
31

The Complexity of Query Containment in Expressive

Fragments of XPath 2.0

BALDER TEN CATE

INRIA and ENS Cachan, France

AND

CARSTEN LUTZ

Universität Bremen, Germany

Abstract. XPath is a prominent W3C standard for navigating XML documents that has stimulated
a lot of research into query answering and static analysis. In particular, query containment has been
studied extensively for fragments of the 1.0 version of this standard, whereas little is known about query
containment in (fragments of) the richer language XPath 2.0. In this article, we consider extensions of
CoreXPath, the navigational core of XPath 1.0, with operators that are part of or inspired by XPath
2.0: path intersection, path equality, path complementation, for-loops, and transitive closure. For each
combination of these operators, we determine the complexity of query containment, both with and
without DTDs. It turns out to range from EXPTIME (for extensions with path equality) and 2-EXPTIME
(for extensions with path intersection) to non-elementary (for extensions with path complementation
or for-loops). In almost all cases, adding transitive closure on top has no further impact on the
complexity. We also investigate the effect of dropping the upward and/or sibling axes, and show that
this sometimes leads to a reduction in complexity. Since the languages we study include negation and
conjunction in filters, our complexity results can equivalently be stated in terms of satisfiability. We
also analyze the above languages in terms of succinctness.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages

General Terms: Languages, Algorithms

Additional Key Words and Phrases: XML, XPath, containment, satisfiability, complexity

An extended abstract of this article appeared in Proceedings of the 26th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS 2007), ACM, New York, pp. 73–82.
B. ten Cate was supported by NWO research grant 639.021.508. C. Lutz was supported by the EU-
funded IST-2005-7603 FET Project Thinking Ontologies (TONES).
Authors’ addresses: B. ten Cate, ENS Cachan, 61, avenue du President Wilson, 94235 CACHAN
Cedex, France, e-mail: balder.tencate@uva.nl; C. Lutz, Universität Bremen, Fachbereich 03, Postfach
330440, ENS Cachan 28334 Bremen, Germany, e-mail: clu@informatik.uni-bremen.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0004-5411/2009/09-ART31 $10.00
DOI 10.1145/1568318.1568321 http://doi.acm.org/10.1145/1568318.1568321

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:2 B. TEN CATE AND C. LUTZ

ACM Reference Format:

ten Cate, B., and Lutz, C. 2009. The complexity of query containment in expressive fragments of
XPath 2.0. J. ACM 56, 6, Article 31 (September 2009), 48 pages.
DOI = 10.1145/1568318.1568321 http://doi.acm.org/10.1145/1568318.1568321

1. Introduction

The growing popularity of XML as a standard for storage and exchange of semi-
structured data has led to the introduction of a large number of XML-related for-
malisms, most notably schema languages such as DTDs and XML Schema, and
query and transformation languages such as XQuery and XSLT. Located at the
heart of most of these is XPath, the basic formalism for navigating through XML
documents. For example, XPath is used in XML Schema to define keys [Gao et al.
2007], in XQuery to bind variables [Boag et al. 2007], and in XSLT to select nodes
in XML documents [Kay 2007]. Like XML, XPath is a standard of the W3C com-
mittee. Since XPath 1.0 was first released in November 1999 [Clark and DeRose
1999], the development of other XML-related standards such as XQuery has sug-
gested many changes. Consequently, the first working draft for a new version of
XPath was published in 2001, but it was not until January 2007 that the official
W3C recommendation for XPath 2.0 was released [Berglund et al. 2007], together
with the one for XQuery 1.0.

Because of the central role that XPath plays in many XML-related formalisms,
the static analysis of XPath expressions is a prominent subject in research about
XML processing. In particular, containment and satisfiability for XPath expressions
are of prime importance. Due to the presence of data value comparisons in the XPath
standard, both problems are undecidable for full XPath 1.0 [Benedikt et al. 2008].
However, the full expressive power of XPath is rarely used, and consequently there
is a large body of work about the decidability and complexity of static analysis
problems for fragments of XPath 1.0, often in the presence of document schemas
(DTDs) and other constraints such as functional dependencies [Miklau and Suciu
2004; Deutsch and Tannen 2005; Arenas et al. 2008; Neven and Schwentick 2006;
Benedikt et al. 2008]. The emerging picture indicates that it is useful to distinguish
between those fragments of XPath that admit negation in filter expressions, called
positive fragments, and those that do not. Regarding positive fragments of XPath 1.0,
there are some simple cases for which containment and satisfiability are tractable,
but even modest extensions push the complexity to (co)NP or PSPACE. [Schwentick
2004]. If negation in filter expressions is admitted, the complexity is usually even
higher: EXPTIME is typical, but some more difficult cases have also been identified
[Benedikt et al. 2008].

In contrast to XPath 1.0, static analysis for XPath 2.0 has not been extensively
studied. A notable exception is Hidders [2003], which is concerned with satisfia-
bility for positive fragments of XPath 2.0. The situation turns out to be similar to
containment in XPath 1.0, that is, the complexity is between polytime and PSPACE.
The aim of the current paper is to analyze the complexity of static analysis in
fragments of XPath 2.0 that admit negation of node expressions. Our analysis is
in terms of containment, but applies to satisfiability as well since containment and
(un-)satisfiability are polynomially inter-reducible in the XPath dialects considered
here. We analyze the case with and without (extended) DTDs, give tight complexity

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:3

bounds for a number of relevant cases, and also present some observations con-
cerning succinctness.

Our Contributions. We extend CoreXPath, the navigational core of XPath 1.0
identified in Gottlob and Koch [2002] and Gottlob et al. [2005], with the following
ingredients of XPath 2.0: path intersection (∩), path complementation (−), and
iteration (for). Besides these three operators, we also consider (reflexive-)transitive
closure (∗) and path equalities (≈). Path equalities, also known as node set equalities
and not to be confused with data value equalities, are not part of XPath 2.0 as
a primitive construct, but can be expressed. They have been studied in Deutsch
and Tannen [2005], Benedikt et al. [2005], Olteanu et al. [2002], and ten Cate
[2006]. Transitive closure is not part of XPath 2.0 and cannot be expressed, but it
extends the expressive power of XPath in a very natural way. For instance, it allows
us to express DTDs and other schema constraints inside XPath [Marx 2004], and
it enables view based query rewriting for recursive XML views [Fan et al. 2007].

These five additions to CoreXPath are not all independent: path equalities can
be expressed using path intersection, which can in turn be expressed using path
complementation, which can again be expressed using iteration. Thus, we obtain
a hierarchy regarding expressive power, which is depicted in Figure 1. It is based
on expressivity results from Marx [2005], Marx and de Rijke [2005], and ten Cate
[2006]. The figure also lists equivalent variants of first order logic, where UCQ[FO2]
refers to unions of conjunctive queries, where we allow arbitrary FO2-definable
unary queries as atomic predicates. FO+T C1 refers to first order logic with monadic
transitive closure, and F O∗ refers to first-order logic with nonparametrized monadic
transitive closure, cf. [ten Cate 2006].

For each of the languages shown in Figure 1, we determine the complexity
of containment for path expressions, showing that it ranges from EXPTIME to
non-elementary. Our main results are summarized in Table 1; because of the
mentioned inter-reducibility, they apply to both containment and satisfiability.
We prove most upper bounds in the absence of DTDs since DTDs can be ex-
pressed in CoreXPath(∗) with only a linear blowup in size. The same holds even
for extended DTDs (EDTDs), an extension of the DTD formalism first introduced
in Papakonstantinou and Vianu [2000] under the somewhat misleading name of
“specialized DTDs”. Notably, EDTDs capture all regular tree languages. Only
for the downward fragment of CoreXPath(∩), we prove the upper bound directly
with reference to EDTDs. Since containment without DTDs can be reduced to
containment with DTDs, the lower bounds carry over as well. Thus, the results in
Table 1 apply to containment and satisfiability without DTDs, with DTDs, and with
EDTDs.

Our results show that ≈ and ∗ never increase the complexity of the containment
problem, with one exception: adding ∗ to the downward fragment of CoreXPath(∩)
increases the complexity from EXPSPACE to 2-EXPTIME. Adding∩usually increases
the complexity of containment by one exponential, even though ∩ does not give
more expressive power than ≈. Finally, the effect of adding path complementation
or for is rather devastating, as each of these operators renders containment hard for
non-elementary time. In other words, the amenities of XPath 2.0 come at the price
of an increase in computational complexity, at least in the presence of negation. We
can also conclude that CoreXPath(∗, ≈) is a rather well behaved fragment. Among all
languages studied in this paper, it is the most expressive one for which containment
is still decidable in EXPTIME and thus not more difficult than in CoreXPath, and

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:4 B. TEN CATE AND C. LUTZ

FIG. 1. Hierarchy of XPath languages.

this holds even in the presence of DTDs. Note that even for the positive downward
fragment of CoreXPath, containment in the presence of DTDs is already EXPTIME-
hard [Neven and Schwentick 2006].

Our observations concerning succinctness are as follows. Consider each class
of equally expressive languages in Figure 1, starting with the languages that are
expressively complete for UCQ[FO2]. We show that CoreXPath(∩) is exactly ex-
ponentially more succinct than CoreXPath and CoreXPath(≈), explaining the higher
computational complexity of the former. Whether CoreXPath(≈) is exponentially
more succinct than CoreXPath is an open question. Moving on to the languages that
are expressively complete for FO∗, we show that CoreXPath(∗, ∩) is at least expo-
nentially and at most doubly exponentially more succinct than CoreXPath(∗, ≈),
and CoreXPath(∗, −) is nonelementarily more succinct than CoreXPath(∗, ∩).

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:5

TABLE I. SUMMARY OF OUR COMPLEXITY RESULTS

CoreXPath(. . .) CoreXPath(∗, . . .)

for Non-elementary (even for the one-variable downward fragment of CoreXPath(for))

− Non-elementary (even for the downward fragment of CoreXPath(−))

∩ 2-EXPTIME-complete (hardness holds
even for the vertical and forward frag-
ments);

EXPTIME-complete when the nesting
depth of intersection is bounded

EXPSPACE-complete for the downward
fragment;

2-EXPTIME-complete (hardness holds
even for the downward fragment);

EXPTIME-complete when the nesting
depth of intersection is bounded

≈ EXPTIME-complete (hardness holds even for the downward fragment of CoreXPath)

All results apply to containment and satisfiability of XPath expressions, also in the presence of
(E)DTDs.

Finally, concerning languages that are expressively complete for FO, we show
that CoreXPath(for) is at least exponentially more succinct than CoreXPath(−).

Related Work. Since there is an overwhelming number of complexity results for
the static analysis of XPath fragments, we confine ourselves to a rough overview
of the literature and refer the reader to Schwentick [2004] for a recommendable,
though nowadays somewhat outdated survey. As before, we distinguish between
positive fragments and fragments that include negation in filter expressions.

For positive fragments, containment and satisfiability often have different com-
plexity. Classical papers on the complexity of query containment include Miklau
and Suciu [2004], Wood [2003], and Neven and Schwentick [2006], which all ana-
lyze the border of tractability, with and without DTDs. Deutsch and Tannen [2005]
additionally take into account integrity constraints and identify fragments of dif-
ferent complexity, ranging from polytime to undecidable. Satisfiability in positive
fragments with DTDs is studied in Benedikt et al. [2008] without sibling axes, and
in Geerts and Fan [2005] with sibling axes. Both papers also address fragments
with negation. In Arenas et al. [2008] and Lakshmanan et al. [2004], the focus is on
satisfiability in positive fragments in the presence of both DTDs and constraints. All
the mentioned papers consider XPath 1.0. As already mentioned, Hidders studies
satisfiability in positive fragments of XPath 2.0 [Hidders 2003].

The fundamental complexity result for fragments with negation is that contain-
ment and satisfiability in CoreXPath are EXPTIME-complete, even when transitive
closure is added [Marx 2004]. There appear to be only a few known fragments
with higher complexity. For example, Benedikt et al. [2008] identifies fragments
that include data value equalities and are NEXPTIME-complete or even undecid-
able. Some first evidence that adding intersection to CoreXPath is likely to increase
computational complexity can be derived from the relationship between XPath and
Propositional Dynamic Logic (PDL), and the 2EXPTIME-hardness result for PDL
with intersection in Lange and Lutz [2005], as well as from the EXPSPACE-hardness
of equivalence for semi-extended regular expressions [Fürer 1980].

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:6 B. TEN CATE AND C. LUTZ

Other articles related to our work include the following. Benedikt et al. [2005]
studies the closure under intersection and complementation of various fragments
of XPath 1.0. Tajima and Fukui [2004], Böttcher [2004], and Hammerschmidt
et al. [2005] study XPath with intersection and (sometimes) complementation,
motivated by different applications such as redundancy elimination in answers to
multiple XPath queries, node selection in queries to distributed XML documents,
and index updating. Finally, ten Cate [2006] studies the expressive power of XPath
with transitive closure (and node set equalities), and [ten Cate and Marx 2009] gives
an axiomatization of XPath 2.0.

2. Preliminaries

We review the syntax and semantics of CoreXPath and its relevant extensions. We
also introduce and compare various static analysis problems.

2.1. XML TREES AND EDTDS. For the purposes of this article, an XML docu-
ment is a finite node-labeled sibling-ordered tree. The node labels represent XML
tags. As usual, we abstract away from all data associated with the nodes of an
XML document other than XML tags. We use the term XML tree for this type of
structures. Throughout this article, we fix a countably infinite set � of labels.

Definition 1 (XML Trees). An XML tree is a structure T = (N , R↓, R→, L),
where (N , R↓) is a finite, rooted tree with child relation R↓, R→ is a successor
relation on (ordered) siblings, and L : N → � assigns a label to each node. R↑
and R← denote the converse of the relations R↓ and R→.

In many applications, it is useful to restrict attention to XML trees satisfy-
ing a given schema. There is a wealth of schema languages for XML (see, e.g.,
Thompson et al. [2004], Klarlund et al. [2002], Clark and Murata [2001], and Mu-
rata et al. [2005], Martens et al. [2006]). Since the focus of this article is not on
such languages, we only consider extended document type definitions (EDTDs) as
a typical example. EDTDs have first been introduced (under the name specialized
DTDs) in Papakonstantinou and Vianu [2000]. As in Papakonstantinou and Vianu
[2000], we abstract away from features such as default values and attributes.

Definition 2 (EDTDs). An EDTD is a tuple (�, P, r, μ), where � is a finite
set of abstract labels, P is a function that assigns to each element of � a regular
expression over �, r ∈ � is the root type, and μ is a mapping from � to �.

An XML tree T = (N , R↓, R→, L) conforms to an EDTD D = (�, P, r, μ) if
there is a function L ′ : N → � such that

(i) the root of T is mapped to r ,
(ii) for each node n with (ordered) children n1, . . . , nk , the word L ′(n1), . . . , L ′(nk)

belongs to the language generated by P(L ′(n)), and
(iii) for all n ∈ N , L(n) = μ(L ′(n)).

Standard (nonextended) DTDs correspond to those EDTDs (�, P, r, μ) for
which � = � and μ is the identity map. A simple example of an EDTD that
cannot be written as a DTD is (�, P, r, μ), where � = {s1, s2, s3}, P(s1) = s2 + ε,
P(s2) = s3 + ε, P(s3) = ε, r = s1, and μ(si) = s for all i ≤ 3. Intuitively, we
may think of the label s as defining sections in texts. The XML trees conforming
to the given EDTD, then, correspond to texts where the nesting depth of sections

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:7

TABLE II. SEMANTICS OF CoreXPath

[[τ]]PExpr = Rτ

[[τ ∗]]PExpr = the reflexive transitive closure of [[τ]]PExpr
[[.]]PExpr = {(n, n) | n ∈ N }
[[α/β]]PExpr = {(n, m) | ∃k.(n, k) ∈ [[α]]PExpr and (k, m) ∈ [[β]]PExpr}
[[α ∪ β]]PExpr = [[α]]PExpr ∪ [[β]]PExpr
[[α[ϕ]]]PExpr = {(n, m) ∈ [[α]]PExpr | m ∈ [[ϕ]]NExpr}
[[p]]NExpr = {n ∈ N | L(n) = p}
[[〈α〉]]NExpr = {n ∈ N | ∃m ∈ N . (n, m) ∈ [[α]]PExpr}
[[�]]NExpr = N
[[¬ϕ]]NExpr = N \ [[ϕ]]NExpr
[[ϕ ∧ ψ]]NExpr = [[ϕ]]NExpr ∩ [[ψ]]NExpr

is at most 3. This class of XML trees is not definable by a standard DTD, as
follows directly from the characterization of the expressive power of DTDs given
in Papakonstantinou and Vianu [2000].

2.2. CoreXPath AND EXTENSIONS. The CoreXPath language was introduced in
Gottlob and Koch [2002] and Gottlob et al. [2005] in order to capture the naviga-
tional core of XPath 1.0. Here, we follow the definition of CoreXPath given in Marx
[2005], which is slightly more expressive. We comment on the difference below.

CoreXPath is a two-sorted language. The primary expressions are path expressions
which define binary relations on the nodes of an XML tree. Inside these path
expressions, node expressions may occur, which define sets of nodes. The two
types of expressions are defined by simultaneous induction.

Definition 3 (CoreXPath). The node expressions (denoted α, β, . . .) and path
expressions (denotedϕ, ψ, . . .) of CoreXPath are defined by simultaneous induction,
as follows:

Path expressions : α ::= τ | τ ∗ | . | α/β | α ∪ β | α[ϕ] (τ ∈ {↓, ↑, →, ←})
Node expressions : ϕ ::= p | 〈α〉 | � | ¬ϕ | ϕ ∧ ψ (p ∈ �)

The semantics of CoreXPath relative to an XML tree T = (N , R↓, R→, L) is given
by two functions [[·]]T

PExpr and [[·]]T
NExpr. The former maps path expressions to binary

relations on N , and the latter node expressions to subsets of N . These functions are
defined in Table II, where the superscript ·T is omitted for readability.

An example of a CoreXPath path expression in our notation is ↓+[p ∧
¬〈↓[q]〉], which selects all descendants with label p that do not have a
child with label q. In the official XPath notation, this expression is writ-
ten as descendant::p[not(child::q)] or, using the abbreviated syntax,
.//p[not(q)]. Notice that an expression such as child::q can be both a path
expression and a node expression in the official syntax, whereas our syntax dis-
ambiguates the two readings by requiring angled brackets 〈·〉 whenever a path
expressions is used as a node expression.

Atomic path expressions of the form τ , τ ∗ and “.”, with τ ∈ {↓, ↑, →, ←}, are
called axes, and in path expressions of the form α[ϕ], ϕ is called a filter expression.
The XPath 1.0 and 2.0 specifications [Clark and DeRose 1999; Berglund et al. 2007],
as well as the definition of CoreXPath in Gottlob et al. [2005], lack the sibling axes

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:8 B. TEN CATE AND C. LUTZ

← and → and their reflexive-transitive closures ←∗ and →∗, and include only the
irreflexive-transitive closures ←+ and →+ (under the names following-sibling and
preceding-sibling). In XPath 1.0 and 2.0, ←, →, ←∗ and →∗ are definable from ←+
and →+ using positional predicates and union, but since positional predicates are
not included in CoreXPath, ← and → are in fact not definable in CoreXPath as defined
in Gottlob et al. [2005]. Following Marx [2004], we have chosen to include ←, →,
←∗ and →∗ as the horizontal axes, while ←+ and →+ are definable as ←/←∗ and
→/→∗, respectively. However, all our results hold independently of this choice. In
particular, in lower bound arguments we only make use of the irreflexive-transitive
sibling axes ←+ and →+.

Arguably, the most important features of XPath that are not included in CoreXPath
are attributes and data value comparisons. It is known that, already for the extension
of CoreXPath with data value equalities of the form α/@a = β/@b and α/@a =
‘c’, containment is undecidable [Benedikt et al. 2008].

We use τ+ as shorthand for τ/τ ∗, that is, the (nonreflexive) transitive closure
of τ . Also, we use ϕ ⇒ ψ as a shorthand for the node expression ¬(ϕ ∧ ¬ψ),
ϕ ∨ ψ as a shorthand for ¬(¬ϕ ∧ ¬ψ) and ⊥ as a shorthand for ¬�. Finally, we
use every(α, ϕ) as a shorthand for the node expression ¬〈α[¬ϕ]〉, which expresses
that “every node reachable from the current node by α satisfies ϕ”.

We now present five different ways in which the basic CoreXPath language can
be extended.

—Path equalities (≈) are node expressions of the form α ≈ β. They are interpreted
existentially:

[[α ≈ β]]NExpr = {n ∈ N | ∃m ∈ N .(n, m) ∈ [[α]]PExpr ∩ [[β]]PExpr}.
—Path intersection (∩) enables path expressions of the form α ∩ β, interpreted as

follows:

[[α ∩ β]]PExpr = [[α]]PExpr ∩ [[β]]PExpr.

Since α ≈ β is equivalent to 〈α ∩ β〉, path equalities can be seen as a special
case of path intersection.

—Path complementation (−) enables path expressions of the form α−β, interpreted
as follows:

[[α − β]]PExpr = [[α]]PExpr \ [[β]]PExpr.

Path intersection can be defined in terms of path complementation: α ∩ β is
equivalent to U − ((U − α) ∪ (U − β)), where U is shorthand for the path
expression ↑∗/↓∗, which defines the universal relation.

—Iteration (for) enables path expressions of the form “for $i in α return β”, where $i
is from a countably infinite set of node variables. In β, it is possible to test equality
of the current node with the node bound to $i using the node expression “. is $i”.
For example, the path expression “for $i in α return β[. is $i]” is equivalent to
α ∩ β. The precise syntax and semantics will be given in Section 7, where we
also show that path complementation can be expressed using iteration.

—Transitive closure (∗) enables path expressions of the form α∗, where α can be
any path expression instead of only ↑, ↓, ←, → as in basic CoreXPath. It defines

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:9

the transitive and reflexive closure of the binary relation defined by α:

[[α∗]]PExpr = {(n, m) | there are n1, . . . , nk(k ≥ 1) such that n1 = n, nk = m,

and(ni , ni+1) ∈ [[α]]PExpr for 1 ≤ i < k}
Note that, although α∗ defines the reflexive-transitive closure of the relation
defined by α, for the sake of brevity we refer to ∗ simply as the transitive closure
operator.

For any X ⊆ {≈, ∩, −, for, ∗}, we denote by CoreXPath(X) the extension
of CoreXPath with the operators in X . For any Y ⊆ {↑, ↓, →, ←}, we use
CoreXPathY (X) to denote the fragment of CoreXPath(X) restricted to the follow-
ing axes: “.”, the axes in Y , and the transitive closures of the axes in Y . In par-
ticular, we refer to CoreXPath↓(X) as the downward fragment of CoreXPath(X), to
CoreXPath↓↑(X) as the vertical fragment and to CoreXPath↓→(X) as the forward
fragment.

Examples. To give some examples for the extended versions of CoreXPath, assume
that we are working with XML trees that describe books and conform to the EDTD
D = (�, P, Book, μ), where:

—� = {Book, Chapter, Section, Paragraph, Image};
— P(Book) = Chapter+, P(Chapter) = Section+, P(Section) = (Section +

Paragraph + Image)+, P(Paragraph) = P(Image) = ε;
—μ(p) = p for all p ∈ �.

Observe that sections can be nested up to any depth. The content of the book
is represented by the leafs, and the standard XML document order corresponds
to the order of the content in the book. Let following and preceding stand for the
CoreXPath path expressions (↑∗/→+/↓∗) and (↑∗/←+/↓∗). Then, the following
CoreXPath(≈) path expression, evaluated at the root, retrieves the first image of each
chapter:

↓∗[Image ∧ ¬(preceding[Image] ≈ ↑+[Chapter]/↓+[Image])]

The following CoreXPath(∩) path expression, evaluated at a node, retrieves all
following images in the same chapter:

following[Image] ∩ (↑+[Chapter]/↓+[Image])

Next, suppose one wants to retrieve only the first following image in the same
chapter. This can naturally be expressed in CoreXPath(−), using path intersection
as an abbreviation:

(following[Image] ∩ (↑+[Chapter]/↓+[Image])) − (following[Image]/
following[Image])

Finally, we give an example of a path expression in CoreXPath(∗). The following
path expression, evaluated at the root, retrieves again the first image of each chapter,
by repeatedly traveling to the first child and skipping over subtrees that do not
contain any image:

↓[Chapter]/
(↓[¬〈←〉] ∪ .[¬〈↓+[Image]〉]/→)∗

[Image]

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:10 B. TEN CATE AND C. LUTZ

2.3. STATIC ANALYSIS. We investigate the following problems of static
analysis:

—Path containment: given two path expressions α, β, is [[α]]T
PExpr ⊆ [[β]]T

PExpr for
all XML trees T ?

—Path satisfiability: given a path expression α, is there an XML tree T such that
[[α]]T

PExpr �= ∅?

—Node satisfiability: given a node expression ϕ, is there an XML tree T such that
[[ϕ]]T

NExpr �= ∅?

Each of these can be relativised to documents that satisfy a given schema defini-
tion. For example, path containment w.r.t. EDTDs means to decide, given two path
expressions α, β, and an EDTD D, whether for all XML trees T conforming to D,
[[α]]T

PExpr ⊆ [[β]]T
PExpr holds. Path satisfiability and node satisfiability with respect

to EDTDs are defined analogously.
In measuring the complexity of these tasks, we adopt the following definition of

size for the input: the size of a node expression or path expression is the number of
nodes in the syntax tree of that expression, that is, the total number of occurrences
of constructors, labels, and atomic path expressions →, ←, ↑, ↓, and “.”. The size
of an EDTD is the sum of the lengths of the regular expressions assigned to each
label, where the length of a regular expression may be measured again by the
number of nodes in its syntax tree.

In the following, we establish a tight connection between the three problems that
we are studying, and also between the versions with and without EDTD. We start
with showing that all three problems (or, to be more accurate, path containment,
path unsatisfiability, and node unsatisfiability) can be polynomially inter-reduced,
both with and without EDTDs. This allows us to state our results only for path
containment, but to switch to node satisfiability in proofs when convenient. It
is convenient here to consider unsatisfiability rather than satisfiability since the
complexity classes involved are not necessarily closed under complementation. We
remark that a number of other problems from static analysis, such as non-empty
intersection considered in Hammerschmidt et al. [2005], are also polynomially
inter-reducible with the problems listed above.

PROPOSITION 4. Let L = CoreXPathX (Y) for any set of directions X ⊆
{↑, ↓, ←, →} and set of operators Y ⊆ {≈, ∩, −, for, ∗}. Then any two of path
containment, path unsatisfiability, and node unsatisfiability are polynomially inter-
reducible for L. Likewise for the EDTD relativised versions of these problems.

PROOF. We start with the case without EDTDs. Node unsatisfiability polyno-
mially reduces to path unsatisfiability since a node expression ϕ is satisfiable if,
and only if, the path expression .[ϕ] is satisfiable. Path unsatisfiability polynomially
reduces to path containment since α is unsatisfiable if, and only if, α is contained
in .[⊥]. It thus remains to show that path containment can be polynomially reduced
to node unsatisfiability.

Let α and β be path expressions, and let
 be the set of labels occurring in α and
β plus one additional label. This choice of
 is motivated by the fact that (in the
absence of EDTDs) whenever α is not contained in β, one can find an XML tree
that witnesses the non-containment and in which all nodes have a label from
.
The reason for this is that if p, p′ are any two labels not occurring in α and β, then

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:11

occurrences of p in a tree may be freely replaced by p′, and vice versa, without
affecting the denotation of α or β in the tree (as can be shown by a straightforward
formula induction, cf. also Miklau and Suciu [2004]).

Let
 :=
 ×{0, 1}, that is,
 contains two copies of each label in
. Intuitively,
a
-labeled tree can be seen as a
-labeled tree where, in addition, each node is
decorated by either 0 or 1. Let α be the result of replacing each label p in α with
(p, 0) ∨ (p, 1), and likewise for β. Moreover, let 1 be a shorthand for

∨
p∈
(p, 1).

Then α is contained in β if, and only if, 〈α[1]〉 ∧ ¬〈β[1]〉 is not satisfiable. One
direction is easy: if 〈α[1]〉 ∧ ¬〈β[1]〉 is satisfiable, then the non-decorated version
of any witnessing
-labeled XML tree (i.e., the tree obtained by replacing each
label of the form (p, i) by p) can be used to show that α is not contained in β. For
the other direction, suppose that α is not contained in β. Then there is an XML
tree T and a pair of nodes (d, e) belonging to [[α]]T

PExpr \ [[β]]T
PExpr. We may assume

without loss of generality that all labels in T belong to
, that is, the only label that
occurs in T but not in α and β is the additional symbol in
. Now, let T ′ be the

-tree obtained from T by decorating e with 1 and all other nodes with 0. Then,
d ∈ [[〈α[1]〉 ∧ ¬〈β[1]〉]]T ′

NExpr.
This argument can be adapted to the EDTD relativised case: we replace labels

occurring in α and β with versions that include an additional decoration from
{0, 1}, and likewise for abstract labels from the EDTD. However, a small technical
problem arises: every EDTD dictates a unique label p that occurs at the root of
all trees conforming to it, but we would need to replace it with two labels (p, 0)
and (p, 1). This issue can be solved by adding a new root to the decorated trees,
above the original one, that is simply dropped when translating decorated trees to
non-decorated ones. More precisely, given an EDTD D = (�, P, r, μ), we define
D = (�, P, s, μ), where

—s is a fresh label,
—� = (� × {0, 1}) ∪ {s},
— P(s) = (r, 0) + (r, 1) and for all p ∈ �, P(p, 0) = P(p, 1) is obtained from

P(p) by replacing all atomic subexpressions q with (q, 0) + (q, 1),
—μ(s) = s, and for all p ∈ � and i ∈ {0, 1}, μ(p, i) = (μ(p), i).

Let α be the result of replacing each label p in α with (p, 0) ∨ (p, 1) and replacing
each atomic axis τ with τ [¬s]. Likewise for β. Then, by similar reasoning as in
the case without EDTDs, α is contained in β with respect to the EDTD D if, and
only if, ¬s ∧ 〈α[1]〉 ∧ ¬〈β[1]〉 is not satisfiable with respect to the EDTD D.

The next proposition allows us to transfer lower bounds from the case without
EDTDs to the case with EDTDs, and upper bounds in the opposite direction.

PROPOSITION 5. Let L = CoreXPathX (Y) for any set of directions X ⊆
{↑, ↓, ←, →} and set of operators Y ⊆ {≈, ∩, −, for, ∗}. For each of path contain-
ment, path satisfiability, and node satisfiability in L, the version without EDTDs
polynomially reduces to the EDTD-relativized version.

PROOF. Due to Proposition 4, it suffices to consider node satisfiability. To
reduce satisfiability of ϕ to node satisfiability with EDTDs, we construct an
EDTD that is as nonrestrictive as possible. Let ϕ be a node expression and let

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:12 B. TEN CATE AND C. LUTZ

 = {p1, . . . , pn} be the set of labels occurring in ϕ plus one additional label.
Define D := (�, P, r, μ), where

—� =
 � {s};
— P maps s to the regular expression p1 + · · · + pn and each other label to (p1 +

· · · + pn)∗;
—μ is the identity function on �.

The reason for introducing the new abstract label s is as in the proof of
Proposition 4, i.e., we have to deal with EDTDs dictating a fixed label for the
root of all trees conforming to it. Let ϕ′ be obtained from ϕ by replacing every
axis τ ∈ {↑, ↓, →, ←} with τ [¬s], and likewise for the transitive closures of these
axes. We claim that ϕ is satisfiable if, and only if, ϕ′ ∧¬s is satisfiable with respect
to D. To see this, first assume that ϕ is satisfiable. Then, there is an XML tree T and
a node d in [[ϕ]]NExpr. We may assume that all labels in T belong to
. We obtain
T ′ from T by adding a new root, above the original one, labeled with s. Then T ′
satisfies ϕ′ ∧¬s and conforms to D. Conversely, let T be a tree that conforms to D
and has a node d in [[ϕ′]]NExpr. By conformance to D, the root has label s and has a
single successor, and the label of each node other than the root node belongs to
.
We obtain T ′ from T by cutting off the root. Then, T satisfies ϕ.

The following proposition is used for transferring upper bounds from the case
without EDTDs to the case with EDTDs, provided the language in question includes
all basic axes. The proof is based on an encoding of EDTDs in CoreXPath. It is worth
noting that the argument does not require the presence of the transitive closure
operator in the language.

PROPOSITION 6. Let L = CoreXPath(X) for any X ⊆ {≈, ∩, −, for, ∗}. For
each of path containment, path satisfiability, and node satisfiability in L, the EDTD-
relativised version polynomially reduces to the version without EDTDs.

PROOF. Due to Proposition 4, it suffices to consider node satisfiability. Thus, let
ϕ be a node expression and D = (�, P, r, μ) an EDTD. By standard techniques,
we may construct in polynomial time an equivalent nondeterministic finite state
automaton (NFA) At for each regular expression P(t), t ∈ �. We may assume
without loss of generality that the sets of states Q At of these automata are disjoint.

We now introduce the notion of a witness tree, whose purpose is to witness that
a certain XML tree conforms to D. The node labels in a witness tree are from

 := � × ⋃

t∈� Q At . Each witness tree T = (N , R↓, R→, L) has to satisfy the
following conditions, where we use L1(n) to denote the first component of L(n)
and L2(n) for the second component, for all n ∈ N :

(1) if n ∈ N is the root of T , then L1(n) = r ;
(2) for each node n with (ordered) children n1, . . . , nk , there is a final state q of

the automaton AL1(n) such that the sequence of states L2(n1), . . . , L2(nk), q is
an accepting run of AL1(n) on L1(n1), . . . , L1(nk);

(3) for each leaf n, the automaton AL1(n) accepts the empty word.

Note that L2(n) may be arbitrary if n is the root node.
The existence of a witness tree T = (N , R↓, R→, L) shows that the correspond-

ing XML tree T ′ = (N , R↓, R→, L ′), with L ′(n) = μ(L1(n)) for all n ∈ N , conforms

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:13

to D. Conversely, every XML tree T ′ that conforms to D gives rise to an isomor-
phic witness tree whose node labels can be constructed from the function L ′ from
Definition 2 and suitable accepting runs of the involved NFAs.

We construct a node expression ψ , using labels from
, such that ψ is true at
the root of an XML tree T if, and only if, T is a witness tree. More precisely,
ψ is a conjunction that has five conjuncts: one for condition (1) of witness trees,
one for condition (3), and three for condition (2) stating that every run starts in an
initial state, ends in a final state, and respects the transition relation. For example, to
capture that the run respects the transition relation, we have to express the following:
whenever a node is labeled (p, q) and has a parent labeled (p′, q ′) and next sibling
labeled (p′′, q ′′), the transition relation δAp′ of the automaton Ap′ contains the triple
(q, p, q ′′), that is, ∧

(p,q),(p′,q ′),(p′′,q ′′)∈

with (q,p,q ′′)�∈δA p′

¬〈↓∗[(p′, q ′)]/↓[(p, q)]/→[(p′′, q ′′)] .

Since we work with NFAs instead of with regular expressions, full transitive closure
is not needed in ψ ; indeed, ψ is a CoreXPath node expression.

We are interested in the existence of a witness tree whose corresponding XML
tree satisfies the input expression ϕ. Thus, we take the conjunction of ψ with a
formula expressing that ϕ holds somewhere in the corresponding XML tree. More
precisely, let ϕ′ be obtained from ϕ by replacing each label p by the disjunction of
all labels in (p′, q) ∈
 such that μ(p′) = p. Then we have that ϕ is satisfiable with
restect to D if, and only if, ψ ∧ ¬〈↑〉 ∧ 〈↓∗[ϕ′]〉 is satisfiable.

Thus, all upper bounds in Table I except the one for CoreXPath↓(∩) carry over
from the unrestricted case to the EDTD-relativised case. The CoreXPath↓(∩) case
is not captured since, in Proposition 6, we assume the presence of all axes. For this
reason, the EXPSPACE-upper bound for CoreXPath↓(∩) will be shown directly with
EDTDs.

3. CoreXPath(∗, ≈) Is in ExpTime

We prove that path containment for CoreXPath(∗, ≈) is in EXPTIME using two-way
alternating tree automata.

3.1. PREPARATION. To simplify the proof, we work with a different, but equally
expressive version of CoreXPath(∗, ≈). This version differs in four aspects from the
original one:

(1) We replace path equalities with node expressions of the form loop(α), which
test whether a node is reachable from itself along α. Note that loop(α) can be
expressed as “α ≈ .”. Conversely, α ≈ β can be written as loop(α/β�), where
β� is the converse of β defined inductively as follows:

↑� = ↓
↓� = ↑
←� = →
→� = ←
.� = .

(α/β)� = (β�/α�)
(α ∪ β)� = α� ∪ β�

(α[ϕ])� = .[ϕ]/(α�)
(α∗)� = (α�)∗

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:14 B. TEN CATE AND C. LUTZ

(2) We drop node expressions 〈α〉. This can be done without loss of generality
since 〈α〉 can be expressed as loop(α/↑∗/↓∗).

(3) We replace the vertical axes ↓ and ↑ with the first-child axis ↓1 and its converse
↑1. This can be done without loss of generality since ↓ can be expressed as
↓1/→∗ and, conversely, ↓1 can be written as ↓[¬〈←〉]. Likewise for ↑ and ↑1.

(4) We replace path expressions with NFAs (non-deterministic finite word au-
tomata) whose alphabet is comprised of the basic axes ↓1, ↑1, ←, → and filter
expressions of the form .[ϕ]. This is justified by the observation that path ex-
pressions of CoreXPath(∗, ≈) are regular expressions over this alphabet if we
replace subexpressions of the form α[ϕ] with α/.[ϕ]. We call such NFAs path
automata.

Formally, the resulting version of CoreXPath, which we call CoreXPathNFA

(∗, loop), is defined as follows.

Definition 7 (CoreXPathNFA(∗, loop)). The node expressions and path automata
of CoreXPathNFA(∗, loop) are defined by simultaneous induction:

—Node expressions are built according to the following syntax rule, where p ranges
over labels from �, π over path automata, and ϕ, ψ over node expressions:
ϕ ::= p | loop(π) | � | ¬ϕ | ϕ ∧ ψ

—A path automaton is a tuple π = (Q, �, qI , qF), where Q is a finite set of states,
qI and qF are the initial and final state, and � is a finite subset of

Q × ({↓1, ↑1, →, ←} ∪ {.[ψ] | ψ is a node expression}) × Q,

The semantics is as before (cf. Table II), with

[[loop(α)]]T
NExpr = {

n | (n, n) ∈ [[α]]T
PExpr

}
and, for any path automaton π = (Q, �, qI , qF), [[π]]T

PExpr is the relation containing
all pairs (n, m) for which there is a sequence n = n0, . . . , nk = m of nodes and a
word α0 · · · αk in the language recognized by π such that for all i < m:

—either αi = .[ϕ], ni = ni+1 and ni ∈ [[ϕ]]T
NExpr

—or αi ∈ {↓1, ↑1, →, ←} and (ni , ni+1) ∈ Rαi

(where R↓1
and R↑1

are defined in the obvious way). The sequence n0, . . . , nm is
called a π -trace from n to m.

Using the equivalences stated in (1) to (4) above and the usual translation from
regular expressions to NFAs, every CoreXPath(∗, ≈) path expression can be trans-
lated in linear time to an equivalent CoreXPathNFA(∗, loop) path expression. Note that
since “skip” transitions can be defined as .[�], it is enough to have only a single
final state in NFAs.

The size of a CoreXPathNFA(∗, loop) node expression ϕ and path automaton π is
denoted by |ϕ| and |π |, and defined inductively: |p| = |�| = 1, |¬ϕ| = |ϕ| + 1,
|ϕ ∧ ψ | = |ϕ| + |ψ | + 1, |loop(π)| = |π | + 1, and |π | = |Q| + ∑

(q,.[ϕ],q ′)∈� |ϕ| if
π = (Q, �, qI , qF).

For a path automaton π = (Q, �, qI , qF) and states q, q ′ ∈ Q, we use πq,q ′ as
shorthand for (Q, �, q, q ′).

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:15

3.2. ALTERNATING TREE AUTOMATA. For our decision procedure, we use a
slightly non-standard version of two-way alternating parity tree automata (2ATAs),
which work on XML trees and can move along basic axes. In contrast, standard
2ATAs work on infinite ranked trees and cannot move to siblings. Our 2ATAs
traverse a tree using the BASIC-STEPS = {↓1, ↑1, →, ←, ε}, where the first four
steps correspond to the basic axes of CoreXPathNFA(∗, loop) and ε means staying at
the current node. For each node n of an XML tree, POSS-STEPS(n) denotes the set
of basic steps that can be performed from n (which always includes ε). For each
a ∈ POSS-STEPS(n), we will denote by n ·a the node reached from n by performing
the basic step a. In the following definition, ℘() will denote powerset, and B+(X)
will denote the set of all positive Boolean formulas over variables from X , including
true and false.

Definition 8 (2ATA). A two-way alternating tree automaton (2ATA) is a tuple
A = (Q, δ, q0, Acc), where

—Q is a finite set of states
—δ : (Q×�×℘(BASIC-STEPS))→ B+(BASIC-STEPS×Q) is the transition function.

We require that all basic steps occurring in δ(q, σ, S) belong to S.
—q0 is the initial state
— Acc : Q → N specifies a parity acceptance condition.

Intuitively, if δ(q, σ, S) = ψ , this means that when the automaton is in state q,
reads σ , and the current node allows exactly the basic steps in S, then the transition is
as described by ψ , in the usual sense of alternating automata, see, for example, Vardi
[1998]. Note that the alphabet � of 2ATAs is the same as the alphabet underlying
XML trees. Formally, the semantics is given in terms of runs.

Definition 9 (Run). A run of a 2ATA A = (Q, δ, q0, Acc) on an XML tree
T = (N , R↓, R→, L) is an (unordered and not necessarily finite) tree r = (V, E, �),
where � is a function that labels nodes with pairs (n, q) ∈ N × Q, and such that
the following conditions hold:

—Initial state: The root of r is labeled by (n, q0), where n is the root of T .
—Transition function: If �(x) = (n, q), and δ(q, L(n),POSS-STEPS(n)) = θ , then

there is a set S ⊆ (POSS-STEPS(n) × Q) that satisfies θ and such that for each
(a, q) ∈ S, x has a child y with �(y) = (n · a, q).

The run r is accepting if for each infinite path in r , the lowest number assigned by
Acc to a state occurring infinitely often on that path is even. The 2ATA A accepts T
if there is an accepting run of A on T . L(A) is the set of XML trees accepted by A.

It is shown in Vardi [1998] that the emptiness problem for two-way alternating
automata on infinite binary trees is decidable in EXPTIME. This result easily carries
over to our version of 2ATAs.

THEOREM 10. Given a 2ATA A, it is decidable in EXPTIME whether L(A) is
empty.

PROOF SKETCH. We sketch how to polynomially reduce emptiness of 2ATAs (in
our sense) to emptiness of standard 2ATAs on infinite binary trees. By an infinite
binary tree, we mean an infinite tree where every node has precisely two children

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:16 B. TEN CATE AND C. LUTZ

(the first child and the second child). In particular, these trees have no leafs. The
definition of a two-way alternating automaton on infinite binary trees differs from
one for XML trees in that the transition function does not need to take into account
the set of possible steps from the current node. Thus, the domain of the transition
function of a 2ATA on infinite binary trees is of the form Q × � rather than
Q ×� ×℘(BASIC-STEPS). In our reduction, we bridge these differences by making
the set of possible steps part of the label of the node, and by adding additional nodes
to the tree in order to turn it into an infinite tree.

More precisely, for an XML tree T = (N , R↓, R→, L), the deco version T d of T
is the infinite binary tree defined as follows. First, we see T as a finite binary tree,
by viewing R↓1

and R→ as a first child and second child relation. We then extend
this finite binary tree to an infinite binary tree by adding new nodes, so that every
node has two children in the new tree. Finally, we change the labeling function,
so that it assigns to each node n ∈ N the pair (L(n), POSS-STEPS(n)) and to each
new node a new node label ⊥. The tree T d = (N ′, R1, R2, Ld) thus obtained is an
infinite binary tree over the alphabet �d := (� × 2 BASIC-STEPS) ∪ {⊥}.

The same representation can be used on the side of the automaton: given a 2ATA
A on XML trees, we can convert A into a 2ATA A1 on infinite binary trees, such
that A1 accepts exactly the deco versions of trees accepted by A. Hence, testing
emptiness of A reduces to testing emptiness of A1. Roughly, the automaton A1 is
constructed by taking a copy of A where each transition δ(q, σ, S) = ψ is replaced
by a transition δ(q, (σ, S)) = ψ , and then intersecting the automaton with automata
that check that (i) the sets of possible steps encoded by the labels of the nodes of
the deco tree are consistent, (ii) whenever a node is labeled with ⊥, then so are
all its descendants, and (iii) on every path, the ⊥ symbol eventually occurs. Note
that intersection is trivial for alternating automata: to intersect 2ATAs A1, A2 with
initial states q0 and q ′

0, respectively, it suffices to take the disjoint union of A1 and
A2, and to add a new initial state such that for any symbol and set of possible steps,
the transition formula is (ε, q0) ∧ (ε, q ′

0).

3.3. THE REDUCTION. Our aim is to translate each CoreXPathNFA(∗, loop) node
expression ϕ into a 2ATA Aϕ such that Aϕ accepts precisely the XML trees that
satisfy ϕ at some node. To prepare for this translation, we give an inductive char-
acterization of the node sets defined by expressions of the form loop(α).

LEMMA 11. Let π = (Q, �, qI , qF) be a path automaton, and
T = (N , R↓, R→, L) an XML tree. Define LOOPSπ := ⋃

s≥0LOOPS(s)
π where

LOOPS(0)
π = {(n, q, q) | n ∈ N , q ∈ Q} ∪

{(n, qi , q j) | (qi , .[ϕ], q j) ∈ � and n ∈ [[ϕ]]T
NExpr}.

and, for all s > 0, LOOPS(s)
π is LOOPS(s−1)

π extended with

(1) (n, qi , q�) if n Rτ m with τ ∈ {↓1, ↑1, ←, →}, (m, q j , qk) ∈LOOPS(s−1)
π , and

(qi , τ, q j), (qk, τ
�, q�), ∈ �;

(2) (n, qi , qk) if (n, qi , q j) ∈LOOPS(s−1)
π and (n, q j , qk) ∈LOOPS(s−1)

π .

Then (n, q, q ′) ∈LOOPSπ if, and only if, n ∈ [[loop(πq,q ′)]]T
NExpr.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:17

TABLE III. TRANSITION FUNCTION OF THE 2ATA Aϕ

δ(�, qp, POSS-STEPS) = � if � = p, ⊥ otherwise
δ(�, q¬p, POSS-STEPS) = ⊥ if � = p, � otherwise

δ(�, qψ∧χ , POSS-STEPS) = (ε, qψ) ∧ (ε, qχ)
δ(�, q¬(ψ∧χ), POSS-STEPS) = (ε, q¬ψ) ∨ (ε, q¬χ)

δ(�, qloop(πqi ,q j), POSS-STEPS) = � if qi = q j , otherwise∨
(qi ,.[χ],q j)∈� (ε, qχ)

∨ ∨
(qi ,τ,qk),(q�,τ

�,q j)∈�,τ∈POSS-STEPS (τ, qloop(πqk ,q�
))

∨ ∨
qk∈Q ((ε, qloop(πqi ,qk)) ∧ (ε, qloop(πqk ,q j)))

δ(�, q¬loop(πqi ,q j), POSS-STEPS) = ⊥ if qi = q j , otherwise∧
(qi ,.[χ],q j)∈� (ε, q¬χ)

∧ ∧
(qi ,τ,qk),(q�,τ

�,q j)∈�,τ∈POSS-STEPS (τ, q¬loop(πqk ,q�
))

∧ ∧
qk∈Q ((ε, q¬loop(πqi ,qk)) ∨ (ε, q¬loop(πqk ,q j)))

PROOF. The “only if” direction is the easy direction: it can be shown by in-
duction on s that (n, q, q ′) ∈LOOPS(s)

π implies n ∈ [[loop(πq,q ′)]]T
NExpr, using the

semantics.
For the “if” direction, let n ∈ [[loop(πq,q ′)]]T

NExpr. Then there is a sequence t =
n0, . . . , nk ∈ N with n = n0 = nk and a word w = α0 · · · αk−1 in the language
recognized by π such that for all i < k,

—either αi = .[ϕ], ni = ni+1, and ni ∈ [[ϕ]]T
NExpr

—or αi ∈ {↓1, ↑1, →, ←} and (ni , ni+1) ∈ Rαi .

We prove by induction on k that the existence of such t and w implies that
(n, q, q ′) ∈LOOPSπ . The case k = 0 is trivial by definition of LOOPS(0)

π . If k = 1, then
α0 = .[ϕ] for some node expression ϕ and again we get (n, q, q ′) ∈LOOPS(0)

π . Now
let k ≥ 2. First assume that there is an i ∈ {1, . . . , k −1} such that ni = n. Then we
split t into n0, . . . , ni and ni , . . . , nk and likewise for w , use the induction hypothesis
and (2). Now assume that there is no such i . Since we use the functional relations
↓1, ↑1, →, ← as our basic axes, we then have α0 = α�

k−1 ∈ {↓1, ↑1, →, ←} and
n1 = nk−1. It remains to apply the induction hypothesis and (1).

We are now ready to convert a CoreXPathNFA(∗, loop) node expression ϕ into
a 2ATA Aϕ . Let ϕ′ = loop(↓∗[ϕ]/↑∗), that is, ϕ is satisfiable if, and only if, ϕ′
is satisfiable at the root of an XML tree. Let cl(ϕ′) be the smallest set of node
expressions containing ϕ′ and such that

—cl(ϕ′) is closed under taking subexpressions;
—cl(ϕ′) is closed under single negations (i.e., whenever ψ ∈ cl(ϕ′) and ψ is not

already of the form ¬ψ ′, then ¬ψ ∈ cl(ϕ′)); and
—for all loop(π) ∈ cl(ϕ′) and qk, q� states of π , loop(πqk ,q�

) also belongs to cl(ϕ′).

The cardinality of cl(ϕ′) and the size of its elements (as defined in Section 3.1)
is bounded polynomially in the size of ϕ. We now define Aϕ := (Q, δ, q0, Acc),
where Q = {qψ | ψ ∈ cl(ϕ′)}, δ is defined as in Table III, q0 = qϕ′ , Acc assigns
1 to all states of the form qloop(πqi ,q j), and 2 to all others. In Table III, POSS-STEPS

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:18 B. TEN CATE AND C. LUTZ

ranges over all subsets of BASIC-STEPS, � is the transition relation of πqi ,q j , and the
case qloop(π) is identified with qloop(πqI ,qF), with qI and qF the initial and final state
of π . The chosen parity condition ensures that no state of the form qloop(πqi ,q j) may
occur forever from some point onwards on a path in the run. This is necessary to
guarantee that the looping path automaton π will not forever delay its return to the
node where the loop originated.

LEMMA 12. For all XML trees T , T ∈L(Aϕ) if, and only if, [[ϕ]]T
NExpr �= ∅.

PROOF. It suffices to show that T = (N , R↓, R→, L) ∈ L(Aϕ) if, and only
if, T satisfies ϕ′ at the root. For the “if” direction, we inductively construct a
run r = (V, E, �) of Aϕ on T such that for all x ∈ V , �(x) = (n, qψ) implies
n ∈ [[ψ]]T

NExpr. We start with r consisting of a single root node labeled (n, qϕ′), where
n is the root of T . For the induction step, assume that x ∈ V with �(x) = (n, qψ)
and δ(L(n), qψ, POSS-STEPS(n)) /∈ {�}. If ψ = ϑ ∧ χ , then we add two successors
y and y′ of x and set �(y) = (n, qϑ) and �(y′) = (n, qχ). The case ψ = ¬(ϑ ∧ χ)
reflects the definition of δ in an analogous way. Now let ψ = loop(πqi ,q j), P
be the states of π , and � the transition relation. By definition of δ and since
δ(L(n), qψ, POSS-STEPS(n)) �= �, we have qi �= q j . Since n ∈ [[ψ]]T

NExpr and by
Lemma 11, we have that (n, qi , q j) ∈ LOOPS(s)

π for some s ≥ 0, and one of the
following three cases applies:

(1) (qi , .[χ], q j) ∈ � and n ∈ [[χ]]T
NExpr. Then, we add a new successor y of x with

�(y) = (n, qχ).
(2) There is m ∈ N , qk, q� ∈ P , and τ ∈ {↓1, ↑1, ←, →} with n Rτ m, (m, qk, q�) ∈

LOOPS(s−1)
π , and (qi , τ, qk), (q�, τ

�, q j) ∈ �. Then we add a successor y of x
with �(y) = (m, qloop(πqk ,q�

)).

(3) There is a qk ∈ P with (n, qi , qk), (n, qk, q j) ∈ LOOPS(s−1)
π . Then we add two

successors y and y′ of x with �(y) = (n, qloop(πqi ,qk)) and �(y′) = (n, qloop(πqk ,q j)).

The case ψ = ¬loop(πqi ,q j) is treated dually, c.f. the definition of δ. It can be
verified that the constructed run is an accepting run of Aϕ on T .

For the “only if” direction, suppose there is an accepting run r of Aϕ on T . It
suffices to prove that if (n, qψ) occurs as a label in r , then n ∈ [[ψ]]T

NExpr. The proof
is by induction on ψ with restect to the smallest transitive relation “≺” on cl(ϕ′)
that satisfies the following conditions for all ϑ ∈ cl(ϕ′):

—χ ≺ ϑ for all strict subexpressions χ of ϑ ;
—¬χ ≺ ϑ for all strict subexpressions χ of ρ if ϑ = ¬ρ.

We only do the interesting two cases explicitly, starting with ψ = loop(πqi ,q j). We
assign to each node x in r a rank δ(x) according to the number of consecutive
occurrences of labels of the form (m, qloop(πq,q′)) from x onwards. More precisely,
δ(x) is the length of the largest sequence of nodes (x1, . . . , xk) each having a label
of the form (m, qloop(πq,q′)) such that x1 = x and xi R↓xi+1 for all i < k (note that
δ(x) can be 0). Due to the acceptance condition, δ(x) is always finite. We prove by
induction on δ(x) that if x is labeled (n, qloop(πqi ,q j)), then n ∈ [[loop(πqi ,q j)]]

T
NExpr. If

δ(x) = 1, then the definition of δ yields that q = q ′ or there is a (qi , .[χ], q j) ∈ �
and a successor y of x with label (n, qχ). In the former case, we are done. In

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:19

the latter, we apply the (outer) induction hypothesis and the semantics. Now let
δ(x) > 1. By definition of δ, one of the following two cases applies:

(a) there are (qi , τ, qk), (q�, τ
�, q j) ∈ �, τ ∈ POSS-STEPS, and a successor y of x

with label (m, qloop(πqk ,q�
)) and n Rτ m;

(b) there are qk ∈ Q and successors y and y′ of x with labels (n, qloop(πqi ,qk)) and
(n, qloop(πqk ,q j)).

In both cases, it suffices to apply the (inner) induction hypothesis and the
semantics.

Now for the case ψ = ¬loop(πqi ,q j). Assume towards a contradiction that there is
a node x in r with label (n, q¬loop(πqi ,q j)) and n ∈ [[loop(πqi ,q j)]]

T
NExpr. By Lemma 11,

n ∈ LOOPS(s)
π for some s ≥ 0. Choose an x with the above properties such that s

is minimal. If s = 0, we have qi = q j or there is a (qi , .[χ], q j) ∈ � with n ∈
[[χ]]T

NExpr. In the former case, we have δ(L(n), q¬loop(πqi ,q j)) = ⊥, in contradiction
to the existence of r . For the latter case, we note that, by definition of δ, x has
a successor y with label (n, q¬χ). Thus the (outer) induction hypothesis yields
n ∈ [[¬χ]]T

NExpr, which is a contradiction. Now let s > 0. Then one of the following
two cases applies:

(a) there are m ∈ N , τ ∈ {↓1, ↑1, ←, →}, and qk, q� ∈ Q with n Rτ m,
(m, qk, q�) ∈LOOPS(s−1)

π , and (qi , τ, qk), (q�, τ
�, q j), ∈ �;

(b) there is qk ∈ Q with (n, qi , qk) ∈LOOPS(s−1)
π and (n, qk, q j) ∈LOOPS(s−1)

π .

We only consider case (a), as case (b) is similar. By definition of δ,
there is a successor y of x in r with label (m, q¬loop(πqk ,q�

)). By minimal-

ity of i , m ∈ [[¬loop(πqk ,q�
)]]T

NExpr. By Lemma 11, this is a contradiction to
(m, qk, q�) ∈LOOPS(s−1)

π .

By Theorem 10 and Lemma 12 and since all components of Aϕ are of size
polynomial in |ϕ|, we obtain the following result.

THEOREM 13. Satisfiability of CoreXPathNFA(∗, loop) node expressions is in
EXPTIME.

By Proposition 4, together with the facts that (i) there is a linear translation from
CoreXPath(∗, ≈) to CoreXPathNFA(∗, loop) and (ii) path containment for CoreXPath
[Benedikt et al. 2008] is EXPTIME-hard, we thus obtain

COROLLARY 14. Path containment for CoreXPath(∗, ≈) is EXPTIME-complete.

By Proposition 6, the same holds for path containment relative to an EDTD.

4. CoreXPath(∗, ∩) is in 2-ExpTime

We show that path containment for CoreXPath(∗, ∩) is decidable in 2-EXPTIME using
a satisfiability-preserving and exponential translation to CoreXPathNFA(∗, loop). If the
nesting depth of path intersection is bounded by a constant, the translation becomes

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:20 B. TEN CATE AND C. LUTZ

polynomial. It follows that, in this case, path containment for CoreXPath(∗, ∩) is
only EXPTIME-complete.

The translation consists of two steps. First, we give an exponential
and equivalence-preserving translation of CoreXPath(∗, ∩) expressions into
CoreXPathNFA(∗, loop) extended with a let construct, which allows to introduce ab-
breviations for node expressions. Second, we show that the let construct can be
eliminated in polynomial time while preserving (un)satisfiability of expressions.
In Section 8, we (re)use the first step to derive an upper bound on the relative
succinctness of CoreXPath(∗, ∩) compared to CoreXPath(∗, ≈).

4.1. ADDING A let CONSTRUCT TO CoreXPathNFA(∗, loop). We use CoreXPathNFA

(∗, loop, let) to denote the extension of CoreXPathNFA(∗, loop) with a let construct.
In its simplest form, this construct allows to build node expressions of the form
“let p := ϕ in ψ,” with p ∈ � a label. This let expression introduces p as an
abbreviation for ϕ in ψ , that is, the expression is equivalent to ψ with the label p
uniformly replaced with ϕ. Observe that labels p, p′ that are bound by let behave
slightly different than usual: depending on the formulas that p and p′ abbreviate,
p ∧ p′ is not necessarily unsatisfiable if p �= p′. The let construct clearly does not
add any expressive power, but it makes expressions exponentially more succinct.

In CoreXPathNFA(∗, loop, let), we admit a generalized version of let that admits
sequences of bindings. An environment is a sequence ρ = (p1, ϕ1), . . . , (pn, ϕn),
where the first component of each pair is an atomic label, and the second is a node
expression. We use “let ρ in ψ” as shorthand for “let p1 := ϕ1 in let p2 := ϕ2 . . . in ψ”.

Path automata of CoreXPathNFA(∗, loop, let) are defined as for
CoreXPathNFA(∗, loop) except that, of course, they may contain tests on
CoreXPathNFA(∗, loop, let) node expressions. An extended path automaton
(“EPA”) is a pair (π, ρ), with π a CoreXPathNFA(∗, loop, let) path automaton and ρ
an environment. It is simply a succinct representation for πρ , the path automaton
obtained from π by replacing all labels bound in ρ by their definition (in the
appropriate order).

The size of node expressions and (extended) path automata is defined by simul-
taneous recursion, as in Section 3.1, where |let p := ϕ in ψ | = |ϕ| + |ψ | + 1.
The size of an environment ρ = ((p1, ϕ1), . . . , (pn, ϕn)) is �i≤n(|ϕi | + 1) and
|let ρ in ψ | = |ρ| + |ψ |. The size of an EPA (π, ρ) is simply |π | + |ρ|.

4.2. TRANSLATION FROM CoreXPath(∗, ∩) TO CoreXPathNFA(∗, loop, let). The
following lemma provides the basis of the translation from CoreXPath(∗, ∩) to
CoreXPathNFA(∗, loop, let). In the following, we use |π |S to denote the number of
states of the (extended) path automaton π .

LEMMA 15. For all CoreXPathNFA(∗, loop, let) EPAs (π1, ρ1) and (π2, ρ2), there
is a CoreXPathNFA(∗, loop, let) EPA (π∩, ρ∩) that is equivalent to π1

ρ1 ∩ π2
ρ2 and

(1) |π∩|S = |π1|S · |π2|S,
(2) |π∩| = |π1|2S · |π2|S + |π1|S · |π2|2S + |π1|S · |π2|S,
(3) |ρ∩| ≤ |ρ1| + |ρ2| + |π1|2S · (|π1| + 2) + |π2|2S · (|π2| + 2).

PROOF. Let π1 = (Q, �, qI , qF) and π2 = (Q′, �′, q ′
I , q ′

F), and assume with-
out loss of generality that the sets of atomic labels bound by ρ1 and ρ2 are disjoint.
The idea for defining π∩ is as follows. Suppose that m and n are nodes in an XML

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:21

tree T such that (m, n) ∈ [[π]]T
PExpr ∩ [[π ′]]T

PExpr. This is witnessed by a π -trace t
from m to n and a π ′-trace t ′ from m to n. We want the automaton π∩ to check
the existence of both traces, but face the problem that t and t ′ may follow different
routes through T . Clearly, there is a unique cycle-free path p from m to n in T and
both t and t ′ must travel along p, but may additionally make loops that return to
the same point on p where they diverted. Thus, π∩ can verify the existence of the
two traces by travelling along p and using loop to cut short all loops of t and t ′ that
diverge from p.

To implement this idea, we define π∩ as (Q × Q′, �∩, 〈q0, q ′
0〉, 〈q f , q ′

f 〉), where
the transition relation �∩ is the smallest such that for all q, r ∈ Q, q ′, r ′ ∈ Q′, and
τ ∈ {↓1, ↑1, →, ←},
—(q, τ, r) ∈ � and (q ′, τ, r ′) ∈ �′ implies (〈q, q ′〉, τ, 〈r, r ′〉) ∈ �∩;
—(〈q, q ′〉, .[pπ1,q,r], 〈r, q ′〉) ∈ �∩;
—(〈q, q ′〉, .[pπ2,q ′,r ′], 〈q, r ′〉) ∈ �∩.

Here, pπ1,q,r and pπ2,q ′,r ′ are new labels that will be bound to loop((π1)q,r) and
loop((π2)q,r) in the environment ρ∩. More precisely, we define ρ∩ as the con-
catenation of ρ1 and ρ2, preceded by pairs of the form (pπ1,q,r , loop((π1)q,r)) and
(pπ2,q ′,r ′, loop((π2)q ′,r ′) for all q, r ∈ Q and q ′, r ′ ∈ Q′. Recall that we assumed
that the sets of atomic labels bound by ρ1 and ρ2 are disjoint, so the order of the
concatenation does not matter. It is easy to see that π∩ and ρ∩ satisfy (1)–(3). Using
the intuitions provided above, it is also not hard to prove that for all XML trees T ,
[[(π∩)ρ

∩
]]T

PExpr = [[π1
ρ1]]T

PExpr ∩ [[π2
ρ2]]T

PExpr.

We now prove the central lemma of this section. Recall from Section 2.3 that
the size of a CoreXPath(∗, ∩) node expression ϕ or path expression α (denoted by
|ϕ| and |α|) is the number of nodes in the syntax tree of that expression, i.e., it is
total number of occurrences of constructors, labels, and atomic path expressions
↓, ↑, →, ←, and “.”.

LEMMA 16.

(1) For every CoreXPath(∗, ∩) node expression ϕ there is an equivalent
CoreXPathNFA(∗, loop, let) node expression ψ with |ψ | ≤ 25|ϕ|.

(2) For every CoreXPath(∗, ∩) path expression α there is an equivalent
CoreXPathNFA(∗, loop, let) EPA (π, ρ) such that
(a) |π |S ≤ 2|α|;
(b) |π | ≤ 22|α|;
(c) |ρ| ≤ 25|α|.

PROOF. The two claims are proved by simultaneous induction.

Node Expressions. The base case is trivial since all atomic CoreXPath(∗, ∩)
node expressions are also CoreXPathNFA(∗, loop) node expressions. The induc-
tive argument for the Boolean connectives ∧ and ¬ is straightforward. If ϕ is
of the form 〈α〉, then the induction hypothesis yields that α is equivalent to a
CoreXPathNFA(∗, loop, let) EPA (π, ρ) satisfying the conditions listed under (2). Let
π ′ be obtained from π by adding additional transitions from the final state to itself

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:22 B. TEN CATE AND C. LUTZ

labeled by all possible basic steps in the tree, that is, ↓1, ↑1, ←, →. Then, let ψ be
the node expression let ρ in loop(π ′). It is not hard to see that ψ is equivalent to ϕ.
Moreover, |ψ | ≤ |ρ| + |π ′| + 2 which is bounded by 25|ϕ|.

Path Expressions. The base case, that is, for α of the form τ , τ ∗ or “.”, is easy: the
corresponding path automaton consists only of two states, connected by a single
transition labeled appriopriately. For the regular operations /, ∪, and ∗, we apply
the usual operations on NFAs. As for the corresponding environments, we may
assume without loss of generality that the atomic labels bound in one of the two
environments do not occur in the other environment, and vice versa, so that we
can concatenate the sequences. It is easy to see that the resulting EPA satisfies all
conditions.

Let α be of the form α1[ϕ]. By the induction hypothesis, we can find an EPA
(π1, ρ1) equivalent to α1 and a CoreXPathNFA(∗, loop, let) node expression ψ equiv-
alent to ϕ. We construct the new path automaton by adding one extra state to π1,
which becomes the new final state, and adding an edge from the old final state to
the new one, labeled by .[p], for a fresh p. We construct ρ by prefixing ρ1 with the
pair (p, ψ). It is again easy to show that all requirements are satisfied. In particular,

—|π |S = |π1|S + 1 =IH 2|α1| + 1 ≤ 2|α|

—|π | = |π1| + 3 =IH 22|α1| + 3 ≤ 22|α|

—|ρ| = |ρ1| + |ψ | + 1 ≤IH 25|α1| + 25|ϕ| + 1 ≤ 25|α|

where the subscript IH indicates that we use the induction hypothesis.
Finally, let α be of the form α1 ∩α2. By the induction hypothesis, there are EPAs

(π1, ρ1) and (π2, ρ2) for α1 and α2. Take (π∩, ρ∩) from Lemma 15. We will show
that (π∩, ρ∩) satisfies all requirements. In the following equations, we use Lem in
subscript to indicate use of the properties listed in Lemma 15, and IH to indicate
that we use the induction hypothesis.

|π∩|S =Lem |π1|S · |π2|S ≤IH 2|α1| · 2|α2| ≤ 2|α|

|π∩| =Lem |π1|2S · |π2|S + |π2|2S · |π1|S + |π2|S · |π1|S

≤IH 3(22|α1| · 22|α2|)
≤ 22|α|

|ρ∩| ≤Lem |ρ1| + |ρ2| + |π1|2S · (|π1| + 2) + |π2|2S · (|π2| + 2)

≤IH 25|α1| + 25|α2| + 22|α1| · (22|α1| + 2) + 22|α2| · (22|α2| + 2)

≤ 25|α|

The translation in the proof of Lemma 16 results in an exponential blow-up in the
size of expressions. This blow-up disappears if we impose a constant bound on the
nesting depth of path intersection, which is defined in the natural way. Formally, we
first define the direct intersection depth of a path expression: dd(τ) = dd(τ ∗) = 0
for τ ∈ {↓, ↑, →, ←}, dd(α/β) = dd(α ∪β) = max{dd(α), dd(β)}, dd(α ∩β) =
max{dd(α), dd(β)}+ 1, and dd(α[ϕ]) = dd(α). Then, the intersection depth d(α)
of a path expression α (respectively, d(ϕ) of a node expression ϕ) is the maximum
direct intersection depth of any path expression occurring in α (respectively, in ϕ),
possibly inside a node expression.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:23

LEMMA 17. Let k ≥ 0 be a constant.

(1) For every CoreXPath(∗, ∩) node expression ϕ with d(ϕ) ≤ k, there is an equiv-
alent CoreXPathNFA(∗, loop, let) node expression ψ with |ψ | ≤ |ϕ|2k+2

.
(2) For every CoreXPath(∗, ∩) path expression α with d(α) ≤ k, there is an equiv-

alent CoreXPathNFA(∗, loop, let) EPA (π, ρ) such that
(a) |π |S ≤ |α|2k

;
(b) |π | ≤ |α|2k+1

;
(c) |ρ| ≤ |α|2k+2

.

PROOF. The translation is identical to the one in the proof of Lemma 16. Here,
we only (re)count the size of the obtained expressions and automata. Through-
out the calculations, we make use of the binomial theorem, indicating nontrivial
applications with “Bin”. We only consider the nontrivial cases of the induction.

Node Expressions. Let ϕ be of the form 〈α〉, and let ψ be constructed as in the
proof of Lemma 16. Then |ψ | ≤ |ρ| + |π ′| + 2 ≤IH |α|2k+2 + |α|2k+1 + 2 ≤Bin

|ϕ|2k+2
.

Path Expressions. Let α be of the form α1[ϕ]. By induction hypothesis, we obtain
an EPA (π1, ρ1) equivalent to α1 and a CoreXPathNFA(∗, loop, let) node expression ψ
equivalent to ϕ. We construct the new EPA (π, ρ) as in the proof of Lemma 16.

Then, we have:

—|π |S = |π1|S + 1 =IH |α1|2k + 1 ≤ |α|2k

—|π | = |π1| + 3 =IH |α1|2k+1 + 2 ≤Bin |α|2k+1

—|ρ| = |ρ1| + |ψ | + 1 ≤IH |α1|2k+2 + |ϕ|2k+2 + 1 ≤Bin |α|2k+2

Now let α be of the form α1 ∩α2. From the induction hypothesis, we obtain EPAs
(π1, ρ1) and (π2, ρ2) for α1 and α2. As in the proof of Lemma 16, take (π∩, ρ∩)
from Lemma 15. Then

|π∩|S =Lem |π1|S · |π2|S

≤IH |α1|2k−1 · |α2|2k−1

≤ |α|2k

|π∩| =Lem |π1|2S · |π2|S + |π2|2S · |π1|S + |π1|S · |π2|S

≤IH

(
|α1|2k−1

)2
· |α2|2k−1 +

(
|α2|2k−1

)2
· |α1|2k−1 + |α1|2k−1 · |α2|2k−1

= |α1|2k · |α2|2k−1 + |α2|2k · |α1|2k−1 + |α1|2k−1 · |α2|2k−1

≤Bin |α|2k+1

|ρ∩| =Lem |ρ1| + |ρ2| + |π1|2S · (|π1| + 2) + |π2|2S · (|π2| + 2)
≤IH |α1|2k+2 + |α2|2k+2 + |α1|2k · (|α1|2k+1 + 2) + |α2|2k · (|α2|2k+1 + 2)
= |α1|2k+2 + |α2|2k+2 + |α1|2k+2 + 2|α1|2k + |α2|2k+2 + 2|α2|2k

= 2|α1|2k+2 + 2|α2|2k+2 + 2|α1|2k + 2|α2|2k

≤Bin |α|2k+2

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:24 B. TEN CATE AND C. LUTZ

4.3. PUTTING THINGS TOGETHER. Lemma 16 provides a single exponential
translation from CoreXPath(∗, ∩) to CoreXPathNFA(∗, loop, let). From Section 3, we
also know that satisfiability of CoreXPathNFA(∗, loop) node expressions is decid-
able in EXPTIME. The following lemma allows us to combine these two facts by
eliminating the let construct.

LEMMA 18. Given any CoreXPathNFA(∗, loop, let) node expression ϕ one can
compute in polynomial time an equi-satisfiable CoreXPathNFA(∗, loop) node expres-
sion ϕ′.

PROOF. The idea is to materialize in XML trees the labels that are bound by let
constructs, and to “axiomatize” that they behave in the same way as the formulas
they abbreviate. A problem is posed by the fact that nodes in XML trees can only
have one label, but different labels from let constructs may abbreviate formulas
that are not interpreted disjointly. The solution is to shift such labels from the node
where they are supposed to hold to a newly introduced child.

Let ϕ be a CoreXPathNFA(∗, loop, let) node expression and P the set of labels
bound by some occurrence of the let construct in ϕ. We may assume without loss
of generality that (i) no atomic label is bound by two different occurrences of the
let construct, and (ii) for any subformula of ϕ of the form let p := ψ in χ , the only
(other) occurrences of p in ϕ are inside χ .

We first introduce some convenient shorthands. For node expressions ψ , χ , and
atomic labels p, let

—ψ↓p denote the result of replacing all occurrences of the label p in ψ with 〈↓[p]〉;
—equiv(ψ, χ) be shorthand for ¬(〈↑∗/↓∗[ψ∧¬χ]〉∨〈↑∗/↓∗[χ∧¬ψ]〉), expressing

that ψ and χ are true at precisely the same nodes.

For any subnode expression ψ of ϕ, let ψ∗ be the node expression obtained from
ψ by replacing

(1) all subexpressions let p := θ in χ with χ↓p,
(2) every axis τ ∈ {↓, ↑, ←, →} with τ [¬ ∨

p∈P], and likewise for the transitive
closures of these axes.

Note that replacing all axes τ by τ [¬ ∨
p∈P] in this way has the consequence that

the obtained expression is blind to nodes satisfying
∨

p∈P , and hence, its truth value
is not affected by the introduction of the new nodes.

Finally, letϕ′ be the conjunction ofϕ∗ and, for every subexpression let p := ψ in χ
of ϕ, the expression

equiv(〈↓p〉, ψ∗) ∧ ¬〈↓∗[p]/↓〉 ∧ ¬
〈
↓∗[p]/→[¬

∨
q∈P

q]

〉
.

The last two conjuncts simply say that the newly introduced nodes are leafs and can-
not have “normal” nodes to their right (this is necessary, for example, to preserve un-
satisfiability of node expressions 〈↓∗〉∧¬〈↓〉 and 〈→∗〉∧¬〈→〉, respectively). It can
be shown that ϕ′ is satisfiable if, and only if, ϕ is, and that |ϕ′| is quadratic in |ϕ|.

It is clear from the proofs that the size bounds in Lemma 16 and 17 are also bounds
on the time needed to compute the translations. Thus, by combining Lemma 16,
Lemma 17, and Lemma 18 with Theorem 13, we obtain

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:25

THEOREM 19. Path containment for CoreXPath(∗, ∩) is in 2-EXPTIME. It is in
EXPTIME when there is a constant bound on the intersection depth of the input
expression.

By Proposition 6, the same holds for path containment relative to an EDTD. A
matching lower bound will be proved in Section 6.

5. CoreXPath↓(∩) is in ExpSpace

We consider CoreXPath↓(∩), the downward fragment of CoreXPath(∩), and show
that path containment can be decided in EXPSPACE. As before, we exploit Propo-
sition 4 and prove the upper bound only for node satisfiability. In contrast to the
previous sections, we prove the upper bound directly for the case with EDTDs.
By Proposition 5, it carries over to the case without EDTDs. Our proof is
inspired by Ladner’s PSPACE algorithm for satisfiability in the modal logic K4
[Ladner 1977].

As a preliminary, we show how to get rid of union and intersection in path
expressions, at the expense of an exponential blowup. We call a CoreXPath↓(∩)
path expression simple if it is of the form α1/ · · · /αn , n ≥ 1, where each αi is of
the form ↓, ↓∗ or .[ϕ].

LEMMA 20. For every CoreXPath↓(∩) path expression α, there is a set of simple
CoreXPath↓(∩) path expressions inst(α) such that

(i) |inst(α)| is 2O(|α|2),

(ii) for each β ∈ inst(α), |β| ≤ 4 · |α|,
(iii) α is equivalent to

⋃
inst(α), and

(iv) each β ∈ inst(α) contains only node expressions that occur in α.

PROOF. We proceed in two steps. First, we show that the intersection of two
simple path expressions can be written as a union of simple path expressions. To
simplify the presentation, during this proof we also admit the simple path expression
ε of length zero (i.e., a concatenation of zero steps, which is equivalent to .[�]),
and treat α/ε as identical to α. For simple path expressions α and β (which may be
ε), we define int{α, β} by induction on |α| + |β| as follows:

int{α} := {α}
int{ε, .[ϕ]/β} := {.[ϕ]/γ | γ ∈ int{ε, β}}
int{ε, ↓/β} := ∅
int{ε, ↓∗/β} := int{ε, β}
int{.[ϕ]/α, β} := {.[ϕ]/γ | γ ∈ int{α, β}}
int{↓/α, ↓/β} := {↓/γ | γ ∈ int{α, β}}
int{↓/α, ↓∗/β} := int{↓/α, β} ∪ {↓/γ | γ ∈ int{α, ↓∗β}}
int{↓∗/α, ↓∗/β} := {↓∗/γ | γ ∈ int{↓∗/α, β}} ∪ {↓∗/γ | γ ∈ int{α, ↓∗/β}}

By induction on |α| + |β|, one can show that
⋃

int{α, β} is equivalent to α ∩ β,
|int{α, β}| is bounded by 22(|α|+|β|), and each γ ∈ int{α, β} satisfies |γ | ≤ |α| + |β|.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:26 B. TEN CATE AND C. LUTZ

For any CoreXPath↓(∩) path expression α, we now define the set of simple path
expressions inst(α) inductively as follows:

inst(α) := {α} for α of the form ↓, ↓∗, or .[ϕ]
inst(↓[ϕ]) := {↓/.[ϕ]}
inst(↓∗[ϕ]) := {↓∗/.[ϕ]}
inst(.) := {.[�]}
inst(α1/α2) := {α′

1/α
′
2 | each α′

i ∈ inst(αi)}
inst(α1 ∪ α2) := inst(α1) ∪ inst(α2)
inst(α1 ∩ α2) := ⋃{int{α′

1, α
′
2} | each α′

i ∈ inst(αi)}
By induction on |α| + |β|, one can show that

⋃
inst(α) is equivalent to α, |inst(α)|

is bounded by 24(|α|2), and each γ ∈ inst(α) satisfies |γ | ≤ 4 · |α| (note that |inst(α1 ∩
α2)| ≤ 28|α1|+8|α2| · 24|α1|2 · 24|α2|2 , which, by the Binomial theorem, is less than
24(|α1|+|α2|+1) = 24|α1∩α2|). Moreover, all node expressions occurring in expressions
from inst(α) occur in α.

We can now define, for each CoreXPath↓(∩) node expression ϕ, two important
sets of expressions, namely sub(ϕ) and aux(ϕ). The set sub(ϕ) consists of all node
subexpressions of ϕ, that is, node expressions that occur as a subterm of ϕ (possibly
nested inside a path expression occurring in ϕ). The set aux(ϕ) consists of all node
expressions of the form 〈β〉 where β is a suffix of a simple path expression in inst(α)
for some 〈α〉 ∈ sub(ϕ). Here, by a suffix of a simple path expression α1/ · · · /αn ,
we will mean any simple path expression αi/ · · · /αn (1 ≤ i ≤ n).

To illustrate these definitions, consider the CoreXPath↓(∩) node expression

ϕ = p ∧ 〈↓∗[q]/↓∗ ∩ ↓∗[r]/↓∗〉
The set of subexpressions sub(ϕ) consists only of ϕ itself, p, 〈↓∗[q]/↓∗ ∩
↓∗[r]/↓∗〉, q, and r . As the reader may verify, inst(↓∗[q]/↓∗ ∩ ↓∗[r]/↓∗) =
{↓∗/.[q]/↓∗/.[r]/↓∗, ↓∗/.[q]/↓∗/.[r], ↓∗/.[r]/↓∗/.[q]/↓∗, ↓∗/.[r]/↓∗/.[q]}, and
therefore aux(ϕ) consists of all node expressions 〈β〉 with β a suffix of one of these
four simple path expressions.

An important intuition to keep in mind is that sub(ϕ) ∪ aux(ϕ) contains all node
expressions that one might need to consider in order to compute the set of nodes
satisfying ϕ by induction on node expressions only (as opposed to a simultaneous
induction on node expressions and path expressions).

LEMMA 21. If a CoreXPath↓(∩) node expression ϕ0 is satisfiable with respect
to an EDTD D = (�, P, r, μ), then it is satisfiable in an XML tree of height
2O(|ϕ0|3) · |�| conforming to D.

PROOF. The basic idea of the proof, which is essentially a pumping argument,
is that every sufficiently long branch in an XML tree satisfying ϕ0 must contain
two nodes, say n R↓+m, that are of the same “type” (recall that we use ↓+ as
a shorthand for ↓/↓∗, that is, R↓+ is the proper descendant relation). Then, we
can shorten the path by replacing the subtree rooted at n with the subtree rooted
at m, while preserving the truth of ϕ0. The main difficulty is to formulate the
right notion of a “type” of a node n. Roughly speaking, it contains the following
information: (i) it specifies which subformulas of ϕ0 are satisfied at n, as well as
at each ancestor of n within a certain small distance, (ii) whenever n (or one of
the mentioned ancestors) satisfies a subexpression of ϕ0 of the form 〈α〉, the type

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:27

function indicates a β ∈ inst(α) with 〈β〉 satisfied at n and a witnessing β-path; and
(iii) it specifies the abstract label that is assigned to n by the function L ′ witnessing
that the tree conforms to the EDTD (c.f., Definition 2).

For the remaining proof, let ϕ0 and D = (�, P, r, μ) be as in Lemma 21, and
assume that � is disjoint from the image of μ. Moreover, fix an XML tree T that
contains a node satisfying ϕ0 and conforms to D. We first define a function π that
assigns to each node n a set of node expressions from aux(ϕ0) that are true at n,
such that the following conditions hold for all nodes n:

(1) If n satisfies some 〈α〉 ∈ sub(ϕ0), then π (n) includes a formula 〈β〉 with β ∈
inst(α).

(2) For all 〈.[ϕ]/β〉 ∈ π (n), also 〈β〉 ∈ π (n).
(3) For all 〈β/β ′〉 ∈ π (n) with β ∈ {↓, ↓∗}, there is a node n′ such that n Rβn′ and

〈β ′〉 ∈ π (n′).

Observe that π fixes witnessing paths in the sense of comment (ii) above, hence
we call π a witness function. The construction of π proceeds as follows. Start with
the function π1 that assigns to each node n a set containing, for each 〈α〉 ∈ sub(ϕ0),
a formula 〈β〉 with β ∈ inst(α), in order to satisfy condition (1) above. Next, for each
i ≥ 1, if πi violates condition (2) or (3), extend πi to πi+1 by fixing all immediate
violations of (2) and (3) at the same time. Specifically, whenever 〈.[ϕ]/β〉 ∈ πi (n)
and 〈β〉 �∈ πi (n), we add 〈β〉 to πi+1(n). And whenever 〈β/β ′〉 ∈ πi (n) with
β ∈ {↓, ↓∗} and there is no node n′ such that n Rβn′ and 〈β ′〉 ∈ π (n′), then choose
a node n′ with n Rβn′ and n′ ∈ [[〈β ′〉]]T

NExpr and add 〈β ′〉 to π (n′). It is not hard to see
that, after a finite number of steps, a function πi will be obtained that satisfies all
requirements of a witness function. Indeed, since at each step the expressions that
are added get shorter, the total number of steps needed is bounded by the maximum
length of the expressions β ∈ inst(α) with 〈α〉 ∈ sub(ϕ0), which, by Lemma 20, is
at most 4|ϕ0|.

A crucial property of the witness function π constructed in this way is

(∗) On every root-to-leaf branch n0, . . . , nk of T , |π (n0)| + · · · + |π (nk)|
is O(k · |ϕ0|2).

This can be shown by induction on the number of steps in the construction of the
witness function π . More precisely, a straightforward induction argument shows
that, for each i ≥ 1, πi consists of at most i ·k ·|ϕ0| many assignments of expressions
to nodes, of which at most k · |ϕ0| many are not already in πi−1. Since π = πi for
some i ≤ 4|ϕ0|, it follows that (∗) is satisfied.

Fix a mapping L ′ that satisfies Conditions (i) to (iii) from Definition 2. For any
node n and integer k ≥ 0, let n −k denote the ancestor of n at distance k (thus, n −0
is n, n − 1 is the parent of n, etc.). Let aux↓∗(ϕ) be the subset of aux(ϕ) containing
those 〈α〉 ∈ aux(ϕ) that are of the form 〈↓∗/α′〉. For any node n, we define type(n)
to be the following set:

type(n) = {(k, ψ) ∈ {0, . . . , d}×(sub(ϕ0) ∪ aux↓∗(ϕ0)) |
n − k exists and satisfies ψ}
∪ π (n) ∪ {L ′(n)}.

Note that (0, ψ) ∈ type(n) if, and only if, n satisfies ψ , for ψ ∈ sub(ϕ0)∪aux↓∗(ϕ0).

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:28 B. TEN CATE AND C. LUTZ

CLAIM 1. On each branch of T , at most 2O(|ϕ0|3) distinct types can be realized.

PROOF OF CLAIM. Since |sub(ϕ0)| ≤ |ϕ0|, there are at most 2|ϕ0| many distinct
subsets of sub(ϕ0) to be realized in T . While |aux↓∗(ϕ0)| is 2O(|ϕ0|2) (cf. Lemma 20),
on each single branch in T at most |aux↓∗(ϕ0)| many subsets of aux↓∗(ϕ0) can be
realized. This is due to the volatile nature of these expressions: if an expression of
the form 〈↓∗/ · · · 〉 is false at a node n, it remains false at all descendants of n. Thus,
at most 2O(ϕ0) · 2O(|ϕ0|2) = 2O(|ϕ0|2) subsets of sub(ϕ0) × aux(ϕ0) can be realized on
each branch. However, since the type of a node also specifies which formulas in
sub(ϕ0)∪aux(ϕ0) are satisfied by the kth ancestor, for all k ≤ d, this number should
further be raised to the power O(|ϕ0|), giving us a bound, so far, of 2O(|ϕ0|3).

Next, consider the node expressions assigned to the nodes by the witness function
π . By (∗), the average |π (n)| is at most O(|ϕ0|2). It follows by basic combinatorics
that there can be no more than 2O(|ϕ0|2) many nodes with distinct π -values: the
relevant combinatorial fact is that there is no family of j i+1 distinct subsets of
{1, 2, . . . , j} of average cardinality less than i (where the set {1, 2, . . . , j} corre-
sponds to the set of pairs (n, ψ) with n a node on the branch and ψ ∈ π (n)).

Finally, every type contains precisely one element of �, which additionally gives
|�| choices. Multiplying the numbers, we obtain that at most 2O(|ϕ0|3) · |�| many
types can be realized on any branch. END OF PROOF OF CLAIM.

CLAIM 2. If T satisfies ϕ0 at the root and contains distinct nodes x R↓∗ y that
have the same type, then the following contraction preserves truth of ϕ0 at the root:

“remove the subtree rooted at x , and replace it with the subtree rooted at y”

PROOF OF CLAIM. We prove that in the contracted XML tree, all remaining nodes
satisfy the same node expressions ψ ∈ sub(ϕ0) as in the original XML tree. The
proof is by induction on ψ . The only difficult case is where ψ is of the form 〈α〉.
Let n be any node in the contracted XML tree.

[⇒] Suppose n satisfies 〈α〉 in the original XML tree. Then there must be a
β = (β1/ · · · /βk) ∈ inst(α) such that 〈β〉 ∈ π (n). We will show by induction on k
that n still satisfies 〈β〉, and hence 〈α〉, in the contracted XML tree. (Notice that we
are doing a double induction: the outer induction is on the complexity of ψ and the
inner induction is on k.) To reduce the number of cases in the induction argument, it
will be convenient to consider also the empty composition ε (i.e., the composition
of zero path expressions) as a simple path expression defining the identity relation.
The base case of the (inner) induction is then the case where k = 0 and thus β = ε,
and it is trivial.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:29

For the inductive step, we distinguish three cases:

—β1 = .[ψ] for some ψ ∈ sub(ϕ0). In this case, by the definition of π , n satisfies
ψ in the original XML tree, and 〈β2/ · · · /βk〉 ∈ π (n). It follows by the induction
hypothesis, that n also satisfies ψ and 〈β2/ · · · /βk〉, and hence also 〈β〉, in the
contracted XML tree.

—β1 = ↓. Then, by the definition of π , there must be a child n′ of n such that
〈β2/ · · · /βk〉 ∈ π (n′). If n′ �= x then it follows from the induction hypothesis
that n′ satisfies 〈β2/ · · · /βk〉 in the contracted XML tree, and hence n satisfies
〈β〉 in the contracted XML tree. If, on the other hand, n′ = x , then, as x and
y have the same type, 〈β2/ · · · /βk〉 must be satisfied by y in the original XML
tree. It follows by the induction hypothesis that y satisfies 〈β2/ · · · /βk〉 in the
contracted XML tree, and therefore n satisfies 〈β〉 in that XML tree.

—β1 = ↓∗. Then by the definition of π , there must be a descendant n′ of n such
that 〈β2/ · · · /βk〉 ∈ π (n′). If n′ belongs to the contracted XML tree, then we can
infer from the induction hypothesis that n′ satisfies 〈β2/ · · · /βk〉 in the contracted
XML tree, and hence n satisfies 〈β〉 in the contracted XML tree. If, on the other
hand, n′ is removed during the contraction, then it must be a descendant of x ,
which implies that x satisfies 〈β〉. Since 〈β〉 ∈ aux↓∗(ϕ0), it follows that y also
satisfies 〈β〉, and hence there is a descendant of n′′ of y satisfying 〈β2/ · · · /βk〉.
Since the subXML tree rooted at y is not affected by the contraction, y must
still satisfy 〈β2/ · · · /βk〉 in the contracted XML tree. We also know that n′′ is a
descendant of n, and hence n satisfies 〈β〉 in the contracted XML tree.

[⇐] Suppose n satisfies 〈α〉 in the contracted XML tree. Then there must be a
β ∈ inst(α) such that n satisfies 〈β〉 in the contracted XML tree. We show that n
satisfies 〈β〉 in the original XML tree, again by induction on the number of steps in
β. We distinguish two cases: if β is of the form (↓∗/�γ), then some descendant n′
of n satisfies 〈�γ 〉 in the contracted XML tree. But then n′ is also a descendant of n
in the original XML tree, and by induction hypothesis, it satisfies 〈�γ 〉. Therefore,
n satisfies 〈β〉 in the original XML tree.

It remains to consider the case where β does not start with a ↓∗ step. Let β =
(β1/ · · · /βk/�γ), with k ≥ 1, such that each βi is of the form ↓ or .[ψ], and �γ is
either empty or starts with ↓∗. Let n1, . . . , nk be nodes in the contracted XML tree
such that n1 = n, (ni , ni+1) belongs to βi in the contracted XML tree, for 1 ≤ i < k,
and nk satisfies 〈�γ 〉. We distinguish two cases:

—Either ni �= y for all 1 ≤ i ≤ k, or n1 = y. In this case, the same path n1, . . . , nk
exists also in the original XML tree. Moreover, whenever βi is of the form .[ψ],
then, by induction hypothesis, ni satisfies ψ in the original XML tree as well,
and, for the same reason, nk satisfies 〈�γ 〉. Thus, 〈β〉 must be true at n in the
original XML tree.

—ni = y for some i with 1 ≤ i ≤ k, and n1 �= y. It follows that the sequence
n1, . . . , nk is of the form x − �, . . . , x − 1, y, . . . , y + m, where � ≤ d. Define
a new sequence n′

0, . . . , n′
k by replacing each x − i by y − i . Thus, the resulting

sequence n′
1, . . . , n′

k is of the form y − �, . . . , y − 1, y, . . . , y + m. Since x
and y have the same type in the original XML tree, ni and n′

i agree on all node
expressions from sub(ϕ0) (in the original XML tree). Moreover, whenever βi is
of the form .[ψ], then, by induction hypothesis, we know that ni satisfies ψ in

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:30 B. TEN CATE AND C. LUTZ

the original XML tree as well. Together this implies that (y − �, y + m) satisfies
(β1/ · · · /βk) in the original XML tree. Finally, by (inner) induction hypothesis,
n′

k = nk satisfies 〈�γ 〉 in the original XML tree. We conclude that n′
1 satisfies 〈β〉

and hence 〈α〉 in the original XML tree. Finally, using once more the fact that
x and y have the same type in the original XML tree, we conclude that n1 must
also satisfy 〈α〉 in the original XML tree (recall that n1 = x − �, n′

1 = y − � and
� ≤ d). END OF PROOF OF CLAIM.

Finally, we establish Lemma 21. Recall that T = (N , R↓, R→, L) is an XML
tree that satisfies ϕ0 and conforms to D, and L ′ : N → � a function that satisfies
Conditions (i) to (iii) of Definition 2. If T contains a branch of length greater than
2p(|ϕ0|) · |�|, with p the polynomial from Claim 1, we can apply the contraction
operation from Claim 2 to obtain an XML tree T ′ with fewer nodes than T that
still satisfies ϕ0. Let L ′′ be the restriction of L ′ to the nodes in T ′. Using the fact
that L(n) occurs in the type of n for all n ∈ N , it is easy to show that L ′′ still
satisfies Conditions (i) to (iii) of Definition 2. Thus, T ′ conforms to D. Repeating
this contraction argument, we eventually get an XML tree of depth 2O(|ϕ0|3) ·|�|.

To present the decision procedure, we need a few further preliminaries. For any
CoreXPath↓(∩) node expression ϕ, let cl(ϕ) = {ψ, ¬ψ | ψ ∈ sub(ϕ) ∪ aux(ϕ)}.
Intuitively, this definition of cl(ϕ) is the CoreXPath↓(∩) analogue of the definition of
cl(ϕ) for CoreXPathNFA(∗, loop) node expressions ϕ given in Section 3.3. Note that
the size of cl(ϕ) is in general exponential in the length of ϕ, while the length of the
members of cl(ϕ) is polynomial.

Definition 22 (Complete Type). Let ϕ0 be a CoreXPath↓(∩) node expression and
D = (�, P, r, μ) an EDTD. A complete type for ϕ0 and D is a set t ⊆ cl(ϕ0) ∪ �
satisfying the following conditions:

—t contains exactly one s ∈ � and exactly one p ∈ � such that μ(s) = p.
—For all (ϕ ∧ ψ) ∈ cl(ϕ0), (ϕ ∧ ψ) ∈ t if, and only if, ϕ ∈ t and ψ ∈ t .
—For all 〈α〉 ∈ sub(ϕ0), 〈α〉 ∈ t if, and only if, there is a β ∈ inst(α) such that

〈β〉 ∈ t .
—For all 〈.[ψ]/β〉 ∈ aux(ϕ0), 〈.[ψ]/β〉 ∈ t if, and only if, ψ ∈ t and 〈β〉 ∈ t .
—For all 〈↓∗/β〉 ∈ aux(ϕ0), if 〈β〉 ∈ t then 〈↓∗/β〉 ∈ t .

Let t be a complete type for ϕ0 and D. A formula ψ ∈ t is called a demand in t
if either (i) ψ is of the form 〈↓/α〉, or (ii) ψ is of the form 〈↓∗/α〉 and t does not
contain 〈α〉. In the first case, the remainder of ψ is 〈α〉, and in the second case, the
remainder of ψ is ψ itself.

Given two complete types t, t ′ for ϕ0 and D, we write t ⇒ t ′ if the following
two conditions hold:

—for all 〈↓/α〉 ∈ aux(ϕ0), if 〈α〉 ∈ t ′ then 〈↓/α〉 ∈ t ;
—for all 〈↓∗/α〉 ∈ aux(ϕ0), if 〈↓∗/α〉 ∈ t ′ then 〈↓∗/α〉 ∈ t

Intuitively, t ⇒ t ′ means that we can consistently think of t ′ as being the complete
type of a child of a node with complete type t .

The (nondeterministic) algorithm for node satisfiability in CoreXPath↓(∩) is given
in Figure 2. It takes as input a node expression ϕ0 and an EDTD D = (�, P, r, μ),
and it tries to recursively construct an XML tree satisfying the expression that

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:31

FIG. 2. Algorithm for satisfiability of a CoreXPath↓(∩) node expression ϕ0 with restect to an EDTD
D = (�, P, r, μ).

conforms to D, while keeping in memory at any point only a single branch of
length at most 2p(|ϕ0|) · |�|, with p the polynomial from Lemma 21. In the figure,
|D| is defined as the maximum number of states of any NFA obtained by converting
a regular expression P(s), for some s ∈ �.

THEOREM 23. The algorithm has an accepting run on input node expression
ϕ0 and EDTD D if, and only if, ϕ0 is satisfiable with respect to D.

PROOF. [⇒] Suppose the algorithm has an accepting run on input ϕ0. Let
T = (N , R↓, R→, τ) be the recursion tree of this run, that is, (N , R↓, R→) is a
finite sibling ordered tree, and τ assigns to each node the complete type that is the
first argument of the corresponding recursive call of check. Take the XML tree
T = (N , R↓, R→, L), where L : N → � assigns to each node n ∈ N the unique
label from � that belongs to τ (n).

It can be proved that for all n ∈ N and ψ ∈ cl(ϕ0), n ∈ [[ψ]]T
NExpr if, and only

if, ψ ∈ τ (n). In particular, since ϕ0 ∈ τ (nr), for nr the root of T , we have that
nr ∈ [[ϕ0]]T

NExpr. The proof is by induction on the well-founded ordering ≺ on cl(ϕ0)
generated by:

—ϕ ≺ ψ whenever ϕ ∈ sub(ψ);
—〈β〉 ≺ 〈α〉 whenever 〈α〉 ∈ sub(ϕ0), 〈β〉 ∈ aux(ϕ0), and β ∈ inst(α);
—〈β ′〉 ≺ 〈β/β ′〉 for all 〈β/β ′〉 ∈ aux(ψ)

We leave details to the reader. Define L ′ : N → � by setting L ′(n) to the unique
element of � occurring in τ (n). It is easy to see that L ′ satisfies Conditions (i)
to (iii) from Definition 2, and thus T conforms to D.

[⇐] Suppose that ϕ0 is satisfiable with respect to D = (�, P, r, μ). By
Lemma 21, ϕ0 is satisfied at the root of an XML tree T = (N , R↓, R→, L) of

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:32 B. TEN CATE AND C. LUTZ

depth at most 2p(|ϕ|) · |�| that conforms to D. We first describe how to eliminate
nodes from T to achieve an out-degree of at most b := (|aux(ϕ0)| + 1) · |D|.

Let L ′ : N → � satisfy Conditions (i) to (iii) from Definition 2. We repeat the
following for all nodes n ∈ N with k > b successors n1, . . . , nk , in a top-down
fashion. Select

(i) an ni ∈ [[〈β〉]]T
NExpr for each ψ = 〈↓/β〉 ∈ aux(ϕ0) with n ∈ [[ψ]]T

NExpr;

(ii) an ni ∈ [[ψ]]T
NExpr for each ψ = 〈↓∗/β〉 ∈ aux(ϕ0) with n ∈ [[ψ]]T

NExpr \
[[〈β〉]]T

NExpr.

Let A be the NFA obtained from converting the regular expression P(L ′(n)), and
let ρ be an accepting run of A on the word L ′(n1) · · · L ′(nk), that is, ρ is a mapping
from {1, . . . , k} to states of A. Then, we can repeat the following elimination step:
if there are ni , n j with 1 < i < j ≤ k such that ρ(i) = ρ(j) and none of the nodes
ni , ni+1, . . . , n j−1 is selected, then drop the subtrees rooted at ni , . . . , n j−1 from
T . Following this strategy, we get a trimmed-down version of T with branching
factor at most b that still satisfies ϕ0 and still conforms to D.

We use the resulting tree T to guide the algorithm. For any node n of T , let

τ (n) = {
ϕ ∈ cl(ϕ0) | n ∈ [[ϕ]]T

NExpr

}
.

To show that the algorithm has an accepting run on input ϕ0, we associate to
each call of check(t, d) a “witnessing” node n in the tree, at distance d from
the root, satisfying τ (n) = t . Initially, we let the algorithm guess the complete
type τ (nr) of the root nr , and nr is the witnessing node. Next, suppose that a
recursive call check(t, d) is made, and let n be a witnessing node. Let n1, . . . , nk be
the (ordered) successors of n. We let the algorithm guess the sequence of complete
types τ (n1), . . . , τ (nk). Since τ (n) = t and by the semantics, the algorithm does
not return in any step of the first for loop. If check(ti , d + 1) is called in the second
for loop, we use ni as the witnessing node. It is easy to see that the algorithm returns
“Yes” on input ϕ0 and D when all nondeterministic choices are made according to
this strategy.

The above algorithm runs in nondeterministic exponential space. To see this,
observe that the recursion depth is bounded by a function that is single exponential
in the input expression, and each recursive call adds on the recursion stack a se-
quence of complete types t1, . . . , tk where k is bounded by a function that is single
exponential in the input expression. Finally, each complete type is a subset of cl(ϕ)
and can thus be represented using single exponentially many bits.

Since NEXPSPACE = EXPSPACE by Savitch’s theorem, we obtain that node satis-
fiability for CoreXPath↓(∩) with respect to EDTDs is in EXPSPACE. By Proposition 5,
this result carries over to the case without EDTDs.

THEOREM 24. Path containment for CoreXPath↓(∩) is in EXPSPACE, with and
without EDTDs.

A matching lower bound is proved in the next section, where we also establish a
2-EXPTIME lower bound for CoreXPath↓→(∩). One may be tempted to think that the
latter bound carries over to CoreXPath↓(∩) via the standard encoding of trees with
arbitrary branching factor into binary trees (cf. the proof of Theorem 10). However,
this is not the case since CoreXPath↓(∩) does not provide full transitive closure.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:33

6. Lower Bounds

We provide matching lower bounds for the upper bounds from the previous sections:
path containment is EXPSPACE-hard for CoreXPath↓(∩), and it is 2-EXPTIME-hard
for CoreXPath(∩, ∗). In fact, we show that the 2-EXPTIME lower bound holds for the
fragments CoreXPath↓↑(∩), CoreXPath↓→(∩) and CoreXPath↓(∗, ∩). This shows that
the EXPSPACE upper bound for CoreXPath↓(∩) cannot be generalized in an easy way.

6.1. PRELIMINARIES. We prove our results for satisfiability of node expressions.
It is convenient to work with a generalization of XML trees where nodes can
satisfy more than one label, that is, where the labeling function L is a function
from N to 2� . We call such trees XML trees with multi-labels. The following
lemma shows that, in proving our lower bounds, we can safely use XML trees with
multi-labels.

LEMMA 25. Satisfiability of CoreXPath↓(∩) node expressions on XML trees with
multi-labels can be reduced in polynomial time to satisfiability of CoreXPath↓(∩)
node expressions on standard XML trees. The same holds for CoreXPath↓(∗, ∩),
CoreXPath↓↑(∩) and CoreXPath↓→(∩).

PROOF SKETCH. We can turn a multi-labeled XML tree into a standard XML tree
by adding |L(n)| extra children to each node n, each of them labeled with a different
element of L(n). To distinguish these auxiliary nodes from “real” document nodes,
we label the latter with a special node label x . Guided by this idea of encoding
trees with multi-labels, it is not hard to transform a CoreXPath↓(∩) node expression
ϕ into a CoreXPath↓(∩) node expression ϕ′ such that ϕ is satisfiable in an XML
tree with multi-labels if, and only if, ϕ′ is satisfiable in a standard XML tree: let
ϕ∗ be obtained from ϕ by (i) replacing every occurrence of ↓ and ↓∗ by ↓[x] and
↓∗[x], and (ii) replacing every occurrence of a node label p with 〈↓[p]〉. Then, set
ϕ′ := ϕ∗ ∧ x ∧ ¬〈↓∗[¬x]/↓〉. The last conjunct of ϕ′ ensures that all auxiliary
nodes are leafs, which is necessary for the same reason as in the (similar) proof of
Lemma 18. Similar reductions can be given for CoreXPath↓(∗, ∩), CoreXPath↓↑(∩)
and CoreXPath↓→(∩).

For all lower bounds established in this section, we work with XML trees with
multi-labels. To start, Lemma 25 allows us to easily derive one of the announced
lower bounds because CoreXPath↓(∗, ∩) with multi-labels can be seen as a notational
variant of propositional dynamic logic with intersection (IPDL), restricted to a
single atomic program a. For example, the CoreXPath↓(∗, ∩) node expression
〈↓[a]∗/(↓[b]∪↓[b′])〉 corresponds to the IPDL formula 〈(r ; a?)∗; (r ; b?∪r ; b′?)〉true
and the IPDL formula 〈(r ; a?)∗ ∩ (r ; b?)∗〉c corresponds to the CoreXPath↓(∗, ∩)
node expression 〈(↓[a]∗ ∩ ↓[b]∗)[c]〉. It was proved in Lange and Lutz [2005]
that satisfiability of ICPDL formulas in finite XML trees (with multi-labels) is
2-EXPTIME-hard.

THEOREM 26. Path containment for CoreXPath↓(∗, ∩) is 2-EXPTIME-hard.

The remaining bounds are proved by reduction of the word problem of alternat-
ing Turing machines (ATMs), which we introduce next. An ATM is of the form
M= (Q, �,
, q0, �), where Q = Q∃ � Q∀ � {qa} � {qr } is the set of states, parti-
tioned into existential states from Q∃, universal states from Q∀, an accepting state
qa , and a rejecting state qr ; � is the input alphabet and
 ⊇ � the work alphabet

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:34 B. TEN CATE AND C. LUTZ

FIG. 3. Successor configurations in CoreXPath↓,↑(∩).

containing a blank symbol �; q0 ∈ Q∃ ∪ Q∀ is the starting state; and the transition
relation � is of the form � ⊆ Q ×
 × Q ×
 × {L , R}. We write �(q, a) for
{(q ′, b, M) | (q, a, q ′, b, M) ∈ �}.

A configuration of an ATM is a word wqw ′ with w, w ′ ∈
∗ and q ∈ Q. The
intended meaning is that the (one-side infinite) tape contains the word ww ′ with
only blanks behind it, the machine is in state q, and the head is on the leftmost
symbol of w ′. The successor configurations of a configuration wqw ′ are defined
in the usual way in terms of the transition relation �. A halting configuration is of
the form wqw ′ with q ∈ {qa, qr }. A computation of an ATM M on a word w is
a (finite or infinite) sequence of successive configurations K1, K2, The ATMs
considered in the following have only finite computations on any input. Since this
case is simpler than the general one, we define acceptance for ATMs with finite
computations and refer to Chandra et al. [1981] for the full definition. Let M be
such an ATM. A halting configuration is accepting if it is of the form wqaw ′.
For other configurations K = wqw ′, the acceptance behavior depends on q: if
q ∈ Q∃, then K is accepting if at least one successor configuration is accepting; if
q ∈ Q∀, then K is accepting if all successor configurations are accepting. Finally,
the ATM M with starting state q0 accepts the input w if the initial configuration
q0w is accepting. We use L(M) to denote the language accepted by M, that is,
L(M) = {w ∈ �∗ | M accepts w}.

6.2. CoreXPath↓,↑(∩) IS 2-EXPTIME-hard. There exists an exponentially space
bounded ATM M = (Q, �,
, q0, �) whose word problem is 2-EXPTIME-
hard [Chandra et al. 1981]. Our aim is to reduce the word problem of Mto node sat-
isfiability in CoreXPath↓,↑(∩). We may assume that the length of every computation
of M on w ∈ �k is bounded by 22k

, and all the configurations wqw ′ in such com-
putations satisfy |ww ′| ≤ 2k . We may also assume without loss of generality that
M never attempts to move left on the leftmost tape cell. Let w = a0 · · · ak−1 ∈ �∗
be an input to M. We construct a node expression ϕM,w of CoreXPath↓,↑(∩) such
that w ∈ L(M) if, and only if, ϕM,w is satisfiable.

In XML trees satisfying ϕM,w , nodes are used to represent tape cells and the
leafs of certain subtrees are used to represent configurations. This is illustrated in
Figure 3, where the triangles denote binary trees of depth k, and the dashed boxes
enclose the nodes that describe configurations. The figure shows a configuration
(left dashed box) with two successor configurations (middle and right dashed box).

In the reduction, multi-labels are comprised of the labels Q∪
∪{r, c0, . . . , ck−1},
whose intuitive meaning is as follows:

—c0, . . . , ck−1 describe a binary counter C used for identifying the 2k tape cells
of configurations, with the leftmost cell having counter value C = 0 and the
rightmost C = 2k − 1;

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:35

—q ∈ Q is true at a node n in a configuration if in this configuration, the head of
M is on the tape cell represented by n and the machine is in state q;

—a ∈
 is true in a node n of a configuration if a is the symbol on the tape cell
represented by n;

—r is used to distinguish the roots of configuration trees from the intermediate
nodes as shown in Figure 3; this is important for travelling to successor config-
urations using a path expression.

Let ↓i denotes the i-fold composition ↓/ · · · /↓. Then, in view of Figure 3, it is
clear that

—αroot := ↓∗[r] reaches the roots of configuration trees (from the root of the XML
tree),

—αcell := ↓∗[r]/↓k reaches all nodes in configurations,

—αcur := ↑k/↓k travels between nodes of the same configuration, and

—αnxt := ↑k+1/↓[¬r]/↓[r]/↓k travels from the nodes of a configuration to the
nodes of successor configurations.

We first establish, underneath each r node, a tree in which we find every tape
cell (i.e., counter value of C) at least once as a leaf. Define

ϕconf :=
∧

0≤i<k

every

(
αroot/↓i , 〈↓[ci ∧ every(↓∗, ci)]〉 ∧ 〈↓[¬ci∧

every(↓∗, ¬ci)]〉
)
.

Since we are not allowed to use sibling axes in CoreXPath↓,↑(∩), we cannot enforce
that every value of C occurs at most once among the leafs. Instead, we ensure
that cells with identical C values are labeled in the same way. The following path
expression α=cur travels between any two nodes of a configuration with the same
C value, and ϕuni ensures unique labels:

α=i := (.[ci]/αcur[ci]) ∪ (.[¬ci]/αcur[¬ci]) for all i < k

α=cur :=
⋂

0≤i<k

α=i

ϕuni := every

(
αcell,

∧
a∈
∪Q

(
(a ⇒ every(α=cur, a)) ∧ (¬a ⇒

every(α=cur, ¬a))
))

.

It is easy to construct a node expression ϕtape ensures that (i) every node in a con-
figuration is marked with exactly one symbol from
 and never with two different
states and (ii) the initial configuration (whose root is reachable from the root of the
XML tree by travelling ↓[r]) is such that the head is on the left-most tape cell, the
ATM is in state q0, and the tape is labeled with the input word followed by blanks.
Details are left to the reader. The following node expression ϕhead guarantees that

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:36 B. TEN CATE AND C. LUTZ

each configuration has at most one cell marked with the tape head:

α �=i := (.[ci]/αcur[¬ci]) ∪ (.[¬ci]/αcur[ci]) for all i < k

α �=cur :=
⋃

0≤i<k

α�=i

ϕhead := every

(
αcell,

∧
q,q ′∈Q

(q ⇒ every(α �=cur, ¬q ′))
)

We now say that cells not underneath the head are labeled with the same alphabet
symbol in the consecutive configuration. We use the path expression α=nxt, which
travels from leafs of a configuration to leafs of the successor configurations that
represent the same tape cell:

α=nxt :=
⋂
i<k

(
(.[ci]/αnxt[ci]) ∪ (.[¬ci]/αnxt[¬ci])

)

ϕid := every

(
αcell,

∧
a∈

(
a ∧ (¬

∨
q∈Q

q) ⇒ every(α=nxt, a)
))

.

Next, we have to ensure that the transitions are according to the transition table.
To this end, we need path expressions αLcur and αRcur that are similar to α=cur, but
travel to the left and right neighboring cell in the current configuration. We only
give αRcur explicitly:

αRcur :=
⋂
i<k

(αflip-i ∪ αkeep−i)

αflip−i := .[c0 ∧ · · · ∧ ci−1]/α�=i

αkeep−i := .[¬c0 ∨ · · · ∨ ¬ci−1]/α=i .

For αflip−i and αkeep−i , note that the conjunction of zero formulas is a tautology,
and the disjunction of zero formulas a contradiction. Now, the following node
expression takes care of proper transitions:

ϕ� := every

(
αcell,

∧
q∈Q∃,a∈

(q ∧ a ⇒
∨

(p,b,M)∈�(q,a)

〈α=nxt[b ∧ every(αMcur, p)]〉) ∧
∧

q∈Q∀,a∈

(q ∧ a ⇒
∧

(p,b,M)∈�(q,a)

〈α=nxt[b ∧ every(αMcur, p)]〉)
)
.

It remains to describe acceptance of the machine. Since all computations of
M are finite, it suffices to require that the rejecting state qr never appears:
ϕacc := every(αcell, ¬qr). Altogether, the machine’s behavior is described by the
node expression

ϕM,w := ϕconf ∧ ϕuni ∧ ϕtape ∧ ϕhead ∧ ϕid ∧ ϕ� ∧ ϕacc.

It is possible to show that w ∈ L(M) if, and only if, ϕM,w is satisfiable, which
establishes the following result.

THEOREM 27. Path containment for CoreXPath↓,↑(∩) is 2-EXPTIME-hard.

6.3. CoreXPath↓→(∩) IS 2-EXPTIME-hard. The proof is similar to the one given
in the previous section. In particular, it is by reduction of the word problem of the

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:37

FIG. 4. Successor configurations in CoreXPath↓→(∩).

same ATM M. The main difference between this reduction and the previous one is
that, in CoreXPath↓→(∩), configurations have to be represented in a different way.
This is illustrated in Figure 4, where each horizontal sequence enclosed by a dashed
box is of length 2k and represents a configuration. As before, the figure shows one
configuration (topmost dashed box) together with two successor configurations
(middle and bottommost dashed box). In the reduction, we use the same labels as in
the previous section, except that an additional symbol mM,q is introduced for each
M ∈ {L , R} and q ∈ Q. The new symbols serve as markers, to be explained later
on. As before, we use the counter C to identify tape cells. The r marker identifies
the roots of configurations, and all elements of dashed boxes satisfy ¬r . In view of
Figure 4, it is clear that

—α′
root := ↓∗[r] reaches all nodes whose children represent a configuration,

—α′
cell := ↓∗[¬r] reaches all nodes representing tape cells, and

—α′
nxt := →+[r]/↓ travels from the nodes of a configuration to the nodes of

successor configurations.

Note that there is no direct counterpart for the path expression αcur from the
previous reduction: since we cannot travel up or left, we can only reach those cells
of the same configuration that are to the right using

α′
>cur := →+,

but there is no way to reach those cells of the same configuration that are to the left.
Fortunately, this is not essential for the reduction.

The node expression ϕ′
M,w that we construct for an input w to M is rather

similar to the node expression ϕM,w from the previous reduction. In particular, it
is a conjunction whose conjuncts correspond to those in ϕM,w . We use the same
names to denote conjuncts of ϕM,w and ϕ′

M,w , but add a prime for the latter.
We start with describing ϕ′

conf, which sets up the counter and the r marker,
enforcing that the tape cells (labeled with ¬r) are always to the left of the roots of
successor configurations (labeled with r). In contrast to the previous reduction, we
are even able to enforce that every counter value of C occurs exactly once in every
configuration:

ϕ′
conf := every(α′

root, 〈↓[¬c0 ∧ · · · ∧ ¬ck−1 ∧ ¬r]〉) ∧
every(α′

cell, (¬c0 ∨ · · · ∨ ¬ck−1) ⇒ 〈α′
Rcur[¬r]〉) ∧

every(α′
=cur, ⊥)

every(α′
root/↓[r]/→+, r)

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:38 B. TEN CATE AND C. LUTZ

where α′
Rcur relates each node with counter value C to those nodes that are to the

right and have counter value C + 1, and likewise for α′
=cur and nodes that have

identical counter values. Formally, α′
Rcur and α′

=cur are obtained from αRcur and
α=cur in the previous section by replacing α=i with

α′
=i := (.[ci]/α

′
>cur[ci]) ∪ (.[¬ci]/α

′
>cur[¬ci]),

and likewise for α�=i . The node expressions ϕ′
uni, ϕ′

head, ϕ′
id, and ϕ′

acc are simply the
corresponding formulas from the previous section, modified by replacing

—αcell with α′
cell, αnxt with α′

nxt, and
—α=i and α �=i as described above.

The node expression ϕ′
� needs slightly more effort. Let the path expression α′

=nxt
be obtained from the corresponding unprimed one by the above replacements. Then,
define

ϕ′
� := every

(
α′

cell,
∧

q∈Q∃,a∈

(
q ∧ a ⇒

∨
(p,b,M)∈�(q,a)

〈α′
=nxt[b ∧ mM,p]〉

)
∧

∧
q∈Q∀,a∈

(
q ∧ a ⇒

∧
(p,b,M)∈�(q,a)

〈α′
=nxt[b ∧ mM,p]〉

))

To make ϕ′
� work, we need to implement the intended behaviour of the markers

mM,q , namely that if mM,q holds in a tape cell, then the tape cell that is reached by
travelling M ∈ {L , R} satisfies q. This is done as follows:

ϕ′
mark := every

(
α′

cell,
∧
q∈Q

((〈α′
Rcur[mL ,q]〉 ⇒ q

) ∧ (
m R,q ⇒ 〈α′

Rcur[q]〉)))

The two conjuncts in the formula state that if the cell to the right is labeled mL ,q ,
then the current cell is labeled q; and if the current cell is labeled m R,q , then the
cell to the right is labeled q. Altogether, the machine’s behavior is described by the
node expression

ϕ′
M,w := ϕ′

conf ∧ ϕ′
uni ∧ ϕ′

tape ∧ ϕ′
head ∧ ϕ′

id ∧ ϕ′
� ∧ ϕ′

mark ∧ ϕ′
acc

Again, it is possible to show that w ∈ L(M) if, and only if, ϕ′
M,w is satisfiable.

Observe that we did not use the nontransitive sibling axis “→”, as promised in
Section 2.2.

THEOREM 28. Path containment for CoreXPath↓→(∩) is 2-EXPTIME-hard.

6.4. CoreXPath↓(∩) IS EXPSPACE-HARD. Finally, we consider the downwards
fragment CoreXPath↓(∩) and provide a matching EXPSPACE lower bound for The-
orem 24. The proof is by a reduction of the word problem of exponentially time-
bounded ATMs. According to Chandra et al. [1981], there is an exponentially time
bounded ATM M′ whose word problem is EXPSPACE-hard. We may assume that
the length of every computation of M′ on w ∈ �k is bounded by 2k , and that all
configurations wqw ′ in such computations satisfy |ww ′| ≤ 2k . As in the previous
reductions, we also assume that M′ never attempts to move left on the leftmost
tape cell. Let w = a0 · · · ak−1 ∈ �∗ be an input to M′. We sketch the construction
of a node expression ϕM′,w of CoreXPath↓(∩) such that w ∈ L(M′) if, and only if,
ϕM′,w is satisfiable.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:39

FIG. 5. Successor configurations in CoreXPath↓(∩).

Figure 5 shows how we represent a configuration and two successor config-
urations. Each dashed box encloses a configuration, which is represented by a
downward sequence of length 2k . The two lower boxes represent the successor
configurations of the upper box. We use the same symbols as in the previous reduc-
tion (except r), and additionally introduce labels d0, . . . , dk−1 for implementing a
second counter D. While the purpose of C is still to identify the tape cells of a
configuration, the purpose of D is to identify configurations. In view of Figure 5,
it is clear that

—α′′
cell := ↓∗ reaches all nodes representing tape cells,

—α′′
>cur, defined as follows, travels from all nodes of a configuration to the nodes

of the same configuration that are below it:
α′′

=i/D := (.[di]/↓∗[di]) ∪ (.[¬di]/↓∗[¬di])

α′′
>cur :=

⋂
i<k

α′′
=i/D

—α′′
nxt travels from the nodes of a configuration to the nodes of successor configu-

rations:

α′′
nxt := ↓∗ ∩

⋂
i<k

(α′′
flip-i/D ∪ α′′

keep−i/D)

where α′′
flip-i/D and α′′

keep−i/D are defined analogously to αflip-i and αkeep−i from
Section 6.2, but for the counter D rather than for C .

Note that the counter D is needed to define the last two path expressions. In-
tuitively, this is the reason why it is not possible to reduce the word problem of
exponentially space-bounded Turing machines and show 2-EXPTIME-hardness.

Once more, the structure of the node expression ϕ′′
M′,w that we construct for an

input w to M′ is rather similar to the node expression ϕM,w from the reduction in
Section 6.2. In particular, it is again a conjunction whose conjuncts correspond to
those in ϕM,w . We identify the conjuncts of ϕ′′

M′,w by a double dash. The formula
ϕ′′

conf sets up the counters. It says that

—both counters are initialized with 0 at the root of the tree;
—if at least one of the counters does not have maximum value, there is a successor;
—all successors have their C-values increased by one modulo 2k ;
—if the C-value is maximum, all successors have their D-values increased by one,

and otherwise the D-value does not change.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:40 B. TEN CATE AND C. LUTZ

We leave details to the reader. Note that we can use the nontransitive axis “↓” in
ϕ′′

conf since it is included in the original version of CoreXPath, unlike the nontransitive
sibling axes. The conjunct ϕuni is not needed since ϕ′′

conf ensures that every counter
value occurs exactly once in every configuration. The conjuncts ϕtape and ϕacc are
readily adapted to the new encoding. For the remaining conjuncts, we proceed as
follows:

—ϕ′′
head is obtained from ϕhead by replacing αcell with α′′

cell and α�=cur with α′′
>cur;

—ϕ′′
id is obtained from ϕid by replacing the node expression αcell with α′′

cell, and the
path expression αnxt (inside α=nxt) with α′′

nxt;
—ϕ′′

� and ϕ′′
mark are obtained from ϕ′

� and ϕ′
mark by replacing α′

cell with α′′
cell, α′

nxt
(inside α′

=nxt) with α′′
nxt, and α′

Rcur with ↓.

Altogether, the machine’s behavior is described by the node expression

ϕ′′
M′,w := ϕ′′

conf ∧ ϕ′′
tape ∧ ϕ′′

head ∧ ϕ′′
id ∧ ϕ′′

� ∧ ϕ′′
mark ∧ ϕ′′

acc.

Again, it is standard to show that w ∈ L(M′) if, and only if, ϕ′′
M′,w is satisfiable.

THEOREM 29. Path containment for CoreXPath↓(∩) is EXPSPACE-hard.

7. Path Complementation and For-Loops

We consider CoreXPath(−) and CoreXPath(for), which extend CoreXPath with path
complementation and for loops, respectively. We show that for both variants of
CoreXPath, path containment is nonelementary, that is, the time needed to solve this
problem cannot be bounded by any exponential tower of constant height.

We start with CoreXPath(−). Path containment is nonelementary even for a small
fragment F of CoreXPath(−), where path expressions are formed as follows:

α, β ::= ↓[p] | ↓∗ | α/β | α − β,

where p ranges over � ∪{�}. Note that F has only downward axes, lacks complex
filter expressions, and lacks union as a primitive operator.

THEOREM 30. Path containment for F is nonelementary.

PROOF. We give a reduction from the non-emptiness problem for star-free
expressions (denoted below by r and s), which are built according to the syntax
rule

r, s := a | (rs) | (r ∪ s) | −r,

where a ranges over labels from the alphabet �. Each star-free expression r defines
a set of wordsL(r) over �:L(a) = {a},L(rs) = L(r)·L(s),L(r ∪s) = L(r)∪L(s),
and L(−r) = � \ L(r). The nonemptiness problem for this kind of expression is
well known to be nonelementary [Stockmeyer 1974]. First, note that using the path
complementation operator, we can define path union (via intersection):

α ∩ β ≡ (α − (α − β))
α ∪ β ≡ ↓∗ − ((↓∗ − α) ∩ (↓∗ − β))

Star-free expressions can now be translated into F , by the function tr defined as

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:41

follows:

tr(a) = ↓[a]
tr(rr ′) = tr(r)/tr(r ′)
tr(r ∪ r ′) = tr(r) ∪ tr(r ′)
tr(−r) = ↓+ − tr(r).

Note that ↓+ can be defined as ↓[�]/↓∗. We can show by induction on r that, for any
XML tree T = (N , R↓, R→, L) with nodes n, m, and for any star-free expression r ,
(n, m) ∈ [[tr(r)]]T

PExpr if, and only if, there are n1 R↓n2 R↓ · · · R↓nk such that n1 = n,
nk = m, and the word (L(n2), . . . , L(nk)) belongs to the language L(r). It follows
that r defines a nonempty language if, and only if, tr(r) is not contained in ↓∗ −↓∗.
The exponential blowup involved in the definition of union is of no importance
since our intention is only to show nonelementarity.

It follows that node satisfiability is also nonelementary for F . This improves on
a result from Hidders [2003], which shows that F-satisfiability is NP-hard.

Next, we consider CoreXPath(for). The for-construct in XPath 2.0 allows iteration
over a node set, using a bound variable. Formally, CoreXPath(for) is obtained by
introducing a countably infinite set of node variables $i, $ j, . . . , and extending the
syntax and semantics of CoreXPath in the following way:

—All node and path expressions are interpreted relative to an assignment g of
nodes to the variables, that is, we replace [[·]]T

NExpr and [[·]]T
PExpr with [[·]]T,g

NExpr and

[[·]]T,g
PExpr, respectively. The semantics of the existing CoreXPath expressions does

not change and simply ignores the additional argument.
—We allow filter expressions of the form “. is $i”, interpreted as follows:

[[. is $i]]T,g
NExpr = {n | n = g($i)}

—We allow path expressions of the form “for $i in α return β”, interpreted as follows:

[[for $i in α return β]]T,g
PExpr = {

(n, m) | there is a node k such that (n, k)

∈ [[α]]T,g
PExpr and (n, m) ∈ [[β]]T,g[$i "→k]

PExpr

}
with g[$i "→ k] the assignment that agrees with g on all node variables except
$i , and that sends $i to k.

As usual, the downward fragment of CoreXPath(for) is denoted by CoreXPath↓(for).

THEOREM 31. Path containment for CoreXPath↓(for) is nonelementary, even if
only one variable is admitted.

PROOF. Using a single variable, we can express complementation: if α, β are
downward path expressions, then α − β is equivalent to

for $i in α return .[¬〈β[. is $i]〉]/↓∗[. is $i].

Intuitively, i binds to each node reachable via α, the filter expression [¬〈β[. is $i]〉]
filters out nodes reachable by β, and the expression ↓∗[. is $i] actually travels to i .

It follows that CoreXPath↓(for) is at least as complex as CoreXPath↓(−).

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:42 B. TEN CATE AND C. LUTZ

8. Succinctness

We establish a number of results on the relative succinctness of different exten-
sions of CoreXPath, in particular CoreXPath, CoreXPath(≈), CoreXPath(∩), and the
extension of these three languages with transitive closure.

Suppose two languages, L and L ′, have the same expressive power. Upper bounds
on the relative succinctness of L and L ′ are proved simply by exhibiting a translation
that involves only a limited blowup. Establishing a lower bound means to prove
the existence of expressions (ϕi)i∈N such that each ϕi is of length polynomial in
i and every sequence of equivalent L ′-expressions grows fast in i . We say that
L is exponentially more succinct than L ′ if there is a lower bound where this
growth is exponential and that L is exactly exponentially more succinct than L ′ if,
additionally, there is a matching upper bound. For nonelementary succinctness, we
use analogous terminology.

In this section, we first concentrate on upper bounds and then on lower ones.
We start with an exponential translation from CoreXPath(∩) to CoreXPath. This is
matched by a lower bound proved later in this section, which states that CoreXPath(∩)
is (at least) exponentially more succinct than CoreXPath(≈). In summary, we have
thus shown that CoreXPath(∩) is exactly exponentially more succinct than both
CoreXPath and CoreXPath(≈).

THEOREM 32. There is a single exponential translation from CoreXPath(∩) path
expressions to CoreXPath path expressions.

PROOF SKETCH. The proof is along the same lines as in Benedikt et al. [2005],
where it is shown that positive path expressions of CoreXPath(∩) can be translated
to positive path expressions of CoreXPath with an exponential blowup. We call a
path expression positive if it does not contain any negation signs.

We show how to do the translation for basic CoreXPath(∩) expressions α, that is,
expressions that do not contain ∩ inside the ϕ part of sub-expressions β[ϕ]. In the
general case, the translation is applied repeatedly in a bottom-up fashion.

Let α be a basic CoreXPath(∩) expression and let β1[ψ1], . . . , βk[ψk] be all subex-
pressions of α of the form β[ϕ]. Consider the first-order language Lwith the vo-
cabulary R↓, R↓∗ , R→, R→∗ , and Pψ1, . . . , Pψk . Lis interpreted in XML trees and
each predicate Pψi is interpreted in the same way as ψi . As shown in Benedikt et al.
[2005],α can be translated in linear time into a positive existentialL-formulaϕ(x, y)
such that α and ϕ(x, y) define the same binary relation. As shown in Benedikt et al.
[2008] and Gottlob et al. [2006], ϕ(x, y) can be translated in exponential time into
a (positive) CoreXPath expression γ over the set of node labels Pψ1, . . . , Pψk . It
remains to replace each Pψi in γ with ψi .

If we add transitive closure to the three languages mentioned above, the situ-
ation is less clear. In fact, we do not know whether it is at all possible to trans-
late CoreXPath(∗, ∩) path expressions to CoreXPath(∗) in an equivalence-preserving
way. However, there is such a translation from CoreXPath(∗, ∩) to CoreXPath(∗, ≈).
This follows from the single exponential translation from CoreXPath(∗, ∩) to
CoreXPathNFA(∗, loop, let) given in in Section 4, together with the following lemma,
which establishes a single exponential translation from CoreXPathNFA(∗, loop, let)
to CoreXPathNFA(∗, loop). Note that, in contrast to the translation in the proof of
Lemma 18, the following translation is equivalence-preserving rather than only
satisfiability-preserving.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:43

LEMMA 33.

(1) Every CoreXPathNFA(∗, loop, let) node expression ϕ is equivalent to a
CoreXPath(∗, ≈) node expression of length at most 27|ϕ|.

(2) Every CoreXPathNFA(∗, loop, let) path automaton π is equivalent to a
CoreXPath(∗, ≈) path expression of length at most 27|π |.

(3) Every CoreXPathNFA(∗, loop, let) EPA (π, ρ) is equivalent to a CoreXPath(∗, ≈)
path expression of length at most 27(|π |+|ρ|).

PROOF. Items 1 and 2 are proved by simultaneous induction, while item 3
follows from 1 and 2 by a simple counting argument.

(1) Node Expressions. The induction start is trivial because atomic
CoreXPathNFA(∗, loop, let) node expressions are also atomic CoreXPath(∗, ≈) node
expressions. In the induction step, the only nontrivial cases are for node expressions
of the form loop(π) and let p := ψ in χ . First suppose that ϕ is of the form loop(π).
By the induction hypothesis, π is equivalent to a CoreXPath(∗, ≈) path expression
α of length 27|π |. It follows that loop(π) is equivalent to α ≈ ., which has length at
most 27|π | + 2, which is less than 27|ϕ|.

Now suppose that ϕ is of the form let p := ψ in χ . Recall that, by the definition
of formula size, |ϕ| = |ψ | + |χ | + 1. By the induction hypothesis, ψ and χ are
equivalent to CoreXPath(∗, ≈) node expressions ψ ′ and χ ′ of length at most 27|ψ |
and 27|χ |, respectively. Let ϕ′ be the result of replacing in ψ ′ every occurrence of
p with χ ′. Then, ϕ′ is equivalent to ϕ, and |ϕ′| ≤ |ψ ′| · |χ ′| ≤ 27|ψ | · 27|χ | ≤ 27|ϕ|.

(2) Path Automata. Consider any CoreXPathNFA(∗, loop, let) path automaton
π = (Q, �, qI , qF) with |Q| = m. Recall that |π | = m + ∑

(q,.[ϕ],q ′)∈� |ϕ|. For
each transition (q, .[ϕ], q ′) ∈ �, we use the induction hypothesis to obtain a
CoreXPath(∗, ≈) node expression ϕ′ equivalent to ϕ and of length at most 27|ϕ|.
We then use a standard construction to convert π into an equivalent regular ex-
pression of size at most 27m (in fact, 24m+3) cf. McNaughton and Yamada [1960],
and Ellul et al. [2004]. We obtain a CoreXPath(∗, ≈) path expression of length
27m · 27 max{|ϕ||(q,.[ϕ],q ′)∈�}, which is bounded by 27|π |.

(3) Extended Path Automata. Consider any CoreXPathNFA(∗, loop) EPA (π, ρ) with
ρ = ((p1, ϕ1), . . . , (pn, ϕn)). Recall that |(π, ρ)| = |π | + ∑

1≤i≤n(ϕn + 1). By (1)
and (2), we can find a CoreXPath(∗, ≈) path expression α of length at most 27|π |
equivalent to π , and we can find, for 1 ≤ i ≤ n, a CoreXPath(∗, ≈) node expression
ϕ′

i of length at most 27|ϕi | that is equivalent to ϕi . Let α′ be obtained from α by
replacing, for 1 ≤ i ≤ n, pi with ϕ′

i (in the appropriate order, that is, starting with
pn). Then, |α′| ≤ |α| · 27|ϕ1| · . . . · 27|ϕn | ≤ |α| · 27|ρ|.

By combining Lemma 16, Lemma 17, and Lemma 33, we obtain the following
result.

THEOREM 34. There is a double exponential translation from CoreXPath (∗, ∩)
to CoreXPath (∗, ≈). The translation is single exponential if there is a fixed bound
on the intersection depth of the input expression.

In the conference version of the present paper, we claimed that CoreXPath(∗, ∩)
is exactly exponentially more succinct than CoreXPath(∗, ≈). However, there was
a flaw in the argument for the upper bound. We currently do not know whether
there is a single exponential translation from CoreXPath(∗, ∩) to CoreXPath(∗, ≈),

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:44 B. TEN CATE AND C. LUTZ

although the recent results in Gelade and Neven [2008] may suggest a negative
answer. We do know that there can be no polynomial translation, by Theorem 35
below.

We now turn to lower bounds on succinctness. We start with proving the two
lower bounds that have already been mentioned above.

THEOREM 35.

—CoreXPath(∩) is exponentially more succinct than CoreXPath(≈).
—CoreXPath(∗, ∩) is (at least) exponentially more succinct than CoreXPath

(∗, ≈).

PROOF. We may, without loss of generality, restrict our attention to any subset
of the set of all finite XML trees. Let T 1

p,q be the class of XML trees where each
node has at most one child, and each node is labeled by either p or q. In other
words, T 1

p,q is the set of all words over the alphabet {p, q}. Given such a word,
we use n to denote the number of nodes in the tree and ui to denote the i th node
counting from the root (for 1 ≤ i ≤ n). For each k ∈ N, let ϕk be the following
property, where ≡ means that two nodes have the same label:

For all i, j ≤ n − 2k, if ui , ui+1, u j , u j+1 all have label p, and ui+2� ≡
u j+2� for all � < k, then ui+2k ≡ u j+2k .

CLAIM 1. On T 1
p,q , ϕk can be expressed by a node expression of CoreXPath(∩)

of size quadratic in k.

To see this, first note that ≡ is defined by the path expression (.[p]/↑∗/↓∗[p]) ∪
(.[q]/↑∗/↓∗[q]) and �≡ is defined by the path expression (.[p]/↑∗/↓∗[q) ∪
(.[q]/↑∗/↓∗[p]). Next, let α� and α�

� be the path expressions (↓)2�/ ≡ /(↑)2�

and (↓)2�/ �≡ /(↑)2�, defining the binary relation that holds between ui and u j if
i, j ≤ n − 2� and ui+2� ≡ u j+2� (respectively, ui+2� �≡ u j+2�). Finally, the node
expression ϕk is

p ∧ 〈↓[p]〉 → ¬
〈
(
⋂
�<k

α� ∩ α�
k)[p ∧ 〈↓[p]〉]

〉
.

CLAIM 2. Every CoreXPath(∗, ≈) node expression, and in fact every
CoreXPathNFA(∗, loop) node expression expressing ϕk on T 1

p,q must be of length
O(2k).

We have already seen that every CoreXPathNFA(∗, loop) node expression can be
translated in polynomial time into a 2ATA. Since we are working with words, we
can translate into a two-way alternating Büchi automaton on words rather than on
trees. Each such automaton can be translated into an equivalent NFA at the cost of
a single exponential blowup [Vardi 1998]. Now, Etessami et al. [2002] proved that
any automaton of the latter kind defining ϕk has at least 22k

many states. The claim
follows.

In the remainder of this section, we also consider extensions of CoreXPath with
path complementation and for-loops. We start with showing that the jump in com-
plexity encountered when adding path complementation is also reflected in the
succinctness.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:45

THEOREM 36. CoreXPath(∗, −) is nonelementarily more succinct than
CoreXPath(∗, ∩)

PROOF. It follows from Theorem 30 that the size of the smallest XML tree for
a satisfiable CoreXPath(−) node expression ϕ cannot be bounded elementarily in
the length of ϕ: if there was an elementary bound, then this would easily yield an
elementary decision procedure for testing CoreXPath(−) satisfiability, that is, enu-
merate and try all XML trees. This means that there is a sequence of CoreXPath(−)
formulas (ϕi)i∈N of length linear in i and such that each ϕ is satisfiable, but the
smallest XML tree satisfying ϕi cannot be bounded by an elementary function of
i . On the other hand, every satisfiable CoreXPath(∗, ∩) expression ϕ is satisfied in
an XML tree of size at most quadruple exponential in the length of ϕ. This can be
seen as follows. By Theorem 34, every CoreXPath(∗, ∩) expression can be translated
into a CoreXPath(∗, ≈) expression with a double exponential blowup. As shown in
Section 3, every expression of the latter kind can be converted into a 2ATA with
only linear blowup. It is standard to show that every 2ATA A with L(A) �= ∅
accepts an XML tree T of size double exponential in the size of A. Indeed, this
easily follows from the proof of Theorem 13 and corresponding results for stan-
dard 2ATAs, see Grädel et al. [2002]. In summary, it follows that any sequence
(ϕ′

i)i∈N of CoreXPath(∗, ∩) formulas such that each ϕ′
i is equivalent to ϕi must grow

nonelementarily in length.

Our final lower bound shows that, although path complementation leads to a
massive increase in succinctness, extensions with the for construct are even more
succinct.

THEOREM 37. CoreXPath(for) is (at least) exponentially more succinct than
CoreXPath(−).

PROOF. Let FO be the first-order language, interpreted on XML trees, that has
atomic binary relations R↓, R↓∗, R→, R→∗ and a unary predicate Pp for each p ∈ �.
There is a linear translation from CoreXPath(−) into the three variable fragment of
F O , and there is a linear translation from full FO into CoreXPath(for). It was shown
in Grohe and Schweikardt [2005] that, on XML trees, F O is exponentially more
succinct than its three variable fragment (in fact, the proof does not even involve
unary predicates). It follows that CoreXPath(for) is also exponentially more succinct
than CoreXPath(−).

9. Discussion

We have given a comprehensive complexity analysis of containment in CoreXPath
extended with operators that are part of or inspired by XPath 2.0, namely path
intersection, path equality, path complementation, for-loops, and transitive closure.
The main outcome of our investigations is that these extensions often result in a
significant increase in complexity, with the notable exception of path equality and
transitive closure.

One aspect of XPath 2.0 that we have not considered is the fact that it has a
sequence-based semantics. Unlike in XPath 1.0, where path expressions are evalu-
ated at a context node and yield a set of nodes as a result, path expressions of XPath
2.0 yield sequences of nodes, possibly unordered and with duplicates. This has an

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:46 B. TEN CATE AND C. LUTZ

impact on static analysis as two expressions that are equivalent in the set-based se-
mantics may no longer be equivalent under the sequence-based semantics; see also
ten Cate and Marx [2009]. It is not clear to what extent the choice of semantics
affects our complexity results.

Our upper bound proofs do not provide practical algorithms for query optimiza-
tion in practice. Query optimization is usually implemented using rewrite rules.
It is therefore natural to ask whether there is a set of rewrite rules by means of
which expressions from the various dialects that we consider can be rewritten into
equivalent, but more efficient expressions. In this respect, it is worth mentioning
that in ten Cate and Marx [2009], a complete axiomatization for CoreXPath(∩, −)
and CoreXPath(∩, −, for) is given. The axiomatizations, consisting of axioms such
as (α ∪ β)/γ ≡ α/γ ∪ β/γ , are shown to be complete in the sense that, whenever
two path expressions are equivalent, their equivalence can be proved by repeated
application of the axioms.

ACKNOWLEDGMENTS. We would like to thank the anonymous reviewers of the
Journal of the ACM for their very helpful comments. We also thank Stefan Göller
and Maarten Marx for discussions and comments.

REFERENCES

ARENAS, M., FAN, W., AND LIBKIN, L. 2008. On verifying consistency of XML specifications. In SIAM
J. Comput. 38, 3, 259–270.

BENEDIKT, M., FAN, W. AND GEERTS, F. 2008. XPath satisfiability in the presence of DTDs. J. ACM 55, 2,
1–79.

BENEDIKT, M., FAN, W., AND KUPER, G. M. 2005. Structural properties of XPath fragments. Theoret.
Comput. Sci. 336, 1, 3–31.

BERGLUND, A., BOAG, S., CHAMBERLIN, D., FERNANDEZ, M. F., KAY, M., ROBIE, J., AND

SIMEON, J., EDS. 2007. XML Path Language (XPath) Version 2.0. W3C Recommendation.
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

BOAG, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J., AND SIMEON, J., EDS. 2007.
XQuery 1.0: an XML Query Language. W3C Recommendation.
http://www.w3.org/TR/2007/REC-xquery-20070123/.

BÖTTCHER, S. 2004. Testing intersection of XPath expressions under DTDs. In Proceedings of the 8th
International Database Engineering and Applications Symposium (IDEAS’04). IEEE Computer Society
Press, Los Alamitos, CA, 401–406.

CHANDRA, A. K., KOZEN, D. C., AND STOCKMEYER, L. J. 1981. Alternation. J. ACM 28, 1, 114–
133.

CLARK, J., AND DEROSE, S. J., EDS. 1999. XML Path Language (XPath) Version 1.0. W3C Recommen-
dation. http://www.w3.org/TR/xpath.

CLARK, J., AND MURATA, M. 2001. RELAX NG specification.
http://relaxng.org/spec-20011203.html.

DEUTSCH, A. AND TANNEN, V. 2005. XML queries and constraints, containment and reformulation.
Theoret. Comput. Sci. 336, 1, 57–87.

ELLUL, K., KRAWETZ, B., SHALLIT, J., AND WEI WANG, M. 2004. Regular expressions: New results and
open problems. J. Automata, Lang. Combin. 9, 2-3, 233–256.

ETESSAMI, K., VARDI, M. Y., AND WILKE, T. 2002. First order logic with two variables and unary temporal
logic. Info. Computat. 179, 2, 279–295.

FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2007. Rewriting regular XPath queries on XML
views. In Proceedings of the 23rd International Conference on Data Engineering (ICDE’07). IEEE
Computer Society Press, Los Alamitos, CA, 666–675.

FÜRER, M. 1980. The complexity of the inequivalence problem for regular expressions with intersection.
In Proceedings of the 7th Colloquium on Automata, Languages and Programming (ICALP’80), J. W.
de Bakker and J. van Leeuwen, Eds. Lecture Notes in Computer Science, vol. 85. Springer-Verlag, Berlin,
Germany, 234–245.

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

Complexity of Query Containment in XPath 2.0 31:47

GAO, S., SPERBERG-MCQUEEN, C. M., AND THOMPSON, H. S., EDS. 2007. XML Schema Definition
Language (XSDL) 1.1, Part 1: Structures. W3C Working Draft.
http://www.w3.org/TR/2007/WD-xmlschema11-1-20070830/.

GEERTS, F., AND FAN, W. 2005. Satisfiability of XPath queries with sibling axes. In Proceedings of
the 10th International Symposium on Database Programming Languages (DBPL’05), G. M. Bierman
and C. Koch, Eds. Lecture Notes in Computer Science, vol. 3774. Springer-Verlag, Berlin, Germany,
122–137.

GELADE, W., AND NEVEN, F. 2008. Succinctness of the complement and intersection of regular ex-
pressions. In Proceedings of the 25th International Symposium on Theoretical Aspects of Computer
Science (STACS’08), S. Albers and P. Weil, Eds. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, 325–336.

GOTTLOB, G., AND KOCH, C. 2002. Monadic queries over tree-structured data. In Proceedings of the
17th IEEE Symposium on Logic in Computer Science (LICS’02), G. Plotkin, Ed. IEEE Computer Society,
189–202.

GOTTLOB, G., KOCH, C., PICHLER, R., AND SEGOUFIN, L. 2005. The complexity of XPath query evaluation
and XML typing. J. ACM 52, 2, 284–335.

GOTTLOB, G., KOCH, C., AND SCHULZ, K. U. 2006. Conjunctive queries over trees. J. ACM 53, 2,
238–272.

GRÄDEL, E., THOMAS, W., AND WILKE, T., EDS. 2002. Automata, Logics and Infinite Games. Lecture
Notes in Computer Science, vol. 2500. Springer-Verlag, Berlin, Germany.

GROHE, M., AND SCHWEIKARDT, N. 2005. The succinctness of first-order logic on linear orders. Logical
Methods in Computer Science 1, 1, 1–25.

HAMMERSCHMIDT, B. C., KEMPA, M., AND LINNEMANN, V. 2005. On the intersection of XPath ex-
pressions. In Proceedings of the 9th International Database Engineering and Applications Symposium
(IDEAS’05). IEEE Computer Society Press, Los Alamitos, CA, 49–57.

HIDDERS, J. 2003. Satisfiability of XPath expressions. In Proceedings of the 9th International Workshop
on Data Base Programming Languages (DBPL’03), G. Lausen and D. Suciu, Eds. Lecture Notes in
Computer Science, vol. 2921. Springer-Verlag, Berlin, Germany, 21–36.

KAY, M., ED. 2007. XSL Transformations (XSLT) Version 2.0. W3C Recommendation.
http://www.w3.org/TR/2007/REC-xslt20-20070123/.

KLARLUND, N., MøLLER, A., AND SCHWARTZBACH, M. I. 2002. The DSD schema language. Automat.
Softw. Eng. 9, 3, 285–319.

LADNER, R. E. 1977. The computational complexity of provability in systems of modal propositional
logic. SIAM J. Comput. 6, 3, 467–480.

LAKSHMANAN, L. V. S., RAMESH, G., WANG, H., AND ZHAO, Z. J. 2004. On testing satisfiability of
tree pattern queries. In Proceedings of the 30th International Conference on Very Large Databases
(VLDB’04), M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, Eds. Morgan-Kaufmann, San Francisco, CA, 120–131.

LANGE, M., AND LUTZ, C. 2005. 2-ExpTime lower bounds for propositional dynamic logics with inter-
section. J. Symb. Logic 70, 5, 1072–1086.

MARTENS, W., NEVEN, F., SCHWENTICK, T., AND BEX, G. 2006. Expressiveness and complexity of XML
schema. ACM Trans. Datab. Syst. 31, 3, 770–813.

MARX, M. 2004. XPath with conditional axis relations. In Proceedings of the 9th International Con-
ference on Extending Database Technology (EDBT’04), E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari, Eds. Lecture Notes in Computer Science,
vol. 2992. Springer-Verlag, Berlin, Germany.

MARX, M. 2005. Conditional XPath. ACM Trans. Datab. Syst. 30, 4, 929–959.
MARX, M., AND DE RIJKE, M. 2005. Semantic characterizations of navigational XPath. ACM SIGMOD

Rec. 34, 2, 41–46.
MCNAUGHTON, R., AND YAMADA, H. 1960. Regular expressions and state graphs for automata. IEEE

Trans. Electron. Comput. 9, 39–47.
MIKLAU, G., AND SUCIU, D. 2004. Containment and equivalence for a fragment of XPath. J. ACM 51, 1,

2–45.
MURATA, M., LEE, D., MANI, M., AND KAWAGUCHI, K. 2005. Taxonomy of XML schema languages

using formal language theory. ACM Trans. Internet Tech. 5, 4, 660–704.
NEVEN, F., AND SCHWENTICK, T. 2006. On the complexity of XPath containment in the presence of

disjunction, DTDs and variables. Logical Meth. Comput. Sci. 2, 1–30.
OLTEANU, D., MEUSS, H., FURCHE, T., AND BRY, F. 2002. XPath: Looking forward. In Proceedings of

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

31:48 B. TEN CATE AND C. LUTZ

the Workshop on XML-Based Data Management (XMLDM’02), A. B. Chaudhri, R. Unland, C. Djeraba,
and W. Lindner, Eds. Lecture Notes in Computer Science, vol. 2490. Springer-Verlag, Berlin, Germany,
109–127.

PAPAKONSTANTINOU, Y., AND VIANU, V. 2000. DTD inference for views of XML data. In Proceedings
of the 19th Symposium on Principles of Database Systems (PODS’00). ACM, New York, 35–46.

SCHWENTICK, T. 2004. XPath query containment. SIGMOD Rec. 33, 1, 101–109.
STOCKMEYER, L. J. 1974. The complexity of decision problems in automata theory. Ph.D. dissertation.

Department of Electrical Engineering, MIT, Cambridge, MA.
TAJIMA, K., AND FUKUI, Y. 2004. Answering XPath queries over networks by sending minimal views.

In Proceedings of the 30th International Conference on Very Large Databases (VLDB’04), M. A. Nasci-
mento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, Eds. Morgan Kaufmann,
San Francisco, CA, 48–59.

TEN CATE, B. 2006. The expressivity of XPath with transitive closure. In Proceedings of the 25th
Symposium on Principles of Database Systems (PODS’06), S. Vansummeren, Ed. ACM, New York,
328–337.

TEN CATE, B., AND MARX, M. 2009. Axiomatizing the logical core of XPath 2.0. In Proceedings of
ICDT 2007. LNCS, vol. 4353. Springer, 134–148.

THOMPSON, H. S., BEECH, D., MALLONEY, M., AND MENDELSOHN, N., EDS. 2004. XML Schema Part 1:
Structures, Second Edition. W3C Recommendation.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

VARDI, M. 1998. Reasoning about the past with two-way automata. In Proceedings of the 25th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’98). Lecture Notes in Computer
Science, vol. 1443. Springer-Verlag, Berlin, Germany, 628–641.

WOOD, P. T. 2003. Containment for XPath fragments under DTD constraints. In Proceedings of the 9th
International Conference on Database Technology (ICDT’03). Lecture Notes in Computer Science, vol.
2572. Springer-Verlag, Berlin, Germany, 300–314.

RECEIVED JANUARY 2008; REVISED MAY 2009; ACCEPTED MAY 2009

Journal of the ACM, Vol. 56, No. 6, Article 31, Publication date: September 2009.

