
The Modular Structure of an Ontology: Atomic Decomposition

Chiara Del Vescovo1 and Bijan Parsia1 and Uli Sattler1 and Thomas Schneider2

1 The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
2 Universität Bremen, FB 03, Postfach 330 440, 28334 Bremen, Germany

{delvescc, bparsia, sattler}@cs.man.ac.uk tschneider@informatik.uni-bremen.de

Abstract

Extracting a subset of a given ontology that cap-
tures all the ontology’s knowledge about a specified
set of terms is a well-understood task. This task
can be based, for instance, on locality-based mod-
ules. However, a single module does not allow us to
understand neither topicality, connectedness, struc-
ture, or superfluous parts of an ontology, nor agree-
ment between actual and intended modeling.
The strong logical properties of locality-based
modules suggest that the family of all such mod-
ules of an ontology can support comprehension of
the ontology as a whole. However, extracting that
family is not feasible, since the number of locality-
based modules of an ontology can be exponential
w.r.t. its size.
In this paper we report on a new approach that en-
ables us to efficiently extract a polynomial repres-
entation of the family of all locality-based modules
of an ontology. We also describe the fundamental
algorithm to pursue this task, and report on experi-
ments carried out and results obtained.

1 Introduction

In software engineering, modularly structured systems are de-
sirable, all other things being equal. Given a well-designed
modular program, it is generally easier to process, modify,
and analyze it and to reuse parts by exploiting the modular
structure. As a result, support for modules (or components,
classes, objects, packages, aspects) is a commonplace feature
in programming languages.

Ontologies are computational artefacts akin to programs
and, in notable examples, can get quite large and complex,
which suggests that exploiting modularity might be fruitful.
Research into modularity for ontologies has been an active
area for ontology engineering. Recently, a lot of effort has
gone into developing logically sensible modules, that is, mod-
ules which offer strong logical guarantees for intuitive mod-
ular properties [Cuenca Grau et al., 2008]. One such guar-
antee is called coverage and means that the module cap-
tures all the ontology’s knowledge about a given set of terms
(signature)—a kind of dependency isolation or encapsulation.

This guarantee is provided by modules based on conservat-
ive extensions, but also by efficiently computable approxim-
ations, such as locality-based modules.

The task of extracting one such module given a signa-
ture (GetOne) is well understood and starting to be de-
ployed in standard ontology development environments, such
as Protégé 4,1 and online.2 The extraction of locality-based
modules has already been effectively used in the field for on-
tology reuse [Jimeno et al., 2008] as well as a subservice
for incremental reasoning [Cuenca Grau et al., 2010]. Now
GetOne requires the user to know in advance the right set of
terms to input to the extractor: we call this a seed signature
for the module and note that one module can have several
such seed signatures. Since there are non-obvious relations
between the final signature of a module and its seed signa-
ture, users are often unsure how to generate a proper request
and confused by the results.

The task GetOne is an important and useful service but,
by itself, it tells us nothing about the modular structure of
the ontology as a whole. The modular structure is determ-
ined by the set of all modules and their inter-relations, or
at least a suitable subset thereof. The task of a-posteriori
determining the modular structure of an ontology is called
GetStruct, and the task of extracting all modules is called
GetAll. While GetOne is well-understood and often com-
putationally cheap, GetAll and GetStruct have not been ex-
amined for module notions with strong logical guarantees,
with a few preliminary exceptions [Cuenca Grau et al., 2006;
Del Vescovo et al., 2010]. If ontology engineers had access
to the overall modular structure of the ontology determined
by GetStruct, they might be able to use it to guide their ex-
traction choices and, supported by the experience described
in [Cuenca Grau et al., 2006], to understand its topical-
ity, connectedness, structure, superfluous parts, or agreement
between actual and intended modeling. For example, by in-
specting the modular structure and observing un-connected
parts that are intended to be connected, ontology designers
could learn of weakly modeled parts of their ontology.

In the worst case, however, the number of all modules of
an ontology is exponential in the number of terms or axioms
in the ontology [Del Vescovo et al., 2010]. More importantly,

1http://www.co-ode.org/downloads/protege-x
2http://owl.cs.manchester.ac.uk/modularity

2232

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

even for very small ontologies, the number of all modules
is far too large for them to be inspected by a user or even
computed; e.g., Koala is an ontology with 42 axioms that
has 3, 660 modules, and GetAll fails even on many ontologies
consisting of less than one hundred axioms.

In this paper, we report on new insights regarding the mod-
ular structure of ontologies which leads to a new, polynomial
algorithm for GetStruct (provided that module extraction is
polynomial) that generates a linear (in the size of the onto-
logy), partially ordered set of modules and atoms which suc-
cinctly represent all (potentially exponentially many) mod-
ules of an ontology. We also report on some experiments car-
ried out with an implementation of this algorithm. For full
proofs, the reader is referred to [Del Vescovo et al., 2011],
and for more detail about the experiments and data can be
found at http://bit.ly/i4olY0.

2 Preliminaries

We assume the reader to be familiar with Description Logics
[Baader et al., 2003], and only briefly sketch here some of
the central notions around locality-based modularity. We use
L for a Description Logic, e.g., SHIQ, and O,M, etc., for
a knowledge base, i.e., a finite set of axioms. Moreover, we
use Õ for the signature ofO, i.e., the set of concept, role, and
individual names used in O.

Conservative extensions (CEs) capture the above described
encapsulation of knowledge. They are defined as follows.
Definition 2.1. Let L be a DL, M ⊆ O be L-ontologies, and
Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) of
M w.r.t. L if for all axioms α over L with α̃ ⊆ Σ, it
holds that M |= α if and only if O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE
of M w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide
for many DLs [Ghilardi et al., 2006; Konev et al., 2009;
Sattler et al., 2009]. Therefore, approximations have been
devised. We focus on syntactic locality (here for short: loc-
ality). Locality-based modules can be efficiently computed
and provide coverage; that is, they capture all the relev-
ant entailments, but not necessarily only those [Cuenca Grau
et al., 2008; Jiménez-Ruiz et al., 2008]. Although local-
ity is defined for the DL SHIQ, it is straightforward to
extend it to SHOIQ(D) (see [Cuenca Grau et al., 2008;
Jiménez-Ruiz et al., 2008]), and a locality-based module ex-
tractor is implemented in the OWL API.3

It has been shown in [Cuenca Grau et al., 2008] that
M ⊆ O and all axioms in O \ M being local w.r.t. Σ ∪ M̃
is sufficient for O to be a Σ-dCE of M. Various notions of
locality are described in the literature, including so-called�-,
⊥-, and �⊥∗-locality.

Given an ontologyO, a seed signature Σ and a module no-
tion x ∈ {�,⊥,�⊥∗}, we denote the x-module of O w.r.t. Σ
by x-mod(Σ,O). Tractable, locality-based module extract-
ors are described in [Cuenca Grau et al., 2008]. If we do not
specify x, we generally speak of a locality-based module.

3http://owlapi.sourceforge.net/

The following properties of locality-based modules will be
of interest for our modularization [Cuenca Grau et al., 2008;
Sattler et al., 2009].

Proposition 2.2. Let O be an ontology, Σ a signature and
x ∈ {�,⊥,�⊥∗}. Then the following properties hold:
(i) for any Σ′, x-mod(Σ,O) ⊆ x-mod(Σ∪Σ′,O) (monoton-
icity)
(ii) for Σ′ with Σ ⊆ Σ′ ⊆ Sigma ∪ M̃, x-mod(Σ′,O) =
x-mod(Σ,O) (self-containedness)
(iii) each axiom α entailed by O\x-mod(Σ,O) and such that
α̃ ⊆ Σ is a tautology (depletingness).

2.1 Fields of sets and atoms

We want to describe the relationships between an ontology
O and a family F(O) of subsets thereof by means of a well-
understood structure. To this end, we introduce in what fol-
lows some notions of algebra.

Definition 2.3. A field of sets is a pair (O,F), where O is a
set and F is an algebra over O i.e., set of subsets of O that is
closed under intersection, union and complement. Elements
of O are called points, while those of F are called complexes.

We will make use of a partial order ≤, i.e., a reflexive,
transitive, and antisymmetric binary relation. Two elements
a, b of a poset are called comparable if a ≤ b or b ≤ a,
otherwise they are incomparable.

Given a finite setO and a family F of subsets ofO, we can
build the induced field of sets B(O,F) by closing the family
under union, intersection and complement. Then B(O,F) is
obviously a field of sets and its elements are called induced
complexes. Also, B(O,F) inherits a partial order relation
defined by the inclusion relation “⊆”. Next, we define min-
imal elements in a slightly non-standard way.

Definition 2.4. Given a poset (O,≤), an element a ∈ O is
called minimal if there exists no element b of O\a with b ≤ a.

The minimal elements of the B(O,F) \ ∅ with respect to
the inclusion relation “⊆” are called atoms.4

For an element a ∈ O, the set (a] := {x ∈ O |x ≤ a} is
called the principal ideal of a.

Every finite poset (O,≤) (and every lattice) can be depic-
ted in a graph, called Hasse diagrams, where nodes are ele-
ments of O and edges connect two elements a ≤ b if there is
no element c distinct from a and b such that a ≤ c ≤ b; for
a ≤ b, we will draw b in a position higher than a’s.

3 Modules and atoms

In what follows, we are using the notion of �⊥∗-locality from
[Sattler et al., 2009]. However, the approach we present can
be applied to any notion of a module that is monotonic, self-
contained, and depleting, and we know from [Kontchakov
et al., 2009] that robustness under replacement and deplet-
ingness implies self-containedness. These properties have a
deep impact on the modules generated, as described in Pro-
position 3.1. See [Kontchakov et al., 2009] for more details.

4Slightly abusing notation, we use B(O,F) here for the set of
complexes in B(O,F).

2233

Proposition 3.1. Any notion of locality-based module that
satisfies monotonicity, self-containedness, and depletingness
is such that any given signature generates a unique module.

We are going to define a correspondence among ontolo-
gies with relative families of modules and fields of sets as
defined in Definition 2.3. Axioms correspond to points. Let
then F(O) denote the family of �⊥∗-modules of O (or let
Fx(O) be such family for each corresponding notion x of
module if not univocally specified). Then F(O) is not, in gen-
eral, closed under union, intersection and complement: given
two modules, neither their union nor their intersection nor the
complement of a module is, in general, a module; hence, only
some complexes correspond to modules. Next, we introduce
the (induced) field of modules, that is the field of sets over
F(O). This enables us to use properties of fields of sets also
for ontologies.

Definition 3.2. Given an ontology O and the family F(O) of
�⊥∗-modules of O, we define the (induced) field of modules
B(F(O)) as the closure of the set F(O) under union, inter-
section and complement.

Definition 3.3. We call

- syntactic tautologies the axioms that do not occurr in
any module and hence belong to O \ �⊥∗-mod(Õ,O);

- global axioms those occurring in each module, and in
particular to �⊥∗-mod(∅,O).

Remark 3.4. To make the presentation easier, we assume,
without loss of generality,5 that O contains no syntactic tau-
tologies or global axioms.

An (induced) field of modules is, by construction, a field
of sets. It is partially ordered by ⊆ and, due to the finiteness
of O, and can thus be represented via its Hasse diagram.

Next, we define atoms of our field of modules as building
blocks of modules of an ontology; recall that these are the
⊆-minimal complexes of B(F(O)) \ {∅}.
Definition 3.5. The family of atoms from B(F(O)) is denoted
by A(F(O)) and is called atomic decomposition.

An atom is a set of axioms such that, for any module,
it either contains all axioms in the atom or none of them.
Moreover, every module is the union of atoms. Next, we
show how atoms can provide a succinct representation of the
family of modules. Before proceeding further, we summarize
in Table 1 the four structures introduced so far and, for each,
its elements, source, maximal size, and structure.

3.1 Atoms and their structure

The family A(F(O)) of atoms of an ontology, as in Defini-
tion 3.5, has many properties of interest for us.

Lemma 3.6. The family A(F(O)) of atoms of an ontology O
is a partition of O, and thus #A(F(O)) ≤ #O.

Hence the atomic decomposition is succinct; we will see
next whether its computation is tractable and whether it is
indeed a representation of F(O).

5We can always remove those unwanted axioms that occur in
either all or no module, and consider them separately.

O F(O) B(F(O)) A(F(O))

axioms α modules M complexes Ki,j atoms a, b, . . .
ontology module closure of atoms of
engineers extractor F(O) B(F(O))

baseline exponential exponential linear
set family of complete poset

sets lattice

Table 1: Four ways for looking at ontology fragments

The following definition aims at defining a notion of “lo-
gical dependence” between axioms: the idea is that an axiom
α depends on another axiom β if, whenever α occurs in a
module M then β also belongs to M. A slight extension of
this argument allows us to generalize this idea because, by
definition of atoms, whenever α occurs in a module, all ax-
ioms belonging to α’s atom a occur. Hence, we can formalize
this idea by defining a relation between atoms.
Definition 3.7. (Relations between atoms) Let a and b be
two distinct atoms of an ontology O. Then:

- a is dependent on b (written a 	 b) if, for every module
M ∈ F(O) such that a ⊆ M, we have b ⊆ M.

- a and b are independent if there exist two disjoint mod-
ules M1,M2 ∈ F(O) such that a ⊆ M1 and b ⊆ M2.

- a and b are weakly dependent if they are neither inde-
pendent nor dependent; in this case, there exists an atom
c ∈ A(F(O)) which both a and b are dependent on.

Proposition 3.8. Definition 3.7 describes the all and only re-
lations between atoms.

The logical dependence between atoms can, in general, be
incomplete: for example, let us consider the following (hypo-
thetical) family of modules: F(O) = {M1,M2,M3,M4}
where M1 = {a, b}, M2 = {a, c}, M3 = {a, b, d} and
M4 = {a, c, d}. Following Definition 3.7, the atoms b, c
and d depend on a. However, we want our structure to reflect
that b and c act as “intermediates” in the dependency of d on
a, i.e., that d depends via “c or b” on a. Since our definition
does not capture disjunctions of occurrences of atoms, we call
the pairs (d, b) and (d, c) problematic. Fortunately, problem-
atic pairs of atoms do not exist in an atomic decomposition
obtained via locality-based modules.
Lemma 3.9. Since the �⊥∗ notion of module is monotonic,
self-contained, and depleting, there are no problematic pairs
in the set A(F(O)) of atoms over O.

The key to proving Lemma 3.9 is the following remark:
Remark 3.10. Let a ∈ A(F(O)) an atom induced over
O by �⊥∗-mod. Then, for every nonempty set of axioms
{α1, . . . , αk} ⊆ a we have that �⊥∗-mod({α̃1, . . . , α̃k},O)
is the smallest module containing a.

Proof. Let α ∈ a be an axiom, and let us consider the mod-
ule Mα := �⊥∗-mod(α̃,O). We recall �⊥∗-mod is self-
contained and monotonic. Then:
(1) Mα is not empty since it contains α (recall Remark 3.4).
(2) Mα ⊇ a, by the definition of atoms.

2234

(3) Mα is the unique and thus smallest module for the seed
signature α̃.

(4) by monotonicity, enlarging the seed signature α̃ results
in a superset of Mα.

(5) by self-containedness and monotonicity, any mod-
ule M′ that contains α needs to contain also Mα:
M′ = �⊥∗-mod(M̃′,O) = �⊥∗-mod(M̃′ ∪ α̃,O) ⊇
�⊥∗-mod(α̃,O).

(6) because of (2), we have thatMα ⊇ �⊥∗-mod(S̃,O) for
every non empty set of axioms S = {α1, . . . , αk} ⊆ a;
in particular, this holds if S = {αi} for any αi ∈ a.

(7) the inverted inclusion �⊥∗-mod(α̃i,O) ⊇ Mα also
holds by the arbitrarity of choice of α in a.

Corollary 3.11. Given an atom a, for any axiom α ∈ a we
have that Mα = �⊥∗-mod(ã,O). Moreover, a is dependent
on all atoms belonging to Mα \ a.

Lemma 3.9 has interesting consequences on the depend-
ency relation on atoms.
Proposition 3.12. The binary relation “ 	” is a partial order
over the set A(F(O)) of atoms of an ontology O.

Definition 3.7 and Proposition 3.12 allow us to draw a
Hasse diagram also for the atomic decomposition A(F(O)),
where independent atoms belong to different chains, see Fig-
ure 1 for the Hasse diagramm of Koala. As an atom can be
dependent on more that one atom; hence, we will have some
nodes with more than one outgoing edge.

3.2 Atoms as a module base

As an immediate consequence of our observations so far, a
module is a disjoint finite union of atoms. Conversely, it is not
true that arbitrary unions of atoms are modules. However, we
can compute the modules from A(F(O)), and thus the latter
is indeed a succinct representation of all modules.
Definition 3.13. The principal ideal of an atom a is the set
(a] = {α ∈ b | b ≺ a} ⊆ O.
Proposition 3.14. For every atom a, (a] is a module.

To get modules from A(F(O)), we need, for each atom a,
to store the ⊆-minimal seed signatures that lead to (a]: we
say that an atom a is relevant for a module �⊥∗-mod(Σ,O)
if there is a seed signature Σ′ for (a] with Σ′ ⊆ Σ.
Proposition 3.15. Let a1, . . . ak, k ∈ N, be all atoms that
are relevant for Σ. Then the module �⊥∗-mod(Σ,O) is the
union of principal ideals of these atoms:

�⊥∗-mod(Σ,O) =
⋃k

i=1 (ai].

4 Computing the atomic decomposition

As we have seen, the atomic decomposition is a succinct rep-
resentation of all modules of an ontology: its linearly many
atoms represent all its worst case exponentially many mod-
ules. Next, we will show how we can compute the atomic
decomposition in polynomial time, i.e., without computing
all modules, provided that module extraction is polynomial
(which is the case, e.g., for syntactic locality-based modules).
Our approach relies on modules “generated” by a single ax-
ioms, which can be used to generate all others.

Definition 4.1. A module M is called:
1) compact if there exists an atom a in the atomic decom-

position A(F(O)) such that M = (a].
2) α-module if there is an axiom α ∈ O such that M =

�⊥∗-mod(α̃,O).
3) fake if there exist two incomparable (w.r.t. set inclusion)

modules M1 �= M2 with M1 ∪M2 = M; a module is
called genuine if it is not fake.

Please note that our notion of genuinity is different from
the one in [Parsia&Schneider, 2010], where the incompar-
able “building” modules were also required to be disjoint.

The following lemma provides the basis for our polynomial
algorithm for the computation of the atomic decomposition
since it allows us to construct A(F(O)) via α-modules only.
Lemma 4.2. The notions of compact, α and genuine modules
coincide.

Algorithm 1 Atomic decomposition algorithm
1: Input: An ontology O.
2: Output: The set G of genuine �⊥∗-modules; the poset

of atoms (A(F(O)),); the set of generating axioms
GenAxioms; for α ∈ GenAxioms, the cardinality
CardAtom(α) of its atom.

3: ToDoAxioms ← �⊥∗-mod(Õ,O) \ �⊥∗-mod(∅,O)
4: GenAxioms ← ∅
5: for each α ∈ ToDoAxioms do
6: Module(α) ← �⊥∗-mod(α̃,O) % �= ∅ due to line 3
7: new ← true
8: for each β ∈ GenAxioms do
9: if Module(α) = Module(β) then

10: Atom(β) ← Atom(β) ∪ {α}
11: CardAtom(β) ← CardAtom(β) + 1
12: new ← false
13: end if
14: end for
15: if new = true then
16: Atom(α) ← {α}
17: CardAtom(α) ← 1
18: GenAxioms ← GenAxioms ∪ {α}
19: end if
20: end for
21: for each α ∈ GenAxioms do
22: for each β ∈ GenAxioms do
23: if β ∈ Module(α) then
24: Atom(β) 	 Atom(α)
25: end if
26: end for
27: end for
28: A(F(O)) ← {Atom(α) | α ∈ GenAxioms}
29: G ← {Module(α) | α ∈ GenAxioms}
30: return [(A(F(O)),), G, GenAxioms, CardAtom(·)]

Algorithm 1 sketches our algorithm for computing atomic
decompositions that runs in polynomial time in the size of O
(provided that module extraction is polynomial), and calls a
module extractor as many times as there are axioms in O.

2235

Name #Axioms DL #Gen.#Con.#max.#max.
mods comp. mod. atom

Koala 42 ALCON (D) 23 5 18 7
Mereology 44 SHIN 17 2 11 4
University 52 SOIN (D) 31 11 20 11
People 108 ALCHOIN 26 1 77 77
miniTambis 173 ALCN (D) 129 85 16 8
OWL-S 277SHOIN (D) 114 1 57 38
Tambis 595 ALCN (D) 369 119 236 61
Galen 4, 528 ALEHF+ 3, 340 807 458 29

Table 2: Experiments summary; only logical axioms are counted

Proposition 4.3. Algorithm 1 is correct.

Algorithm 1 considers, in ToDoAxioms, all axioms that are
neither tautologies nor global (as in Remark 3.4), and com-
putes all genuine modules, all atoms with their dependency
relation and, for each module and atom, their cardinality. For
each axiom α “generating” a module, the algorithm stores
that module in Module(α) and the corresponding atom is con-
structed in Atom(α); those functions are undefined for axioms
outside GenAxioms.

5 Empirical evaluation

We have run the atomic decomposition algorithm on a se-
lection of ontologies, including those that were used in [Del
Vescovo et al., 2010; Parsia&Schneider, 2010], and indeed
managed to compute the atomic decomposition of all onto-
logies, even for ontologies for which a complete modulariza-
tion was not possible so far. Table 2 shows summary data for
each ontology: size, expressivity, number of genuine mod-
ules, number of connected components, size of largest mod-
ule and of largest atom. Our tests were obtained on a 2.16
GHz Intel Core 2 Duo Macbook with 2 GB of memory run-
ning Mac OS X 10.5.8; each atomic decomposition was com-
puted within a couple of seconds, apart from that for Galen,
which took less than 3 minutes.

1

12 23

2

18

3

20

4

7 5

6

17 8

910 11

14

13 15

16

19

21

22

Figure 1: The atomic decomposition of Koala

We have also generated a graphical representation by using
GraphViz6, a package of open source tools initiated by AT&T
Labs Research. Our atomic decompositions show atom size
as node size, see Figure 1 for example. We notice that it
shows four isolated atoms, e.g., Atom 22 in the top right
corner, which consists of the axiom DryEucalyptForest �
Forest. This means that, even though other modules may
use terms from Atom 22, they do not “need” the axioms in
Atom 22 for any entailments; i.e., removing (the axioms in)
these isolated atoms from the ontology would not result in the
loss of any entailments regarding other modules or terms. Of
course, for entailments regarding both DryEucalyptForest
and Forest and possibly other terms, this axiom is required.
A similar structure is observable in all ontologies considered.
The material on http://bit.ly/i4olY0 includes graphs
for all ontologies considered.

6 Related work

One solution to GetStruct is described in [Cuenca Grau et al.,
2006] via partitions related to E-connections. When this ap-
proach succeeds, it divides an ontology into three kinds of
modules: (A) those which import vocabulary (and axioms)
from others, (B) those whose vocabulary (and axiom set) is
imported, and (C) isolated parts. In various experiments, the
numbers of parts extracted were quite low and the structure
often corresponded usefully to user understanding. For in-
stance, the tutorial ontology Koala, consisting of 42 logical
axioms, is partitioned into one A-module about animals and
three B-modules about genders, degrees and habitats.

It has also been shown in [Cuenca Grau et al., 2006] that
certain combinations of these parts provide coverage. For Ko-
ala, such a combination would still be the whole ontology
(though smaller parts have coverage as well).

Ontology partitions based on E-connections require rather
strong conditions to ensure modular separation and have been
observed to force together axioms and terms which are logic-
ally separable. As a consequence, it has been observed that
ontologies with fairly elaborate modular structure have im-
poverished E-connections based structures. Furthermore, the
robustness properties of the parts (e.g., under vocabulary ex-
tension) are not as well-understood as those of locality-based
modules. Partitions ensure, however, a linear upper bound on
the number of parts.

Another approach to GetStruct is described in [Bezerra et
al., 2008]. It underlies the tool ModOnto, which aims at
providing support for working with ontology modules that
borrows intuitions from software modules. To the best of our
knowledge, however, it has not been examined whether such
modules provide coverage in the above sense. Furthermore,
ModOnto does not aim at obtaining all modules.

A further procedure for partitioning an ontology is de-
scribed in [Stuckenschmidt&Klein, 2004]. However, this
method only takes the concept hierarchy of the ontology into
account and can therefore not provide the strong logical guar-
antee of coverage.

In [Konev et al., 2010], it was shown how to decompose the
signature of an ontology to obtain the dependencies between

6http://www.graphviz.org/About.php

2236

its terms. In contrast to previous such approaches, this one
is syntax-independent. While gaining information about term
dependencies is one goal of our approach, we are also inter-
ested in the modules of the ontology.

Among the a-posteriori approaches to GetOne, some
provide logical guarantees such as coverage, and others do
not. The latter are not of interest for this paper. The former
are usually restricted to DLs of low expressivity, where de-
ciding conservative extensions—which underly coverage—is
tractable. Prominent examples are the module extraction fea-
ture of CEL [Suntisrivaraporn, 2008] and the system MEX
[Konev et al., 2008]. However, we aim at an approach that
covers DLs up to OWL 2.

7 Conclusion and outlook

We have presented the atomic decomposition of an ontology,
and shown how it is a succinct, tractable representation of
the modular structure of an ontology: it is of polynomial
size and can be computed in polynomial time in the size
of the ontology (provided module extraction is polynomial),
whereas the number of modules of an ontology is exponential
in the worst case and prohibitely large in cases so far investig-
ated. Moreover, it can be used to assemble all other modules
without touching the whole ontology and without invoking a
direct module extractor.

Future work is three-fold: first, we will try to com-
pute, from the atomic decomposition, good upper and lower
bounds for the number of all modules to answer an open ques-
tion from [Parsia&Schneider, 2010]. Second, we will invest-
igate suitable labels for atoms, e.g., suitable representation of
seed and module signatures, and how to employ the atomic
decomposition for ontology engineering, e.g., to compare the
modular structure with their intuitive understanding of the do-
main and thus detect modelling errors, and to identify suitable
modules for reuse. Third, we will investigate when module
extraction from the atomic decomposition is faster than ex-
tracting it using a module extractor.

References
[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuinness,

D. Nardi, and P. F. Patel-Schneider, eds. The Description Lo-
gic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

[Bao et al., 2009] J. Bao, G. Voutsadakis, G. Slutzki, and V. Hona-
var. Package-based description logics. In Modular Ontologies,
vol. 5445 of LNCS, pages 349–371. Springer-Verlag, 2009.

[Bezerra et al., 2008] C. Bezerra, F. Freitas, A. Zimmermann, and
J. Euzenat. ModOnto: A tool for modularizing ontologies.
In Proc. WONTO-08, vol. 427 of CEUR. CEUR-WS.org/
Vol-427/, 2008.

[Borgida&Serafini, 2003] A. Borgida and L. Serafini. Distributed
description logics: Assimilating information from peer sources.
In J. Data Semantics I, vol. 2800 of LNCS, pages 153–184.
Springer-Verlag, 2003.

[Cuenca Grau et al., 2006] B. Cuenca Grau, B. Parsia, E. Sirin, and
A. Kalyanpur. Modularity and web ontologies. In Proc. of KR-
06, pages 198–209. AAAI Press, 2006.

[Cuenca Grau et al., 2008] B. Cuenca Grau, I. Horrocks, Y. Kaza-
kov, and U. Sattler. Modular reuse of ontologies: Theory and
practice. J. of Artificial Intelligence Research, 31:273–318, 2008.

[Cuenca Grau et al., 2010] B. Cuenca Grau, C. Halaschek-Wiener,
Y. Kazakov, and B. Suntisrivaraporn. Incremental classification
of description logics ontologies. J. of Automated Reasoning,
44(4):337–369, 2010.

[Del Vescovo et al., 2010] C. Del Vescovo, B. Parsia, U. Sattler,
and T. Schneider. The modular structure of an ontology:
an empirical study. In Proc. of DL 2010. CEUR-WS.org/
Vol-573/, 2010.

[Del Vescovo et al., 2011] C. Del Vescovo, B. Parsia, U. Sattler,
and T. Schneider. The modular structure of an ontology: atomic
decomposition. Technical report, 2011. Available at http:
//bit.ly/i4olY0.

[Ghilardi et al., 2006] S. Ghilardi, C. Lutz, and F. Wolter. Did I
damage my ontology? A case for conservative extensions in de-
scription logics. In Proc. of KR-06, pages 187–197. AAAI Press,
2006.

[Jiménez-Ruiz et al., 2008] E. Jiménez-Ruiz, B. Cuenca Grau,
U. Sattler, T. Schneider, and R. Berlanga Llavori. Safe and eco-
nomic re-use of ontologies: A logic-based methodology and tool
support. In Proc. of ESWC-08, vol. 5021 of LNCS, pages 185–
199. Springer-Verlag, 2008.

[Jimeno et al., 2008] A. Jimeno, E. Jiménez-Ruiz, R. Berlanga, and
D. Rebholz-Schuhmann. Use of shared lexical resources for effi-
cient ontological engineering. In Proc. of SWAT4LS-08, vol. 435
of CEUR, 2008.

[Konev et al., 2008] B. Konev, C. Lutz, D. Walther, and F. Wolter.
Logical difference and module extraction with CEX and MEX.
In Proc. of DL 2008, vol. 353 of CEUR, 2008.

[Konev et al., 2009] B. Konev, C. Lutz, D. Walther, and F. Wolter.
Formal properties of modularization. In Modular Ontologies, vol.
5445 of LNCS, pages 25–66. 2009.

[Konev et al., 2010] B. Konev, C. Lutz, D. Ponomaryov, and
F. Wolter. Decomposing Description Logic Ontologies. In Proc.
of KR-10, pages 236–246. AAAI Press, 2010.

[Kontchakov et al., 2009] R. Kontchakov, L. Pulina, U. Sattler,
T. Schneider, P. Selmer, F. Wolter, and M. Zakharyaschev. Min-
imal module extraction from DL-Lite ontologies using QBF solv-
ers. In Proc. of IJCAI-09, pages 836–841, 2009.

[Kutz et al., 2004] O. Kutz, C. Lutz, F. Wolter, and M. Za-
kharyaschev. E-connections of abstract description systems. Ar-
tificial Intelligence, 156(1):1–73, 2004.

[Parsia& Schneider, 2010] B. Parsia and T. Schneider. The modular
structure of an ontology: an empirical study. In Proc. of KR-10,
pages 584–586. AAAI Press, 2010.

[Sattler et al., 2009] U. Sattler, T. Schneider, and M. Zakharya-
schev. Which kind of module should I extract? In Proc. of DL
2009, vol. 477 of CEUR. CEUR-WS.org/Vol-477/, 2009.

[Stuckenschmidt et al., 2004] H. Stuckenschmidt, F. van Harmelen,
P. Bouquet, F. Giunchiglia, and L. Serafini. Using C-OWL for the
alignment and merging of medical ontologies. In Proc. KR-MED,
vol. 102 of CEUR, pages 88–101. CEUR-WS.org/Vol-102/,
2004.

[Stuckenschmidt&Klein, 2004] H. Stuckenschmidt and M. Klein.
Structure-based partitioning of large concept hierarchies. In Proc.
of ISWC-04, vol. 3298 of LNCS, pages 289–303. Springer-Verlag,
2004.

[Suntisrivaraporn, 2008] B. Suntisrivaraporn. Module extraction
and incremental classification: A pragmatic approach for EL+

ontologies. In Proc. of ESWC-08, vol. 5021 of LNCS, pages 230–
244. Springer-Verlag, 2008.

2237

