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Abstract. We prove that deciding language equivalence of deterministic real-
time one-counter automatald -complete, in stark contrast to the inclusion prob-
lem which is known to be undecidable. This yields a subclass of deterministic
pushdown automata for which the precise complexity of the equivalentégm

can be determined. Moreover, we show that deciding regulariLisomplete

as well.

1 Introduction

In formal language theory two of the most fundamental denigpiroblems are to decide
whether two languages are equivaldahfuage equivaleng®r whether one language
is a subset of anothelafiguage inclusioh It is well-known that already deciding if a
context-free language is universal is undecidable.

In recent years, subclasses of context-free languageshe@restudied for which
equivalence or even inclusion becomes decidable.

The most prominent such subclass is the class of determinisintext-free
languages (however inclusion remains undecidable). A rgtbreaking result by
Sénizergues states the decidability of language equivalehdeterministic pushdown
automata (DPDA)20], see also [21]. In 2002 Stirling showed that DPDA larggia
equivalence is in fact primitive recursive [23]. Probablyedo its intricacy this funda-
mental problem has not attracted too much research in thégragears. We emphasize
that for DPDA language equivalence there is still a remdgkabge complexity gap
ranging from a primitive recursive upper bound?dardness (which straightforwardly
follows from P-hardness of the emptiness problem). To the best of the eithmowl-
edge, the same phenomenon holds if the DPDA are restricteeremal-time[18], i.e.
e-transitions are not present. However, for finite-turn DP®&oNP upper bound is
known [22]. Forsimple DPDA(which are single state and real-time DPDA) language
equivalence is decidable in polynomial time [9], whereaglaage inclusion is still un-
decidable [6]. Fodeterministic one-counter automata (DOChich are DPDA over
a singleton stack alphabet plus a bottom stack symbol, Eggyaquivalence was shown
decidable in tim@®(vrlosn) [24], By a simple analysis of the proof in [24]RSPACE
upper bound can be derived for this problem.

*'S. Bohm has been supported by the Czech Ministry of Education, projectM0567 and
GACR P202/11/0340.



The goal of this paper is to make a step towards understar{dirsgpecial case
of) of the equivalence problem of DPDA better. We analyze ratastic restriction of
DPDA, namelydeterministic real-time one-counter automata (ROG#ich are real-
time DOCA. ROCA satisfy the following points: (i) the autotoa model is simple, (ii)
it is powerful enough to capture relevant non-regular laggs such as e.g. the set of
well-matched parenthesis ¢a"b™ | n > 0}, (iii) its language is not defined modulo
some predetermined stack behavior of the automata (i.g.iaghe case for visibly
pushdown automata [1] or more general approaches as in]j4ahd (iv) tight com-
plexity bounds can be obtained for the equivalence probkdthough points (i) and
(i) have a subjective touch, the authors are not aware ofsaibglass of the context-
free languages that satisfy all of the four mentioned poWs remark that for ROCA
language inclusion remains undecidable.

Contributions. The main result of this paper is that language equivalen&Os A
is NL-complete, hence closing the gap frdASPACE [24] (which holds even for
DOCA) to NL (hardness foNL is inherited from the emptiness problem for determin-
istic finite automata). As a second result we prove that degicegularity of ROCA,
i.e. deciding if the language of a given ROCA is regulaf\lscomplete as well. The
previously best known upper bound for this problem (as foildXpis a time bound of
20(vVnlogn) 124] (from which one can also deriveRSPACE upper bound).

Used techniquesFor our NL upper bound for language equivalence of ROCA,
we prove that if two ROCA are inequivalent, then they canaalyebe distinguished
by a word of polynomial length. To show this, we use an esshbli approach that
can be summarized as theéit techniquéthat has already been used in [14,12, 11, 3]
in the context of (bi)simulation equivalence checking oéaounter automata. More
specifically, we use an approach from [11, 3] that can be ftatad as follows: There
is a small setNC of incompatible configurationahich two configurations necessarily
have to have the same shortest distance to provided thewmrgedge equivalent —
moreover, in case two configurations both have the same filstance tdNC, they
must either both have small counter values or they lie in drpplynomially many so
calledbelts To prove the existence of polynomially long distinguighimords, in case
two ROCA are not language equivalent, we carefully inveddghow paths through
such belts can look like.

Related work. Deterministic one-counter automata (DOCA) were introdiubg
Valiant and Paterson in [24], where the above-mentionee tipper bound for lan-
guage equivalence was proven. Polynomial time algorithom$ainguage equivalence
and inclusion for strict subclasses of ROCA were providef¥ii]. In [2, 5] polyno-
mial time learning algorithms were presented for ROCA. Sation and bisimulation
problems on one-counter automata were studied in [3, 124115, 13].

Organization. Our paper is organized as follows. Section 2 contains diefirst
Our main result is stated in Section 3 and proven in SectidRedularity of ROCA is
provenNL-complete in Section 5. We conclude in Section 6.

Remark In [2,19] it is stated that language equivalence of DOCA bardecided in
polynomial time. Unfortunately, the proofs provided in I8] were not exact enough
to be verified and raise several questions which are unars\Wtedate.



2 Definitions

By Z we denote the integers and By= {0, 1, ...} we denote the naturals. For two
integersi, j € Z we define the interval, j] = {i,i + 1,...,j} and[j] = [1,j]. The
signfunction sgn: N — {0, 1} is defined as sgm) = 1 if n > 0 and sgiin) = 0 if
n = 0, for eachn € N. For a wordw over a finite alphabel’ we denote byw| the
lengthof w. By £ we denote thempty word By X* we denote the set of finite words
over X, by Xt = X*\ {e} the set ofnon-empty wordsand for eaclt > 0 we define
ryet={we X :|wl <}

A deterministic and complete transition systéma tuple7 = (S, X, {-=| a €
X}, F), where S is a set ofstates X' is a finite alphabet for eacha € X we
have that-+C S x S is a set of transitions, where for eaghe S there is pre-
cisely onet € S such thats — ¢, andF C S is a set offinal states We ex-
tend - to wordsw € X* inductively as expected;—= {(s,s) | s € S} and
Hh—{(s,t) | Ju € S : s 5 u - t}, wherew € X* anda € X. We also write
— forJ, .5 —— For each subséf C S we writes - U (resp.s —* U) if s = u
(resp.s —* u) for someu € U. For each state € S we define thdanguage up to
length? of s as Ly(s) = {w € X< | s % t,t € F} and thelanguageof s as
L(s) = Upen Le(s). We write s =, t wheneverL,(s) = L,(t) ands = t whenever
L(s) = L(t). So note that we have=,, ¢ if and only if eithers,t € F ors,t ¢ F. We
call awordw € X* a(distinguishing) witnes®r statess andt if s — s’ andt — ¢/
with s’ #Z¢ t’. A mininal witnesss a witness of minimal length among all witnesses.
A deterministic real-time one-counter automaton (ROCK) a tuple A =
(@, X,0,q0, F), where @ is a finite set ofcontrol states ' is a finite alphabet
0 Q x X x{0,1} - @ x {-1,0,1} is a transition functionthat satisfies
0(Q x X x {0}) € @ x {0,1} (i.e. no decrement is allowed when the counter
zero),qo € @ is aninitial control state F' C @ is a set offinal control stateslf the
initial stateq, of A is not relevant, we just writel = (Q, X, J, F'). A configuration
of Ais apair(¢q,n) € Q x N that we also abbreviate l(n). Each ROCAA defines
a deterministic transition systeffi(A) = (Q x N, ¥, {-%| a € X'}, F x N), where
q(n) % ¢'(n + j) whenevers(q, a,sgnn)) = (¢',j). We defineL(A) = L(qo(0)).
In this paper, we are mainly interested in the following d&i problem.

LANGUAGE EQUIVALENCE OFROCA

INPUT: Two ROCA A and.A’.
QUESTION: L(A) = L(A)?

Interestingly, inclusion between ROCA is undecidableiarfgland Paterson were al-
ready aware of this without providing a proof [24].

Proposition 1 (Simple consequence of [16]fGiven two ROCAA and A’, deciding
whetherL(A4) C L(A’) holds, is undecidable.

It is worth noting that it is also a consequence of [16] thaiglaage equivalence of
nondeterministi¢real-time) one-counter automata is undecidable.

S



3 NL-completeness of equivalence of ROCA

Instead of considering language equivalencéwaf ROCA, we can simply take their
disjoint union and ask whether two configurations of it arglaage equivalent. There-
fore let us fix for the rest of this and the next section some ROC= (Q, X, 6, F)
and two control stategit, ginit € @ for which we wish to decide ibinit (0) = ginit (0).

Lemma 2. We havepinit(0) = g¢init(0) if and only if pinit(0) =¢ qinit(0), where? is
polynomially bounded ifQ)|.

In Section 4 we prove Lemma 2. We now use it to defilecompleteness of lan-
guage equivalence of ROCA.

Theorem 3. Language equivalence of ROCAN&-complete.

Proof. The NL lower bound already holds for the emptiness problem forrdetes-
tic finite automata. For the upper bound, we apply Lemma 2 #oré $n logarithmic
space a pair of configurations (the two counter values aredta binary) for which
we check inequivalence in an on-the-fly fashion: We repéatpeess a symbal € X
and update the pair of configurations by applying the trarsitunction on both of
them synchronously. If the current pair is neg-related, then the initial pair of con-
figurations is inequivalent and if such a guessing is notiptesthen the initial pair of
configurations has to be equivalent by Lemma 2. Hence inatprige iSNL. SinceNL
is closed under complement [10] the theorem follows. a0

4 Polynomially long distinguishing witnesses suffice

Before we  prove
Lemma 2, we introduce
some notions that
allow us to get a better
visual intuition of what
minimal distinguishing
witnesses can look like.

For the rest of
the paper, it will ‘
sometimes be more — < |
convenient to identify inttal spage<
each pair of configura-
tions (p(m),q(n)) by
the point(m,n, (p, q))
in the 3D spac&N x N x (@ x @), where the first two dimensions represent the two
counter values and the third dimensiQnx @) corresponds to the pair of control states.
We will partition the 3D space into anitial space belt spaceandbackground space
as exemplarily depicted in Figure 1. The size of the initie and the thickness and
the number of belts will be polynomially bounded|®|.

(‘Ik‘»- fIk)

%))

Fig. 1. The 3D space N



We remark that thbelt techniquén the context of one-counter automata has already
successfully been used in [14, 12, 11, 3]. Moreover, we rkrieat our concrete way of
partitioning the 3D space was already present in [11, 3].

To each pair of configuration®(m), ¢(n)) and each wordv = a1 ---ay € X*
we can assign a unique sequefieenp(p(m), ¢(n), w) = o - - - m, of 3D points that
we call thecomputationformally 7o = (m, n, (p, ¢)) and ifm, = (m;, n;, (ps, q;)) for
eachi € [0, ], then in the transition systeffi(.A) we havep; 1 (m;_;) — p;(m;) and
gi—1(ni_1) =5 qi(n;) for eachi € [1,¢]. HenceComp(p(m), ¢(n), w) can be seen as
a path through the 3D space. Témunter effect of is defined agm, — mg, ng—ng) €
Z x 7. A factorof 7 is a sequence;m;;1 - - - m; for some0 < i < j < /.

The overall proof strategy for Lemma 2 will be to show that éwery minimal
(distinguishing) witnessv for pinit(0) and ginit(0) the pathComp(pinit(0), ginit (0), w)
has the following property: It can stay in the initial spaitegan be inside each belt
space but only polynomially many steps consecutively, beedt is in the background
space it terminates surely after polynomially many stefss implies that the overall
length of Comp(pinit (0), ginit (0), w) is polynomially bounded.

In Section 4.1 we (re-)investigate an importantldkt of configurations and discuss
in Section 4.2 that two configurations that have the samefgfibrtest distance t&lC
necessarily must lie in the initial space or in the belt spat&ection 4.3 we finally
prove that any minimal withess has the above mentioned l@havhe 3D space, thus
implying Lemma 2. For the rest of this section, ket |Q| denote the number of control
states of the ROCA that we fixed for this section.

4.1 The underlying DFA and incompatible configurations

We start with the observation what happens in the transstystem7 (A) if the counter
value is very big: It behaves for a long time just like a detaistic finite automaton
(DFA). We will call this DFA theunderlying DFAof A. We can partition the set of
configurations of4 into two sets: Those configurations that are not equivaleratit
states of the underlying finite system up to words of lengtmastk and the rest. By
analyzing the reachability to the former set, we establghgartition of the 3D space
in the next section.

We remark that below the notiamderlying DFA the seitNC with its useful prop-
erty stated in Lemma 4 and the distance funct@n were already present in [11, 3].

Theunderlying DFAof Ais F = (Q, ¥,{-%| a € ¥}, F), whereq - ¢’ if and
onlyif §(¢q,a,1) € {¢'} x {-1,0,1}.

Observe that on the one hand we wiil¢o denote the set of control states4find
on the other hand we denote Bythe states of the DFAF. Recall thatt = |Q|. For
eachg € @ we write L, (g) to denote the language &f up to length at most in case
q is the initial state. Also note that ih we have that, coincides withey_1.

Define the setNC as those configurations Gf(.A) that are incompatible (ndt-
equivalent) taall states inF, formally

INC = {p(m)eQxN|VYqgeQ:Li(p(m)) # Li(q)}

Remark 4.If p(m) € INC, thenm < k.



The main motivation to study the s&C is due to the following lemma.

Lemma 5. Assumep(m) 4—=" INC, andq(n) 4= INC. Thenp(m) = ¢(n) if and
only if p(m) =g q(n).

Proof. The “only if”-direction is trivial. For the “if"-direction assume by contradiction
p(m) # q(n) butp(m) =, ¢(n). Let£ be minimal such that(m) #, ¢(n). Note that
¢ > k. Thus, there is some worde X~ with p(m) — p/(m’) andg(n) - ¢'(n")
wherep’ (m') £ ¢'(n') butp’(m’) =,_1 ¢'(n’). Since by assumptiopl (m’), ¢’ (n') &
INC, there ares, ¢ € @ such thats =, p'(m’) andt =, ¢'(n’) and hences =,_; t.
Recall that inF we have thats,,_; coincides with=, and hences =, t. Altogether
we obtainp’(m') =5, s =, t =¢ ¢’ (n’), contradicting’ (m') . ¢'(n’). O

Next, let us define the distance to the B¢E for each configuratiop(m). We define
dist(p(m)) = min{|w| :p(m) 2 INC}.

By convention we puinin() = w. Note thatp(m) = q(n) implies dist(p(m)) =
dist(g(n)).

4.2 Partitioning the 3D space into initial space, belt spacand background space

Let us formally define belts, see also [14,12,11, 3]. ket > 1 be relatively prime.
Thebelt of thicknesd and slope% consists of those paifsn,n) € N x N that satisfy
|ao-m — - n| < d. An example of a belt is depicted in Figure 2.

Similarly as in [24] we say that two integens andn
are(v, d)-rationally relatedif there aren, 5 € [1,~] that
are relatively prime such thatn, n) is inside the belt of
thicknessi and of slope%.

We callw = a;---a, € AT (n > 1) asimple cy-
cle from p(m) if the corresponding unique computation
po(mo) = pr(mi) -+ =% pu(my) (i.e.po(mo) =
p(m)) satisfiespy = p,, andp; # p; forall i, j € [1,n] e
with i #£ j. In caseng > n,, we callng —n,, thecounter Fig. 2. A belt
lossof w from p(m).

The next lemma from [3] states that minimal words from confgions tolNC can
be chosen in a certain normal form: One first executes a poliaity long prefix, then
repeatedly some most effective simple cycle (i.e. a simpdecwhere the quotient of
counter loss and length is maximal), and finally some polyiatiynong suffix.

*

Lemma 6 (Lemma 10 in [3]).There is some polynomigbly, such that ifp(m) —
INC then already for some word = u; (us)"us (with 7 > 0) we havep(m) — INC,
where (i) |u| = dist(p(m)), (i) |uruz| < polyy(k), and (iii) juz| < k, and (iv) either
us = € Or ug is a simple cycle of counter loss frd k].

The following lemma from [3] allows us to partition the 3D spa



Lemma 7 (Points 3. and 4. of Lemma 11 in [3])There are polynomialgoly, and
poly, s.t. ifmax{m,n} > poly,(k) anddist(p(m)) = dist(¢(n)) < w, then(m,n)

(1) lies in a unique belt of thicknessly, (k) and slope, wherea, § € 1, k?] and
(2) is not neighbor to any pointm’, n’) inside a different belt of thicknegly, (k)
and slopeg; with o/, 8 € [1, k?], i.e.min{|m — m/|, |n — n'|} > 2.

We now partitionN x N x (@ x Q) into the following three subspaces, cf. Figure 1:

— initial space All points (m, n, (p, ¢)) such thatn,n < poly, (k).

— belt space All points (m,n, (p,q)) outside the initial space such that andn
are(k?, poly, (k))-rationally related: By Lemma 7 the belt in whi¢h, n) lies is
uniquely determined.

— background spacéAll remaining points.

4.3 Bounding the minimal witness

In this section we demonstrate the core of the proof of Lemnaa® minimal witness
w for {pinit (0), ginit (0)) is polynomially bounded ifk. For the rest of this section we will
assume thatinit (0) Z ginit (0) and thatw is a minimal witness for them.

Recall thatt = |Q|. Our first lemma tells us once the minimal witness enters the
background space at some point, n, (p, ¢)) then its remaining suffix is bounded by
k- (max{m,n} 4+ 1) 4 polyy (k).

Lemma 8. For each pointm, n, (p, ¢)) in the background space we hawven) = ¢(n)
if and only ifp(m) =¢ q(n), wherel < k - (max{m,n} + 1) + polyy (k).

Proof. The “only if"-direction is trivial. For the “if"-direction assumep(m) #
q(n). Since(m,n, (p,q)) is in the background space we cannot hdig(p(m)) =
dist(¢(n)) < w by Point (1) of Lemma 7. In caséist(p(n)) = dist(¢g(n)) = w, then
already for¢ = k we havep(m) #, ¢(n) by Lemma 5. So it remains to consider the
casedist(p(m)) < dist(g(n)) without loss of generality, in particulalist(p(m)) < w.
Let u be a minimal word such that(m) — p'(m’) for somep’(m’) € INC, note
that if ¢(n) — ¢/(n’), thenp’(m') #,. ¢’(n’). By applying Lemma 6, we can choose
u = uy (uz)"ugz for somer > 0 such that (i)ju| = dist(p(m)), (i) |uius| < poly,(k),
(iii) |ue| < k and (iv) eitherus = € or us is a simple cycle of counter loss frofh, k.
This implies that already faf = |u|+ & < k-m+poly, (k) +k we havep(m) #; q(n).

O

With this lemma one now observes that in c&zenp(pinit(0), ginit (0), w) enters
the background space after polynomially many steps, therwtiole computation is
polynomially bounded (the two counters are initializedhwero and by a polynomially
bounded computation we can only obtain polynomially largenter values).

Thus, it suffices to focus on the longest prefix; of w such that
Comp(pinit(0), ginit (0), w1 ) enters the background space for at most one point (i.e. if
at all, then the last one). ThuSomp(pinit(0), ginit (0), w1 ) entirely stays inside the ini-
tial space or the belt space (except for the last point pydsHor the rest of this section
will show that the length ofv; is polynomially bounded ik.



First observe that if Comp(pinit(0), ginit(0),w1) does not leave the ini-
tial space, then|w;| is trivially polynomially bounded since the size of
the initial space is polynomially bounded by definition. Sor fthe rest
of this section assume tha€omp(p(0),¢(0),w;) enters at least one belt.

In the following, whenever we talk about a
) belt we mean its pointsutsidethe 2D projection
N : of the initial space. Recall that we made the ini-
tial space sufficiently large such that there are no
intersections between belts and one cannot switch
from one belt to another in one step (recall Point
(2) of Lemma 7). Let us fix a computation A
belt visit(with respect to some beR) is a maxi-
mal factor ofr whose points are all entirely iB.
Itis clear thailComp(pinit (0), ginit (0), w1 ) can con-
tain at most polynomially many belt visits. The
/ following cases for belt visits can now be distin-
e guished (a 2D projection of these cases is depicted
in Figure 3):
Fig. 3. Possible belt visits N Case A:The initial space is visited immedi-
ately after the belt visit.
— Case B:The belt visit ends in the belt.
— Case C:The background space is visited im-
mediately after the belt visit.

palyq (k)

poly (k)

The goal of this section is to prove the following lemma.
Lemma 9. Every belt visit oComp(pinit (0), ginit (0), w1 ) is polynomially bounded ik.

First, we need some more notation. Let3 € [1, k%] be relatively prime. We as-
sumea > f3, i.e.% > 1. The case when < 3 can be proven analogously.

Points(p(m), ¢(n)) and (p'(m’), ¢’ (n')) are%-related if p=1yp,q=¢,anda-
m—fB-n=«a-m — -n'. Roughly speaking, they arg-related if their control
states coincide and they lie on a line with slopeAn -repetitionis a computation
w7y - - - ¢ Such thatry and «, are $-related. Figure 4 shows an example of ?n
repetition that lies inside some belt (these are%hsepetitions we will be interested
in).

Before we handle the casés B, andC, let us fix a beltB with slope%. We will
make use of the following claim.
Claim*: There is a polynomialpoly; such that for each sequence of points
<p0(m,0), qo(n0)> s (ph(mh),qh(nh» in B with h = p0|y3(k‘) andm,» =m;_1+1
for eachi € [h], there are two indice8 < i < i’ < h such that(p;(m;), ¢;(n;)) and
(pir(my), qir (n;)) are g-related.

Proof. Defined; = o - m; — - n; for eachj € [0, h]. Since the thickness dB is
poly, (k), there are at most polynomially many different valuesdarHence (for suf-
ficiently largeh) by the pigeonhole principle we can find two poiritg(m;), ¢;(m;))
and <p¢/ (mi/), qi (TLZ/)> such tha[vi = Diry @i = Qi andd; = d;. O



Let us now analyze the possible belt visit cagesB, andC. Note that caseB
andC can occur only in the last belt visit @omp(pinit (0), ginit (0), w1 ). For the rest of
this section let us fix somB-belt visitm = momy - - - 7. of Comp(pinit(0), ginit (0), w1 ),
wherer; = (p;(m;), ¢;(n;)) for eachi € [0, z].

Case A: The intuition behind this caseis
the following: Consider a long belt visit
returning to the initial space. Then we
can find twog3 -repetitions that are factors
of 7, one going up and one going down
with inverse counter effects. We can cut
them out and obtain a shorter computa- <
tion. AN
Let us assume that the lengthofis
sufficiently large such that there is some
point 7, on 7 for the following argu- Fig. 4. &-repetition inside a belt
ments to work. Define for each suitable
m €N

L(m) =max{i | m =my,i €[0,h]} and R(m) = min{i | m = m;,i € [h, z]}.

Recall thatpoly, (k) was the height and width of the initial space. By a similareig-
hole argument as the proof of Claim* there &feand.J (sincemy, is sufficiently large)
such that (i)poly,y (k) < H < J < my, (ii) Points7,. and . are%-related where

¢ = L(H) andc’ = L(J) and (iii) Pointsty andr, are §-related wherel = R(H)
andd’ = R(J). Note that the pair of counter effects from to =, and fromn,

to 74 add up to(0,0) componentwise. One can now split up the computatianto

o 5w 2 1o 22 me - 1g —2 .. Note that by construction we have
m; > J for eachi € [¢/,d']. Sincea > [ we can safely cut out the computations
7. 2 7y andmy —% 74 and obtain the computation, — T — Tq —> .. In
Comp(pinit(0), ginit (0), w1 ) we can replace by this computation and can hence obtain
a shorter witness. However, this contradicts minimalityvof

Case B: Let us assume that the belt visit ends in the belt. Since weamsidering
a computation of a witness we haye(m.) %o ¢.(n,) for somem_,n., > 1. Thus,
p.(m) #g q-(n) for eachm,n > 1. Let us assume stays in the belt sufficiently long
for the following argument to work. By the pigeonhole priplei there aré andj with
0<i<j<zandj—i < k?suchthap; = p; andg; = g;. We can assume that
ms, ni, m;, andn; are sufficiently large that we can cut out the computatiomvben
m; and; without reaching zero in the rest of the computation. We iobgashorter
computation ending in a point with pair of control states, ¢.), hence contradicting
minimality of w.

Case C: Let us assume that the first point after executinies in the background
space, say in some poitfi(m), g(n)). In other wordsComp (pinit (0), ginit (0), w1 ) ends
in (p(m), g(n)) andm is the last belt visit ofomp(pinit (0), ginit (0), w1 ).



First let us consider the case when there is a facter thfat goes “leftward” (and
hence necessarily “downward”) in the belt for too long. Fallsnwe mean that there
is some sufficiently large polynomigbly, such thatr contains a factor whose counter
effect(dy, d2) satisfiesl; < —poly, (k) ords < —poly, (k) and the following argument
can be realized: There is some paifptwhose counter values are both sufficiently large
to which we can apply the same arguments as in Case A and thaim @bshorter
computation, contradicting minimality @#.

Thus, we can assume that for every factorrofvith the counter effectd;, ds)
we haved;,ds > —poly, (k). One can now prove the existence of some polynomial
poly; (k) for the following arguments to work. In cage < poly;(k), thenn is polyno-
mially bounded and henceis polynomially bounded.

In casem > poly;(k), we do not directly contradict minimality ofy but we
show the existence of some polynomially bounded compurtatiathat distinguishes
pinit(0) andginit (0). We distinguish the following subcase3i: dist(p(m)) < w, C2:
dist(¢(n)) < w andC3: dist(p(m)) = dist(¢(n)) = w.

C1: We note that from{p(m), g(n)) we do not care how exactly looks like. However,
we will prove that one can obtain such a polynomially bound€lly repeatedly cutting
out (polynomially Iong)%-repetitions fromr with the invariant that after each cutting-
out the resulting computation can be extended in one stepaclkground point whose
first configuratiorstill has finite distance ttNC.!

By assumptiontdist(p(7)) < w, so letu be a minimal word such thai(m) — INC.
By Lemma 6 and sincé: is sufficiently large, we can chooseasu = uq (ug)"us for
somer > 0, where|ujus| < poly,(k), |ue| < k, andus is a simple cycle of counter

uy(u2)" T ug

lossd € [1, k]. This impliesp(m — jd) ————— INC for eachj € [r].

DefineA(m) = max{i | m; = m,i € [0, z|} for eachm € [poly,(k) + 1, m — 1].
We note that\(m + 1) — A(m) is polynomially bounded for eacm,m + 1 €
[poly, (k) + 1,m — 1] since the negative counter effect of each factorrds poly-
nomially bounded by assumption. Singe assumed to be sufficiently large we can
apply Claim* on polynomially many disjoint factors (each lehgth poly;(k)) of
© = Tx(poly,(k)+1) " Ta(m—1) and find an%—repetition on each such factor. Each of
these disjoint factors of lengtoly (k) of ¢ corresponds to a factor afthat also has
only polynomial length, and so do thg-repetitions of these factors. Among thebe
repetitions (interpreted as factorsf we can pick out/ all having the same counter
effect, say(f, ¢); in particular§ = %. When cutting out precisely thegdactors from
Comp(pinit(0), ginit (0), w) it enters the background space at pdjitn—df), g(n—dg))

Ul (’ltz )"'7ju3

for the first time. Byp(m — jd) ————— INC for eachj € [r] we have that
p(m — df) can reacHNC. We can apply this cutting-out process repeatedly until the
first point that enters the background space, &iyn — A),q(n — A’)), satisfies

m — A < polys (k).

C2: This case is symmetric to case C1.

1 We note that we have to require that after the cutting-out the first coafigarof the earliest
point that is in the background spaewriststill have finite distance t&NC, for otherwise both
configurations could have infinite distancelC and could be language equivalent.
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C3: Sincedist(p(m)) = dist(g(n)) = w andp(m) # ¢q(n) we know from Lemma
5 that already some € Y= distinguisheg(m) andg(7). So as in Case B, if is
sufficiently long inside the belt, we can cut out a factor gfeated control state pairs
and obtain a shorter witness fagi: (0) andginit (0), thus contradicting minimality of.

5 Regularity is NL-complete

Theorem 10. Regularity of ROCA, i.e. given a ROCAdeciding ifL(.A) is regular, is
NL-complete.

Proof. For theupper boundlet us fix a ROCAA = (Q, X, §, qo, F) with k = |Q|.
Recall the definition of the séflC and for each configuratign(m) its shortest distance
dist(p(m)) to INC. We make use of the following characterizations, in analmg)].
The following statements are equivalent: {1y, (0)) is notregular, (2) for alld € N
there is some configuratiofin) with ¢o(0) —* ¢(n) —* INCandd < dist(g(n)) <
w, (3) there exists somge @ such thay(0) —* ¢(2k) —* INC.

For anNL upper bound note that, given a configuratign) wheren is in unary,
deciding ifq(n) € INC can be done ifNL, sinceg(n) € INCif and only if for allr € @
there is somev,. € X =* that distinguisheg(n) and the state of .A’s underlying DFA.
Second, deciding condition (3) is ML as well, since the length of such a witnessing
path is polynomially bounded. Hence deciding regularitydds in NL.

For thelower bound we give a logspace reduction from the emptiness problem
for DFA. One can compute in logspace from a given DFAa ROCA A such that
L(A) = {a"$w$b™ | w € L(F)}. HenceL(.A) is regular (in particular empty) if and
only if L(F) = 0. 0

6 Conclusion

In this paper we have shown that language equivalence anthrigg of ROCA isNL-
complete. Using the idea of considering the reachabiléyustof configurations tiNC,

we can extend our result to prove that iNlk-complete to decide language equivalence
of a ROCA and a simple DOCA or to decide regularity of a simp@@A. A simple
DOCAIis a ROCA that allows spontaneous counter resetagves) fromp(m) to ¢(0)

for some control state but necessariljor all m > 1: In such configurationg(m) with

m > 1 one can only reset the counter and not read any symbols. Veetmett simple
DOCA and DOCA are equi-expressive but DOCA are exponewntiatire succinct. The
precise complexity of equivalence of DOCA is left for futwerk.
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