Bisimilarity of one-counter processes is
PSPACE-complete

Stanislav Bohrh*, Stefan Gollet, and Petr Jancar

! Techn. Univ. Ostrava (FEI §B-TUO), Dept of Computer Science, Czech Republic
2 Universitat Bremen, Institut fiir Informatik, Germany

Abstract. A one-counter automaton is a pushdown automaton over aesimgl
stack alphabet. We prove that the bisimilarity of procegga®erated by nonde-
terministic one-counter automata (with aesteps) is in PSPACE. This improves
the previously known decidability result (Janctar 2000\ anatches the known
PSPACE lower bound (Srba 2009). We add the PTIME-complsteresult for
deciding regularity (i.e. finiteness up to bisimilarity)afe-counter processes.

1 Introduction

Among the various notions of behavioral equivalences dddtiee) systems, (strong)
bisimilarity plays an important rdle (cf, e.g., [16]). For instance jmas logics can be
characterized as the bisimulation-invariant fragmeniabfer logics. A famous theorem
due to van Benthem states that the properties expressibtedial logic coincide with
the bisimulation-invariant properties expressible intfosder logic [28]. Similar such
characterizations have been obtained for the mpezdlculus [8] and for CTE [17].
Another important notion isveak bisimilaritythat generalizes (strong) bisimilarity by
distinguishings-moves corresponding to internal behavior. There are nonsdurther
notions of equivalences. For a more detailed treatmeneddifferent behavioral equiv-
alences in the context of concurrency theory, the readefésned to [4].

The (weak/strong) bisimilarity probleronsists in deciding if two given states of a
given transition system are weakly/strongly bisimilar. fdrite transition systemisoth
weak and strong bisimilarity is well-known to be completedeterministic polynomial
time [1]. Moreover, on finite transition systems weak bisamty can be reduced to
strong bisimilarity in polynomial time by computing the isitive closure.

In the last twenty years a lot of research has been devotelgetcking behavioral
equivalence of infinite-state systems, see [23] for an ugate record. In the setting
of infinite-state systems, see also [14] for Mayr’s clasatfan of infinite-state systems,
the situation is less clear. There are numerous classeBriferstate systems for which
decidability of bisimilarity is not known. Three such intricate open peshs are (i)
weak bisimilarity on basic parallel processes (BPP, a stgisabf Petri nets), (ii) strong
bisimilarity of process algebras (PA), and (iii) weak bigarity of basic process alge-
bras (BPA). On the negative side, we mention undecidaluifityeak bisimilarity of PA
by Srba [22]. On the positive side we mention an importaniltésy Sénizergues who

* S.Bdhm and P. Jancar are supported by the Czech Minisigaéation, project No. 1M0567.

shows that bisimilarity on equational graphs of finite ougrée [19] (a slight general-
ization of pushdown graphs) is decidable. See also Stislimgpublished paper [25] for
a shorter proof of this, using ideas from concurrency theeoy normed PA processes
Hirshfeld and Jerrum prove decidability of strong bisimritha[7].

When focussing on theomputational complexityf bisimilarity checking of
infinite-state systems for which this problem is decidatfie, situation becomes even
worse. There are only very few classes of infinite-stateesyss for which the pre-
cise computational complexity is known. For instance, wb@ming back to one of the
above-mentioned positive results by Sénizerguesigiidoncerning (slight extensions
of) pushdown graphs, a primitive recursive upper bound isyet known. However,
EXPTIME hardness of this problem was proven by Ku€era and Mayr [A8Jone of
the few results on infinite systems where the upper and loaraptexity bounds match,
we can mention [10] where it is shown that bisimilarity onibgsarallel processes is
PSPACE-complete.

In this paper we study the computational complexity of decjctrong bisimilarity
over processes generated by one-counter automata. Oneec@utomata are push-
down automata over a singleton stack alphabet. This moddb&éen extensively stud-
ied in the verification community; we can name, e.g., [2,3,86] as recent works.
Weak bisimilarity for one-counter processes is shown to ibgeaidable in [15], via
a reduction from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established dabidity in [9], however with-
out providing any precise complexity bounds. In an unptigigsarticle [29] Yen anal-
yses the approach of [9], deriving a triply exponential gpagper bound. ASPACE
lower bound for bisimilarity is proven by Srba [24]. This lewbound already holds
over one-counter automata that cannot test for zero andendi®ns can moreover be
restricted to beisible(so calledvisibly one-counter ne}si.e. that the label of the action
determines if the counter is incremented, decrementeatonadified respectively. For
visibly one-counter automata it is proven in [24] that stgrdmsimilarity is in PSPACE
via reduction to the model checking problem of the mqdaklculus over one-counter
processes [20]. For bisimilarity on general one-countecesses, in particular when
dropping the visibility restriction, the situation is slyrenore involved.

Our main result closes the complexity gap for bisimilaritypne-counter processes
from above, thus establishis PACE-completeness. In a nutshell, we provide a non-
deterministic algorithm implementable in polynomial spachich generates a bisim-
ulation relationon-the-fly The algorithm uses a polynomial-time procedure which,
given a paip(m), g(n) of processes, either gives a definite answer ‘surely biaror
‘surely non-bisimilar’, or declares the pair acandidate For each fixedn there are
(only) polynomially many candidatg®(m), ¢(n)), and the algorithm processes each
m =0,1,2,... inturn, guessing the bisimilarity status of all respectsadidates and
verifying the (local) consistency of the guesses. A crug@ht is that it is sufficient to
stop the processing after exponentially many steps, shmee & certain periodicity is
guaranteed, which would enable to successfully continceyéy.

We also consider the problem of decidiregularity (finiteness w.r.t. bisimilarity)
which asks if, for a given one-counter process, there isisba state in some finite
system. Decidability of this problem was proven in [9] andading to [24] it follows

from [1] and [21] that the problem is also hard fér We give a simpler P-hardness
proof, but we also show that the regularity problem isPinthus establishing it®-
completeness. It is appropriate to add that Ku€era [12jsllca polynomial algorithm
deciding bisimilarity between a one-counter process argiver) finite system state.

The paper is organized as follows. Section 2 contains thie bations, definitions,
and recalls some auxiliary results. Section 3 recalls ahdmeces some useful notions
which were used in [9] and elsewhere. Section 4 containsrilngat technical results,
which have enabled to replace the decision algorithm frdm[th a polynomial space
algorithm. The algorithm is elaborated in Section 5 and dsectness is shown in
Section 6. Section 7 then show3 IME-completeness of-regularity.

2 Preliminaries

N denotes the s€0, 1,2, ...}. For a setX, by | X| we denote its cardinality.

Transition systems. A (labelled) transition systeris a structurel’ = (S, A, {—%|

a € A}), whereS is a set ofstates A a set ofactions and—*~C S x S is a set of
a-labeledtransitions for each actiom. € A. We define—= (J,., —, and prefer
to use the infix notatios; — s, (resp.s; — sy) instead of(s;, so) €—— (resp.
(s1,82) €—). T is afinite transition systerif S andA are finite; we then define the
sizeof T as|T| = |S|+ [Al + > cn -1

Bisimulation equivalence. Let T = (S,A,{-%| a € A}) be a transition system.
A binary relationR C S x S is abisimulationif for each(s1, s2) € R the following
bisimulation conditiorholds:

— foreachs| € S,a € A, wheres; - s/, there is some), € S such thak, — s/
and(s,s5) € R, and

— foreachs, € S,a € A, wheres, —% s}, there is some € S such that; — s/,
and(s}, sh) € R.

We say that states andss arebisimilar, abbreviated by, ~ s, if there is a bisimu-
lation R containing(s1, s2). Bisimilarity ~ is obviously an equivalence. We also note
that the union of bisimulations is a bisimulation, and tkas the maximal bisimulation
onS. Bisimilarity is naturally defined also between states &itdént transition systems
(by considering their disjoint union).

One-counter automata. A one-counter automatois a tupleM = (Q, A, d—g, d>0),
where(is a finite nonempty set afontrol statesA is a finite set ofactions j—y C

Q x{0,1} x Ax Q is afinite set okero transitionsandd~g C Q@ x{—1,0,1} x Ax Q

is a finite set opositive transitions(There are ne-steps ini/.)

Thesizeof M is defined agM | = |Q|+]|A|+|0=o|+|d>0|. Each one-counter automaton
M = (Q,A, -0, 6-0) defines the transition systef; = (Q x N, A, {-%| a € A}),

where(q,n) % (¢, n + i) iff either n = 0 and(q,%,a,¢') € d—p, Orn > 0 and
(q7 iv a, q/) € 6>0-

A one-counter neis a one-counter automaton, wheére) C 6.

A state (¢,m) of Ty, is also called aconfigurationof M, or a one-counter pro-
cess we usually write it asq(m). Elements ofé_y U d~(are calledtransitions

The notion of apath p(m) -2+ ¢(n), wherec is a sequence of transitionss de-
fined in the natural way. A transition sequengein (o)™ is called anelemen-
tary cycleif it induces an elementary cycle in the control state Geti.e., if 3 =

(q1,11,01,92), (q2,%2,a2,43), - - - (@m> Ims Gm, Gm1) Whereg; # g for1 <i < j <

m andg.,+1 = ¢1. We note that such a cycle has length at m@st and its effect (i.e.,
the caused change) on the counter value is in thé-sgd|, —|Q| + 1,. .., |Q|}.

Decision problems. We are interested in the following two decision problems.

BISIMILARITY ON OCA

INPUT: A one-counter automatak/ with two state(mg) andgo(no) of Ty,
where bothng andng are given in binary.

QUESTION: Is pg(mq) ~ qo(no) ?

We say that ane-counter procesgn), i.e. a configuratio(n) of a one-counter au-
tomaton), is ~-regular (or finite up to bisimilarity if there is a finite transition system
with some state such thag(n) ~ s.

~REGULARITY ON OCA

INPUT: A one-counter automatal/ and a statg(n) of T, (n given in binary).
QUESTION: Is g(n) ~-regular?

Stratified bisimilarity. Given a transition systeri = (S,A, {-%| a € A}), on S
we define the family of-equivalences, € N, ~g D ~; D ~5 D - - - as follows. We put
~o= S x S, and we have; ~;.; s if the following two conditions hold:

— foreachs| € S,a € A, wheres; —%- s/, there is some), € S such that, — s/,
ands!| ~; s ;

— foreachs, € S,a € A, wheres, —% s}, there is some) € S such that; — s/,
ands!| ~; 5.

The following proposition is an instance of the result foame finite systems [16].

Proposition 1. On states of"y; we have~ = ﬂizo ~j.

2.1 Some useful observations

The next proposition captures the locality of the bisimolatondition for one-counter
automata, implied by the fact that the counter value canghag at most in a move.

Proposition 2. Given a one-counter automatald = (Q,A,d—g,d>0) and a rela-
tion R C (Q x N) x (@ x N), for checking if a pair(p(m),q(n)) € R sat-
isfies the bisimulation condition it suffices to know therresbn of R to the set
NEIGHBOURSm, n) = { (p'(m'),¢'(n’)) | Im' —m| < 1,|n' —n| <1}.

Standard partition arguments [11, 18] imply the followingjposition forfinite systems.

Proposition 3. Given a finite transition systefd = (Q, A, {-*| a € A}), where
k =|Q|, we have~_; =~ =~ on Q. Moreover, (the partition of) corresponding
to) ~ can be computed in polynomial time.

3 Underlying finite automaton and the set INC

Most of the notions, claims and ideas in this section appkarg9] and elsewhere;
nevertheless, we present (and extend) them in a concisem@Hined way.

If the context does not indicate otherwise, in what follows (@ften implicitly)
assume a fixed one-counter automatdn= (Q, A, 6—o, d>0), usingk for |Q|. We start
by observing that if the counter value is large, thehbehaves, for a long time, like
a (nondeterministic) finite automaton. Byy, we denote thdinite transition system
underlyingM; we putFy; = (Q,A,{-%| a € A}), where--= {(q1,¢2) € Q x
Q| 3i:(qi,a,q9) € ds0}. (Fas thus behaves as if the counter is positive, ignoring
the counter changes.) In what follows,q, » € @ are viewed as control states df
or as states of');, depending on context. Our observation is formalized byniet
proposition (which is obvious, by induction on).

Proposition 4. If m’ > m thenp(m’) ~,, p.
(Herep(m’) is a state offy;, wherea9 is a state ofF,.)

This implies, e.g., that ip % ¢ (i.e.,p %, ¢ by Proposition 3) andn,n > k, then
p(m) #i q(n) (and thusp(m) # g(n)), sincep(m) ~i p, q(n) ~) g and~y is an
equivalence. Ip ~ ¢ then we can have(m) 7 ¢(n), due to the possibility of reaching
zero. For making this more precise, we define the followirig se

INC = {7(€) | Vg € Q:r(£) i g}

The configurations in INC araacompatible withF,; in the sense that they are not
bisimilar up tok moves with any state af,.

Proposition 5. If »(¢) € INC then? < k. Moreover,INC can be constructed in poly-
nomial time.

Proof. If ¢ > k thenr(¢) ~ r, and thusr(¢) ¢ INC. To construct INC, we can
start with the set containing alf® pairs(r(¢), q), where/ < k; all such pairs belong
to ~o. We then delete the pairs not belongingte, then those not belonging te,,
etc., until~. The configurations(¢) for which no pair(r(¢), ¢) survived, are in INC.
(This process can be done simultaneously for the gairg) in F,; we also use the
factr(k) ~k r.) O

The arguments of the previous proof also induce the follgwiseful proposition.
Proposition 6. The question if(m) ~ ¢(n) can be decided in polynomial time.

We note that ifp(m) € INC andg(n) ¢ INC thenp(m) + q(n) (in fact, p(m)
q(n)). More generally, if two one-counter processes are bigintilen they must agree
on the distance to INC; this is formalized by the next lemma.d&fine

dist(p(m))

as the length of the shortest transition sequemcgich thatp(m) -~ INC (i.e.,
p(m) -2 r(¢) for somer(¢) € INC); we put distp(m)) = w if there is no such
sequence, i.e., when INC is unreachable, denpted /~* INC.

Lemma 7. If p(m) ~ q(n) then distp(m)) = dist(q(n)).

Proof. For the sake of contradiction, suppose that) ~ ¢(n) andd = dist(p(m)) <
dist(g(n)), for the leastd ; necessarilyd > 0, since we cannot havg(m) € INC,
q(n) ¢ INC. Thus there is a movg(m) —— p’(m’) with dist(p’(m’)) = d—1, which
must be matched by somén) — ¢'(n’) wherep (m') ~ ¢'(n'). Necessarilyl—1 =
dist(p’(m’)) < dist(¢’(n’)), which contradicts the minimality af. O

The next lemma clarifies the opposite direction in the casefimite distances.

Lemma 8. If dist(p(m)) = w thenp(m) ~ r for somer € Q. Thus if distp(m)) =
dist(g(n)) = w thenp(m) ~ q¢(n) iff there is some € Q such thatp(m) ~j r ~
q(n).

Proof. If dist(p(m)) = w, i.e. p(m) 4* INC, then in particulap(m) ¢ INC, and
there is thus- € @ such thap(m) ~, r. We can easily check that

R={(p(m),r) | p(m) ~pr, p(m) /" INC}

is a bisimulation: ifp(m) —* p'(m’) andr - ' wherep/(m’) ~;_; ', then
p'(m’) 4* INC and the facp’(m’) ¢ INC implies thatr” ~j p'(m’) ~p_1 7’ for
somer” € Q; hencer’ ~;_; v’ and thus”’ ~;, r” (by Proposition 3), which means
p'(m') ~p 1. O

In the next section we look in more detail at the functitigt (p(m)), which provides
a useful constraint on bisimilar pairs. But before that, \aetiion the se{@ x N) x
(Q x N) into three categories. We say that a gaim), ¢(n)) is

— surely-positivef dist(p(m)) = dist(q(n)) = w andp(m) ~ g(n)
(and thus surely(m) ~ ¢(n), by Lemma 8),
— surely-negativéf p(m) i g(n) ordist(p(m)) # dist(q(n))
(and thus surely(m) £ q(n)),
— candidateotherwise, i.e., ib(m) ~j ¢(n) anddist(p(m)) = dist(q(n)) < w.

By SUREPOS we denote the set of all surely-positive pairs, and we naddhowing
obvious proposition.

Proposition 9. SUREPOS s a bisimulation.
It will be also useful to view the set CAND of all candidatengaas the union
CAND = CANDy U CAND; UCANDy U - - -

where CAND contains thecandidate pairs at level, i.e. the pairgp(m),q(n)) €
CAND with m = i.

4 Distance to INC

In this section we look at the distance functiéist(p(m)) in more detail (Lemma 10)
and derive some consequences (Lemma 11) which will be ugafuhe design and
analysis of our later algorithm.

We start with sketching some intuition which is then formedi in Lemma 10. To
reach INC fromp(m) most quickly, for a largen, one uses a suitable prefix arriving

at a ‘most effective’ elementary cyclg—) 2, q(—) (which decreases the counter
by k = |Q| at most), let us call it @-cycle then repeats the d-cycle sufficiently many
times, and finishes with a suffix arriving at INC. It is not diffit to anticipate that one
can bound the length (and thus also the counter change) pfdfie and the suffix by

a (small degree) polynomial p@f). We now state the lemma. For technical reasons,
we do not require explicitly that the d-cycle is elementatrys sufficient to bound its
length byk.

Lemma 10. There is a polynomial palN — N (independent ofif) such that for any
p(m) with dist(p(m)) < w there is a shortest patp(m) —Z» INC with the transition
sequence of the formo = o'y wherelength(ay) < pol(k) and 3 is a decreasing
cycle of length< k.

Proof. To give a complete formal proof requires some technical wditkce the essence
of the claim is not original and similar technical resultpagr in the previous works on
one-counter automata, we do not provide a self-containedfpbut we use Lemma
from an older paper [27]; in our notation, this lemma is fotated as follows:

Claim. If there is a positive path (using positive transitionsfirp(m) to ¢(n)
andm—n > k? andn > k? then there is a shortest paifin) —— ¢(n) such
thato = a8’y wherelength(ay) < k? andlength(3) < k.

(Although [27] studiedeterministicone-counter automata, the lemma obviously ap-
plies to our nondeterministic case as well, since we can thewransitions themselves
as the actions.) We note thavif—n > k2 + k theng3 is necessarily a decreasing cycle
(i > 2in this case). It is also clear that the (shortest) pdih) 7 ¢(n) in the Claim
does not visit any;/(n’) with n’ > m + k% + k; we say that the path moves in the
“< (m+k*+k) area” (note that the prefix moves in the £ (m-+k?) area” and the
suffix y moves in the & (n+k?) area”).

Recalling that¢ < k for eachr(¢) € INC, we note that any shortest path
p(m) 2= INC either moves in the< k2-area”, in which case its length is bounded

by k* (since no configuration is visited twice), or can be presgritethe form
p(m) 25 (k) 25 ga(k?) 25 o0 2 g (K2 ™5 INC wherel < m < k
and ¢1 (k?), g2(k?), ..., qm(k?) are all configurations on the path which have the
counter value:2. By the above considerations, the segmg(t2) 2 moves in the
“< (3k%* + k) area”, and its length is thus bounded by (3k?+k). The segment

p(m) =5 ¢1(k?) either moves in the< 2k2 area”, in which case its length is bounded

by 2k3, or it can be writterp(m) —% p/(m/) 2 ¢1(k?) wherem/ > 2k? ando)
(which might be empty) is bounded By:3. The statement of our Lemma thus follows

from the above Claim applied to the segmgftin’) % g1 (k2). O

The next lemma lists some important consequences. A mair igdo clarify the distri-

bution of the set CAND. Informally speaking, the candidaa@pgare contained inside
polynomially many linear belts, each belt having a ratioglape, being a fraction of
polynomially bounded integers, as well as a polynomiallyited (vertical) thickness.

Remark It is helpful to think in geometrical notions. Every reatiR C (Q x N) x
(Q x N) can be viewed as a ‘coloringir : @ x Q@ x N x N — {e, o}; for each
p,q € Q it prescribes a black-white coloring of the plane (gfitlx N. This was more
formalized in [9]; here we just informally use Figure 1.

Lemma 11.

1. There is a polynomial-time algorithm computidigt(p(m)) for anyp, m; here the
size of the input i$M | + log m (m is written in binary).

2. Ifdist(p(m)) < w then

dist(p(m)) = c—l(m tdi) 4 dy=LmA+

c
C2 C2

for some integer® < ¢; < k, 1 < ¢o < k, |d1| < pol,(k), 0 < dy < pol, (k)
where po] is a polynomial (independent @f); the values:y, c2, d1, d2 generally
depend omp, m.

Moreover, for the rational numbep = ¢d; + d» we havey| < (k+1) - pol, (k).

3. Ifdist(p(m)) = dist(q(n)) < w then
n=p-mté

’
C1Co

where (the slope) is either0 or of the form
and|¢| is bounded by a polynomial pdk).
(This formalizes the above announced polynomially manig belth the vertical
thicknessl + 2 - pol,(k).)

forey,co,c),ch € {1,2,...,k},

cach?

4. There is a polynomial pglsuch that for eachn > pols(k) we havep; - m +
pol, (k) +1 < pa - (m—1) — poly(k), wherep, < p, are (different) slopes from
Point 3, pol, also being taken from there.
(l.e., for levelsn > pol, (k) the belts are separated, in the sense that no two pairs
from different belts are neighbours.)

5. There is a polynomial-time algorithm which, givein binary), computes the set
CAND,; of all candidate pairs at levél(all pairs (p(i), g(n)) such thatp(i) ~y
q(n) and dist(p(i)) = dist(q(n)) < w). We havel CAND;| < pol;(k) for a
polynomial pol.

6. If Ais a multiple of the effects of all decreasing cycles of langtk (the absolute
values of the effects are in the ddt 2, ..., k}) then for eachn > &k + pol(k),
where pol is taken from Lemma 10, we have:

p(m) —* INC iff p(m + A) —* INC.
7. Ifm,n > k + pol(k) then
(p(m),q(n)) € SUREPOS < Vi,j € N: (p(m +iA),q(n+ jA)) € SUREPOS
(where pol andA are as in Point 6).

Proof. Point 1. By Lemma 10 we know that a shortest pattn) -~ INC (if there is
any) is of the form

p(m) = g(mter) - g(mter—ca) 2 g(mter—2¢5) 2 -
2 q(f—eatca) £, q(l—ez) = r(f) € INC

wheree; is the effect (the counter change) of the prefix: is the absolute value of
the effect of the d-cycl@, ande, is the effect of the suffixy; we putc; = length(p),

cs = length(a), c4 = length(v). Let us recall thad < ¢; < ¢; < k and that the
absolute values of other integers are bounded bfipdtom Lemma 10.
(Independently op, m,) we thus have polynomially many possibilities {ipfor the tu-
pleq, e, c1,co,c3,c4,e2,1, ¢; these possible tuples can be processed in turn. For each
tuple we can check ifm+e;)—(¢—ez) is divisible byc, and then verify if the tuple
is realizable by some appropriate(, +; this verification is done by using straightfor-
ward graph reachability algorithms. (Regarding the d-eyitlis sufficient to verify the
realizability of the first segment(m-+e;) — ¢(m+e1—c2) and of the final segment
q(l—ea+c2) — q(f—e2).) With each realizable tuple we associate the value ¢,
whency = 0 andes + ¢4 + & ((m+e1)—(—e2)) whenc, > 0. We associate) with
each non-realizable tuple. The valdi&t(p(m)) is obviously the minimal value asso-
ciated with the above tuples.

Point 2. This follows immediately from the analysis in thegirof Point 1. (Since
dy = c3 + ¢4, d1 = e1—Ll+eq, it suffices to take pglk) = k + pol(k), for pol from
Lemma 10. The consequence ibis obvious.)

Point 3. Fromdist(p(m)) = &m + 1 = %n + ¢’ = dist(q(n)), we derive

n = %%m 4 Lot if o = 0or ¢ = 0 thendist(p(m)) = dist(q(n)) < (k+1) -
pol, (k), and thus» < k + (k+1) - pol, (k) (and we can pup = 0). We can thus take
poly(k) =2 - (k+1) - poly (k) - k.

Point 4. Recalling the slopes from Point 3, we note thatp, impliesp, > p1+k—14.
Sincep; < k?, itis sufficient to have pglk) + 1 < 2rm — k? — 7 — pol (k).

Point 5. Given;, for eachp € @ in turn we compute = dist(p(7)) and all polyno-
mially manyn such thalz’—; (n+dy)+ds = z, wherecy, ca, dy, ds satisfy the constraints

from Point 2. For each suahand eacly € @ we check if(p(i), g(n)) € CAND;,, i.e.,
if dist(q(n)) = z andp(i) ~ g(n); Point 1 and Proposition 6 show that this can be
done in polynomial time.

Point 6. Sincen > k + pol(k), the length of (eachy such thaip(m) —~» INC is
greater than pg@k). Increasing or decreasing the number of repeating the k& dyes
the job.

Point 7. From Point 6 we know that fer > k+pol(k) we havelist(p(m)) = w iff
dist(p(m+1iA)) = wforalli € N. Thusform,n > k+pol(k) we haven(m+iA) ~;
q(n + jA) anddist(p(m + iA)) = dist(q(n + jA)) = w if and only if p ~;, ¢ and
dist(p(m)) = dist(q(n)) = w.

O

5 A polynomial space algorithm

The next lemma follows from Lemma 11, Point 1, and Propasi@io

Lemma 12. There is a polynomial-time algorithm which, given/(and) a pair
(p(m), q(n)), decides if the pair is ilBUREPOS, or in CAND, or is surely-negative.

We might be tempted to try to resolve the question of bisirtjlaof the can-
didate pairs by looking for additional polynomially chebka conditions. But the
PSPACE-hardness result for (visibly) one-counter praeefa4] discourages us from
doing so; we should be satisfied with solving our problem itypomial space.
Thus anondeterministicalgorithm working in polynomial space is sufficient (since
PSPACE=NPSPACE by Savitch’'s Theorem). We start with notiregfollowing two
obvious propositions; this will give rise to a main algonitic idea.

Proposition 13. For a candidate pair(po(mo), g0(no)) € CAND we have:
po(mo) ~ qo(no) iff there is a subseB C CAND such that
(po(mo), q0(no)) € B and B U SUREPOS s a bisimulation.

The following (infinite) algorithm builds a certai® C CAND as the union of
(nondeterministically chosen) setyy C CANDg, B; € CANDy, B € CANDs,,
..., while checking the bisimulation condition for their elemt® on the fly (recall the
locality captured by Proposition 2). If its computation daet fail, then it is infinite
and the respective sé¢ C CAND (which would result as the limit) satisfies that
B U SurREPoOSs s a bisimulation.

— We start with puttingn = 0, compute the set CANPand (nondeterministically)
choose a seBy C CAND,.
— Then we successively process = 0,1,2..., where processing: means the
following:
e Compute CAND,; (recall Point 5 of Lemma 11) and (nondeterministically)
chooseB,,,+1 € CAND,, 1 1.
o Verify that (each pair in)3,, is (locally) correct, using3,,,—1 (whenm > 0)
and B,,,+1, and the polynomial procedure deciding membershipur&Pos
(cf. Lemma 12).

e (If B,, is not correct, the computation fails.)

If we force the algorithm to include the input paiio (mo), go(n0)) into B,,, then an
infinite run is possible if and only ifo(mo) ~ go(n). We also note that it is sufficient
for the algorithm to keep only the current numbey and the set3,, 1 (if m > 0),
B,y Bt in memory. (By Point 5 of Lemma 11 this consists of at nibspols (k)
pairs, while the bit-size of the numbers is polynomiakiand in the bit-size ofn, i.e.
in logm.)

A final crucial point is that the algorithm, getting (o), go(no) in the input, will
halt (answeringo(mo) ~ go(no)) after it has successfully processed the following
levels.

m=0,1,2,...,z where z = mq + pol, (k) + 2P0 (k) . 93k logk (1)

Here po}, is from Point 4 of Lemma 11, and we put got) = 2- k% - (1 + 2 pol,(k)),
where po} is from Point 3 of Lemma 11. With this halting condition, thig@ithm
obviously runs in polynomial space (when givihand a paifpo(mo), go(no))). What
remains to show is the correctness of the halting condition.

6 Correctness of (the halting condition of) the algorithm

Recall Points 3 and 4 of Lemma 11; the candidate pairs ar@it@tt inside polynomi-
ally many linear belts with vertical thickness + 2 - pol, (k)), which are separated for
m > poly(k).

Informally speaking, if the algorithm (successfully) pesses sufficiently many (ex-
ponentially many) numbers after processingg, then the pigeonhole principle guar-
antees that a certain ‘pumpable’ segment appears insithebedto(this is visualized in
Figure 1). At that time we are guaranteed that the relation

R = {(p(m),q(n)) € By, USUREPOS | m < mg}

can be extended with certain pais (m'), ¢'(n’)), with m’ > my, so that the result-
ing relation is a bisimulation. (These paiig(m’), ¢'(n’)), m’ > mq, may differ from
those which were actually included i, by the algorithm.) We now make this infor-
mal argument more precise.

Suppose that our algorithm successfully halts for the iqaurt (po(m0), go(n0)),
and consider the following subsequence of the sequence (1).

mb, mly + A3 ml + 2A3 ml + 3A3 . my + 2P%(F) A3 (2)
wherem/, = max{mg, pol,(k)} andA = k!; henceA < k¥, and soA? < 23klosgk,
RemarkWe have chosen so that Points 6 and 7 of Lemma 11 can be applied.
The chosen period® has the following useful property. We are guaranteedghgtis

a multiple of A for each slope = =2 (c1, ¢2, ¢}, ch € {1,2,...,k}) from Point 3 of

cac)

Lemma 11; by Point 7 of Lemma 11 we thus also get for each pol, (k):

(p(m),q(n)) € SUREPOS < Vi € N : (p(m+iA?), q(n+ipA?)) € SUREPOS. (3)

(e

('O O
Oo.ogo COO.
pO 00 Q

£
OO

N /

_] - - - - - = - - - - - - -

\
\
\
O
(X

[

(qr, qr)
(qéf}qugl) :

Fig. 1. Two isomorphic belt cuts in a coloring

(In the proof of Lemma 11, we have actually derived jpehtisfying poj(k) >
k+pol(k). But any polynomial pgl satisfying Point 4 could be replaced with a big-
ger one to satisfy also pglk) > k+pol(k) anyway.)

For a relatioriR C (Q x N) x (@ x N) and a belt, identified with its slogefrom
Point 3 of Lemma 11, we define tife-cut of the belip at levelm as

CuT.(R) = { (p(m), q(n)) € R | pm — poly (k) < n < pm + poly (k) }.

Figure 1 illustrates two cutsuT?, (R), cuT:, (R) (the black points representing el-
ements ofR, the white points being non-elements); the depicted cetslae same’ in
the sense that one arises by shifting the other.

Our choice of the subsequence (2) guarantees a repeat ahk:ut':

Proposition 14. For everyR and ‘belt’ p there aremy, ms in (2), wherem; < mso,
me = m1 + cA3, such that

- (p(m1),q(n)) € cuT), (R) < (p(m2), q(n + pcA?)) € cuTs,, (R),
- (p(m1+1),q(n)) € cuty 1 (R) & (p(ma+1),q(n+pcd?)) € cuty . (R).

Proof. We first note that our choice oft also guarantees thatA3? is integer. De-
scribingcuT?, (R) andcuT), ,(R) (for any m) obviously amounts to determine a

(black-point) subset of a set with (at mog8t)k? - (1 + 2 - pol,(k)) elements; this is how
we defined pal(k) in the halting condition of our algorithm (cf. (1)). Theree@p©s(*)
such subsets; thus the claim follows by the pigeonhole jpliec a

Our aim is to define some relatid®’ so thatR’ U SUREPOS is a bisimulation and
it coincides withB U SUREPOS for the pairs(p(m), g(n)) with m < mg; the setB
consists of the candidate pairs included by (the succdgsfalting computation of) our
algorithm intoB,,,, form =0,1,2,...,zasin (1).

Let us now consider a particular beltLetm, mo, wherem; < ms = mq + cA3,
be the levels guaranteed by Proposition 14 for the reldfion B U SUREPOS. Inside
the beltp, the suggeste®’ will coincide with R for all levelsm < my+1. For all
levelsm = mo+2, ma+3, ma+4, . .., we defineR’ inside the belp by the following
inductive definition: for eactn, n, wherem > my+1 andin — pm| < poly(k):

(p(m), q(n)) € R'iff (p(m—cA?), q(n—pcA?)) € R'.

We note that this condition is, in fact, satisfied also#orc {ms, mo+1}, due to our
choice ofmy, ms. We get the whol&R'’ after having defined it inside all belts.

Proposition 15. R’ U SUREPOS is a bisimulation.

Proof. Suppose there is a pdji(m), ¢(n)) € R'USUREPOSwhich does not satisfy the
bisimulation condition (which is determined by the regido to NEIGHBOURSm, 1);
recall Proposition 2). We take such a pair with the leaslt is clear tha{p(m), ¢(n)) ¢
SUREPOS (recall Proposition 9); moreover, the restriction 8 U SUREPOS to
NEIGHBOURSm, n) cannot be the same as 81U SUREPOS (where the algorithm ver-
ified the bisimulation condition). Henden, n) lies in a beltp, andm > ms+1 for the
respectivens = mj+cA3. Then the paitp(m—cA3), g(n—pcA3)) belongs tdR’ and
satisfies the bisimulation condition; moreover, this pa@tges the same transitions as
the pair(p(m), ¢(n)). So there must be sonig’(m’), ¢'(n’)) € NEIGHBOURSm, n)
such that(p’(m’),¢'(n')) ¢ R’ U SUREPOS and (p'(m/—cA3), ¢ (n'—pcA?)) €
‘R’ U SUREPOS. But this contradicts the definition &’ or the equivalence (3). O

Our halting condition is thus correct, and we have proved:

Theorem 16. There is a polynomial space algorithm which, given a onenteuau-
tomaton) and a pairpo(mo), go(no), decides ifpg(mo) ~ qo(no).

Remark.As in [9], we could derive that the bisimilarity (i.e., the maximal bisimu-
lation) is ‘belt-regular’. Our results here show that a mak(finite) description of this
(semilinear) relation can be written in exponential space.

7 ~-Regularity

We can easily derive the next lemma, which tells us fi{at) is not ~-regular iff it
allows to reach states with arbitrarily large finite distasito INC.

Lemma 17. Givenp(m) for a one counter automatal/, p(m) is not~-regular iff for
anyd € N there isq(n) such thapp(m) —* g(n) andd < dist(q(n)) < w.

The next proposition gives a more convenient charactéoizat

Proposition 18. p(m) is not ~-regular iff p(m) —* ¢(m+2k) —* INC for some
q € Q. (Recall that = |Q| for the setQ of control states ofi/.)

Proof. ‘Only if’ is obvious.

On any pathp(m) 2% g(m + 2k) -2 INC we have to cross the levéh + k) when
going up as well as when going down to INC (recall that & for anyr(¢) € INC).
The elementary cycles, which must necessarily appear wbierg gip and down, can
be suitably pumped to show the condition in Lemma 17. a

Lemma 19. Deciding~-regularity of one-counter processes isAii IME.

Proof. We check the condition from Proposition 18. Givemn), we can compute all
q(m+2k) which have finite distances to INC by a polynomial algorithetall Point 1
of Lemma 11). Whemn = 0, the reachability of a suitablg2k) (¢(2k) —* INC) can
be checked straightforwardly. So we can computg’alich thap’(0) is not~-regular.
Thusp(m) is not~-regular iff it can reach one of the computgan + 2k) andp’(0) by
positive transitions. The polynomiality follows by the aesimilar to those discussed
in the proof of Lemma 10. a

Lemma 20. Deciding~-regularity (even) of one-counter netsR3 IME-hard.

Proof. We use a logspace reduction from bisimilarity on finite tithois systems which
is PTIME-complete [1]. Given a finite transition systei@, A, { ——}.ca) and f, g €
@, we construct a one counter net which has the following biel@vin so(m), m > 0,

it has transitionsso(m) —— so(m + 1), so(m) —— so(m — 1), so(m) LN f(m),
so(m) —= g(m). In s0(0) we only havesy(0) —% so(1) andso(0) —= £(0). Any
statef(n) just mimicks f (not changing the counter); similarly(n) mimicksg. It is
easy to verify that((n) is regular iff f ~ g. a

Theorem 21. Deciding~-regularity of one-counter processesHis IME-complete.

AcknowledgementgVe thank the anonymous reviewers for useful comments and sug
gestions.

References

1. J.L.Balcazar, J. Gabarrd, and M. Santha. Decidingiarity is P-CompleteFormal Asp.
Comput, 4(6A):638-648, 1992.

2. T. Brazdil, V. Brozek, K. Etessami, A. KuCera, and D. Wapk. One-Counter Markov
Decision Processes. Rroc. of SODApages 863-874. IEEE, 2010.

3. S. Demri and A. Sangnier. When Model-Checking Freeze LVér cCounter Machines
Becomes Decidable. IAroc. of FOSSACSolume 6014 o NCS pages 176-190. Springer,
2010.

4. R.v. Glabbeek. The Linear Time — Branching Time Spectrufiné Semantics of Concrete,
Sequential Processes. In J. Bergstra, A. Ponse, and S. &madikorsHandbook of Process
Algebrg chapter 1, pages 3-99. Elsevier, 2001.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

S. Goller, R. Mayr, and A. W. To. On the Computational Cterjty of Verifying One-
Counter Processes. Rroc. of LICS pages 235-244. IEEE Computer Society Press, 2009.

. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Rédithian succinct and paramet-

ric one-counter automata. Rroc. of CONCURvolume 5710 ofLNCS pages 369-383.
Springer, 2009.

. Y. Hirshfeld and M. Jerrum. Bisimulation Equivalence lsdlable for Normed Process

Algebra. InProc. of ICALR volume 1644 ot NCS pages 412-421. Springer, 1999.

. D. Janin and I. Walukiewicz. On the Expressive Completerdf the Propositional mu-

Calculus with Respect to Monadic Second Order LogidPioc. of CONCURvolume 1119
of LNCS pages 263-277. Springer, 1996.

. P.Jancar. Decidability of Bisimilarity for One-Counkrocessednformation Computation

158(1):1-17, 2000.

P. Jantar. Strong Bisimilarity on Basic Parallel Psses is PSPACE-complete. Bnoc. of
LICS pages 218-227. IEEE Computer Society, 2003.

P. C. Kanellakis and S. A. Smolka. CCS Expressions, é-fatate Processes, and Three
Problems of Equivalencénformation and Computatiqr86(1):43-68, May 1990.

A. KucCera. Efficient Verification Algorithms for One-Guater Processes. Proc. of ICALP
volume 1853 oLNCS pages 317-328. Springer, 2000.

A. KuCera and R. Mayr. On the Complexity of Checking SeticaEquivalences between
Pushdown Processes and Finite-state ProceB¥e§€omput, 208(7):772—796, 2010.

R. Mayr. Process Rewrite Systerh#ormation and Computatiqri56(1):264—286, 2000.
R. Mayr. Undecidability of Weak Bisimulation Equivatenfor 1-Counter Processes. In
Proc. of ICALR volume 2719 oLNCS pages 570-583, 2003.

R. Milner. Communication and Concurrencyinternational Series in Computer Science.
Prentice Hall, 1989. .

F. Moller and A. M. Rabinovich. Counting on CTLon the expressive power of monadic
path logic.Inf. Comput, 184(1):147-159, 2003.

R. Paige and R. E. Tarjan. Three partition refinementlkgos. SIAM Journal on Comput-
ing, 16(6):973-989, Dec. 1987.

G. Sénizergues. The Bisimulation Problem for Equatiddraphs of Finite Out-Degree.
SIAM J. Comput.34(5):1025-1106, 2005.

O. Serre. Parity games played on transition graphs ofconater processes. Froc. of
FOSSACsnumber 3921 in LNCS. Springer, 2006.

J. Srba. Strong Bisimilarity and Regularity of Basicd&ss Algebra Is PSPACE-Hard. In
Proc. of ICALR volume 2380 oLNCS pages 716—727. Springer, 2002.

J. Srba. Undecidability of Weak Bisimilarity for PA-Resses. IProc. of DLT, volume
2450 of LNCS pages 197-208. Springer, 2002.

J. Srba.Roadmap of Infinite resultyolume Vol 2: Formal Models and Semantics. World
Scientific Publishing Co., 2004. http://www.brics.dkbafroadmap.

J. Srba. Beyond Language Equivalence on Visibly Pushdsuwtomata. Logical Methods
in Computer Scien¢é(1:2), 2009.

C. Stirling. Decidability of Bisimulation Equivalenéer Pushdown Processasnpublished
manuscript 2000.

A. W. To. Model Checking FO(R) over One-Counter Processe beyond. IRroc. of CSL.
volume 5771 oLNCS pages 485-499. Springer, 2009.

L. G. Valiant and M. Paterson. Deterministic one-couatgomata.J. Comput. Syst. Sci.
10(3):340-350, 1975.

J. van BenthemModal Correspondence TheoryPhD thesis, University of Amsterdam,
1976.

H.-C. Yen. Complexity Analysis of Some Verification Plerbs for One-Counter Machines.
unpublished manuscrip20xx.

