, for eachj < 2m and (2) theEh-node of thei-cell satis-
fiesq anda, and all otherj-cells havenil in theirEh-nodes.
We callI a computation treefor w if I is tree-shaped and
1. the rootǫ of I has anr-successorn that is a(q0, a, 0)-
configuration node whosei-cells describe the initial configu-
ration for inputw;
2. for each(q, a, p)-configuration noden, if q ∈Q∃ (resp.,
q ∈Q∀), then for some (resp., for each) tuple(q′, a′, M) ∈
δ(q, a) we have:

(i) there exists anr2-successor noden′ that is an
(q′, a′′, p′)-configuration node withp′ = p + M , where
M ∈ {−1, +1} is the executed move,

(ii) the Eh node of thep-cell of n′ satisfiesa′, and,

(iii) for all j-cellsc of n′ wherej 6= p, if the Ep node ofc
satisfiesa∈Σ, then theEh node ofc also satisfiesa.

We callI accepting, if q = qacc in each(q, a, i)-configuration
for which there are no successor configurations.I is proper,
if for each pair of successive configuration nodesn1, n2 and
eachi < 2m, thei-cell of n1 has the same(q, a)-label in its
Eh-node as thei-cell of n2 in its Ep-node.

It is not hard to verify that there is a one-to-one correspon-
dence between accepting proper computation trees forw and
accepting computations ofM onw.
Proposition 2. M acceptsw iff there exists an accepting
proper computation tree forw.
It is not too difficult to show the following.

Proposition 3. Givenw, we can build in polynomial time a
KB Kw whose forest models are exactly the accepting com-
putation trees forw.

As already mentioned, we use the queryqw to test whether
the tree is proper. More precisely,qw should have a match in
a computation tree iff that tree isnot proper. We start with
a characterization of (im)properness in terms of the auxiliary
concept names from above. In the following, we say that two
cellsn andn′ areA-conspicuous, with A a concept name, if

(†) A is true at theEh-node ofn and theEp-node ofn′, or

(‡) A is true at theFh-node ofn and theFp-node ofn′.

Proposition 4. A computation treeI is not proper iff (⋆) there
exists a celln in some configurationK and a celln′ in a
successor configuration ofK such that for allA ∈ B ∪ Z, n
andn′ areA-conspicuous.

The above proposition holds due to the way auxiliary labels
are defined. First note that ifn, n′ are cells of two successive
configurations inI, then the conditions imposed onadr

I(·) in
Definition 1 imply thatadr

I(n) = adr
I(n′) iff for all A ∈ B,

n andn′ areA-conspicuous; this is because bit-wise comple-
ment is used for the addresses ofFp- andFh-nodes.

Now suppose thatI is proper and letn, n′ be cells of two
successive configurations. If they are notA-conspicuous for
someA∈B then, as required, (⋆) is violated. If there is no
suchA ∈ B, thenadr

I(n) = adr
I(n′). As I is proper, the

Eh-node ofn and theEp-node ofn′ satisfy the sameq ∈ Q
anda ∈ Σ. By (b.i), Za,q is false at theEh-node ofn; by
(b.ii), Za,q is false at theFp-node ofn′. Hence,n, n′ are
not Za,q-conspicuous and (⋆) is violated. Conversely, letI
be improper. Then there exist twoj-cells n andn′ of two
successive configurations such that theEh-node ofn and the
Ep-node ofn′ satisfy different pairs(q, a) and (q′, a′). As
adr

I(n) = adr
I(n′), n andn′ areA-conspicuous for allA ∈

B. By (b.iii), Zq,a is true at theFh-node ofn; by (b.ii) and
since(q, a) 6= (q′, a′), Zq,a is also true at theFp-node ofn′.
We can argue symmetrically thatza′,q′ is true at theEh-node
of n and theEp-node ofn′. For (q′′, a′′) /∈ {(q, a), (q′, a′)},
Za′′,q′′ holds at theEh-, Ep-, Fh-, andFp-nodes of bothn
andn′. In summary,n andn′ areA-conspicuous for allA ∈
Z and thus(⋆) is satisfied.

It thus remains to find a queryqw that has a match iff (⋆) is
satisfied. The structure ofqw is displayed in Figure 2(II).

We obtainqw by taking, for eachA ∈ B∪Z, a copy of the
basic queryq(A, u, v) in Figure 2(I) such that the different
copies share only the variablesu andv, and then taking the
union. Intuitively,q(A, u, v) deals withA-conspicuousness,
and the shared variablesu, v ensure that the different compo-
nent queries speak about the same cellsn, n′. In more detail,
let n, n′ be cells of two successive configurations that areA-
conspicuous for allA ∈ B ∪ Z. We can find a match forqw

as follows: start with matchingu on theGh-node ofn andv
on theGp-node ofn′. Now take anA ∈ B∪Z. If (†) applies,
then matchyA

m+1 on theEh-node ofn andzA
m+1 on theEp-

node ofn′; if (‡) applies, then matchyA
m+1 on theFh-node of

n andzA
m+1 on theFp-node ofn′. The matches of all other

variables are now uniquely determined by the (non-transitive)

xZnxZ1· · ·

y
B1
0

r

xB1 xBm· · ·

r

y
Bm
0

y
Z1
0

y
Zn
0 z

B1
0

z
Z1
0

z
Zn
0

z
Bm
0

z
B1
m+3

B1 Bm

z
Bm
m+3

z
Z1
m+3

z
Zn
m+3

ZnZ1

vGp

xA

yA
0

yA
1

r

r r

r

zA
0

zA
1

u

A

Gp
v

A

yA
m+1

yA
m

t

r

r

t

zA
m+2

zA
m+3

y
B1
m+1

r

t

B1 Bm

y
Bm
m+1

y
Z1
m+1

ZnZ1

uGh

.

.

.

Gh

.

.

.
(II)(I)

.

.

.

.

.

.

.

.

.

.

.

. .
.
.

.

.

.

.

.

.

.

.

.

· · · · · ·

· · · · · ·

y
Zn
m+1

Figure 2: The basic queryq(A, u, v) and the final queryqw.

role edges in the query. In particular, the lengths of the role
chains in the query ensure thatxA will be matched to the root
of n in case (‡) and to the root’s predecessor in case (†). Ob-
serve that the paths labeled withz-variables are exactly two
steps longer than those labeled withy-variables, and thus the
query only relatesn andn′ if they belong to successor con-
figurations. In summary, it is possible to show that

Proposition 5. A computation treeI is proper iffI 6|= qw.

Together with Propositions 2 and 3, this yields the desired
reduction, establishing the lower bound from Theorem 2.

4 Query Answering in S

The reduction in the previous section crucially exploits the
presence of role inclusions and transitive roles. In particular,
the structure shown on the left-hand side of Figure 1 cannot
be enforced if either of these expressive means is dropped.
Role hierarchies alone do not suffice to make CQ entail-
ment harder than satisfiability checking and other EXPTIME-
complete standard reasoning tasks: it is well known that CQ
entailment inALCH, which isSH without transitive roles,
is only EXPTIME-complete[Lutz, 2008; Ortizet al., 2008b].
In contrast and as we show next, transitive roles alone suffice
to make CQ answering harder than standard reasoning.

Theorem 2. CQ entailment inS is CO-NEXPTIME-hard even
without TBoxes and with acyclic ABoxes.

This result is shown by a reduction to CQ non-entailment
from a NEXPTIME-complete variant of the tiling problem
where the task is to tile a2n × 2n-torus. The reduction uses
only a single transitive role and no other role, no TBox, and an
ABox whose relational structure is a directed acyclic graph,
but not a tree. Because of space limitation, we refer to[Eiter
et al., 2009] for a detailed construction and give only a rough
idea why transitive roles make CQ entailment hard. Viewed
on a high level of abstraction, most algorithms for CQ entail-
ment exploit forest models and work by splitting the problem
into a number of subproblems: one for each individuala in
the input ABoxA. This splitting also involves splitting the
input queryq into subqueries: a match ofq in a forest model
I may send some variables to the subtree belowa and some
variables to other parts ofI, and we obtain a subquery by in-
cluding only variables of the former kind. Now, the crucial
observation is as follows: without transitive roles, only poly-
nomially many subqueries are generated for eacha whereas

exponentially many subqueries have to be considered when
transitive roles are admitted.

As we show next, the described effect vanishes in the
case of tree-shaped ABoxes. This case is relevant, e.g.,
when the ABox is obtained by translating an XML docu-
ment. An ABoxA is tree-shapedif the directed graph with
nodesInd(A) and edges{(a, b) | r(a, b)∈A} is a tree and
r(a, b), r′(a, b) ∈ A imply r = r′. We aim to show

Theorem 3. CQ entailment inS is EXPTIME-complete if
ABoxes are tree-shaped.

It is well-known that CQ entailment inS is EXPTIME-hard
even with empty ABoxes and thus it remains to show the up-
per bound. We start with a simple observation.

Proposition 6. For a KB K= (T ,A), where A is tree-
shaped, we can build in polynomial time a KBK′ =
(T , {CA(a)}) such thatK |= q iff K′ |= q for every CQq.

It thus suffices to give an EXPTIME algorithm for CQ entail-
ment inS with ABoxes of the form{C0(a)}. From now on,
let K = (T , {C0(a)}) be a KB andq a CQ for which we
decideK |= q.

We setTr(K) := {r ∈ NR | trans(r) ∈ T }. We as-
sume w.l.o.g. thatC0 is in negation normal form(NNF), i.e.
negation is only applied to concept names, and thatT has
the form{⊤ ⊑ CT } with CT in NNF. We may also assume
w.l.o.g. that CQs are connected (a disconnected query can be
answered by separately posing each connected subquery).

We can limit our attention to certain canonical models and
a certain kind of query that we call apseudo-tree query.

Definition 3 (Canonical Model). We usesub(K) to denote
the set of all subconcepts of concepts occurring inK. A
canonical modelfor K is a modelI of A such that (i)I satis-
fies all concept inclusions inT (but not necessarily the transi-
tivity axioms); (ii) (∆I ,

⋃
r∈NR

rI) is a tree with rootaI and
whose out-degree is bounded by the cardinality ofsub(K);
(iii) rI ∩ sI = ∅ wheneverr 6= s; (iv) for all ∀t.C ∈ sub(K)
with t ∈ Tr(K) and all (d, e) ∈ tI , d ∈ (∀t.C)I implies
e ∈ (∀t.C)I .

Due to the non-transitivity of transitive roles in canonical
modelsI, we have to work with a relaxed version of a match
that becomes a match when, for everyr ∈ Tr(K), rI is re-
placed with its transitive closure.

Definition 4 (Pre-match). Let I be a canonical model ofK.
We call π : Vars(q)→∆I a pre-match for q in I if (a)

π(u)∈AI for eachA(u)∈ q, (b) (π(u), π(v))∈ rI for each
r(u, v)∈ q with r 6∈Tr(K), and (c) for eacht(u, v)∈ q with
t∈Tr(K), there is a sequenced0, . . . , dn ∈∆I such that
d0 = π(u), dn = π(v) and(di, di+1)∈ tI for all i < n. We
write I |=pre q, if there is a pre-match forq in I.

We now define pseudo-tree queries.

Definition 5 (Role Cluster, Pseudo-tree Query). Let q be a
CQ. For eacht ∈ Tr(K), ∼t denotes the smallest equivalence
relation overVar(q) such thatt(v, v′) ∈ q impliesv ∼t v′.
An equivalence classct of ∼t is called a(transitive) cluster
of q. For each non-transitive roles, a (non-transitive) cluster
of q is a setcs = {u, v} with s(u, v) ∈ q. Now, a connected
CQ q is apseudo-tree queryif it satisfies:

(a) if cr is a cluster ofq and s(u, v), s′(u′, v′)∈ q with
v, v′ ∈ cr ands, s′ 6= r, thens = s′, u =u′, v = v′;

(b) q is acyclic, i.e., it does not contain atomsr0(v0, v1),
. . . , rn(vn, vn+1) with vn+1 = v0.

A cluster cr of q is initial if no v ∈ cr has an incoming
edger′(v′, v)∈ q with r 6= r′.

Intuitively, a pseudo-tree can be viewed as a tree of clusters
with an additional root; the root is a predecessor of every ini-
tial cluster (there can be more than one) and there is an edge
between two clusters if they share an element. It is easy to
see that clusters cannot share more than one element. Each
transitive cluster in a pseudo-tree query describes a subquery
that is an acyclic directed graph.

Definition 6. Let q, q′ be conjunctive queries. Thenq′ is
obtained fromq by fork elimination, if q′ results fromq by
one of the following operations:

• selectr(u, v), r(u′, v) ∈ q with u 6=u′ andr 6∈Tr(K),
and identifyu andu′;

• selectr(u, v), r(u′, v′) ∈ q with v 6= v′ andv, v′ in a
clustercs of q with s 6= r, and identifyv andv′.

We say thatq′ is amaximal fork rewritingof q if q′ is obtained
from q by exhaustive fork elimination.

It can be shown that the maximal fork rewriting is unique
and computable in polynomial time. Moreover, it can be
checked in polynomial time whether a query is a pseudo-tree
query. Hence, the following proposition allows us to restrict
our attention to canonical models and pseudo-tree queries.

Proposition 7. Letq be a CQ, and letq′ be the maximal fork
rewriting of q. ThenK 6|= q iff (i) q′ is not a pseudo-tree
query, or (ii)I 6|=pre q′ for some canonical modelI ofK.

In what follows, assume that the input queryq is a pseudo-
tree query. We want to decide whether there is a canonical
modelI of K such thatI 6|=pre q′. Our approach is based on
knots[Ortiz et al., 2008c].

Definition 7 (Knot). A T -typeis a setτ ⊆ sub(T) that satis-
fies, for allC, D ∈ sub(T): (a) C ∈ τ implies¬C 6∈ τ , (b) if
C ⊓D∈ τ , then{C, D}⊆ τ , (c) if C ⊔D∈ τ , thenC ∈ τ or
D∈ τ , and (d)CT ∈ τ . A knot forT is a pairκ =(τ, S) with
τ a T -type andS a set of pairs(r, τ ′) such thatr is a role
name that occurs inT , τ ′ is aT -type, and in addition:

(1) if ∃r.C ∈ τ , thenC ∈ τ ′ for some(r, τ ′)∈S;

(2) if ∀r.C ∈ τ , thenC ∈ τ ′ for all (r, τ ′)∈S;

(3) if ∀r.C∈ τ ∧ r∈Tr(K), then∀r.C∈ τ ′ for all (r, τ ′)∈S;

(4) |S| ≤ |sub(K)|.

A knot κ =(τ, S) can be viewed as describing a fragment of
a canonical model that consists of a node which satisfies the
concepts inτ and its successors, as described byS. Our al-
gorithm will represent canonical models as a set of knots. In
fact, it is not hard to come up with conditions which guaran-
tee that a given set of knots can be assembled into a canoni-
cal model. The difficulty is to ensure that, in the represented
canonical model, there is no pre-match ofq.

The general idea to overcome this difficulty is as follows.
Consider a top-down walk though a (tree-shaped!) canonical
modelI. To avoid a pre-match of the pseudo-tree queryq, we
‘track’ q through the tree, switching to a subquery ofq when-
ever we are able to match at least one variable. For exam-
ple, if q = {A(v0), B(v′0), r(v0, v1), r(v

′
0, v1)} with r tran-

sitive and we are currently considering an elementd ∈ ∆I

such thatd ∈ AI \ BI , then we switch fromq to q′ :=
{B(v′0), r(v

′
0, v1)} becausev0 (but notv′0) can be matched

to d; we then trackq′ starting from allr-successors ofd in I;
if e is such a successor withe /∈ BI , condition (c) of pre-
matches forces us to continue to trackq′ (without any modi-
fications sincev′0 cannot be matched ate) at ther-successors
of e; and so on. When we are left with a query that consists
of only one variable, we ensure that this variable matches
nowhere. In summary, we thus use aneager matchingap-
proach (matching variables as early as possible) to ensure that
q matches nowhere inI. This general idea is complicated by
the mixture of transitive and non-transitive roles in the query,
and by the fact that we have to implement it in terms of knots
rather than directly in terms of models.

To track subqueries ofq, we need a means to identify such
subqueries.

Definition 8 (Query Pointer). A query pointerfor q is a pair
(cr, V) with cr a cluster ofq andV ⊆ cr nonempty. Ifcr is
a cluster ofq, v ∈ cr, and there is ans(v, v′)∈ q with s 6= r,
then the query pointer(cs, cs) is possible fromv, wherecs is
the (unique!)s-cluster inq with v, v′ ∈ cs.

Intuitively, a query pointerP = (cr, V) represents the
subquery ofq generated by the variables that are reachable
from the variables inV . By definition of clusters, there are
two types of query pointers(cr, V): (i) r non-transitive and
|V | ∈ {1, 2}; and (ii)r transitive andV of any cardinality≥ 1.

Clearly, a pre-match of a query can concern more than a
single knot. To implement the tracking of queries based on
knots, we thus extend knots with bookkeeping information.

Definition 9 (Marked Knot). A q-marking for q is a setΓ
of query pointers such that for all clusterscr of q, there is at
most one pointer(cr, V) ∈ Γ. A marked knotis a pair(κ, ν),
whereκ =(τ, S) is a knot andν assigns aq-marking to each
element inS ∪ {ε}.

As a convention,ν(ε) is the marking of the root ofκ. In-
tuitively, (cr, V) ∈ ν(ε) means that we are currently tracking
the subquery ofq identified by(cr, V) at the element of the
model that is identified by the root node of the knot, and sim-
ilarly for (cr, V) ∈ ν(s, τ).

procedureKnot-Elim(K, q) with K = (T , {C0(a)})
Compute the setK0 of markedq-avoiding knots
i := 0
repeat
i := i + 1
Ki := Ki−1 \ {(κ, ν) ∈ Ki−1 | (κ, ν) bad inKi−1}

until Ki = Ki−1

if there is a(κ, ν) ∈ Ki with κ = (τ, S) s.t.C0 ∈ τ then
return “K does not entailsq”

else return “K entailsq”

Figure 3: The knot elimination algorithm.

To ensure that the query is properly tracked, we propagate
markings from the root of a knot to its successors. ForV ⊆
Vars(q), we usemin(V)⊆Vars(q) to denote the set of those
v ∈V for which there exists nor(v′, v)∈ q with v′ ∈V .

Definition 10 (q-avoiding). A marked knot(κ, ν) with κ =
(τ, S) is q-avoiding if (I) ν(ε) contains a query pointer
(cr, V) with cr initial; and (II) the following conditions hold
for each(cr, V)∈ ν(ε):

1. If r 6∈ Tr(K), V = {v, v′}, andr(v, v′) ∈ q, then

(a) for someA, we haveA(v) ∈ q andA 6∈ τ , or
(b) (cr, {v′}) ∈ ν(r, τ ′) for all (r, τ ′) ∈ S;

2. If r 6∈ Tr(K) andV = {v}, then either

(a) for someA, we haveA(v) ∈ q andA 6∈ τ , or
(b) P ′ ∈ ν(ε) for a query pointerP ′ possible fromv;

3. If r∈Tr(K), then there is some setM ⊆ min(V) s.t.:

(a) for eachv ∈min(V) \ M , either (i) for someA, we
haveA(v) ∈ q andA 6∈ τ , or (ii) P ′ ∈ ν(ε) for some
query pointerP ′ possible fromv, and

(b) there is a non-emptyV ′ ⊆ V \ M with (cr, V
′) ∈

ν(r, τ ′) for all (r, τ ′) ∈ S.

Intuitively, Definition 10 implements the tracking ofq de-
scribed above. Conditions (1.b), (2.b), and (3.b) push the
query to successor nodes. In Condition (3),M is the set of
variables to be matched at the ‘current’ node, and (3.a) im-
plements eager matching. The final avoidance of the query is
implemented via Conditions (2) and (3) when|V | = 1. Con-
dition (I) is needed to re-initiate the tracking process, e.g.,
when we have traveled a role that does not occur in the query.

Our algorithm is of the type elimination kind introduced in
[Pratt, 1979], but works on marked knots instead of on types.
It rests on the following definition.

Definition 11 (Bad). Let K be a set of marked knots and
(κ, ν) ∈ K with κ = (τ, S). We say that(κ, ν) is bad in K,
if there is some(r, τ ′)∈S for which there is no(κs, νs)∈K

with κs =(τs, Ss) such thatτs = τ ′ andνs(ε)= ν(r, τ ′).

The algorithm is given in Figure 3. Soundness and complete-
ness are established in[Eiteret al., 2009].

Proposition 8. The Knot-Elim algorithm is sound, complete,
and terminates.

To establish Theorem 3, it remains to show that Knot-Elim
runs in exponential time. For this, it clearly suffices to show
that the number of marked knots is only exponential in the

size ofK andq. Let n be the size ofK andm the size ofq.
Then the number ofT -types is bounded by2n and the number
of knots by2O(n2) (note condition (7.4)); the number of query
pointers is bounded by2O(m) and the number ofq-markings
by 2O(m2). It follows that there are2O(n2m2) marked knots.

5 Related Work and Conclusions
We have shown that CQ entailment in the DLSH, which
supports transitive roles and role hierarchies, is 2-EXPTIME-
hard, and thus provably harder than standard reasoning
tasks such as satisfiability and instance checking, which are
EXPTIME-complete. We have also shown that the problem
is in EXPTIME for S when ABoxes are tree-shaped, butCO-
NEXPTIME-hard in general. A tight bound remains open, but
we consider it likely that CQ entailment inS is simpler than
2-EXPTIME, with CO-NEXPTIME being a good candidate.

The 2-EXPTIME hardness forSH and forALCI [Lutz,
2008] matches known upper bounds forunions of CQsin
SHIQ [Glimm et al., 2008b] and for the even more expres-
sive two-way positive regular path queriesin ALCQIbreg

[Calvaneseet al., 2007]. This shows that once either inverse
roles or role hierarchies and transitivity are allowed, both
the query language and the DL can be significantly extended
without further increase of the worst case complexity.

References
[Calvaneseet al., 2007] D. Calvanese, T. Eiter, and M. Ortiz. An-

swering regular path queries in expressive description logics: An
automata-theoretic approach. InProc. AAAI 2007, pp. 391–396.

[Chandraet al., 1981] A.K. Chandra, D.C. Kozen, and L.J. Stock-
meyer. Alternation.Journal of the ACM, 28(1):114–133, 1981.

[Eiteret al., 2009] T. Eiter, C. Lutz, M. Ortiz, and M.Šimkus.
Query answering in description logics with transitive roles. INF-
SYS RR-1843-09-02. TU Vienna, 2009.

[Glimm et al., 2008a] B. Glimm, I. Horrocks, and U. Sattler.
Unions of conjunctive queries inSHOQ. In Proc. KR 2008,
pp. 252–262, 2008.

[Glimm et al., 2008b] B. Glimm, C. Lutz, I. Horrocks, and U. Sat-
tler. Answering conjunctive queries in theSHIQ description
logic. J. Artificial Intelligence Research, 31:150–197, 2008.

[Lutz, 2008] C. Lutz. The complexity of conjunctive query answer-
ing in expressive description logics. InProc. IJCAR 2008, LNAI
5195, pp. 179–193. Springer, 2008.

[Ortiz et al., 2008a] M. Ortiz, D. Calvanese, and T. Eiter. Data
complexity of query answering in expressive description logics
via tableaux.J. Automated Reasoning, 41(1):61–98, 2008.

[Ortiz et al., 2008b] M. Ortiz, M. Šimkus, and T. Eiter. Conjunctive
query answering inSH using knots. InProc. DL 2008, CEUR
Workshop Proc., vol 353, 2008.

[Ortiz et al., 2008c] M. Ortiz, M. Šimkus, and T. Eiter. Worst-case
optimal conjunctive query answering for an expressive descrip-
tion logic without inverses. InProc. AAAI’08, pp. 504–510, 2008.

[Pratt, 1979] V.R. Pratt. Models of program logics. InProc. IEEE
FOCS 79, pp. 115–122, 1979.

[Sattler, 2000] U. Sattler. Description logics for the representation
of aggregated objects. InProc. ECAI 2000, pp. 239-243, 2000.

[Tessaris, 2001] S. Tessaris.Questions and Answers: Reasoning
and Querying in Description Logic. PhD thesis, Univ. Manch-
ester, CS Dept, April 2001.

