
Knowledge Compilation in the Modal Logic S5

Meghyn Bienvenu
Universität Bremen
Bremen, Germany

meghyn@informatik.uni-bremen.de

Hélène Fargier
IRIT-CNRS,

Université Paul Sabatier,
Toulouse, France

fargier@irit.fr

Pierre Marquis
CRIL-CNRS, Université d’Artois

Lens, France
marquis@cril.univ-artois.fr

Abstract

In this paper, we study the knowledge compilation task
for propositional epistemic logic S5. We first extend
many of the queries and transformations considered in
the classical knowledge compilation map to S5. We
then show that the notion of disjunctive normal form
(DNF) can be profitably extended to the epistemic case;
we prove that the DNF fragment of S5, when appropri-
ately defined, satisfies essentially the same queries and
transformations as its classical counterpart.

1. Introduction
Propositional epistemic logic S5 is a well-known modal
logic which is suitable for representing and reasoning about
the knowledge of a single agent. For instance, in S5, one
can represent the fact that an agent knows the truth value of
a proposition awithout stating which one (Ka∨K¬a); such
a fact cannot be expressed in classical propositional logic.
Reasoning from such pieces of knowledge is an important
issue per se, but is also required when performing the pro-
gression of a knowledge state by an epistemic plan. Unfor-
tunately, standard reasoning tasks in S5 are intractable; for
instance, entailment in S5 is coNP-complete (Ladner 1977),
like in classical propositional logic. Another example is the
variable forgetting transformation, which can prove useful
in epistemic planning but is intractable in the general case.

A standard approach to coping with the computational in-
tractability of reasoning is to employ knowledge compila-
tion (KC). The idea underlying KC is to pre-process parts of
the available information (i.e., turning them into a compiled
form) in order to improve on-line computational efficiency
(see (Cadoli and Donini 1998) for a survey). A major is-
sue in KC is the selection of an appropriate target language.
In (Darwiche and Marquis 2002), the authors argue that the
choice of a target language must be based both on the set of
queries and transformations which can be achieved in poly-
nomial time when the data are represented in the language,
as well as the spatial efficiency of the language. They elabo-
rate a KC map which can be viewed as a multi-criteria eval-
uation of a number of classical propositional languages, in-
cluding DNF, CNF, DNNF, and OBDD. From there, the
KC map has been extended to other propositional target lan-
guages. There has also been some work on knowledge com-

pilation techniques suited to other formal settings, e.g. belief
bases, Bayesian networks, description logics, etc.

In this paper, we study the knowledge compilation task
for propositional epistemic logic S5. We introduce a family
S5-DNF of subsets of S5 (called “fragments”) which can
be seen as the epistemic counterparts of DNF and evaluate
the family with respect to several queries and transforma-
tions, including clausal entailment, variable forgetting, and
conditioning by an (epistemic) term. Our evaluation shows
one of the most promising languages of the family to be
S5-DNFDNF,CNF, consisting of those S5 formulae in dis-
junctive normal form in which the formulae α in positive
epistemic atoms (Kα) are in DNF and those appearing in
negative epistemic atoms (¬Kα) are in CNF.

The rest of the paper is organized as follows. Section 2
contains a brief refresher on classical propositional logic and
the modal logic S5. Section 3 shows how many queries and
transformations considered in the classical case can be ex-
tended to S5. In Section 4, we study the properties of the
S5-DNF family of fragments of S5; we show in particular
that the fragment S5-DNFDNF,CNF satisfies essentially the
same queries and transformations as its propositional coun-
terpart. In Section 5, we sketch how our results can be ex-
ploited for epistemic planning. Finally, in Section 6 we con-
clude the paper with a discussion of our results.

2. Preliminaries
Classical Propositional Logic
The propositional languages which have been considered as
target languages for KC are typically subsets of the follow-
ing PDAG language:
Definition 1 (PDAG). Let PS be a finite set of propositional
variables (atoms). A formula in PDAG is a rooted, directed
acyclic graph (DAG) where each leaf node is labeled with>,
⊥, x or ¬x, x ∈ PS; each internal node is labeled with ∧
or ∨ and can have arbitrarily many children, or it is labeled
with ¬ and has a single child.

For any subset V of PS, LV denotes the subset of (clas-
sical) literals generated from the atoms of V , i.e., LV =
{x,¬x | x ∈ V }. CL (resp. TE) is the set of (classical)
clauses (resp. terms), namely disjunctions (resp. conjunc-
tions) of literals. CNF (resp. DNF) is the subset of PDAG
consisting of conjunctions of clauses (resp. disjunctions of

terms). PDAG and its subsets are classically interpreted: the
semantics of a formula is a Boolean function. A valuation
(or world) ω is a mapping from PS to {0, 1}. The set of
valuations is noted by Ω.

Subsets L1 and L2 of PDAG are said to be dual iff there
exists a polytime algorithm f from L1 to L2 and a poly-
time algorithm g from L2 to L1 such that for every α ∈ L1,
f(α) ≡ ¬α, and for every α ∈ L2, g(α) ≡ ¬α.

In the following, we consider only subsets L of PDAG in
which every classical clause (resp. term) has a polytime-
computable representation in L. This is the case for all the
languages considered in (Darwiche and Marquis 2002), ex-
cept the explicit model representation MODS.

Modal Logic S5
Let us now consider a more general DAG-based language,
suited to propositional epistemic logic:
Definition 2 (S5). Let PS be a finite set of propositional
variables (atoms). A formula in S5 is a rooted, directed
acyclic graph (DAG) where each leaf node is labeled with
>, ⊥, x or ¬x, x ∈ PS; each internal node is labeled with
∧ or ∨ and can have arbitrarily many children, or it is labeled
with K or by ¬ and it has a single child; and each path con-
tains at most one node K. The size of a sentence Σ in S5
denoted |Σ|, is the number of its DAG arcs plus the num-
ber of its DAG nodes. V ar(Σ) is the set of propositional
symbols from PS occurring in Σ.

The semantics of S5 can be defined in a standard way à
la Kripke, but it is well-known (Fagin et al. 1995) that it
can also be defined in an equivalent (yet simpler) way us-
ing pointed knowledge structures, of the form M = 〈ω, S〉
where ω ∈ Ω and S is a (non-empty) subset of Ω contain-
ing ω. The satisfaction of a formula ϕ ∈ S5 by a structure
M = 〈ω, S〉 is defined inductively as follows:
• if ϕ is a leaf node, then 〈ω, S〉 |= ϕ iff ω |= ϕ,
• if ϕ is of the form ¬α, then 〈ω, S〉 |= ϕ iff 〈ω, S〉 6|= α,
• if ϕ is of the form Kα, then 〈ω, S〉 |= ϕ iff for every
ω′ ∈ S, 〈ω′, S〉 |= α,

• if ϕ is of the form ∧(α1, . . . , αk), then 〈ω, S〉 |= ϕ iff for
each 1 ≤ i ≤ k, 〈ω, S〉 |= αi,

• if ϕ is of the form ∨(α1, . . . , αk), then 〈ω, S〉 |= ϕ iff
there exists 1 ≤ i ≤ k such that 〈ω, S〉 |= αi.
M is a model of ϕ when it satisfies it. Mod(ϕ) denotes

the set of models of ϕ. A formula ϕ is said to be consistent
(resp. valid) iff Mod(ϕ) 6= ∅ (resp. Mod(¬ϕ) = ∅). Logical
entailment and equivalence are defined as usual: ϕ |= ψ iff
Mod(ϕ) ⊆ Mod(ψ), and ϕ ≡ ψ iff Mod(ϕ) = Mod(ψ).

In our definition of S5 we have chosen to disallow nested
modalities. This is without any loss of generality since
every formula from S5 can be turned in polynomial time
into a flattened equivalent, thanks to the following “flat-
tening equivalences”: KKϕ ≡ Kϕ, K¬Kϕ ≡ ¬Kϕ,
K(ϕ ∧ ψ) ≡ (Kϕ) ∧ (Kψ), K(ϕ ∨Kψ) ≡ (Kϕ) ∨ (Kψ)
and K(ϕ ∨ ¬(Kψ)) ≡ (Kϕ) ∨ ¬(Kψ).

PDAG is clearly a proper subset of S5. It contains the so-
called objective formulae of S5. The subjective fragment of
S5 (denoted s-S5) is defined as follows.

Definition 3 (s-S5). s-S5 consists of all S5 formulae ϕ
such that every path from the root of ϕ to a node labeled by
l ∈ LPS contains exactly one node labeled by K.

s-S5 allows one to represent an agent’s knowledge but
not the actual state of the world (unless it is known); for
instance, the S5 formula a ∧ b ∧Ka ∧ ¬Kb cannot be rep-
resented in s-S5.

A formula of the form Kϕ with ϕ ∈ PDAG is called an
epistemic atom. Each S5 formula Σ can be viewed as a
PDAG formula where the leaf nodes are Boolean constants,
classical propositional literals or epistemic atoms.

As expected, an epistemic literal is an epistemic atom
(also referred to as a positive epistemic literal) or a negated
one (a negative epistemic literal). By literal, we will mean
either a classical literal or an epistemic literal. Clearly
enough, epistemic literals are already rather complex and
some simple properties from the classical case cannot be ex-
tended to S5. Thus, since Kα is consistent (resp. valid)
iff α is consistent (resp. valid), the consistency (resp. va-
lidity) problem for epistemic literals is NP-complete (resp.
coNP-complete).

Now, taking advantage of the flattening equivalences, one
can easily extend the notions of clause and term, and the
languages CNF and DNF to S5 as follows:
Definition 4 (S5-CL, S5-TE, S5-CNF, S5-DNF). The set
S5-CL (resp. S5-TE) of epistemic clauses (resp. terms)
of S5 consists of all those disjunctions (resp. conjunctions)
of literals containing at most one negative (resp. positive)
epistemic literal. The language S5-CNF (resp. S5-DNF) is
the subset of formulae from S5 consisting of conjunctions
(resp. disjunctions) of epistemic clauses (resp. terms).

Note that the restriction to a single positive (resp. nega-
tive) epistemic literal per term (resp. clause) in Definition 4
is without loss of expressiveness because of the equivalence
K(ϕ∧ψ) ≡ Kϕ∧Kψ. Without this restriction, we cannot
guarantee that the consistency of a positive epistemic term
(resp. the validity of a negative epistemic clause) amounts to
the consistency of each positive epistemic literal in it (resp.
the validity of at least one negative epistemic literal in it).
For instance, the positive epistemic term Ka ∧K¬a is in-
consistent despite the fact that each of Ka and K¬a is con-
sistent.

The following (folklore) proposition, which characterizes
the consistency of S5 terms, highlights the interaction be-
tween the classical formulae appearing in a term.
Proposition 5. An epistemic term τ ∧Kα ∧ ¬Kβ1 ∧ . . . ∧
¬Kβn (with τ an objective term) is consistent if and only
if τ ∧ α is consistent and α ∧ ¬βi is consistent for every
1 ≤ i ≤ n.

In what follows, we will often need to refer to fragments
of S5 in which the shape of formulae behind K has been
restricted. If L, L′ ⊆ PDAG and L is a subset of S5, then
we denote by LL,L′ the subset of L in which the formulae
under the scope of K (resp. ¬K) belong to L (resp. L′). For
example, S5-CLCNF,DNF consists of epistemic clauses with
CNF formulae behind K and DNF formulae behind ¬K.
Finally, given a subset L of S5, we use s-L to refer to its
restriction to s-S5, i.e., L ∩ s-S5.

3. Towards a KC Map for S5
We show how the notions of expressiveness and succinct-
ness (or spatial efficiency) as well as many queries and trans-
formations considered in the classical KC map can be ex-
tended to S5.

Expressiveness and Succinctness
Consider subsets L1 and L2 of S5.

Definition 6 (≤e). L1 is at least as expressive as L2, de-
noted L1 ≤e L2, iff for every formula α ∈ L2, there exists
an equivalent formula β ∈ L1.

A subset L1 of a language L2 is said to be complete w.r.t.
L2 when it is as expressive as L2. As in the classical case,
succinctness is a refinement of expressiveness:

Definition 7 (≤s). L1 is at least as succinct as L2, denoted
L1 ≤s L2, iff there exists a polynomial p such that for every
formula α ∈ L2, there exists an equivalent formula β ∈ L1

where |β| ≤ p(|α|).

=s and <s are obtained as usual by taking the symmetric
and asymmetric parts of ≤s.

Queries and Transformations
Most standard queries and transformations straightforwardly
extend from classical logic to subsets L of S5. This is the
case for CO (consistency), VA (validity), EQ (equivalence),
SE (sentential entailment), and the (possibly bounded) clo-
sure transformations with respect to the propositional con-
nectives: ∧C, ∧BC, ∨C, ∨BC, ¬C.

Definition 8.
• L satisfies CO (resp. VA) iff there exists a polytime al-

gorithm that maps every formula α from L to 1 if α is
consistent (resp. valid), and to 0 otherwise.

• L satisfies EQ (resp. SE) iff there exists a polytime algo-
rithm that maps every pair of formulae α, β from L to 1
if α ≡ β (resp. α |= β) holds, and to 0 otherwise.

• L satisfies ∧C (resp. ∨C) iff there exists a polytime al-
gorithm that maps every finite set of formulae α1, . . . , αn

from L to a formula of L that is logically equivalent to
∧(α1 . . . αn) (resp. ∨(α1 . . . αn)).

• L satisfies ∧BC (resp. ∨BC) iff there exists a polytime
algorithm mapping every pair α, β of formulae from L to
a formula of L logically equivalent to α∧β (resp. α∨β).

• L satisfies ¬C iff there exists a polytime algorithm that
maps every formula α from L to a formula of L that is
logically equivalent to ¬α.

CE and IM. A straightforward generalization of clausal en-
tailment (CE) would say that L satisfies CE iff there exists
a polytime algorithm mapping every formula α from L and
every clause γ to 1 if α |= γ holds, and to 0 otherwise.
As we saw earlier, the problems of deciding whether even a
single epistemic atom is a tautology or a contradiction is in-
tractable, which means that no non-trivial subset of S5 can
exhibit polynomial behaviour for the query CE. A similar
argument applies to implication of terms (IM). For this rea-
son, we consider the following versions of CE (resp. IM), in

which restrictions are placed also on the formulae appearing
in the epistemic literals of the clause (resp. term):
Definition 9 (CECNF,DNF, IMDNF,CNF). Let L denote any
subset of S5. L satisfies CECNF,DNF (resp. IMDNF,CNF) iff
there exists a polytime algorithm that maps every formula α
from L and every epistemic clause γ from S5-CLCNF,DNF

(resp. term γ from S5-TEDNF,CNF) to 1 if α |= γ holds
(resp. if γ |= α), and to 0 otherwise.
Forgetting. Variable forgetting is a fundamental operation
from a knowledge representation point of view with a num-
ber of applications, including reasoning under inconsistency
and planning (cf. Section 5). Forgetting can be used to sim-
plify an agent’s epistemic state by discarding information
concerning propositional variables which are no longer rele-
vant. Forgetting in S5 can be defined as follows (Zhang and
Zhou 2009):
Definition 10 (Forgetting). We say that a formula Ψ is a
forgetting of V ⊆ PS from Φ if
(i) Φ |= Ψ,
(ii) V ar(Ψ) ∩ V = ∅,
(iii) for every formula Ψ′ such that Φ |= Ψ′ and V ar(Ψ′)∩
V = ∅, we have Ψ |= Ψ′.

A subset L of S5 satisfies FO iff there exists a polytime
algorithm that maps every formula Φ ∈ L and every V ⊆
PS to a formula Ψ ∈ L which is a forgetting of V from Φ.

The result of forgetting V from a formula Φ is the log-
ically strongest consequence of Φ which does not mention
variables from V , i.e., it is the projection of Φ onto PS \ V .
One should note that in some modal logics, like S4 (Ghilardi
and Zawadowski 1995), for some choices of Φ and V , no
formula satisfying the above three conditions can be found.
Luckily, such a formula always exists in S5, and item (iii)
ensures it is unique up to logical equivalence. We henceforth
denote this formula by forget(Φ,V).
Conditioning. Conditioning is a key transformation in a
number of representation settings as it permits the incorpo-
ration of pieces of evidence into a representation. In many
settings (including classical propositional logic), condition-
ing is defined as a composition of conjunction with a term
and forgetting. In S5, we can proceed similarly provided we
restrict the type of terms we allow:
Definition 11 (Epistemic conditioning). A subset L of S5
satisfies eCD iff there exists a polytime algorithm that maps
every formula Φ ∈ L and every satisfiable epistemic term Υ
from S5-TEDNF,CNF to a formula Φ|Υ ∈ L such that

Φ|Υ ≡ forget(Φ ∧Υ, V ar(Υ)).

Note that the restriction to terms from S5-TEDNF,CNF

is harmless from an expressiveness point of view; with-
out it, the conditioning of formulae from quite trivial frag-
ments of S5 can be shown to be coNP-hard using the fol-
lowing reduction: a classical formula ϕ is unsatisfiable iff
forget(Ka ∧ K(¬a ∨ ϕ), V ar(K(¬a ∨ ϕ))) is unsatisfi-
able. Observe that the latter satisfiability check can be done
in polytime since it involves a S5 formula without proposi-
tional variables.

With our definition, the relationship with clausal entail-
ment satisfied in the classical case continues to hold1:

Proposition 12. Let L be a subset of S5. If L satisfies both
eCD and CO, then it also satisfies CECNF,DNF.

In the classical case, the conditioning of a formula ϕ by a
(classical) term τ is equivalent to the formula resulting from
replacing all variables v inϕ by> (resp. ⊥) if v appears pos-
itively (resp. negatively) in τ . This “syntactic” conditioning
is straightforwardly extended to S5:

Definition 13 (Syntactic conditioning). A subset L of S5
satisfies CD iff there exists a polytime algorithm that maps
every formula Φ ∈ L and every satisfiable objective term
τ = v1 ∧ . . . ∧ vn ∧ ¬vn+1 ∧ . . . ∧ ¬vm to a formula
Φ|Kτ ∈ L such that Φ|Kτ ≡ Φ [v1 ← >, . . . , vn ←
>, vn+1 ← ⊥, . . . , vm ← ⊥].

Using the same notations for the two versions of condi-
tioning is harmless as syntactic conditioning of a S5 formula
is just regular conditioning by an epistemic atom:

Proposition 14. The following are equivalent:

1. Φ [v1 ← >, . . . , vn ← >, vn+1 ← ⊥, . . . , vm ← ⊥].
2. forget(Φ ∧K(v1 ∧ · · · ∧ vn ∧ ¬vn+1 ∧ . . . ∧ ¬vm),

{v1, . . . , vm}).

Notice that if we use the more limited, syntactic vari-
ant of conditioning, we lose the fact that clausal entailment
can be performed by conditioning followed by consistency-
checking, a key property from the classical setting. How-
ever, syntactic conditioning by a propositional term τ is suf-
ficient for modelling the change in an agent’s knowledge
when learning that the real world satisfies τ .

Now that a notion of epistemic conditioning is avail-
able, we can investigate whether fragments like OBDD and
DNNF which proved very interesting target languages for
KC (Darwiche and Marquis 2002) can be extended to S5.
Indeed, Shannon expansion, which is based on case analy-
sis and conditioning is key to compiling classical proposi-
tional formulae into such fragments (Huang and Darwiche
2007). Basically, for any chosen variable x, the idea is
to turn a formula α into the equivalent formula (x ∧ (α |
x)) ∨ (¬x ∧ (α | ¬x)); interestingly, both x ∧ (α | x) and
¬x∧(α | ¬x) are decomposable conjunctive formulae since
x does not occur in α | x or in α | ¬x. The fact that a
classical formula α is equivalent to its Shannon expansion
(x ∧ (α | x)) ∨ (¬x ∧ (α | ¬x)) over x follows easily from
the fact that x∧(α | x) ≡ x∧α and ¬x∧(α | ¬x) ≡ ¬x∧α.
Unfortunately, such a property does not hold in S5, as the
following example demonstrates:

Example 15. Consider α = ¬K(¬a ∨ ¬b) and l = ¬K¬a.
It is easily verified that l∧α ≡ α, but l∧(α|l) ≡ (¬K¬a)∧
(¬K¬b), and hence l ∧ (α | l) 6≡ l ∧ α.

This prevents the extension of OBDD, DNNF and related
fragments to S5.

1Proofs have been omitted for lack of space but can be found in
the appendix of a long version available at ftp://ftp.irit.
fr/IRIT/RPDMP/PapersFargier/aaai10.pdf.

4. The S5-DNF Family
In this section, we investigate the KC properties of the
S5-DNFL,L′ fragments of S5, as well as the correspond-
ing s-S5-DNFL,L′ fragments of s-S5. We pay particular
attention to the fragment S5-DNFDNF,CNF, in which every
positive (resp. negative) epistemic atom Kα (resp. ¬Kα) is
such that α ∈ DNF (resp. α ∈ CNF).

Expressiveness and Succinctness
The completeness of S5-DNFL,L′ w.r.t. S5 whenever L and
L′ are complete w.r.t. PDAG follows from:

Proposition 16. If each PDAG formula admits an at most
single-exponential representation in L and in L′, then every
S5 formula can be transformed into an equivalent formula
in S5-DNFL,L′ which is at most single-exponentially larger.

The proof of Proposition 16 yields a procedure for com-
piling arbitrary S5 formulae into S5-DNFL,L′ , consisting
of a first step in which we leverage the distributivity prop-
erty of ∧ over ∨ to obtain an equivalent formula in S5-
DNF, a second step in which we apply the equivalence
K(ϕ ∧ ψ) ≡ (Kϕ) ∧ (Kψ) to group K-literals together
in every conjunction, and a final step in which we put the
propositional formulae behind K into the required form.

The following proposition shows how one can take advan-
tage of succinctness results given in the classical KC map to
derive succinctness results for fragments of S5-DNF.

Proposition 17. Let L, L′, and L′′ be complete subsets w.r.t.
PDAG. We have:

L≤s L′ iff S5-DNFL,L′′ ≤s S5-DNFL′,L′′

The same holds if we replace S5-DNF by s-S5-DNF.

Queries and Transformations
Negative results about queries are easily transferred from
DNF to S5-DNFL,L′ (even when restricted to s-S5):

Proposition 18. Assuming P6=NP, S5-DNFL,L′ does not
satisfy VA, SE, EQ, or IMDNF,CNF. The same is true for s-
S5-DNFL,L′ .

The remaining two queries, CO and CECNF,DNF, are
known to be feasible for DNF. The following proposition
shows that under certain conditions, these results can be
lifted to S5-DNFL,L′ .

Proposition 19.
• Let L and L′ be dual subsets of PDAG. If L satisfies CO

and ∧BC, then S5-DNFL,L′ satisfies CO . Conversely, if
S5-DNFL,L′ satisfies CO, then L satisfies CO.

• If S5-DNFL,L′ satisfies CO and eCD, then it also satisfies
CECNF,DNF.

Both statements also hold for s-S5-DNFL,L′ .

We briefly explain the intuition behind the first statement.
According to Proposition 5, to test if Kα ∧ ¬Kβ is consis-
tent, we must check whether the classical formula α ∧ ¬β
is consistent. By requiring that L and L′ be dual, we can
transform in polytime ¬β into an equivalent formula in L.
We can then use bounded conditioning (∧BC) to conjoin the

resulting formula with α, and finally leverage CO to test if
the resulting formula in L is consistent.

For the closure transformations, we have the following:

Proposition 20.
• S5-DNFL,L′ satisfies ∨C and thus ∨BC.
• If L satisfies ∧BC, then S5-DNFL,L′ satisfies ∧BC.
• For L ⊆ PDAG, let L[∧] denote the conjunctive closure

of L, i.e., the language defined inductively by: L ⊆ L[∧],
and if α1, . . . , αn ∈ L[∧], then

∧n
i=1 αi ∈ L[∧].

If L[∧] <sL, S5-DNFL,L′ satisfies neither ∧C nor ¬C.

The above results also hold for s-S5-DNFL,L′ .

Thus, we see that closure transformations which hold for
DNF can be lifted to S5-DNFL,L′ . Similarly, negative results
for ∧C and ¬C also extend to S5-DNFL,L′ .

We can obtain polytime forgetting for S5-DNFL,L′ under
certain restrictions on L and L′.

Proposition 21.
• If L and L′ are dual, L satisfies CO, ∧BC, and FO,

and there is a polytime transformation from L to DNF,
then S5-DNFL,L′ satisfies FO. We can drop the require-
ment of a polytime transformation from L to DNF for s-
S5-DNFL,L′ .

• If DNF 6≤sL, then FO is not satisfied by S5-DNFL,L′ .

To understand the need for a polynomial translation from
L to DNF in the first statement, consider an epistemic term
τ ∧Kα. The forgetting of V from this formula can be shown
to be equivalent to forget(τ ∧ α,V) ∧K forget(α,V). The
first conjunct can be computed by putting τ ∧α into L (using
∧BC), and then employing a polytime forgetting procedure
for L. However, the result of this forgetting will be a formula
from L, whereas we require the objective part of it to belong
to DNF. This is where the polytime translation from L to
DNF comes into play. Of course, if we are working with
s-S5-DNFL,L′ , then the component terms have no objective
parts, so this concern does not apply.

The following proposition shows that syntactic condition-
ing is easily lifted to S5-DNFL,L′ , but considerably more is
needed to get the general form of conditioning.

Proposition 22.
• S5-DNFL,L′ satisfies CD if both L and L′ satisfy CD.
• If L and L′ are dual, L satisfies CO, ∧BC, and FO,

and there are polynomial translations from DNF to L and
back, then S5-DNFL,L′ satisfies eCD. We can drop the re-
quirement of a polynomial translation from L to DNF for
s-S5-DNFL,L′ when conditioning by terms from s-S5.

Applying the preceding results to the specific case where
L = DNF and L′ = CNF, we obtain the following:

Corollary 23. S5-DNFDNF,CNF satisfies CO, CECNF,DNF,
∧BC, ∨C, FO, and eCD, but not VA, SE, EQ, or IM (unless
P=NP). It satisfies neither ∧C nor ¬C.

Thus, S5-DNFDNF,CNF provides exactly the same poly-
time queries and transformations as DNF, a positive result.
The second item of Proposition 21 implies that we cannot
use a more succinct language than DNF for L if we want to

satisfy FO. However, this is only true for full S5. If we work
with the subjective fragment of S5, then there are other in-
teresting choices for L. Suppose that L satisfies CO, ∧BC,
FO, there is a polytime translation from DNF to L, and we
define L′ = {¬ϕ |ϕ ∈ L} (i.e., we force L and L′ to be dual).
Then s-S5-DNFL,L′ will satisfy CO, CECNF,DNF, ∧BC, ∨C,
FO, and eCD. Some recently introduced languages satisfy
these conditions on L, e.g. AFF[∨] and KROM-C[∨] from
(Fargier and Marquis 2008), or DNNFT from (Pipatsrisawat
and Darwiche 2008). Moreover, these languages are all
strictly more succinct than DNF. This means that the s-
S5-DNFL,L′ fragments they induce are strictly more suc-
cinct than s-S5-DNFDNF,CNF (following Proposition 17).

Zoom on the CECNF,DNF Query
Associated to each of the results of this section showing that
a language satisfies a query or a transformation is a polytime
procedure which achieves it. For space reasons, we cannot
present all such procedures, so instead we focus on one par-
ticular query, epistemic clausal entailment CECNF,DNF since
it is one of the more fundamental queries in reasoning.

Deciding whether an epistemic clause λ from S5-
CLCNF,DNF is entailed by a S5-DNFDNF,CNF formula α =∨n

i=1 γi amounts to checking whether λ is entailed by each
epistemic term γi, i.e., whether γi∧¬λ |= ⊥. In order to per-
form such consistency tests, we transform each formula γi∧
¬λ in polytime into an epistemic term from S5-TEDNF,CNF.
To do so, we first turn ¬λ into an equivalent term λ̄ from
S5-TEDNF,CNF using classical transformations. Afterwards,
we “group” the K literals from γi and λ̄ together using the
equivalence (Kψ)∧(Kϕ) ≡ K(ψ∧ϕ) and the fact that DNF
satisfies ∧BC. All that remains then is to decide consistency
of terms from S5-TEDNF,CNF. According to Proposition 5,
an epistemic term τ∧Kψ∧¬Kχ1∧. . .∧¬Kχn is consistent
if and only if τ ∧ψ is consistent and each ψ∧¬χi is consis-
tent. For terms in S5-TEDNF,CNF, ψ ∈ DNF, χi ∈ CNF and
τ is a classical term. Using the duality of CNF and DNF,
and the fact that DNF satisfies ∧BC, we can put τ ∧ ψ and
the ψ ∧ ¬χi into DNF, and then apply the linear time con-
sistency procedure for DNF.

As a matter of illustration, suppose we want to show that
Ka entails K(a ∧ b) ∨ ¬Kb from S5-CLCNF,DNF. We first
conjoin Ka with the negation of the clause, yielding Ka ∧
¬K(a∧b)∧Kb. Next we combine the two K atoms: K(a∧
b)∧¬K(a∧b). We then combine the formulae in the positive
atom with the negation of the formula in the negative atom:
(a∧b)∧¬(a∧b). The resulting DNF (a∧b∧¬a)∨(a∧b∧¬b)
is inconsistent, hence we obtain Ka |= K(a ∧ b) ∨ ¬Kb.

5. Application to Epistemic Planning
In this section, we briefly explain how our results can be
applied to the problem of epistemic planning, see e.g. (Fa-
gin et al. 1995; Brafman, Halpern, and Shoham 1998;
Herzig, Lang, and Marquis 2003). Specifically, we show
how progressing an epistemic state by an action can be done
in polytime provided that the epistemic state is represented
as a S5-DNFDNF,CNF formula and the classical part of the
action is represented as a DNF formula.

We recall that epistemic planning differs from traditional
planning by allowing epistemic actions, which change the
epistemic state of an agent, in addition to standard ontic
(world-altering) actions. The distinction between a property
holding and an agent knowing that a property holds is funda-
mental in this setting; indeed, the goal is often for an agent to
determine whether or not a given property holds. As a mat-
ter of example, consider a simple circuit with two toggles t1
and t2 and two bulbs b1 and b2; the circuit is such that b1 is
lit iff t1 and t2 are both up, and b2 is lit iff t1 and t2 are ei-
ther both up or either both down. Suppose we have an agent
who knows the circuit description (a static law stat given by
stat = ((t1 ∧ t2) ⇔ b1) ∧ ((t1 ⇔ t2) ⇔ b2)) and wants to
determine the status of t2 (up or down). If the agent is able
to observe each bulb (thanks to the epistemic actions o1, o2)
and to switch t1 (thanks to the ontic action s1), then she will
be able to achieve her goal, using the following knowledge-
based program: π = o2 ; if Kb2 then o1 else (s1 ; o1). The
validity of π can be proved by showing that the epistemic
state which results from the progression of the initial epis-
temic state represented by Kstat by π entails the goal
Kt2 ∨K¬t2 (Herzig, Lang, and Marquis 2003).

We now discuss how off-line progression can be com-
puted. First we consider the case where we want to progress
an epistemic state by an epistemic action, which is typi-
cally represented by a formula of the form Kα1 ∨ . . . ∨
Kαk, expressing the action’s possible effects on what is
known. In our example, o1 = Kb1 ∨ K¬b1 and o2 =
Kb2 ∨K¬b2. The fact that S5-DNFDNF,CNF satisfies ∧BC
shows that progressing an epistemic state (represented by a
S5-DNFDNF,CNF formula) by an epistemic action into a new
S5-DNFDNF,CNF formula can be done in polynomial time.

Progression of epistemic states by ontic actions can be
carried out by considering two time-stamped copies xb, xa

of each propositional symbol x (b stands for “before” and a
for “after”) and representing each ontic action ont as an ob-
jective formula over the extended alphabet expressing how
the action constrains the worlds before and after its execu-
tion. The progression of an epistemic state Φ by ont is then
given by the formula forget(Φb ∧ Kont,B) where each a
subscript has been removed (here, Φb is Φ with each sym-
bol x is replaced by xb, and B is the set of all symbols with
a b subscript). In our example, the action s1 can be repre-
sented by (t1a

⇔ ¬t1b
)∧(t2a

⇔ t2b
) ∧stata. Thanks to our

results, once ont has been turned into a DNF formula, the
fact that S5-DNFDNF,CNF satisfies∧BC and FO ensures that
computing this progression can be achieved in polynomial
time when Φ is represented as a S5-DNFDNF,CNF formula.

Finally, in order to progress conditional actions of the
form (if κ then a1 else a2), one needs to progress each
epistemic term of the epistemic state in S5-DNF by either
action a1 or a2 (depending on whether the term entails the
knowledge precondition κ), then take the disjunction of the
resulting formulae. It follows from our results that the whole
process can be done efficiently provided each epistemic state
is represented as a S5-DNFDNF,CNF formula and each con-
dition as a S5-CNFCNF,DNF formula. The final goal satis-
faction test can also be done in polytime assuming the goal
is represented by a S5-CNFCNF,DNF formula.

6. Conclusion
In this paper, we investigated the knowledge compilation
task for propositional epistemic logic S5. Counterparts for
the well-known classical fragment DNF have been studied,
leading to the family of languages S5-DNFL,L′ . We identi-
fied a number of conditions on L, L′ for which queries and
transformations (suitably extended to the epistemic case) are
satisfied or not by the languages of the form S5-DNFL,L′ .
The fragment S5-DNFDNF,CNF proved particularly interest-
ing as it satisfies all of the queries and transformations that
are satisfied by DNF. In particular, consistency-testing, for-
getting, and suitably generalized forms of clausal entail-
ment and conditioning are all feasible in polynomial time
for S5-DNFDNF,CNF formulae, whereas none of these tasks
is tractable for arbitrary S5 formulae. When only the sub-
jective part of S5 is of interest, then other recently studied
fragments, like DNNFT or (disjunctive closure of) affine or
Krom CNF, can be used in place of DNF in positive epis-
temic atoms, offering a gain in succinctness while allow-
ing the same polytime queries and transformations. We also
showed that no S5 counterparts for OBDD, DNNF, and
other fragments based on Shannon expansion can be defined
since this property does not hold in this logical setting.

References
Brafman, R.; Halpern, J.; and Shoham, Y. 1998. On the
knowledge requirements of tasks. Artificial Intelligence
98(1-2):317–349.
Cadoli, M., and Donini, F. 1998. A survey on knowledge
compilation. AI Communications 10(3–4):137–150.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995.
Reasoning about knowledge. The MIT Press.
Fargier, H., and Marquis, P. 2008. Extending the knowl-
edge compilation map: Krom, Horn, affine and beyond. In
Proc. of AAAI’08, 442–447.
Ghilardi, S., and Zawadowski, M. W. 1995. Undefinability
of propositional quantifiers in the modal system S4. Studia
Logica 55(2):259–271.
Herzig, A.; Lang, J.; and Marquis, P. 2003. Action repre-
sentation and partially observable planning using epistemic
logic. In Proc. of IJCAI’03, 1067–1072.
Huang, J., and Darwiche, A. 2007. The language of search.
Journal of Artificial Intelligence Research 29:191–219.
Ladner, R. E. 1977. The computational complexity of prov-
ability in systems of modal propositional logic. SIAM Jour-
nal of Computing 6(3):467–480.
Pipatsrisawat, K., and Darwiche, A. 2008. New compi-
lation languages based on structured decomposability. In
Proc. of AAAI’08. 517-522.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting:
Properties and applications. Artificial Intelligence 173(16-
17):1525–1537.

