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PDL WITH INTERSECTION AND CONVERSE:

SATISFIABILITY AND INFINITE-STATE MODEL CHECKING

STEFAN GÖLLER, MARKUS LOHREY, AND CARSTEN LUTZ

Abstract. We study satisfiability and infinite-state model checking in ICPDL, which

extends Propositional Dynamic Logic (PDL) with intersection and converse operators on

programs. The two main results of this paper are that (i) satisfiability is in 2EXP, thus

2EXP-complete by an existing lower bound, and (ii) infinite-state model checking of ba-

sic process algebras and pushdown systems is also 2EXP-complete. Both upper bounds

are obtained by polynomial time computable reductions to ω-regular tree satisfiability in

ICPDL, a reasoning problem that we introduce specifically for this purpose. This problem

is then reduced to the emptiness problem for alternating two-way automata on infinite

trees. Our approach to (i) also provides a shorter and more elegant proof of Danecki’s

difficult result that satisfiability in IPDL is in 2EXP. We prove the lower bound(s) for

infinite-state model checking using an encoding of alternating Turing machines.

§1. Introduction. In 1979, Fischer and Ladner introduced Propositional
Dynamic Logic (PDL) as a logical formalism for reasoning about programs [15].
Since then, PDL has become a classic of logic in computer science [23], and many
extensions and variations have been proposed. Several of these extensions are
inspired by the original application of reasoning about programs, while others
aim at the numerous novel applications that PDL has found since its invention.
Notable examples of such applications include agent-based systems [33], regu-
lar path constraints for querying semi-structured data [2], and XML-querying
[1, 38, 39]. In artifical intelligence, PDL received attention due to its close rela-
tionship to description logics [17] and epistemic logic [41, 42].

PDL comprises expressions of two sorts: formulas, built from boolean and
modal operators and interpreted as sets of worlds of a Kripke structure; and
programs, built from the operators test, union, composition, and Kleene star
(reflexive transitive closure), and interpreted as binary relations in a Kripke
structure. A prominent way to obtain extensions of PDL is to admit additional
program operators. Some of the resulting logics are well-behaved in the sense
that they do not alter the model theory and computational complexity of PDL
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in a dramatic way. For example, PDL extended with a converse program opera-
tor (CPDL) inherits the tree model property from PDL; moreover, the classical
result of Fischer and Ladner stating that satisfiability in PDL is complete for
EXP (deterministic exponential time) [15, 36] extends to CPDL without diffi-
culty [43]. Other extensions pose more challenges. A notorious such example is
PDL extended with an intersection operator on programs (IPDL), which has an
intricate model theory that involves loss of the tree model property and of the
finite model property. As a consequence, it is not possible to easily transfer the
standard decision procedures for PDL to IPDL, e.g. using automata on infinite
trees [35] or embedding into the alternation-free fragment of Kozen’s µ-calculus
[24].

In this paper, we study PDL extended with both intersection and converse.
The resulting logic ICPDL has a number of interesting applications in computer
science. For example, the information logic DAL (for data analysis logic) [14] and
a number of epistemic logics for reasoning about distributed knowledge (which
corresponds to program intersection [13]) can be embedded into ICPDL. This
enables the transfer of results such as decidability and upper complexity bounds.
The presence of converse is important in this context because it admits to define
programs that are interpreted as equivalence relations—see [30] for more details.
ICPDL also provides an important background theory for description logics with
role intersection [4]. The aim of this paper is to prove decidability of satisfiability
and (some variants of) infinite-state model checking in ICPDL, and to pinpoint
the exact computational complexity. While satisfiability is the most relevant
problem in the applications mentioned above, infinite-state model checking is
important for applications of ICPDL in reasoning about programs.

ICPDL is closely related to IPDL and, in particular, shares its complex model
theory. The history of this family of extensions of PDL started in 1984, when Da-
necki proved an upper bound of 2EXP (deterministic doubly exponential time)
for satisfiability in IPDL using an intricate reduction to the emptiness of au-
tomata on infinite trees [9]. Alas, Danecki’s proof is rather difficult and many
details are omitted in the published version. More than 20 years later, a matching
2EXP lower bound was shown by Lange et al. [28]. Only recently, satisfiability
in ICPDL was proved to be decidable using a reduction to monadic second order
logic over the infinite binary tree [30]. However, this only yields a non-elementary
algorithm that does not match the 2EXP lower bound inherited by ICPDL from
IPDL.

We prove two main results, which are discussed in some detail in what follows.
The first main result is that satisfiability in ICPDL is in 2EXP, and thus 2EXP-
complete. The proof consists of three clearly separated parts. In part one, we
establish a certain model property for ICPDL based on the notion of tree width.
Intuitively, the tree width of a graph measures how close the graph is to a tree.
We show that every satisfiable ICPDL formulas has a model of tree width at
most two, i.e., the tree model property of PDL is replaced with an “almost tree
model property” in (IPDL and) ICPDL.
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In part two of our proof, we use the established model property to give a
polynomial time computable reduction of satisfiability in ICPDL to a novel rea-
soning problem in ICPDL that we call ω-regular tree satisfiability. This prob-
lem is defined in terms of two-way alternating parity automata on infinite trees
(TWAPTAs) [44]. The basic idea is that infinite node-labeled trees as accepted
by TWAPTAs can be viewed in a natural way as Kripke structures, and thus we
can interpret ICPDL formulas in such trees. Now, ω-regular tree satisfiability in
ICPDL is the following problem: given an ICPDL formula ϕ and a TWAPTA
T , is there a tree accepted by T which is a model of ϕ? Our reduction of satisfi-
ability to this problem is based on a suitable tree-encoding of Kripke structures
of tree width at most two. The TWAPTA constructed in the reduction accepts
precisely such encodings.

Finally, in part three we reduce ω-regular tree satisfiability to the non-emptiness
problem for TWAPTAs. Since our reduction involves an exponential blow-up and
the latter problem is EXP-complete [44], we obtain a 2EXP upper bound for ω-
regular tree satisfiability in ICPDL. Via part two of our proof, we get the same
result for (standard) satisfiability in ICPDL. A notable virtue of the described
three-step approach is that it is shorter and (hopefully) more comprehensible
than Danecki’s original upper bound for IPDL. Also, large parts of the proof can
be reused for deciding infinite-state model checking.

We also take a brief look at satisfiability in two relatives of ICPDL. First, we
obtain as an easy corollary of the proof of our first main result that satisfiability
in the extension of PDL with the loop-construct (loop-PDL) belongs to EXP.
The mentioned construct allows to express that we can execute a given program
such that, at the end, we are at the same world where we started. Danecki used a
dedicated proof to show that satisfiability in loop-PDL is in EXP [10]. Second, we
investigate the option of further extending ICPDL with program negation. Un-
fortunately, this addition turns out to destroy the nice computational behaviour
of ICPDL. We prove that already IPDL extended with negation restricted to
atomic programs is complete for Σ1

1, the first level of the analytic hierarchy [37].
This is in contrast with the decidability result for PDL extended with atomic
program negation, as given in [31].

Our second main result is concerned with infinite-state model checking. Model
checking is the prime reasoning problem in program verification [8], and has tra-
ditionally been concerned with finite-state systems represented by finite Kripke
structures. Lange studies this original problem in a PDL context in [27], proving
PTIME-completeness for PDL and various extensions of it. In this paper, we
consider model checking of infinite state systems, which are represented by infi-
nite Kripke structures. PDL provides natural expressive power in this context;
notably, it allows to express regular reachability properties, which were used in
the context of infinite-state model checking e.g. in [29, 32, 47].

When model checking infinite-state systems, we need a formalism for finitely
representing infinite Kripke structures. A number of different such formalisms
are available which vary considerably in expressive power and give rise to dif-
ferent versions of the infinite-state model checking problem [40]. In the rest of
this discussion, we follow Mayr’s uniform classification in terms of parallel and
sequential composition [32].
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When parallel composition is admitted to describe infinite state systems,
model checking is undecidable already in PDL. In particular, this holds for
infinite-state systems described by BPPs (basic parallel processes), which corre-
spond to Petri nets in which every transition needs exactly one token for firing.
As described in more detail in [18], undecidability is a consequence of a result
by Esparza stating that model checking Petri nets in EF is undecidable, where
EF denotes the fragment of CTL that only contains the modalities “next” and
“exists finally” [11]. Because of this negative result, we concentrate on sequen-
tial composition. Mayr’s classification thus leads us to pushdown systems (PDS)
and basic process algebras (BPA). Pushdown systems were used to model the
state space of programs with nested procedure calls [12], and model checking
PDSs was studied for various temporal logics such as LTL, CTL, and the modal
µ-calculus [3, 12, 26, 45, 46]. BPAs are a special case of pushdown systems,
namely those with a single internal state.

Infinite-state model checking in (several variations of) PDL was studied in [18,
19]. For example, it was shown that model-checking PDSs in test-free PDL is
PSPACE-complete with respect to combined complexity, expression complexity,
and data complexity, and that the same problems are EXP-complete in PDL
with the test-operator. With or without this operator, the combined complexity
and expression complexity does not differ when moving from PDSs to BPAs, but
the data complexity drops to PTIME-completeness.

The second main result of this paper is 2EXP-completeness of model checking
BPAs and PDSs in ICPDL. In contrast to the case of satisfiability, we have
to establish both an upper and a lower bound. The upper bound concerns the
wider class of PDSs, and is established by exhibiting a polynomial time reduction
to ω-regular tree satisfiability in ICPDL. This allows to reuse our 2EXP upper
bound for ω-regular tree satisfiability in ICPDL, which we have obtained in
the context of satisfiability. The same method can easily be lifted to prefix-
recognizable systems [6, 5, 25], which generalize PDSs. As a corollary of our
proof, we also obtain an EXP upper bound for data complexity (i.e., for a fixed
ICPDL formula). Matching lower bounds are proved by extending a technique
from [45], which uses a reduction from the 2EXP-complete word problem for
exponentially space-bounded alternating Turing machines. It allows to prove
a 2EXP lower bound for model checking BPAs in test-free IPDL (i.e. the test
operator and converse are not needed). Moreover, this lower bound already holds
for expression complexity, which means that the BPA can assumed to be fixed.
For the data complexity we prove an EXP lower bound for the same problem,
using a similar (but easier) reduction.

This paper is organized as follows. In Section 2, we introduce the syntax and
semantics of ICPDL, and give a first example. Section 3 lays the foundation for
our upper bounds by introducing ω-regular tree satisfiability, and showing that
this problem is 2EXP-complete in ICPDL. Then, Section 4 is concerned with the
upper bound for satisfiability. We prove the almost tree model property, give
the reduction to ω-regular tree satisfiability, point out containment in EXP of
loop-PDL, and prove Σ1

1-completeness of IPDL extended with atomic negation
of programs. We then turn to model checking in Section 5, where we introduce
PDSs and BPAs, give an example of a useful property of programs expressible in
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ICPDL, and give the reduction to ω-regular tree satisfiability. This is followed
by the lower bounds for model checking in Section 6. Finally, we conclude in
Section 7.

The results presented in this paper are based on the conference papers [19, 20].

§2. ICPDL basics. Let P and A be countably infinite sets of atomic propo-
sitions and atomic programs, respectively. Formulas ϕ and programs π of ICPDL
are defined by the following grammar, where p ranges over P and a over A:

ϕ ::= p | ¬ϕ | 〈π〉 ϕ

π ::= a | a | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π
∗ | ϕ?

We use the usual abbreviations false = p ∧ ¬p, true = ¬false, ϕ1 ∧ ϕ2 =
〈ϕ1?〉ϕ2, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2, and [π]ϕ = ¬〈π〉¬ϕ.

The semantics of ICPDL is defined in terms of Kripke structures. A Kripke
structure is a tuple K = (X, {→a| a ∈ A}, {Xp | p ∈ P}), where

• X is a set of worlds,
• →a ⊆ X ×X is a transition relation for each a ∈ A, and
• Xp ⊆ X is a unary relation for each p ∈ P.

Given a Kripke structure K = (X, {→a| a ∈ A}, {Xp | p ∈ P}), we define for
each ICPDL program π a binary relation [[π]]K ⊆ X × X and for each ICPDL
formula ϕ a subset [[ϕ]]K ⊆ X, using mutual induction as follows: 1

[[p]]K = Xp for p ∈ P

[[¬ϕ]]K = X \ [[ϕ]]K

[[〈π〉ϕ]]K = {x | ∃y : (x, y) ∈ [[π]]K ∧ y ∈ [[ϕ]]K}

[[a]]K = →a for a ∈ A

[[a]]K = {(y, x) | x→a y} for a ∈ A

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}

[[π∗]]K = [[π]]∗K

[[π1 op π2]]K = [[π1]]K op [[π2]]K for op ∈ {∪,∩, ◦}

Note that the converse operator is only applied to atomic programs. This is not
a restriction since applying converse to a test program does not make much sense
and converse commutes with all other program operators.

If x ∈ [[ϕ]]K for some x ∈ X, then the Kripke structure K is a model of ϕ. An
ICPDL formula ϕ is satisfiable if there exists a model of ϕ. As mentioned in the
introduction, ICPDL does neither have the tree model property nor the finite
model property, i.e., there are satisfiable ICPDL formulas such that all models
are not tree-shaped and infinite, respectively. The former is witnessed e.g. by
the formulas

¬p ∧ 〈a ∩ a〉p and ¬p ∧ 〈(a ◦ p? ◦ a) ∩ true?〉true,(1)

1Overloading notation, we use ◦ both as a program operator of ICPDL and to denote the

composition operator for binary relations, i.e., R ◦ S = {(a, b) | ∃c : (a, c) ∈ R, (c, b) ∈ S}.

Likewise for ∪ and ∩.
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which both enforce a cycle of length 2. It is easy to modify these formulas such
that they enforce a cycle whose length is exponential in the length of the formula.
Lack of the finite model property is witnessed by the formula

[a∗]( 〈a〉true ∧ ¬〈(a ◦ a∗) ∩ true?〉true ).(2)

Note that the second conjunct of the latter formula prohibits the existence of a
cycle labeled by a-transitions.

If we disallow the program operator ∩ and the programs a (a ∈ A), we drop the
letter I and C from ICPDL, respectively. Thus, we obtain the fragments PDL,
CPDL, and IPDL, which we identify with the classes of admitted formulas. For
a class C of ICPDL formulas, the satisfiability problem in C is the problem to
decide, given a formula ϕ ∈ C, whether ϕ is satisfiable. The second reasoning
problem considered in this paper, infinite state model checking, requires some
more preliminaries and is introduced in Section 5.

Another extension of PDL that will be considerd in this paper is loop-PDL,
i.e., PDL extended with a formula operator loop(π), which has the following
semantics:

[[loop(π)]]K = {x | (x, x) ∈ [[π]]K}.

Note that loop can be defined using intersection, as used implicitly already in
Formulas (1) and (2):

[[loop(π)]]K = [[〈π ∩ true?〉true]]K .(3)

We now give an example of an ICPDL (even loop-PDL) formula that is useful
for program verification. In the example and in the remainder of this paper, we
identify Kripke structures

K = (X, {→a| a ∈ A}, {Xp | p ∈ P}) and K ′ = (X, {→a| a ∈ A}, {Xp | p ∈ P})

if A ⊆ A and P ⊆ P are such that →a = ∅ = Xp for all a ∈ A \ A and p ∈ P \ P.
This is justified by the fact that for every ICPDL formula ϕ, which only uses
atomic programs from A and atomic propositions from P, we have [[ϕ]]K = [[ϕ]]K′ .

Example 2.1. Let A ⊆ A be a finite set of atomic programs and let K =
(X, {→a| a ∈ A}) be a deterministic Kripke structure, i.e., for all x ∈ X and

a ∈ A, there is at most one y ∈ X with x
a
→ y.

A recovery world in K is an x ∈ X such that, wherever we go from x, we can
always return. Formally, we require that (x, y) ∈ [[A∗]]K implies (y, x) ∈ [[A∗]]K ,
for all y ∈ X where A∗ abbreviates (

⋃
a∈A

a)∗. Observe that we travel atomic
programs only in the forward direction. In program verification, the existence of
a recovery world means that the program can always return to a safe state.

The set of recovery worlds can be defined in loop-PDL. More precisely, x ∈ X
is a recovery world in K if and only if x ∈ [[ϕ]]K , where

ϕ = [A∗]
∧

a∈A

(
〈a〉true → loop(a ◦A∗)

)
.

Note that, due to the determinism of K, the subformula loop(a ◦A∗) can be read
as “for all worlds y reachable via a, we can return via A∗ to the current world”.
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As a final preliminary, we fix the size of ICPDL formulas and programs. It is
denoted by | · | and defined by mutual induction: |p| = |a| = |a| = 1 for all p ∈ P

and a ∈ A, |¬ψ| = |ψ?| = |ψ|+1, |〈π〉ψ| = |π|+|ψ|+1, |π1 op π2| = |π1|+|π2|+1
for op ∈ {∪,∩, ◦}, and |π∗| = |π|+ 1.

§3. Deciding ω-regular tree satisfiability. The aim of this section is to
introduce an additional reasoning problem called ω-regular tree satisfiability, and
to show that, in ICPDL, this problem is 2EXP-complete. The main benefit of this
result is that upper complexity bounds for satisfiability and infinite state model
checking of prefix-recognizable systems can then be obtained by transparent
reductions to ω-regular tree satisfiability.

3.1. Preliminaries. Informally, ω-regular tree satisfiability in ICPDL means
to decide, given an ICPDL formula ϕ and a two-way alternating parity tree
automaton (TWAPTA) T as defined in detail below, whether there is an infinite
tree in L(T ) that, when viewed as a Kripke structure, is a model of ϕ.

Let ΣN be a finite node alphabet and ΣE a finite edge alphabet. A ΣN -labeled
ΣE-tree is a partial function T : Σ∗

E → ΣN whose domain, denoted dom(T ), is
non-empty and prefix-closed. The elements of dom(T ) are the nodes of T . If
dom(T ) = Σ∗

E , then T is called complete. In the rest of the paper, we mostly
work with complete trees. A node va ∈ dom(T ) with a ∈ ΣE , is called the a-
successor of v, and v is the a-predecessor of va. We use tree(ΣN ,ΣE) to denote
the set of all complete ΣN -labeled ΣE-trees. If ΣE is not important, we simply
talk of ΣN -labeled trees.

The trees accepted by TWAPTAs are complete 2P-labeled A-trees, where
A ⊆ A and P ⊆ P are finite sets of atomic propositions and atomic pro-
grams, respectively. Such a tree T can be identified with the Kripke structure
(A∗, {→a| a ∈ A}, {Tp | p ∈ P}), where→a = {(u, ua) | u ∈ A∗} for all a ∈ A and
Tp = {u ∈ A∗ | p ∈ T (u)} for p ∈ P. Observe that Kripke structures derived in
this way are deterministic and total with respect to A, i.e., the transition relation
→a is a total function for all a ∈ A.

To define TWAPTAs, we need a few preliminaries. For a finite set X, we
denote by B+(X) the set of all positive boolean formulas where the elements of
X are used as variables. The constants true and false are admitted, i.e. we
have true, false ∈ B+(X) for any set X. A subset Y ⊆ X can be seen as a
valuation in the obvious way by assigning true to all elements of Y and false to
all elements of X \ Y . For an edge alphabet ΣE , let ΣE = {a | a ∈ ΣE} be a
disjoint copy of ΣE . For u ∈ Σ∗

E and d ∈ ΣE ∪ ΣE ∪ {ε} define

u · d =





ud if d ∈ ΣE

u if d = ε

v if there exists a ∈ ΣE with d = a and u = va

undefined else, i.e. d = a for a ∈ ΣE but u does not end with a

A two-way alternating parity tree automaton (TWAPTA) over complete ΣN -
labeled ΣE-trees is a tuple T = (S, δ, s0,Acc), where

• S is a finite non-empty set of states,
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• δ : S × ΣN → B
+(mov(ΣE)) is the transition function, where mov(ΣE) =

S × (ΣE ∪ ΣE ∪ {ε}) is the set of moves,
• s0 ∈ S is the initial state, and
• Acc : S → N is the priority function.

For s ∈ S and d ∈ ΣE ∪ ΣE ∪ {ε}, we write the corresponding move as 〈s, d〉.
Intuitively, a move 〈s, a〉, with a ∈ ΣE , means that the automaton sends a copy
of itself in state s to the a-successor of the current tree node. Similarly, 〈s, a〉
means to send a copy to the a-predecessor (if existing), and 〈s, ε〉 means to stay
in the current node. Formally, the behaviour of TWAPTAs is defined in terms
of runs. Let T be a TWAPTA as above, T ∈ tree(ΣN ,ΣE), u ∈ Σ∗

E a node,
and s ∈ S a state of T . An (s, u)-run of T on T is a (not necessarily complete)
(S × Σ∗

E)-labeled tree TR such that

• TR(ε) = (s, u), and
• for all α ∈ dom(TR), if TR(α) = (p, v) and δ(p, T (v)) = θ, then there is a

subset Y ⊆ mov(ΣE) that satisfies θ and such that for all (p′, d) ∈ Y , v · d
is defined and there exists a successor β of α in TR with TR(β) = (p′, v · d).

We say that an (s, u)-run TR is successful if for every infinite path α1α2 · · · in
TR (which is assumed to start at the root), the number

min{Acc(s) | s ∈ S with TR(αi) ∈ {s} × Σ∗
E for infinitely many i}

is even. For s ∈ S define

[[T , s]] = {(T, u) | T ∈ tree(ΣN ,ΣE), u ∈ Σ∗
E , and

there exists a successful (s, u)-run of T on T} and

[[T ]] = [[T , s0]].

Now the language L(T ) accepted by T is defined as

L(T ) = {T ∈ tree(ΣN ,ΣE) | (T, ε) ∈ [[T ]]}.

For a TWAPTA T = (S, δ, s0,Acc), we define its size |T | = |S| as its number of
states and we define its index i(T ) as max{Acc(s) | s ∈ S}. The size |δ| of the
transition function δ is the sum of the lengths of all positive boolean formulas
that appear in the range of δ.

We remark that our model of TWAPTAs differs slightly from other definitions
that can be found in the literature. First, we run TWAPTAs only on complete
trees, which will facilitate some technical constructions later on. Second, stan-
dard TWAPTAs have moves of the form (s,−1) for moving to the parent node.
In our model, we use moves of the form (s, a), which can only be executed if the
current node is an a-successor of its parent node. It is not hard to see that these
two models are equivalent. In particular, it is easy to see that the following result
of Vardi also applies to our version of TWAPTAs. Let exp(n) be an abbreviation

for 2n
O(1)

. Since exp(n) embraces all functions whose exponent to base 2 is an
arbitrary polynomial, equalities such as exp(n + m) = exp(n ·m) are true and
will be used without further notice.

Theorem 3.1 (Vardi [44]). For a given TWAPTA T with transition function
δ, it can be checked in time exp(|T |+ i(T )) · |δ|O(1) whether L(T ) 6= ∅.
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We can now formally define ω-regular tree satisfiability. Let ϕ be an ICPDL
formula, let A = {a ∈ A | a occurs in ϕ} and P = {p ∈ P | p occurs in ϕ}.
The formula ϕ is satisfiable with respect to a TWAPTA T = (S, δ, s0,Acc) over
2P-labeled A-trees if there is T ∈ L(T ) such that ε ∈ [[ϕ]]T . Finally, ω-regular
tree satisfiability is the problem to decide, given such ϕ and T , whether ϕ is
satisfiable with respect to T .

The rest of this section is devoted to showing that ω-regular tree satisfiability
in ICPDL is in 2EXP. Moreover, 2EXP-hardness of ω-regular tree satisfiability in
ICPDL follows easily from a result in [28], where it is shown that satisfiability in
IPDL over trees is already 2EXP-hard. Therefore, we concentrate on the upper
bound for ω-regular tree satisfiability in ICPDL.

We prove containment in 2EXP by an exponential time reduction to the non-
emptiness problem for TWAPTAs. The main ingredient of the reduction is a
mutual inductive translation of (i) ICPDL formulas into TWAPTAs and (ii) of
ICPDL programs into a certain kind of non-deterministic automata (NFAs).
The latter resemble standard NFAs on words, but navigate in a complete ΣE-
tree reading symbols from {a, a | a ∈ ΣE}. They can also make conditional
ε-transitions, which are executable only if the current tree node is accepted by
a given TWAPTA.

Formally, a non-deterministic finite automaton (NFA) A over a TWAPTA
T = (S, δ, s0,Acc) is a tuple (Q, p0, q0,→A), where Q is a finite set of states,
p0 and q0 are two selected states, and →A is a set of labeled-transitions of the
following form, where q, q′ ∈ Q and a ∈ ΣE :

q
a
−→A q′, q

a
−→A q′, or q

T ,s
−−→A q′ with s ∈ S.

Transitions of the third kind are called test transitions. NFAs define binary
relations on the set of nodes of a complete ΣN -labeled ΣE-tree. To make this
explicit, let T ∈ tree(ΣN ,ΣE) and define ⇒A,T ⊆ (Σ∗

E ×Q) × (Σ∗
E ×Q) as the

smallest relation such that for all u ∈ Σ∗
E , a ∈ ΣE , p, q ∈ Q, and s ∈ S, we have

(u, p)⇒A,T (ua, q) if p
a
−→A q,(4)

(ua, p)⇒A,T (u, q) if p
a
−→A q,(5)

(u, p)⇒A,T (u, q) if p
T ,s
−−→A q and (T, u) ∈ [[T , s]].(6)

Define

[[A]] = {(T, u, v) | T ∈ tree(ΣN ,ΣE), u, v ∈ Σ∗
E , and (u, p0)⇒

∗
A,T (v, q0)}.

When considering an NFA over a certain TWAPTA T , the initial state of T is
obviously useless. Thus, in the context of NFAs, a TWAPTA will henceforth
only be a 3-tuple.

3.2. From ICPDL to automata. Fix a finite set of atomic propositions
P ⊆ P and atomic programs A ⊆ A over which ICPDL formulas and programs
are built. For ICPDL formulas ψ and programs π, let

[[ψ]] = {(T, u) | T ∈ tree(2P,A), u ∈ A∗, and u ∈ [[ψ]]T } and

[[π]] = {(T, u, v) | T ∈ tree(2P,A), u, v ∈ A∗, and (u, v) ∈ [[π]]T }.

The aim of this section is to show how to convert
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• each formula ψ into a TWAPTA T (ψ) such that [[T (ψ)]] = [[ψ]] and
• each program π into a TWAPTA T (π) and an NFA A(π) over T (π) such

that [[A(π)]] = [[π]].

All automata work over 2P-labeled A-trees. The construction is by induction on
the structure of ψ and π. We start with defining the TWAPTA T (ψ) for each
formula ψ.

If ψ = p ∈ P, we put T (ψ) = ({s0}, δ, s0, s0 7→ 1), where for all γ ⊆ P we have
δ(s0, γ) = true if p ∈ γ and δ(s0, γ) = false otherwise. Clearly, [[T (ψ)]] = [[ψ]].

If ψ = ¬θ, then T (ψ) is obtained from T (θ) by applying the standard comple-
mentation procedure where all positive boolean formulas on the right-hand side
of the transition function are dualized and the acceptance condition is comple-
mented by increasing the priority of every state by one, see e.g. [34].

If ψ = 〈π〉θ, then we have inductively constructed an NFA

A(π) = (Q, p0, q0,→A) over a TWAPTA T (π) = (S1, δ1,Acc1)

such that [[π]] = [[A(π)]]. We have also constructed a TWAPTA

T (θ) = (S2, δ2, s2,Acc2)

such that [[θ]] = [[T (θ)]]. We may assume that Q, S1, and S2 are pairwise dis-
joint. The TWAPTA T (ψ) first simulates A(π), and then T (θ). Set T (ψ) =
(S, δ, p0,Acc) with S = Q ∪ S1 ∪ S2. For states in S1 and S2, the transitions of
T (ψ) are as in T (π) and T (θ), respectively. To simulate A(π), we first note that

handling transitions q
a
−→A(π) r and q

a
−→A(π) r is easy: T (ψ) simply navigates

up and down the tree as required. To handle a transition q
T (π),s
−−−−→A(π) r, we

branch universally to simulate T (π) in state s and to simulate A(π) in state r.
To ensure that the simulation of A(π) terminates, the priority function of T (ψ)
assigns 1 to all states of Q. To start the simulation of T (θ) after the simulation
of A(π) has terminated, we add an ε-transition from q0 to s2. Formally, for
q ∈ Q and γ ⊆ P, we define

δ(q, γ) =
∨
{〈r, a〉 | q

a
−→A(π) r} ∨

∨
{〈r, a〉 | q

a
−→A(π) r} ∨

∨
{〈s, ε〉 ∧ 〈r, ε〉 | q

T (π),s
−−−−→A(π) r}

with an additional disjunct 〈s2, ε〉 if q = q0. The priority function Acc is defined
by setting Acc(s) = 1 if s ∈ Q and Acc(s) = Acci(s) whenever s ∈ Si with
i ∈ {1, 2}. It is straightforward to check that [[T (ψ)]] = [[ψ]].

We now describe the inductive construction of A(π) and T (π) for an ICPDL
program π.

If π = a or π = a with a ∈ A, then the NFA A = A(π) has its only transition

between its two selected states p0 and q0, namely p0
a
−→A q0 or p0

a
−→A q0,

respectively. Clearly, [[π]] = [[A(π)]]. Since A(π) has no test transitions, the
TWAPTA T (π) is not important. For estimating the size of the constructed
automata, we assume that T (π) has a single state and its index is 1.
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If π = ψ?, we can assume that there exists a TWAPTA T (ψ) = (S, δ, s0,Acc)
such that [[ψ]] = [[T (ψ)]]. The TWAPTA T (π) is T (ψ) (without the initial state).
The NFA A(π) has only the two selected states p0 and q0 with the transition

p0
T (π),s0
−−−−−→ q0. Hence, we have [[π]] = {(T, u, u) | (T, u) ∈ [[T (ψ)]]} = [[A(π)]].

If π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗, we construct A(π) by using the standard
automata constructions for union, concatenation, and Kleene-star. In case π =
π1 ∪ π2 or π = π1 ◦ π2, we define T (π) as the disjoint union of T (π1) and T (π2),
whereas for π = χ∗, we set T (π) = T (χ).

It remains to construct A(π1 ∩ π2) and T (π1 ∩ π2), which is the most difficult
step of the construction. Assume that the NFA

A(πi) = (Qi, pi, qi,→A(πi)) over the TWAPTA T (πi)(7)

has already been constructed, for i ∈ {1, 2}. Thus, [[A(πi)]] = [[πi]]. A natural
idea for defining an NFA for π1 ∩ π2 is to simply apply a product construc-
tion to A(π1) and A(π2). This does not work since the product construction
forces A(π1) and A(π2) to travel along the same path, whereas A(π1) and A(π2)
may travel from a tree node u to a tree node v along two different paths when
working independently. Fortunately, these two paths are then closely related:
the automata both travel along the unique shortest path P from u to v, but
can make different “detours” from this path P , i.e., they may divert from P
and eventually return to the node on P where the diversion started. In order
to eliminate this problem, we modify A(π1) and A(π2) by admitting additional
test transitions that allow to short-cut these detours. The modified NFA can
always travel along the shortest path without any detours, and thus the product
construction is applicable.

The modification proceeds in two steps. Consider an NFA A = (Q, q0, p0,→A)
over a TWAPTA T = (S, δ,Acc). Our aim is to modify A and T such that A
can shortcut the detours described above. This is done in two steps: first, we

extend T into a new TWAPTA T̂ that can simulate detours made by A. And

second, we extend A into an NFA Â over T̂ by adding new test transitions that

allow to short-cut detours, exploiting the additional capabilities of T̂ .
Let A and T be as above, and let T ∈ tree(2P,A). We define a relation

loopA,T ⊆ A∗×Q×Q that describes detours of A. Intuitively, (u, p, q) ∈ loopA,T

means that, in the tree T , A can do a detour starting from u in state p and ending
at u in state q. Formally, loopA,T is the smallest set such that:

(i) for all u ∈ A∗ and q ∈ Q we have (u, q, q) ∈ loopA,T ,

(ii) if (T, u) ∈ [[T , s]] and p
T ,s
−−→A q for s ∈ S, then (u, p, q) ∈ loopA,T ,

(iii) if (ua, p′, q′) ∈ loopA,T , p
a
−→A p′ and q′

a
−→A q, then (u, p, q) ∈ loopA,T ,

(iv) if (u, p′, q′) ∈ loopA,T , p
a
−→A p′, and q′

a
−→A q, then (ua, p, q) ∈ loopA,T ,

(v) if (u, p, r) ∈ loopA,T and (u, r, q) ∈ loopA,T , then (u, p, q) ∈ loopA,T .

The following lemma states that loopA,T is as required.

Lemma 3.2. For all NFAs A and T ∈ tree(2P,A), we have (u, p, q) ∈ loopA,T

if and only if (u, p)⇒∗
A,T (u, q).



12 STEFAN GÖLLER, MARKUS LOHREY, AND CARSTEN LUTZ

Proof. “only if”: Let n ≥ 1 be the smallest number such that (u, p, q) ∈
loopA,T follows from n applications of the rules (i)-(v) from above. We prove by
induction on n that (u, p)⇒∗

A,T (u, q) holds. Assume n = 1. If (u, p, q) ∈ loopA,T

follows from application of rule (i), then p = q and thus clearly (u, p)⇒∗
A,T (u, q).

If (u, p, q) ∈ loopA,T follows from application of rule (ii), then for some s ∈ S we

have (T, u) ∈ [[T , s]] and p
T ,s
−−→A q and thus (u, p) ⇒A,T (u, q) by definition of

⇒A,T . For the inductive step, assume n > 1. If (u, p, q) ∈ loopA,T is obtained by

finally applying rule (iii), we know that for some a ∈ A we have p
a
−→A p′, q′

a
−→A q

and (ua, p′, q′) ∈ loopA,T . Since (ua, p′, q′) ∈ loopA,T must follow from n − 1
applications of the above rules, it follows by induction that (ua, p′)⇒∗

A,T (ua, q′).

Altogether, we obtain (u, p)⇒A,T (ua, p′)⇒∗
A,T (ua, q′)⇒A,T (u, q) and we are

done. The cases when (u, p, q) ∈ loopA,T is obtained by finally applying rules
(iv) or (v) can be proven similarly as for (iii).

“if”: Assume that (u, p) ⇒∗
A,T (u, q). Hence, there are n ≥ 1, u1, . . . , un ∈ A∗,

and q1, . . . , qn ∈ Q such that

1. u1 = un = u,
2. q1 = p, qn = q, and
3. (ui, qi)⇒A,T (ui+1, qi+1) for 1 ≤ i < n.

We show (u, p, q) ∈ loopA,T by induction on n. If n = 1, then p = q and by
Condition (i) from the definition of loopA,T , we have (u, p, q) ∈ loopA,T . If

n = 2, then there must be a test transition p
T ,s
−−→A q such that (T, u) ∈ [[T , s]].

By Condition (ii), we have (u, p, q) ∈ loopA,T . Now assume that n ≥ 3. We
distinguish the following cases:

Case 1. There exists 1 < i < n such that ui = u. By induction, (u, p, qi), (u, qi, q) ∈
loopA,T . Condition (v) yields (u, p, q) ∈ loopA,T .

Case 2. There does not exist 1 < i < n such that ui = u. Then one of the
following two subcases applies:

Case 2A. For some a ∈ A, we have p
a
−→A q2, qn−1

a
−→A q, and u2 = ua = un−1.

By induction, (ua, q2, qn−1) ∈ loopA,T . Thus, Condition (iii) yields (u, p, q) ∈
loopA,T .

Case 2B. For some a ∈ A and v ∈ A∗, we have u = va, p
a
−→A q2, qn−1

a
−→A q,

and u2 = v = un−1. By induction, (v, q2, qn−1) ∈ loopA,T . Thus, Condition (iv)
yields (u, p, q) ∈ loopA,T . a

Since Conditions (i)–(v) can easily be translated into a TWAPTA, we obtain the
following:

Lemma 3.3. For every NFA A = (Q, q0, p0,→A) over a TWAPTA T = (S, δ,Acc),

there is a TWAPTA T̂ = (S′, δ′,Acc′) with S′ = S ] (Q × Q) such that for all
s ∈ S and p, q ∈ Q:

(i) [[T̂ , s]] = [[T , s]]

(ii) [[T̂ , (p, q)]] = {(T, u) | T ∈ tree(2P,A), u ∈ A∗, and (u, p)⇒∗
A,T (u, q)}

(iii) i(T̂ ) = i(T )
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Proof. For states in S, the transitions of T̂ are the same as for T . For q ∈ Q
and γ ⊆ P, we define δ′((q, q), γ) = true. If p, q ∈ Q with p 6= q and γ ⊆ P, then
we use the definition of loopA,T and define

δ′((p, q), γ) =
∨
{〈s, ε〉 | p

T ,s
−−→A q} ∨

∨
{〈(p′, q′), a〉 | p

a
−→A p′, q′

a
−→A q} ∨

∨
{〈(p′, q′), a〉 | p

a
−→A p′, q′

a
−→A q} ∨

∨
{〈(p, r), ε〉 ∧ 〈(r, q), ε〉 | r ∈ Q}.

We define the priority function Acc′ as follows:

Acc′(s′) =

{
Acc(s) if s′ ∈ S

1 if s′ ∈ Q×Q

We put Acc′(p, q) = 1 for all p, q ∈ Q since T̂ has to ensure that the check
(u, p, q) ∈ loopA,T terminates. Using the construction and Lemma 3.2, it is not

hard to show that T̂ is as required. a

We now show how to modify an NFA A = (Q, q0, p0,→A) over a TWAPTA

T into an NFA Â over T̂ such that Â can short-cut detours via test transitions:
Â = (Q, p0, q0,→ bA) is the extension of A obtained by adding, for every pair

(p, q) ∈ Q×Q, the test transition p
bT ,(p,q)
−−−−→ bA q. In the following, we prove that

Â is as required.
Let T ∈ tree(2P,A) and u, v ∈ A∗. Then inf(u, v) denotes the longest common

prefix of u and v, i.e., the lowest common ancestor of u and v in the tree T .
Define the relation ⇑A,T ⊆ (A∗×Q)×(A∗×Q) (for an arbitrary NFA A and tree
T ) in the same way as ⇒A,T , except that clause (4) in the definition of ⇒A,T is
dropped. The relation ⇓A,T ⊆ (A∗×Q)× (A∗×Q)) is defined analogously, with
clause (5) dropped. Thus, the relation ⇑A,T (resp. ⇓A,T ) allows the NFA A only
to walk up (resp. down) in the tree and to stay in the same node by executing

a test transition. The following lemma states that Â is as required. Its proof

shows how Â shortcuts detours of A.

Lemma 3.4. Let A = (Q, p0, q0,→A) be an NFA over a TWAPTA T , T ∈
tree(2P,A), and u, v ∈ A∗. Then the following statements are equivalent:

(i) (T, u, v) ∈ [[A]]

(ii) (T, u, v) ∈ [[Â]]
(iii) there exists r ∈ Q with (u, p0) ⇑

∗
bA,T

(inf(u, v), r) ⇓∗
bA,T

(v, q0).

Proof. Trivially, (iii) implies (ii). For (ii) implies (i), note that for every test-

transition p
bT ,(p,q)
−−−−→ bA q of Â and every w ∈ [[T̂ , (p, q)]] we have (w, p, q) ∈ loopA,T ,

hence (w, p) ⇒∗
A,T (w, q). Finally, it remains to prove that (i) implies (iii).

Assume (T, u, v) ∈ [[A]]. Then there exist nodes w0, . . . , wn ∈ A∗ and states
r0, . . . , rn ∈ Q such that

(u, p0) = (w0, r0)⇒A,T (w1, r1) · · · ⇒A,T (wn, rn) = (v, q0).(8)
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Let y1, . . . , yk ∈ {w0, . . . , wn} be the unique nodes such that, for some j ∈
{1, . . . , k}, the following conditions are satisfied:

(a) y1 = u, yk = v,
(b) yj = inf(u, v),
(c) for 1 ≤ i < j, we have yi = yi+1ai for some ai ∈ A, and
(d) for j < i ≤ k, we have yi = yi−1ai for some ai ∈ A.

Define the mapping φ : {1, . . . , k} → {1, . . . , n} such that φ(i) = max{` | yi =
w`} for 1 ≤ i ≤ k. There exist states r′1, . . . , r

′
k ∈ Q such that the run (8) can

be factorized as follows:

(u, p0) = (y1, r
′
1)⇒

∗
A,T (y1, rφ(1)) ⇑A,T (y2, r

′
2)⇒

∗
A,T (y2, rφ(2))

· · · ⇒∗
A,T (yj−1, rφ(j−1)) ⇑A,T (inf(u, v), r′j)⇒

∗
A,T (inf(u, v), rφ(j)) ⇓A,T

· · · ⇒∗
A,T (yk−1, rφ(k−1)) ⇓ bA,T (yk, r

′
k)⇒

∗
A,T (yk, rφ(k)) = (v, q0)

By construction of Â, every loop (yi, r
′
i) ⇒

∗
A,T (yi, rφ(i)) can be replaced by a

test transition in Â. Moreover, since ⇑A,T ⊆ ⇑ bA,T and ⇓A,T ⊆ ⇓ bA,T , we can

conclude (u, p0) ⇑
∗
bA,T

(inf(u, v), r′j) ⇓
∗
bA,T

(v, q0). a

We now return to the construction of A(π1 ∩ π2) and T (π1 ∩ π2) from the
NFAs Ai = A(πi) over the TWAPTAs Ti = T (πi), i ∈ {1, 2}, as fixed in (7).

We convert Ti into the TWAPTA T̂i and Ai into the NFA Âi = (Qi, pi, qi,→ bAi
)

over T̂i, for i ∈ {1, 2}. Define T (π1 ∩ π2) as the disjoint union of T̂1 and T̂2. The

NFA A(π1 ∩ π2) is the product automaton of Â1 and Â2, where test transitions
can be carried out asynchronously:

A(π1 ∩ π2) = (Q1 ×Q2, (p1, p2), (q1, q2),→A(π1∩π2)),

with →A(π1∩π2) the smallest relation such that

• r1
a
→ bA1

r′1 and r2
a
→ bA2

r′2 implies (r1, r2)
a
→A(π1∩π2) (r′1, r

′
2), and analo-

gously for a-transitions,

• r1
bT (π1),s
−−−−−→ bA1

r′1 implies (r1, r2)
T (π1∩π2),s
−−−−−−−→A(π1∩π2) (r′1, r2) for all r2 ∈ Q2,

• r2
bT (π2),s
−−−−−→ bA2

r′2 implies (r1, r2)
T (π1∩π2),s
−−−−−−−→A(π1∩π2) (r1, r

′
2) for all r1 ∈ Q1.

Lemma 3.5. [[A(π1 ∩ π2)]] = [[π1 ∩ π2]].

Proof. Since [[π1 ∩ π2]] = [[π1]] ∩ [[π2]], it suffices to prove that [[A1]] ∩ [[A2]] =
[[A(π1 ∩ π2)]]. So let (T, u, v) ∈ [[Ai]] for all i ∈ {1, 2}. Then Lemma 3.4 implies
the existence of a state ri ∈ Qi such that (u, pi) ⇑

∗
bAi,T

(inf(u, v), ri) ⇓
∗
bAi,T

(v, qi)

for all i ∈ {1, 2}. This implies

(u, (p1, p2)) ⇑
∗
A(π1∩π2),T

(inf(u, v), (r1, r2)) ⇓
∗
A(π1∩π2),T

(v, (q1, q2)).

Thus, we have (T, u, v) ∈ [[A(π1 ∩ π2)]]. On the other hand, any run witnessing

(T, u, v) ∈ [[A(π1 ∩ π2)]] is a witness for (T, u, v) ∈ [[Âi]] for all i ∈ {1, 2}. By
Lemma 3.4, we obtain (T, u, v) ∈ [[Ai]] for all i ∈ {1, 2}. a

This finishes the inductive translation of ICPDL formulas and programs into
automata.
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3.3. Automata size. We analyze the size of the automata constructed in the
previous section and show that our translation of formulas and programs involves
at most a single exponential blow-up. For analyzing the fragment loop-CPDL
of ICPDL later on, it is useful to carry out a careful analysis that takes into
account nestings of intersection. Since the number of nestings of intersection
is too coarse for obtaining a tight complexity bounds for loop-CPDL, we will
introduce a finer measure that we call intersection width. This measure comes
in two versions. The first version is used to estimate the size of NFAs, and the
second is for TWAPTAs.

First let us consider the NFA version. The intersection width iw(π) of an
ICPDL program π is defined inductively:

iw(a) = iw(a) = 1 for all a ∈ A

iw(θ?) = 1

iw(π1 ∪ π2) = iw(π1 ◦ π2) = max{iw(π1), iw(π2)}

iw(π∗) = iw(π)

iw(π1 ∩ π2) = iw(π1) + iw(π2)

Note that iw(θ?) = 1 although θ? may contain subprograms of intersection width
stictly larger than 1.

For an NFA A = (Q, p0, q0,→A) over some TWPATA, we define the size |A|
as |Q|. Note that the size of the TWPATA over which A is defined is not taken
into account.

Lemma 3.6. For every ICPDL program π, |A(π)| ≤ 2|π|iw(π).

Proof. The proof is by induction on the structure of π.

Base cases: Let π = a or π = a with a ∈ A. Then |A(π)| = 2 = 2|π|iw(π).

Inductive cases.

Let π = θ?. Then |A(θ?)| = 2 ≤ 2|π|iw(π).

Let π = π∗
1 . The standard construction for Kleene star yields |A(π)| = |A(π1)| ≤

2|π1|
iw(π1) ≤ 2|π|iw(π).

Let π = π1 ∪ π2 or π = π1 ◦ π2. By the standard constructions for union and
composition,

|A(π)| = |A(π1)|+ |A(π2)|

≤ 2 · |π1|
iw(π1) + 2 · |π2|

iw(π2)

≤ 2 · |π1|
iw(π) + 2 · |π2|

iw(π)

≤ 2 · (|π1|+ |π2|)
iw(π)

≤ 2 · |π|iw(π).

Let π = π1 ∩ π2. Then

|A(π)| = |A(π1)| · |A(π2)|

≤ 2 · |π1|
iw(π1) · 2 · |π2|

iw(π2)

≤ 2 · (|π1|+ |π2|)
iw(π1)+iw(π2)

≤ 2 · |π|iw(π).
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The inequality 2 · |π1|
iw(π1) · |π2|

iw(π2) ≤ (|π1|+ |π2|)
iw(π1)+iw(π2) follows from the

binomial theorem. a

We now define the second version of intersection width, where the difference
is in the treatment of the test operator. When speaking of a subprogram of a
program or a formula, we also include programs that occur in the scope of a test
operator. Moreover, each program is a subprogram of itself. If α is an ICPDL
program or an ICPDL formula, then

IW(α) =

{
1 if α has no subprograms

max{iw(π) | π is a subprogram of α} otherwise.

Note that we may have IW(θ?) > 1. For the subsequent lemma, we remind the
reader that i(T ) denotes the index of the TWAPTA T .

Lemma 3.7. For every ICPDL program π and ICPDL formula ψ:

• |T (π)| ≤ |π|+ 8 · |π| · |π|2·IW(π) and i(T (π)) ≤ |π|.
• |T (ψ)| ≤ |ψ|+ 8 · |ψ| · |ψ|2·IW(ψ) and i(T (ψ)) ≤ |ψ|.

Proof. The proof is by mutual induction on the structure of ψ and π.

Base cases:

Let π = a or π = a, with a ∈ A. Then |T (π)| = 1 ≤ |π|+ 8 · |π| · |π|2·IW(π) and
i(T (π)) = 1 = |π|.

Let ψ = p ∈ P. Then |T (π)| = 1 ≤ |p|+ 8 · |p| · |p|2·IW(p) and i(T (π)) = 1 = |p|.

Inductive cases.

Let ψ = ¬θ. The standard complementation construction yields |T (ψ)| = |T (θ)|
and i(T (ψ)) = i(T (θ)) + 1 ≤ |θ|+ 1 = |ψ|.

Let ψ = 〈π〉θ. Then

|T (ψ)| = |A(π)|+ |T (π)|+ |T (θ)|

≤ 2 · |π|iw(π) + |π|+ 8 · |π| · |π|2·IW(π) + |θ|+ 8 · |θ| · |θ|2·IW(θ)

≤ |ψ|+ 8 · |ψ|IW(ψ) + 8 · |π| · |ψ|2·IW(ψ) + 8 · |θ| · |ψ|2·IW(ψ)

= |ψ|+ 8 · (1 + |π|+ |θ|) · |ψ|2·IW(ψ)

= |ψ|+ 8 · |ψ| · |ψ|2·IW(ψ).

Moreover, i(T (ψ)) = max{i(T (π)), i(T (θ))} ≤ max{|π|, |θ|} ≤ |ψ|.

Let π = θ?. Then T (π) = T (θ) and, by induction, |T (π)| and i(T (π)) are as
required.

Let π = π∗
1 . Then T (π) = T (π1) and, by induction, |T (π)| and i(T (π)) are as

required.

Let π = π1 ∪ π2 or π = π1 ◦ π2. Then

|T (π)| = |T (π1)|+ |T (π2)|

≤ |π1|+ 8 · |π1| · |π1|
2·IW(π1) + |π2|+ 8 · |π2| · |π2|

2·IW(π2)

≤ |π|+ 8 · |π| · |π|2·IW(π).

Moreover, i(T (π)) = max{i(T (π1)), i(T (π2))} ≤ max{|π1|, |π2|} ≤ |π|.
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Let π = π1 ∩ π2. Then

|T (π)| = |T (π1)|+ |T (π2)|+ |A(π1)|
2 + |A(π2)|

2

≤ |π1|+ 8 · |π1| · |π1|
2·IW(π1) + |π2|+ 8 · |π2| · |π2|

2·IW(π2) +

4 · |π1|
2·IW(π1) + 4 · |π2|

2·IW(π2)

≤ |π|+ 8 · |π1| · |π|
2·IW(π) + 8 · |π2| · |π|

2·IW(π) + 8|π|2·IW(π)

= |π|+ 8 · (|π1|+ |π2|+ 1)|π|2·IW(π)

= |π|+ 8 · |π| · |π|2·IW(π).

Finally, i(T (π)) can be estimated in the same way as for π = π1 ∪ π2. a

In order to apply Theorem 3.1 we also need a bound for the size of the transition
function δ of the TWAPTA T (ψ). A straightforward estimate together with
Lemma 3.7 implies that |δ| ≤ |A| · 2|P| · |ψ|O(IW(ψ)). Since A and P may be
restricted to those atomic programs and propositions that occur in ψ, we have
|A|, |P| ≤ |ψ| and hence |δ| ≤ 2|ψ| · |ψ|O(IW(ψ))

3.4. An upper bound for ω-regular tree satisfiability in ICPDL. The
algorithm for deciding ω-regular tree satisfiability in ICPDL works as follows.
Given an ICPDL formula ϕ and a TWAPTA T over 2P-labeled A-trees, we con-
vert ϕ into a TWAPTA T (ϕ) such that [[T (ϕ)]] = [[ϕ]], as described in Section 3.2.
Then we construct a TWAPTA T ′ such that L(T ′) = L(T ) ∩ L(T (ϕ)). For al-
ternating automata, intersection is trivial and T ′ can be computed in linear time
from T and T (ϕ). Clearly, L(T ) 6= ∅ if and only if there is a tree T ∈ L(T ) with
ε ∈ [[ϕ]]T . By applying Lemma 3.7 and Theorem 3.1, we obtain the following
upper bound on ω-regular tree satisfiability in ICPDL.

Theorem 3.8. For a TWAPTA T with transition function δ and an ICPDL
formula ϕ, we can decide in time exp(|T |+i(T )+ |ϕ|IW(ϕ)) · |δ|O(1) whether there
exists some T ∈ L(T ) such that ε ∈ [[ϕ]]T . Hence, ω-regular tree satisfiability is
in 2EXP.

Note that Theorem 3.8 yields a single exponential upper bound if the inter-
section width of the input formula is bounded by a constant.

§4. Satisfiability for ICPDL is in 2EXP. We prove that satisfiability in
ICPDL can be decided in 2EXP using a reduction to ω-regular tree satisfiability.
This result matches the lower bound given for satisfiability in IPDL in [28]. The
reduction involves two steps. In Section 4.1, we prove that to decide satisfiability
in ICPDL, it suffices to consider only Kripke structures of tree width at most
two. In Section 4.2, we then prove that satisfiability over such models can be
reduced to ω-regular tree satisfiability.

4.1. Models of tree width two. We start with defining tree decompositions
and the tree width of Kripke structures. Let

K = (X, {→a | a ∈ A}, {Xp | p ∈ P})

be a Kripke structure. A tree decomposition of K is a tuple (T, (Bv)v∈V ), where
T = (V,E) is an undirected tree, Bv is a subset of X (called a bag) for all v ∈ V ,
and the following conditions are satisfied:
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1.
⋃
v∈V Bv = X,

2. For every transition x→a y of K, there exists v ∈ V with x, y ∈ Bv, and
3. For every x ∈ X, the set {v ∈ V | x ∈ Bv} is a connected subset in T .

The width of the tree decomposition is the supremum of {|Bv| − 1 | v ∈ V }.
The tree width of a Kripke structure K is the minimal k such that K has a tree
decomposition of width k.

For the reduction to ω-regular tree satisfiability, it will be more convenient to
work with a special kind of tree decomposition called good. A tree decomposition
(T, (Bv)v∈V ) with T = (V,E) is good if

1. T is an undirected binary tree and
2. if {u, v} ∈ E, then Bv ⊆ Bu or Bu ⊆ Bv.

Only countable Kripke structures can have a good tree decomposition of count-
able width. This is no problem since ICPDL inherits a Löwenheim-Skolem the-
orem from least fixed point logic [16, 21], of which it is a fragment. We call a
tree decomposition (T, (Bv)v∈V ) countable if V is countable.

Lemma 4.1. If K has a countable tree decomposition of width k, then K also
has a good tree decomposition of width k.

Proof. Let (T, (Bv)v∈V ) be a tree decomposition for K of width k with V
countable. We show how to convert (T, (Bv)v∈V ) into a good tree decomposition,
using two steps. First, every edge {u, v} of T such that neither Bu ⊆ Bv nor
Bv ⊆ Bu is replaced with the two edges {u,w} and {w, v}, where w is a new
node. The bag Bw is Bu ∩ Bv. Second, we convert T into a binary tree. Let
u ∈ V have ` > 2 many children v1, v2, . . . . Since K is countable, ` is finite or
ℵ0. Then we introduce a chain {u1, u2}, {u2, u3}, . . . of length `, where u1 = u
and u2, u3, . . . are new nodes. Each edge {u, vi} is replaced with {ui, vi} and
the nodes ui all receive the same bag as u. a

The goal of this section is to prove the following theorem.

Theorem 4.2. Let K be a Kripke structure and let x0 be a world of K. Then
there exists a Kripke structure K⊕ of tree width at most two and a world x⊕0 of
K⊕ such that

• for every ICPDL formula ϕ we have x0 ∈ [[ϕ]]K iff x⊕0 ∈ [[ϕ]]K⊕ ;
• if K is countable, then K⊕ has a countable tree decomposition of width at

most two.

For the rest of this section, fix a Kripke structure

K = (X, {→a| a ∈ A}, {Xp | p ∈ P})

and a world x0 ∈ X. To prove Theorem 4.2, we start with inductively defining
an undirected tree T = (V,E) together with a node labeling tv ∈ X ∪X

2 ∪X3,
for each v ∈ V . Based on this tree, we will define the Kripke structure K⊕ from
Theorem 4.2. We will also use T to give a tree decomposition of K⊕ of width at
most two.

The construction of T is by exhaustive application of the following rules:

1. Start the construction with a root v0 ∈ V and put tv0 = x0.
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2. If v ∈ V and tv = x ∈ X, then for every y ∈ X add a child w of v and set
tw = (x, y).

3. If v ∈ V and tv = (x, y), then add
• for every z ∈ X a child w of v with tw = (x, z, y) and
• a child w′ with tw′ = y.

4. If v ∈ V and tv = (x, z, y), then add children w1 and w2 with tw1
= (x, z)

and tw2
= (z, y).

We assume that successors are added at most once to each node and that the
rules are applied in a breadth first manner. A place is a pair (v, x) ∈ V × X
such that tv is or contains x. We denote by PT the set of places of T and define
≈ to be the smallest equivalence relation on PT that contains all pairs of the
form ((v, x), (u, x)) such that {v, u} ∈ E. For all (v, x) ∈ PT , we denote by [v, x]
the equivalence class of (v, x) with respect to ≈. The following is immediate by
construction of T .

Lemma 4.3. If v ∈ V and tv contains x ∈ X, then there exists some v′ ∈ V
such that (v, x) ≈ (v′, x) and tv′ = x.

Define the Kripke structure K⊕ = (X ′, {→′
a| a ∈ A}, {X ′

p | p ∈ P}), where

• X ′ = {[v, x] | (v, x) ∈ PT },
• [v, x] →′

a [v′, y] whenever there exists a u ∈ V such that (v, x) ≈ (u, x),
(v′, y) ≈ (u, y), and x→a y, and
• X ′

p = {[v, x] ∈ X ′ | x ∈ Xp}.

We put x⊕0 = [v0, x0]. Intuitively, the construction of the Kripke structure K⊕

can be viewed as a kind of tree-width 2 analogue of the standard unravelling of
a Kripke structure into a tree. In particular, our construction also untangles the
original structure by duplicating worlds, i.e., a world x of K may be duplicated
into two worlds [v, x] 6= [u, x]. In contrast to unravelling, the above construction
does not produce a tree-shaped structure, but only a Kripke structure of tree
width at most two. Indeed, it is not hard to see that (T, (Bv)v∈V ) with

Bv = {[v, x] ∈ X ′ | x occurs in tv}

is a tree decomposition of K⊕ of width at most two. Moreover, if X is countable,
then the tree T is also countable. Finally, Point (3) of the following lemma shows
that K⊕ satisfies the same ICPDL formulas as K.

Lemma 4.4. For all (v, x), (u, y) ∈ PT , all programs π, and all formulas ϕ:

(1) if tv = (x, y) and (x, y) ∈ [[π]]K , then ([v, x], [v, y]) ∈ [[π]]K⊕ ;
(2) if ([v, x], [u, y]) ∈ [[π]]K⊕ , then (x, y) ∈ [[π]]K ;
(3) x ∈ [[ϕ]]K if and only if [v, x] ∈ [[ϕ]]K⊕ .

Proof. We prove the lemma by mutual induction on the structure of π and ϕ.
For Point (1), we make a case distinction according to the form of π:

• π = a for some a ∈ A: That tv = (x, y) and (x, y) ∈ [[a]]K implies
([v, x], [v, y]) ∈ [[a]]K⊕ follows immediately from the definition of K⊕.

• π = a for some a ∈ A: Follows immediately from the definition of K⊕ and
the semantics of converse.
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• π = ψ?: By the semantics, (x, y) ∈ [[π]]K implies x = y and x ∈ [[ψ]]K .
Hence by Point (3) of the induction hypothesis, we obtain [v, x] ∈ [[ψ]]K⊕ .
By the semantics, it follows that ([v, x], [v, y]) ∈ [[π]]K⊕ as required.

• π = π1 ∩ π2: By the semantics, (x, y) ∈ [[π1 ∩ π2]]K implies (x, y) ∈ [[πi]]K
for each i ∈ {1, 2}. It follows by Point (1) of the induction hypothesis that
([v, x], [v, y]) ∈ [[πi]]K⊕ for each i ∈ {1, 2}. Finally, by the semantics we
obtain ([v, x], [v, y]) ∈ [[π]]K⊕ .

• π = π1 ∪ π2: One can argue in the same way as in the previous case.
• π = π1 ◦ π2: By the semantics, (x, y) ∈ [[π]]K implies (x, z) ∈ [[π1]]K and

(z, y) ∈ [[π2]]K for some z ∈ X. By construction of T the node v has
a successor w with tw = (x, z, y) and w has successors w1 and w2 with
tw1

= (x, z) and tw2
= (z, y). By Point (1) of induction hypothesis we have

([w1, x], [w1, z]) ∈ [[π1]]K⊕ and ([w2, z], [w2, y]) ∈ [[π2]]K⊕ . By the semantics
and since (v, x) ≈ (w1, x), (w1, z) ≈ (w, z) ≈ (w2, z) and (w2, y) ≈ (v, y),
we obtain ([v, x], [v, y]) ∈ [[π]]K⊕ .

• π = χ∗: We prove that (x, y) ∈ [[χ]]iK implies ([v, x], [v, y]) ∈ [[χ]]i
K⊕ by

induction on i. If i = 0, then (x, y) ∈ [[χ]]iK implies x = y and therefore
we have ([v, x], [v, y]) ∈ [[χ]]i

K⊕ . Now assume (x, y) ∈ [[χ]]iK for some i > 0.

Hence, there exists some z ∈ X such that (x, z) ∈ [[χ]]i−1
K and (z, y) ∈ [[χ]]K .

By construction of T node v has a successor w with tw = (x, z, y) and
w has successors w1 and w2 with tw1

= (x, z) and tw2
= (z, y). By the

inner induction hypothesis we have ([w1, x], [w1, z]) ∈ [[χ]]i−1
K⊕ . By Point (1)

of the outer induction hypothesis we have ([w2, z], [w2, y]) ∈ [[χ]]K⊕ . By
the semantics and since (v, x) ≈ (w1, x), (w1, z) ≈ (w, z) ≈ (w2, z) and
(w2, y) ≈ (v, y), we obtain ([v, x], [v, y]) ∈ [[χ]]i

K⊕ .

To prove Point (2), we also make a case distinction according to the form of π:

• π = a for some a ∈ A: That ([v, x], [u, y]) ∈ [[a]]K⊕ implies (x, y) ∈ [[a]]K
follows immediately from the definition of K⊕.

• π = a for some a ∈ A: Follows immediately from the definition of K⊕ and
the semantics of converse.

• π = ψ?: By the semantics ([v, x], [u, y]) ∈ [[π]]K⊕ implies [v, x] = [u, y]
and [v, x] ∈ [[ψ]]K⊕ . By definition of ≈ it follows x = y and by Point
(3) of induction hypothesis we have x ∈ [[ψ]]K . Thus, by the semantics
(x, y) ∈ [[π]]K .

• The remaining cases are straightforward by Point (2) of the induction hy-
pothesis and the semantics.

For Point (3), we make a case distinction according to the form of ϕ:

• ϕ = p ∈ P: That x ∈ [[p]]K if and only if [v, x] ∈ [[p]]K⊕ follows immediately
from the definition of K⊕.

• ϕ = ¬ψ: Follows easily from the semantics and Point (3) of the induction
hypothesis.

• ϕ = 〈π〉ψ: Let us first prove the “if”-direction. Assume [v, x] ∈ [[ϕ]]K⊕ .
Then there exists some [u, y] ∈ X ′ such that ([v, x], [u, y]) ∈ [[π]]K⊕ and
[u, y] ∈ [[ψ]]K⊕ . By Point (2) of induction hypothesis we have (x, y) ∈ [[π]]K
and by Point (3) of induction hypothesis we have y ∈ [[ψ]]K . Thus, we
obtain x ∈ [[ϕ]]K .
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Let us show the “only if”-direction. Assume x ∈ [[ϕ]]K . Then there exists
some y ∈ X such that (x, y) ∈ [[π]]K and y ∈ [[ψ]]K . Since tv contains x, by
Lemma 4.3, there exists a node v′ ∈ V such that (v, x) ≈ (v′, x) and tv′ = x.
By construction of T node v′ has a successor w with tw = (x, y). Applying
Point (1) of induction hypothesis yields ([w, x], [w, y]) ∈ [[π]]K⊕ . Too, Point
(3) of induction hypothesis implies [w, y] ∈ [[ψ]]K⊕ . Since moreover (v, x) ≈
(v′, x) ≈ (w, x), we obtain [v, x] ∈ [[ϕ]]K⊕ .

This finishes the proof of Lemma 4.4 and hence of Theorem 4.2. a

4.2. Reduction to ω-regular tree satisfiability. To reduce satisfiability
in ICPDL to ω-regular tree satisfiability, we show how to translate an ICPDL
formula ϕ into an ICPDL formula ϕ′ and a TWAPTA T such that ϕ is satisfiable
if and only if ϕ′ is satisfiable with respect to T in the sense of ω-regular tree
satisfiability. The formula ϕ′ uses atomic propositions and atomic programs

P = {t} ] prop(ϕ) ] ({0, 1, 2} × prog(ϕ)× {0, 1, 2}) and A = {a, b, 0, 1, 2},

where prop(ϕ) = {p ∈ P | p occurs in ϕ} and prog(ϕ) = {a ∈ A | a occurs in ϕ}.
The TWAPTA T works over 2P-labeled A-trees. Intuitively, each tree T accepted
by T encodes a Kripke structure K together with a good tree decomposition of
K of width at most two, and T is a model of ϕ′ if and only if K is a model of ϕ.

We first describe the mentioned encoding on an intuitive level. Let K be a
Kripke structure and (U, (Bv)v∈V ) a good tree decomposition of K of width at
most two, with U = (V,E). Assume w.l.o.g. that V ⊆ {a, b}∗, with ε the root
of the tree U and for each v ∈ V , va and vb the children of v. The tree T has
roughly the structure of U . In particular, each node v ∈ V is described by the
same node v in T , together with additional children v0, v1, and v2 that v has in
T . Intuitively, we think of each node v in U as providing three slots which can
be empty or filled with a world of the Kripke structure K, i.e. the three slots
correspond to an ordered representation of the bag Bv. The additional successors
v0, v1, v2 of v in T describe these three slots. This explains our choice of A. When
slot vi (i ∈ {0, 1, 2}) is occupied by a world of K, then vi receives the special
label t ∈ P in T . Additionally, each node vi is labeled with the same atomic
propositions as the world in K that it represents (if any). Information about the
transitions of K are stored in T using nodes from {a, b}∗. For example, if there
is a γ-transition in K from the world represented by vi to the world represented
by vj, then the labeling of v contains the tuple (i, γ, j). We now formally define
the described encoding. A complete 2P-labeled A-tree T is called valid if the
following holds for all v ∈ A∗:

• if v ∈ {a, b}∗ and i ∈ {0, 1, 2}, then T (vi) = ∅ or {t} ⊆ T (vi) ⊆ {t} ∪ P;
set Bv = {i | t ∈ T (vi)};

• if v ∈ {a, b}∗, then T (v) ⊆ Bv × prog(ϕ)×Bv;
• if v ∈ {a, b}∗ and c ∈ {a, b}, then Bv ⊆ Bvc or Bvc ⊆ Bv;
• if v /∈ {a, b}∗ ∪ {a, b}∗{0, 1, 2}, then T (v) = ∅.

Let T be a valid 2P-labeled A-tree. We now make precise the Kripke structure
K(T ) over prop(ϕ) and prog(ϕ) that is described by T . Define a set of places

PT = {u ∈ {a, b}∗{0, 1, 2} | t ∈ T (u)}
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and let ∼ be the smallest equivalence relation on PT which contains all pairs
(vi, vci) ∈ PT ×PT , where v ∈ {a, b}∗, c ∈ {a, b}, and 0 ≤ i ≤ 2. For u ∈ PT , we
use [u] to denote the equivalence class of u with respect to ∼. Now set

K(T ) = (X, {→γ | γ ∈ prog(ϕ)}, {Xp | p ∈ prop(ϕ)}),

where

X = {[u] | u ∈ PT },

→γ = {([vi], [vj]) | v ∈ {a, b}∗, (i, γ, j) ∈ T (v)}, and

Xp = {[u] ∈ X | p ∈ T (u)}.

The structure K(T ) should not be confused with T viewed as a Kripke structure
over P and A as discussed at the beginning of Section 3: the original formula ϕ
whose satisfiability is to be decided is interpreted in K(T ) whereas the reduction
formula ϕ′, to be defined below, is interpreted in T viewed as a Kripke structure
over P and A. The following lemma, which is easy to prove, establishes the
correctness of our encoding.

Lemma 4.5. If K is a countable Kripke structure that has a good tree decom-
position of at most width two, then there exists a valid T ∈ tree(2P,A) such that
K is isomorphic to K(T ). Conversely, K(T ) has tree width at most two for
every valid T ∈ tree(2P,A).

Recall that our aim is to convert the ICPDL formula ϕ whose satisfiability is
to be decided into an ICPDL formula ϕ′ over P and A and a TWAPTA T . The
TWAPTA T is defined such that it accepts the set of all valid 2P-labeled A-trees.
Such a TWAPTA is easily designed, and details are left to the reader. To define
the formula ϕ′, we first introduce the auxiliary program

π1
∼ =

⋃

i∈{0,1,2}

t? ◦ i ◦ (a ∪ b ∪ a ∪ b) ◦ i ◦ t?

and set π∼ = t? ◦ (π1
∼)∗. It is easy to see that for each valid tree T ∈ tree(2P,A),

[[π∼]]T equals ∼. For an ICPDL program or formula α, let α̂ be obtained from
α by replacing

• every atomic program γ ∈ prog(ϕ) by

γ̂ =
⋃

i,j∈{0,1,2}

π∼ ◦ i ◦ (i, γ, j)? ◦ j ◦ π∼ and

• every atomic proposition p ∈ prop(ϕ) by p̂ = 〈π∼〉p.

Observe that the definitions of γ̂ and p̂ directly reflect the definition of K(T ).
The proof of the following lemma is straightforward by induction on the structure
of ψ and π. The base case is easy by definition of ∼ and π∼ and K(T ), and the
inductive step is simple. Details are left to the reader.

Lemma 4.6. For all subformulas ψ of ϕ, subprograms π of ϕ, valid trees T ∈
tree(2P,A), and places u, v ∈ PT , we have:

1. u ∈ [[ψ̂]]T if and only if [u] ∈ [[ψ]]K(T );
2. (u, v) ∈ [[π̂]]T if and only if ([u], [v]) ∈ [[π]]K(T ).

Now define ϕ′ = 〈(a ∪ b)∗ ◦ (0 ∪ 1 ∪ 2) ◦ t?〉ϕ̂.
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Lemma 4.7. ϕ is satisfiable if and only if ϕ′ is satisfiable with respect to T .
Moreover, IW(ϕ′) = IW(ϕ).

Proof. The statement on the intersection width is obvious. Now, assume
that ϕ is satisfiable. From the results in [16, 21] and the obvious embedding
of ICPDL into least fixed point logic, it follows that ϕ has a countable model.
Hence, by Theorem 4.2, ϕ has a model K with a countable tree decomposition
of width at most two. By Lemma 4.1 this tree decomposition can be assumed
to be good. By Lemma 4.5, K is of the form K(T ) for some valid tree T . Point
(1) of Lemma 4.6 and the definition of ϕ′ imply that T is a model of ϕ′, i.e., ϕ′

is satisfiable with respect to T .
For the other direction assume that ϕ′ is satisfiable with respect to T and let

T be a valid tree such that ε ∈ [[ϕ′]]T . Then, by point (1) of Lemma 4.6, K(T )
is a model of ϕ, i.e., ϕ is satisfiable. a

From Theorem 3.8 and Lemma 4.7, we get the main result of this section.

Theorem 4.8. Satisfiability in ICPDL is 2EXP-complete. For every constant
c, satisfiability in {ϕ ∈ ICPDL | IW(ϕ) ≤ c} is EXP-complete.

We have already noted that a loop-CPDL formula ϕ can be translated into an
ICPDL formula ϕ′ by replacing every subformula loop(π) with 〈π∩ true?〉true.
We claim that IW(ϕ′) ≤ 2. To see this, let π be an arbitrary program occuring
in ϕ′. We have to show that iw(π) ≤ 2. By the definition of iw(·), it suffices
to consider the case that the topmost operator in π is an intersection. Thus,
π = ρ∩true? and iw(π) = iw(ρ)+1. But by construction of ϕ′, every intersection
operator in ρ occurs within a subprogram θ? of ρ. Hence, iw(ρ) = 1. We obtain:

Corollary 4.9. Satisfiability in loop-CPDL is EXP-complete.

4.3. Σ1
1-completeness of IPDL with negation of atomic programs. It

is well-known that adding full program negation to PDL results in satisfiability
to become undecidable [23], whereas PDL with program negation restricted to
atomic programs remains decidable and EXP-complete [31]. Therefore, it is a
natural question whether satisfiability remains decidable when we extend IPDL
and ICPDL with atomic program negation. The purpose of this section is to
answer this question negatively: already in IPDL extended with atomic program
negation, satisfiability is complete for Σ1

1, the first level of the analytic hierarchy,
see e.g. [37].

For a Σ1
1 upper bound, observe again that from [16, 21] it follows that every

satisfiable formula of least fixed point logic has a countable model. Since IPDL(¬)

is clearly a fragment of least fixed point logic, it remains, for a given IPDL(¬)

formula ϕ, to give an existential second-order formula of arithmetic over the
naturals that expresses the existence of a countable model of ϕ. However, the
latter is straightforward, see for example Section 3.4 in [23].

Our proof of the Σ1
1 lower bound is by reduction of a tiling problem that asks

for a recurring tiling of the first quadrant of the plane. As shown in [22], this
problem is Σ1

1-complete. A tiling system S = (T,H, V, tr) consists of a finite set
of tile types T , horizontal and vertical matching relations H,V ⊆ T × T , and a
recurring tile tr ∈ T . A solution to S is a mapping τ : N× N→ T such that:
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• for all (x, y) ∈ N× N, if τ(x, y) = t and τ(x+ 1, y) = t′, then (t, t′) ∈ H
• for all (x, y) ∈ N× N, if τ(x, y) = t and τ(x, y + 1) = t′, then (t, t′) ∈ V
• for all y ∈ N there exists y′ > y with τ(0, y′) = tr

The last condition states that the recurring tile tr has to occur infinitely often
in the first column. The tiling problem is to decide, given a tiling system S,
whether S has a solution.

We use IPDL(¬) to denote the extension of IPDL with negation of atomic
programs, which we write as ¬a (a ∈ A). The semantics of the new constructor
is defined in the obvious way, i.e., [[¬a]]K = (X × X) \ [[a]]K for each Kripke
structure K with set of worlds X. To reduce the tiling problem to satisfiability
in IPDL(¬), we translate a tiling system S = (T,H, V, tr) into an IPDL(¬) formula
ϕS such that S has a solution if and only if ϕS is satisfiable. In the formula ϕS ,
we use two atomic programs ax and ay for representing the grid N × N and we
use the tile types of T as atomic propositions. The formula ϕS is the conjunction
consisting of the following conjuncts:

(a) every element of a (connected) model of ϕS represents an element of N×N

and is labelled with a unique tile type:

[(ax ∪ ay)
∗]
( ∨

t∈T

t ∧
∧

t,t′∈T,t6=t′

¬(t ∧ t′)
)

(b) every element has an ax-successor and an ay-successor:

[(ax ∪ ay)
∗]
(
〈ax〉true ∧ 〈ay〉true

)

(c) the programs ax and ay are confluent:

[(ax ∪ ay)
∗] [(ay ◦ ax) ∩ (ax ◦ ¬ay)]false

(d) the horizontal and vertical matching conditions are respected:

[(ax ∪ ay)
∗]
( ∧

t∈T

t →
(
[ax]

∨

(t,t′)∈H

t′ ∧ [ay]
∨

(t,t′)∈V

t′
))

(e) we start in column 0 and the recurring tile tr occurs infinitely often:

〈a∗y〉tr ∧ [a∗y] ( tr → 〈a
+
y 〉tr ).

Lemma 4.10. The tiling system S has a solution if and only if ϕS is satisfiable.

Proof. Since the “only if” direction is simple, we only prove the “if” direc-
tion. Thus, let ϕS be satisfiable and K = (X, {→ax

,→ay
}, {Xt | t ∈ T}) be a

model of ϕS . We have to construct a solution τ to S. To prepare for this, we
first define a mapping π : N × N → X, which is done in two steps. In the first
step, we pick x ∈ [[ϕS ]]K and set π(0, 0) = x. Next, we define π(0, k) for all
k > 0 as follows: By (e) we can find worlds xi (i ≥ 0) such that x0 = π(0, 0),
(xi, xi+1) ∈ [[ay]]K for all i ≥ 0 and such that xj ∈ Xtr for infinitely many j ≥ 0
(the sequence (xi)i≥0 is not necessarily repetition-free). We set π(0, i) = xi.
Finally, we define π(i, j) for all i > 0: Assume that π(i, j) is already defined.
By (b), we can choose x ∈ X such that (π(i, j), x) ∈ [[ax]]K and set π(i+1, j) = x.
By construction, we have (π(i, j), π(i+ 1, j)) ∈ [[ax]]K for all i, j ≥ 0. Moreover,
the confluence property (c) implies that also (π(i, j), π(i, j + 1)) ∈ [[ay]]K for all
i, j ≥ 0.
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The resulting mapping π gives rise to a mapping τ : N×N→ T in the obvious
way: by (a), we can define τ(i, j) as the unique t ∈ T with π(i, j) ∈ [[t]]K . Finally,
(d) and our choice of the values π(0, i), i ≥ 0, imply that τ is a solution to S. a

We have thus established the following result.

Theorem 4.11. Satisfiability in IPDL(¬) is Σ1
1-complete.

Since intersection of programs can be defined in terms of program union and
(full) program negation, this also proves Σ1

1-completeness of PDL with full pro-
gram negation, improving upon the undecidability result given by Harel in [23],
using a (trivial) reduction of the equivalence problem for the algebra of binary
relations with complementation.

§5. Infinite state model checking. We introduce pushdown systems (PDSs)
and basic process algebras (BPAs) as formalisms for representing infinite Kripke
structures and, based on this, the infinite-state model checking problem for
ICPDL. We then prove upper complexity bounds by reduction to ω-regular tree
satisfiability. Matching lower bounds are established in Section 6.

In the context of model checking, we generally use Kripke structures without
atomic propositions. This simplifies notation and can be done w.l.o.g. since an
atomic proposition p is easily simulated using a reflexive loop of a new atomic
program ap, which can then be tested by the formula loop(ap). In the following,
A ⊆ A always denotes a finite set of atomic programs.

A pushdown system (PDS) is a tuple Y = (Q,Γ, {
a
−→Y | a ∈ A}) where Q is a

finite set of states, Γ is a finite stack alphabet, and
a
−→Y ⊆ Q × Γ × Q × Γ∗ is

a finite set of rewriting rules, for each a ∈ A. For better readability, we write

(q, b, q′, v) ∈
a
−→Y in infix notation as qb

a
−→Y q′v. Intuitively, a PDS describes

a (unique) Kripke structure in which each world is a configuration qv of the
system, with q ∈ Q the state and v ∈ Γ∗ the stack content. In v, the left-most

symbol corresponds to the top of the stack. A rewriting rule qb
a
−→Y q′v says

that, travelling a, we can move from any configuration qbw to q′vw, i.e., replace
b with v on top of the stack and switch the state from q to q′. Formally, the
Kripke structure defined by a PDS Y is K(Y) = (QΓ∗, {→a| a ∈ A}), where

→a = {(qbw, q′vw) | w ∈ Γ∗, qb
a
−→Y q′v}.

for each a ∈ A. The size of a PDS is |Y| = |Q|+ |Γ|+
∑
a∈A

∑
qb

a−→Yq′v
|qbq′v|.

A basic process algebra (BPA) is a pair X = (Γ, {
a
−→X | a ∈ A}), where Γ is a

finite stack alphabet and
a
−→X ⊆ (Γ ∪ {ε}) × Γ∗ is a finite set of rewriting rules,

for each a ∈ A. Intuitively, a BPA is simply a PDS with a single state. Similary

to the case of PDSs, we write b
a
−→X v rather than (b, v) ∈

a
−→X . The Kripke

structure defined by a BPA X is the obvious one, i.e., K(X ) = (Γ∗, {→a| a ∈ A}),
where

→a = {(bw, vw) | w ∈ Γ∗, b
a
−→X v}.

for each a ∈ A. It should be obvious that every BPA X can be translated into
a single-state PDS Y such that K(X ) and K(Y) are isomorphic. The size of a
BPA X is |X | = |Γ|+

∑
a∈A

∑
b

a−→X v
|bv|.

The model checking problem for pushdown systems is defined as follows:
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BPA/PDS/PRS

data
loop-(C)PDL expression

combined
EXP-complete

data
I(C)PDL expression

combined 2EXP-complete

Table 1. Infinite state model checking in I(C)PDL and loop-I(C)PDL.

INPUT: A PDS Y, a world w0 ∈ K(Y), and an ICPDL formula ϕ.
QUESTION: w0 ∈ [[ϕ]]K(Y)?

The model checking problem for basic process algebras is defined analogously.
The following example shows an application of IPDL to the verification of two

cooperating pushdown systems.

Example 5.1. Consider two pushdown systems Y1 and Y2 with a common

stack alphabet Γ, and let Yi = (Qi,Γ, {
a
−→Yi

| a ∈ Ai}), for i ∈ {1, 2}. The
systems Y1 and Y2 can synchronize by entering a common configuration, and
thus we assume that Q1 ∩Q2 6= ∅. To distinguish steps of Y1 from those of Y2,
we assume that A1 ∩ A2 = ∅. Finally, let K(Yi) be deterministic, for i ∈ {1, 2}.
The two systems can be modeled by a single pushdown system

Y = (Q1 ∪Q2,Γ, {
a
−→Y | a ∈ A1 ∪ A2}).

We want to ensure that, whenever Y1 and Y2 are in the same configuration w
and Yi can reach from w a configuration wi by an atomic program (from Ai), for
i ∈ {1, 2}, then the two systems can again reach a common configuration from
w1 and w2. This property is expressed by the following IPDL formula:

[A∗
1 ∩ A∗

2]


 ∧

a∈A1,b∈A2

〈a〉true ∧ 〈b〉true → 〈a ◦ A∗
1 ∩ b ◦ A∗

2〉true




Observe that, in the context of model checking PDAs, requiring K(Yi) to be
determinstic is not a restriction. It is always possible to modify Yi such that
K(Yi) is deterministic by introducing additional atomic programs.

When analyzing the complexity of model checking, we distinguish combined
complexity (where both the formula and the system is part of the input), data
complexity (where the formula is assumed to be fixed), and expression complexity
(where the system is assumed to be fixed). Our results are summarized in Table 1,
where we also mention prefix recognizable systems (PRSs) [5, 25]. These systems
generalize pushdown systems. It is straightforward to extend our upper bounds
from PDAs to PRSs. Note also that the converse operator has no impact on the
complexity of model-checking.
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•
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• bn

•bnb1 · · · • bnbn
•

•

•

b1

b2

bn

b1

bn

b1

bn

b1

bn

Figure 1. The complete B-tree

5.1. Upper bounds for infinite state model checking. In this section,
we reduce model checking of PDSs in ICPDL to ω-regular tree satisfiability in
ICPDL.

Let ϕ be an ICPDL formula, Y = (Q,Γ, {
a
−→Y | a ∈ A}) a PDS, and w0 ∈ QΓ∗

a world of K(Y). We want to check whether w0 ∈ [[ϕ]]K(Y). The basic idea is
to use a reduction to ω-regular tree satisfiability in ICPDL over a single tree T0.
More precisely, we set B = Q ∪ Γ, and then T0 is the complete B-tree in which
T0(v) = ∅, for each v ∈ B∗. This tree corresponds to the Kripke structure
(B∗, {→b| b ∈ B}), where →b = {(u, ub) | u ∈ B∗} for each b ∈ B. It is displayed
in Figure 1.

For a word w = b1 · · · bn ∈ B∗, let ←−w = bn · · · b1 be the result of reversing it.
Each configuration qv of Y is represented as ←−qv in T0, as this allows us to travel
between configurations in an easier way. Let ϕ′ be the ICPDL formula that is
obtained from ϕ by replacing every occurence of a ∈ A with

⋃

qc
a−→Ypv

q c←−v p.

Clearly, ϕ′ can be interpreted in T0. It is not hard to verify that w0 ∈ [[ϕ]]K(Y)

if and only if ε ∈ [[〈←−w0〉ϕ
′]]T0

. It remains to construct a TWAPTA T such that
L(T ) = {T0}, which is a triviality. Thus, w0 ∈ [[ϕ]]K(Y) if and only if there is a
T ∈ L(T ) with ε ∈ [[〈←−w0〉ϕ

′]]T . ¿From Theorem 3.8 we obtain:

Theorem 5.2. For a PDS Y, a world w0 ∈ K(Y) and an ICPDL formula ϕ,
we can check in time exp((|w0|+ |ϕ| · |Y|)

IW(ϕ)) whether w0 ∈ [[ϕ]]K(Y). Hence,
model checking PDSs in ICPDL is in 2EXP with respect to combined (and thus
also expression) complexity, and in EXP with respect to data complexity.

As a corollary of Theorem 5.2 and our translation of loop-CPDL into ICPDL
in (3) we obtain the following.

Corollary 5.3. Model checking of PDSs in loop-CPDL is in EXP with re-
spect to combined complexity.
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§6. Lower bounds. We prove two lower bounds for infinite-state model
checking in fragments of ICPDL. The first result establishes EXP-hardness of
the data complexity of model checking BPAs in loop-PDL. This is somewhat
surprising since, in many modal logics such as PDL and the modal µ-calculus,
the data complexity of model checking is in PTIME [46]. The second result
states that the expression complexity of model checking BPAs in IPDL is 2EXP-
hard. Thus, we obtain tight complexity bounds as summarized in Table 1. Both
lower bounds are proved by a reduction of the word problem of space-bounded
alternating Turing machines.

6.1. Alternating Turing Machines. An alternating Turing machine (ATM)
is a tupleM = (Q,Σ,Γ, q0, δ,2) where (i) Q = Qacc]Qrej]Q∃]Q∀ is a finite set
of states Q which is partitioned into accepting (Qacc), rejecting (Qrej), existential
(Q∃), and universal (Q∀) states, (ii) Γ is a finite alphabet, (iii) Σ ⊆ Γ is the input
alphabet, (iv) q0 ∈ Q is the initial state, (v) 2 ∈ Γ \ Σ is the blank symbol, and
(vi) the map δ : (Q∃∪Q∀)×Γ→ Moves×Moves, with Moves = Q×Γ×{←,→},
assigns to every pair (q, γ) ∈ (Q∃ ∪Q∀)× Γ a pair of moves. A configuration of
M is a word from Γ∗QΓ∗, with the usual meaning. Assume a configuration c of
M is in current state q ∈ Q∃∪Q∀ and scans a symbol γ ∈ Γ. If δ(q, γ) = (µ1, µ2)
and ci is the successor configuration reached from c by the move µi (i ∈ {1, 2}),
we write c `µi

M ci. We call c1 the left successor configuration and c2 the right
successor configuration of c. A configuration c of M in current state q ∈ Q is
existential if q ∈ Q∃, universal if q ∈ Q∀, and accepting if one of the following
three conditions holds:

• q ∈ Qacc or
• q ∈ Q∃ and there exists an accepting successor configuration of c or
• q ∈ Q∀ and both successor configurations of c are accepting.

An input w ∈ Σ∗ is accepted by an ATM M = (Q,Σ,Γ, q0, δ,2) if and only if
q0w is an accepting configuration. It follows from this definition that acceptance
of w byM is witnessed by the existence of an accepting computation tree ofM
on w, i.e., a finite tree whose nodes are accepting configurations and such that
the root is the initial configuration of M on w, each node that is an existential
configuration has one successor configuration as a child node, and each node
that is a universal configuration has both of its successor configurations as child
nodes. By L(M) ⊆ Σ∗, we denote the language accepted byM. It is well known
that alternating polynomial space equals EXP and alternating exponential space
equals 2EXP [7]. Whenever we talk about hardness, we mean hardness with
respect to logarithmic space reductions.

6.2. Data Complexity in loop-PDL. We start with a summary of the
main ideas behind the proof, which follows [45]. Let M = (Q,Σ,Γ, q0, δ,2) be
a p(n)-space bounded ATM (p(n) a polynomial) whose word problem is EXP-
hard, and w ∈ Σ∗ an input of length n. Our aim is to construct a BPA X
depending onM and w and an IPDL formula ϕ depending only onM such that
w ∈ L(M) if and only if ε ∈ [[ϕ]]K(X ). We define X such that worlds of K(X )
represent sequences of configurations ofM of length at most p(n), separated by
certain markers. Then, ϕ verifies the existence of an accepting computation tree
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ofM on w by traversing the tree in a depth-first and left-to-right fashion, while
walking through K(X ).

To give more details, let us first introduce the mentioned markers:

• Dir∀ = {L(µ1, µ2), R(µ1, µ2) | (µ1, µ2) ∈ δ(Q∀,Γ)} is the set of universal
direction markers;

• Dir∃ = {E(µ1), E(µ2) | (µ1, µ2) ∈ δ(Q∃,Γ)} is the set of existential direc-
tion markers; and

• Dir = Dir∀ ∪Dir∃ is the set of direction markers.

Since X is a BPA, we will henceforth refer to the worlds of K(X ) as the stack. As
already mentioned, the stack consists of a sequence of configurations (in a suit-
able encoding), separated by direction markers. Such a sequence represents the
current state of the traversal of the computation tree. In particular, a marker
L(µ1, µ2) on top of a universal configuration means that we are currently ex-
ploring the left subtree of that configuration, and R(µ1, µ2) refers to the right
subtree.

The main ingredient to the formula ϕ is a program “traverse”, which imple-
ments the individual steps of the traversal. It starts from the world in which the
stack consists of the initial configuration ofM on input w (without any direction
markers), and then carries out the following basic steps:

• If the top of the stack consists of a universal configuration c in current
state q ∈ Q∀ and scanning a symbol γ, then the direction marker L(µ1, µ2)
is pushed on the stack where δ(q, γ) = (µ1, µ2), and on top of it the left
successor configuration c′ of c.

• If the top of the stack consists of an existential configuration c in current
state q ∈ Q∀ and scanning a symbol γ, then we non-deterministically push
a direction marker E(µ) and on top of it a successor configuration c′ of c,
where µ is the move from δ(q, γ) executed to reach c′ from c.

• If the top of the stack consists of a configuration with current state from
Qacc, then the configuration can be popped.

• If the top of the stack consists of a universal configuration c with a direction
marker L(µ1, µ2) on top, then L(µ1, µ2) is replaced with R(µ1, µ2) and the
right successor configuration of c on top of it.

• If the top of the stack consists of a universal configuration with a direction
marker R(µ1, µ2) on top or of an existential configuration with a direc-
tion marker E(µ) on top, then both the configuration and the marker are
popped.

The traversal should end at the empty stack.

Theorem 6.1. There exists a loop-PDL formula ϕ such that, given a basic
process algebra X , it is EXP-hard to decide whether ε ∈ [[ϕ]]K(X ).

Proof. Let M = (Q,Σ,Γ, q0, δ,2) be a p(n)-space bounded ATM (p(n) a
polynomial) with an EXP-hard word problem. Let w = w1w2 · · ·wn ∈ Σ∗ be an
input of length n. We give a logspace computable BPA X = X (M, w) and a
loop-PDL formula ϕ = ϕ(M) such that w ∈ L(M) if and only if ε ∈ [[ϕ]]K(X ).
Let N = p(n), Ω = Q ∪ Γ, and ΩN = {a(i) | a ∈ Ω, 0 ≤ i ≤ N}. A configuration
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c = a0a1 · · · ai−1qai+1 · · · aN ∈
⋃

0≤i≤N−1 ΓiQΓN−i is encoded by the string

a0(0)a1(1) · · · ai−1(i− 1)q(i)ai+1(i+ 1) · · · aN (N).

In the following, we confuse configurations and their encodings. The stack al-
phabet of X is ΓX = ΩN ∪ Dir. Let us now define the rewriting rules of X .
The set of atomic programs A of X is implicitly given as the set of all programs
occurring in the rules:

ε
input
−−−−−−→X q0(0)w1(1) · · ·wn(n)2(n+ 1) · · ·2(N)

ε
d

−−−−−−→X d for all d ∈ Dir

d
push

−−−−−−→X a(N)d for all d ∈ Dir and a ∈ Ω

a(i)
push

−−−−−−→X a′(i− 1)a(i) for all 1 ≤ i ≤ N and a, a′ ∈ Ω

d
checkDir−−−−−−→X d for all d ∈ Dir

a(0)
check0−−−−−−→X a(0) for all a ∈ Ω

a(N)
popN−−−−−−→X ε for all a ∈ Ω

a(i)
ā

−−−−−−→X ε for all 0 ≤ i < N and a ∈ Ω

d
d̄

−−−−−−→X ε for all d ∈ Dir

a(i)
copy

−−−−−−→X a(i)a(i) for all 0 ≤ i ≤ N and a ∈ Ω

a(i)
shift

−−−−−−→X a(i)x for all 0 ≤ i ≤ N, a ∈ Ω, and x ∈ ΓX

a(i)
(a/b)
−−−−−−→X b(i) for all 0 ≤ i ≤ N and a, b ∈ Ω

Observe that not all worlds in K(X ) are proper encodings of configuration se-
quences separated by direction markers. This cannot be avoided and needs to be
taken care of in the formula ϕ. Before we can define it, we need several auxiliary
programs. These are defined next. In the following, for X ⊆ Dir ∪ Ω, we use
popX to denote

⋃
x∈X x.

• The program conf = pop∗
Ω ◦ popN pops the top configuration from the

stack.
• The program conf pushes a potential configuration onto the stack, i.e., a

string of the form a0(0)a1(1) · · · aN (N), ai ∈ Ω:

conf = checkDir ◦ push∗ ◦ check0

• Assume that the top of the stack consists of a suffix of a configuration
followed by a direction marker d ∈ Dir underneath, followed by a complete
configuration, i.e., the top of the stack has the following form, where the
top of the stack is to the left:

ak(k)ak+1(k + 1) · · · aN (N)da′0(0) · · · a
′
N (N)

with ai, a
′
i ∈ Ω. For a, b ∈ Ω, we give a program testa,b that is executable

only if ak = a and a′k = b, and that pops ak(k):

testa,b = (a/b) ◦ [loop (pop∗
Ω ◦ popDir ◦ pop∗

Ω ◦ copy ◦ shift∗)]? ◦ b
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• For µ ∈ Moves, the program checkµ is executable only if the top of the
stack has the form c′dc, where c and c′ are configurations, d ∈ Dir, and
c `µM c′. Execution of checkµ leaves the stack unchanged. We only treat
the case µ = (p, b,←) explicitly:

checkµ = loop

[ (
⋃

a∈Γ

testa,a

)∗

◦
⋃

q∈Q,a,a′∈Γ

(testp,a′ ◦ testa′,q ◦ testb,a) ◦

(
⋃

a∈Γ

testa,a

)∗

◦ conf

]
?

• For q ∈ Q and a ∈ Γ, the program scanq,a checks if the top configuration
on the stack is in current state q, scanning the symbol a:

scanq,a = loop(pop∗
Γ ◦ q ◦ a ◦ push∗)?

• The program final tests if the state of the top configuration is from Qacc:

final =
⋃

q∈Qacc
a∈Γ

scanq,a

Next, we define the main ingredient to the formula ϕ: the program traverse. As
discussed above, traverse travels one edge in an accepting configuration tree of
M on w, proceeding in a depth-first and left-to-right fashion.

traverse = final ◦ conf

∪
⋃

R(µ1,µ2)∈Dir∀

R(µ1, µ2) ◦ conf

∪
⋃

E(µ)∈Dir∃

E(µ) ◦ conf

∪
⋃

(µ1,µ2)∈δ(Q∀,Γ)

L(µ1, µ2) ◦R(µ1, µ2) ◦ conf ◦ checkµ2

∪
⋃

q∈Q∀,a∈Γ
δ(q,a)=(µ1,µ2)

scanq,a ◦ L(µ1, µ2) ◦ conf ◦ checkµ1

∪
⋃

q∈Q∃,a∈Γ
δ(q,a)=(µ1,µ2),µ∈{µ1,µ2}

scanq,a ◦ E(µ) ◦ conf ◦ checkµ

Finally, the formula ϕ is 〈input ◦ traverse∗〉¬〈popΩ〉true. It is tedious but
straightforward to verify that, indeed, w ∈ L(M) if and only if ε ∈ [[ϕ]]K(X ). a

By introducing an additional atomic program loopp (for loop program) with the
rule

ε
loopp
−−−−→X ε

and replacing programs loop(α)? with α ∩ loopp, one can modify the above
construction such that ϕ is a test-free IPDL formula. Hence, model checking
BPAs in test-free IPDL is also EXP-hard with respect to data complexity.



32 STEFAN GÖLLER, MARKUS LOHREY, AND CARSTEN LUTZ

6.3. Expression Complexity in IPDL. The proof of the 2EXP lower bound
is similar to the one given in the previous section. In particular, in the relevant
states of the BPA, the stack consists of a sequence of configurations separated
by direction markers. Also, we again ensure the existence of an accepting config-
uration tree by means of a depth-first and left-to-right traversal using a program
traverse.

The main differences to the previous proof are as follows. First, we aim at
proving 2EXP-hardness, and thus reduce the word problem of exponentially space
bounded alternating Turing machines. This makes it necessary to encode a con-
figuration c = a0a1 · · · ai−1qai+1 · · · a2N−1 in a different way, namely as the word

a0[0]a1[1] · · · ai−1[i− 1]q[i]ai+1[i+ 1] · · · a2N−1[2
N − 1],(9)

where [k] denotes the binary representation of k ≤ 2N − 1 in N bits, with the
least significant bit left-most. During the proof, we will refer to a subword of
the form a[i] as a cell. Second, we work with simpler BPAs that provide less
structure than in the previous proof. This is compensated by making full use
of the intersection operator, combining ideas from [28] and [45]. And third, we
move the description of the initial configuration from the BPA to the formula
because we aim at expression complexity instead of data complexity.

Theorem 6.2. There exists a basic process algebra X such that, given a test-
free IPDL formula ϕ, it is 2EXP-hard to decide whether ε ∈ [[ϕ]]K(X ).

Proof. LetM = (Q,Σ,Γ, q0, δ,2) be a fixed (2p(n)−1)-space bounded ATM
(p(n) a polynomial) with a 2EXP-hard word problem. Let w = w1w2 · · ·wn ∈ Σ∗

be an input of length n. We give a basic process algebra X = X (M) and a
logarithmic space computable test-free IPDL formula ϕ = ϕ(w,M) such that
w ∈ L(M) if and only if ε ∈ [[ϕ]]K(X ). Let N = p(n) and Ω = Q ] Γ. The stack
alphabet of the BPA X is ΓX = Ω ] {0, 1} ] Dir and the atomic programs are
A = ΓX ∪ ΓX ∪ {loopp}, where ΓX is a disjoint copy of ΓX . We define X such
that K(X ) is the complete ΓX -tree with backward edges (the elements of ΓX

travel forward and those of ΓX backwards), and where each world has a reflexive
transition for the program loopp. The rewrite rules of X are thus as follows:

ε
a

−−−−−−→X a for a ∈ ΓX

a
a

−−−−−−→X ε for a ∈ ΓX

ε
loopp
−−−−−−→X ε

We now give a number of auxiliary programs, to be used in ϕ.

• The following programs pop symbols from the stack:
– for X ⊆ ΓX , X =

⋃
x∈X x pops a single symbol from X;

– for i < N , popi = {0, 1}
i
pops i bits;

– cell = Ω ◦ popN pops a cell a[i];

– cell0 = Ω ◦ 0
N

pops a cell a[0];

– cell1 = Ω ◦ 1
N

pops a cell a[2N − 1].
• For X ⊆ ΓX , X =

⋃
x∈X x pushes a single symbol from X onto the stack.
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• The program inc is executable only if the top of the stack has the form
a[i]a′[i+1], and it pops a[i] during its execution. In order to define inc, we
use additional programs χj,β , for j ≤ N − 1 and β ∈ {0, 1}. The program
χj,β pops j bits from the stack, then pops the bit β, and then pops the rest
of the cell and the whole subsequent cell, ensuring that the j + 1-st bit of
the latter is also β:

χj,β = popj ◦ β ◦ {0, 1}
∗
◦ Ω ◦ popj ◦ β ◦ {0, 1}

∗

We define inc as follows:

inc =

[(
(
cell ◦ cell

)
∩ Ω ◦

N−1⋃

i=0

(
1
i
◦ 0 ◦ {0, 1}

∗
◦ cell ∩

{0, 1}
∗
◦ Ω ◦ 0

i
◦ 1 ◦ {0, 1}

∗
∩

N−1⋂

j=i+1

(χj,0 ∪ χj,1)

)
 ◦ Γ∗

X


 ∩ cell

Note that the final composition with Γ∗
X and the final intersection with cell

are needed to ensure that inc pops only one cell, but not two. The union
ranges over the possible positions for the leftmost 0-bit in the first cell.

• The program conf pops a configuration from the stack, ensuring that is of
the shape (9):

conf = (cell0 ◦ cell
∗
) ∩ (inc

∗
◦ cell1) ∩ (Γ ∪ {0, 1}

∗
◦Q ◦ Γ ∪ {0, 1}

∗
)

• For a, a′ ∈ Ω, we give a program testa,a′ that will be executed only when
the top of the stack consists of a suffix of a configuration followed by a
direction marker d ∈ Dir and a complete configuration, i.e., if it is of the
form

ak[k]ak+1[k + 1] · · · a2N−1[2
N − 1] d a′0[0]a

′
1[1] · · · a

′
2N−1[2

N − 1].

The program testa,a′ verifies that ak = a and a′k = a′, and pops ak[k]. To
formulate it, we use subprograms σj,β , which pops j bits from the stack,
then pops the bit β, and then pops the rest of the cell:

σj,β = popj ◦ β ◦ {0, 1}
∗
.

We now give testa,a′ :

testa,a′ =

((N−1⋂

i=0

⋃

β∈{0,1}

a ◦ σi,β ◦ cell
∗
◦Dir ◦ cell

∗
◦ a′ ◦ σi,β

)
◦ Γ∗

X

)
∩ cell

• The program test= is executed in the same situation as testa,a′ . It checks
whether the content of the top cell a[k] is identical to the same cell in the
subsequent configuration:

test= =
⋃

a∈Ω

testa,a
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• For µ ∈ Moves, the program checkµ is executable if the top of the stack is
of the form c′dc, where c and c′ are configurations, d ∈ Dir, and c `µ c′.
Execution of checkµ leaves the stack unchanged. We show only the case
where µ = (p, b,←):

checkµ =

[(
conf ◦Dir ◦ conf ∩

test∗= ◦
⋃

q∈Q,a,a′∈Γ

(testp,a′ ◦ testa′,q ◦ testb,a) ◦ test∗= ◦Dir ◦ conf

)
◦ Γ∗

X

]

∩ loopp

• For q ∈ Q and a ∈ Γ, the program scanq,a checks if the top configuration
is in current state q and scans symbol a. Its execution leaves the stack
unchanged:

scanq,a = cell
∗
◦ q ◦ popN ◦ a ◦ Γ∗

X ∩ loopp

• cells = ({0, 1}N ◦ Ω)∗ pushes finitely many cells a[i] on the stack.

We now define the program traverse:

traverse =
⋃

q∈Qacc
a∈Γ

scanq,a ◦ conf

∪
⋃

R(µ1,µ2)∈Dir∀

R(µ1, µ2) ◦ conf

∪
⋃

E(µ)∈Dir∃

E(µ) ◦ conf

∪
⋃

(µ1,µ2)∈δ(Q∀,Γ)

L(µ1, µ2) ◦R(µ1, µ2) ◦ cells ◦ checkµ2

∪
⋃

q∈Q∀,a∈Γ
δ(q,a)=(µ1,µ2)

scanq,a ◦ L(µ1, µ2) ◦ cells ◦ checkµ1

∪
⋃

q∈Q∃,a∈Γ
δ(q,a)=(µ1,µ2),µ∈{µ1,µ2}

scanq,a ◦ E(µ) ◦ cells ◦ checkµ

Finally, we need a program checkw which checks that the initial configuration is
on top of the stack, leaving the stack unchanged:

checkw =

((
q0 ◦ popN ◦ (w1 ◦ popN ) ◦ · · · ◦ (wn ◦ popN ) ◦ (2 ◦ popN )∗

∩ conf
)
◦ Γ∗

X

)
∩ loopp

Then, we set ϕ = 〈cells ◦ checkw ◦ traverse∗〉¬〈ΓX 〉true. It is tedious but not
difficult to verify that w ∈ L(M) if and only if ε ∈ [[ϕ]]K(X ). a
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§7. Conclusion. We have determined the computational complexity of satis-
fiability and infinite-state model checking in ICPDL and several of its variations.
An interesting open problem is the decidability and exact complexity of finite sat-
isfiability in I(C)PDL, which differs from unrestricted satisfiability due to IPDLs
lack of the finite model property. Also, it may be interesting to further extend
the expressive power of ICPDL by adding fixedpoint operators. Decidability and
complexity of the resulting logic are open.
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36 STEFAN GÖLLER, MARKUS LOHREY, AND CARSTEN LUTZ

[17] Giuseppe De Giacomo and Maurizio Lenzerini, Boosting the Correspondence be-

tween Description Logics and Propositional Dynamic logics, Proceedings of the 12th Na-

tional Conference on Artifical Intelligence (AAAI’94), 1994, pp. 205–212.
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