
Conjunctive Query Inseparability of OWL 2 QL TBoxes

B. Konev,1 R. Kontchakov,2 M. Ludwig,1 T. Schneider,3 F. Wolter1 and M. Zakharyaschev2

1Department of Computer Science 2Department of CS & IS 3Department of Computer Science
University of Liverpool, UK Birkbeck College London, UK Universität Bremen, Germany

–konev,michel.ludwig,wolter˝ –roman,michael˝ tschneider
@liverpool.ac.uk @dcs.bbk.ac.uk @informatik.uni-bremen.de

Abstract

The OWL 2 profile OWL 2 QL, based on the DL-Lite fam-
ily of description logics, is emerging as a major language
for developing new ontologies and approximating the exist-
ing ones. Its main application is ontology-based data access,
where ontologies are used to provide background knowledge
for answering queries over data. We investigate the corre-
sponding notion of query inseparability (or equivalence) for
OWL 2 QL ontologies and show that deciding query insepa-
rability is PSPACE-hard and in EXPTIME. We give polyno-
mial time (incomplete) algorithms and demonstrate by exper-
iments that they can be used for practical module extraction.

Introduction
In recent years, ontology-based data access (OBDA) has
emerged as one of the most interesting and challenging ap-
plications of description logic (Dolby et al. 2008; Heymans
et al. 2008; Poggi et al. 2008). The key idea is to use ontolo-
gies for enriching data with additional background knowl-
edge, and thereby enable query answering over incomplete
and semistructured data from heterogeneous sources via
a high-level conceptual interface. The W3C recognised
the importance of OBDA by including in the OWL 2 Web
Ontology Language the profile OWL 2 QL, which was de-
signed for OBDA with standard relational database systems.
OWL 2 QL is based on a description logic (DL) that was
originally introduced under the name DL-LiteR (Calvanese
et al. 2006; 2007) and called DL-LiteHcore in the more gen-
eral classification of (Artale et al. 2009). It can be described
as an optimal sub-language of the DL SROIQ, underlying
OWL 2, which includes most of the features of conceptual
models, and for which conjunctive query answering can be
done in AC0 for data complexity.

Thus, DL-LiteHcore is becoming a major language for
developing ontologies, and a target language for transla-
tion and approximation of existing ontologies formulated
in more expressive DLs (Pan and Thomas 2007; Botoeva,
Calvanese, and Rodriguez-Muro 2010). One of the con-
sequences of this development is that DL-LiteHcore ontolo-
gies turn out to be larger and more complex than origi-
nally envisaged. As a result, reasoning support for ontol-
ogy engineering tasks such as composing, re-using, com-
paring, and extracting ontologies—which so far has been

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only analysed for expressive DLs (Cuenca Grau et al. 2008;
Stuckenschmidt, Parent, and Spaccapietra 2009), EL (Lutz
and Wolter 2010) and DL-Lite dialects (Kontchakov, Wolter,
and Zakharyaschev 2010) without role inclusions—is be-
coming increasingly important for DL-LiteHcore as well.

In the context of OBDA, the basic notion underlying
many ontology engineering tasks is Σ-query inseparability:
for a signature (a set of concept and role names) Σ, two on-
tologies are deemed to be inseparable if they give the same
answers to any conjunctive query over any data formulated
in Σ. Thus, in applications using Σ-queries and data, one
can safely replace any ontology by a Σ-query inseparable
one. Note that the relativisation to Σ is very important here.
For example, one cannot expect modules of an ontology to
be query inseparable from the whole ontology for arbitrary
queries and data sets, whereas this should be the case if we
restrict the query and data language to the module’s signa-
ture or a specified subset thereof. Similarly, when compar-
ing two versions of one ontology, the subtle and potentially
problematic differences are those that concern queries over
their common symbols, rather than all symbols occurring in
these versions. In applications where ontologies are built
using imported parts, a stronger notion of inseparability is
required: two ontologies are strongly Σ-query inseparable
if they give the same answers to Σ-queries and data when
imported to an arbitrary context ontology formulated in Σ.

The aim of this paper is to (i) investigate the computa-
tional complexity of deciding (strong) Σ-query inseparabil-
ity for DL-LiteHcore ontologies, (ii) develop efficient (though
incomplete) algorithms for practical inseparability checking,
and (iii) analyse the performance of the algorithms for the
challenging task of minimal module extraction.

One of our surprising discoveries is that the analysis of
Σ-query inseparability for (seemingly ‘harmless’ and com-
putationally well-behaved) DL-LiteHcore ontologies requires
drastically different logical tools compared with the pre-
viously considered DLs. It turns out that the new syn-
tactic ingredient—the interaction of role inclusions and in-
verse roles—makes deciding (strong) query inseparability
PSPACE-hard, as opposed to the known CONP and Πp

2-
completeness results for DL-Lite dialects without role in-
clusions (Kontchakov, Wolter, and Zakharyaschev 2010).
On the other hand, the obtained EXPTIME upper bound is
actually the first known decidability result for strong in-
separability, which goes beyond the ‘essentially’ Boolean

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

221

logic and might additionally indicate a way of solving the
open problem of strong Σ-query inseparability for EL (Lutz
and Wolter 2010). For DL-Litecore ontologies (without role
inclusions), strong Σ-query inseparability is shown to be
only NLOGSPACE-complete. We give (incomplete) poly-
nomial time algorithms checking (strong) Σ-inseparability
and demonstrate, by a set of minimal module extraction
experiments, that they are (i) complete for many existing
DL-LiteHcore ontologies and signatures, and (ii) sufficiently
fast to be used in module extraction algorithms that require
thousands of Σ-query inseparability checks. All omitted
proofs can be found at www.dcs.bbk.ac.uk/˜roman.

Σ-Query Entailment and Inseparability

We begin by formally defining the description logic
DL-LiteHcore, underlying OWL 2 QL, and the notions of Σ-
query inseparability and Σ-query entailment. The language
of DL-LiteHcore contains countably infinite sets of individual
names ai, concept names Ai, and role names Pi. Roles R
and concepts B of this language are defined by:

R ::= Pi | P−
i ,

B ::= ⊥ | � | Ai | ∃R.

A DL-LiteHcore TBox, T , is a finite set of inclusions

B1 � B2, R1 � R2, B1 �B2 � ⊥, R1 �R2 � ⊥,

where B1, B2 are concepts and R1, R2 roles. An ABox, A,
is a finite set of assertions of the form B(ai), R(ai, aj)
and ai �= aj , where ai and aj are individual names, B a
concept and R a role. Ind(A) will stand for the set of in-
dividual names occurring in A. Taken together, T and A
constitute the DL-LiteHcore knowledge base (KB, for short)
K = (T ,A). The sub-language of DL-LiteHcore without role
inclusions R1 � R2 is denoted by DL-Litecore (Calvanese et
al. 2007).

The semantics of DL-LiteHcore is defined as usual in DL
(Baader et al. 2003). We only note that, in interpretations
I = (ΔI , ·I), we do not have to comply with the unique
name assumption, that is, we can have aIi = aIj for i �= j.
We write I |= α to say that an inclusion or assertion α is true
in I. The interpretation I is a model of a KB K = (T ,A) if
I |= α for all α ∈ T ∪ A. K is consistent if it has a model.
A concept B is said to be T -consistent if (T , {B(a)}) has a
model. K |= α means that I |= α for all models I of K.

A conjunctive query (CQ) q(x1, . . . , xn) is a first-order
formula ∃y1 . . . ∃ym ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is
constructed, using only ∧, from atoms of the form B(t)
and R(t1, t2), with B being a concept, R a role, and
ti being an individual name or a variable from the list
x1, . . . , xn, y1, . . . , ym. The variables in �x = x1, . . . , xn

are called answer variables of q. We say that an n-tuple
�a ⊆ Ind(A) is an answer to q in an interpretation I if
I |= q[�a] (here we regard I to be a first-order structure); �a
is a certain answer to q over a KB K = (T ,A) if I |= q[�a]
for all models I of K; in this case we write K |= q[�a].

To define the main notions of this paper, consider two KBs
K1 = (T1,A) and K2 = (T2,A). For example, the Ti are
different versions of some ontology, or one of them is a re-
finement of the other by means of new axioms. The question

we are interested in is whether they give the same answers to
queries formulated in a certain signature, say, in the common
vocabulary of the Ti or in a vocabulary relevant to an appli-
cation. To be precise, by a signature, Σ, we understand any
finite set of concept and role names. A concept (inclusion,
TBox, etc.) all concept and role names of which are in Σ is
called a Σ-concept (inclusion, etc.). We say that K1 Σ-query
entails K2 if, for all Σ-queries q(�x) and all �a ⊆ Ind(A),
K2 |= q[�a] implies K1 |= q[�a]. In other words: any certain
answer to a Σ-query given by K2 is also given by K1.

As the ABox is typically not fixed or known at the ontol-
ogy design stage, we may have to compare the TBoxes over
arbitrary Σ-ABoxes rather than a fixed one, which gives the
following central definition of this paper.

Definition 1. Let T1 and T2 be TBoxes and Σ a signature.
T1 Σ-query entails T2 if (T1,A) Σ-query entails (T2,A) for
any Σ-ABox A. T1 and T2 are Σ-query inseparable if they
Σ-query entail each other, in which case we write T1 ≡Σ T2.

In many applications, Σ-query inseparability is enough to
ensure that T1 can be safely replaced by T2. However, if they
are developed as part of a larger ontology or are meant to be
imported in other ontologies, a stronger notion is required:

Definition 2. T1 strongly Σ-query entails T2 if T ∪ T1 Σ-
query entails T ∪ T2, for all Σ-TBoxes T . T1 and T2 are
strongly Σ-query inseparable if they strongly Σ-query entail
each other, in which case we write T1 ≡s

Σ T2.

The following example illustrates the difference between
Σ-query and strong Σ-query inseparability. For further dis-
cussion and examples, we refer the reader to (Cuenca Grau
et al. 2008; Kontchakov, Wolter, and Zakharyaschev 2010).

Example 3. Let T2 = {� � ∃R, ∃R− � B,B � A � ⊥},
T1 = ∅ and Σ = {A}. T1 and T2 are Σ-query inseparable.
However, they are not strongly Σ-query inseparable. Indeed,
for the Σ-TBox T = {� � A}, T1 ∪ T is consistent, while
T2∪T is inconsistent, and so T1∪T does not Σ-query entail
T2 ∪ T , as witnessed by the query q = ⊥.

From now on, we shall focus our attention mainly on the
more basic notion of Σ-query entailment.

Σ-Query Entailment and Σ-Homomorphisms

In this section, we characterise Σ-query entailment between
DL-LiteHcore TBoxes semantically in terms of (partial) Σ-
homomorphisms between certain canonical models. Then,
in the next section, we use this characterisation to investi-
gate the complexity of deciding Σ-query entailment.

The canonical model, MK, of a consistent KB K =
(T ,A) gives correct answers to all CQs. In general, MK is
infinite; however, it can be folded up into a small generating
model GK = (IK,�K) consisting of a finite interpretation
IK and a generating relation �K that defines the unfolding.

Let �∗
T be the reflexive and transitive closure of the role

inclusion relation given by T , and let [R] = {S | R ≡∗
T S},

where R ≡∗
T S stands for ‘R �∗

T S and S �∗
T R.’ We write

[R] ≤T [S] if R �∗
T S; thus, ≤T is a partial order on the set

{[R] | R a role in T }. For each [R], we introduce a witness
w[R] and define a generating relation �K on the set of these
witnesses together with Ind(A) by taking:

222

a �K w[R] if a ∈ Ind(A) and [R] is ≤T -minimal such that
K |= ∃R(a) and K �|= R(a, b) for any b ∈ Ind(A);

w[S] �K w[R] if [R] is ≤T -minimal with T |= ∃S− � ∃R
and [S−] �= [R].

A role R is generating in K if there are a ∈ Ind(A) and
R1, . . . , Rn = R such that a �K w[R1] �K · · · �K w[Rn].

The interpretation IK is now defined as follows:

ΔIK = Ind(A) ∪ {w[R] | R is generating in K},
aIK = a, for all a ∈ Ind(A),

AIK = {a | K |= A(a)} ∪ {w[R] | T |= ∃R− � A},
P IK = {(a, b) | there is R(a, b) ∈ A s.t. R �∗

T P} ∪
{(x,w[R]) | x �K w[R] and [R] ≤T [P]} ∪
{(w[R], x) | x �K w[R] and [R] ≤T [P−]}.

GK can be constructed in polynomial time in |K|, and it is
not hard to see that IK |= K. To construct the canonical
model MK giving the correct answers to all CQs, we unfold
the generating model GK = (IK,�K) along �K. A path
in GK is a finite sequence aw[R1] · · ·w[Rn], n ≥ 0, such that
a ∈ Ind(A), a �K w[R1] and w[Ri] �K w[Ri+1], for i < n.
Denote by path(GK) the set of all paths in GK and by tail(σ)
the last element in σ ∈ path(GK). MK is defined by taking:

ΔMK = path(GK),

aMK = a, for all a ∈ Ind(A),

AMK = {σ | tail(σ) ∈ AIK},
PMK = {(a, b) ∈ Ind(A)× Ind(A) | (a, b) ∈ P IK} ∪

{(σ, σ · w[R]) | tail(σ) �K w[R], [R] ≤T [P]} ∪
{(σ · w[R], σ) | tail(σ) �K w[R], [R] ≤T [P−]}.

Example 4. The models GK1
for K1 = (T1, {A(a)}) with

T1 = {A � ∃S, ∃S− � ∃T, ∃T− � ∃T, T � R}, and
MK1

look as follows (�K1
in GK1

is depicted as →):

GK1

A

a wS

S

wT

R, T

R, T

MK1

A

a awS

S

awSwT

R, T

awSwTwT

R, T
. . .

Our first result states that MK gives correct answers to all
conjunctive queries:

Theorem 5. For all consistent DL-LiteHcore KBs K, CQs
q(�x) and tuples �a ⊆ Ind(A), where K = (T ,A), we have
K |= q[�a] iff MK |= q[�a].

Thus, to decide Σ-query entailment between KBs K1 and
K2, it suffices to check whether MK2

|= q[�a] implies
MK1 |= q[�a] for all Σ-queries q(�x) and tuples �a. This
relationship between MK2

and MK1
can be characterised

semantically in terms of finite Σ-homomorphisms.
For an interpretation I and a signature Σ, the Σ-types

tIΣ(x) and rIΣ(x, y), for x, y ∈ ΔI , are given by:

tIΣ(x) = {Σ-concept B | x ∈ BI},
rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI}.

A Σ-homomorphism from an interpretation I to I ′ is a func-
tion h : ΔI → ΔI′

such that h(aI) = aI
′
, for all indi-

vidual names a interpreted in I, tIΣ(x) ⊆ tI
′

Σ (h(x)) and
rIΣ(x, y) ⊆ rI

′

Σ (h(x), h(y)), for all x, y ∈ ΔI .
It is well-known that answers to Σ-CQs are pre-

served under Σ-homomorphisms. Thus, if there is a Σ-
homomorphism from MK2

to MK1
, then K1 Σ-query en-

tails K2. However, the converse does not hold in general.
Example 6. Take T1 from Example 4, and let T2 be the
result of replacing R in T1 with R−. Let Σ = {A,R} and
Ki = (Ti, {A(a)}). Then the Σ-reduct of MK1

does not
contain a Σ-homomorphic image of the Σ-reduct of MK2

,
depicted below. On the other hand, it is easily seen that

MK2

A
a

R− R−
. . .

T1 and T2 are Σ-query inseparable. Note that the Σ-reduct
of MK2 contains points that are not reachable from the
ABox by Σ-roles. In fact, using König’s Lemma, one can
show that if every point in MK2

is reachable from the ABox
by a path of Σ-roles, then K1 Σ-query entails K2 iff there
exists a Σ-homomorphism from MK2

to MK1
.

Because of this, we say that I is finitely Σ-homo-
morphically embeddable into I ′ if, for every finite sub-
interpretation I1 of I, there exists a Σ-homomorphism from
I1 to I ′. Now one can show:
Theorem 7. Let K1 and K2 be consistent DL-LiteHcore KBs.
Then K1 Σ-query entails K2 iff MK2

is finitely Σ-homomo-
rphically embeddable into MK1 .

Theorem 7 does not yet give a satisfactory semantic char-
acterisation of Σ-query entailment between TBoxes, as one
still has to consider infinitely many Σ-ABoxes. However,
using the fact that inclusions in DL-LiteHcore, different from
disjointness axioms, involve only one concept or role in the
left-hand side and making sure that the TBoxes entail the
same Σ-inclusions, one can show that it is enough to con-
sider singleton Σ-ABoxes of the form {B(a)}. Denote the
models G(T ,{B(a)}) and M(T ,{B(a)}) by GB

T and MB
T , re-

spectively. We thus obtain the following characterisation of
Σ-entailment between DL-LiteHcore TBoxes T1, T2:
Theorem 8. T1 Σ-query entails T2 iff
(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(h) MB

T2
is finitely Σ-homomorphically embeddable into

MB
T1

, for all T1-consistent Σ-concepts B.
By applying condition (p) to B � ⊥, we obtain that every
T1-consistent Σ-concept B is also T2-consistent.

Complexity of Σ-Query Entailment
We use Theorem 8 to show that deciding Σ-query entailment
for DL-LiteHcore TBoxes is PSPACE-hard and in EXPTIME.

Recall that subsumption in DL-LiteHcore is NLOGSPACE-
complete (Calvanese et al. 2007; Artale et al. 2009); so con-
dition (p) of Theorem 8 can be checked in polynomial time.

223

And, since there are at most 2 · |Σ| singleton Σ-ABoxes,
we can concentrate on the complexity of checking finite Σ-
homomorphic embeddability of canonical models for single-
ton ABoxes.

We begin by considering DL-Litecore, which does not con-
tain role inclusions. In this case, the existence of Σ-homo-
morphisms between canonical models can be expressed
solely in terms of the types of the points in these models;
cf. (Kontchakov, Wolter, and Zakharyaschev 2010). Let T1
and T2 be DL-Litecore TBoxes and Σ a signature.

Theorem 9. T1 Σ-query entails T2 iff (p) holds and, for
every T1-consistent Σ-concept B and every x ∈ ΔIB

T2 , there

is x′ ∈ ΔIB
T1 with t

IB
T2

Σ (x) ⊆ t
IB
T1

Σ (x′).

The criterion of Theorem 9 can be checked in polynomial
time, in NLOGSPACE, to be more precise. Thus:

Theorem 10. Checking Σ-query entailment for TBoxes in
DL-Litecore is NLOGSPACE-complete.

However, if role inclusions become available, the picture
changes dramatically: not only do we have to compare
the Σ-types of points in the canonical models, but also
the Σ-paths to these points. To illustrate, consider the
generating models G1, G2 below, where the arrows represent
the generating relations, and the concept names A, Xi, Xi

and the role names R and Tj are all symbols in Σ. The
model G2 contains 4 R-paths from a to w, which are further

G1

A
a

X1

R,T
−
j

X1

R,T −
j

X2R,T−
j

R,
T
−
j

X2

R,T −
j

R,T−
j

X3R,T−
j

R,
T
−
j

X3

R,T −
j

R,T−
j

X4R,T−
j

R,
T
−
j

X4

R,T −
j

R,T−
j

T1
T1

T1

T2

T2

G2

A
a

A

X1

R

X1

R

R

R

X3

R

X3

R

w
R

R

T1

T1

T2

T2

extended by the infinite Tj-paths. The paths π from a to w
can be homomorphically mapped to distinct R-paths h(π)
in G1 starting from a. But the extension of such a π with
the infinite Tj-chain can only be mapped to a suffix of h(π)
(backward, along T−

j)—because we have to map paths in
the unfolding M2 of G2 to paths in M1—and then to a
Tj-loop in G1. But to check whether this can be done, we
may have to ‘remember’ the whole path π.

To see that G1 and G2 can be given by DL-LiteHcore TBoxes,
fix a quantified Boolean formula Q1X1 . . .QnXn

∧m
j=1 Cj ,

where Qi ∈ {∀, ∃} and the Cj are clauses over the variables
Xi. Let Σ = {A,Xi, Xi, R, Tj | i ≤ n, j ≤ m} and let T1

contain the inclusions

A � ∃S−
0 , ∃S−

i−1 � ∃Qk
i ,

∃(Qk
i)

− � Xk
i , Qk

i � Si, Si � R,

Xk
i � ∃Rj if k = 0,¬Xi ∈ Cj or k = 1, Xi ∈ Cj ,

∃R−
j � ∃Rj , Rj � Tj , Si � T−

j ,

and T2 the inclusions

A � ∃S−
0 , ∃S−

i−1 �
{
∃Qk

i , if Qi = ∀,
∃Si, if Qi = ∃,

∃(Qk
i)

− � Xk
i , Qk

i � Si, Si � R,

∃S−
n � ∃Pj , ∃P−

j � ∃Pj , Pj � Tj ,

for all i ≤ n, j ≤ m and k = 1, 2. The generating models
GA
T1

and GA
T2

, restricted to Σ, look like G1 and G2 in the pic-
ture above, respectively. Moreover, one can show that MA

T2

is (finitely) Σ-homomorphically embeddable into MA
T1

iff
the QBF above is satisfiable. As satisfiability of QBFs is
known to be PSPACE-complete, we obtain:

Theorem 11. Σ-query entailment for DL-LiteHcore TBoxes is
PSPACE-hard.

On the other hand, the problem whether MK2 is finitely
Σ-homomorphically embeddable into MK1 can be reduced
to the emptiness problem for alternating two-way automata,
which belongs to EXPTIME (Vardi 1998). In a way similar
to (Vardi 1998; Grädel and Walukiewicz 1999), where these
automata were employed to prove EXPTIME-decidability of
the modal μ-calculus with converse and the guarded fixed
point logic of finite width, one can use their ability to
‘remember’ paths (in the sense illustrated in the example
above) to obtain the EXPTIME upper bound:

Theorem 12. Checking Σ-query entailment for DL-LiteHcore
TBoxes is in EXPTIME.

The precise complexity of Σ-query entailment for
DL-LiteHcore TBoxes is still unknown. To put the obtained
results into perspective, let us recall that deciding Σ-query
entailment for ontologies in the DL DL-LiteNhorn is CONP-
complete (Kontchakov, Wolter, and Zakharyaschev 2010).
Compared to DL-LiteHcore, DL-LiteNhorn allows (unqualified)
number restrictions and conjunctions in the left-hand side of
concept inclusions, but does not have role inclusions, that
is: DL-LiteNhorn ∩ DL-LiteHcore = DL-Litecore. The data com-
plexity of answering CQs is the same for all three languages
under the UNA: AC0. However, the computational proper-
ties of these logics become different as far as Σ-query entail-
ment is concerned: NLOGSPACE-complete for DL-Litecore,
CONP-complete for DL-LiteNhorn, and between PSPACE and
EXPTIME for DL-LiteHcore. It may be of interest to note that
Σ-query entailment for DL-LiteNbool, allowing full Booleans
as concept constructs, is Πp

2-complete.

Strong Σ-Query Entailment

It is pretty straightforward to construct an exponential
time algorithm checking strong Σ-query entailment between
DL-LiteHcore TBoxes T1 and T2: enumerate all Σ-TBoxes T

224

and check whether T1 ∪ T Σ-query entails T2 ∪ T . As there
are quadratically many Σ-inclusions, this algorithm calls the
Σ-query entailment checker 2|Σ|2 times, in the worst case.
We now show that one can do much better than that.

First, it turns out that instead of expensive Σ-query entail-
ment checks for the TBoxes Ti ∪ T , it is enough to check
consistency (in polynomial time). More precisely, suppose
T1 Σ-query entails T2. One can show then that T1 does not
strongly Σ-query entail T2 iff there exist a Σ-TBox T and
a Σ-concept B such that (T1 ∪ T , {B(a)}) is consistent but
(T2 ∪ T , {B(a)}) is not (see Example 3 above).

Moreover, checking consistency for all Σ-TBoxes T can
further be reduced—using the primitive form of DL-LiteHcore
axioms—to checking consistency for all singleton Σ-
TBoxes T . Thus, we obtain the following:
Theorem 13. Suppose that T1 Σ-query entails T2. Then
T1 does not strongly Σ-query entail T2 iff there is a Σ-con-
cept B and a Σ-TBox T with a single inclusion of the form
B1 � B2 or R1 � R2 such that (T1∪T , {B(a)}) is consis-
tent but (T2 ∪ T , {B(a)}) is inconsistent.

So, if we already know that T1 Σ-query entails T2, then
checking whether this entailment is actually strong can be
done in polynomial time (and NLOGSPACE). The proof,
based on both semantical and proof-theoretic constructions,
is given in the full version of the paper www.dcs.bbk.ac.uk/
˜roman/owl2ql-modules. Theorem 13 is crucial for the imple-
mentation of an efficient strong Σ-query entailment checker,
as discussed in the section on our experiments below.

Incomplete Algorithm for Σ-Query Entailment

The complex interplay between role inclusions and inverse
roles, required in the proof of PSPACE-hardness, appears to
be too artificial compared to how roles are used in ‘real-
world’ ontologies. For example, in conceptual modelling,
the number of roles is comparable with the number of con-
cepts, but the number of role inclusions is normally very
small (see the table in the next section). For this reason,
instead of a complete exponential time Σ-query entailment
checker, we have implemented a polynomial time correct but
incomplete algorithm, which is based on testing simulations
between transition systems.

Let T1 and T2 be DL-LiteHcore TBoxes, Σ a signature, B
a Σ-concept. Denote Ki = (Ti, {B(a)}) and Ii = IKi

,
i = 1, 2. A relation ρ ⊆ ΔI2 ×ΔI1 is called a Σ-simulation
of GK2 in GK1 if the following conditions hold:

(s1) the domain of ρ is ΔI2 and (aI2 , aI1) ∈ ρ;
(s2) tI2

Σ (x) ⊆ tI1

Σ (x′), for all (x, x′) ∈ ρ;
(s3) if x �K2

w[R] and (x, x′) ∈ ρ, then there is y′ ∈ ΔI1

such that (w[R], y
′) ∈ ρ and S ∈ rI1

Σ (x′, y′) for every
Σ-role S with [R] ≤T2 [S].

We call ρ a forward Σ-simulation if it satisfies (s1), (s2) and
the condition (s3′), which strengthens (s3) with the extra re-
quirement: y′ = w[T], for some role T , with x′ �K1

w[T]

and [T] ≤T1
[S] for every Σ-role S with [R] ≤T2

[S].
Example 14. In Example 6, there is a Σ-simulation of GK2

in GK1
, but no forward Σ-simulation exists. The same ap-

plies to G2 and G1 in the proof of the PSPACE lower bound.

In contrast to finite Σ-homomorphic embeddability of
MK2

in MK1
, the problem of checking the existence of

(forward) Σ-simulations of GK2
in GK1

is tractable and
well understood from the literature on program verifica-
tion (Baier and Katoen 2007). Consider now the following
conditions, which can be checked in polynomial time:
(y) condition (p) holds and there is a forward Σ-simulation

of GB
T2

in GB
T1

, for every T1-consistent Σ-concept B;
(n) condition (p) does not hold or there is no Σ-simulation

of GB
T2

in GB
T1

, for any T1-consistent Σ-concept B.
Theorem 15. Let T1, T2 be DL-LiteHcore TBoxes and Σ a sig-
nature. If (y) holds, then T1 Σ-query entails T2. If (n) holds,
then T1 does not Σ-query entail T2.

Thus, an algorithm checking conditions (y) and (n) can
be used as a correct but incomplete Σ-query entailment
checker. It cannot be complete since neither (y) nor (n) holds
in Example 14. On the other hand, condition (n) proves to
be a criterion of Σ-query entailment in two important cases:
Theorem 16. Suppose that (a) T1 and T2 are DL-Litecore
TBoxes, or (b) T1 = ∅ and T2 is a DL-LiteHcore TBox. Then
condition (n) holds iff T1 does not Σ-query entail T2.
The case T1 = ∅ is of interest for module extraction and safe
module import, which will be discussed in the next section.

Experiments

Checking (strong) Σ-query entailment has multiple applica-
tions in ontology versioning, re-use, and extraction. We have
used the algorithms, suggested by Theorems 15 and 13, for
minimal module extraction to see how efficient they are in
practice and whether the incompleteness of the (y)–(n) con-
ditions is problematic. Extracting minimal modules from
medium-sized real-world ontologies requires thousands of
calls of the (strong) Σ-query entailment checker, and thus
provides a tough test for our approach.

For a TBox T and a signature Σ, a subset M ⊆ T is
– a Σ-query module of T if M ≡Σ T ;
– a strong Σ-query module of T if M ≡s

Σ T ;
– a depleting Σ-query module of T if ∅ ≡s

Σ∪sig(M) T \M,
where sig(M) is the signature of M.

We are concerned with computing a minimal (w.r.t. ⊆) Σ-
query (MQM), a minimal strong Σ-query (MSQM), and the
(uniquely determined) minimal depleting Σ-query (MDQM)
module of T . The general extraction algorithms, which call
Σ-query entailment checkers, are taken from (Kontchakov,
Wolter, and Zakharyaschev 2010). For MQMs and MSQMs,
the number of calls to the checker coincides with the num-
ber of inclusions in T . For MDQMs (where one of the
TBoxes given to the checker is empty, and so the checker
is complete, by Theorem 16), the number of checker calls is
quadratic in the number of inclusions in T .

We extracted modules from OWL 2 QL approximations
of 3 commercial software applications called Core, Um-
brella and Mimosa (the original ontologies use a few axioms
that are not expressible OWL 2 QL). Mimosa is a specialisa-
tion of the MIMOSA OSA-EAI specification1 for container

1htpp://www.mimosa.org/?q=resources/specs/osa-eai-v321

225

shipping. Core is based on a supply-chain management sys-
tem used by the bookstore chain Ottakar’s (now merged with
Waterstone’s), and Umbrella on a research data validation
and processing system used by the Intensive Care National
Audit and Research Centre2. The original Core and Umbrella
were used for the experiments in (Kontchakov, Wolter, and
Zakharyaschev 2010). For comparison, we extracted mod-
ules from OWL 2 QL approximations of the well-known
IMDB and LUBM ontologies. For each of these ontologies,

ontology Mimosa Core Umbrella IMDB LUBM
concept incl. 710 1214 1506 45 136
role incl. 53 19 13 21 9
concept nm. 106 82 79 14 43
role names 145 76 64 30 31

we randomly generated 20 signatures Σ of 5 concept and
5 roles names. We extracted Σ-MQMs, MSQMs, MDQMs
as well as the �⊥-module (Cuenca Grau et al. 2008) from
the whole Mimosa, IMDB and LUBM ontologies. For
the larger Umbrella and Core ontologies, we first com-
puted the �⊥-modules, and then employed them to fur-
ther extract MQMs, MSQMs, MDQMs, which are all con-
tained in the �⊥-modules. The average size of the result-
ing modules and its standard deviation is shown below:

LUBM (145)

31

M
Q

M

32

M
SQ

M

34

M
D

Q
M

34

�⊥
M

IMDB (66)

20

M
Q

M

20

M
SQ

M

25

M
D

Q
M

30

�⊥
M

Umbrella (1519)

98

M
Q

M

101

M
SQ

M

315

M
D

Q
M

391

�⊥
M

Mimosa (763)

47

M
Q

M

56

M
SQ

M

90

M
D

Q
M

105

�⊥
M

Core (1233)

83

M
Q

M

87

M
SQ

M

375

M
D

Q
M

375

�⊥
M

Details of the experiments and ontologies are available at
www.dcs.bbk.ac.uk/˜roman/owl2ql-modules. Here we briefly
comment on efficiency and incompleteness. Checking Σ-
query inseparability turned out to be very fast: a single call
of the checker never took more than 1s for our ontologies.
For strong Σ-query inseparability, the maximal time was
less than 1 min. For comparisons with the empty TBox,
the maximal time for strong Σ-query inseparability tests was
less than 10s. In the hardest case, Mimosa, the average to-
tal extraction times were 2.5mins for MQMs, 140mins for
MSQMs, and 317mins for MDQMs. Finally, only in 9 out
of about 75,000 calls, the Σ-query entailment checker was
not able to give a certain answer due to incompleteness of
the (y)–(n) condition, in which case the inclusions in ques-
tion were added to the module.

Outlook

We have demonstrated that, despite its PSPACE-hardness,
(strong) Σ-query inseparability can be decided efficiently
for real-world OWL 2 QL ontologies. It would be of in-
terest to explore (i) whether (some of) our techniques can
be extended to more expressive DLs such as DL-LiteNhorn or
even ELI, and (ii) how the algorithms deciding inseparabil-
ity can be utilised for analysing and visualising the differ-

2http://www.icnarc.org

ence between ontology versions if two ontologies are not Σ-
query inseparable, as required by ontology versioning sys-
tems (Noy and Musen 2002).

Acknowledgments

This work was partially supported by the U.K. EPSRC
grants EP/H05099X/1 and EP/H043594/1.

References
Artale, A.; Calvanese, D.; Kontchakov, R.; and Zakharyaschev, M.
2009. The DL-Lite family and relations. Journal of Artificial In-
telligence Research 36:1–69.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P., eds. 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University
Press.
Baier, C., and Katoen, J.-P. 2007. Principles of Model Checking.
MIT Press.
Botoeva, E.; Calvanese, D.; and Rodriguez-Muro, M. 2010. Ex-
pressive approximations in DL-Lite ontologies. In Proc. of AIMSA,
21–31. Springer.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2006. Data complexity of query answering in description
logics. In Proc. of KR, 260–270.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2007. Tractable reasoning and efficient query answer-
ing in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3):385–429.
Cuenca Grau, B.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2008.
Modular reuse of ontologies: Theory and practice. JAIR 31:273–
318.
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Ma, L.; Schonberg, E.; Srini-
vas, K.; and Sun, X. 2008. Scalable grounded conjunctive query
evaluation over large and expressive knowledge bases. In Proc. of
ISWC, v. 5318 of LNCS, 403–418.
Grädel, E., and Walukiewicz, I. 1999. Guarded fixed point logic.
In Proc. of LICS, 45–54.
Heymans, S.; Ma, L.; Anicic, D.; Ma, Z.; Steinmetz, et al. 2008.
Ontology reasoning with large data repositories. In Ontology Man-
agement, Semantic Web, Semantic Web Services, and Business Ap-
plications, Springer. 89–128.
Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010. Logic-
based ontology comparison and module extraction, with an appli-
cation to DL-Lite. Artif. Intell. 174:1093–1141.
Lutz, C., and Wolter, F. 2010. Deciding inseparability and con-
servative extensions in the description logic EL. J. Symb. Comput.
45(2):194–228.
Noy, N. F., and Musen, M. A. 2002. Promptdiff: A fixed-point
algorithm for comparing ontology versions. In Proc. of AAAI/IAAI,
744–750.
Pan, J. Z., and Thomas, E. 2007. Approximating OWL-DL On-
tologies. In Proc. of AAAI, 1434–1439.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.; Lenzerini,
M.; and Rosati, R. 2008. Linking data to ontologies. J. on Data
Semantics X:133–173.
Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds. 2009.
Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, v. 5445 of LNCS.
Vardi, M. Y. 1998. Reasoning about the past with two-way au-
tomata. In Proc. of ICALP, v. 1443 of LNCS, 628–641.

226

