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Abstract

Conjunctive queries (CQ) are fundamental for ac-
cessing description logic (DL) knowledge bases.
We study CQ answering in (extensions of) the DL
EL, which is popular for large-scale ontologies
and underlies the designated OWL2-EL profile of
OWL2. Our main contribution is a novel approach
to CQ answering that enables the use of standard re-
lational database systems as the basis for query ex-
ecution. We evaluate our approach using the IBM
DB2 system, with encouraging results.

1 Introduction
One of the main applications of ontologies in computer sci-
ence is in data access, where an ontology formalizes concep-
tual information about data that is stored in one or multiple
data sources, and this information is used to derive answers to
queries over such sources. This general setup plays a central
role in, e.g., ontology-based information integration and peer-
to-peer data management. In these and similar applications,
Description Logics (DLs) are popular ontology languages and
conjunctive queries (CQs) are used as a fundamental querying
tool. Hence, efficient and scalable approaches to CQ answer-
ing over DL ontologies are of great interest.

Calvanese et al. have argued that, in the short run, true
scalability of conjunctive query answering over DL ontolo-
gies can only be achieved by making use of standard re-
lational database management systems (RDBMSs) [2007b].
Alas, this is not straightforward as RDBMSs are unaware
of TBoxes (the DL mechanism for storing conceptual infor-
mation) and adopt the closed-world semantics. In contrast,
ABoxes (the DL mechanism for storing data) and the asso-
ciated ontologies employ the open-world semantics. Existing
approaches to overcome these differences have serious limita-
tions. For example, the approach of [Calvanese et al., 2007b]
applies only to DLs with data complexity of CQ answering in
LOGSPACE whereas for many DLs, this problem is complete
for PTIME or co-NP. In particular, the above approach can-
not be directly used for DLs that admit qualified existential
restrictions, which play an important role in many ontologies.
This limitation is shared by the rule-based approach presented
in [Wu et al., 2008].

In this paper, we present a novel approach to using
RDBMSs for CQ answering over DL ontologies that, in par-
ticular, accommodates qualified existential restrictions. We
apply it to the EL family of DLs [Baader et al., 2008], whose
members are widely used as ontology languages for large-
scale bio-medical ontologies such as SNOMED CT and (early
versions of) NCI. Our main result shows that CQ answering
in ELHdr⊥ , the extension of basic EL with the bottom con-
cept, role inclusions, and domain and range restrictions, can
be implemented using an RDBMS. This result is of particular
relevance as ELHdr⊥ can be viewed as the core of the desig-
nated OWL-EL profile of the upcoming OWL Version 2 on-
tology language. We evaluate our approach using the IBM
DB2 RDBMS and show that it scales to TBoxes with more
than 50.000 axioms where answer times typically range from
a fraction of a second to a few seconds.

The central idea of our approach is to incorporate the con-
sequences of the TBox T into the relational instance corre-
sponding to the given ABox A. To capture this formally, we
introduce the notion of combined first-order (FO) rewritabil-
ity. A DL enjoys combined FO rewritability if it is possible to
effectively rewrite (i)A and T into an FO structure (indepen-
dently of q) and (ii) q and (possibly) T into an FO query q∗
(independently of A) such that query answers are preserved,
i.e, the answer to q∗ over the FO structure is the same as the
answer to q over A and T . The connection to RDBMSs then
relies on the well-known equivalence between FO structures
and relational databases, and FO queries and SQL queries.
The notion of combined FO rewritability generalizes the no-
tion of FO reducibility, where the TBox is incorporated into
the query q rather than into the ABox A while the ABox it-
self is used as a relational instance without any modification
[Calvanese et al., 2007b]. Notable properties of our approach
include:

1. It applies to DLs for which data complexity of CQ an-
swering is PTIME-complete, such as ELHdr⊥ .

2. For ELHdr⊥ , both rewriting steps can be carried out in
polynomial time and produce only a polynomial blowup;
moreover, the query rewriting only depends on the input
CQ and the role inclusions in T (usually only few), but
not on T ’s concept inclusions (usually very many).

In contrast and to the best of our knowledge, all existing
approaches to (non-combined) FO reducibility generate a



rewritten query of size mn, with m the number of symbols
in the query and the TBox and n the size of the query.

In addition, we analyze the limitations of our approach and
show that DLs with data complexity exceeding PTIME can-
not enjoy polynomial combined FO rewritability, where the
expansion of the ABox due to rewriting (but not necessarily
of query rewriting) is bounded by a polynomial. We believe
that this is a significant result as combined FO rewritability
involving an exponential blowup of the data does not seem to
be practical. In particular, the result implies that expressive
DLs such as ALC cannot enjoy polynomial FO rewritabil-
ity. The same holds even for EL enriched with negated ABox
assertions and negated query atoms. For the latter case, we
sketch an approach to query answering that involves only a
polynomial blowup of the ABox, but is incomplete (in a way
precisely characterized by an alternative semantics).

The remainder of this paper is organized as follows. In
Section 2, we introduce some preliminaries. Section 3 de-
scribes ABox rewriting, which is based on the notion of a
canonical model for an ELHdr⊥ knowledge base. Section 4 is
concerned with query rewriting and establishes the main (the-
oretical) result of this paper. In Section 5, we sketch the actual
implementation in an RDBMS and give experimental results.
Section 6 is concerned with limitations of our approach and
with treating negation. We conclude in Section 7. Proofs are
deferred to the appendix.

2 Preliminaries
In ELHdr⊥ , concepts are built according to the syntax rule

C ::= A | > | ⊥ | C uD | ∃r.C

where, here and in the remaining paper, A ranges over con-
cept names taken from a countably infinite set NC, r ranges
over role names taken from a countably infinite set NR, and
C,D range over concepts. A TBox is a finite set of concept
inclusions C v D, role inclusions r v s, domain restrictions
dom(r) v C, and range restrictions ran(r) v C. An ABox
is a finite set of concept assertions A(a) and role assertions
r(a, b), where a, b range over a countably infinite set NI of
individual names. A knowledge base is a pair (T ,A) with T
a TBox and A an ABox.

As usual, an interpretation is a pair (∆I , ·I) with ∆I
a non-empty domain and ·I an interpretation function that
maps each concept name A to a subset AI ⊆ ∆I , each role
name r to a binary relation rI ⊆ ∆I × ∆I , and each in-
dividual name a to an element aI ∈ ∆I The interpretation
function is extended to composite concepts by setting

>I = ∆I

⊥I = ∅
(C uD)I = CI ∩DI

(∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}.

An interpretation I satisfies a concept inclusion C v D if
CI ⊆ DI , a role inclusion r v s if rI ⊆ sI , a domain
restriction dom(r) v C if (d, e) ∈ rI implies d ∈ CI , a
range restriction ran(r) v C if (d, e) ∈ rI implies e ∈ CI ,
a concept assertion A(a) if aI ∈ AI , and a role assertion

r(a, b) if (aI , bI) ∈ rI . I is a model of a TBox T (ABox A)
if it satisfies all inclusions and restrictions in T (assertions in
A). It is a model of a knowledge base K = (T ,A) if it is
a model of T and A. A knowledge base that has a model is
called consistent. For a concept inclusion, role inclusions, or
assertion α, we write K |= α if α is satisfied in all models
of K. If empty, A is simply omitted.

Let NV be a countably infinite set of variables. Together,
the sets NV (of variables) and NI (of individual names) form
the set NT of terms. A first-order (FO) query q is a first-order
formula built from NT and the unary and binary predicates
from NC and NR. We write q = ϕ(~v) to indicate that q is the
FO formula ϕ whose free variables are among the variables
~v = v1, . . . , vk. Variables in ~v are the answer variables of q
and q is k-ary if there are k answer variables. A conjunctive
query is an FO query q of the form ∃~u.ψ(~u,~v), where ψ is
a conjunction of concept atoms A(t) and role atoms r(t, t′)
with t, t′ ranging over NT. The variables in ~u are called quan-
tified variables of q. We use var(q) to denote the set of all
variables in ~u and ~v, qvar(q) for the set of quantified vari-
ables, avar(q) for the set of answer variables, and term(q) for
the terms in q. Slightly abusing notation, we write α ∈ q if
the concept or role atom α occurs in q.

Let I be an interpretation and π : NT → ∆I a partial func-
tion such that π(a) = aI for all a ∈ dom(π). We inductively
define the relation I |=π ϕ for quantifier-free first-order for-
mulas ϕ(~v) with ~v ⊆ dom(π):
• I |=π A(t) iff π(t) ∈ AI ;
• I |=π r(t, t′) iff (π(t), π(t′)) ∈ rI ;
• I |=π ¬ϕ iff I 6|=π ϕ;
• I |=π ϕ1 ∧ ϕ2 iff I |=π ϕi for all i = 1, 2;
• I |=π ϕ1 ∨ ϕ2 iff I |=π ϕi for some i = 1, 2.

Now let q = ∃~u.ϕ(~u,~v) be a first-order query with ϕ is
quantifier-free. A match for I and q is a mapping π :
term(q)→ ∆I such that π(a) = aI for all a ∈ term(q)∩NI

and I |=π ϕ. If ~v = v1, . . . , vk with π(vi) = aIi for
1 ≤ i ≤ k, then π is called an (a1, . . . , ak)-match for I
and q. If such a match exists, we write I |= q[a1, . . . , ak]. A
certain answer for a k-ary conjunctive query q and a knowl-
edge base K is a tuple (a1, . . . , ak) of individual names such
that a1, . . . , ak occur in K and I |= q[a1, . . . , ak] for each
model I of K. We use cert(q,K) to denote the set of all cer-
tain answers for q and K. This defines the querying problem
studied in this paper: to compute cert(q,K) given an ELHdr⊥
knowledge base K and a CQ q.

Note that CQ answering generalizes instance checking, the
problem of deciding whether K |= C(a), for C a ELHdr⊥ -
concept: any suchC can be easily unfolded into a conjunctive
query qC such that a ∈ cert(qC ,K) iff K |= C(a). For ex-
ample, the instance query A u ∃s.B(a) can be unfolded into
∃u.(A(a) ∧ s(a, u) ∧B(u)).

In the remainder of this paper we use the unique name as-
sumption: aI 6= bI for all interpretations I and all a, b ∈ NI

with a 6= b. It is not hard to see that this has no impact on
certain answers.

We also assume, w.l.o.g., that (i) queries contain only
individual names that occur in the KB against which they



are asked, (ii) TBoxes do not contain domain restrictions,
(iii) TBoxes contain exactly one range restriction per role
name, (iv) if K |= r v s and ran(r) v C, ran(s) v D
are in T , then C vT D, and (v) there are no r, s ∈ NR

with r 6= s, K |= r v s, and K |= s v r. These
five assumptions can be made w.l.o.g. This is true for as-
sumption (i) because one can extend the KB with tautologi-
cal assertions to introduce additional individual names before
querying; for assumption (ii) because dom(r) v C is equiv-
alent to ∃r.> v C; for assumption (iii) because two range
restrictions ran(r) v C and ran(r) v C ′ are equivalent to
ran(r) v C u C ′ and we can always introduce a range re-
striction ran(r) v > for each role name r; for assumption (iv)
because {r v s, ran(r) v C, ran(s) v D} with C 6vT D is
equivalent to {r v s, ran(r) v C uD, ran(s) v D}; and for
assumption (v) because if K |= r v s and K |= s v r with
s 6= r, we can simply substitute r with s in K and q.

3 ABox Rewriting / Canonical Models
The rewriting of the ABox consists of an extension of the
ABox to a canonical model of the knowledge base. For the
remainder of this section, we fix an ELHdr⊥ -KB K = (T ,A).
We use sub(T ) to denote the set of all subconcepts of con-
cepts that occur in T , rol(T ) for the set of role names that
occur in T , and Ind(A) for the set of individual names that
occur in A. We also use ranT (r) to denote the (unique) con-
cept C with ran(r) v C ∈ T , and set

ran(T ) := {ranT (r) | r ∈ rol(T )}
NIaux := {xC,D | C ∈ ran(T ) and D ∈ sub(T )},

assuming NI∩NIaux = ∅. The canonical model IK ofK is de-
fined in Figure 1. It is standard to show the following (similar
to proofs in [Baader et al., 2005b; Lutz and Wolter, 2007]):
Proposition 1. If K is consistent, then IK is a model of K.
Note that the cardinality of ∆IK is only quadratic in the size
of K, and linear if T does not contain range restrictions. The
model IK can be computed in polynomial time since sub-
sumption and instance checking in ELHdr⊥ can be decided in
poly-time [Baader et al., 2008]. In fact, there is an easy rule-
based procedure for computing the canonical model and the
rules can be implemented as standard database operations;
see the workshop publication [Lutz et al., 2008] for details.
Consistency of K can also be checked in polynomial time
[Baader et al., 2008]. IK can be used for instance check-
ing: it can be shown that K |= C(a) iff IK |= C(a), for
K consistent, C an ELHdr⊥ -concept, and a ∈ Ind(A). Un-
fortunately, an analogous statement for conjunctive queries,
namely (a1, . . . , ak) ∈ cert(q,K) iff IK |= q[a1, . . . , qk],
does not hold. This is due to two reasons, the first one being
that IK may contain unnecessary elements:
Example 2. Take K1 = (T1,A1) with T1 = {A v A} and
A1 = {B(a)}, and q1 = ∃u.(B(v) ∧ A(u)) . Then x>,A ∈
AIK1 and so IK1 |= q1[a], but clearly a 6∈ cert(q1,K1).
This deficiency of IK is easily repaired by restricting it to el-
ements reachable from some aIK with a ∈ Ind(A). Formally,
we define Ind(A)I = {aI | a ∈ Ind(A)} for each interpre-
tation I. A path in I is a finite sequence d0r1d1 · · · rndn,

n ≥ 0, where d0 ∈ Ind(A)I and (di, di+1) ∈ rIi+1 for all
i < n. We use pathsA(I) to denote the set of all paths in I
and for all p ∈ pathsA(I), tail(p) to denote the last element
dn in p.

Now IrK denotes the restriction of IK to those d ∈ ∆IK for
which there exists a p ∈ pathsA(IK) such that d = tail(p).
Then IrK provides the correct certain answers to the query q1
from Example 2. A much more severe deficiency of IK (and
IrK) is the following:
Example 3. Take K2 = (T2,A2) with T2 = {A v ∃r.B u
∃s.B} and A2 = {A(a)}, and q2 = ∃u.(r(v, u) ∧ s(v, u)).
Then (a, x>,B) ∈ rIK2 and (a, x>,B) ∈ sIK2 and therefore
IK2 |= q2[a], but clearly a /∈ cert(q2,K2).
In principle, this problem can be overcome by replacing IrK
with its unraveling into a less constrained, tree-like model. In
the following, we introduce unraveling as a general operation
on models. Let R be the set of role inclusions in K. The
(A,R)-unraveling J of I is defined as follows:

∆J := pathsA(I) and aJ := aI for all a ∈ Ind(A)
AJ := {p | tail(p) ∈ AI}
rJ := {(d, e) | d, e ∈ Ind(A)I ∧ (d, e) ∈ rI} ∪

{(p, p · se) | p, p · se ∈ ∆J andR |= s v r}
where “·” denotes concatenation. Denote by UK the (A,R)-
unraveling of IrK. Notice that the construction of UK from
IrK does not depend on the concept inclusions in T , but only
on R. The following result is proved similarly to the analo-
gous result for the DL ELIf in [Krisnadhi and Lutz, 2007].
Proposition 4. If K is consistent, then for all k-ary con-
junctive queries q and all a1, . . . , ak ∈ Ind(A), we have
(a1, . . . , ak) ∈ cert(q,K) iff UK |= q[a1, . . . , ak].
By Proposition 4, UK gives the correct answers to conjunctive
queries, but in contrast to IrK, it is typically infinite. Thus, we
do not use it as a target for ABox rewriting and work with IrK.
To overcome the problem indicated in Example 3 and similar
ones (see [Lutz et al., 2008]), we use query rewriting.

4 Query Rewriting
Our aim is to rewrite the original CQ q into an FO query q∗R
such that UK |= q[a1, . . . , ak] iff IrK |= q∗R[a1, . . . , ak] for
all a1, . . . , ak ∈ Ind(A). By Proposition 4, we obtain the
desired answers cert(q,K) by using IrK (the rewriting of A)
as a relational database instance and replacing q with q∗R. We
now formulate the main result of this paper.
Theorem 5. For every finite set of role inclusions R and k-
ary CQ q, one can construct in polynomial time a k-ary FO
query q∗R such that for all ELHdr⊥ -KBs K = (T ,A) with R
the set of role inclusions in T and all a1, . . . , ak ∈ Ind(A),
we have IrK |= q∗R[a1, . . . , ak] iff UK |= q[a1, . . . , ak].
In the remainder of this section, we show how to construct
q∗R. The query q∗R contains one additional unary predicate
Aux(x); we assume that Aux is always interpreted as ∆I

r
K \

Ind(A)I
r
K in IrK. Fix a finite set R of role inclusions and a

k-ary conjunctive query q. To construct q∗R, we use several
auxiliary definitions. Let ∼q denote the smallest relation on
term(q) that includes the identity relation, is transitive, and
satisfies the following closure condition:



∆IK := Ind(A) ] NIaux and aIK := a for all a ∈ Ind(A)
AIK := {a ∈ Ind(A) | K |= A(a)} ∪ {xC,D ∈ NIaux | K |= C uD v A}
rIK := {(a, b) ∈ Ind(A)× Ind(A) | s(a, b) ∈ A and K |= s v r} ∪

{(a, xC,D) ∈ Ind(A)× NIaux | K |= ∃s.D(a), ranT (s) = C, and K |= s v r} ∪
{(xC,D, xC′,D′) ∈ NIaux × NIaux | K |= C uD v ∃r.D′, ranT (s) = C ′, and K |= s v r}

Figure 1: The canonical model IK.

(∗) if r1(s, t), r2(s′, t′) ∈ q with t ∼q t′, then s ∼q s′.

The relation ∼q is central to our rewriting procedure. To see
this, let K = (T ,A) be such that the role inclusions of T
coincide with R. Intuitively, UK is produced from IrK by
keeping the Ind(A)-part intact and relaxing the Aux-part into
a collection of trees. To understand (∗), first assume t = t′.
Then (∗) describes a non-tree situation in the query since t =
t′ has two predecessors s and s′. Therefore, any match of
the query in IrK that maps t to the Aux-part should map s
and s′ to the same element; otherwise such a match cannot be
reproduced in UK. The case where t ∼q t′ instead of t = t′

can be understood inductively.

It is not hard to verify that ∼q is an equivalence relation
and can be computed in time polynomial in the size of q. For
t ∈ term(q), we use [t] to denote the equivalence class of t
w.r.t. ∼q and define, for any equivalence class ζ of ∼q , the
sets:

pre(ζ) := {t | r(t, t′) ∈ q for some r ∈ NR and t′ ∈ ζ}, and
in(ζ) := {r | r(t, t′) ∈ q for some t ∈ term(q) and t′ ∈ ζ}.

For R ⊆ NR and r ∈ NR, r is called an implicant of R if
R |= r v s for all s ∈ R. It is called a prime implicant
if, additionally, R 6|= r v r′ for all implicants r′ of R with
r 6= r′. By assumption (v) in Section 2, there is a prime
implicant for any set R ⊆ NR for which there is an implicant.
We define:

• Fork= is the set of pairs (pre(ζ), ζ) with pre(ζ) of cardi-
nality at least two;

• Fork 6= is the set of variables v ∈ qvar(q) such that there
is no implicant of in([v]);

• ForkH is the set of of pairs (I, ζ) such that pre(ζ) 6= ∅,
there is a prime implicant of in(ζ) that is not contained
in in(ζ), and I is the set of all prime implicants of in(ζ);

• Cyc is the set of variables v ∈ qvar(q) such that there are
r0(t0, t′0), . . . , rm(tm, t′m), . . . , rn(tn, t′n) ∈ q, n,m ≥
0, with v ∼q ti for some i ≤ n, t′i ∼q ti+1 for all i < n,
and t′n ∼q tm.

It is not hard to see that Fork=, Fork 6=, ForkH, and Cyc can
be computed in time polynomial in the size of q. For each
equivalence class ζ of ∼q , choose a representative tζ ∈ ζ and
if pre(ζ) 6= ∅, choose a tpreζ ∈ pre(ζ). For q = ∃~u.ψ, the
rewritten query q∗R is now defined as ∃~u.(ψ ∧ϕ1 ∧ϕ2 ∧ϕ3),

where ϕ1, ϕ2, and ϕ3 are as follows:

ϕ1 :=
∧

v∈avar(q)∪Fork6=∪Cyc

¬Aux(v)

ϕ2 :=
∧

({t1,...,tk},ζ)∈Fork=

( Aux(tζ)→
∧

1≤i<k

ti = ti+1 )

ϕ3 :=
∧

(I,ζ)∈ForkH

( Aux(tζ)→
∨
r∈I

r(tpreζ , tζ) )

In Appendix B, we show that q∗R is as required. The following
examples illustrate the definition of q∗R. Since ϕ3 is simply
true whenR = ∅, we omit it in this case.
(1) Let R = ∅ and consider q = ∃u.ψ with ψ = r(v, u) ∧
r(v′, u). This query illustrates the role of Fork=. ∼q con-
sists of the equivalence classes {v, v′} and {u}. We have
pre({u}) = {v, v′} and in({u}) = {r}. Hence Fork= =
{({v, v′}, {u})} and Fork 6= = ForkH = Cyc = ∅. We obtain

q∗R = ∃u.(ψ ∧ ¬Aux(v) ∧ ¬Aux(v′) ∧ (Aux(u)→ v = v′)).

(2) LetR = ∅ and consider q = ∃u.(r(v, u) ∧ s(u, u)). This
query illustrates the role of Cyc. We have u ∈ Cyc and so

q∗R = ∃u.(r(v, u) ∧ s(u, u) ∧ ¬Aux(v) ∧ ¬Aux(u)).

(3) Let R = ∅ and consider q = ∃u.(r(v, u) ∧ s(v, u)) from
Example 3. This query illustrates the role of Fork 6=. We have
in({u}) = {r, s}. There is no implicant of in({u}) in in({u})
and thus u ∈ Fork6=. We obtain

q∗R = ∃u.(r(v, u) ∧ s(v, u) ∧ ¬Aux(v) ∧ ¬Aux(u)).

For R = {s v r} and the same query q, s is an implicant of
in({u}) in in({u}). Thus u 6∈ Fork 6=. Observe that ForkH =
∅ as the prime implicant s of in({u}) is contained in in({u}).
We obtain

q∗R = ∃u.(r(v, u) ∧ s(v, u) ∧ ¬Aux(v)).

Finally, assume R = {r0 v r, r0 v s}. Again u 6∈ Fork 6=,
but now the prime implicant r0 of in({u}) is not contained in
in({u}). Thus, ForkH = {({r0}, {u})} and we obtain

q∗R = ∃u.(r(v, u)∧s(v, u)∧¬Aux(v)∧(Aux(u)→ r0(v, u))).

(4) For queries qC = ∃~v.ψ that result from the unfolding of
an EL-concept C or have no quantified variables almost no
query rewriting is needed: in both cases we have

q∗R = ∃~v.(ψ ∧
∧
v∈avar(q) ¬Aux(v)).

(5) LetR = ∅ and let q = ∃v0, . . . , v7.ψ be the query shown
in Figure 2, where all variables are quantified. Then ∼q



v0

r
��

v1

r
��

v2

r
��

v3
r

  B
BB

BB
BB

v4
r

~~||
||

||
|

r

  B
BB

BB
BB

v5
r

~~||
||

||
|

v6 v7

Figure 2: Query for Example (5).

consists of the equivalence classes {v0, v1, v2}, {v3, v4, v5},
{v6}, and {v7}. Assume that the chosen representative for
{v3, v4, v5} is v3. Then, we have

q∗R = ∃v0, . . . , v7.( ψ ∧
Aux(v6)→ (v3 = v4) ∧
Aux(v7)→ (v4 = v5) ∧
Aux(v3)→ ((v0 = v1) ∧ (v1 = v2))

(6) Let R = ∅ and qn = ∃v0, . . . , vn−1.q
′
n with q′n =∧

i,j<n r(vi, vj) an n-clique. Then ∼q consists of a single
equivalence class {v0, . . . , vn−1}. Assume that the represen-
tative is v0. Then (qcn)∗R is

∃v0, . . . , vn−1.(q′n ∧ ¬Aux(v0) ∧ · · · ∧ ¬Aux(vn−1) ∧
Aux(v0)→ ((v0 = v1) ∧ · · · ∧ (vn−2 = vn−1)))

which can be simplified to the equivalent

∃v0, . . . , vn−1.(q′n ∧ ¬Aux(v0) ∧ · · · ∧ ¬Aux(vn−1)).

As illustrated by the last example, we can drop a conjunct
from vp2 whenever the variable occurring in its precondition
occurs in a conjunct of vp1.

In the following, we comment on certain relevant proper-
ties of q∗R and on consequences of our approach regarding
the computational complexity of query answering in ELHdr⊥ .
Firstly, the size of q∗R is bounded by O(nm), where n is the
size of q and m is min{1, |R|}. To see this, note that the
number of conjuncts in of ϕ1 is bounded by the number of
variables in q. For ϕ2, let Fork= = {(T1, ζ1), . . . , (T`, ζ`)}.
Then |T1|+ · · ·+ |T`| is bounded by the number of role atoms
in q, and thus the size of ϕ2 is O(n). Finally, the number of
conjuncts in ϕ3 is bounded by the number of quantified vari-
ables in q and each conjunct has at most m disjuncts. Note
that q∗R is thus of size O(n) whenR = ∅.

Secondly, since ψ is a conjunct of the body of q∗R it is
readily checked that q∗R is domain independent, and thus can
be expressed as an SQL query. Moreover it is of the form
∃~u.ψ with ψ quantifier-free. Thus, we obtain that the com-
bined complexity of deciding whether K |= q[a1, . . . , ak] is
in NP: construct (in poly-time) IrK and q∗R = ∃~u.ψ, then
check whether IrK |= ∃~u.ψ[a1, . . . , ak] using the obvious NP
algorithm for model checking this class of formulas. Since
an NP lower bound is trivial, we obtain NP-completeness.
See [Krötzsch et al., 2007; Rosati, 2007] for similar results
regarding other variants of EL.

5 Implementation and Experiments
To validate the value of the proposed approach, we have con-
ducted a series of experiments based on the NCI thesaurus

(version 08.08d), which is a well-known ontology from the
bio-medical domain [Sioutos et al., 2006]. We have extracted
an EL-TBox that contains approximately 65 thousand (65K)
primitive concept names, 70 primitive roles, and over 70K
concept inclusions and concept definitions. The auxiliary part
of canonical models, which is independent of the ABox, con-
sists of 702K concept assertions and 171K role assertions (tu-
ples). For the experiments reported below, we used the IBM
DB2 DBMS (version 9.5.0 running on SUN Fire-280R server
with two UltraSPARC III 1.2GHz CPUs, 4GB memory, and
1TB storage under Solaris 5.10).

For rewriting ABoxes into canonical models, we have used
a rule-based approach implemented via iterated querying; see
[Lutz et al., 2008] for more details. As relational systems are
not optimized to handle tens of thousands of relatively small
relations, one for each concept and role name in the ontology,
we have used only two relations to represent IrK:

acbox(conceptid,indid)and
arbox(roleid,domain-indid,range-indid),

where conceptid and roleid are numerical iden-
tifiers for concept names and roles names, indid,
domain-indid, and range-indid are numerical iden-
tifiers for individuals from NI ∪ NIaux, acbox rep-
resents concept memberships, and arbox role mem-
berships. Indexes were generated on the attributes
conceptid,indid and on roleid,domain-indid
and roleid,range-indid, using B+trees. We distin-
guish individuals from NI and NIaux by positive and nega-
tive identifiers, and thus need not store Aux as a relation.
As an example for this representation, take the query q =
Nerve(x)∧¬Aux(x), which translates into the SQL statement

select indid from acbox
where conceptid=141723 and indid > 0

Data sets (ABox instances) for our experiments were gener-
ated randomly. When generating concept assertions, we have
focused on most specific concept names, i.e., concept names
without any subsumees in the TBox. The generation of role
assertions was guided by the domain and range restrictions in
NCI. The numbers of concept and role assertions in the initial
and rewritten ABoxes used in our experiments are reported in
Figure 3 in thousands/millions. Due to implementation par-
ticularities of existing DB systems, ABox rewriting took up
to several hours. We point out that (i) this high time consump-
tion is not inherent to our approach and (ii) ABox rewriting
can be implemented as an offline task in typical applications
such as online analytical processing (OLAP) and data ware-
housing.

Figure 3 summarizes the running times (in seconds) for
each of the test queries for varying sizes of data; for each
query we list the number of concept and role atoms in paren-
theses; the structure of the queries ranges from simple chains
(Q1) and star queries (Q2,Q3,Q4) to queries with cycles in
their bodies (Q5). We show only a few representative sam-
ples here.

The experimental results can be interpreted as follows.
Firstly, the rewriting of moderately-sized ABoxes into the

1This time is solely due to a large size of the result (60M tuples).



Number of assertions in ABox of K
Concept 100K 100K 100K 200K 200K 200K 400K 800K 1.6M
Role 25K 50K 75K 40K 65K 90K 360K 1.5M 5.8M

Number of assertions in Ir
K

Concept 440K 440K 441K 683K 683K 684K 1.3M 2.6M 5.1M
Role 197K 237K 273K 323K 371K 414K 986K 2.7M 8.2M

Query Execution Time in seconds
Q1 (2c1r) 0.19 0.19 0.20 0.23 0.25 0.24 0.27 0.46 0.59
Q2 (3c2r) 0.23 0.22 0.23 0.52 0.25 0.56 0.33 0.42 0.69
Q3 (3c2r) 0.25 0.27 0.26 0.31 0.31 0.31 0.42 0.86 1.13
Q4 (4c3r) 0.24 0.23 0.23 0.25 0.26 0.25 0.31 0.42 1.44
Q5 (5c5r) 0.36 0.36 0.30 0.60 0.34 0.45 2.24 7.93 1281

Figure 3: Summary of Experimental Results.

canonical model IrK is well within the storage and query ca-
pabilities of existing relational technology. Secondly, query
performance scales well even when the naive physical de-
sign described above is used. Thirdly, query rewriting does
not increase the query processing times; the performance of
rewritten queries is almost identical to the performance of the
original queries over the completed ABox.

6 Limitations / Negation
Recall from Section 1 that a DL enjoys polynomial combined
FO rewritability if it has combined FO rewritability such that
the blowup of ABox rewriting (but not necessarily of query
rewriting) is at most polynomial. Since ABoxes in realistic
applications are large, combined FO rewritability that is not
polynomial in this sense does not seem to be of much use.
The following result gives a fundamental limitation of poly-
nomial combined FO rewritability. Note that ground CQ an-
swering, where a CQ may contain only individual names but
not variables, is the decisional variant of CQ answering.
Theorem 6. If the data complexity of ground CQ answering
in a DL L is not in PTIME, then L does not enjoy polynomial
combined FO rewritability.
Proof. We show the contrapositive. Assume that L en-
joys polynomial combined FO rewritability, i.e., there are
effectively computable mappings δ that takes each L-TBox
K = (T ,A) to a first-order structure δ(K) and γ that takes
each pair (q, T ), with q a k-ary conjunctive query and T an
L-TBox, to a first-order formula γ(q, T ) with k free variables
such that δ can be computed in polynomial time, the size of
δ(K) is polynomial in the size of K for all K, and the follow-
ing condition holds: for all combined L-KBsK = (T ,A), all
k-ary conjunctive queries q, and all tuples (a1, . . . , ak) ∈ NI,
K |= q[a1, . . . , ak] iff δ(K) |= γ(q, T )[a1, . . . , ak].

Then the data complexity of ground CQ answering in L is
in PTIME: to check whether K |= q with q ground, we can
compute δ(K) in polynomial time and γ(q, T ) in constant
time (as the size of q and T is constant), and then use FO
model checking to decide whether δ(K) |= γ(q, T ). The
latter can be done in LOGSPACE. o

For expressive DLs such as ALC and SHIQ, the data com-
plexity of ground CQ answering is co-NP-hard, thus Theo-
rem 6 implies that these DLs do not enjoy polynomial com-
bined FO rewritability unless PTIME = co-NP.

In many applications, it is natural to admit also negated
concept assertions in the ABox and to extend conjunctive
queries with negated concept atoms in order to query the
resulting ABoxes, see e.g. [Patel et al., 2007]. Let us call
ABoxes, queries, and KBs of this form literal. The result
stated in Theorem 6 also applies to literal KBs and literal
queries. Since the data complexity of literal CQ answering
over literal EL-KBs (where EL is ELHdr⊥ without ⊥, role hi-
erarchies, and domain and range restrictions) is co-NP-hard
[Schaerf, 1993], it follows that even this mild extension of EL
does not enjoy polynomial combined FO rewritability.

However, there is still a (pragmatic, yet formal) way to
add negation to our approach. In the following, we sketch
an incomplete approach to literal CQ answering over literal
ELHdr⊥ -KBs. Its incompleteness can be precisely character-
ized in terms of an epistemic semantics for negated concept
atoms in literal CQs, inspired by [Calvanese et al., 2007a].

As a preliminary, we assume standard names, i.e., inter-
pretation domains ∆I have to be a subset of the (countably
infinite) set NI of individual names and aI = a for all I and
all a ∈ NI. For a literal ELHdr⊥ -KB K, an interpretation I,
and a literal CQ q = ∃~u.ψ(~u,~v) with ~v = v1, . . . , vk, we set
I |=e q[a1, . . . , ak] iff there exists a variable assignment π
with π(vi) = ai for 1 ≤ i ≤ k and

• I |=π α for all positive atoms α in ψ,

• K |= ¬A(a) for all ¬A(a) in ψ with a ∈ NI, and

• K |= ¬A(π(v)) for all ¬A(v) in ψ with v ∈ NV.

Now set K |=e q[a1, . . . , ak] iff I |=e q[a1, . . . , ak] for
all models I of K with standard names. Thus, answers to
negated atoms do not depend on a concrete interpretation I,
but only on deducibility. Epistemic semantics is sound: every
answer is also an answer under the standard semantics (but
not vice versa); it is also conservative: it yields the same an-
swers as standard semantics when either the KB or the query
does not contain negation. An example for which the epis-
temic semantics is different from the standard semantics is
given by A = {A′(a),¬A(a)}, T = {A′ v ∃r.>,∃r.B v
A}, and q = ∃u.r(a, u) ∧ ¬B(u). Then K |= q but K 6|=e q.

We give a simple (and poly-time) reduction of epistemic
literal CQ answering over literal ELHdr⊥ -KBs to standard CQ
answering over ELHdr⊥ -KBs. Via the rewritings presented in
the main part of this paper, the reduction enables the use of
RDBMSs also for the case of ELHdr⊥ with negation (under the
epistemic semantics).

Given a consistent literal ELHdr⊥ -KB K = (T ,A) and a
literal query q, replace every literal ¬A in q with a fresh
concept name A. Additionally, add > v A to T whenever
T |= A v ⊥, and A(a) to A for all a ∈ Ind(A) with
K |= ¬A(a), and then remove all negated assertions from A.
Call the result K′ = (T ′,A′) and q′.

Theorem 7. Let K be a consistent literal ELHdr⊥ -KB.
Then K′ can be computed in polynomial time and K |=e

q[a1, . . . , ak] iff K′ |= q′[a1, . . . , ak] for all literal CQs q and
all a1, . . . , ak ∈ Ind(A).



7 Conclusion
We have proposed a novel approach to CQ answering in
DLs using RDBMSs. Unlike previous approaches, it can be
used also for DLs for which the data complexity is between
LOGSPACE and PTIME. In particular, this includes DLs that
fully admit existential restrictions (both on the left- and right-
hand side of concept inclusions; see [Calvanese et al., 2006])
and paves the way to using RDBMSs for CQ answering in the
EL family of DLs. Our experiments exhibit a promising per-
formance even without a sophisticated physical design. One
drawback of our approach is the blowup of the data, which
is polynomial but still considerable on large data sets. As fu-
ture work, it might be interesting to reduce this blowup by
incorporating the TBox partly into the data and partly into
the query. We will also develop effective approaches to up-
date the canonical model/auxiliary data when assertions are
added to or deleted from the ABox.
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A Proofs for Section 3
We start with a technical lemma stating two fundamental
properties of canonical models.

Lemma 8. Let K = (T ,A) be a KB. For all concepts C,
a ∈ Ind(A), and xD,E ∈ NIaux, we have

1. a ∈ CIK iff K |= C(a);

2. xD,E ∈ CIK iff K |= D u E v C.

Proof. We prove Points 1 and 2 simultaneously by induction
on the structure of C. The induction start is trivial by defi-
nition of IK. In the induction step, the case C = F u F ′ is
easy using the semantics and induction hyopthesis. Hence we
concentrate on the case C = ∃r.F .

“⇒”. (1) If a ∈ CIK , then there is a d ∈ ∆IK with (a, d) ∈
rIK and d ∈ F IK . First assume that d = b ∈ Ind(A). By
IH, K |= F (b). Since (a, b) ∈ rIK , we have s(a, b) ∈ A for
some s with K |= s v r. It follows that K |= ∃r.F (a). Now
assume that d = xC′,D′ ∈ NIaux. By IH, K |= C ′ uD′ v F .
Since (a, xC′,D′) ∈ rIK , there is a role name s such thatK |=
∃s.D, ranT (s) = C, and K |= s v r. Thus, K |= ∃r.F (a).

(2) If xD,E ∈ CIK , then there is an xC′,D′ ∈ ∆IK with
(xD,E , xC′,D′) ∈ rIK and xC′,D′ ∈ F IK . By IH, K |=
C ′ u D′ v F . Since (xD,E , xC′,D′) ∈ rIK , there is a role
name s such that K |= D u E v ∃r.D′, ranT (s) = C ′, and
K |= s v r. Thus, K |= D u E v ∃r.F .

“⇐”. (1) If K |= C(a), then (a, xC′,F ) ∈ rIK , where
ranT (r) = C ′. We have K |= C ′ u F v F , and thus IH
yields xC′,F ∈ F IK . By the semantics, a ∈ CIK . Point (2)
can be treated analogously. o

We now prove Proposition 1 from Section 3.

Proposition 1. If K is consistent, then IK is a model of K.

Proof. Let K = (T ,A). By definition, IK is a model of
A and all role inclusions in T . Let ran(r) v C ∈ T and
(d, e) ∈ rIK . If e = a ∈ Ind(A), then d = b ∈ Ind(A) and
(b, a) ∈ A by definition of IK. It follows that K |= C(a)
and thus the Lemma 8 yields a ∈ CIK as required. The case
e = xC′,D′ ∈ NIaux is similar. Finally, let C v D ∈ T
and d ∈ CIK . If e = a ∈ Ind(A), then Lemma 8 yields
K |= C(a) and thus K |= D(a) and we can apply Lemma 8
once more to derive d ∈ DIK . The case e = xC′,D′ ∈ NIaux

is again similar. o

The proof of the following lemma is standard, and thus omit-
ted.

Lemma 9. Let R be a set of role inclusions, A an ABox, I
an interpretation, and J the (A,R)-unraveling of I. Then
we have d0r1d1 · · · rndn ∈ CJ iff dn ∈ CI for all concepts
C and d0r1d1 · · · rndn ∈ ∆J .

Using Lemma 9 and Proposition 1, it is straightfoward to es-
tablish the following.

Proposition 10. If K is consistent, then UK is a model of K.

Proposition 4. If K is consistent, then for all k-ary con-
junctive queries q and all a1, . . . , ak ∈ Ind(A), we have
(a1, . . . , ak) ∈ cert(q,K) iff UK |= q[a1, . . . , ak].

Proof. The “⇒” direction is trivial by Proposition 10. Hence,
we concentrate on “⇐”. Assume that UK |=π q[a1, . . . , ak]
and let I be a model of K. For each d ∈ ∆UK , we use dep(d)
to denote the length of the shortest sequence d0, . . . , dn such
that d0 ∈ Ind(A)I , (di, di+1) ∈

⋃
r∈NR

rI for all i < n, and
dn = d. We define a mapping δ : ∆UK → ∆I such that
(a) δ(a) = aI for all a ∈ Ind(A);
(b) d ∈ CUK implies δ(d) ∈ CI for all d ∈ ∆UK and con-

cepts C;
(c) (d, d′) ∈ rUK implies (δ(d), δ(d′)) ∈ rI for all d, d′ ∈

∆UK and r ∈ NR.
The definition of δ(d) is by induction on dep(d). For the
case dep(d) = 1, δ(d) is dictated by (a). Let d ∈ ∆UK with
dep(d) = n > 1, i.e., d = d0r1d1 · · · rndn. By definition
of UK, (dn−1, dn) ∈ rIKn , dn = xC,D for some C,D, and
either (i) dn−1 = a ∈ Ind(A) or (ii) dn−1 = xC′,D′ for some
C ′, D′. Let d′ = d0r1d1 · · · rn−1dn−1.

In Case (i), the definition of IK implies that there is a role
name s with K |= ∃s.D(a), ranT (s) = C, and K |= s v rn.
Thus, (a) implies that δ(d′) ∈ (∃s.D)I and we set δ(dn) to
some e ∈ ∆I with (dn−1, e) ∈ sI and e ∈ (C u D)I . In
Case (ii), the definition of IK implies that there is a role name
s with K |= C ′ uD′ v ∃r.D, ranT (s) = C, and K |= s v r.
By Lemmas 8 and 9 and by (b), we have δ(d′) ∈ (∃r.D)I
and set δ(dn) to some e ∈ ∆I with (dn−1, e) ∈ sI and
e ∈ (C uD)I .

Note that δ satisfies (a) and (c) by construction. To see
that (b) is satisfied, assume d = d0r1d1 · · · rndn ∈ CUK with
dn = xD,E . By Lemmas 9 and 8, K |= D u E v C. By
construction of δ, δ(d) ∈ (D u E)I . Thus, δ(d) ∈ CI .

It remains to verify that the composition π′ of π with δ

(i.e., π′(t) = δ(π(t)) for all t ∈ term(q)) satisfies I |=π′

q[a1, . . . , ak], which is straightforward using (a)-(c). o

B Proof of Theorem 5
To complete the proof of Theorem 5 given in Section 4, it
remains to show that for all ELHdr⊥ -KBsK = (T ,A) withR
the set of role inclusions in T and all a1, . . . , ak ∈ Ind(A),
we have IrK |= q∗R[a1, . . . , ak] iff UK |= q[a1, . . . , ak], where
q∗R is the rewriting of q defined in Section 4. In the following,
we prove a slightly stronger result.

Let R be a set of role inclusions and A an ABox. Let I
be a model in which AuxI = ∆I \ Ind(A)I . I is called
A-connected if every d ∈ ∆I equals tail(p) for some p ∈
pathsA(I). It is called split if d ∈ AuxI and (d, d′) ∈ rI

imply d′ ∈ AuxI , for all r ∈ NR and d, d′ ∈ ∆I . Clearly IrK
is A-connected and split. Thus, Theorem 5 follows from the
following result.
Theorem 11. Let I be split and A-connected, and let I ′ be
the (A,R)-unraveling of I. Let q be a k-ary conjunctive
query. Then the following holds for all a1, . . . , ak ∈ Ind(A):

I |= q∗R[a1, . . . , ak] iff I ′ |= q[a1, . . . , ak].



Proof. Assume q = ∃~u.ψ(~u,~v). Recall that q∗R is defined as
∃~u.(ψ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3), where ϕ1, ϕ2, and ϕ3 are quantifier-
free. Recall that AuxI

′
= ∆I

′ \ Ind(A)I
′
.

(⇐) Let π be an (a1, . . . , ak)-match for I ′ and q. Define a
mapping τ : term(q) → ∆I by setting τ(t) := tail(π(t))
for all t ∈ term(q). By definition of τ and I ′, I |=τ ψ and
so τ is an (a1, . . . , ak)-match for I and q. It thus remains to
show that I |=τ ϕ1 ∧ ϕ2 ∧ ϕ3. To this end, we first show the
following:

Claim 1. Let s′, t′ ∈ term(q) with s′ ∼q t′ and π(s′) ∈
AuxI

′
. Then

(a) π(s′) = π(t′);

(b) if r1(s, s′), r2(t, t′) ∈ q, then π(s) = π(t).

We start with the proof of Point (a). By definition, ∼q can be
generated by starting with idq = {(t, t) | t ∈ term(q)} and
then exhaustively applying (∗) from Section 4 as a rule and
the following rule:

(tc) if t ∼q s and s ∼q t′, then t ∼q t′.
We prove Point (a) by induction on the number of rule ap-
plication. The start is trivial. For the step, we distinguish
between the two rules:

Rule (∗). Let r1(s, s′), r2(t, t′) ∈ q and s′ ∼q t′. Then
(∗) adds (s, t) to ∼q . Assume that π(s) ∈ AuxI

′
. By con-

truction of I ′ and since (π(s), π(s′)) ∈ rI
′

1 , we get that
π(s′) ∈ AuxI

′
. By IH, π(s′) = π(t′). By construction of

I ′ and since (π(s), π(s′)) ∈ rI
′

1 , (π(t′), π(s′)) ∈ rI
′

2 , and
π(s′) ∈ AuxI

′
, we have π(s) = π(t).

Rule (tc). Let t ∼q s and s ∼q t′. Then (tc) adds (t, t′) to
∼q . Assume that π(t) ∈ AuxI

′
. By IH, π(t) = π(s) and

thus π(s) ∈ AuxI
′
. Again by IH, π(s) = π(t′) and we obtain

π(t) = π(t′).

We come to Point (b). Let r1(s, s′), r2(t, t′) ∈ q and s′ ∼q
t′ and assume that π(s′) ∈ AuxI

′
. By Point (a), π(s′) =

π(t′). Hence, by construction of I ′ and since π(s′) ∈ AuxI
′
,

π(s) = π(t). This finishes the proof of Claim 1.

We now show that I |=τ ϕ1, i.e., τ(v) ∈ Ind(A)I for all
v ∈ avar(q) ∪ Fork 6= ∪ Cyc. By definition of (a1, . . . , ak)-
match, we have π(t) ∈ Ind(A)I

′
for all t ∈ avar(q). By

definition of τ and construction of I ′, it follows that τ(t) =
π(t) ∈ Ind(A)I

′
= Ind(A)I . Now assume that v ∈ Fork 6=

and that, contrary to what has to be shown, τ(v) ∈ AuxI .
Then there is no implicant for in([v]). For each r ∈ in([v]),
there is an atom r(sr, tr) ∈ q with tr ∼q v. Since τ(v) ∈
AuxI , we have π(v) ∈ AuxI

′
. Thus, by Point (a) of Claim 1,

π(v) = π(tr) for all r ∈ in([v]). Thus (π(sr), π(v)) ∈ rI′

for all r ∈ in([v]). By construction of I ′ and since π(v) ∈
AuxI

′
, we have that π(sr) = π(sr′) for all r, r′ ∈ in([v])

and there is an implicant for in([v]), which is a contradiction.

Now assume v ∈ Cyc and that, contrary to what has to be
shown, τ(v) ∈ AuxI . Then there are

r0(t0, t′0), . . . , rm(tm, t′m), . . . , rn(tn, t′n) ∈ q, n,m ≥ 0,

with v ∼q tj for some j ≤ n, t′i ∼q ti+1 for all i < n, and
t′n ∼q tm. Since τ(v) ∈ AuxI and by Point (a) of Claim 1,
π(tj) ∈ AuxI

′
. Since rj(tj , t′j) ∈ q, the construction of un-

ravelings yields that π(t′j) = π(tj) · rd for some d ∈ ∆I .
In particular, π(t′j) is auxiliary. By Point (a) of Claim 1,
π(t′j) = π(tj+1). We can repeat this argument ad infinitum,
setting ti = ti mod n + 1 and t′i = t′i mod n + 1 for all
i > n. In each step, the length of the path π(tj+`) increases.
This contradicts the fact that π(tn+j) = π(tj) (since actually
tn+j = tj). We have thus shown that I |=τ ϕ1.

We now show that I |=τ ϕ2, i.e., for all ({t1, . . . , tk}, ζ) ∈
Fork=, τ(tζ) ∈ AuxI implies τ(t1) = · · · = τ(tk). Thus, let
({t1, . . . , tk}, ζ) ∈ Fork= and assume that τ(tζ) ∈ AuxI .
Then π(tζ) ∈ AuxI

′
and there are terms t′1, . . . , t

′
k ∈ ζ and

role names r1, . . . , rk such that ri(ti, t′i) ∈ q for 1 ≤ i ≤ k.
Since π(tζ) ∈ AuxI

′
and by Point (b) of Claim 1, π(t1) =

· · · = π(tk), and thus τ(t1) = · · · = τ(tk).
Finally, we show that I |=τ ϕ3, i.e., for all (I, ζ) ∈ ForkH,

τ(tζ) ∈ AuxI implies (τ(tpreζ ), τ(tζ)) ∈ rI for some r ∈ I .
Thus, let (I, ζ) ∈ ForkH and assume that τ(tζ) ∈ AuxI .
Then pre(ζ) 6= ∅, i.e., tpreζ is defined and the set Γ := {r ∈
NR | (τ(tpreζ ), τ(tζ)) ∈ rI} is non-empty. By construction
of I ′ and since τ(tζ) ∈ AuxI , there is an r ∈ Γ that is an
implicant for Γ. Since τ(tζ) ∈ AuxI , we have π(tζ) ∈ AuxI .
Thus, Claim 1 and the definition of τ yields
• τ(t) = τ(tζ) for all t ∈ ζ and
• τ(t) = τ(tpreζ ) for all t ∈ pre(ζ).

It follows that Ψ := {s ∈ NR | s(t, t′) ∈ q for some t ∈
pre(ζ) and t′ ∈ ζ} ⊆ Γ and thus r is an implicant for Ψ. By
Assumption (v) from Section 2, there is even a prime impli-
cant r̂ ∈ Γ for Ψ. We have (τ(tpreζ ), τ(tζ)) ∈ r̂I and r̂ ∈ I .

(⇒) Let π be an (a1, . . . , ak)-match for I and q∗R. We start
with introducing some notation. The degree d(ζ) of an equiv-
alence class ζ is the length n ≥ 0 of a longest sequence (if it
exists)

r0(t0, t′0), . . . , rn(tn, t′n) ∈ q
such that t0 ∈ ζ and t′i ∼q ti+1 for all i < n. If no longest
sequence exists, we set d(ζ) =∞.

Claim 2.
(a) If π(t) ∈ AuxI , then d([t]) <∞.

(b) If s ∼q t and π(s) ∈ AuxI , then
(i) π(s) = π(t);

(ii) if r1(s′, s), r2(t′, t) ∈ q, then π(s′) = π(t′).

We start with (a). Assume to contrary of what has to be shown
that there is a t0 with π(t0) ∈ AuxI and an infinite sequence

r0(t0, t′0), r1(t1, t′1), . . .



with t′i ∼q ti+1 for all i ≥ 0. By definition of (a1, . . . , ak)-
match, π(t0) ∈ AuxI implies that t0 ∈ qvar(q). As q is
finite, there exist m,n with 0 ≤ m ≤ n such that t′n = t′m.
It follows that t0 ∈ Cyc. Hence ϕ1 contains the conjunct
¬Aux(t0) and we have derived a contradiction to π(t0) ∈
AuxI .

Now for (b). Because of (a), Point (i) of (b) can be proved
by induction on n := d([s]) = d([t]). For the induction start,
let s ∼q t with π(s) ∈ AuxI and d([s′]) = 0. By definition
of ∼q , we have [s] = {s} and thus s = t. Therefore, π(s) =
π(t) trivially holds. For the induction step, define

∼(0)
q := {(t, t) | t ∈ term(q)}
∼(i+1)
q :=∼(i)

q ∪
{(s, t) | there is s′ with s ∼(i)

q s′ and s′ ∼(i)
q t} ∪

{(s, t) | there are r1(s, s′), r2(t, t′) ∈ q with s′ ∼(i−1)
q t′}

for all i ≥ 0. It is not hard to see that ∼q =
⋃
i≥0∼

(i)
q .

We show by induction on i that if s ∼(i)
q t, d([s]) = n, and

π(s) ∈ AuxI , then π(s) = π(t). The induction start is trivial
since s ∼(0)

q t implies s = t. For the induction step, we
distinguish two cases:

• There is s′ with s ∼(i)
q s′ and s′ ∼(i)

q t.
By (inner) IH, π(s) = π(s′) and thus π(s′) ∈ AuxI .
Since s ∼(i)

q s′, we have [s] = [s′], and thus d([s′]) =
n. We can thus apply (inner IH) once more to derive
π(s′) = π(t), thus π(s) = π(t).

• There are r1(s, s′), r2(t, t′) ∈ q such that s′ ∼(i−1)
q t′.

As I is split, r(s, s′) ∈ q and π(s) ∈ AuxI entails
π(s′) ∈ AuxI . By definition of depth, d([s′]) < d([s]).
We can thus apply (outer) IH to obtain π(s′) = π(t[s′]).
Hence, π(t[s′]) ∈ AuxI . Thus, from the conjunct ϕ2 of
q∗R, we obtain π(s) = π(t).

Now for Point (ii). Assume π(s) ∈ AuxI ,
r1(s′, s), r2(t′, t) ∈ q, and s ∼q t. By Point (i),
π(s) = π(t[s]). Hence, by the conjunct ϕ2 of q∗R,
π(s′) = π(t′). This finishes the proof of Claim 2.

Let ∼π be the transitive closure of

{(t, t) | t ∈ term(q) ∪
{(s, t) ∈ term(q)2 | s ∼q t, π(s), π(t) ∈ AuxI} ∪
{(s, t) ∈ term(q)2 | ∃ r1(s, s′), r2(t, t′) ∈ q :

π(s′) ∈ AuxI ∧ s′ ∼q t′}.

By Claim 2, we have
(∗) π(s) = π(t) whenever s ∼π t.

Note that ∼π is an equivalence relation because it is, by
Claim 2, the transitive closure of a symmetric relation.

Now let the query q′ be obtained from q by identifying all
terms t, t′ ∈ term(q) such that t ∼π t′. More precisely,
choose from each ∼π-equivalence class ξ a fixed term tξ ∈ ξ
and replace each occurrence of an element of ξ in q by tξ. By

(∗), π is a match for I and the resulting query q′. Next, we
show the following:

(I) if v ∈ qvar(q′) with π(v) ∈ AuxI , then there is at most
one t ∈ term(q′) such that r(t, v) ∈ q′, for some r ∈
NR;

(II) if v ∈ qvar(q′) with π(v) ∈ AuxI and t ∈ term(q′)
such that Γ = {r | r(t, v) ∈ q′} 6= ∅, then there is an
implicant s for Γ with (π(t), π(v)) ∈ sI ;

(III) if q′ ⊇ {r0(t0, t1), . . . , rn−1(tn−1, tn)} with t0 = tn,
then π(ti) 6∈ AuxI , for all i ≤ n.

First for (I). Let π(v) ∈ AuxI , and let r1(t1, v), r2(t2, v) ∈
q′. Then there are r1(s1, s′1), r2(s2, s′2) ∈ q such that s1 ∼π
t, s2 ∼π t′, and s′1 ∼π v ∼π s′2. By (∗), π(s′1) = π(v), and
thus π(s′1) ∈ AuxI . By definition of ∼π , s′1 ∼π s′2 implies
s′1 ∼q s′2. Summing up, we thus have t1 ∼π t2. Since both
t1 and t2 occur in q′, we have t1 = t2.

Now for (II). Let π(v) ∈ AuxI and Γ 6= ∅. Due to the use
of Fork 6= in ϕ1 and since π(v) ∈ AuxI , there is an implicant
for in([v]). By ϕ3, there thus is an implicant s for in([v]) with
(π(tpre[v] ), π(t[v])) ∈ sI . Since π(v) ∈ AuxI we have tpre[v] ∼π t
and t[v] ∼π v. By (∗), π(tpre[v] ) = π(t) and π(t[v]) = π(v),
thus (π(t), π(v)) ∈ sI . Since Γ ⊆ in([v]), s is the required
implicant for Γ.

For (III), let q′ ⊇ {r0(t0, t1), . . . , rn−1(tn−1, tn)} with
t0 = tn. Then there are r0(s0, s′0), . . . , rn−1(sn−1, s

′
n−1) ∈

q with si ∼π ti and s′i ∼π ti+1 mod n for all i < n. It
follows that s′i ∼π si+1 mod n for all i < n. Assume now,
contrary to what has to be shown, that π(ti) ∈ AuxI for some
i < n. Since si ∼π ti, (∗) yields π(si) = π(ti). Thus
π(si) ∈ AuxI , which implies si ∈ qvar(q) by definition of
(a1, . . . , ak)-matches. Together with ∼π ⊆ ∼q , si ∈ qvar(q)
implies si ∈ Cyc. Thus, ¬Aux(si) is a conjunct of ϕ1 and
π(si) 6∈ AuxI , which is a contradiction. This finishes the
proof of (I)-(III).

We inductively define a mapping τ : term(q′)→ ∆I
′

such
that tail(τ(t)) = π(t) for all t ∈ term(q′). For the induction
start, we distinguish two cases:

• for all t ∈ term(q′) with π(t) 6∈ AuxI , set τ(t) := π(t).
Observe that this defines τ(t) for all t ∈ avar(q′) ∪
(term(q′) ∩ NI).

• for all v ∈ qvar(q′) with π(v) ∈ AuxI and such that
there is no atom r(t, v) ∈ q, do the following. By defi-
nition of I ′ and because each d ∈ ∆I is reachable from
an element of Ind(A)I , there is a sequence d0, . . . , dn ∈
∆I and a sequence r0, . . . , rn−1 of role names such that
d0 ∈ Ind(A)I , dn = π(v), and (di, di+1) ∈ rIi+1 for all
i < n. Set τ(v) := d0r0d1 · · · rn−1dn ∈ ∆I

′
.

For the induction step, proceed as follows. If τ(v) is unde-
fined and there exists r(t, v) ∈ q′ with τ(t) defined, then
(II) yields an implicant s for Γ = {r | r(t, v) ∈ q′} 6= ∅
with (π(t), π(v)) ∈ sI . Set τ(v) := τ(t) · sπ(v). Since
tail(τ(t)) = π(t) and (π(t), π(v)) ∈ sI , we have τ(v) ∈
∆I

′
.



By (I), the mapping τ is well-defined, i.e., the term t
in the induction step is unique. By (III), τ is total, i.e.,
τ(t) is defined for all t ∈ term(q′). To see this, suppose
that τ(t) is undefined. Since τ(t) is not defined in the in-
duction start, we have π(v) ∈ AuxI and there is an atom
r(s, t) ∈ q. Since τ(t) is not defined in the induction step,
τ(s) is undefined. We can repeat this argument ad infini-
tum. Since q′ is finite, this means that there is a sequence
q′ ⊇ {r0(s0, s1), . . . , rn−1(sn−1, sn)} with s0 = sn and
π(si) ∈ AuxI for all i ≤ n, in contradiction to (III).

The constructed τ is a match for I ′ and q′. It is immediate
that I ′ |=τ A(t) for all A(t) ∈ q′ since tail(τ(t)) = π(t)
and p ∈ AI

′
iff tail(p) ∈ AI for all p ∈ ∆I

′
. Now let

r(t, t′) ∈ q′. If π(t), π(t′) 6∈ AuxI , then τ(t) = π(t), τ(t′) =
π(t′), and (π(t), π(t′)) ∈ rI

′
. If π(t′) ∈ AuxI , then the

construction of τ implies that τ(t′) = τ(t) · sπ(t′) with T |=
s v r. By definition of I ′, it follows that (τ(t), τ(t′)) ∈ rI .
The case that π(t) ∈ AuxI and π(t′) 6∈ AuxI cannot occur
since I is a split model.

Finally, we extend τ to a mapping from term(q) to ∆I
′

by
setting τ(t) := τ(t′) if t ∈ term(q) \ term(q′) and t ∼π t′.
It is straightforward to verify that τ is a match for I ′ and q.
Since τ(t) = π(t) if π(t) ∈ Ind(A)I for all t ∈ term(q′), it
is also clear that τ is an (a1, . . . , ak)-match. o

C Proof of Theorem 7
Theorem 7. Let K be a consistent literal ELHdr⊥ -KB.
Then K′ can be computed in polynomial time and K |=e

q[a1, . . . , ak] iff K′ |= q′[a1, . . . , ak] for all literal CQs q and
all a1, . . . , ak ∈ Ind(A).

Proof. We first show that K′ can be computed in polyno-
mial time. For T ′, this is obvious. For A′, it suffices to
show that given a literal KB K = (T ,A) and a ground lit-
eral query ¬A(a), we can decide in polynomial time whether
K |= ¬A(a). To see that this is the case, set

L := {¬B(b) | ¬B(b) ∈ A}.

It is rather easy to see that

K |= ¬A(a) iff K0 |= t
¬B(b)∈L

B(b),

whereK0 = (T , (A\L)∪{A(a)}). Since instance checking
in ELHdr⊥ is in PTIME, it now suffices to show that the latter
consequence holds iff

K0 |= B(b) for some ¬B(b) ∈ L.

To see this equivalence, assume that K0 6|= B(b) for all
¬B(b) ∈ L. The canonical model IK0 is a model of K0

and IK0 |= B(b) iff K0 |= B(b), for all ¬B(b) in L. Thus,

IK0 6|= t¬B(b)∈L
B(b),

and, therefore, K0 6|= t
¬B(b)∈L

B(b).

We now prove that K |=e q[a1, . . . , ak] iff K′ |=
q′[a1, . . . , ak] for all literal CQs q and all a1, . . . , ak ∈
Ind(A).

“⇒”. Assume that K′ 6|= q′[a1, . . . , ak]. Then UK′ 6|=
q′[a1, . . . , ak]. We first show that UK′ is a model of K: first,
we can assume standard names since every d 6∈ Ind(A)UK′
can be replaced with an ad ∈ NI \ Ind(A). Since UK′ is a
model of K′, UK′ is a model of T and satisfies all positive
atoms of A. It thus remains to show that UK′ |= ¬A(a) for
every ¬A(a) ∈ A. Since K is consistent and ¬A(a) ∈ A,
there is a model I of K with aI /∈ AI . We can extend I to
a model of K′ by setting B

I
= {b | K |= ¬B(b)} for all

concept names B. Note that all > v B ∈ T ′ are satisfied
by construction of K′ and since K is consistent. Thus K′ 6|=
A(a) and thus UK′ |= ¬A(a) by definition of UK′ .

It thus remains to show that UK′ 6|=e q[a1, . . . , ak]. Sup-
pose to the contrary that UK′ |=π

e q[a1, . . . , ak] for some
match π. Then UK′ |=π q′[a1, . . . , ak]. Clearly, π satis-
fies all atoms in q′ that are also in q. Thus let A(t) be an
atom that is in q′, but not in q. Then ¬A(t) is in q and thus
K |= ¬A(π(t)). This implies that (i) T |= A v ⊥ or (ii)
π(t) ∈ Ind(A). To see this, suppose that neither (i) nor (ii)
holds. By failure of (i), we can find a model I of T such
that there is a d ∈ AI ; since K is consistent, there is a model
J of K; let I ] J be the union of two disjoint copies of I
and J with elements renamed such that the standard names
condition is satisfied, all individual names are interpreted as
in J , and the new name for d is π(t) (this naming scheme
is possible by failure of (ii)); then I ] J is a model of K
and π(t) ∈ AI]J , in contradiction to K |= ¬A(π(t)). From
(i) and (ii), it follows that > v A ∈ T ′ or A(π(t)) ∈ A′.
Since UK′ is a model of K′, we have π(t) ∈ A

I′
as re-

quired. We have thus established a contradiction to the fact
that UK′ 6|= q′[a1, . . . , ak].

“⇐”. Assume that I is a model of K with I 6|=e

q[a1, . . . , ak]. Convert I into a new interpretation I ′ by set-
ting A

I
= {a ∈ NI | K |= ¬A(a)} for all concept names

A. It is easy to see that I ′ is a model of K′. It thus re-
mains to show that I ′ 6|= q′[a1, . . . , ak]. Suppose to the
contrary that I ′ |=π q′[a1, . . . , ak] for some match π. Then
I |=π

e q[a1, . . . , ak]: let ¬A(t) be an atom that is in q, but
not in q′. Then A(t) is in q′. Since π satisfies this atom, we

have π(t) ∈ AI
′

. By definition of I ′, K |= ¬A(π(t)) as re-
quired. We have thus established a contradiction to the fact
that I 6|=e q[a1, . . . , ak]. o


