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ABSTRACT. One-counter processes (OCPs) are pushdown processésapei@te only on a unary
stack alphabet. We study the computational complexity ofl@ehachecking computation tree logic
(CTL) over OCPs. A°SPACE upper bound is inherited from the modal mu-calculus forphablem.
First, we analyze the periodic behaviour@fL over OCPs and derive a model checking algorithm
whose running time is exponential only in the number of aalftrcations and a syntactic notion of
the formula that we call leftward until depth. Thus, modetcking fixed OCPs again€fTL formu-

las with a fixed leftward until depth is iR. This generalizes a result of the first author, Mayr, and To
for the expression complexity &TL'’s fragmentEF. Second, we prove that already over some fixed
OCP,CTL model checking i$*SPACE-hard. Third, we show that there already exists a figdd.
formula for which model checking of OCPsRSPACE-hard. For the latter, we employ two results
from complexity theory: (i) Converting a natural number ihi@se remainder presentation into bi-
nary presentation is in logspace-unifoh@! and (ii) PSPACE is AC°-serializable. We demonstrate
that our approach can be used to answer further open gugstion

1. Introduction

Pushdown automata (PDASs) (or recursive state machines) aetural model for sequential
programs with recursive procedure calls, and their vetiibaproblems have been studied ex-
tensively. The complexity of model checking problems forA2Ds quite well understood: The
reachability problem for PDAs can be solved in polynomiaidi[4, 10]. Model checking modal
u-calculus over PDAs was shown to BXPTIME-complete in [29], and the global version of the
model checking problem has been considered in [7, 21, 2 ERPTIME lower bound for model
checking PDAs also holds for the simpler lodid L and its fragmen€&G [28], even for a fixed
formula (data complexity) [5] or a fixed PDA (expression céexfiy). On the other hand, model
checking PDAs against the logit- (another natural fragment &fTL) is PSPACE-complete [28],
and again the lower bound still holds if either the formuldrar PDA is fixed [4]. Model checking
problems for various fragments and extensions of PDL (Fsitipoal Dynamic Logic) over PDAs
were studied in [12].
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2 S. GOLLER AND M. LOHREY

One-counter processes (OCPs) are Minsky counter machiitiegust one counter. They can
also be seen as a special case of PDAs with just one stack gyphima non-removable bottom
symbol which indicates an empty stack (and thus allows tatescounter for zero) and hence con-
stitute a natural and fundamental computational modeletemt years, model checking problems
for OCPs received increasing attention [13, 15, 23, 25]afyeall upper complexity bounds carry
over from PDAs. The question, whether these upper boundbeamatched by lower bounds was
just recently solved for several important logics: Modetdking modalu-calculus over OCPs is
PSPACE-complete. The®SPACE upper bound was shown in [23], and a matching lower bound
can easily be shown by a reduction from emptiness of altexgnanary finite automata, which was
shown to bePSPACE-complete in [18, 19]. This lower bound even holds if eithtee OCP or the
formula is fixed. The situation becomes different for theyfreentEF. In [13], it was shown that
model checkingF over OCPs is in the complexity claB&® (the class of all problems that can be
solved on a deterministic polynomial time machine with asd®e an oracle froNIP). Moreover, if
the input formula is represented succinctly as a directgdi@gyraph, then model checkirif over
OCPs is also hard foPNP. For the standard (and less succinct) tree representaiioiorimulas,
only hardness for the clagd'Pllog] (the class of all problems that can be solved on a deterriinist
polynomial time machine which is allowed to mak&log(n)) many queries to an oracle froNP)
was shown in [13]. In fact, there already exists a fif¢dformula such that model checking this
formula over a given OCP is hard fefNPlegl j.e., the data complexity BNPIosl-hard.

In this paper we consider the model checking problem@di. over OCPs. By the known
upper bound for the modal-calculus [23] this problem belongs RSPACE. First, we analyze
the combinatorics o€TL model checking over OCPs. More precisely, we analyze thiagier
behaviour of the set of natural numbers that satisfy a givEh formula in a given control location
of the OCP (Thm. 4.1). By making use of Thm. 4.1, we can derimeodel checking algorithm
whose running time is exponential only in the number of aartrcations and a syntactic measure
on CTL formulas that we call leftward until depth (Thm. 4.2). As aallary, we obtain that model
checking a fixed OCP againGT L formulas of fixed leftward until depth lies id. This generalizes
a recent result from [13], where it was shown that the expassomplexity of EF over OCPs
lies in P. Next, we focus on lower bounds. We show that model checkifits over OCPs is
PSPACE-complete, even if we fix either the OCP (Thm. 5.3) or @EL formula (Thm. 7.2). The
proof of Thm. 5.3 uses a reduction from QBF. We have to coostaufixed OCP for which we
can construct for a given unary encoded numbé&iTL formulas that express, when interpreted
over our fixed OCP, whether the current counter value is ibigidy 2 and whether the™" bit in
the binary representation of the current counter value igspectively. For the proof of Thm. 7.2
(PSPACE-hardness of data complexity f@TL) we use two techniques from complexity theory,
which to our knowledge have not been applied in the contexedfication so far: (i) the existence
of small depth circuits for converting a number from Chinesmainder representation to binary
representation and (ii) the fact thREPACE-computations are serializable in a certain sense (see
Sec. 6 for details). One of the main obstructions in gettovwger bounds for OCPs is the fact that
OCPs are well suited for testing divisibility propertiestioé counter value and hence can deal with
numbers in Chinese remainder representation, but it isleat bow to deal with numbers in binary
representation. Small depth circuits for converting a nenfilom Chinese remainder representation
to binary representation are the key in order to overconsedbstruction.

We are confident that our new lower bound techniques destabeve can be used for proving
further lower bounds for OCPs. We present two other apjdicatof our technigues in Sec. 8:
(i) We show that model checkingF over OCPs is complete f&\P even if the input formula is
represented by a tree (Thm. 8.1) and thereby solve an opéteprdrom [13]. (i) We improve a
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lower bound on a decision problem for one-counter Markovsiet processes from [6] (Thm. 8.2).
The following table summarizes the picture on the compyegit model checking for PDAs and
OCPs. Our new results are marked with (*).

Logic PDA OCP
modal-calculus EXPTIME-complete| PSPACE-complete
modal-calculus, fixed formula EXPTIME-complete| PSPACE-complete
modalu-calculus, fixed system EXPTIME-complete| PSPACE-complete
CTL, fixed formula EXPTIME-complete| PSPACE-complete (*)
CTL, fixed system EXPTIME-complete| PSPACE-complete (*)
CTL, fixed system, fixed leftward until deptiEXPTIME-complete| in P (*)

EF PSPACE-complete | PNP-complete (¥)
EF, fixed formula PSPACE-complete | PNPllogl_hard, inPNP
EF, fixed system PSPACE-complete |inP

Missing proofs due to space restrictions can be found inuhedrsion of this paper [14].

2. Preliminaries

We denote the naturals By = {0,1,2,...}. Fori,j € Nlet[i,j] ={k e N|i <k < j} and
[5] = [1,4]. In particular[0] = 0. Forn € N andi > 1, let bit;(n) denote the™ least significant
bit of the binary representation ef i.e.,n = 3., 2°~! - bit;(n). For every finite and non-empty
subsetM C N\ {0}, define LCM M) to be theleast common multiplef all numbers inM. It
is known that2* < LCM([k]) < 4* for all & > 9 [20]. As usual, for a possibly infinite alphabet
A, A* (resp. A¥) denotes the set of all finite (resp. infinite) words overLet A> = A* U A¥
andA* = A*\ {e}, wheree is the empty word. The length of a finite wotdis denoted byw|.
For a wordw = ajas---a, € A* (resp. w = ajaz--- € A¥) with a; € A andi € [n] (resp.
i > 1), we denote byw, the i letter a;. A nondeterministic finite automaton (NFA) is a tuple
A =(S5,%,0,s0,5f), whereS is a finite set otates X is afinite alphabets C S x ¥ x S'is the
transition relation sy € S is theinitial state, andS; C S is a set offinal states We assume some
basic knowledge in complexity theory, see e.g. [1] for matails.

3. One-counter processes and computation treelogic

Fix a countable se& of propositions A transition systens a tripleT” = (S, {S, | p € P}, —),
wheresS is the set ofstates — C S x S is the set oftransitionsand.S, C S for all p € P with
S, = 0 for all but finitely manyp € P. We writes; — s instead of(s;, s2) € —. The set of all
finite (resp. infinite) pathsin 7' is path, (T) = {w € ST | Vi € [|7| — 1] : m — mi11} (resp.
path,(T) ={mr € S¥ | Vi > 1:m — m4+1}). Forasubsel C S of states, a (finite or infinite)
pathr is called al/-pathif = € U*°.

A one-counter proces®CP) is a tupled = (Q,{Q, | p € P},d0,0>0), WhereQ is a finite
set of control locations @, C @ for all p € P with @, = 0 for all but finitely manyp € P,
dp € @ x {0,1} x @ is a set ofzero transitionsandd~o C @ x {—1,0,1} x Q is a set ofpositive
transitions Thesizeof the OCPO is |0 = |Q[ + >_,cp |Qp| + [do] +[d>0]. The transition system
defined byO is T(0) = (Q x N,{Q, x N | p € P},—), where(q,n) — (¢’,n + k) if and only
if eithern = 0 and(q, k,¢') € dp, orn > 0 and(q, k,q’) € d-o. A one-counter nefOCN) is an

OCP, whereyy C d¢. For(q, k,q') € 6y U d~o we usually writeg LR q.
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More details orCTL can be found for instance in [2Formulasy of the logicCTL are defined
by the following grammar, wherg € P:

e = pl o ene | IXe | FpUp | FpWUe.
Given a transition systeffi = (S, {S, | p € P}, —) and aCTL formulay, we define the semantics
[¢lr € S by induction on the structure af as follows: [p]r = S, for eachp € P, [-¢]r =
S\[elr. [ A e2dr = [erlr N[w2lr, [BXe]r = {s € S [ 3" € [¢lr : s = '}, [Fp1Upo]r =
{s € §|3r € path (T):m = s,y € [p2]r,Vi € [|7| — 1] : 7 € [e1]r}, [Fp1WUpa]r =
[BerUpa]r U{s € S| Im € path,(T) : m1 = s,Vi > 1:m; € [p1]r}. We also write(T', s) = ¢
(or briefly s |= ¢ if T is clear from the context) for € [¢]r. We introduce the usual abbreviations
1V 2 = (21 A pa), ¥Xp = 23X, FFp = I(p vV p)Up, and3Gyp = IpWU(p A —p) for
somep € P. Formulas of the&CTL-fragmentEF are given by the following grammar, whepes P:
pu=p | | oANe | IXe | IFp. Thesizeof CTL formula is defined as followsp| = 1,
=l = [3Xe| = [l + 1, [e1 Apa| = 1] + 2] + 1, [Fe1Upsa| = [31 WUps| = [@1] + |@2| + 1.

4. CTL on OCPs:. Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity propertyCafL over OCPs, which implies
an upper bound fo€TL on OCPs, see Thm. 4.2. As a corollary, we state that for a fixe&,O
CTL model checking restricted to formulas of fixed leftward Lidépth (see the definition below)
can be done in polynomial time. We define teétward until depthlud of CTL formulas induc-
tively as follows: lud(p) = 0 for p € P, lud(—p) = lud(3Xe) = lud(p), lud(pr A @) =
max{lud(¢1),lud(p2)}, lud(Fp1Ups) = lud(FpiWUps) = max{lud(pi) + 1,lud(p2)}. A
similar definition of until depth can be found in [24], but thehe until depth oHp; U, is 1 plus
the maximum of the until depths @f; andys. Note thatlud(y) < 1 for everyEF formulap.

Letus fixan OCRD = (Q,{Q, | p € P}, do, 6>0) for the rest of this section. L¢f)| = k£ and
defineK = LCM([k]) and K, = K'4(¥) for eachCTL formula.

Theorem 4.1. For all CTL formulasy, all ¢ € Q and alln,n’ > 2-|¢|-k* K, withn = n’ mod K.,

(¢,n) € [e]lr) <= (¢,7) € [¢lro)- (4.1)

Proof sketch.We prove the theorem by induction on the structureofMe only treat the difficult
casep = 1 Uty here. Letl’ = max{2 - |¢;| - k* - Ky, | i € {1,2}}. Let us prove equivalence
(4.1). Note that’{, = LCM{K - K, Ky, } by definition. Let us fix an arbitrary control location
g € Q and naturals, n’ € N such that - || - k? - K, < n < n/ andn = n’ mod K,,. We have
to prove thatq,n) € [¢]r(o) if and only if (¢, n') € [¢]r (). For this, letd = n" — n, which is a
multiple of K,. We only treat the “if"-direction here and recommend thedegao consult [14] for

helpful illustrations. So let us assume tigin’) € [¢]r)- To prove thatq,n) € [¢]r@), we
will use the following claim.

Claim: Assume somdv:]rg)-path (q1,n71) — (q2,m2) — -+ — (q,n) with n; > T for
alli € [lJandn; —n; > k*- K - Ky,. Then there exists f1]r(o)-path from (g1, n1) to
(@, + K - Ky,), whose counter values are all strictly abdVe- K - K, .

The claim tells us that paths that lose height at |@8sti - K, and whose states all have counter
values strictly abov&@ can be flattened (without changing the starting state) byttt - K, .

Proof of the claim. For each counter valuk € {n; | i € [} that appears imr, let u(h) =
min{i € [l] | n; = h} denote the minimal position in whose corresponding state has counter
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valueh. DefineA = k- K;,. We will be interested it - K’ many consecutive intervals (of counter
values) each of sizA. Define the bottond = n; — (k- K) - A. Formally, aninterval is a set
Ii=0b+(i—1)-Ab+i-A]forsomei € [k- K]. Since each interval has size= k- Ky,
we can think of each interval; to consist ofk consecutivesub-intervalsof size K;, each. Note
that each sub-interval has two extremal elements, nansalpfierandlower boundary Thus allk
sub-intervals havé + 1 boundaries in total. Hence, by the pigeonhole principle gfch interval
I;, there exists some; € [k] and two distinct boundaries(i, 1) > ((i,2) of distancec; - Ky,
such that the control location afs earliest state of counter valy¥i, 1) agrees with the control
location of7’s earliest state of counter valyi, 2), i.e., formallyq,si,1)) = qug.2)- Observe
that flattening the path by gluing togetherr’s states at positiop(3(¢, 1)) andu(5(4,2)) (for this,
we addc; - Ky, to each counter value at a position 3(i, 2)) still results in a1 ]r)-path by
induction hypothesis, since we reduced the height by a multiple ofK’;,,. Our overall goal is to
flattens by gluing together states only of certain intervals such weobtain a path whose height
is in total by preciselykK - K, smaller thant’s. Recall that there arg - K many intervals. By
the pigeonhole principle there is somec [k] such thatc; = ¢ for at leastK many intervalsi;.
By gluing together% € N pairs of states of distanee K, each, we reduce’s height by exactly
K. c- Ky, = K- Ky,. This proves the claim.

Let us finish the proof the “if"-direction. Since by assunoptiq, n’) € [¢]r(o), there exists
a finite pathr = (q1,m1) — (g2,m2) — -+ — (@, ), wheren([1,1 — 1] is a[¢1]r(o)-path,
(g,n') = (q1,m1), and wherg(q;, ;) € [¢2]7(0). To prove(q,n) € [¢]r), we will assume that
n; > T for eachj € [l]. The case when; = T for somej < [I|] can be proven similarly. Assume
first that the patfr[1, [ — 1] contains two states whose counter difference is at I€adt - K, + K,
which is (strictly) greater thah?- K - K, . SinceK,, is a multiple ofK - K, by definition, we can

apply the above clalng(— € N many times tor[1,/ — 1]. This reduces the height by . We

repeat this flattening processm[fl [ —1] by heightK, as long as possible, i.e., until any two states
have counter difference smaller theh- K - K, + K. Leto denote they1 | 10)-path starting in
(¢,n’) that we obtain fromr[1,/ — 1] by this process. Thusg; ends in some state, whose counter
value is congruent;_; modulo K, (since we flattened (1, — 1] by a multiple ofK,)). SincekK,

is in turn a multiple ofK’,, we can build a path’ which extends the patt by a single transition
to some state that satisfi@s by induction hypothesis. Moreover, by our flattening precdake
counter difference between any two states’ifs at mostt? - K - Ky, + K, < 2-k? - K,,. Recall
thatT = max{2 - |1;| - k* - Ky, | i € {1,2}}. As

n> 2ol kK, =2 (p|-1+1)-k* K, > T+2 k* K

it follows that the path that results froei by subtracting? from each counter value (this path starts
in (¢,n)) is strictly abovel'. Moreover, sincel is a multiple of K, and K ,, this path witnesses
(g, ) [¢]7(0) by induction hypothesis. [

The following result can be obtained basically by using tlamdard model checking algorithm
for CTL on finite systems (see e.g. [2]) in combination with Thm. 4.1.

Theorem 4.2. For a given one-counter process = (Q,{Q, | p € P}, o, 6>0), a CTL formula
©, a control locationg € Q, andn € N given in binary, one can decidg,n) € [¢]r(o) in time

O(log(n) + Q[ - |p|? - 419MI) - |55 U 650).
As a corollary, we can deduce that for every fixed G@Bnd every fixed: the question if for

a given states and a given CTL formulg with lud(y) < k, we have(T'(0), s) = ¢, isinP. This
generalizes a result from [13], stating that the expressamplexity ofEF over OCPs is irP.
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Do p1

Figure 1: The one-counter n8tfor which CTL model checking i#SPACE-hard

5. Expression complexity for CTL ishard for PSPACE

The goal of this section is to prove that model checking- is PSPACE-hard already over a
fixed OCN. We show this via a reduction from the well-knoR&PACE-complete problem QBF.
Our lower bound proof is separated into three steps. In stepwe define a family af TL formulas
(¢i)i>1 such that over the fixed OCH that is depicted in Fig. 1 we can express (non-)divisibitiyy
2¢. In step two, we define a family & TL formulas(;);>1 such that ovef) we can express if the
i bit in the binary representation of a natural is set.ttn our final step, we give the reduction from
QBF. For step one, we need the following simple fact whichratizrizes divisibility by powers of
two (recall thaffn] = {1,...,n}, in particular[0] = 0):

Vn >0,i>1: 2" dividesn <= (27! dividesn A |{n’ € [n]|2"! dividesn'}|is even

(5.1)
The set of propositions d in Fig. 1 coincides with its control locations. Recall tlias zero
transitions are denoted By andQ’s positive transitions are denoted 8y,. Sincedy C dg, O is
indeed an OCN. Note that bothandt are control locations of). Now we define a family o€TL
formulas(y;);>1 such that for each € N we have: (i)(t,n) = ; if and only if 2¢ dividesn and
(i) (t,n) = ¢, if and only if 2¢ doesnot divide n. On first sight, it might seem superfluous to let
the control locatiort represent divisibility by powers of two and the control Iboa ¢ to represent
non-divisibility by powers of two sinc€TL allows negation. However the fact that we hawdy
onefamily of formulas(y;);>1 to express both divisibility and non-divisibility is a ciattechnical
subtlety that is necessary in order to avoid an exponeribalup in formula size. By making use of
(5.1), we construct the formulas inductively. First, let us define the auxiliary formulasttest V¢
andy, = qo Vg1V g2V q3. Think of ¢, to hold in those control locations that altogether are sigia
in the “diamond” in Fig. 1. We define

p1 = testA3IX (f AEF(f A —=3Xg)) and
p; = testA IX (H(QDQ A EngDifl) U (qO VAN —|E|qu)) fori > 1.

Observe thatp; can only be true either in control locatidror ¢. Note that the formula right to the
until symbol iny; expresses that we are 4 and that the current counter value is zero. Also note
that the formula left to the until symbol requires that holds, i.e., we are always in one of the
four “diamond control locations”. In other words, we decrmrhthe counter by moving along the
diamond control locations (by possibly loopingetand ¢3) and always check iHXyp; ;1 holds,
just until we are ingg and the counter value is zero. Singg ; is only used once irp;, we get
lpi| € O(i). The following lemma states the correctness of the cortsbruc

Lemmab.1l. Letn > 0and: > 1. Then
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e (t,n) |= ¢; if and only if2’ dividesn.
e (t,n) E ; if and only if2* does not divide:.

For expressing if the" bit of a natural is set td, we make use of the following fact:
Vn > 0,i>1:bitj(n) =1 <= |[{n’ € [n] | 2"~ dividesn'}| is odd (5.2)

Let us now define a family of TL formulas(¢;);>1 such that for each € N we have bit(n) = 1
if and only if (£,n) | ;. We setyy = ¢y andy; = ¢t A IX((1 V q2) A w;), wherep; =
(e AIXpi—1) U (go A—3Xq1 ) for eachi > 1. Due to the construction af; and sincey;| € O(i),
we obtain thaty;| € O(i). The following lemma states the correctness of the cortibruc

Lemmab.2. Letn > 0 and leti > 1. Then(¢,n) = v if and only if bit(n) = 1.

Let us sketch the final step of the reduction from QBF. For, fkeisus assume some quantified

Boolean formulacy = Qpzk Qr—12k—1- - Qix1 : B(x1,...,2k), Whereg is a Boolean formula
over variables(zy, ...,z } and@; € {3,V} is a quantifier for each € [k]. Think of each truth
assignment : {z1,...,z;} — {0, 1} to correspond to the natural number) < [0,2*—1], where

bit;(n(9)) = 1 ifand only if ¥(z;) = 1, for eachi € [k]. Let 3 be the CTL formula that is obtained
from 3 by replacing each occurrence ©f by 1;, which corresponds to applying Lemma 5.2. It
remains to describe how we deal with quantification. Thinkhef as to consecutively incrementing
the counter from stat@, 0) as follows. First, setting the variablg, to 1 will correspond to adding
2F=1 to the counter and getting to stgie2*~!). Settingz; to 0 on the other hand will correspond
to adding0 to the counter and hence remaining in st@t®). Next, settingr;_; to 1 corresponds
to adding to the current counter valaé—2, whereas setting;,_; to 0 corresponds to adding,
as expected. These incrementation steps can be achievegtosiformulasy; from Lemma 5.1.
Finally, after setting variable; either to0 or 1, we verify if the CTL formulaﬁ holds. Formally, let
O = ANif Q; = Fand(); = —if Q; = Vforeachi € [k] (recall thatQy, . . . , Q1 are the quantifiers
of our quantified Boolean formula). Let8; = Q1X ((po V p1) O1 3X B) and fori € [2, k]:

0; = QX ((Po V1) Oi 3 ((po VAX(EA@i—1)) U (EA=pi—1 A 91-1)))) -

Then, it can be show that is valid if and only if(z,0) € [0x]7(0)-
Theorem 5.3. CTL model checking of the fixed OQNfrom Fig. 1 isPSPACE-hard.

Note that the constructe@TL formula has leftward until depth that depends on the size of
a. By Thm. 4.2 this cannot be avoided unldds= PSPACE. Observe that in order to express
divisibility by powers of two, oulCTL formulas(y;);>o have linearly growing leftward until depth.

6. Toolsfrom complexity theory

For Sec. 7 and 8 we need some concepts from complexity the®yyPNPlogl we denote
the class of all problems that can be solved on a polynomiaiig bounded deterministic Turing
machines which can have access td\@horacle only logarithmically many times, and BY'P the
corresponding class without the restriction to logaritteily many queries. Let us briefly recall
the definition of the circuit complexity clag$éC®, more details can be found in [26]. We consider
Boolean circuit = C(x1, ..., x,) built up from AND- and OR-gates. Each input gate is labeled
with a variablex; or a negated variablex;. The output gates are linearly ordered. Such a circuit
computes a functiorfic : {0,1}™ — {0, 1}, wherem is the number of output gates, in the obvious
way. Thefan-in of a circuitis the maximal number of incoming wires of a gate in the circlihe
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depth of a circuitis the number of gates along a longest path from an input gate obutput gate. A
logspace-unifornNC!-circuit family is a sequenceéC’, ), >1 of Boolean circuits such that for some
polynomialp(n) and constant: (i) C,, contains at mosp(n) many gates, (ii) the depth af, is
at mostc - log(n), (iii) the fan-in of C), is at most, (iv) for eachm there is at most one circuit in
(Cn)n>1 with exactlym input gates, and (v) there exists a logspace transducecdngputes on
input 1™ a representation (e.g. as a node-labeled graph) of thetcitgu Such a circuit family
computes a partial mapping d0, 1}* in the obvious way (note that we do not require to have for
everyn > 0 a circuit with exactlyn input gates in the family, therefore the computed mappirig is
general only partially defined). In the literature on cit@omplexity one can find more restrictive
notions of uniformity, see e.g. [26], but logspace unifdgrsuffices for our purposes. In fact,
polynomial time uniformity suffices for proving our lowerimads w.r.t. polynomial time reductions.

Form > 1and0 < M < 2™ — 1 let BIN,,(M) = bit,, (M) ---bit;(M) € {0,1}" denote
the m-bit binary representation aof/. Let p; denote the™ prime number. It is well-known that
thei™ prime requiresD(log(4)) bits in its binary representation. For a numbex M < [, pi
we define theChinese remainder representati@RR,,, (M) as the Boolean tupl€RR,,, (M) =
(T3, )igm],0<r<p; With ;. = 1if M modp; = r andz;, = 0 else. By the following theorem, one
can transform a Chinese remainder representation veryeettiz into binary representation.

Theorem 6.1 ([9]). There is a logspace-uniforfdC!-circuit family (B ((%ir)icm),0<r<p; ) )m>1
such that for everyn > 1, B,, hasm output gates and for evey < M < [[;", p; we have that
By (CRR,,(M)) = BIN,,(M mod2™).

By [17], we could replace logspace-uniforC!-circuits in Thm. 6.1 even bPLOGTIME-
uniform TC-circuits. The existence off-uniform NC!-circuit family for converting from Chinese
remainder representation to binary representation waadrshown in [3]. Usually the Chinese
remainder representation of is the tuple(r;);c(,,,), wherer; = M modp;. Since the primes;
will be always given in unary notation, there is no essemiiérence between this representation
and our Chinese remainder representation. The latter is switable for our purpose.

Intuitively, a complexity clas§; is calledC,-serializable (wheré€; is another complexity class)
if every languagd. € C; can be accepted in the following way: There exists a polyabptin) and
aCy-machine (oiC,-circuit family) A such thatr € L is checked ir2?(1*)) many stages, which are
indexed by the strings frorf0, 1}2(=D) In stagey € {0,1}7(*), A gets from the stage indexed by
the lexicographic predecessoroh constant number of bits, . . . , b. and computes from these bits,
the indexy, and the original input new bitsd, . . . , b, which are delivered to the lexicographic next
stage. In [8] it was shown th&SPACE is P-serializable; in [16] this result was sharpened\t -
serializability and henclC!-serializability AC’ is the subclass diC! defined by polynomial-size
constant-depth circuits with unbounded fan-in). It is natted in [16] but easy to see from the
proof thatlogspace-uniformNC! suffices for serializing®SPACE, see [14] for more details. For
our purpose, a slightly different definition &fC!-serializability is useful: A languagé is NC!-
serializable if there exists an NFA over the alphabef0, 1}, a polynomialp(n), and a logspace-
uniform NC!-circuit family (Cn)n>0, whereC,, has exactlyn + p(n) many inputs and one output,
such that for every: € {0,1}" we haver € L if and only if C,, (x, 0P(™) - .. C,, (z, 17(™) € L(A),
where “ - . refers to the lexicographic order dif), 1}?(™). A proof that all languages iIRSPACE
areNC!-serializable in this sense can be found in the appendix4if [1
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7. Data complexity for CTL ishard for PSPACE

In this section, we prove that also the data complexit¢ 8t over OCNs is hard foPSPACE
and thereforePSPACE-complete by the known upper bounds for the madaalculus [23]. Let
us fix the set of proposition® = {«, 3,~} for this section. In the following, w.l.0o.g. we allow
in &y (resp. inds) transitions of the kindg, k,¢’), wherek € N (resp.k € Z) is given in unary
representation with the expected intuitive meaning.

Proposition 7.1. For the fixedEF formulay = (o« — 3IX(5 A EF(=3X~))) the following problem
can be solved with a logspace transducer:
INPUT: Alistpy, ..., pm, of the firstm consecutive (unary encoded) prime numbers and a Boolean
formula F' = F((zi,)ie[m),0<r<p;)
OUTPUT: An OCNO(F') with distinguished control locationa andout, such that for every num-
ber0 < M < [[;Z, p; we have thaf’(CRR,,,(M)) = 1ifand only if there exists go] (o)) -path
from (in, M) to (out, M) in the transition systerd’(O(F")).
Proof. W.1.0.g., negations occur ift only in front of variables. Then additionally, a negatediioia
—x; » can be replaced by the disjuncti§f{z; 1 | 0 < k < p;,r # k}. This can be done in logspace,
since the primegp; are given in unary. Thus, we can assume fialoes not contain negations.
The idea is to traverse the Boolean form#lavith the OCNO(F') in a depth first manner. Each
time a variabler; , is seen, the OCN may also enter another branch, where itiketiewhether the
current counter value is congruenmodulop;. LetO(F) = (Q,{Qa,Q3, Q+},d0,>0), Where
Q = {in(G),out(GQ) | Gisasubformula o'} U {div(p1),...,div(pm), L}, Qo = {in(zir) |
i€ [m],0 <r <p}, Qs = {div(p1),...,div(py)}, and@Q, = {L}. We setin = in(F') and
out = out(F'). Let us now define the transition sétsandd~,. For every subformul&; A G or
G V G of F'we add the following transitions i andd~q:

in(G1 A Ga) % in(G1), out(G1) 2 in(G2), out(Ga) % out(Gy A Ga)
in(G1 V Ga) 2 in(Gy), out(Gy) 2 out(Gy v Gy) forall i € {1,2}

For every variabler; , we add tod, andd( the transitionin(x; ) LR out(zx;,). Moreover, we

add tod~q the transitionsin(x; ;) = div(p;). The transitionin(z; ) 9, div(p,) is also added

to 6. For the control locationsliv(p;) we add tod the transitionsdiv(p;) —= div(p;) and

div(p;) —L 1. This concludes the description of the OCNF’). Correctness of the construction

can be easily checked by induction on the structure of thadita £ [
We are now ready to proieSPACE-hardness of the data complexity.

Theorem 7.2. There exists a fixedTL formula of the formdy;Ug,, whereyp; and o are EF
formulas, for which it iSPSPACE-complete to decidél’(0), (¢,0)) = Jp1Uyp for a given OCN
O and a control locationg of O.

Proof. Let us take an arbitrary languadein PSPACE. Recall from Sec. 6 tha®SPACE is NC!-
serializable [16]. Thus, there exists an NFA= (S, {0,1},d,s0,5) over the alphabef0, 1},
a polynomialp(n), and a logspace-unifortNC'-circuit family (C,,), >0, whereC,, hasn + p(n)
many inputs and one output, such that for every {0, 1}" we have:

v €L <= Cu(a,0P™M). . Oy, 1) € L(A), (7.2)

where “ - - " refers to the lexicographic order dif, 1}7("™). Fix an inputz € {0, 1}". Our reduction
can be split into the following five steps:
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Step 1.Construct in logspace the circuit,. Fix the the firstn inputs of C,, to the bits inz, and
denote the resulting circuit by; it has onlym = p(n) many inputs. Then, (7.1) can be written as
2m—1
rel « [[ CBIN,(M)) € L(A). (7.2)
M=0
Step 2.Compute the firsin consecutive primeg, ..., p,. This is possible in logspace, see e.g.
[9]. Everyp; is bounded polynomially im. Hence, every; can be written down in unary notation.
Note that[ [, p; > 2™ (if m > 1).

Step 3. Compute in logspace the circu? = By, ((%ir)ig[m],0<r<p;) from Thm. 6.1. Thus,B
is a Boolean circuit of fan-in 2 and depti(log(m)) = O(log(n)) with m output gates and
B(CRR,,(M)) = BIN,,(M mod2™) for every0 < M < [, p;.

Step 4. Now we compose the circuit® and C: For everyi € [m], connect thei™ input of
the circuit C(z1,...,z,,) with the i output of the circuitB. The result is a circuit with fan-
in 2 and depthD(log(n)). In logspace, we can unfold this circuit into a Boolean folanl =
F((ir)iejm],0<r<p;)- The resulting formula (or tree) has the same depth as theitit.e., depth
O(log(n)) and every tree node has at most 2 children. He#ftbas polynomial size. For every
0 < M < 2™ we haveF'(CRR,,(M)) = C(BIN,,(M)) and equivalence (7.2) can be written as
2m—1
zeL < [] F(CRRu(M)) € L(A). (7.3)
M=0

Step 5. We now apply our construction from Prop. 7.1 to the formfla More precisely, lelG
be the Boolean formul;a\ie[m} x;r, Wherer; = 2™ modp; for i € [m] (these remainders can be
computed in logspace). For evelnfabeled transition- € § of the NFA A let O(7) be a copy of the
OCNO(F A—G). For everyo-labeled transition € ¢ letO(7) be a copy of the OCID(—F A—G).
In both cases we writ®(7) as(Q(7), {Qa(7), Qs(7), Q+(7)},60(7), 650(7)). Denote within(7)
(resp.out(7)) the control location of this copy that correspondat@resp.out) in O(F'). Hence, for
everyb-labeled transition € § (b € {0,1}) and every0 < M < [, p; there exists o] o(-))-
path (o is from Prop. 7.1) from(in(7), M) to (out(7), M) if and only if F(CRR,,(M)) = b and
M # 2™,

We now define an OCI = (Q, {Qq, @3, @~ }, do, 0>0) as follows: We take the disjoint union
of all the OCNsO(r) for 7 € §. Moreover, every state € S of the NFA A becomes a control
location ofQ, i.e. Q = SUJ,; Q(7) andQ), = U, 5 Qp(7) for eachp € {a,3,7}. We add

to 6o andd~ for everyr = (s,b,t) € ¢ the transitionss N in(7) andout(7) L t. Then, by
Prop. 7.1 and Prop. 7.3 we havec L if and only if there exists dy]rg)-path in7(0) from
(s0,0) to (s,2™) for somes € S;. Also note that there is npp]r(g)-path inT'(O) from (so,0)

to some configurationis, M) with s € S and M > 2™. It remains to add td@) some structure
that enable€) to check that the counter has reached the valueFor this, use again Prop. 7.1 to
construct the OCND(G) (G is from above) and add it disjointly 8. Moreover, add td-, andd

the transitionss 2 in for all s € St, wherein is the in control location of(G). Finally, introduce
a new propositiorp and set), = {out}, whereout is the out control location dd(G). By putting
q = so We obtain:z € L ifand only if (T'(0), (¢,0)) = 3(¢ U p), wherey is from Prop. 7.1. This
concludes the proof of the theorem. m
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By slightly modifying the proof of Thm. 7.2, one can also peawat the fixed CTL formula
can chosen to be of the foraGy, wherey is anEF formula.

8. Two further applications. EF and one-counter Markov decision processes

In this section, we present to further applications of Thri.t6 OCPs. First, we state that the
combined complexity foEF over OCNSs is hard foPNP. For formulas represented succinctly by
directed acyclic graphs this was already shown in [13]. Tdietghere is that we use the standard
tree representation for formulas.

Theorem 8.1. It is PNP-hard (and henc®NP-complete by13]) to check(T(0), (g0, 0)) = ¢ for
given OCNO), stateqy of O, andEF formula p.

The proof of Thm. 8.1 is very similar to the proof of Thm. 7.8t does not use the concept of
serializability. We prove hardness by a reduction from thestjon whether the lexicographically
maximal satisfying assignment of a Boolean formula is eveeminterpreted as a natural number.
This problem isPNP-hard by [27]. At the moment we cannot prove that the data ¢exity of
EF over OCPs is hard foPNP (hardness foPNPl°gl was shown in [13]). Analyzing the proof of
Thm. 8.1 in [14] shows that the main obstacle is the fact tbhaterting from Chinese remainder
representation into binary representation is not possiplaniform AC? circuits (this is provably
the case).

In the rest of the paper, we sketch a second application ofoseer bound technigue based
on Thm. 6.1, see [14] for more details. This application &ns one-counter Markov decision
processesMarkov decision processésIDPs) extend classical Markov chains by allowing so called
nondeterministic verticesn these vertices, no probability distribution on the aing transitions
is specified. The other vertices are call@@babilistic vertices in these vertices a probability
distribution on the outgoing transitions is given. The idgahat in an MDP a player Eve plays
against nature (represented by the probabilistic veitickseach nondeterministic vertex Eve
chooses a probability distribution on the outgoing traosg of v; this choice may depend on the
past of the play (which is a path in the underlying graph egdirv) and is formally represented by
a strategy for Eve. An MDP together with a strategy for Everdefia Markov chain, whose state
space is the unfolding of the graph underlying the MDP. Hee consider infinite MDPs, which
are finitely represented by OCPs; this formalism was intcedun [6] under the namene-counter
Markov decision proces€C-MDP). With a given OC-MDRA and a setR of control locations
of the OCP underlyingAd (a so calledreachability constraint two sets were associated in [6]:
ValOng R) is the set of all vertices of the MDP defined byA such that for every > 0 there
exists a strategy for Eve under which the probability of finally reaching frana control location
in R and at the same time having counter valus at leastl — . OptValOngR) is the set of alll
verticess of the MDP defined by4 for which there exists a specific strategy for Eve under which
this probability isl. It was shown in [6] that for a given OC-MDA, a set of control locationg,
and a vertex of the MDP defined by4, the question it € OptValOn€ R) is PSPACE-hard and
in EXPTIME. The same question for ValOfR) instead of OptValOng?) was shown to be hard
for each level of the Boolean hierarcBH, which is a hierarchy of complexity classes betwégh
andPNPllegl | By applying our lower bound techniques (from Thm. 7.2) we peove the following.

Theorem 8.2. Membership in ValOngr) is PSPACE-hard.

As a byproduct of our proof, we also repro®SPACE-hardness for OptValOn&). It is
open, whether ValOri&) is decidable; the corresponding problem for MDPs definedushdown
processes is undecidable [11].
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