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Abstract. We investigate the decidability and complexity of variousdel check-
ing problems over one-counter automata. More specificayconsidesuccinct

one-counter automata, in which additive updates are edcindeinary, as well

asparametricone-counter automata, in which additive updates may bengige
unspecified parameters. We fully determine the complexitsnodel checking

these automata against CTL, LTL, and modatalculus specifications.

1 Introduction

Counter automata, which comprise a finite-state contrtdigether with a number of
counter variables, are a fundamental and widely-studietpegational model. One of
the earliest results about counter automata, which appéageseminal paper of Min-
sky’s five decades ago, is the fact that two counters suffieeh@eve Turing complete-
ness [19].

Following Minsky’s work, much research has been directedatds studying re-
stricted classes of counter automata and related formsligmmong others, we note
the use of restrictions to a single counter, on the kindslofalble tests on the coun-
ters, on the underlying topology of the finite controllerdsias flatness [8, 18]), and
on the types of computations considered (such as reveosaldedness [16]). Counter
automata are also closely related to Petri nets and pushdotemata.

In Minsky’s original formulation, counters were represhias integer variables
that could be incremented, decremented, or tested for igguath zero by the finite-
state controller. More recently, driven by complexityhetic considerations on the one
hand, and potential applications on the other, researdfaes investigated additional
primitive operations on counters, such as additive updatesded in binary [2, 18]
or even inparametricform, i.e., whose precise values depend on parameters][3, 15
We refer to such counter automatasagcinctand parametricresp., the former being
viewed as a subclass of the latter. Natural applicationadf sounter machines include
the modelling of resource-bounded processes, prograrhdigti$, recursive or multi-
threaded programs, and XML query evaluation; see, e.5, [&].

In most cases, investigations have centered around thdat@liy and complexity
of thereachabilityproblem, i.e., whether a given control state can be readaeting
from the initial configuration of the counter automaton.iwas instances of the reacha-
bility problem for succinct and parametric counter autanaae examined, for example,
in[9,13,15].



SOCA POCA
data
CTL,p-caleulus "7 | EXPSPACE-complete I19-complete
combined
LTL data coNP-complete
combined PSPACE-complete coNEXP-complete

Table 1. The complexity of CTL, the modal-calculus, and LTL on SOCA and POCA.

The aim of the present paper is to study the decidability amdpdexity of model
checkingfor succinct and parametric one-counter automata. In vieMiasky'’s re-
sult, we restrict our attention guccinct one-counter automata (SOG#dparametric
one-counter automata (POCADnN the specification side, we focus on the three most
prominent formalisms in the literature, namely the templwgics CTL and LTL, as
well as the modali-calculus. For a counter automatdnand a specificatiorp, we
therefore consider the question of deciding whethee ¢, in case of POCA for all
values of the parameters, and investigate bothdéta complexity (in which the for-
mula is fixed) as well as theombinedccomplexity of this problem. Our main results
are summarized in Table 1.

One of the motivations for our work was the recent discovhat teachability is
decidable and in fadiP-complete for both SOCA and POCA [13]. We were also in-
fluenced by the work of Demri and Gascon on model checkingneidas of LTL over
non-succinct, non-parametric one-counter automata §Olvell as the recent result of
Goller and Lohrey establishing that model checking CTL oohscounter automata is
PSPACE-complete [12].

On a technical level, the most intricate result is B¥PSPACE-hardness of CTL
model checking for SOCA, which requires several steps. \§edirow thaEXPSPACE
is ‘exponentiallyL OGSPACE-serializable’, adapting the known proof tHe8PACE is
LOGSPACE-serializable. Unfortunately, and in contrast to [12]stdbes not immedi-
ately provide arE XPSPACE lower bound. In a subsequent delicate stage of the proof,
we show how to partition the counter in order simultaneotssfyerformPSPACE com-
putations in the counter and manipulate numbers of exp@lesite in a SOCA of
polynomial size.

For reasons of space, we have had to abbreviate or omit a mwhpeoofs; full
details can however be found in the technical report [10].

2 Preiminaries

By Z we denote théntegersand byN = {0, 1,2, ...} the naturals For eachi,j €
Z we definefi,j] = {k € Z | i < k < j} and[j] = [1,j]. For eachi,n € N,
let bit;(n) denote the™ least significant bit of the binary representationofHence
n =3 cy2"-bit;(n). By bin,,(n) = bity(n) - - - bit,,_1 (n) we denote the firsi. least
significant bits written fronleft to right Let p; denote the™ prime number for each



i > 1. We definelog(n) = min{i > 1 | 2! > n}, i.e.log(n) denotes the number of
bits that are needed to represenh binary. For each word = a; - --a,, € X" over
some finite alphabel’ and each, j € [n] definev[i, j] = a; - - - a; andv(i) = v[i, ).
For the rest of the paper, we fix a countable sedtoimic propositiong”. A transition
systemis a tupleT' = (S,{S, | p € P},—), whereS is a set ofstates S, C S for
eachp € P andS, is non-empty for finitely many € P, and finally—C S x Sis a
set oftransitions We prefer to use the infix notation — s» instead of(sq, s2) €—.
An infinite pathis an infinite sequence = sg — s; — ---. For each infinite path
7 = sy — s — --- and each € N, we denote by’ the suffixs; — s;;1 — -
and byr (i) the states;. A SOCAis a tupleS = (Q,{Q, | p € P}, E, X), whereQ is

a finite set ofcontrol states@, C @ for eachp € P and@, is non-empty for finitely
manyp € P, E C @ x Q is a finite set ofransitions and\ : E — Z U {zero}. We call
a SOCAS with A : E — {—1,0,1} U {zero} aunary one-counter automaton (OCA)
A POCAis atupleP(X) = (Q,{Q, | p € P}, E, \), where the first three components
are same as for a SOCAK is a finite set oparameters over the naturalandX : £ —
(Z U {zero} U {—z,+z | = € X}). For each assignment: X — N the induced
SOCA is defined aB” = (Q, E, \') whereN (e) = o(z) if Me) = x, N (e) = —o(x)

if A(e) = —x, and)X (e) = A(e) otherwise. IfX = {z} we also writeP(z) instead
of P(X). Thesizeof a POCA is defined af?| = |Q| + |X| + |E| - max{log(|a]) |

a € A(E) N Z}. Hence, we represent each appearing integer in binary. iZzheofa
SOCA is defined analogously. A SOCA = (Q,{Q, | p € P}, E,\) describes a
transition system’’(S) = (Q x N,{Q, x N | p € P}, —), where for eacly;, ¢ € Q
and each,n2 € N we havey; (n1) — g2(n2) iff either A(¢1, ¢2) = na — n1, or both
n1 = ng = 0andA(q, g2) = zero.

3 CTL Mode Checking
Formulasp of CTL are given by the following grammar, whepeanges oveP:

o = plop | onep | EXe |E(pUp) | E(pWUp)

Given a transition syste = (S,{S, | p € P}, —), a states € .S, and some CTL
formulay, define(T, s) = ¢ by induction on the structure of as follows:

(T,s)Ep <= seS, foreachpeP
(T.s)Eprhpe = (T,5) = ¢prand(T,s) = ¢
(T,5) ke > (T,5) K
(T,s) EEXe < (T,t) = ¢ forsomet € Swiths —t
(T,s) EE(p1Ups) <= Fsg,...,$n € S,n>0:80=35,(T,s,) E @2,
Vi e [0,n—1]:(T,s;) =1 ands; — s;41
(T,s) E E(xiWUp2) <= (T,s) = E(p1Ups) ordsg,sy1,... € SVi>0:

s =s0,(T,si) &= @1 ands; — s;11

Subsequently we use the standard abbreviations for digjumeand implication. More-
over, we definet = p vV —p for somep € P andEFy = E (tt Uyp). Let us define the



CTL model checking probleon SOCA and POCA resp.
CTL MODEL CHECKING ONSOCA

INPUT: SOCAS = (Q, E, A), ¢ € Q,n € Nin binary, a CTL formulap.
QUESTION: Does(T'(S),q(n)) = ¢?

CTL MODEL CHECKING ONPOCA

INPUT: POCAP(X) =(Q, E,)\),q € Q,n € Ninbinary, a CTL formulap.
QUESTION: Does(T'(P?),q(n)) | ¢ for everyo : X — N?

3.1 Upper Bounds

Due to space restrictions we do not formally introduce th&ahp-calculus and refer
to [1] for more details instead. In [21] Serre showed thatdbmbined complexity of
the modalu-calculus on OCA is irPSPACE. Since every SOCA can be transformed
into an OCA of exponential size, and since each CTL formulalwa translated into
an alternation-fre@-calculus formula with a linear blowup, the following precgition

is immediate by adjusting the resultingcalculus formula appropriately. Moreover,
this immediately implies the containment in the arithméierarchy of the combined
complexity of the modali-calculus and CTL on POCA.

Proposition 1. For the modalu-calculus and CTL the combined complexity on SOCA
is in EXPSPACE, whereas it is in[I{ on POCA.

3.2 Hardnessof the Data Complexity of CTL on SOCA

Before we provéeXPSPACE-hardness of the data complexity of CTL on SOCA, we in-
troduce some notions and results from complexity theonyea languagé C 3%, let

xr : 2* — {0, 1} denote theharacteristic function ofL. We define théexicographic
order onn-bit stringsby = =<,, y if and only if bin, (z) < bin,(y), e.9.011 <3 101.
We say a languagk is exponentiallyC-serializable via some language C {0, 1}* if
there is some polynomialn) and some languadé € C s.t. for allz € {0,1}"

zel = XU(JZ-OQP(n)) XU($-12p(n))€R,

where the bit strings on the right-hand side of the concaitamaymbol are enumer-
ated in lexicographic order. This definition is a paddedarariof the serializability
notion used in [11], which in turn is a variant of the seriabdity notion from [5, 14,
22]. Some subtle technical padding arguments are requirktl AC°-serializability of
PSPACE, proven in Theorem 22 in [11], to exponentida GSPACE-serializability of
EXPSPACE.

Theorem 2. For every languagd. in EXPSPACE there is some regular language
such thatl is exponentiall. OGSPACE-serializable viaR.

A further concept we use is the Chinese remainder repragants a natural number.
For everym, M € N we denote byCRR,,,(M) the Chinese remainder representation
of M as the Boolean tuplé; .)ic[m],o<c<p;» Whereb; . = 1 if Mmodp; = c and



b; . = 0 otherwise. The following theorem tells us that in logaritbrspace we can

compute the binary representation of a natural number ftei@hinese remainder rep-
resentation. This result is a consequence of [7], wheresh@vn that division is in

logspace-unifornNC'.

Theorem 3 ([7] Theorem 3.3). The following problem is i OGSPACE:
INPUT: CRR,,, (M), j € [m], b € {0,1}.
QUESTION: Is bif(M mod2™) = b?

In the rest of this section, we sketch the prooEdfPSPACE-hardness of the data com-
plexity of CTL on SOCA. Letl. C {0,1}* be an arbitrary language EXPSPACE.
Then by Theorem 2, there is some regular language {0, 1}* s.t. L is exponentially
LOGSPACE-serializable viak. Hence there is some languages LOGSPACE s.t. for
all z € {0,1}"™ we have

xel = XU (Jc . 02p(n)) e XU (Jc . 12p(n)) €R, Q)

where the bit strings on the right-hand side of the concditamaymbol are enumerated
in lexicographic order. For the rest of this section, let usafn inputzy € {0,1}".
Let N = p(n) andA = (Q,{0,1}, qo, 0, F) be some deterministic finite automaton
with L(A) = R. Let us describe equivalence (1) differently: We hayec L iff the
program in Fig. 1 returnsrue. We are going to mimic the execution of the program by
a fixed CTL formula and a SOCA that can be computed frgnin logarithmic space.
Before we start with the reduction, let us discuss the obetahat arise:

(A) We need some way of storing on the counter.
Of course there are a lot of ways to do this, but sinée€ &: ¢ = o;
we want to access all bits of in the assignment := @€ N;d:=0;
xu (20-binyw (d)), the most natural way is probably to rep? € {0, 1}
resentd in binary. However, for thig® bits are required. while d # 22" loop
More problematically, we need to be able to checki§ b := xu (xo-binyy (d));
equal to22" . This cannot be achieved by a transition in a ¢ := d(g,b);
SOCA that subtract8?™, since the representation of this d :=d +1;
number requires exponentially many bitsyin(B) As in endloop
[12], a solution to obstacle (A) is to stodein Chinese re- returnq € F}
mainder representation with the fiest prime numbers. A
polynomial number of bits (im) suffice to represent eactf19- 1. A program that re-
of the occurring prime numbers, but we need exponentidifnstrue iff zo € L.
many of them. Thus, we cannot equip a polynomial size
SOCA with transitions for each prime number, simply becahsee are too many of
them.(C) The assignmenii := xy (zo - biny~n (d)) implies that we need to simulate
on the counter a logarithmically space bounded DTM for timgleagel/ on an expo-
nentially large input (in2). Speaking in terms of the input size this means that we
need to provide polynomially many bits on the counter thatloa used to describe the
working tape for this DTM. However, we need to provide sometmfly mechanism
for reading the input.



Let us give a high-level description of tEXPSPACE-hardness proof. In the first step,
we carefully design a data structure on the counter and iexibla intuition behind it.
In the second step, we list five queries which we aim at imphaing via fixed CTL
formulas and by SOCA that can be computed from the inguh logarithmic space.

The data structure and how to accessit: Let K = n + 2V + 1 denote the number
of bits that are required to store an input tér Let o = log K denote the number of
bits that we require for storing a pointer to an input §dorand lets be the number of
bits that suffice for storing th&™" prime. Hencex = O(N) and by the Prime Number
Theorem, it follows that = O(log(K log(K))) = O(N). The number and such a
sufficiently large numbef can be computed fromy in logarithmic space.
Let us describe the data structure on the —9itl

counter in our reduction. Assume that the

counter value isv € N. We are inter- Q _
ested only in thel least significant bits of Qbit, =2 .
the binary representation of, where [ is Tl
some number that is exponentially bounded in

@bit,1 = T1 A EF(Tl A —EXT1 A EXTQ)

. b
n, the value of [ will be made clear be- oo = 71 A EF(r1 A ~EXry A =EX7a)

T2

low. AssumeV = bity(v)---bit;_1(v). We

imagine V' to be factorized into blocks ofFig.2. SOCA Spi; and CTL

bits formulas yuity, for checking if
V = IMCJXY ZB (%) bit; (v) = b.

wherel € {0,1}* is a prime number indexy/ € {0,1}7 is intended to represent
the I'" prime numbep;; C' € {0,1}7 is some residue class moduld; J € {0,1}
represents a pointer to some bit Bf X,Y andZ consist of polynomially many bits
(in n) and are intended to represent the working tape of threeespagnded DTMs
that we will comment on later in more detail; afti € {0,1}"+2" with B = zB’
for someB’ € {0, 1}2N. Our intention is thaB represents the current input for, and
in particularB’ represents the counting varialkldrom Fig. 1. Throughout the rest of
this sectionp will denote an arbitrary natural number. MoreoveM, C, J, X, Y, Z
and B will implicitly be coupled withv via the factorizatior(x). Note that all of the
bit strings have polynomial length inexcept forB. Subsequently, we identify each of
the blocks with the natural number they represent. A simpte@bwerful gadget, which
will subsequently be used to check for each {0, 1} if the i bit of the counter i, is
shown in Fig. 2. We have that;i; ; (v) satisfiespyit » iff bit ;(v) = b, for eachb € {0, 1}.
Queriesthat we need toimplement: Next, we list five queries that we aim at answer-
ing by instances of the model checking problem. Each qudrgsed on its preceding
queries.

(Q1) Assuming” < M, doesC = B mod M hold?
(Q2) IsM theI" prime number, i.eM = p;?

(Q3) Whatis biy(B)?

(Q4) Does(B[1,n] - B[n +1,n + 2N]) € U hold?
(Q5) Doesry € L hold?

EXPSPACE-hardness of data complexity of CTL on SOCA will hence follivam the
implementation of query Q5. Let = O(N) denote the absolute value of the leftmost



bit position of B in V. Hence, when the™ bit of 1 is set tol and we subtrac” from
the counter, then the leftmost bit 8fis set to0. Similarly, lety denote the leftmost bit
position of M in V. Q1 can now be realized as follows.

Lemmad4. There is a CTL formulameg S.t. we can compute frony, in logarithmic
space a SOCAmoq and a control stat@moed S.t. (T'(Smod), gmod (V) E ¢mod iff C =
B modM.

Proof. For brevity, we illustrate the special ca6e= 0, i.e. (T'(Smod); gmod (v)) =
Ymod Iff B =0modM. The SOCASq contains four atomic propositionsg, p1, vy, z

and is depicted below. The CTL formula,o.q expresses that we traverse the sequence
of diamonds and thereby repeatedly subtr&ttfrom B. The number of diamonds
equalss, the number of bits of\/. One diamond corresponds to one bit/af. In
case bit3 of M is 1, which we can verify by a transition to the initial controhtt of

the SOCASit .+ (see Fig. 2), we subtragt+” from B, otherwise we do not modify
the counter value. This process is repeated until we reaelatt diamond in which
we consider the first bit ofi/. Finally, the transition fromyyog to the control state
satisfyingz serves for checking iB = 0 by trying to subtrac®”.

0
0 .P1727+ﬁ 0 .01727+ﬁ71 0 .P1 o
Ggmod —7 }‘ . / }‘ ® ¢ o o ° / }‘
0 ° / 0 ° / 0 ° /
Po Po Po
_9
0 0 0 0 0 0
Ze Gbit, u+3 Gbit,u+5—1 Gbit,
Shit,u+ Shit, 451 Shit,.
We putymed = E (/\be{o.,l} Py — EX(pbit’b) U(y A =EXz). O

Let us give some informal ideas on how to implement the qa&2to Q5. We strongly
recommend the reader to consult the technical report [10htterstand the technical
subtleties.

For implementing Q2 we simulate with a SOG#yime SOme polynomially space-
bounded DTM that decides, on the input M), whetherM = p;. We use the bit
string X from (x) for storing the working tape of this DTM on the counter. Thereut
input and working tape symbol and the position of the inpudt aorking tape in the
counter can directly be hard-wired into the control stafeSyane. We can construct a
fixed CTL formula that simulates the computation of this DTM.

Implementing Q3, i.e. deciding th&" bit of B, is more involved. Recall thaB
consists ofi+2" bits and/ consists ofy = O(N) bits. Hence checkingif bjtf B) = 1
cannot be done in a similar fashion as in Fig. 2, sidcis too big. The solution is
the following: By making use oBpime, ONe can initializeld with p; and after that
decide ifC' = B modp; by making use oSmoq and pmeq from Lemma 4. Hence,
we can access bits of the Chinese remainder representdtiBn lcet us assume that



R = CRRi(B) = (bic)1<i<k,0<c<p; 1S the Chinese remainder representation of
B. Observe thafR | is exponential inn andR is not stored anywhere on the counter.
However we can use the bit stringsindC' as pointers to access the bjtc of R. By
Theorem 3, giverR (in our case on-the-fly by the pointefsand C), the bit string.J
andb € {0, 1}, we can decide if bjt(B) = b by simulating a logarithmically space-
bounded DTM on the inputR, J,b) of exponential size. In the block of (x) we
reserve the space that this DTM requires. Q4 can be implexdesimilarly as Q3 by
simulating a logarithmically space-bounded DTM that desii on input B[1,n] -
Bln + 1,n + 2] of exponential size. We usg for simulating the working tape and
the bit sequencé as a pointer to access the bits/i®f

For implementing Q5 we simulate the program from in Fig. 1cé&tlethat our bit
sequences is of lengthn + 2. We initialize the firstn. bits of B with xy. The re-
maining bit sequenc®’ stores the variabld of the program, initialized witl) and
being repeatedly incremented by addizig™™. Thus, checking whed becomes?”
for the first time boils down to checking whe#i overflows for the first time. This can
be checked by initializing’ appropriately and being able to access.IHebit via query
Q3. The states of the automatdncan directly be handled by the control states of the
SOCA. To obtainyy (xo, biny~ (d)), we invoke the query Q4 and store this bit in the
control state of the SOCA. This concludes &XPSPACE-hardness proof.

Theorem 5. The data complexity and the combined complexity of CTL aadnibdal
p-calculus on SOCA iEXPSPACE-complete.

3.3 Hardnessof the data complexity of CTL on POCA

We now show that there exists a fixed CTL formula for which mMatiecking of POCA
is IT9-hard by a reduction from the emptiness problentfar-counter automatavhich
is IT{-complete [19]. Similar to a SOCA, a two-counter automataronsists of a finite
set of control states and transitions between them. Howeeaeh transition of\ acts
on two counters, which it can in- and decrement and testefiar.

The idea of our reduction is as follows: Given a two-countgomatond, we con-
struct a POCAP(z) with one parameter in such a way that the two counters from
A are encoded into the single counter frdt). Given a counter value of P(x),

n modz encodes the value of the first, anddiv « encodes the value of the second
counter ofA. Hence, testing whether the first equaisorresponds to checking whether
n = 0 modzx, while testing whether the second counter eqQalsrresponds to check-
ing whethern > z. Incrementing (resp. decrementing) the first counteAafan be
mimicked by adding (resp. subtracting)whereas on counter two this corresponds to
adding (resp. subtracting). Of course, we need CTL formulas to ensure that we do
not overflow when simulating an increment of the first coulmteA. For instance, if

n = —1 modx and we want to simulate an increment of the first countek @f that
way, we would actually set the first countert@and simultaneously increment the sec-
ond counter. However, ifi is not empty, then: can be instantiated with a large enough
value such that such an overflow does not occur. Conver§élyisiempty then there is
no such instantiation.

Theorem 6. The data and combined complexity of CTL on POCA§scomplete.



4 LTL Moded Checking

Formulas of LTL are given by the following grammar, whereanges ovep:

o = plowleAp|Xe|pUp

The semantics of LTL is given in terms of infinite paths in angition system. Let
T =(S,{S, | p € P},—) be atransition system, = so — s1 — --- aninfinite path
in T"andy an LTL formula, we definéT’, =) |= ¢ by induction on the structure.

(T,m) Ep = 7(0) € Sp,peP (T,m) -y = 7o
(T,m) E g Ags <= Vie{L,2}: (Tm) kg (Tm) EXp < (T,) Eo
(T,7) = o1Upy <= 3 >0:(T,7%) E g andvV0 <i < j: (T,7%) = ¢

LTL MODEL CHECKING ONSOCA

INPUT: SOCAS = (Q, E, A), ¢ € Q,n € Nin binary, an LTL formulap.
QUESTION: Does(T'(S), w) k= ¢ for all infinite pathsr with 7(0) = ¢(n)?

LTL MODEL CHECKING ONPOCA

INPUT: POCAP(X) = (Q,E,)\), q € Q,n € Ninbinary, an LTL formulap.
QUESTION: Does(T'(P?), ) = ¢ forall o : X — N and for all infinite pathg with
m(0) = q(n)?

4.1 Upper Bounds

A standard approach to LTL model checking is the automasadapproach, in which
behaviours ofystemsare modelled as non-deterministic Buichi automata (NBA)eG
an NBA A modelling a system and an LTL formula the idea is to translate into an
NBA A_,, of size2°(¢l) such that the language df x A, is empty iff x holds on all
infinite traces ofA. The concept of Biichi automata can easily be adopted tcettiag
of counter automata. ThenBiichi-SOCAis not empty if there is an infinite path on
which some designated control states occurs infinitelynofidne latter boils down to
just checking for recurrent reachability. Moreover, thecBi-SOCA obtained from the
product of a SOCA and an NBA can be defined and constructed traigtstforward
way. We omit details for brevity.

It was shown in [13] that checking emptinesscis\P-complete for both Bichi-
SOCA and Bichi-POCA, and in [9] that it NL-complete for Buchi-OCA. We use
these results for establishing upper bounds for the LTL rhagecking problems.

For every fixed LTL formulap, and every POCA, the size off x A, is O(|P)),
hence the data complexity of LTL on SOCA and POCA isdhlP. Hardness focoNP
follows from NP-hardness of reachability using a fixed formutdlp for somep € P.

If both P and are part of the input thejP x A, | = |P| - 2°9(¢D), and hence [13]
gives acoNEXP upper bound for the combined complexity of LTL model chegkam
both SOCA and POCA. This upper bound can however be imprave8®CA. Given
a SOCAS, let m be the absolute value of the maximum increment or decrenment o



the transitions irS. Let S’ be the Biichi-SOCA obtained from the prodfick A, by
replacing every transition labeled withwith a sequence of fresh transitions and control
states of length, where, depending on the signgfeach transition is labeled with1
resp.—1. We haveS’| = m - [S| - 290¢D), and hence thBL upper bound for emptiness
of Buchi-OCA from [9] yields aPSPACE upper bound.

Proposition 7. The data complexity of LTL model checking on SOCA and POCA is
coNP-complete, the combined complexity of LTL model checkirs@@A isPSPACE-
complete, and the combined complexity of LTL model checdkim®ODCA is incoNEXP.

4.2 Hardnessof the Combined Complexity of LTL on POCA

We are now going to sketch a proof @dNEXP-hardness of LTL model checking on
POCA via a reduction from the complement of tREXP-completeSuccinct 3-SAT
problem [20]. An input oSuccinct 3-SAT is given by a Boolean circul that encodes
a Boolean formula) in 3-CNF, i.ei) = Ao 5, (61 V 65V £3). Letj € [M] be the
index of a clause encodedlinaryandk € {1,2,3}. Assume that) usesN different
variablesyi, ...,yn. Oninput(;j - k), the output ofC is (i - b), wherei € [N] is the
index of the Boolean variable that appears in lite¥gland wheré) = 0 when/;, is
negative and = 1 whenfi is positive.Succinct 3-SAT is to decide whethep is
satisfiable. Fig. 3 depicts on a high-level the POB#&:) derived fromC that we are
using in our reduction.

As a first step, let us provide a suitable encoding of trutligassents by natural
numbers. The encoding we use has also been employed foligstadplower bounds
for model checking OCA [17]. Recall that; denotes theé™ prime number. Every
natural number. defines a truth assignmeny, : {y1,...,yn} — {0,1} such that
vn(y;) = Liff p; dividesn. By the Prime Number Theoremy = O(N log N) and
henceO(|C|) bits are sufficient to represepy;. Of course, since we need exponentially
many prime numbers they cannot be hard-wired o).

Let us now take a look &(z). It uses one parameteiand employs several gadgets.
Only the gadgetSyivides aNASyot_divides Manipulate the counter. All gadgets are designed
so that they communicate via designated propositionahkes, and not as in Section
3.2 with the help of the counter. Starting ig.., P(z) first loads the value of the
parameter: on the counter. Think of encoding a truth assignment ¢f Next, P(x)
traverses throug§;.., which initially chooses an arbitrary indgxdentifying a clause
of ¢. Every timeS;,. is traversed afterwards, it incrementsnodulo N and hereby
moves on to the next clause. N@®{x:) branches non-deterministically into a gad§et
in order to computé: - b) from C on input(j - 1), (j - 2), resp.(j - 3). The index: is
then used as input to a gad@gtime, which computep;. Then ifb = 0, it is checked
that p; does not divider, and likewise thap; dividesz if b = 1. Those checks need
to modify the counter. After they have finished, we restoeevtluex on the counter
and the process continues with clagse 1 mod N. We can construct an LTL formula
o that ensures that all gadgets work and communicate correcttl prove that) is
satisfiable iff there is an assignmentand an infinite pathr = ¢stat(0) — -+ such
that (T'(P?), w) & . The gadgetSinc, Scircuit @NdS;nc can be realized by simulating
space-bounded Turing machines with SOCA and some apptepfia formulas. Here
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Fig. 3. High-level description of the POCR(z) used for the reduction frorfBuccinct 3-SAT.

it is important that our LTL formula is not fixed. Divisibility resp. non-divisibility is
checked similar as in the CTL case, cf. Lemma 4. We refer thderto the technical
report for further details [10].

Theorem 8. The combined complexity of LTL model checking on POGANEXP-
complete.

5 Conclusion

In this paper, we have settled the computational compleityodel checking CTL,
the modalu-calculus and LTL on SOCA and POCA with respect to data andoioed
complexity. Our proofs for providing lower bounds have dauced some non-trivial
concepts and techniques, which we believe may be of indegmirderest for providing
lower bounds for decision problems in the verification oftiité state systems.

An interesting aspect of future work could be to consisignthesis problemfor
POCA. Given a POCA(X) and a formulap, a natural question to ask is whether there
exists an assignmeatsuch tha{T'(P?), 7) = ¢ on all infinite pathsr starting in some
state of7'(IP?). For CTL resp. the modal-calculus, such a problem is undecidable by
Theorem 6. However for LTL it seems conceivable that thidofmm can be translated
into a sentence of a decidable fragment of Presburger agttbmith divisibility, similar
to those studied in [4].
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