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Abstract. A one-counter automaton is a pushdown automaton over a singleton
stack alphabet. We prove that the bisimilarity of processesgenerated by nonde-
terministic one-counter automata (with noε-steps) is in PSPACE. This improves
the previously known decidability result (Jančar 2000), and matches the known
PSPACE lower bound (Srba 2009). We add the PTIME-completeness result for
deciding regularity (i.e. finiteness up to bisimilarity) ofone-counter processes.

1 Introduction

Among the various notions of behavioral equivalences of (reactive) systems, (strong)
bisimilarity plays an important rôle (cf, e.g., [16]). For instance, various logics can be
characterized as the bisimulation-invariant fragment of richer logics. A famous theorem
due to van Benthem states that the properties expressible inmodal logic coincide with
the bisimulation-invariant properties expressible in first-order logic [28]. Similar such
characterizations have been obtained for the modalµ-calculus [8] and for CTL∗ [17].
Another important notion isweak bisimilaritythat generalizes (strong) bisimilarity by
distinguishingε-moves corresponding to internal behavior. There are numerous further
notions of equivalences. For a more detailed treatment of the different behavioral equiv-
alences in the context of concurrency theory, the reader is referred to [4].

The(weak/strong) bisimilarity problemconsists in deciding if two given states of a
given transition system are weakly/strongly bisimilar. Onfinite transition systemsboth
weak and strong bisimilarity is well-known to be complete for deterministic polynomial
time [1]. Moreover, on finite transition systems weak bisimilarity can be reduced to
strong bisimilarity in polynomial time by computing the transitive closure.

In the last twenty years a lot of research has been devoted to checking behavioral
equivalence of infinite-state systems, see [23] for an up-to-date record. In the setting
of infinite-state systems, see also [14] for Mayr’s classification of infinite-state systems,
the situation is less clear. There are numerous classes of infinite-state systems for which
decidabilityof bisimilarity is not known. Three such intricate open problems are (i)
weak bisimilarity on basic parallel processes (BPP, a subclass of Petri nets), (ii) strong
bisimilarity of process algebras (PA), and (iii) weak bisimilarity of basic process alge-
bras (BPA). On the negative side, we mention undecidabilityof weak bisimilarity of PA
by Srba [22]. On the positive side we mention an important result by Sénizergues who
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shows that bisimilarity on equational graphs of finite out degree [19] (a slight general-
ization of pushdown graphs) is decidable. See also Stirling’s unpublished paper [25] for
a shorter proof of this, using ideas from concurrency theory. For normed PA processes
Hirshfeld and Jerrum prove decidability of strong bisimilarity [7].

When focussing on thecomputational complexityof bisimilarity checking of
infinite-state systems for which this problem is decidable,the situation becomes even
worse. There are only very few classes of infinite-state systemss for which the pre-
cise computational complexity is known. For instance, whencoming back to one of the
above-mentioned positive results by Sénizergues/Stirling concerning (slight extensions
of) pushdown graphs, a primitive recursive upper bound is not yet known. However,
EXPTIME hardness of this problem was proven by Kučera and Mayr [13].As one of
the few results on infinite systems where the upper and lower complexity bounds match,
we can mention [10] where it is shown that bisimilarity on basic parallel processes is
PSPACE-complete.

In this paper we study the computational complexity of deciding strong bisimilarity
over processes generated by one-counter automata. One-counter automata are push-
down automata over a singleton stack alphabet. This model has been extensively stud-
ied in the verification community; we can name, e.g., [2, 5, 6,3, 26] as recent works.
Weak bisimilarity for one-counter processes is shown to be undecidable in [15], via
a reduction from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established decidability in [9], however with-
out providing any precise complexity bounds. In an unpublished article [29] Yen anal-
yses the approach of [9], deriving a triply exponential space upper bound. APSPACE

lower bound for bisimilarity is proven by Srba [24]. This lower bound already holds
over one-counter automata that cannot test for zero and whose actions can moreover be
restricted to bevisible(so calledvisibly one-counter nets), i.e. that the label of the action
determines if the counter is incremented, decremented, or not modified respectively. For
visibly one-counter automata it is proven in [24] that strong bisimilarity is inPSPACE

via reduction to the model checking problem of the modalµ-calculus over one-counter
processes [20]. For bisimilarity on general one-counter processes, in particular when
dropping the visibility restriction, the situation is surely more involved.

Our main result closes the complexity gap for bisimilarity of one-counter processes
from above, thus establishingPSPACE-completeness. In a nutshell, we provide a non-
deterministic algorithm implementable in polynomial space which generates a bisim-
ulation relationon-the-fly. The algorithm uses a polynomial-time procedure which,
given a pairp(m), q(n) of processes, either gives a definite answer ‘surely bisimilar’ or
‘surely non-bisimilar’, or declares the pair as acandidate. For each fixedm there are
(only) polynomially many candidates(p(m), q(n)), and the algorithm processes each
m = 0, 1, 2, . . . in turn, guessing the bisimilarity status of all respectivecandidates and
verifying the (local) consistency of the guesses. A crucialpoint is that it is sufficient to
stop the processing after exponentially many steps, since then a certain periodicity is
guaranteed, which would enable to successfully continue forever.

We also consider the problem of decidingregularity (finiteness w.r.t. bisimilarity)
which asks if, for a given one-counter process, there is a bisimilar state in some finite
system. Decidability of this problem was proven in [9] and according to [24] it follows



from [1] and [21] that the problem is also hard forP. We give a simpler P-hardness
proof, but we also show that the regularity problem is inP, thus establishing itsP-
completeness. It is appropriate to add that Kučera [12] showed a polynomial algorithm
deciding bisimilarity between a one-counter process and a (given) finite system state.

The paper is organized as follows. Section 2 contains the basic notions, definitions,
and recalls some auxiliary results. Section 3 recalls and enhances some useful notions
which were used in [9] and elsewhere. Section 4 contains the crucial technical results,
which have enabled to replace the decision algorithm from [9] with a polynomial space
algorithm. The algorithm is elaborated in Section 5 and its correctness is shown in
Section 6. Section 7 then showsPTIME-completeness of∼-regularity.

2 Preliminaries

N denotes the set{0, 1, 2, . . .}. For a setX , by |X | we denote its cardinality.

Transition systems. A (labelled) transition systemis a structureT = (S,A, {
a

−→|

a ∈ A}), whereS is a set ofstates, A a set ofactions, and
a

−→⊆ S × S is a set of
a-labeledtransitions, for each actiona ∈ A. We define−→=

⋃

a∈A

a
−→, and prefer

to use the infix notations1
a

−→ s2 (resp.s1 −→ s2) instead of(s1, s2) ∈
a

−→ (resp.
(s1, s2) ∈−→). T is afinite transition systemif S andA are finite; we then define the
sizeof T as|T | = |S| + |A| +

∑

a∈A
|
a

−→|.

Bisimulation equivalence. Let T = (S,A, {
a

−→| a ∈ A}) be a transition system.
A binary relationR ⊆ S × S is abisimulationif for each(s1, s2) ∈ R the following
bisimulation conditionholds:

– for eachs′1 ∈ S, a ∈ A, wheres1
a

−→ s′1, there is somes′2 ∈ S such thats2
a

−→ s′2
and(s′1, s

′
2) ∈ R , and

– for eachs′2 ∈ S, a ∈ A, wheres2
a

−→ s′2, there is somes′1 ∈ S such thats1
a

−→ s′1
and(s′1, s

′
2) ∈ R .

We say that statess1 ands2 arebisimilar, abbreviated bys1 ∼ s2, if there is a bisimu-
lationR containing(s1, s2). Bisimilarity ∼ is obviously an equivalence. We also note
that the union of bisimulations is a bisimulation, and that∼ is the maximal bisimulation
onS. Bisimilarity is naturally defined also between states of different transition systems
(by considering their disjoint union).

One-counter automata. A one-counter automatonis a tupleM = (Q,A, δ=0, δ>0),
whereQ is a finite nonempty set ofcontrol states, A is a finite set ofactions, δ=0 ⊆
Q×{0, 1}×A×Q is a finite set ofzero transitions, andδ>0 ⊆ Q×{−1, 0, 1}×A×Q
is a finite set ofpositive transitions. (There are noε-steps inM .)
ThesizeofM is defined as|M | = |Q|+|A|+|δ=0|+|δ>0|. Each one-counter automaton
M = (Q,A, δ=0, δ>0) defines the transition systemTM = (Q× N,A, {

a
−→| a ∈ A}),



where(q, n)
a

−→ (q′, n + i) iff either n = 0 and (q, i, a, q′) ∈ δ=0, or n > 0 and
(q, i, a, q′) ∈ δ>0.
A one-counter netis a one-counter automaton, whereδ=0 ⊆ δ>0.
A state (q,m) of TM is also called aconfigurationof M , or a one-counter pro-
cess; we usually write it asq(m). Elements ofδ=0 ∪ δ>0 are calledtransitions.
The notion of apath p(m)

σ
−→ q(n), whereσ is a sequence of transitions, is de-

fined in the natural way. A transition sequenceβ in (δ>0)
+ is called anelemen-

tary cycle if it induces an elementary cycle in the control state setQ, i.e., if β =
(q1, i1, a1, q2), (q2, i2, a2, q3), . . . (qm, im, am, qm+1) whereqi 6= qj for 1 ≤ i < j ≤
m andqm+1 = q1. We note that such a cycle has length at most|Q|, and its effect (i.e.,
the caused change) on the counter value is in the set{−|Q|,−|Q|+ 1, . . . , |Q|}.

Decision problems.We are interested in the following two decision problems.

BISIMILARITY ON OCA

INPUT: A one-counter automatonM with two statesp0(m0) andq0(n0) of TM ,
where bothm0 andn0 are given in binary.

QUESTION: Is p0(m0) ∼ q0(n0) ?

We say that aone-counter processq(n), i.e. a configurationq(n) of a one-counter au-
tomatonM , is∼-regular (or finite up to bisimilarity) if there is a finite transition system
with some states such thatq(n) ∼ s.

∼REGULARITY ON OCA

INPUT: A one-counter automatonM and a stateq(n) of TM (n given in binary).
QUESTION: Is q(n) ∼-regular?

Stratified bisimilarity. Given a transition systemT = (S,A, {
a

−→| a ∈ A}), onS
we define the family ofi-equivalences,i ∈ N, ∼0 ⊇∼1 ⊇∼2 ⊇ · · · as follows. We put
∼0= S × S, and we haves1 ∼i+1 s2 if the following two conditions hold:

– for eachs′1 ∈ S, a ∈ A, wheres1
a

−→ s′1, there is somes′2 ∈ S such thats2
a

−→ s′2
ands′1 ∼i s

′
2 ;

– for eachs′2 ∈ S, a ∈ A, wheres2
a

−→ s′2, there is somes′1 ∈ S such thats1
a

−→ s′1
ands′1 ∼i s

′
2 .

The following proposition is an instance of the result for image finite systems [16].

Proposition 1. On states ofTM we have∼ =
⋂

i≥0 ∼i.

2.1 Some useful observations

The next proposition captures the locality of the bisimulation condition for one-counter
automata, implied by the fact that the counter value can change by at most1 in a move.



Proposition 2. Given a one-counter automatonM = (Q,A, δ=0, δ>0) and a rela-
tion R ⊆ (Q × N) × (Q × N), for checking if a pair(p(m), q(n)) ∈ R sat-
isfies the bisimulation condition it suffices to know the restriction of R to the set
NEIGHBOURS(m,n) = { (p′(m′), q′(n′)) | |m′ −m| ≤ 1, |n′ − n| ≤ 1 }.

Standard partition arguments [11, 18] imply the following proposition forfinitesystems.

Proposition 3. Given a finite transition systemF = (Q,A, {
a

−→| a ∈ A}), where
k = |Q|, we have∼k−1 =∼k=∼ onQ. Moreover, (the partition ofQ corresponding
to)∼ can be computed in polynomial time.

3 Underlying finite automaton and the set INC

Most of the notions, claims and ideas in this section appeared in [9] and elsewhere;
nevertheless, we present (and extend) them in a concise self-contained way.

If the context does not indicate otherwise, in what follows we (often implicitly)
assume a fixed one-counter automatonM = (Q,A, δ=0, δ>0), usingk for |Q|. We start
by observing that if the counter value is large, thenM behaves, for a long time, like
a (nondeterministic) finite automaton. ByFM we denote thefinite transition system
underlyingM ; we putFM = (Q,A, {

a
−→| a ∈ A}), where

a
−→= {(q1, q2) ∈ Q ×

Q | ∃i : (q, i, a, q′) ∈ δ>0}. (FM thus behaves as if the counter is positive, ignoring
the counter changes.) In what follows,p, q, r ∈ Q are viewed as control states ofM
or as states ofFM , depending on context. Our observation is formalized by thenext
proposition (which is obvious, by induction onm).

Proposition 4. If m′ ≥ m thenp(m′) ∼m p .
(Herep(m′) is a state ofTM , whereasp is a state ofFM .)

This implies, e.g., that ifp 6∼ q (i.e., p 6∼k q by Proposition 3) andm,n ≥ k, then
p(m) 6∼k q(n) (and thusp(m) 6∼ q(n)), sincep(m) ∼k p, q(n) ∼k q and∼k is an
equivalence. Ifp ∼ q then we can havep(m) 6∼ q(n), due to the possibility of reaching
zero. For making this more precise, we define the following set

INC = { r(ℓ) | ∀q ∈ Q : r(ℓ) 6∼k q } .

The configurations in INC areincompatible withFM in the sense that they are not
bisimilar up tok moves with any state ofFM .

Proposition 5. If r(ℓ) ∈ INC thenℓ < k. Moreover,INC can be constructed in poly-
nomial time.

Proof. If ℓ ≥ k thenr(ℓ) ∼k r, and thusr(ℓ) 6∈ INC. To construct INC, we can
start with the set containing allk3 pairs(r(ℓ), q), whereℓ < k ; all such pairs belong
to ∼0. We then delete the pairs not belonging to∼1, then those not belonging to∼2,
etc., until∼k. The configurationsr(ℓ) for which no pair(r(ℓ), q) survived, are in INC.
(This process can be done simultaneously for the pairs(p, q) in FM ; we also use the
factr(k) ∼k r.) ⊓⊔



The arguments of the previous proof also induce the following useful proposition.

Proposition 6. The question ifp(m) ∼k q(n) can be decided in polynomial time.

We note that ifp(m) ∈ INC andq(n) 6∈ INC thenp(m) 6∼ q(n) (in fact,p(m) 6∼k
q(n)). More generally, if two one-counter processes are bisimilar then they must agree
on the distance to INC; this is formalized by the next lemma. We define

dist(p(m))

as the length of the shortest transition sequenceσ such thatp(m)
σ

−→ INC (i.e.,
p(m)

σ
−→ r(ℓ) for somer(ℓ) ∈ INC); we put dist(p(m)) = ω if there is no such

sequence, i.e., when INC is unreachable, denotedp(m) 6→∗ INC.

Lemma 7. If p(m) ∼ q(n) then dist(p(m)) = dist(q(n)).

Proof. For the sake of contradiction, suppose thatp(m) ∼ q(n) andd = dist(p(m)) <
dist(q(n)), for the leastd ; necessarilyd > 0, since we cannot havep(m) ∈ INC,
q(n) 6∈ INC. Thus there is a movep(m)

a
−→ p′(m′) with dist(p′(m′)) = d−1, which

must be matched by someq(n)
a

−→ q′(n′) wherep′(m′) ∼ q′(n′). Necessarilyd−1 =
dist(p′(m′)) < dist(q′(n′)), which contradicts the minimality ofd. ⊓⊔

The next lemma clarifies the opposite direction in the case ofinfinite distances.

Lemma 8. If dist(p(m)) = ω thenp(m) ∼ r for somer ∈ Q. Thus if dist(p(m)) =
dist(q(n)) = ω thenp(m) ∼ q(n) iff there is somer ∈ Q such thatp(m) ∼k r ∼k
q(n).

Proof. If dist(p(m)) = ω, i.e. p(m) 6→∗ INC, then in particularp(m) 6∈ INC, and
there is thusr ∈ Q such thatp(m) ∼k r. We can easily check that

R = { (p(m), r) | p(m) ∼k r, p(m) 6→∗ INC }

is a bisimulation: ifp(m)
a

−→ p′(m′) and r
a

−→ r′ wherep′(m′) ∼k−1 r′, then
p′(m′) 6→∗ INC and the factp′(m′) 6∈ INC implies thatr′′ ∼k p′(m′) ∼k−1 r

′ for
somer′′ ∈ Q; hencer′ ∼k−1 r

′′ and thusr′ ∼k r′′ (by Proposition 3), which means
p′(m′) ∼k r

′. ⊓⊔

In the next section we look in more detail at the functiondist(p(m)), which provides
a useful constraint on bisimilar pairs. But before that, we partition the set(Q × N) ×
(Q× N) into three categories. We say that a pair(p(m), q(n)) is

– surely-positiveif dist(p(m)) = dist(q(n)) = ω andp(m) ∼k q(n)
(and thus surelyp(m) ∼ q(n), by Lemma 8),

– surely-negativeif p(m) 6∼k q(n) or dist(p(m)) 6= dist(q(n))
(and thus surelyp(m) 6∼ q(n)),

– candidateotherwise, i.e., ifp(m) ∼k q(n) anddist(p(m)) = dist(q(n)) < ω.

By SUREPOS we denote the set of all surely-positive pairs, and we note the following
obvious proposition.



Proposition 9. SUREPOS is a bisimulation.

It will be also useful to view the set CAND of all candidate pairs as the union

CAND = CAND0 ∪ CAND1 ∪ CAND2 ∪ · · ·

where CANDi contains thecandidate pairs at leveli, i.e. the pairs(p(m), q(n)) ∈
CAND with m = i.

4 Distance to INC

In this section we look at the distance functiondist(p(m)) in more detail (Lemma 10)
and derive some consequences (Lemma 11) which will be usefulfor the design and
analysis of our later algorithm.

We start with sketching some intuition which is then formalized in Lemma 10. To
reach INC fromp(m) most quickly, for a largem, one uses a suitable prefix arriving

at a ‘most effective’ elementary cycleq(−)
β

−→ q(−) (which decreases the counter
by k = |Q| at most), let us call it ad-cycle, then repeats the d-cycle sufficiently many
times, and finishes with a suffix arriving at INC. It is not difficult to anticipate that one
can bound the length (and thus also the counter change) of theprefix and the suffix by
a (small degree) polynomial pol(k). We now state the lemma. For technical reasons,
we do not require explicitly that the d-cycle is elementary;it is sufficient to bound its
length byk.

Lemma 10. There is a polynomial pol: N → N (independent ofM ) such that for any
p(m) with dist(p(m)) < ω there is a shortest pathp(m)

σ
−→ INC with the transition

sequenceσ of the formσ = αβiγ wherelength(αγ) ≤ pol(k) andβ is a decreasing
cycle of length≤ k.

Proof. To give a complete formal proof requires some technical work. Since the essence
of the claim is not original and similar technical results appear in the previous works on
one-counter automata, we do not provide a self-contained proof, but we use Lemma2
from an older paper [27]; in our notation, this lemma is formulated as follows:

Claim. If there is a positive path (using positive transitions) from p(m) to q(n)

andm−n ≥ k2 andn ≥ k2 then there is a shortest pathp(m)
σ

−→ q(n) such
thatσ = αβiγ wherelength(αγ) < k2 andlength(β) ≤ k.

(Although [27] studiesdeterministicone-counter automata, the lemma obviously ap-
plies to our nondeterministic case as well, since we can viewthe transitions themselves
as the actions.) We note that ifm−n ≥ k2 + k thenβ is necessarily a decreasing cycle
(i ≥ 2 in this case). It is also clear that the (shortest) pathp(m)

σ
−→ q(n) in the Claim

does not visit anyq′(n′) with n′ ≥ m + k2 + k; we say that the path moves in the
“< (m+k2+k) area” (note that the prefixα moves in the “< (m+k2) area” and the
suffix γ moves in the “< (n+k2) area”).

Recalling thatℓ < k for eachr(ℓ) ∈ INC, we note that any shortest path
p(m)

σ
−→ INC either moves in the “< k2-area”, in which case its length is bounded



by k3 (since no configuration is visited twice), or can be presented in the form
p(m)

σ1−→ q1(k
2)

σ2−→ q2(k
2)

σ3−→ · · ·
σm−→ qm(k2)

σm+1

−→ INC where1 ≤ m ≤ k

and q1(k2), q2(k
2), . . . , qm(k2) are all configurations on the path which have the

counter valuek2. By the above considerations, the segmentqi(k
2)

σi+1

−→ moves in the
“< (3k2 + k) area”, and its length is thus bounded byk · (3k2+k). The segment
p(m)

σ1−→ q1(k
2) either moves in the “< 2k2 area”, in which case its length is bounded

by 2k3, or it can be writtenp(m)
σ′

1−→ p′(m′)
σ′

2−→ q1(k
2) wherem′ ≥ 2k2 andσ′

1

(which might be empty) is bounded by2k3. The statement of our Lemma thus follows

from the above Claim applied to the segmentp′(m′)
σ′

2−→ q1(k
2). ⊓⊔

The next lemma lists some important consequences. A main point is to clarify the distri-
bution of the set CAND. Informally speaking, the candidate pairs are contained inside
polynomially many linear belts, each belt having a rationalslope, being a fraction of
polynomially bounded integers, as well as a polynomially bounded (vertical) thickness.

Remark. It is helpful to think in geometrical notions. Every relationR ⊆ (Q × N) ×
(Q × N) can be viewed as a ‘coloring’χR : Q × Q × N × N → {•, ◦}; for each
p, q ∈ Q it prescribes a black-white coloring of the plane (grid)N × N. This was more
formalized in [9]; here we just informally use Figure 1.

Lemma 11.

1. There is a polynomial-time algorithm computingdist(p(m)) for anyp,m; here the
size of the input is|M | + logm (m is written in binary).

2. If dist(p(m)) < ω then

dist(p(m)) =
c1

c2
(m+ d1) + d2 =

c1

c2
m+ ψ

for some integers0 ≤ c1 ≤ k, 1 ≤ c2 ≤ k, |d1| ≤ pol1(k), 0 ≤ d2 ≤ pol1(k)
where pol1 is a polynomial (independent ofM ); the valuesc1, c2, d1, d2 generally
depend onp,m.
Moreover, for the rational numberψ = c1

c2
d1 + d2 we have|ψ| ≤ (k+1) · pol1(k).

3. If dist(p(m)) = dist(q(n)) < ω then

n = ρ ·m+ ξ

where (the slope)ρ is either0 or of the formc1c
′

2

c2c′1
, for c1, c2, c′1, c

′
2 ∈ {1, 2, . . . , k},

and|ξ| is bounded by a polynomial pol2(k).
(This formalizes the above announced polynomially many belts, with the vertical
thickness1 + 2 · pol2(k).)

4. There is a polynomial pol4 such that for eachm ≥ pol4(k) we haveρ1 · m +
pol2(k) + 1 < ρ2 · (m−1) − pol2(k), whereρ1 < ρ2 are (different) slopes from
Point 3, pol2 also being taken from there.
(I.e., for levelsm ≥ pol4(k) the belts are separated, in the sense that no two pairs
from different belts are neighbours.)



5. There is a polynomial-time algorithm which, giveni (in binary), computes the set
CANDi of all candidate pairs at leveli (all pairs (p(i), q(n)) such thatp(i) ∼k
q(n) and dist(p(i)) = dist(q(n)) < ω). We have|CANDi| ≤ pol3(k) for a
polynomial pol3.

6. If∆ is a multiple of the effects of all decreasing cycles of length≤ k (the absolute
values of the effects are in the set{1, 2, . . . , k}) then for eachm ≥ k + pol(k),
where pol is taken from Lemma 10, we have:

p(m) →∗ INC iff p(m+∆) →∗ INC.

7. Ifm,n ≥ k + pol(k) then

(p(m), q(n)) ∈ SUREPOS ⇔ ∀i, j ∈ N : (p(m+ i∆), q(n+ j∆)) ∈ SUREPOS

(where pol and∆ are as in Point 6).

Proof. Point 1. By Lemma 10 we know that a shortest pathp(m)
σ

−→ INC (if there is
any) is of the form

p(m)
α

−→ q(m+e1)
β

−→ q(m+e1−c2)
β

−→ q(m+e1−2c2)
β

−→ · · ·

· · ·
β

−→ q(ℓ−e2+c2)
β

−→ q(ℓ−e2)
γ

−→ r(ℓ) ∈ INC

wheree1 is the effect (the counter change) of the prefixα, c2 is the absolute value of
the effect of the d-cycleβ, ande2 is the effect of the suffixγ ; we putc1 = length(β),
c3 = length(α), c4 = length(γ). Let us recall that0 ≤ c2 ≤ c1 ≤ k and that the
absolute values of other integers are bounded by pol(k) from Lemma 10.
(Independently ofp,m,) we thus have polynomially many possibilities (ink) for the tu-
ple q, e1, c1, c2, c3, c4, e2, r, ℓ; these possible tuples can be processed in turn. For each
tuple we can check if(m+e1)−(ℓ−e2) is divisible byc2 and then verify if the tuple
is realizable by some appropriateα, β, γ; this verification is done by using straightfor-
ward graph reachability algorithms. (Regarding the d-cycle, it is sufficient to verify the
realizability of the first segmentq(m+e1) −→ q(m+e1−c2) and of the final segment
q(ℓ−e2+c2) −→ q(ℓ−e2).) With each realizable tuple we associate the valuec3 + c4
whenc2 = 0 andc3 + c4 + c1

c2

(

(m+e1)−(ℓ−e2)
)

whenc2 > 0. We associateω with
each non-realizable tuple. The valuedist(p(m)) is obviously the minimal value asso-
ciated with the above tuples.

Point 2. This follows immediately from the analysis in the proof of Point 1. (Since
d2 = c3 + c4, d1 = e1−ℓ+e2, it suffices to take pol1(k) = k + pol(k), for pol from
Lemma 10. The consequence forψ is obvious.)

Point 3. Fromdist(p(m)) = c1
c2
m + ψ =

c′1
c′
2

n + ψ′ = dist(q(n)), we derive

n = c1/c2
c′
1
/c′

2

m + ψ−ψ′

c′
1
/c′

2

. If c1 = 0 or c′1 = 0 thendist(p(m)) = dist(q(n)) ≤ (k+1) ·

pol1(k), and thusn < k + (k+1) · pol1(k) (and we can putρ = 0). We can thus take
pol2(k) = 2 · (k+1) · pol1(k) · k.

Point 4. Recalling the slopes from Point 3, we note thatρ1<ρ2 impliesρ2 ≥ ρ1+
1
k4 .

Sinceρ1 ≤ k2, it is sufficient to have pol2(k) + 1 < 1
k4m− k2 − 1

k4 − pol2(k).
Point 5. Giveni, for eachp ∈ Q in turn we computez = dist(p(i)) and all polyno-

mially manyn such thatc1c2 (n+d1)+d2 = z, wherec1, c2, d1, d2 satisfy the constraints



from Point 2. For each suchn and eachq ∈ Q we check if(p(i), q(n)) ∈ CANDi, i.e.,
if dist(q(n)) = z andp(i) ∼k q(n); Point 1 and Proposition 6 show that this can be
done in polynomial time.

Point 6. Sincem ≥ k + pol(k), the length of (each)σ such thatp(m)
σ

−→ INC is
greater than pol(k). Increasing or decreasing the number of repeating the d-cycle does
the job.

Point 7. From Point 6 we know that form ≥ k+pol(k) we havedist(p(m)) = ω iff
dist(p(m+i∆)) = ω for all i ∈ N. Thus form,n ≥ k+pol(k) we havep(m+i∆) ∼k
q(n + j∆) anddist(p(m + i∆)) = dist(q(n + j∆)) = ω if and only if p ∼k q and
dist(p(m)) = dist(q(n)) = ω.

⊓⊔

5 A polynomial space algorithm

The next lemma follows from Lemma 11, Point 1, and Proposition 6.

Lemma 12. There is a polynomial-time algorithm which, given (M and) a pair
(p(m), q(n)), decides if the pair is inSUREPOS, or in CAND, or is surely-negative.

We might be tempted to try to resolve the question of bisimilarity of the can-
didate pairs by looking for additional polynomially checkable conditions. But the
PSPACE-hardness result for (visibly) one-counter processes [24] discourages us from
doing so; we should be satisfied with solving our problem in polynomial space.
Thus anondeterministicalgorithm working in polynomial space is sufficient (since
PSPACE=NPSPACE by Savitch’s Theorem). We start with notingthe following two
obvious propositions; this will give rise to a main algorithmic idea.

Proposition 13. For a candidate pair(p0(m0), q0(n0)) ∈ CAND we have:
p0(m0) ∼ q0(n0) iff there is a subsetB ⊆ CAND such that
(p0(m0), q0(n0)) ∈ B andB ∪ SUREPOS is a bisimulation.

The following (infinite) algorithm builds a certainB ⊆ CAND as the union of
(nondeterministically chosen) setsB0 ⊆ CAND0, B1 ⊆ CAND1, B2 ⊆ CAND2,
. . . , while checking the bisimulation condition for their elements on the fly (recall the
locality captured by Proposition 2). If its computation does not fail, then it is infinite
and the respective setB ⊆ CAND (which would result as the limit) satisfies that
B ∪ SUREPOS is a bisimulation.

– We start with puttingm = 0, compute the set CAND0 and (nondeterministically)
choose a setB0 ⊆ CAND0.

– Then we successively processm = 0, 1, 2 . . . , where processingm means the
following:
• Compute CANDm+1 (recall Point 5 of Lemma 11) and (nondeterministically)

chooseBm+1 ⊆ CANDm+1.
• Verify that (each pair in)Bm is (locally) correct, usingBm−1 (whenm > 0)

andBm+1, and the polynomial procedure deciding membership in SUREPOS

(cf. Lemma 12).



• (If Bm is not correct, the computation fails.)

If we force the algorithm to include the input pair(p0(m0), q0(n0)) intoBm0
then an

infinite run is possible if and only ifp0(m0) ∼ q0(n). We also note that it is sufficient
for the algorithm to keep only the current numberm, and the setsBm−1 (if m > 0),
Bm, Bm+1 in memory. (By Point 5 of Lemma 11 this consists of at most3 · pol3(k)
pairs, while the bit-size of the numbers is polynomial ink and in the bit-size ofm, i.e.
in logm.)

A final crucial point is that the algorithm, gettingp0(m0), q0(n0) in the input, will
halt (answeringp0(m0) ∼ q0(n0)) after it has successfully processed the following
levels.

m = 0, 1, 2, . . . , z where z = m0 + pol4(k) + 2pol5(k) · 23k log k (1)

Here pol4 is from Point 4 of Lemma 11, and we put pol5(k) = 2 · k2 · (1 + 2 · pol2(k)),
where pol2 is from Point 3 of Lemma 11. With this halting condition, the algorithm
obviously runs in polynomial space (when givenM and a pair(p0(m0), q0(n0))). What
remains to show is the correctness of the halting condition.

6 Correctness of (the halting condition of) the algorithm

Recall Points 3 and 4 of Lemma 11; the candidate pairs are contained inside polynomi-
ally many linear belts with vertical thickness(1 + 2 · pol2(k)), which are separated for
m ≥ pol4(k).

Informally speaking, if the algorithm (successfully) processes sufficiently many (ex-
ponentially many) numbersm after processingm0, then the pigeonhole principle guar-
antees that a certain ‘pumpable’ segment appears inside each belt (this is visualized in
Figure 1). At that time we are guaranteed that the relation

R = {(p(m), q(n)) ∈ Bm ∪ SUREPOS | m ≤ m0}

can be extended with certain pairs(p′(m′), q′(n′)), with m′ > m0, so that the result-
ing relation is a bisimulation. (These pairs(p′(m′), q′(n′)),m′ > m0, may differ from
those which were actually included inBm′ by the algorithm.) We now make this infor-
mal argument more precise.

Suppose that our algorithm successfully halts for the inputpair (p0(m0), q0(n0)),
and consider the following subsequence of the sequence (1).

m′
0,m

′
0 +∆3,m′

0 + 2∆3,m′
0 + 3∆3, . . . ,m′

0 + 2pol5(k)∆3 (2)

wherem′
0 = max{m0, pol4(k)} and∆ = k! ; hence∆ ≤ kk, and so∆3 ≤ 23k log k.

Remark.We have chosen∆ so that Points 6 and 7 of Lemma 11 can be applied.

The chosen period∆3 has the following useful property. We are guaranteed thatρ∆3 is

a multiple of∆ for each slopeρ =
c1c

′

2

c2c′1
(c1, c2, c′1, c

′
2 ∈ {1, 2, . . . , k}) from Point 3 of

Lemma 11; by Point 7 of Lemma 11 we thus also get for eachm ≥ pol4(k):

(p(m), q(n)) ∈ SUREPOS ⇔ ∀i ∈ N : (p(m+ i∆3), q(n+ iρ∆3)) ∈ SUREPOS. (3)



(q1, q1)
(q1, q2)
. . .

(qk, qk)

m

n

m1 m2

Fig. 1. Two isomorphic belt cuts in a coloring

(In the proof of Lemma 11, we have actually derived pol4 satisfying pol4(k) ≥
k+pol(k). But any polynomial pol4 satisfying Point 4 could be replaced with a big-
ger one to satisfy also pol4(k) ≥ k+pol(k) anyway.)

For a relationR ⊆ (Q× N) × (Q× N) and a belt, identified with its slopeρ from
Point 3 of Lemma 11, we define theR-cut of the beltρ at levelm as

CUTρm(R) = { (p(m), q(n)) ∈ R | ρm− pol2(k) ≤ n ≤ ρm+ pol2(k) }.

Figure 1 illustrates two cutsCUTρm1
(R), CUTρm2

(R) (the black points representing el-
ements ofR, the white points being non-elements); the depicted cuts are ‘the same’ in
the sense that one arises by shifting the other.

Our choice of the subsequence (2) guarantees a repeat of a ‘2-thick cut’:

Proposition 14. For everyR and ‘belt’ ρ there arem1,m2 in (2), wherem1 < m2,
m2 = m1 + c∆3, such that

– (p(m1), q(n)) ∈ CUTρm1
(R) ⇔ (p(m2), q(n+ ρc∆3)) ∈ CUTρm2

(R),
– (p(m1 +1), q(n)) ∈ CUT

ρ
m1+1(R) ⇔ (p(m2 +1), q(n+ρc∆3)) ∈ CUT

ρ
m2+1(R).

Proof. We first note that our choice of∆ also guarantees thatρc∆3 is integer. De-
scribing CUTρm(R) and CUT

ρ
m+1(R) (for anym) obviously amounts to determine a



(black-point) subset of a set with (at most)2 ·k2 · (1+2 ·pol2(k)) elements; this is how
we defined pol5(k) in the halting condition of our algorithm (cf. (1)). There are2pol5(k)

such subsets; thus the claim follows by the pigeonhole principle. ⊓⊔

Our aim is to define some relationR′ so thatR′ ∪ SUREPOS is a bisimulation and
it coincides withB ∪ SUREPOS for the pairs(p(m), q(n)) with m ≤ m0; the setB
consists of the candidate pairs included by (the successfully halting computation of) our
algorithm intoBm, form = 0, 1, 2, . . . , z as in (1).

Let us now consider a particular beltρ. Letm1,m2, wherem1 < m2 = m1 + c∆3,
be the levels guaranteed by Proposition 14 for the relationR = B ∪ SUREPOS. Inside
the beltρ, the suggestedR′ will coincide with R for all levelsm ≤ m2+1. For all
levelsm = m2+2,m2+3,m2+4, . . . , we defineR′ inside the beltρ by the following
inductive definition: for eachm,n, wherem > m2+1 and|n− ρm| ≤ pol2(k):

(p(m), q(n)) ∈ R′ iff (p(m−c∆3), q(n−ρc∆3)) ∈ R′.

We note that this condition is, in fact, satisfied also form ∈ {m2,m2+1}, due to our
choice ofm1,m2. We get the wholeR′ after having defined it inside all belts.

Proposition 15. R′ ∪ SUREPOS is a bisimulation.

Proof. Suppose there is a pair(p(m), q(n)) ∈ R′∪SUREPOSwhich does not satisfy the
bisimulation condition (which is determined by the restriction to NEIGHBOURS(m,n);
recall Proposition 2). We take such a pair with the leastm. It is clear that(p(m), q(n)) 6∈
SUREPOS (recall Proposition 9); moreover, the restriction ofR′ ∪ SUREPOS to
NEIGHBOURS(m,n) cannot be the same as forB∪SUREPOS (where the algorithm ver-
ified the bisimulation condition). Hence(m,n) lies in a beltρ, andm ≥ m2+1 for the
respectivem2 = m1+c∆3. Then the pair(p(m−c∆3), q(n−ρc∆3)) belongs toR′ and
satisfies the bisimulation condition; moreover, this pair enables the same transitions as
the pair(p(m), q(n)). So there must be some(p′(m′), q′(n′)) ∈ NEIGHBOURS(m,n)
such that(p′(m′), q′(n′)) 6∈ R′ ∪ SUREPOS and (p′(m′−c∆3), q′(n′−ρc∆3)) ∈
R′ ∪ SUREPOS. But this contradicts the definition ofR′ or the equivalence (3). ⊓⊔

Our halting condition is thus correct, and we have proved:

Theorem 16. There is a polynomial space algorithm which, given a one-counter au-
tomatonM and a pairp0(m0), q0(n0), decides ifp0(m0) ∼ q0(n0).

Remark.As in [9], we could derive that the bisimilarity∼ (i.e., the maximal bisimu-
lation) is ‘belt-regular’. Our results here show that a natural (finite) description of this
(semilinear) relation can be written in exponential space.

7 ∼-Regularity

We can easily derive the next lemma, which tells us thatp(m) is not∼-regular iff it
allows to reach states with arbitrarily large finite distances to INC.

Lemma 17. Givenp(m) for a one counter automatonM , p(m) is not∼-regular iff for
anyd ∈ N there isq(n) such thatp(m) →∗ q(n) andd ≤ dist(q(n)) < ω.



The next proposition gives a more convenient characterization.

Proposition 18. p(m) is not ∼-regular iff p(m) →∗ q(m+2k) →∗ INC for some
q ∈ Q. (Recall thatk = |Q| for the setQ of control states ofM .)

Proof. ‘Only if’ is obvious.
On any pathp(m)

σ1−→ q(m+ 2k)
σ2−→ INC we have to cross the level(m + k) when

going up as well as when going down to INC (recall thatℓ < k for anyr(ℓ) ∈ INC).
The elementary cycles, which must necessarily appear when going up and down, can
be suitably pumped to show the condition in Lemma 17. ⊓⊔

Lemma 19. Deciding∼-regularity of one-counter processes is inPTIME.

Proof. We check the condition from Proposition 18. Givenp(m), we can compute all
q(m+2k) which have finite distances to INC by a polynomial algorithm (recall Point 1
of Lemma 11). Whenm = 0, the reachability of a suitableq(2k) (q(2k) →∗ INC) can
be checked straightforwardly. So we can compute allp′ such thatp′(0) is not∼-regular.
Thusp(m) is not∼-regular iff it can reach one of the computedq(m+2k) andp′(0) by
positive transitions. The polynomiality follows by the ideas similar to those discussed
in the proof of Lemma 10. ⊓⊔

Lemma 20. Deciding∼-regularity (even) of one-counter nets isPTIME-hard.

Proof. We use a logspace reduction from bisimilarity on finite transition systems which
is PTIME-complete [1]. Given a finite transition system(Q,A, {

a
−→}a∈A) andf, g ∈

Q, we construct a one counter net which has the following behaviour: in s0(m),m > 0,

it has transitionss0(m)
a

−→ s0(m + 1), s0(m)
a

−→ s0(m − 1), s0(m)
b

−→ f(m),

s0(m)
b

−→ g(m). In s0(0) we only haves0(0)
a

−→ s0(1) ands0(0)
b

−→ f(0). Any
statef(n) just mimicksf (not changing the counter); similarlyg(n) mimicksg. It is
easy to verify thats0(n) is regular ifff ∼ g. ⊓⊔

Theorem 21. Deciding∼-regularity of one-counter processes isPTIME-complete.

Acknowledgements.We thank the anonymous reviewers for useful comments and sug-
gestions.
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1. J. L. Balcázar, J. Gabarró, and M. Santha. Deciding Bisimilarity is P-Complete.Formal Asp.
Comput., 4(6A):638–648, 1992.

2. T. Brázdil, V. Brozek, K. Etessami, A. Kučera, and D. Wojtczak. One-Counter Markov
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