
Language equivalence of deterministic real-time
one-counter automata isNL-complete

Stanislav B̈ohm1⋆ and Stefan G̈oller2

1 Technical University of Ostrava, Department of Computer Science, Czech Republic
2 Universiẗat Bremen, Institut f̈ur Informatik, Germany

Abstract. We prove that deciding language equivalence of deterministic real-
time one-counter automata isNL-complete, in stark contrast to the inclusion prob-
lem which is known to be undecidable. This yields a subclass of deterministic
pushdown automata for which the precise complexity of the equivalence problem
can be determined. Moreover, we show that deciding regularity isNL-complete
as well.

1 Introduction

In formal language theory two of the most fundamental decision problems are to decide
whether two languages are equivalent (language equivalence) or whether one language
is a subset of another (language inclusion). It is well-known that already deciding if a
context-free language is universal is undecidable.

In recent years, subclasses of context-free languages havebeen studied for which
equivalence or even inclusion becomes decidable.

The most prominent such subclass is the class of deterministic context-free
languages (however inclusion remains undecidable). A groundbreaking result by
Sénizergues states the decidability of language equivalence of deterministic pushdown
automata (DPDA)[20], see also [21]. In 2002 Stirling showed that DPDA language
equivalence is in fact primitive recursive [23]. Probably due to its intricacy this funda-
mental problem has not attracted too much research in the past ten years. We emphasize
that for DPDA language equivalence there is still a remarkably huge complexity gap
ranging from a primitive recursive upper bound toP-hardness (which straightforwardly
follows fromP-hardness of the emptiness problem). To the best of the authors’ knowl-
edge, the same phenomenon holds if the DPDA are restricted tobe real-time[18], i.e.
ε-transitions are not present. However, for finite-turn DPDAa coNP upper bound is
known [22]. Forsimple DPDA(which are single state and real-time DPDA) language
equivalence is decidable in polynomial time [9], whereas language inclusion is still un-
decidable [6]. Fordeterministic one-counter automata (DOCA), which are DPDA over
a singleton stack alphabet plus a bottom stack symbol, language equivalence was shown
decidable in time2O(

√
n logn) [24]. By a simple analysis of the proof in [24] aPSPACE

upper bound can be derived for this problem.

⋆ S. Böhm has been supported by the Czech Ministry of Education, project No.1M0567 and
GAČR P202/11/0340.

The goal of this paper is to make a step towards understanding(a special case
of) of the equivalence problem of DPDA better. We analyze a syntactic restriction of
DPDA, namelydeterministic real-time one-counter automata (ROCA), which are real-
time DOCA. ROCA satisfy the following points: (i) the automaton model is simple, (ii)
it is powerful enough to capture relevant non-regular languages such as e.g. the set of
well-matched parenthesis or{anbn | n ≥ 0}, (iii) its language is not defined modulo
some predetermined stack behavior of the automata (i.e. as it is the case for visibly
pushdown automata [1] or more general approaches as in [4, 17]), and (iv) tight com-
plexity bounds can be obtained for the equivalence problem.Although points (i) and
(ii) have a subjective touch, the authors are not aware of anysubclass of the context-
free languages that satisfy all of the four mentioned points. We remark that for ROCA
language inclusion remains undecidable.

Contributions. The main result of this paper is that language equivalence ofROCA
is NL-complete, hence closing the gap fromPSPACE [24] (which holds even for
DOCA) toNL (hardness forNL is inherited from the emptiness problem for determin-
istic finite automata). As a second result we prove that deciding regularity of ROCA,
i.e. deciding if the language of a given ROCA is regular, isNL-complete as well. The
previously best known upper bound for this problem (as for DOCA) is a time bound of
2O(

√
n logn) [24] (from which one can also derive aPSPACE upper bound).

Used techniques.For ourNL upper bound for language equivalence of ROCA,
we prove that if two ROCA are inequivalent, then they can already be distinguished
by a word of polynomial length. To show this, we use an established approach that
can be summarized as the “belt technique” that has already been used in [14, 12, 11, 3]
in the context of (bi)simulation equivalence checking of one-counter automata. More
specifically, we use an approach from [11, 3] that can be formulated as follows: There
is a small setINC of incompatible configurationswhich two configurations necessarily
have to have the same shortest distance to provided they are language equivalent —
moreover, in case two configurations both have the same finitedistance toINC, they
must either both have small counter values or they lie in one of polynomially many so
calledbelts. To prove the existence of polynomially long distinguishing words, in case
two ROCA are not language equivalent, we carefully investigate how paths through
such belts can look like.

Related work. Deterministic one-counter automata (DOCA) were introduced by
Valiant and Paterson in [24], where the above-mentioned time upper bound for lan-
guage equivalence was proven. Polynomial time algorithms for language equivalence
and inclusion for strict subclasses of ROCA were provided in[7, 8]. In [2, 5] polyno-
mial time learning algorithms were presented for ROCA. Simulation and bisimulation
problems on one-counter automata were studied in [3, 12, 11,14, 15, 13].

Organization. Our paper is organized as follows. Section 2 contains definitions.
Our main result is stated in Section 3 and proven in Section 4.Regularity of ROCA is
provenNL-complete in Section 5. We conclude in Section 6.

Remark: In [2, 19] it is stated that language equivalence of DOCA canbe decided in
polynomial time. Unfortunately, the proofs provided in [2,19] were not exact enough
to be verified and raise several questions which are unanswered to date.

2

2 Definitions

By Z we denote the integers and byN = {0, 1, . . .} we denote the naturals. For two
integersi, j ∈ Z we define the interval[i, j] = {i, i + 1, . . . , j} and[j] = [1, j]. The
sign function sgn: N → {0, 1} is defined as sgn(n) = 1 if n > 0 and sgn(n) = 0 if
n = 0, for eachn ∈ N. For a wordw over a finite alphabetΣ we denote by|w| the
lengthof w. By ε we denote theempty word. By Σ∗ we denote the set of finite words
overΣ, byΣ+ = Σ∗ \ {ε} the set ofnon-empty words, and for eachℓ ≥ 0 we define
Σ≤ℓ = {w ∈ Σ∗ : |w| ≤ ℓ}.

A deterministic and complete transition systemis a tupleT = (S,Σ, {
a

−→| a ∈
Σ}, F), whereS is a set ofstates, Σ is a finite alphabet, for eacha ∈ Σ we
have that

a
−→⊆ S × S is a set of transitions, where for eachs ∈ S there is pre-

cisely onet ∈ S such thats
a

−→ t, andF ⊆ S is a set offinal states. We ex-
tend

w
−→ to wordsw ∈ Σ∗ inductively as expected,

ε
−→= {(s, s) | s ∈ S} and

wa
−→= {(s, t) | ∃u ∈ S : s

w
−→ u

a
−→ t}, wherew ∈ Σ∗ anda ∈ Σ. We also write

−→ for
⋃

a∈Σ

a
−→. For each subsetU ⊆ S we writes

w
−→ U (resp.s −→∗ U) if s

w
−→ u

(resp.s −→∗ u) for someu ∈ U . For each states ∈ S we define thelanguage up to
length ℓ of s asLℓ(s) = {w ∈ Σ≤ℓ | s

w
−→ t, t ∈ F} and thelanguageof s as

L(s) =
⋃

ℓ∈N
Lℓ(s). We writes ≡ℓ t wheneverLℓ(s) = Lℓ(t) ands ≡ t whenever

L(s) = L(t). So note that we haves ≡0 t if and only if eithers, t ∈ F or s, t 6∈ F . We
call a wordw ∈ Σ∗ a (distinguishing) witnessfor statess andt if s

w
−→ s′ andt

w
−→ t′

with s′ 6≡0 t′. A mininal witnessis a witness of minimal length among all witnesses.
A deterministic real-time one-counter automaton (ROCA)is a tuple A =
(Q,Σ, δ, q0, F), whereQ is a finite set ofcontrol states, Σ is a finite alphabet,
δ : Q × Σ × {0, 1} → Q × {−1, 0, 1} is a transition function that satisfies
δ(Q × Σ × {0}) ⊆ Q × {0, 1} (i.e. no decrement is allowed when the counter is
zero),q0 ∈ Q is an initial control state, F ⊆ Q is a set offinal control states. If the
initial stateq0 of A is not relevant, we just writeA = (Q,Σ, δ, F). A configuration
of A is a pair(q, n) ∈ Q × N that we also abbreviate byq(n). Each ROCAA defines
a deterministic transition systemT (A) = (Q × N, Σ, {

a
−→| a ∈ Σ}, F × N), where

q(n)
a

−→ q′(n + j) wheneverδ(q, a, sgn(n)) = (q′, j). We defineL(A) = L(q0(0)).
In this paper, we are mainly interested in the following decision problem.

LANGUAGE EQUIVALENCE OFROCA

INPUT: Two ROCAA andA′.
QUESTION: L(A) = L(A′)?

Interestingly, inclusion between ROCA is undecidable. Valiant and Paterson were al-
ready aware of this without providing a proof [24].

Proposition 1 (Simple consequence of [16]).Given two ROCAA andA′, deciding
whetherL(A) ⊆ L(A′) holds, is undecidable.

It is worth noting that it is also a consequence of [16] that language equivalence of
nondeterministic(real-time) one-counter automata is undecidable.

3

3 NL-completeness of equivalence of ROCA

Instead of considering language equivalence oftwo ROCA, we can simply take their
disjoint union and ask whether two configurations of it are language equivalent. There-
fore let us fix for the rest of this and the next section some ROCA A = (Q,Σ, δ, F)
and two control statespinit , qinit ∈ Q for which we wish to decide ifpinit(0) ≡ qinit(0).

Lemma 2. We havepinit(0) ≡ qinit(0) if and only if pinit(0) ≡ℓ qinit(0), whereℓ is
polynomially bounded in|Q|.

In Section 4 we prove Lemma 2. We now use it to deriveNL-completeness of lan-
guage equivalence of ROCA.

Theorem 3. Language equivalence of ROCA isNL-complete.

Proof. TheNL lower bound already holds for the emptiness problem for determinis-
tic finite automata. For the upper bound, we apply Lemma 2 and store in logarithmic
space a pair of configurations (the two counter values are stored in binary) for which
we check inequivalence in an on-the-fly fashion: We repeatedly guess a symbola ∈ Σ

and update the pair of configurations by applying the transition function on both of
them synchronously. If the current pair is not≡0-related, then the initial pair of con-
figurations is inequivalent and if such a guessing is not possible then the initial pair of
configurations has to be equivalent by Lemma 2. Hence inequivalence isNL. SinceNL
is closed under complement [10] the theorem follows. ⊓⊔

4 Polynomially long distinguishing witnesses suffice

intitial space

be
lt s

pa
ce

belt space

be
lt

sp
ac

e

background space

ba
ck

gr
ou

nd
sp

ac
e

(q1, q1)
(q1, q2)
. . .

(qk, qk)

N

N

Fig. 1.The 3D space

Before we prove
Lemma 2, we introduce
some notions that
allow us to get a better
visual intuition of what
minimal distinguishing
witnesses can look like.

For the rest of
the paper, it will
sometimes be more
convenient to identify
each pair of configura-
tions 〈p(m), q(n)〉 by
the point〈m,n, (p, q)〉
in the 3D spaceN × N × (Q × Q), where the first two dimensions represent the two
counter values and the third dimensionQ×Q corresponds to the pair of control states.
We will partition the 3D space into aninitial space, belt spaceandbackground space
as exemplarily depicted in Figure 1. The size of the initial space and the thickness and
the number of belts will be polynomially bounded in|Q|.

4

We remark that thebelt techniquein the context of one-counter automata has already
successfully been used in [14, 12, 11, 3]. Moreover, we remark that our concrete way of
partitioning the 3D space was already present in [11, 3].

To each pair of configurations〈p(m), q(n)〉 and each wordw = a1 · · · aℓ ∈ Σ∗

we can assign a unique sequenceComp(p(m), q(n), w) = π0 · · ·πℓ of 3D points that
we call thecomputation, formally π0 = 〈m,n, (p, q)〉 and ifπi = 〈mi, ni, (pi, qi)〉 for
eachi ∈ [0, ℓ], then in the transition systemT (A) we havepi−1(mi−1)

ai−→ pi(mi) and
qi−1(ni−1)

ai−→ qi(ni) for eachi ∈ [1, ℓ]. HenceComp(p(m), q(n), w) can be seen as
a path through the 3D space. Thecounter effect ofπ is defined as(mℓ−m0, nℓ−n0) ∈
Z× Z. A factorof π is a sequenceπiπi+1 · · ·πj for some0 ≤ i ≤ j ≤ ℓ.

The overall proof strategy for Lemma 2 will be to show that forevery minimal
(distinguishing) witnessw for pinit(0) and qinit(0) the pathComp(pinit(0), qinit(0), w)
has the following property: It can stay in the initial space,it can be inside each belt
space but only polynomially many steps consecutively, but once it is in the background
space it terminates surely after polynomially many steps. This implies that the overall
length ofComp(pinit(0), qinit(0), w) is polynomially bounded.

In Section 4.1 we (re-)investigate an important setINC of configurations and discuss
in Section 4.2 that two configurations that have the same finite shortest distance toINC
necessarily must lie in the initial space or in the belt space. In Section 4.3 we finally
prove that any minimal witness has the above mentioned behavior in the 3D space, thus
implying Lemma 2. For the rest of this section, letk = |Q| denote the number of control
states of the ROCAA that we fixed for this section.

4.1 The underlying DFA and incompatible configurations

We start with the observation what happens in the transitionsystemT (A) if the counter
value is very big: It behaves for a long time just like a deterministic finite automaton
(DFA). We will call this DFA theunderlying DFAof A. We can partition the set of
configurations ofA into two sets: Those configurations that are not equivalent to all
states of the underlying finite system up to words of length atmostk and the rest. By
analyzing the reachability to the former set, we establish the partition of the 3D space
in the next section.

We remark that below the notionunderlying DFA, the setINC with its useful prop-
erty stated in Lemma 4 and the distance functiondist were already present in [11, 3].

Theunderlying DFAof A is F = (Q,Σ, {
a

−→| a ∈ Σ}, F), whereq
a

−→ q′ if and
only if δ(q, a, 1) ∈ {q′} × {−1, 0, 1}.

Observe that on the one hand we writeQ to denote the set of control states ofA and
on the other hand we denote byQ the states of the DFAF . Recall thatk = |Q|. For
eachq ∈ Q we writeLk(q) to denote the language ofF up to length at mostk in case
q is the initial state. Also note that inF we have that≡k coincides with≡k−1.

Define the setINC as those configurations ofT (A) that are incompatible (notk-
equivalent) toall states inF , formally

INC = {p(m) ∈ Q× N | ∀q ∈ Q : Lk(p(m)) 6= Lk(q)}.

Remark 4.If p(m) ∈ INC, thenm < k.

5

The main motivation to study the setINC is due to the following lemma.

Lemma 5. Assumep(m) 6−→∗ INC, andq(n) 6−→∗ INC. Thenp(m) ≡ q(n) if and
only if p(m) ≡k q(n).

Proof. The “only if”-direction is trivial. For the “if”-direction, assume by contradiction
p(m) 6≡ q(n) but p(m) ≡k q(n). Let ℓ be minimal such thatp(m) 6≡ℓ q(n). Note that
ℓ > k. Thus, there is some wordu ∈ Σℓ−k with p(m)

u
−→ p′(m′) andq(n)

u
−→ q′(n′)

wherep′(m′) 6≡k q′(n′) butp′(m′) ≡k−1 q′(n′). Since by assumptionp′(m′), q′(n′) 6∈
INC, there ares, t ∈ Q such thats ≡k p′(m′) andt ≡k q′(n′) and hences ≡k−1 t.
Recall that inF we have that≡k−1 coincides with≡k and hences ≡k t. Altogether
we obtainp′(m′) ≡k s ≡k t ≡k q′(n′), contradictingp′(m′) 6≡k q′(n′). ⊓⊔

Next, let us define the distance to the setINC for each configurationp(m). We define

dist(p(m)) = min
{
|w| : p(m)

w
−→ INC

}
.

By convention we putmin ∅ = ω. Note thatp(m) ≡ q(n) implies dist(p(m)) =
dist(q(n)).

4.2 Partitioning the 3D space into initial space, belt spaceand background space

Let us formally define belts, see also [14, 12, 11, 3]. Letα, β ≥ 1 be relatively prime.
Thebelt of thicknessd and slopeα

β
consists of those pairs(m,n) ∈ N× N that satisfy

|α ·m− β · n| ≤ d. An example of a belt is depicted in Figure 2.

n

m

c · α

c · β

Fig. 2.A belt

Similarly as in [24] we say that two integersm andn
are(γ, d)-rationally relatedif there areα, β ∈ [1, γ] that
are relatively prime such that(m,n) is inside the belt of
thicknessd and of slopeα

β
.

We callw = a1 · · · an ∈ A+ (n ≥ 1) a simple cy-
cle from p(m) if the corresponding unique computation
p0(m0)

a1−→ p1(m1) · · ·
an−→ pn(mn) (i.e. p0(m0) =

p(m)) satisfiesp0 = pn andpi 6= pj for all i, j ∈ [1, n]
with i 6= j. In casen0 > nm we calln0−nm thecounter
lossof w from p(m).

The next lemma from [3] states that minimal words from configurations toINC can
be chosen in a certain normal form: One first executes a polynomially long prefix, then
repeatedly some most effective simple cycle (i.e. a simple cycle where the quotient of
counter loss and length is maximal), and finally some polynomially long suffix.

Lemma 6 (Lemma 10 in [3]).There is some polynomialpoly0 such that ifp(m) −→∗

INC then already for some wordu = u1(u2)
ru3 (with r ≥ 0) we havep(m)

u
−→ INC,

where (i)|u| = dist(p(m)), (ii) |u1u3| ≤ poly0(k), and (iii) |u2| ≤ k, and (iv) either
u2 = ε or u2 is a simple cycle of counter loss from[1, k].

The following lemma from [3] allows us to partition the 3D space.

6

Lemma 7 (Points 3. and 4. of Lemma 11 in [3]).There are polynomialspoly1 and
poly2 s.t. ifmax{m,n} > poly2(k) anddist(p(m)) = dist(q(n)) < ω, then(m,n)

(1) lies in a unique belt of thicknesspoly1(k) and slopeα
β

, whereα, β ∈ [1, k2] and
(2) is not neighbor to any point(m′, n′) inside a different belt of thicknesspoly1(k)

and slopeα
′

β′
with α′, β′ ∈ [1, k2], i.e.min{|m−m′|, |n− n′|} ≥ 2.

We now partitionN× N× (Q×Q) into the following three subspaces, cf. Figure 1:

– initial space: All points 〈m,n, (p, q)〉 such thatm,n ≤ poly2(k).
– belt space: All points 〈m,n, (p, q)〉 outside the initial space such thatm andn

are(k2, poly1(k))-rationally related: By Lemma 7 the belt in which(m,n) lies is
uniquely determined.

– background space:All remaining points.

4.3 Bounding the minimal witness

In this section we demonstrate the core of the proof of Lemma 2: any minimal witness
w for 〈pinit(0), qinit(0)〉 is polynomially bounded ink. For the rest of this section we will
assume thatpinit(0) 6≡ qinit(0) and thatw is a minimal witness for them.

Recall thatk = |Q|. Our first lemma tells us once the minimal witness enters the
background space at some point〈m,n, (p, q)〉 then its remaining suffix is bounded by
k · (max{m,n}+ 1) + poly0(k).

Lemma 8. For each point〈m,n, (p, q)〉 in the background space we havep(m) ≡ q(n)
if and only ifp(m) ≡ℓ q(n), whereℓ ≤ k · (max{m,n}+ 1) + poly0(k).

Proof. The “only if”-direction is trivial. For the “if”-direction assumep(m) 6≡
q(n). Since〈m,n, (p, q)〉 is in the background space we cannot havedist(p(m)) =
dist(q(n)) < ω by Point (1) of Lemma 7. In casedist(p(n)) = dist(q(n)) = ω, then
already forℓ = k we havep(m) 6≡ℓ q(n) by Lemma 5. So it remains to consider the
casedist(p(m)) < dist(q(n)) without loss of generality, in particulardist(p(m)) < ω.
Let u be a minimal word such thatp(m)

u
−→ p′(m′) for somep′(m′) ∈ INC, note

that if q(n)
u

−→ q′(n′), thenp′(m′) 6≡k q′(n′). By applying Lemma 6, we can choose
u = u1(u2)

ru3 for somer ≥ 0 such that (i)|u| = dist(p(m)), (ii) |u1u3| ≤ poly0(k),
(iii) |u2| ≤ k and (iv) eitheru2 = ε or u2 is a simple cycle of counter loss from[1, k].
This implies that already forℓ = |u|+k ≤ k ·m+poly0(k)+k we havep(m) 6≡ℓ q(n).

⊓⊔

With this lemma one now observes that in caseComp(pinit(0), qinit(0), w) enters
the background space after polynomially many steps, then the whole computation is
polynomially bounded (the two counters are initialized with zero and by a polynomially
bounded computation we can only obtain polynomially large counter values).

Thus, it suffices to focus on the longest prefixw1 of w such that
Comp(pinit(0), qinit(0), w1) enters the background space for at most one point (i.e. if
at all, then the last one). Thus,Comp(pinit(0), qinit(0), w1) entirely stays inside the ini-
tial space or the belt space (except for the last point possibly). For the rest of this section
will show that the length ofw1 is polynomially bounded ink.

7

First observe that if Comp(pinit(0), qinit(0), w1) does not leave the ini-
tial space, then |w1| is trivially polynomially bounded since the size of
the initial space is polynomially bounded by definition. So for the rest
of this section assume thatComp(p(0), q(0), w1) enters at least one belt.

A
B
C

N

N

p
o
ly
2
(
k
)

poly1(k)

Fig. 3.Possible belt visits

In the following, whenever we talk about a
belt we mean its pointsoutsidethe 2D projection
of the initial space. Recall that we made the ini-
tial space sufficiently large such that there are no
intersections between belts and one cannot switch
from one belt to another in one step (recall Point
(2) of Lemma 7). Let us fix a computationπ. A
belt visit (with respect to some beltB) is a maxi-
mal factor ofπ whose points are all entirely inB.
It is clear thatComp(pinit(0), qinit(0), w1) can con-
tain at most polynomially many belt visits. The
following cases for belt visits can now be distin-
guished (a 2D projection of these cases is depicted
in Figure 3):

– Case A:The initial space is visited immedi-
ately after the belt visit.

– Case B:The belt visit ends in the belt.
– Case C:The background space is visited im-

mediately after the belt visit.

The goal of this section is to prove the following lemma.

Lemma 9. Every belt visit ofComp(pinit(0), qinit(0), w1) is polynomially bounded ink.

First, we need some more notation. Letα, β ∈ [1, k2] be relatively prime. We as-
sumeα ≥ β, i.e. α

β
≥ 1. The case whenα < β can be proven analogously.

Points〈p(m), q(n)〉 and〈p′(m′), q′(n′)〉 are α
β

-related if p = p′, q = q′, andα ·

m − β · n = α · m′ − β · n′. Roughly speaking, they areα
β

-related if their control
states coincide and they lie on a line with slopeα

β
. An α

β
-repetition is a computation

π0π1 · · ·πℓ such thatπ0 andπℓ are α
β

-related. Figure 4 shows an example of anα
β

-
repetition that lies inside some belt (these are theα

β
-repetitions we will be interested

in).
Before we handle the casesA, B, andC, let us fix a beltB with slopeα

β
. We will

make use of the following claim.
Claim*: There is a polynomialpoly3 such that for each sequence of points
〈p0(m0), q0(n0)〉 · · · 〈ph(mh), qh(nh)〉 in B with h = poly3(k) andmi = mi−1 + 1
for eachi ∈ [h], there are two indices0 ≤ i < i′ ≤ h such that〈pi(mi), qi(ni)〉 and
〈pi′(mi′), qi′(ni′)〉 areα

β
-related.

Proof. Definedj = α · mj − β · nj for eachj ∈ [0, h]. Since the thickness ofB is
poly1(k), there are at most polynomially many different values fordj . Hence (for suf-
ficiently largeh) by the pigeonhole principle we can find two points〈pi(mi), qi(mi)〉
and〈pi′(mi′), qi′(ni′)〉 such thatpi = pi′ , qi = qi′ , anddi = di′ . ⊓⊔

8

Let us now analyze the possible belt visit casesA, B, andC. Note that casesB
andC can occur only in the last belt visit ofComp(pinit(0), qinit(0), w1). For the rest of
this section let us fix someB-belt visitπ = π0π1 · · ·πz of Comp(pinit(0), qinit(0), w1),
whereπi = 〈pi(mi), qi(ni)〉 for eachi ∈ [0, z].

(q1, q1)
(q1, q2)
. . .

(qk, qk)

N

N

x1 x2

Fig. 4. α
β

-repetition inside a belt

Case A: The intuition behind this case is
the following: Consider a long belt visit
returning to the initial space. Then we
can find twoα

β
-repetitions that are factors

of π, one going up and one going down
with inverse counter effects. We can cut
them out and obtain a shorter computa-
tion.

Let us assume that the length ofπ is
sufficiently large such that there is some
point πh on π for the following argu-
ments to work. Define for each suitable
m ∈ N

L(m) = max{i | m = mi, i ∈ [0, h]} and R(m) = min{i | m = mi, i ∈ [h, z]}.

Recall thatpoly2(k) was the height and width of the initial space. By a similar pigeon-
hole argument as the proof of Claim* there areH andJ (sincemh is sufficiently large)
such that (i)poly2(k) < H < J < mh, (ii) Pointsπc andπc′ are α

β
-related where

c = L(H) andc′ = L(J) and (iii) Pointsπd andπd′ are α
β

-related whered = R(H)

and d′ = R(J). Note that the pair of counter effects fromπc to πc′ and fromπd′

to πd add up to(0, 0) componentwise. One can now split up the computationπ into
π0

γ1
−→ πc

γ2
−→ πc′

γ3
−→ πd′

γ4
−→ πd

γ5
−→ πz. Note that by construction we have

mi ≥ J for eachi ∈ [c′, d′]. Sinceα ≥ β we can safely cut out the computations
πc

γ2
−→ πc′ andπd′

γ4
−→ πd and obtain the computationπ0

γ1
−→ πc

γ3
−→ πd

γ5
−→ πz. In

Comp(pinit(0), qinit(0), w1) we can replaceπ by this computation and can hence obtain
a shorter witness. However, this contradicts minimality ofw.

Case B: Let us assume that the belt visit ends in the belt. Since we areconsidering
a computation of a witness we havepz(mz) 6≡0 qz(nz) for somemz, nz ≥ 1. Thus,
pz(m) 6≡0 qz(n) for eachm,n ≥ 1. Let us assumeπ stays in the belt sufficiently long
for the following argument to work. By the pigeonhole principle there arei andj with
0 ≤ i < j ≤ z andj − i ≤ k2 such thatpi = pj andqi = qj . We can assume that
mi, ni,mj , andnj are sufficiently large that we can cut out the computation between
πi andπj without reaching zero in the rest of the computation. We obtain a shorter
computation ending in a point with pair of control states(pz, qz), hence contradicting
minimality of w.

Case C: Let us assume that the first point after executingπ lies in the background
space, say in some point〈p̂(m̂), q̂(n̂)〉. In other wordsComp(pinit(0), qinit(0), w1) ends
in 〈p̂(m̂), q̂(n̂)〉 andπ is the last belt visit ofComp(pinit(0), qinit(0), w1).

9

First let us consider the case when there is a factor ofπ that goes “leftward” (and
hence necessarily “downward”) in the belt for too long. Formally we mean that there
is some sufficiently large polynomialpoly4 such thatπ contains a factor whose counter
effect(d1, d2) satisfiesd1 ≤ −poly4(k) ord2 ≤ −poly4(k) and the following argument
can be realized: There is some pointπh whose counter values are both sufficiently large
to which we can apply the same arguments as in Case A and thus obtain a shorter
computation, contradicting minimality ofw.

Thus, we can assume that for every factor ofπ with the counter effect(d1, d2)
we haved1, d2 > −poly4(k). One can now prove the existence of some polynomial
poly5(k) for the following arguments to work. In casêm ≤ poly5(k), thenn̂ is polyno-
mially bounded and henceπ is polynomially bounded.

In casem̂ > poly5(k), we do not directly contradict minimality ofw but we
show the existence of some polynomially bounded computation π′ that distinguishes
pinit(0) andqinit(0). We distinguish the following subcases:C1: dist(p̂(m̂)) < ω, C2:
dist(q̂(n̂)) < ω andC3: dist(p̂(m̂)) = dist(q̂(n̂)) = ω.
C1: We note that from〈p̂(m̂), q̂(n̂)〉 we do not care howπ exactly looks like. However,
we will prove that one can obtain such a polynomially boundedπ′ by repeatedly cutting
out (polynomially long)α

β
-repetitions fromπ with the invariant that after each cutting-

out the resulting computation can be extended in one step to abackground point whose
first configurationstill has finite distance toINC.1

By assumptiondist(p̂(m̂)) < ω, so letu be a minimal word such that̂p(m̂)
u

−→ INC.
By Lemma 6 and sincêm is sufficiently large, we can chooseu asu = u1(u2)

ru3 for
somer ≥ 0, where|u1u3| ≤ poly0(k), |u2| ≤ k, andu2 is a simple cycle of counter

lossd ∈ [1, k]. This impliesp̂(m̂− jd)
u1(u2)

r−ju3
−−−−−−−−→ INC for eachj ∈ [r].

Defineλ(m) = max{i | mi = m, i ∈ [0, z]} for eachm ∈ [poly2(k) + 1, m̂− 1].
We note thatλ(m + 1) − λ(m) is polynomially bounded for eachm,m + 1 ∈
[poly2(k) + 1, m̂ − 1] since the negative counter effect of each factor ofπ is poly-
nomially bounded by assumption. Sincêm assumed to be sufficiently large we can
apply Claim* on polynomially many disjoint factors (each oflength poly3(k)) of
ϕ = πλ(poly2(k)+1) · · ·πλ(m̂−1) and find anα

β
-repetition on each such factor. Each of

these disjoint factors of lengthpoly3(k) of ϕ corresponds to a factor ofπ that also has
only polynomial length, and so do theα

β
-repetitions of these factors. Among theseα

β
-

repetitions (interpreted as factors ofπ) we can pick outd all having the same counter
effect, say(f, g); in particularf

g
= α

β
. When cutting out precisely thesed factors from

Comp(pinit(0), qinit(0), w) it enters the background space at point〈p̂(m̂−df), q̂(n̂−dg)〉

for the first time. Byp̂(m̂ − jd)
u1(u2)

r−ju3
−−−−−−−−→ INC for eachj ∈ [r] we have that

p̂(m̂ − df) can reachINC. We can apply this cutting-out process repeatedly until the
first point that enters the background space, say〈p̂(m̂ − ∆), q̂(n̂ − ∆′)〉, satisfies
m̂−∆ ≤ poly5(k).
C2: This case is symmetric to case C1.

1 We note that we have to require that after the cutting-out the first configuration of the earliest
point that is in the background spacemuststill have finite distance toINC, for otherwise both
configurations could have infinite distance toINC and could be language equivalent.

10

C3: Sincedist(p̂(m̂)) = dist(q̂(n̂)) = ω and p̂(m̂) 6≡ q̂(n̂) we know from Lemma
5 that already someu ∈ Σ≤k distinguisheŝp(m̂) and q̂(n̂). So as in Case B, ifπ is
sufficiently long inside the belt, we can cut out a factor of repeated control state pairs
and obtain a shorter witness forpinit(0) andqinit(0), thus contradicting minimality ofw.

5 Regularity isNL-complete

Theorem 10. Regularity of ROCA, i.e. given a ROCAA deciding ifL(A) is regular, is
NL-complete.

Proof. For theupper bound, let us fix a ROCAA = (Q,Σ, δ, q0, F) with k = |Q|.
Recall the definition of the setINC and for each configurationp(m) its shortest distance
dist(p(m)) to INC. We make use of the following characterizations, in analogyto [3].
The following statements are equivalent: (1)L(q0(0)) is not regular, (2) for alld ∈ N

there is some configurationq(n) with q0(0) −→
∗ q(n) −→∗ INC andd ≤ dist(q(n)) <

ω, (3) there exists someq ∈ Q such thatq0(0) −→
∗ q(2k) −→∗ INC.

For anNL upper bound note that, given a configurationq(n) wheren is in unary,
deciding ifq(n) ∈ INC can be done inNL, sinceq(n) ∈ INC if and only if for all r ∈ Q

there is somewr ∈ Σ≤k that distinguishesq(n) and the stater of A’s underlying DFA.
Second, deciding condition (3) is inNL as well, since the length of such a witnessing
path is polynomially bounded. Hence deciding regularity ofA is inNL.

For the lower bound, we give a logspace reduction from the emptiness problem
for DFA. One can compute in logspace from a given DFAF a ROCAA such that
L(A) = {anwbn | w ∈ L(F)}. HenceL(A) is regular (in particular empty) if and
only if L(F) = ∅. ⊓⊔

6 Conclusion

In this paper we have shown that language equivalence and regularity of ROCA isNL-
complete. Using the idea of considering the reachability status of configurations toINC,
we can extend our result to prove that it isNL-complete to decide language equivalence
of a ROCA and a simple DOCA or to decide regularity of a simple DOCA. A simple
DOCA is a ROCA that allows spontaneous counter resets (ε-moves) fromp(m) to q(0)
for some control stateq but necessarilyfor all m ≥ 1: In such configurationsp(m) with
m ≥ 1 one can only reset the counter and not read any symbols. We note that simple
DOCA and DOCA are equi-expressive but DOCA are exponentially more succinct. The
precise complexity of equivalence of DOCA is left for futurework.

Acknowledgments:We thank Ǵeraud Śenizergues and Etsuji Tomita for discussions.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. InProc. of STOC, pages 202–211.
ACM, 2004.

2. P. Berman and R. Roos. Learning One-Counter Languages in Polynomial Time (Extended
Abstract). InProc. of FOCS, pages 61–67. IEEE, 1987.

11

3. S. B̈ohm, S. G̈oller, and P. Jaňcar. Bisimilarity of one-counter processes is PSPACE-
complete. InProc. of CONCUR, volume 6269 ofLecture Notes in Computer Science, pages
177–191. Springer, 2010.

4. D. Caucal. Synchronization of Pushdown Automata. InProc. of DLT, volume 4036 of
Lecture Notes in Computer Science, pages 120–132. Springer, 2006.

5. A. F. Fahmy and R. S. Roos. Efficient Learning of Real Time One-Counter Automata. In
Proc. of ALT, volume 997 ofLecture Notes in Computer Science, pages 25–40. Springer,
1995.

6. E. P. Friedman. The inclusion problem for simple languages.Theor. Comput. Sci., 1(4):297–
316, 1976.

7. K. Higuchi, M. Wakatsuki, and E. Tomita. A polynomial-time algorithm for checking the
inclusion for real-time deterministic restricted one-counter automata which accept by final
state.IEICE Trans. Information and Systems, E78-D:939–950, 1995.

8. K. Higuchi, M. Wakatsuki, and E. Tomita. A polynomial-time algorithm for checking the
inclusion for real-time deterministic restricted one-counter automata which accept by accept
mode.IEICE Trans. Information and Systems, E81-D:1–11, 1998.

9. Y. Hirshfeld, M. Jerrum, and F. Moller. A Polynomial Algorithm for Deciding Bisimilarity
of Normed Context-Free Processes.Theor. Comput. Sci., 158(1&2):143–159, 1996.

10. N. Immerman. Nondeterministic Space is Closed Under Complementation. SIAM J. Com-
put., 17(5):935–938, 1988.

11. P. Jaňcar. Decidability of bisimilarity for one-counter processes.Information Computation,
158(1):1–17, 2000.

12. P. Jaňcar, A. Kǔcera, and F. Moller. Simulation and bisimulation over one-counter processes.
In Proc. of STACS, volume 1770 ofLecture Notes in Computer Science, pages 334–345,
2000.

13. P. Jaňcar, A. Kǔcera, F. Moller, and Z. Sawa. DP lower bounds for equivalence-checking and
model-checking of one-counter automata.Inf. Comput., 188(1):1–19, 2004.

14. P. Jaňcar, F. Moller, and Z. Sawa. Simulation Problems for One-Counter Machines. InProc.
of SOFSEM, volume 1725 ofLecture Notes in Computer Science, pages 404–413. Springer,
1999.

15. R. Mayr. Undecidability of Weak Bisimulation Equivalence for 1-Counter Processes. In
Proc. of ICALP, volume 2719 ofLecture Notes in Computer Science, pages 570–583, 2003.

16. M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory
of Turing machines.Annals of Mathematics. Second Series, 74:437–455, 1961.

17. D. Nowotka and J. Srba. Height-Deterministic Pushdown Automata. InProc. of MFCS,
volume 4708 ofLecture Notes in Computer Science, pages 125–134. Springer, 2007.

18. M. Oyamaguchi. The equivalence problem for real-time DPDAs.J. ACM, 34:731–760,
1987.

19. R. Roos.Deciding Equivalence of Deterministic One-Counter Automata in Polynomial Time
with Applications to Learning. PhD thesis, The Pennsylvania State University, 1988.

20. G. Śenizergues. L(A)=L(B)? decidability results from complete formal systems. Theor.
Comput. Sci., 251(1-2):1–166, 2001.

21. G. Śenizergues. L(A)=L(B)? A simplified decidability proof.Theor. Comput. Sci., 281(1-
2):555–608, 2002.

22. G. Śenizergues. The Equivalence Problem for t-Turn DPDA Is Co-NP. InProc. of ICALP,
volume 2719 ofLecture Notes in Computer Science, pages 478–489. Springer, 2003.

23. C. Stirling. Deciding DPDA Equivalence Is Primitive Recursive. InProc. of ICALP, volume
2380 ofLecture Notes in Computer Science, pages 821–832. Springer, 2002.

24. L. G. Valiant and M. Paterson. Deterministic one-counter automata.J. Comput. Syst. Sci.,
10(3):340–350, 1975.

12

