
Query Answering in Description Logics:
the Knots Approach?

Thomas Eiter1, Carsten Lutz2, Magdalena Ortiz1, and Mantas Šimkus1

1 Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
(eiter|ortiz|simkus)@kr.tuwien.ac.at

2 Fachbereich Mathematik und Informatik, University of Bremen
Bibliothekstraße 1, D-28359 Bremen, Germany

clu@informatik.uni-bremen.de

Abstract. In the recent years, query answering over Description Logic
(DL) knowledge bases has been receiving increasing attention, and vari-
ous methods and techniques have been presented for this problem. In this
paper, we consider knots, which are an instance of the mosaic technique
from Modal Logic. When annotated with suitable query information,
knots are a flexible tool for query answering that allows for solving the
problem in a simple and intuitive way. The knot approach yields optimal
complexity bounds, as we illustrate on the DLs ALCH and ALCHI, and
can be easily extended to accommodate other constructs.

1 Introduction

The recent use of Description Logics (DLs) in a widening range of fields like
the Semantic Web, data and information integration and ontology-based data
access, has led to the study of new reasoning problems. In particular, accessing
semantically enhanced data schemata expressed by means of DL ontologies via
(extensions of) the popular conjunctive queries (CQs) has become an active area
of research, cf. [3,9,8,11,18]. CQs are in general not expressible in the language
of most DLs (at least not succinctly), and suitable methods for answering CQs
are not always apparent.

The mosaic technique is a well-known method in Modal Logics [17,2], which
has also been applied for reasoning in DLs [14,24]. Mosaics are small ‘blocks’ for
building models, and possibly infinite models are represented by finite sets of
these blocks. Local consistency conditions on mosaics and global coherency con-
dition on sets of mosaics ensure correct model representation. As only finitely
many mosaics must be considered and the global and local conditions are ef-
fectively verifiable, model existence can be decided by finding a suitable set of
mosaics.

Here we discuss an instance of the mosaic technique called knots [6]. Knots
are small tree-shaped mosaics easy to employ for solving the DL knowledge base
? This work has been partially supported by the Austrian Science Fund (FWF) grants

P20840 and P20841, the EU Project Ontorule (FP7 231875), and the Mexican Na-
tional Council for Science and Technology (CONACYT) grant 187697.

satisfiability problem. An attractive feature of this method is that it can be grace-
fully extended to CQ answering: we mark each knot with a set of (sub)queries
that cannot be mapped locally into the model part the knot describes, and global
conditions on sets of marked knots ensure that a full countermodel for the query
can be constructed from them.

In this paper, we illustrate the approach on the DLs ALCH and ALCHI,
and obtain a worst-case optimal algorithm for CQ answering in both logics in
a transparent way. For illustration of the core technique and to keep matters
simple, we focus on a restricted case considering knowledge bases with a very
simple data component (i.e., ABox), and give a general outline of how the tech-
nique extends to the general setting. As we will see, the marking of the knots
is simple and intuitive, and flexible enough to easily extend to other DLs with
different constructs. Furthermore, it allows for elegant refinements that yield
optimal bounds even in the presence of very subtle sources of complexity.

The rest of the paper is organized as follows. After introducing the DLs we
consider and their query answering problem in Section 2, we describe the knot-
based algorithm in Section 3. This is done in three steps. First, we describe the
generic knot-marking algorithm, and then we show how it can be used in the
two considered DLs to obtain optimal complexity. The extensions to the case
of unrestricted knowledge bases and to other DLs are briefly described next.
Finally, related worked is addressed in Section 4.

2 Preliminaries

We introduce the DLs ALCH and ALCHI considered in this paper and discuss
the basics of conjunctive query answering. We start with defining knowledge
bases. Let C, R, and I be countably infinite sets of concept names, role names,
and individual names. A role is either a role name r ∈ R or an expression r−

(called the inverse role of r). Concepts are defined inductively: (i) all concept
names A ∈ C are concepts, and (ii) if C, D are concepts and r is a role, then
¬C, C u D, C t D, ∀r.C and ∃r.C are concepts. As usual, for an inverse role
r = s−, we write r− to denote s.

An ALCHI knowledge base (KB) K is a finite set of statements of the fol-
lowing form: (i) concept inclusions (CIs) CvD with C and D concepts; (ii) role
inclusions (RIs) r v s with r and s roles; (iii) concept assertions A(a), with a
an individual name and A a concept name; and (iv) role assertions r(a, b), with
a, b individual names and r a role. If K does not contain inverse roles, then it
is an ALCH knowledge base. By CK and RK, we denote the sets of all concept
and role names, respectively, that occur in K.

The semantics is given via first-order interpretations. An interpretation I =
(∆I , ·I) consists of a non-empty set ∆I (the domain) and a valuation function
·I that maps each concept name A ∈ C to subset AI of ∆I , each role name
r ∈ R to a subset rI of ∆I × ∆I , and each individual name a to an element
aI ∈ ∆I . The function ·I is extended to all concepts and roles as follows:

(p−)I = {(y, x) | (x, y) ∈ rI},

(¬C)I = ∆I\CI ,

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,

(∃r.C)I = {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI},

(∀r.C)I = {x | ∀y.(x, y) ∈ rI → y ∈ CI}.

An interpretation I satisfies a CI C vD if CI ⊆ DI , an RI rv s if rI ⊆ sI ,
a concept assertion A(a) if aI ∈ AI , and a role assertion r(a, b) if (aI , bI) ∈ rI .
Moreover, I is a model of a KB K (in symbols, I |= K) if it satisfies all inclusions
and assertions in K. A KB is consistent if it has a model.

We now recall conjunctive queries. To keep the presentation simple, we re-
strict ourselves to Boolean conjunctive queries, i.e., queries without answer vari-
ables. Technically, the general case is no more difficult than this restricted one
and admits the same techniques and similar algorithms. We also consider queries
with variables only, and constants can be simulated in the usual way. Let V be
a countably infinite set of variables. A (Boolean) conjunctive query (CQ) is a
finite set of atoms of the form A(x) or r(x, y), where A is a concept name, r is a
role, and x, y ∈ V. The variables occurring in the atoms of q are denoted V(q).
When we work with ALCH KBs, we assume that CQs contain only role names,
but no inverse roles.

A match for q in an interpretation I is a mapping π : V(q) → ∆I such that
(i) π(x)∈AI for each A(x)∈ q, and (ii) (π(x), π(y))∈ rI for each r(x, y)∈ q. If
such π exists, we write I |= q. We write K |= q (and say “K entails q”) if there
is a match for q in every model of the KB K. This defines the problem that we
consider in this paper: given a KB K and a CQ q, decide whether K entails q.
There is one additional simplifying assumption concerning the structure of the
query. As usual and w.l.o.g., we assume throughout the paper that all queries
are connected, i.e., there is only one connected component in the query graph
Gq, which is the directed graph with nodes V(q) that has an edge from x to
y iff r(x, y) ∈ q for some role r. Non-connected queries can be answered by
independently answering each connected component.

In most parts of this paper, we will concentrate on knowledge bases that
contain only a single concept assertion C0(a0) and no role assertions. We call such
a KB simple. Just like the simplifying assumptions that we make on conjunctive
queries, this serves the purpose of an easier exposition. In contrast to those
assumptions, however, this case is technically simpler than the general case. We
will discuss this in more detail in Section 3.4. When deciding query entailment
over a simple ALCHI KB K, it suffices to concentrate on models of K that are
tree shaped. Formally, a model I of K is a tree model if:

1. ∆I is a prefixed-closed subset of N∗ (i.e., of words over the natural numbers);
the empty word is denoted by ε and called the root of ∆I ,

2. if (d, e) ∈ (∃r.C)I for some role r and some concept C, then, for some j ∈ N,
(d, d·j) ∈ rI and d·j ∈ CI , and

3. if (d, e) ∈ rI for some role name r, then, for some j ∈ N, either (i) e = d·j,
or (ii) d = e·j.

If I is a tree model of K, and for each (d, e) ∈ rI we have e = d·j for some j ∈ N
(i.e., if (3ii) never applies), then I is a 1-way tree model. In the case of ALCH
KBs, it even suffices to concentrate on 1-way tree models. From now on, the size
of a knowledge base K is denoted |K|.

Proposition 1. Every consistent simple ALCHI KB K has a tree model, and
for each query q, if K 6|= q, then there exists a tree model I of K such that
I 6|= q. The model I is such that ∆I ⊆ {0, . . . , |K| − 1}∗ and it is 1-way if K is
an ALCH KB.

We note that a similar proposition can be established for non-simple KBs, but
then tree models have to be replaced by forest-like ones; see Section 3.4.

3 Query Answering by Knot Elimination

We describe the knot technique, and show how it can be used to decide CQ
entailment over simple KBs formulated in ALCH and ALCHI, yielding tight
upper complexity bounds. Then we discuss extensions to general KBs and more
expressive DLs.

3.1 Knots

The aim of the knot technique is to obtain a finite representation of potentially
infinite tree models by decomposing them into a collection of small pieces. Each
such piece is described by a knot, a schematic labeled tree of depth ≤1 with
bounded branching. A knot describes a node in the tree model together with all
its successors, fixing the concepts that are satisfied at each node and the roles
connecting the nodes. By restricting ourselves to only the relevant concepts and
roles, we achieve that only finitely many distinct knots exist, and thus every
tree model can be represented as a finite knot set. Conversely, knots can be
viewed as the ‘building blocks’ for a potential tree model. To ensure that knots
can indeed be assembled into such a model, two kinds of conditions are imposed.
Local conditions apply to individual knots and deal with the internal consistency
of the nodes in a knot. Global conditions ensure that instances of the knots in a
set can be assembled together.

We assume from now on that concepts are in negation normal form (NNF).
It is well know that every concept can be converted into an equivalent one in
NNF in linear time. We use ∼C to denote the result of converting ¬C into NNF.
For the rest of the section, fix a simple ALCHI knowledge base K with concept
atom C0(a0).

Definition 1 (Knot). Let cl(K) denote the smallest set of concepts that con-
tains every concept in K and is closed under subconcepts and NNF-negation “∼”.
A concept-type for K is a set τ ⊆ cl(K) such that for all C, D∈ cl(K),

1. C v D ∈ K implies ∼C ∈ τ or D ∈ τ ;
2. C ∈ τ implies ∼C 6∈ τ ,
3. if C uD∈ τ , then {C, D}⊆ τ , and
4. if C tD∈ τ , then C ∈ τ or D∈ τ .

A role-type (for K) is a set ρ ⊆ RK ∪ {p− | p ∈ RK}. A knot for K is a pair
κ = (τ, S) that consists of a concept-type τ for K (called root type) and a set S
of pairs (ρ, τ ′), where ρ and τ ′ are a role-type and a concept-type for K.

A knot κ = (τ, S) can be viewed as a tree of depth ≤ 1, whose nodes are labeled
with subsets of cl(K), and whose edges are labeled with sets of roles. More
specifically, τ is the label of the root node and each pair (ρ, τ ′) ∈ S describes a
successor with edge label ρ and node label τ ′. Next, we define local conditions
for knots which ensure that there are no contradictions within the knot.

Definition 2 (Knot consistency). A knot κ = (τ, S) is K-consistent if:

1. if ∃r.C ∈ τ , then r∈ ρ and C ∈ τ ′ for some (ρ, τ ′)∈S;
2. if ∀r.C ∈ τ , then C ∈ τ ′ for all (ρ, τ ′)∈S with R ∈ ρ;
3. if ∀r.C ∈ τ ′ for some (ρ, τ ′)∈S and r− ∈ ρ, then C ∈ τ ; and
4. if rvs∈K and (ρ, τ ′)∈S, then r∈ ρ implies s∈ ρ, and r− ∈ ρ implies s− ∈ ρ.
5. |S| ≤ |cl(K)|.

A knot being free of local contradictions does not yet guarantee that it can be
part of a tree model as there could be existential restrictions at successor nodes
that cannot be expanded into a full model. We therefore also need a global
condition which guarantees that such an expansion is always possible

Definition 3 (Coherency of knot sets). Given a knot set K, a knot (τ, S) ∈
K is good in K, if for each (ρ, τ ′) ∈ S, there is a knot (τs, Ss) ∈ K with τ ′ = τs.
Then K is K-coherent if (i) each knot (τ, S) ∈ K is K-consistent and good in K;
and (ii) there is a knot (τ, S) ∈ K with C0 ∈ τ .

A tree-shaped model I of K can be decomposed into a K-coherent knot set in
a straightforward way. Conversely, if we have a K-coherent set of knots K, we
can build a tree model of K: start with the knot (τ, S) with C0 ∈ τ as the ‘root
knot’, then repeatedly append suitable successor knots to the leafs of the tree.

Theorem 1. K is consistent iff there exists a K-coherent knot set.

3.2 Non-Entailment of a Set of Tree-shaped Queries

We now present a knot-based approach to decide query entailment in ALCH and
ALCHI, which yields a tight ExpTime upper bound in the ALCH case, and a
tight 2-ExpTime upper bound for ALCHI. We proceed in two steps. The first
step is presented in the current section, where we give a knot-based algorithm
for query entailment in ALCHI that presupposes tree-shaped queries and runs
in ExpTime. In fact, the algorithm works with sets of queries and decides a
special, non-standard version of entailment. The second step is presented in the

subsequent section, where we reduce standard query entailment to the special
case treated in the current section.

We say that a query q is tree-shaped if the query graph Gq is a tree. We assume
that the nodes in tree-shaped queries q have canonical names: the root of Gq is xε

and if xw is a node in Gq with n children, then these children are xw·1, . . . , xw·n.
For a variable xw, we denote by subq(q, xw) the canonical query obtained by
restricting q to the subtree rooted at xw, renaming the nodes accordingly. We
now introduce the special kind of entailment used in this section.

Definition 4 (Directed Entailment). Let K be an ALCHI KB, I be a tree
model of K, Q a set of tree-shaped queries, and q ∈ Q. For d ∈ ∆I , we write
I |=∗ q[d] if there exists a match π for q in I such that π(xε) = d and for every
r(x, y) ∈ q, we have π(y) = π(x) · i for some i ≥ 0. We write I |=∗ q if I |=∗ q[d]
for some d ∈ ∆I , I |=∗ Q if I |=∗ q for some q ∈ Q, and K |=∗ Q if I |=∗ Q for
every tree model I of the knowledge base K.

Observe that the matches used in Definition 4 are directed in the sense that, even
if the tree model is not 1-way, we map every atom r(x, y) ∈ q only “downwards”.
If the tree model is 1-way and the query does not involve inverse roles as in the
case of ALCH, then these matches coincide with standard ones, i.e., we have
K |= q iff K |=∗ {q}.

The algorithm devised in this section decides, given an ALCH or ALCHI
KB K and a set of tree-shaped queries Q, whether K |=∗ Q. The following
characterization of directed entailment is easy to establish.

Proposition 2. Let I be a tree model of an ALCHI KB K, d ∈ ∆I , and q a
tree-shaped query. Then I 6|=∗ q[d] iff one of the following holds:

(i) {A | A(xε) ∈ q} 6⊆ {A | d ∈ AI} or
(ii) there exists a variable xε·i of q such that for each child d·j ∈ ∆I of d we

have:
– {r | r(xε, xε·i) ∈ q} 6⊆ {r | (d, d·j) ∈ rI}, or
– I 6|=∗ subq(q, xε·i)[d·j].

For the rest of the section, fix a simple ALCH or ALCHI KB K and a set of
tree-shaped queries Q. The aim of our algorithm is to decide whether K |=∗ Q
by using knots to verify the existence of a tree model I of K with I 6|=∗ Q (a
countermodel). Proposition 2 suggests that we can do this by extending knots
with auxiliary information that enables us to track the satisfaction of conditions
(i) and (ii) for each query in Q at each node of the tree.

Definition 5 (Marked knots). Let Q∗ denote the smallest set such that Q ⊆
Q∗, and if q ∈ Q∗ and xε·i is a variable of q, then subq(q, xε·i) ∈ Q∗. A Q-marked
knot is a tuple (τ, S, ν) where (τ, S) is a knot and ν : {ε} ∪ S → 2Q∗

.

Intuitively, every node in a Q-marked knot is labeled with the set of those sub-
queries of queries in Q for which a (directed) match of the root should be avoided
at that node. To capture this formally, we define additional local conditions.

algorithm CounterModel(K, Q)
Compute the set K0 of all Q-avoiding knots for K
i := 0
repeat

i := i + 1
Ki := Ki−1 \ {(τ, S, ν) ∈ Ki−1 | (τ, S, ν) is not good in Ki−1}

until Ki 6= Ki−1;
if there is (τ, S, ν) ∈ Ki with C0 ∈ τ then return “ a counter model exists”

else return “a counter model does not exist”

Fig. 1. The knot elimination algorithm.

Definition 6 (Query avoiding knots). A Q-marked knot (τ, S, ν) is Q-avoi-
ding, if for each q ∈ Q, we have q ∈ ν(ε) and that one of the following holds:

(a) {A | A(xε) ∈ q} 6⊆ τ , or
(b) there exists some variable xε·i such that for every (r, τ ′) ∈ S, it holds that

{r | r(xε, xε·i) ∈ q} 6⊆ ρ or subq(q, xε·i) ∈ ν((ρ, τ)).

The above just mimics the conditions in Proposition 2. We now define global
conditions to ensure that the marking is consistent between knots.

Definition 7 (Coherency of marked knot sets). For a set K of Q-marked
knots, we call (τ, S, ν) ∈ K good in K if for each (ρ, τ ′) ∈ S, there is some
(τs, Ss, νs)∈K such that τ ′ = τs and ν((ρ, τ ′)) = νs(ε). Then K is K-coherent if
for each (τ, S, ν) ∈ K, (τ, S) is K-consistent and (τ, S, ν) is Q-avoiding and good
in K.

To show the following, we can now argue as for Theorem 1, additionally using
Proposition 2.

Proposition 3. K 6|=∗ Q iff there exists a K-coherent set of Q-marked knots.

To decide whether K 6|=∗ Q, it thus suffices to decide the existence of a knot set as
in Proposition 3. This is done by knot elimination, inspired by the so-called type
elimination technique due to Pratt; see Section 4. The details of the algorithm
are presented in Figure 1, where we assume that C0(a0) is the concept assertion
in K. The algorithm runs in exponential time since there are only exponentially
many Q-marked knots for K and it can be checked in polynomial time whether
a knot is Q-avoiding and good in a knot set.

Theorem 2. Given K and Q, it can be decided in time exponential in the size
of K and Q whether K |=∗ Q.

3.3 From Unrestricted Queries to Tree-Shaped Ones

We now show how Theorem 2 can be used to derive tight complexity bounds for
standard entailment of a conjunctive query q that is not necessarily tree-shaped
by a simple ALCHI KB K. By Proposition 1, q not being entailed by K implies
that there is a tree model I of K that witnesses non-entailment. Further, any
match π for q in model I gives rise to a rewriting qπ of q as follows:

– the variables of qπ are {xd | ∃x ∈ V(q) : π(x) = d};
– the concept atoms of qπ are {A(xd) | ∃ A(x) ∈ q : π(x) = d};
– the role atoms are {r(xd, xd·i) | ∃ r(x, y) ∈ q : π(x) = d and π(y) = d · i} ∪
{r(xd, xd·i) | ∃ r−(y, x) ∈ q : π(x) = d and π(y) = d · i}

Since q is connected and I is a tree model, qπ is obviously tree-shaped (and
it is straightforward to assign canonical names to the variables). Moreover, the
construction of qπ ensures that I |=∗ qπ, i.e., there is a directed match for qπ

in I. This observation suggests that entailment of q can be verified by replacing
q with a set of tree-shaped rewritings and checking directed entailment.

Definition 8. A tree-shaped query q′ is a tree rewriting of q if there is a sur-
jective map ν : V(q) → V(q′) such that

(i) A(x) ∈ q iff A(ν(x)) ∈ q′, and
(ii) r(x, y) ∈ q iff r(ν(x), ν(y)) ∈ q′ or r−(ν(y), ν(x)) ∈ q′.

Let TRew(q) denote all tree rewritings of q.

Based on the observation above, the following is easy to prove.

Lemma 1. For each simple ALCHI KB K and CQ q, we have K 6|= q iff K 6|=∗

TRew(q).

For an ALCHI KB K, we can thus decide whether K |= q by using the algorithm
from the previous section with Q = TRew(q). Since the cardinality of TRew(q)
is exponential in the size of q, we obtain a 2-ExpTime upper bound. This bound
is tight: in [12], it was shown that CQ entailment over simple ALCI KBs (i.e.,
ALCHI KBs without role inclusions) is 2-ExpTime-hard.

In the case of ALCH, we can replace TRew(q) with a single query! Recall
that ALCH terminologies enjoy 1-way tree models and that we disallow inverse
roles in the query when working with ALCH. Together, this means that if we
have I |= q with I a 1-way tree-model of the (simple) input KB K, we can obtain
a tree-shaped rewriting q′ of q with I |= q′ in a very easy way: simply eliminate
all forks r(x, y), r(x′, y) in q by identifying the variables x and x′. Observe that,
in contrast to the case of ALCHI, this rewriting is independent of the concrete
match π of q in I. Thus, we obtain only a single rewriting q′ (which can be
obtained in polynomial time). As noted already in Section 3.2, we then have
I |= q′ iff I |=∗ q′ which enables the use of the algorithm in the previous section.

Definition 9 (Query rewriting). [12] Let K be a simple ALCH KB, q a CQ
without inverse roles, and let FE(q) denote the result of eliminating all forks in
q. Then K |= q iff K |=∗ {FE(q)}.

We thus obtain an ExpTime upper bound by Theorem 2. A lower bound is
easily obtained by a trivial reduction of satisfiability in ALCH.

3.4 Extensions

The knot-based approach to query answering can be extended to the case of
non-simple KBs and to more expressive DLs than ALCH and ALCHI. We start
with the former. As noted in Section 2, Proposition 1 can be adapted to the
case of non-simple KBs by replacing tree models with forest-shaped ones. More
precisely, such models consist of a core whose relational structure is unrestricted
and a collection of possibly infinite trees whose roots are from the core. The core
contains precisely those elements that are identified by some individual name
in the knowledge base K, and thus its size is bounded by that of K. This also
explains why the relational structure of the core cannot be restricted: it needs
to mirror the role assertions r(a, b) in K.

In the knot approach, the whole core is represented by a single, large knot, cf.
the min-graphs of [20]. To avoid matches when constructing a countermodel, we
now have to deal with three types of matches: (i) matches located purely inside
the core; (ii) matches located partially in the core and partially in one or more
of the trees; and (iii) matches located purely inside a tree. This can be done by a
careful extension of the local and global conditions for marked knots and is most
subtle in the case of ALCH. There, it is crucial to show that, although in matches
of type (ii) there are exponentially many ways to split the query between the
core and the trees, only polynomially many queries need to be taken into account
when avoiding matches in the tree parts [20,13]. The assumption made in this
paper that knowledge bases are simple allows us to concentrate on matches of
type (iii). Though this may appear to be the easiest of the three cases, in ALCH
and ALCHI it is actually the source of complexity: the 2-ExpTime lower bound
for ALCHI in [12] applies to simple KBs, and the complexity does not increase
for non-simple ones [9].

We now come to more expressive DLs than ALCH and ALCHI. It is not hard
to extend our approach to number restrictions by imposing counting constraints
on the successors in knots, thus capturing the DLs ALCHQ and ALCHIQ. The
extended algorithm still yields ExpTime and 2-ExpTime upper bounds, respec-
tively, though some care has to be taken when combiningQ and I. A particularly
interesting extension is provided by transitive roles. In their presence, it is not
possible to generate a set of tree-shaped queries of polynomial size even when
we are working with 1-way models and simple KBs. The knot-based approach
thus yields a 2-ExpTime upper bound [19], which is optimal if the considered
DL also has role inclusions (i.e., if it contains the DL SH) [5]. In [19], a class
of queries is identified for which the complexity of CQ entailment in SH drops
to ExpTime. When we disallow role inclusions, the 2-ExpTime upper bound is
no longer tight. In fact, a somewhat intricate refinement of the knot approach
can be used to show that, in ALC with transitive roles (also known as S), CQ
entailment w.r.t. simple KBs is still in ExpTime [5]. In the same paper, we show
that for non-simple KBs, the complexity raises to co-NExpTime-hardness. In a
nutshell, this is due to matches of type (ii) being more complicated than without
transitive roles and giving rise to an exponential number of queries to be avoided
in the tree parts of models. A tight complexity bound is still missing.

4 Related Work and Conclusion

There is a large number of other approaches to conjunctive query entailment
in DLs, including reductions to satisfiability [9,8,12], automata and tableaux
methods [3,18], and resolution [11]. We omit a detailed discussion due to lack of
space and instead discuss techniques that are similar in spirit to knots. As already
mentioned, knots are a special instance of the mosaic technique [17] that has
been used to obtain decidability and complexity results in modal and description
logic. The reader may refer to [16,2] and consult e.g. [14,24] as examples from
the DL literature. With the exception of [4,23], we are not aware of papers
in which other variations of the mosaic technique have been used for query
answering. Both knots and mosaics are closely related to type elimination, which
has been used extensively in description and modal logic, see e.g. [22,21,10,15].
Roughly, a type is a small mosaic with only one element and type elimination
is the analogue of Figure 1 with knots replaced by types. We remark that the
algorithm in Section 3.2 can also be formulated using annotated types instead
of annotated knots. However, using knots allows for simpler local and global
conditions, especially when extending the approach to more expressive DLs such
as those involving transitive roles.

Summing up, in this paper we have illustrated how the knot technique can
be applied for answering conjunctive queries in DLs. The method is conceptually
simple yet powerful enough to handle different DLs with considerably different
computational properties. To wit, we presented a worst-case optimal algorithm
that directly scales from the DL ALCH to the exponentially harder DL ALCHI.
Given that knots are special mosaics tailored for DLs with tree-shaped models,
investigating the mosaic technique for query answering in more expressive DLs
which lack this property, like (fragments of) SHOIQ and SROIQ, is an inter-
esting topic for future research.

References

1. F. Baader, C. Lutz, and B. Motik, editors. Proceedings of the 21st International
Workshop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008,
volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Sc. Cambridge University Press, Cambridge, 2001.

3. D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive
description logics: An automata-theoretic approach. In Proc. of the 22nd Nat. Conf.
on Artificial Intelligence (AAAI 2007), pages 391–396, 2007.

4. T. Eiter, G. Gottlob, M. Ortiz, and M. Šimkus. Query answering in the description
logic Horn-SHIQ. In Proceedings 9th European Conference on Logics in Artificial
Intelligence (JELIA 2008), LNCS, pages 166–179. Springer, 2008.

5. T. Eiter, C. Lutz, M. Ortiz, and M. Šimkus. Query answering in description logics
with transitive roles. In C. Boutilier, editor, Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-09). AAAI Press/IJCAI, 2009.

6. T. Eiter, M. Ortiz, and M. Simkus. Reasoning using knots. In I. Cervesato,
H. Veith, and A. Voronkov, editors, LPAR, volume 5330 of Lecture Notes in Com-
puter Science, pages 377–390. Springer, 2008.

7. D. Fox and C. P. Gomes, editors. Proceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008. AAAI Press, 2008.

8. B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query entailment for SHOQ.
In Proc. of the 2007 Description Logic Workshop (DL 2007), volume 250 of CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-250/, pages 65–75, 2007.

9. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Answering conjunctive queries in
the SHIQ description logic. Journal of Artificial Intelligence Research, 31:150–
197, 2008.

10. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artif. Intell., 54(3):319–379, 1992.

11. U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision procedures
by resolution-based calculi. In Proc. 11th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR 2004), pages 21–35, 2004.

12. C. Lutz. The complexity of conjunctive query answering in expressive description
logics. In A. Armando, P. Baumgartner, and G. Dowek, editors, Proceedings of
the 4th International Joint Conference on Automated Reasoning (IJCAR2008),
number 5195 in LNAI, pages 179–193. Springer, 2008.

13. C. Lutz. Two upper bounds for conjunctive query answering in SHIQ. In Baader
et al. [1].

14. C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in
description logics. Inf. Comput., 199(1-2):132–171, 2005.

15. C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A sur-
vey. In S. Demri and C. S. Jensen, editors, Proc. 15th International Symposium
on Temporal Representation and Reasoning (TIME 2008), pages 3–14. IEEE Com-
puter Society, 2008.

16. Y. V. Maarten Marx. Local variations on a loose theme: Modal logic and decid-
ability. In Finite Model Theory and Its Applications, chapter 7, pages 371–429.
Springer, June 2007.

17. I. Németi. Free algebras and decidability in algebraic logic. DSc. thesis, Mathe-
matical Institute of The Hungarian Academy of Sciences, Budapest, 1986.

18. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in
expressive description logics via tableaux. J. of Automated Reasoning, 41(1):61–
98, 2008.

19. M. Ortiz, M. Simkus, and T. Eiter. Conjunctive query answering in SH using
knots. In Baader et al. [1].

20. M. Ortiz, M. Simkus, and T. Eiter. Worst-case optimal conjunctive query answer-
ing for an expressive description logic without inverses. In Fox and Gomes [7],
pages 504–510.

21. G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for the modal
logic k. Journal of Applied Non-Classical Logics, 16(1-2):169–208, 2006.

22. V. R. Pratt. Models of program logics. In FOCS, pages 115–122. IEEE, 1979.
23. I. Pratt-Hartmann. Data-complexity of the two-variable fragment with count-

ing quantifiers. Information and Computation, 2008. Forthcoming. See CoRR
http://arxiv.org/abs/0806.1636.

24. S. Rudolph, M. Krötzsch, and P. Hitzler. Terminological reasoning in SHIQ with
ordered binary decision diagrams. In Fox and Gomes [7], pages 529–534.

