
Two-Dimensional Description Logics for Context-Based Semantic Interoperability

Szymon Klarman
Department of Computer Science

Vrije Universiteit Amsterdam
sklarman@few.vu.nl

Vı́ctor Gutiérrez-Basulto
Department of Computer Science

Universität Bremen
victor@informatik.uni-bremen.de

Abstract
Description Logics (DLs) provide a clear and broadly
accepted paradigm for modeling and reasoning about
terminological knowledge. However, it has been often
noted, that although DLs are well-suited for represent-
ing a single, global viewpoint on an application domain,
they offer no formal grounding for dealing with knowl-
edge pertaining to multiple heterogeneous viewpoints
— a scenario ever more often approached in practical
applications, e.g. concerned with reasoning over dis-
tributed knowledge sources on the Semantic Web. In
this paper, we study a natural extension of DLs, in the
style of two-dimensional modal logics, which supports
declarative modeling of viewpoints as contexts, in the
sense of McCarthy, and their semantic interoperability.
The formalism is based on two-dimensional semantics,
where one dimension represents a usual object domain
and the other a (possibly infinite) domain of viewpoints,
addressed by additional modal operators and a metalan-
guage, on the syntactic level. We systematically intro-
duce a number of expressive fragments of the proposed
logic, study their computational complexity and con-
nections to related formalisms.

Introduction
Description Logics (DLs) are popular knowledge represen-
tation formalisms, whose most prominent application is the
design of ontologies — formal models of terminologies and
instance data, representative of particular domains of inter-
est (Baader et al. 2003) — used extensively on the Seman-
tic Web and in biomedical applications. Under the standard
Kripkean semantics, a DL ontology forces a unique, global
view on the represented world, in which the ontology ax-
ioms are interpreted as universally true. This philosophy is
well-suited as long as everyone can share the same concep-
tual perspective on the domain or there is no need for con-
sidering alternative viewpoints. Alas, this is hardly ever the
case and very often, same domains are modeled differently
depending on the intended use of an ontology. In practice,
effective representation and reasoning about knowledge per-
taining to such multiple heterogenous viewpoints becomes
the primary objective for many applications, e.g. those con-
cerned with reasoning over distributed knowledge sources

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the Semantic Web (Guha, McCool, and Fikes 2004;
Bao et al. 2010).

The challenges above resemble clearly the problems
which once inspired J. McCarthy to introduce his theory of
formalizing contexts in knowledge representation systems,
as a way of granting them more generality (McCarthy 1987;
Guha 1991). The gist of his proposal, motivating several
existing logics of context (Buvač and Mason 1993; Buvač
1996; Nossum 2003), is to replace logical formulas ϕ, as the
basic knowledge carriers, with assertions ist(c, ϕ). Asser-
tions of this form state that ϕ is true in c, where c denotes an
abstract first-order entity called a context, which on its own
can be described in a first-order language. For instance:

ist(c,Heart(a)) ∧HumanAnatomy(c)

states that the object a is a heart in some context described
as HumanAnatomy. Based on this foundation, the theory al-
lows for defining models of semantic interoperability within
a possibly unbounded space of contexts, i.e. generic rules
guiding the information flow between contexts, such as e.g.:

∀xy HumanAnatomy(x) ∧ Anatomy(y)→
∀z(ist(x,Heart(z))→ ist(y,HumanHeart(z)))

which ensures that in every Anatomy context, the interpre-
tation of HumanHeart includes also all those objects which
are instances of Heart in any HumanAnatomy context.

The formalism proposed in this paper incorporates these
fundamental ideas of McCarthy’s theory into the DL frame-
work by considering contexts as abstract, first-class citizens,
and offering an expressive formal apparatus for modeling
their semantic interoperability. As a result, we harmonize
and give a uniform formal treatment to two seemingly di-
verse aspects of the problem of reasoning with contexts in
DL: 1) how to extend DLs to support the representation of
inherently contextualized knowledge; 2) how to use knowl-
edge from coexisting classical DL ontologies while respect-
ing its context-specific scope. Our logic is essentially a two-
dimensional DL, in the style of product-like combinations
of DLs with modal logics (Wolter and Zakharyaschev 1999;
Kurucz et al. 2003), similar to e.g. temporal DLs (Lutz,
Wolter, and Zakharyaschev 2008; Artale, Lutz, and Toman
2007). In particular, we extend the standard DL semantics
with a second dimension, representing a possibly infinite
domain of contexts, and include additional modal operators

along with a separate metalanguage in the syntax, for quan-
tifying and expressing properties over the context entities.

In the following sections, we systematically introduce and
motivate a number of expressive fragments of the logic,
study their computational complexity and highlight the con-
nections to some related formalisms.

Description Logics: preliminaries
A DL language L is specified by a vocabulary Σ =
(NC , NR, NI), where NC is a set of concept names, NR
a set of role names, NI a set of individual names, and a
number of operators for constructing complex concept de-
scriptions (Baader et al. 2003). The semantics of L is given
through interpretations of the form I = (∆, ·I), where ∆
is a non-empty domain of individuals, and ·I is an interpre-
tation function. The meaning of the vocabulary is fixed via
mappings: aI ∈ ∆ for every a ∈ NI , AI ⊆ ∆ for ev-
ery A ∈ NC and rI ⊆ ∆ × ∆ for every r ∈ NR, and
>I = ∆. Then the function is inductively extended over
complex expressions according to the fixed semantics of the
constructors. Table 1 contains the list of concept construc-
tors and their semantics which are considered in the rest of
this paper: (1) top concept, (2) concept intersection, (3) exis-
tential role restriction, (4) complement, (5) nominal, where
C,D are concepts, r ∈ NR and a ∈ NI . We abbreviate ¬>
with ⊥, ¬(¬C u ¬D) with C tD and ¬∃r.¬C with ∀r.C.

Syntax Semantics
(1) > ∆
(2) C uD {x | x ∈ CI ∩DI}
(3) ∃r.C {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
(4) ¬C {x | x 6∈ CI}
(5) {a} {aI}

Table 1: Concept constructors and their semantics.

A knowledge base (or an ontology) K is a finite set of
axioms of three possible forms:

C v D | C(a) | r(a, b) (†)
where C,D are concepts, a, b ∈ NI and r ∈ NR. We write
C ≡ D, whenever C v D and D v C are both in K.
Typically, the formulas of the first type are denoted as TBox
axioms, whereas the remaining two as ABox axioms. An in-
terpretation I satisfies an axiom in either of the cases:
• I |= C v D iff CI ⊆ DI ,
• I |= C(a) iff aI ∈ CI ,
• I |= r(a, b) iff (aI , bI) ∈ rI .
Finally, I is a model of K whenever it satisfies all its ax-
ioms. The computational complexity of reasoning in DLs
varies depending on the expressiveness of the language. In
the logic EL, comprising only constructors (1-3), the central
reasoning problem, deciding concept subsumption (i.e. veri-
fying whether K |= C v D), is in PTIME (Baader, Brandt,
and Lutz 2005). For ALC (1-4) and ALCO (1-5), the main
reference problem of deciding knowledge base satisfiabil-
ity (i.e. verifying whether K has a model) is EXPTIME-
complete (Baader et al. 2003).

Interoperability systems
The DL semantics is extensional in its nature, in the sense
that the meaning of an expression is its denotation in the
object domain. Consequently, we define semantic interoper-
ability also in a strictly extensional way. We say that it is
the ability of a knowledge system to interpret expressions in
different contexts via shared extensions, according to the de-
clared constraints. For instance, the constraint αI(c) = βI(d)

entails that the expression α has the same meaning in the
context c as β in d. A formal representation of the context-
specific domain knowledge together with the interoperabil-
ity constraints is denoted here as an interoperability system.

We introduce our framework in several steps. First, we
demonstrate the basic interoperation mechanism in the sim-
plest scenario involving a fixed number of explicitly named
contexts. Next, we generalize the approach to account
for a possibly infinite domain of contexts and include a
lightweight metalanguage for describing them. Finally, we
consider a few expressive extensions to the framework.

Simple interoperability systems
A simple interoperation language SLL consists of a finite
set MI of individual context names, and an object language,
which extends a DLLwith special context operators applied
to all constructs of L.

Definition 1 (SLL-object language) Let L be a DL with
vocabulary Σ = (NC , NR, NI). Then the object language of
SLL is the smallest language containing L and closed under
the constructors of L and the operators 〈c〉, for c ∈MI :

〈c〉C | 〈c〉r | 〈c〉a
where C is a concept of the object language, r ∈ NR and
a ∈ NI . The resulting expressions are a concept, a role and
an individual name of the object language, respectively.

Intuitively, the operator 〈c〉 ‘imports’ the meaning of the
bounded expression from the context denoted by name c, to
the context of occurrence. Formally, the semantics of SLL is
defined via extended interpretations.

Definition 2 (SLL-interpretations) An SLL-interpretation
is a tuple M = (C, ·J ,∆, {·I(i)}i∈C), where:
• C is a non-empty domain of contexts,
• ·J : MI 7→ C,
• (∆, ·I(i)), for every i ∈ C, is an interpretation of the ob-

ject language, such that for every c ∈MI and expression
α, (〈c〉α)I(i) = αI(cJ).

Finally, we define the notion of Simple Interoperability Sys-
tem (SIS) and its SLL-model.
Definition 3 (Simple Interoperability System) A Simple
Interoperability System in SLL is a finite set of formulas:

c : ϕ
where c ∈ MI and ϕ is an axiom of the object language, in
any of the forms (†).

Definition 4 (SLL-models) An SLL-interpretation M =
(C, ·J ,∆, {·I(i)}i∈C) is a model of a SIS O iff for every
c : ϕ ∈ O, (∆, ·I(cJ)) satisfies ϕ.

Formulas c : ϕ, corresponding to McCarthy’s ist(c, ϕ),
have a straightforward reading: ϕ holds (or is an axiom) in
the context denoted by name c. A SIS can be also viewed
as a collection of ontologies {Oc}c∈MI

in SLL, where each
Oc = {ϕ | c : ϕ ∈ O} represents the knowledge relevant to
one context, related to others by means of operators 〈·〉, e.g.:

Oc: Patient v ∃hasPart.〈d〉HumanHeart
Od: HumanHeart v Heart

Heart v Organ
It is easy to observe, that SLL can serve as a language for

integrating a set of standard DL ontologies {Oc}c∈MI
in L,

which supports simple, logic-based mappings aligning the
semantics of concepts, roles and individual names used in
the ontologies:

〈c〉C v 〈d〉D | 〈c〉r v 〈d〉s | 〈c〉{a} v 〈d〉{b} (‡)
where c, d ∈ MI , C,D are concepts of L, r, s ∈ NR and
a, b ∈ NI . For instance, two ontologies with partly overlap-
ping information, e.g:

Oc: Staff v ∃isEmployed .Company
Staff (J .Smith)

Od: Employee v ∃employedIn.>
Employee(JohnSmith)

might be integrated by means of constraints:
〈c〉Staff ≡ 〈d〉Employee
〈c〉isEmployed v 〈d〉employedIn
〈c〉{J .Smith} ≡ 〈d〉{JohnSmith}

Not surprisingly, the language SLL bares some obvious
similarities with other known formalisms for connect-
ing/integrating ontologies, such as E-connections (Kutz et
al. 2003), Distributed DLs (DDLs) (Borgida and Serafini
2003) and Package-based DLs (P-DLs) (Bao et al. 2009).
In particular, mappings (‡) have exactly the same function
as bridge rules in DDLs, i.e. lifting information from one
context to another. The major difference from the first two
approaches is that integration in SLL is achieved by inter-
preting the aligned elements of the language directly over
the same domain objects, without involving intermediary
link relations such as E-connections or directional seman-
tic mappings (DDLs). This renders our integration mecha-
nism in principle stronger. In the case of P-DLs, it is not
difficult to show that SLL, although based on a more nat-
ural semantics, can be mapped on the corresponding P-DL
LP . Analogically to P-DLs, reasoning in SLL is polynomi-
ally reducible to reasoning in L, which guarantees the same
worst case complexity.

Theorem 1 The complexity of reasoning in SLL is the same
as in L.

The full proof, along others from this paper, can be found in
the appendix.

Abstract interoperability systems
The expressive power of SLL is strongly limited by restrict-
ing the representation to a fixed number of contexts. In this
section, we dispose of this constraint and permit an un-
bounded space of context entities, thus shifting towards a

full-fetched two-dimensional semantics. This natural gen-
eralization stems from the introduction of a quantification
mechanism over the context domain, often advocated by the
continuators of McCarthy (Guha 1991; Buvač 1996) as a
mean of constructing more abstract and generic interoper-
ability constraints. On the philosophical side, this step might
be interpreted as a manifestation of the Open World As-
sumption on the level of contexts (or knowledge sources),
which in some open-ended environments such as the Web
can be often justified.

An abstract interoperation language ALL consists of
a metalanguage, supporting atomic concept assertions and
taxonomies of concept names, and an object language,
equipped with generalized context operators over concepts.
To distinguish between the atoms of the two languages, we
use a bold font for writing the former and a regular font for
the latter.

Definition 5 (ALL-metalanguage) The metalanguage of
ALL consists of a set MC of concept names, the top con-
cept>, and a set MI of individual names. The axioms of the
metalanguage are formulas:

A v B | A(c)

where A,B are concepts and c ∈MI .

Definition 6 (ALL-object language) Let L be a DL lan-
guage. Then the object language of ALL is the smallest lan-
guage containing L, and closed under the constructors of L
and two concept-forming operators:

〈A〉C | [A]C

where A is a concept of the metalanguage and C a concept
of the object language.

Informally, the concept 〈A〉C denotes all objects which
are C in some context of type A, whereas [A]C ob-
jects which are C in all such contexts. For instance,
〈HumanAnatomy〉Heart refers to the concept Heart in
some HumanAnatomy context, which corresponds to Mc-
Carthy’s: ∃x(ist(x,Heart(y)) ∧HumanAnatomy(x)). The
two context operators behave almost as the usual S5 modal-
ities, in particular preserving the duality [A] = ¬〈A〉¬, with
the sole difference that an additional (metalanguage) condi-
tion is imposed on the accessed possible worlds.

Further, we define the notion of Abstract Interoperability
System (AIS) in ALL.

Definition 7 (Abstract Interoperability System) An Ab-
stract Interoperability System in ALL is a pair K = (C,O),
where C is a set of axioms of the metalanguage and O is a
set of formulas:

c : ϕ | A : ϕ

where ϕ is an axiom of the object language in any of the
forms (†), c ∈MI and A is a concept of the metalanguage.

A formula A : ϕ states that the axiom ϕ must hold in
all contexts of type A. The semantics is given through the
corresponding ALL-interpretations and ALL-models.

Definition 8 (ALL-interpretations) An ALL-interpreta-
tion is a tuple M = (C, ·J ,∆, {·I(i)}i∈C) where:

• C is a non-empty domain of contexts,
• ·J is an interpretation function of the metalanguage,

which maps AJ ⊆ C, for every A ∈ MC , >J = C, and
cJ ∈ C, for every c ∈MI ,

• (∆, ·I(i)), for every i ∈ C, is an interpretation of the ob-
ject language, such that for every 〈A〉C and [A]C:

– (〈A〉C)I(i) = {x | ∃j ∈ C : j ∈ AJ ∧ x ∈ CI(j)},
– ([A]C)I(i) = {x | ∀j ∈ C : j ∈ AJ → x ∈ CI(j)}.

Definition 9 (ALL-models) An ALL-interpretation M =
(C, ·J ,∆, {·I(i)}i∈C) is a model of an AIS K = (C,O) iff:

• for every A(c) ∈ C, cJ ∈ AJ ,

• for every A v B ∈ C, AJ ⊆ BJ ,

• for every c : ϕ ∈ O, (∆, ·I(cJ)) satisfies ϕ,

• for every A : ϕ ∈ O and i ∈ C, if i ∈ AJ then (∆, ·I(i))
satisfies ϕ.

Application scenarios
Similarly to SLL, ALL can be used both as a native language
for constructing contextualized knowledge bases or as an ex-
ternal layer for imposing generic interoperability constraints
over standard DL representations. However, unlike in SLL,
the context operators in ALL govern the semantic interop-
eration not only among a fixed number of explicitly intro-
duced contexts, but rather within an entire space of possible
contexts — some of which might be only logically entailed.
Hence, the operators 〈·〉 and [·] serve an analogical purpose
to ∃ and ∀ in the object dimension: they restrict the set of
possible (two-dimensional) models only to those in which
certain entities — here contexts with specific object knowl-
edge — are present. In the following paragraphs, we present
a few sample applications of ALL.

Contextualized knowledge base. We model a piece of
information presented on the disambiguation website of
Wikipedia on querying for the term Ring1.

disambiguation : Ring v 〈Math〉Ring t 〈People〉Ring
Math : Ring v AlgebStruct t 〈Geometry〉Annulus
People : Ring v {nickRing}

Observe, that the named context disambiguation provides
basic distinction on Ring in some Math context and in some
People context. This is further enhanced, by the distinction
defined on the level of all Math contexts. There, Ring de-
notes either AlgebStruct or, in some further Geometry con-
text, Annulus . In case of People context, Ring actually de-
notes an individual nickRing .

Interoperation constraints for ontology alignment and
reuse. Consider an infrastructure such as the NCBO Bio-
Portal project2, which gathers numerous published biohealth
ontologies, and categorizes them via simple thematic tags
Cell, Health, Anatomy, etc., organized in a simple concept
hierarchy. The intention of the project is to facilitate the

1See http://en.wikipedia.org/wiki/Ring.
2See http://bioportal.bioontology.org/.

reuse of the collected resources in new applications. We as-
sume that each ontology name is interpreted as a distinct
context name in ALL. Note, that the division between the
metalanguage and the object language is already present in
the architecture of the BioPortal, which can be immediately
utilized, for example to state:

> : 〈HumanAnat.〉Heart v [Anat.]HumanHeart (1)
Anatomy : Heart v Organ (2)
HumanAnatomy v Anatomy (3)

where (1) fixes the translation from Heart to HumanHeart
(cf. Introduction); (2) imposes an axiom Heart v Organ of
an upper anatomy ontology over all ontologies tagged with
Anatomy, which due to the metalanguage taxonomy (3) car-
ries over to all ontologies tagged with HumanAnatomy.

More generally, ALL provides logic-based explications of
some interesting notions, relevant to the problem of ontol-
ogy alignment and reuse, such as:

concept alignment: > : 〈A〉C v [B]D
every instance of C in any ontology of type A is D in
every ontology of type B

semantic importing: c : 〈A〉C v D
every instance of C in any ontology of type A is D in
ontology c

upper ontology axiom: A : C v D
axiom C v D holds in every ontology of type A

Ontology versioning management and change analysis.
The context operators can be also interpreted as change op-
erators, in the style of DL of Change (Artale, Lutz, and
Toman 2007), for instance, for representing and studying dy-
namic aspects of ontology versioning, especially when evo-
lutionary constraints apply to a whole collection of semanti-
cally interoperable ontologies. Some central issues arising in
this setup are integrity (constraining the scope of changes al-
lowed due to versioning), evolvability (ability of coordinat-
ing the evolution of ontologies) and formal analysis of dif-
ferences between the versions (Huang and Stuckenschmidt
2005). In the examples below, we assume that contexts rep-
resent possible versions, while each metalanguage concept
refers to all versions of the same ontology.

version-invariant concepts: > : 〈A〉C ≡ [A]C
C is a version-invariant concept within the scope of ver-
sions of type A

dynamic analysis: > : 〈A〉C u 〈A〉¬C v C?
C? retrieves all instances which are C in some versions
of type A and ¬C in some others

evolvability constraints: > : 〈A〉C v 〈B〉D
every instance of C in a version of type A has to evolve
into D in some version of type B

Complexity and expressiveness
Interestingly, reasoning in ALL is not significantly harder
than reasoning in the underlying DLs.

Theorem 2 The complexity of reasoning in ALL ranges as
in Table 2.

L
EL PTIME
ALC EXPTIME-complete
ALCO NEXPTIME-complete

Table 2: Complexity of reasoning in ALL.

Only in the case of L = ALCO we encounter a jump from
EXPTIME to NEXPTIME-completeness. The interaction of
nominals with the context operators enables encoding of the
usual 2n-tiling problem, known to be NEXPTIME-complete
(Kurucz et al. 2003). The result holds already when the met-
alanguage is trivialized by setting MC = MI = ∅.

As the next results show, ALL is closely related to the
product-like combination of DL with modal logic S5 — a
formalism well-studied in the literature (Kurucz et al. 2003),
also used as the foundation for the DL of Change (Artale,
Lutz, and Toman 2007) and connected to the Probabilistic
DL (Lutz and Schröder 2010).

Theorem 3 IfMC = MI = ∅ and only TBox axioms are al-
lowed, then ALL is a notational variant of S5L with global
TBoxes.

Proof. Observe, that only axioms > : C v D are allowed,
for arbitrary concepts C,D in ALL. Replace every 〈>〉 with
♦, every [>] with � and every > : C v D ∈ O with C v
D. It is easy to see that the semantics of ALL coincides with
that of S5L. Note, that a TBox is considered global iff its
every axiom is satisfied in all possible S5-worlds. q

Theorem 4 If MI = ∅ and only TBox axioms are allowed,
then reasoning in ALL is polynomially reducible to reason-
ing in S5L with global TBoxes and concepts from MC in-
terpreted globally.

Proof. First note, that a concept C is interpreted globally iff
for every possible S5-world w, CI(w) = ∆ or CI(w) = ∅.
Observe also, that only axioms A : C v D are allowed,
for A ∈ MC and arbitrary concepts C,D in ALL. Translate
every occurrence 〈A〉C to ♦(AuC), every [A]D to �(¬At
C) and every A : C v D ∈ O to A u C v D. Clearly, the
resulting set of formulas is satisfiable in S5L iff the original
one was in ALL. q

The corresponding S5L logics are obviously not full
S5 × L products, as we deliberately do not allow the roles
of L to be interpreted rigidly across the context dimen-
sion, i.e. such that rI(c) = rI(d) for every pair c, d ∈ C.
Hence, in the landscape of combinations of modal logics
(Kurucz et al. 2003), ALL classifies as an ‘approximation’
of modal products, i.e. a combination considerably more ex-
pressive than fusion of logics, but weaker from those based
on full product semantics. We also do not consider here con-
text operators over roles, which allow for emulating such
behavior. As it turns out, adding constructs 〈A〉r, [A]r to
ALL, with the expected semantics, immediately rises the
lower complexity bounds to PSPACE-hard for L = EL and
2EXPTIME-hard for L = {ALC,ALCO}, which follows
by immediate reductions from the corresponding variants

of S5L with modalized roles in (Lutz and Schröder 2010;
Artale, Lutz, and Toman 2007).

A formalism similar in the spirit to ALL, both in the
formal design and in the underlying motivation, has been
studied in (Klarman and Gutiérrez-Basulto 2010) as a Con-
text DL ALCALC . There, however, the combination of DLs
with the context operators is based on (Kn)L-frames, rather
than S5L. Consequently, ALCALC seems less suitable for
applications dealing with semantic interoperability between
loosely coexisting DL representations, which are more nat-
ural to represent as possible worlds in a universal frame.
Moreover, (Kn)L exhibits much worse computational be-
havior, with 2EXPTIME-complete satisfiability problem al-
ready for L = ALC with no rigid roles, and undecidable
when rigid (or modalized) roles are included (Klarman and
Gutiérrez-Basulto 2010).

Expressive metalanguages
For many applications, particularly relevant for the Seman-
tic Web, a practical metalanguage for describing knowledge
sources requires not only concept tags but also properties,
e.g. for describing the provenance (authorship, date, place,
relationships to other sources, etc.) (Bao et al. 2010). A natu-
ral way to support such requirements in the presented setting
is to employ a standard DL in the role of the metalanguage.

Definition 10 (ALML -metalanguage) The metalanguage of
ALML is a DL language M based on vocabulary Γ =
(MC ,MR,M

?
I), where MC is a set of concept names, MR

a set of role names andM?
I a set of individual names, with a

designated subset MI ⊆ M?
I . Axioms of the metalanguage

are formulas of the form (†).

Observe, that the context names MI are here only a subset
of all individual names M?

I which might be used in context
descriptions. Further, we also allow possibly complex con-
cepts C ofM inside the operators 〈C〉D, [C]D and axioms
C : ϕ. Presence of roles in the metalanguage allows for ef-
fective reasoning with such information as:

hasAuthor(anatomy ont, johnSmith)
∃maintainedBy.University(anatomy ont)

where anatomy ont ∈ MI , johnSmith ∈ M?
I ,

hasAuthor,maintainedBy ∈MR, University ∈MC .
To accommodate the interpretation of M in the seman-

tics, without damaging its original architecture, we pose a
new domain of the metalanguage Θ, with the set of context
domain being a subset of it, and extend the interpretation
function accordingly.

Definition 11 (ALML -interpretations) An ALML -interpre-
tation is a tuple M = (Θ,C, ·J ,∆, {·I(c)}c∈C), where:

• Θ is a non-empty metalanguage domain,
• C ⊆ Θ is a non-empty context domain,
• ·J is an interpretation function which maps AJ ⊆ Θ, for

every A ∈MC , rJ ⊆ Θ×Θ, for every r ∈MR, cJ ∈ Θ,
for every c ∈M?

I , with cJ ∈ C, whenever c ∈MI ,

• (∆, ·I(i)) as in Definition 8.

H
HHHHL
M EL ALC,ALCO

EL as in ALL EXPTIME-hard
ALC as in ALL NEXPTIME-complete
ALCO as in ALL NEXPTIME-complete

Table 3: Complexity of reasoning in ALML .

The notions of AIS and ALML -model remain exactly the
same as in the case of ALML (Definition 7 and 9).

It turns out, that a shift from simple taxonomies to much
more convenient EL, as the metalanguage of AISs, does not
entail a further increase in the complexity, which remains
the same as in the corresponding ALL. Pushing the meta-
language envelope, however, has its limits. The use of ALC
andALCO in the same role, noticeably affects the complex-
ity. The EXPTIME-hardness for L = EL, transfers directly
from the lower bound of the involved metalanguages. The
non-determinism involved in the other two cases can be in-
terpreted by the need of guessing the interpretation of the
metalanguage first, before finding the model of the object
component of the combination.

Theorem 5 The complexity of reasoning in ALML ranges as
in Table 3.

The lower bound of ALALCALC is again obtained by an encod-
ing of the 2n × 2n tiling problem. For the upper bounds for
L ∈ {ALC,ALCO} we devise a variant of a type elim-
ination algorithm, whereas for L = EL a completion al-
gorithm in the style of (Baader, Brandt, and Lutz 2005). In
most cases the results are robust enough to allow generaliza-
tions to more expressive DLs (see the appendix).

Conclusions
The problems of 1) representing inherently contextualized
knowledge within the paradigm of DLs and 2) reasoning
with multiple heterogenous, but semantically interoperating,
DL representations, are both interesting and important is-
sues, motivated by numerous practical application scenar-
ios. It is our belief that these two challenges are in fact two
sides of the same coin and, consequently, they should be ap-
proached within the same, unifying formal framework. In
this paper, we have argued that two-dimensional DLs in-
corporating the principles of McCarthy’s theory of contexts
achieve this objective to a great extent, by providing suf-
ficient syntactic and semantic means to support both func-
tionalities. As our results show, such an extension of the
standard DLs does not necessarily entail an increase in the
computational complexity of reasoning, nor does it affect
the generally adopted knowledge representation methodol-
ogy of DLs. We therefore consider the approach a worth-
while subject to further research. In particular, we intend to
investigate how certain basic notions, which are essential for
practical use and maintenance of multi-context knowledge
systems (e.g. inconsistency handling), can be meaningfully
restated within the presented framework.

Acknowledgements. We would like to thank Carsten Lutz
and Stefan Schlobach, as well as three anonymous review-
ers, for their thorough and useful comments.

References
Artale, A.; Lutz, C.; and Toman, D. 2007. A description
logic of change. In Proc. of IJCAI-07, 218–223.
Baader, F.; Calvanese, D.; Mcguinness, D. L.; Nardi, D.; and
Patel-Schneider, P. F. 2003. The description logic handbook:
theory, implementation, and applications. Cambridge Uni-
versity Press.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of IJCAI-05.
Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Proc. of OWLED-08.
Bao, J.; Voutsadakis, G.; Slutzki, G.; and Honavar, V. 2009.
Modular ontologies. chapter Package-Based Description
Logics, 349–371.
Bao, J.; Tao, J.; McGuinness, D. L.; and Smart, P. 2010.
Context representation for the semantic web. Proc. of Web
Science Conference.
Borgida, A., and Serafini, L. 2003. Distributed description
logics: Assimilating information from peer sources. Journal
of Data Semantics 1:2003.
Buvač, S., and Mason, I. A. 1993. Propositional logic of
context. In Proc. of AAAI-93.
Buvač, S. 1996. Quantificational logic of context. In Proc.
of AAAI-96.
Guha, R.; McCool, R.; and Fikes, R. 2004. Contexts for the
semantic web. In Proc. of ISWC-04, 32–46.
Guha, R. 1991. Contexts: a formalization and some appli-
cations. Ph.D. Dissertation, Stanford University.
Huang, Z., and Stuckenschmidt, H. 2005. Reasoning with
multi-version ontologies: A temporal logic approach. In
Proc. of ISWC-05. 398–412.
Klarman, S., and Gutiérrez-Basulto, V. 2010. ALCALC : A
context description logic. In Proc. of JELIA-10.
Kurucz, A.; Wolter, F.; Zakharyaschev, M.; and Gabbay,
D. M. 2003. Many-Dimensional Modal Logics: Theory and
Applications. Elsevier.
Kutz, O.; Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2003.
E-connections of description logics. In Proc. of DL-03.
Lutz, C., and Schröder, L. 2010. Probabilistic description
logics for subjective uncertainty. In Proc. of KR-10.
Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2008. Temporal
description logics: A survey. In Proc. of TIME-08.
Marx, M. 1999. Complexity of products of modal logics.
Journal of Logic and Computation 9(2):197–214.
McCarthy, J. 1987. Generality in artificial intelligence.
Communications of the ACM 30:1030–1035.
Nossum, R. 2003. A decidable multi-modal logic of context.
Journal of Applied Logic 1(1-2):119 – 133.

Tobies, S. 2001. Complexity Results and Practical Algo-
rithms for Logics in Knowledge Representation. Ph.D. Dis-
sertation, RWTH Aachen University.
Wolter, F., and Zakharyaschev, M. 1999. Multi-dimensional
description logics. In Proc. of IJCAI-99, 104–109.

Appendix
This appendix contains proofs of the technical results pre-
sented in the paper.

Reasoning in SLL
The following result covers the computational complexity of
reasoning in SLL, for L ranging over a number of possible
DLs including EL,ALC and ALCO.

Theorem 6 The complexity of reasoning in SLL is the same
as in L.

Proof. Let O be a SIS in SLL. W.l.o.g. we consider O as a
set of ontologies {Oc}c∈MI

in SLL, where each Oc = {ϕ |
c : ϕ ∈ O}. We claim that {Oc}c∈MI

can be polynomi-
ally transformed into a single ontology in L. First, we fix a
set of vocabularies {Σc}c∈MI

, where for every c ∈ MI , Σc
consists of:

• all atoms (possibly including >) occurring in Oc which
are not inside the scope of any operator 〈d〉, for any d ∈
MI ,

• all atoms (possibly including>) inOd, for every d ∈MI ,
within the scope of context operators, for which the inner-
most binding operator is 〈c〉.
Next, we ensure disjointness of the vocabularies possi-

bly by translating the atoms to fresh names. In particular
for every > ∈ Σc we replace it with a fresh concept name
>c. Further, we replace all the original atoms in {Oc}c∈MI

with their translations and drop all context operators. It is
easy to see that the resulting ontology O′ is satisfiable in L
iff O is satisfiable in SLL. Moreover, note that in case of
SLEL the subsumption problem is stated as: decide whether
O |= c : C v D. In order to reduce this problem to
L we first transform O as described above and then re-
state the query c : C v D, by first transforming it to
〈c〉C v 〈c〉D and then replacing the atoms as in O. Con-
sequently, O |= c : C v D iff O′ |= C ′ v D′, where
C ′ v D′ is the result of the transformation of the query.

What follows is that the complexity of reasoning in SLL
coincides with the complexity of reasoning in L. q

NEXPTIME lower bounds
In this section we prove the NEXPTIME lower bound for
the satisfiability problems in ALALCO and ALALCALC , respec-
tively. All the remaining NEXPTIME lower bounds covered
in the paper carry over directly from these two results or
from the underlying DLs of known complexities (Baader et
al. 2003). Resting on the close correspondence between our
logics ALML and ALL (Theorems 3 and 4) we sometimes
refer to the elements of the context domain as S5-worlds
rather than contexts.

Theorem 7 Deciding concept satisfiability in ALALCO
w.r.t. global TBoxes with only local roles is NEXPTIME-
hard.

Proof. The result is established by devising a polynomial
reduction of the 2n × 2n tiling problem, known to be NEX-
PTIME-complete (Marx 1999), to concept satisfiability in
ALALCALC . An instance T = (n, T) of the problem is defined
as follows: given some n ∈ N in unary and a set of tiles
T = {τ0, . . . , τm}, decide whether a 2n × 2n grid can be
tiled with T where the first cell in the grid is tiled with some
τ0 ∈ T .

Let T = (n, T) be an instance of the problem. In the con-
secutive steps, we define a TBox TT and a concept CT, such
that there exists a tiling for T iff CT is satisfiable w.r.t. TT.

The TBox consists of object axioms> : C v D,> : C ≡
D for C,D ∈ ALC. For brevity we skip the qualification of
the axioms “> :” and write C v D and C ≡ D instead.

First, the inclusions (1)-(10) enforce a 22n-long chain of
individuals (Grid), uniquely identifiable by counting con-
cepts Xi and Yi, for i ∈ (1, 2n). Notably, the Y -counter
is shifted in the phase w.r.t. the X-counter by exactly 2n,
(i.e.: X + 2n = Y), which further on is utilized for identify-
ing the top-down neighbors in the tiling. Also, every 2n-th
individual, starting from the beginning of the chain, is made
an instance of concept RightEdge, marking the right edge of
the tiling (11):

StartGrid ≡

≡ Grid u
2nl

j=1

¬Xj u
nl

j=1

¬YjuYn+1 u
2nl

j=n+2

¬Yj ,
(1)

EndGrid ≡
2nl

j=1

Xj , Grid u ¬EndGrid v ∃s.Grid, (2)

¬Xi u ¬Xj v ∀s.¬Xi, for every 1 ≤ j < i ≤ 2n, (3)
Xi u ¬Xj v ∀s.Xi, for every 1 ≤ j < i ≤ 2n, (4)
¬Xj uXj−1 u . . . uX1 v ∀s.Xj ,

for every 1 ≤ j ≤ 2n,
(5)

Xj uXj−1 u . . . uX1 v ∀s.¬Xj ,

for every 1 ≤ j ≤ 2n,
(6)

¬Yi u ¬Yj v ∀s.¬Yi, for every 1 ≤ j < i ≤ 2n, (7)
Yi u ¬Yj v ∀s.Yi, for every 1 ≤ j < i ≤ 2n, (8)

¬Yj uYj−1u . . .uY1 v ∀s.Yj , for every 1 ≤ j ≤ 2n, (9)
YjuYj−1u. . .uY1 v ∀s.¬Yj , for every 1 ≤ j ≤ 2n, (10)

RightEdge ≡
nl

j=1

Xj . (11)

Next, by (12)-(13), the values of the counting concepts are
propagated globally across all S5-worlds:

Xi v [>]Xi, ¬Xi v [>]¬Xi,

for every 1 ≤ i ≤ 2n,
(12)

Yi v [>]Yi, ¬Yi v [>]¬Yi,
for every 1 ≤ i ≤ 2n.

(13)

1

3

Grid

DownNeighbor

2n

tile τ
2

2

1

2

2n

roles

X=00, Y=10, T3

X=01, Y=11, T2

X=10, Y=00, T1

X=11, Y=01, T1

s

s

s

X=00,
T3

X=01,
T2

X=10,
T1

X=11,
T1

r

r

r

r

p

p

∃r.{a}

a

Figure 1: Encoding of a 2n × 2n tiling in an ALALCO-model.

Further, we impose the basic coloring constraints over all in-
dividuals (14), adjust the coloring of all the left-right neigh-
bors: (15), and propagate the tile types over all S5-worlds
(16):

> v (
⊔
τi

Ti)u
l

τi 6=τj

¬(TiuTj), for every τi, τj ∈ T, (14)

Ti u ¬RightEdge v ∀s.(
⊔

right(τi)=left(τj)

Tj),

for every τi, τj ∈ T,
(15)

Ti v [>]Ti, for every τi ∈ T. (16)
The key to the reduction is a suitable use of a single nomi-

nal {a} (see Figure 1). By (17) every individual in the grid is
linked to a via role r in some S5-world. There, due to (18)-
(19), the value of the X-counter and the tile type assigned to
the individual is forced upon a. Consequently, by assuming
rigid individual names,3 we generate 22n distinct S5-worlds:

Grid v 〈>〉∃r.{a}, (17)

Xi v ∀r.Xi, ¬Xi v∀r.¬Xi,

for every 1 ≤ i ≤ 2n,
(18)

Ti v ∀r.Ti, for every τi ∈ T. (19)
Finally, in every S5-world, all individuals are linked to a
via p (20). Whenever the value of the Y -counter on a grid-
individual matches the value of the X-counter on a (21), the
proper top-down coloring constraints are imposed (22):

> v ∃p.{a}, (20)

DownNeighbor ≡

≡
2nl

j=1

((Yi u ∃p.Xi) t (¬Yiu∃p.¬Xi)),
(21)

3Such assumption can be also made explicit by including axiom
{a} v [>]{a}.

Ti u DownNeighbor v ∀p.
⊔

down(τi)=top(τj)

Tj ,

for every τi, τj ∈ T.
(22)

The TBox TT is defined as the union of the axioms (1)-
(22). It is easy to see that the size of TT is polynomial in
the size of the instance T. Finally, we define the concept
CT = StartGriduT0 and claim that there is a tiling for T iff
CT is satisfiable w.r.t. globally interpreted TT.
(⇒) Let τ be a tiling for T, i.e. a mapping from 2n×2n to T .
Define an ALALCO-model M = (Θ,C, ·J ,∆, {·I(c)}c∈C)
for TT satisfying CT as follows. First, transform τ into π :
22n 7→ T , such that for every (x, y) ∈ 2n × 2n, τ(x, y) =
π(y ∗ 2n + x). Then, fix Θ = C = {ci | i ∈ (0, 22n)}
and ∆ = {di | i ∈ (0, 22n)} and ensure that the following
interpretation constraints are satisfied:

• aI(c) = d0 for d0 ∈ ∆ and every c ∈ C,

• for c0 ∈ C:

– GridI(c0) = ∆ \ {d0},
– StartGridI(c0) = {d1 ∈ ∆}, EndGridI(c0) = {d22n ∈

∆},
– RightEdgeI(c0) = {d2n∗i ∈ ∆},
– sI(c0) = {〈di, di+1〉 | di, di+1 ∈ ∆, i ≥ 1},

• {di | π(i) = τj} ⊆ T I(c)
j , for every c ∈ C and τj ∈ T ,

• d0 ∈ T I(ci)
j iff π(i) = τj , for every i ≥ 1 and τj ∈ T ,

– rI(ci) = {〈di, d0〉 | di ∈ ∆} for i ≥ 1,
– pI(c) = {〈d, d0〉 | d ∈ ∆} for every c ∈ C,

– DownNeighborI(ci) = {di−2n ∈ ∆}, for every ci ∈ C
and i ≥ 2n + 1.

The interpretations can be straightforwardly extended
over the counting concepts Xi and Yi so that M is indeed
a model for TT, where d1 ∈ (CT)I(c0).

1

3

Grid

DownNeighbor

2n

tile τ
2

2

1

2

2n

DL role

 Y=10, V3

 Y=11, V2

 Y=00

Y=01

X=00,
T3

X=01,
T2

X=10,
T1

X=11,
T1

r

r

r

∃r.T

r

Z=00,
U3

Z=01,
U2

Z=10,
U1

Z=11,
U1

same object

Figure 2: Encoding of a 2n × 2n tiling in an ALALCALC-model.

(⇐) Let M be an ALALCO-model of TT satisfying CT.
Then, a tiling for T can be retrieved from M by mapping a
chain of s-successors, which instantiate concept Grid in the
S5-world in whichCT is satisfied, on the 2n×2n grid, where
the type of a tile in the grid is determined by the unique con-
cept Ti satisfied by the individual in the chain. The coloring
constraints have to be satisfied by the construction of the en-
coding. q

Theorem 8 Deciding concept satisfiability in ALALCALC w.r.t.
global TBoxes with only local roles is NEXPTIME-hard.

Proof. The result is established by reducing the 2n × 2n
tiling problem. Let T = (n, T) be an instance of the prob-
lem. In the consecutive steps, we define a TBox TT and a
concept CT, such that there exists a tiling for T iff CT is sat-
isfiable w.r.t. TT. Again, the encoding utilizes the possibility
of constructing and constraining a “diagonal” in models, as
depicted in Figure 2, representing the whole tiling in a linear
projection.

The inclusions (23)-(28) enforce a 22n-long chain of in-
dividuals, uniquely identifiable by counting concepts Xi,
for i ∈ (1, 2n). Moreover, every 2n-th individual, starting
from the beginning of the chain, is an instance of concept
RightEdge, marking the right edge of the tiling, while the
last 2n individuals are instances of BottomEdge , marking
the bottom of the tiling.

StartGrid ≡
2nl

j=1

¬Xj , EndGrid ≡
2nl

j=1

Xj ,

¬EndGrid v 〈>〉∃r.>,

(23)

¬Xi u ¬Xj v [>]∀r.¬Xi,

for every 1 ≤ j < i ≤ 2n,
(24)

Xi u ¬Xj v [>]∀r.Xi, for every 1 ≤ j < i ≤ 2n, (25)

¬Xj uXj−1 u . . . uX1 v [>]∀r.Xj ,

for every 1 ≤ j ≤ 2n,
(26)

Xj uXj−1 u . . . uX1 v [>]∀r.¬Xj ,

for every 1 ≤ j ≤ 2n,
(27)

RightEdge ≡
nl

j=1

Xj , BottomEdge ≡
2nl

j=n+1

Xj . (28)

The values of these counting concepts are then propagated
over all the objects in the given context, by involving an
interaction with concepts of the metalanguage Zi, for i ∈
(1, 2n) (29).

> v [Zi]Xi, > v [¬Zi]¬Xi,

for every 1 ≤ i ≤ 2n.
(29)

Each individual is required to satisfy exactly one concept
Ti, representing a tile type τi ∈ T (30). This type is then
propagated to all individuals in the given world (31-32) and
used to adjust the coloring of the left-right neighbors (33).

> v (
⊔
τi

Ti)u
l

τi 6=τj

¬(TiuTj), for every τi, τj ∈ T, (30)

> v [Ui]Ti, for every τi ∈ T. (31)

> v [¬Ui]¬Ti, for every τi ∈ T, (32)

Ti u ¬RightEdge v [>]∀r.(
⊔

right(τi)=left(τj)

Tj),

for every τi, τj ∈ T.
(33)

For each individual we identify the counter of its down
neighbor and encode this value rigidly across all S5-worlds
by means of concepts Yi (34-39). In the same manner, the
tile type is propagated (40).

¬Xi u ¬Xj v ∀r.[>]¬Yi,
for every n+ 1 ≤ j < i ≤ 2n,

(34)

Xiu¬Xj v ∀r.[>]Yi, for every n+1 ≤ j < i ≤ 2n, (35)

¬Xj uXj−1 u . . . uX(n+1) v∀r.[>]Yj ,

for every n+ 1 ≤ j ≤ 2n,
(36)

Xj uXj−1 u . . . uX(n+1) v∀r.[>]¬Yj ,
for every n+ 1 ≤ j ≤ 2n,

(37)

Xi v ∀r.[>]Yi, for every 1 ≤ i ≤ n, (38)

¬Xi v ∀r.[>]¬Yi, for every 1 ≤ i ≤ n, (39)

¬BottomEdge u Ti v ∀r.[>]Vi, for every τi ∈ T. (40)

Finally, the up-down coloring constraints are enforced
whenever the value of Yi’s agrees with the Xi-counter. (41-
42).

DownNeighbor ≡
l

1≤i≤2n

((XiuYi)t(¬Xiu¬Yi)), (41)

DownNeighbor u Vi v
l

down(τi) 6=up(τj)

¬Tj ,

for every τi ∈ T.
(42)

The TBox TT is defined as the union of the axioms (23)-
(42). It is easy to see that the size of TT is polynomial in
the size of the instance T. Finally, we define the concept
CT = ∃r.(StartGrid u T0) and claim that there is a tiling
for T iff CT is satisfiable w.r.t. TT.

(⇒) Let τ be a tiling for T, i.e. a mapping from 2n × 2n to
T . Define an ALALCALC-model M = (Θ,C, ·J ,∆, {·I(c)}c∈C)
for TT satisfying CT as follows. First, transform τ into π :
22n 7→ T , such that for every (x, y) ∈ 2n × 2n, τ(x, y) =
π(y ∗ 2n + x). Then, fix Θ = C = {ci | i ∈ (1, 22n)}
and ∆ = {di | i ∈ (0, 22n)} and ensure that the following
interpretation constraints are satisfied:

• rI(ci) = {(di−1, di) | di−1, di ∈ ∆},

• StartGridI(c1) = {d1 ∈ ∆}, EndGridI(c22n) =
{d22n ∈ ∆},

• for every ci ∈ C, DownNeighborI(ci) = {di−2n ∈ ∆},

• for every τj ∈ T and i ∈ (1, 22n), T I(ci)
j = ∆, if π(i) =

τj , and else T I(ci)
j = ∅.

The interpretations can be straightforwardly extended
over the remaining concepts so that M is indeed a model
for TT, where d0 ∈ (CT)I(c1).

(⇐) Let M be an ALALCALC-model of TT satisfying CT. Then,
a tiling for T can be retrieved from M by mapping the diag-
onal of the model on the 2n × 2n grid, where the type of a
tile in the grid is determined by the unique concept Ti satis-
fied by the individual in the chain. The coloring constraints
have to be satisfied by the construction of the encoding. q

PTime upper bound
In this section we show that satisfiability in ALELEL PTIME.
As a first step, we introduce an algorithm to decide instance
checking in ALELEL. Then, we show how to use the algorithm
to decide ALELEL satisfiability. During the definition of the
algorithm, we refer to elements of the context domain as
worlds rather than contexts.

First, we consider instance checking which is the prob-
lem to decide, given an abstract interoperability model
K = (C,O) with O = (T O,AO), an individual name
a ∈ NI and a object concept C whether, M |= C(a) for all
models M = (C, ·J ,∆, {·I(c)}c∈C) of K.

We assume object TBoxes T O to be in normal form. A
basic meta concept is either A ∈ MC or >. A basic object
concept is either>, a concept name overNC , 〈A〉B or [A]B
with A ∈ MC and B ∈ NC . For an object TBox T O to be
in normal form we require that every GCI is of one of the
following forms

X1 u . . . uXn v X ,

∃r.X v B,

X v ∃r.B

where the Xi and X denote basic object concepts and
B denotes a concept name over NC . It can be shown that
by introducing fresh concept names every object TBox T O
can be converted into an object TBox T ′O in normal form
that preserves subsumption (Baader, Brandt, and Lutz 2005).

We use NOC (resp. NOR) to denote the set of object
concept names (resp. role names) that occur in O; BCO

(resp. PO〈A〉, P
O
[A]) to denote the set of basic object con-

cepts (resp. concepts 〈A〉B, [A]B) that occur (possibly
as a subconcept) in O. We denote by BCOC the set of ba-
sic context concepts that occur (possibly as subconcept) inO

We extend the sets PO〈A〉 and PO[A] as follows:

PO〈 〉 :=
⋃

A,A′∈BCOC
〈A〉B ∈PO〈A〉
AvTCA′

〈A′〉B

PO[] :=
⋃

A,A′∈BCOC
[A]B ∈PO[A]

A′vTCA

[A′]B

We define the set of extended basic concepts as follows:

EBCO := BCO ∪ PO〈 〉 ∪ P
O
[].

Worlds Next, we introduce the set W of worlds of the
model to be constructed.

R1 if X1 u . . . uXn v X ∈ T O,
X1, . . . , Xn ∈ Q(a,w), and X 6∈ Q(a,w)

then Q(a,w) := Q(a,w) ∪ {X}
R2 if 〈A〉B ∈ Q(a,w), B 6∈ Q(a,w), and w 6= 〈A〉B

then Q(a, 〈A〉B) := Q(a, 〈A〉B) ∪ {B}
R3 if 〈A〉B ∈ Q(a,w), B 6∈ Q(a,w), and w = 〈A〉B

then Q(a, ε〈A〉B) := Q(a, ε〈A〉B) ∪ {B}
R4 if [A]B ∈ Q(a, v), B 6∈ Q(a,w),

and w is an A-world
then Q(a,w) := Q(a,w) ∪ {B}

R5 if B ∈ Q(a,w), w is a A-world, 〈A〉B ∈ PO〈A〉,
and 〈A〉B 6∈ Q(a, v)

then Q(a, v) := Q(a, v) ∪ {〈A〉B}
R6 if 〈A〉B ∈ Q(a,w), and 〈A′〉B 6∈ Q(a,w)

with A′ ∈ BCO
C , A vT C A′

then Q(a,w) := Q(a,w) ∪ {〈A′〉B}

R7 if B ∈ Q(a, [A]) ∩Q(a, ε[A]), [A]B ∈ PO[A],
and [A]B 6∈ Q(a,w)

then, Q(a,w) := Q(a,w) ∪ {[A]B}
R8 if [A]B ∈ Q(a,w), and [A′]B 6∈ Q(a,w),

with A′ vT C A
then Q(a,w) := Q(a,w) ∪ {[A′]B}

R9 if X ∈ Q(a,w), X v ∃r.B ∈ T O
then R(r, w) := R(r, w) ∪ (a, (B,w)),

and Q((B,w), w) := Q((B,w), w) ∪ {B}

R10 if (a, b) ∈ R(r, w), B ∈ Q(b, w), ∃r.B v Y ∈ T O
and B 6∈ Q(a,w)

then Q(a,w) := Q(a,w) ∪ {Y }

Figure 3: Completion rules

W :=
⋃

A∈BCOC

PO〈A〉 ∪
⋃

A∈BCOC
[A]B∈PO[A]

[A] ∪ εAO∪

∪
⋃

A∈BCOC
〈A〉B∈PO〈A〉

ε〈A〉B ∪
⋃

A∈BCOC
[A]B∈PO[A]

ε[A]

Intuitively, the worlds of the form 〈A〉B serve as a wit-
nesses of the concepts of the form 〈A〉B; the worlds of the
form [A] are used to collect concepts that a domain element
has to satisfy in all A-worlds.Then, we have two kind of
worlds for special cases. The worlds of the form ε〈A〉B serve
for witnessing 〈A〉B restrictions that occurs in the world
〈A〉B, and the worlds ε[A] witness that [A]B is not true in
all A-worlds, i.e., if B is true accidentally in all A-worlds.
The world εAO serves to realize the ABox AO. An A-world
is of either form 〈A〉B, [A], ε[A], ε〈A〉B . In particular, εAO
is a >-world.

Quasistates Let Ω := Ind(AO) ∪NOC ×W . A quasistate
Q for K is a mapping that associates with each a ∈ Ω and
each w ∈ W a subset Q(a,w) ⊆ EBCO. A role quasistate
R is a mapping that associates with each r ∈ NR and each
w ∈ W a binary relation R(r, w) ⊆ Ω × Ω. A quasimodel
M for K is a mapping pair (Q,R) with Q a quasistate and
R a role quasistate.

The algorithm starts with the quasimodel (Q,R) , where

• Q(b, εAO) = {>} ∪ {B | B(b) ∈ AO} for all b ∈
Ind(AO);

• Q(b, w) = {>} for all b ∈ Ind(AO) and w ∈W \ {AO};
• R(r, w) = ∅ for all r ∈ NOR and w ∈W .

This quasimodel is then extended by applying the com-
pletion rules shown in Figure 3 until no more rules apply.
In Figure 3, A vT C B denotes that A subsumes B w.r.t.
the context TBox T C. This can be computed in polynomial
time (Baader, Brandt, and Lutz 2005).

The the data structureQ(a,w) describes the memberships
of the element a in the world w. R(r, w) describes the role
memberships at world w.

Lemma 1 For all A0 ∈ NC and a0 ∈ Ind(AO), K |=
A0(a0) iff A0 ∈ Q(a0, εAO).

Proof. (⇒) Assume that A0 6∈ Q(a0, εAO). We define and
interpretation M = (C, ·J ,∆, I) such that M |= K but a0 6∈
AM

0 .

∆ := Ω;
C := W ;

AI(w) := {a ∈ ∆ | A ∈ Q(a,w)};
rI(w) := {R(r, w)}.

We define a model J of the meta knowledge base C.

AJ := {c ∈ C | c is an A-world}

Then, we do standard EL reasoning over T C.

We show that M is a model for K = (C,O). Then, it only
needs to be proved that is a model of O. First, we prove that

X ∈ Q(a,w) iff a ∈ XI(w)

The proof of is by case distinction to the possible forms
of X .

• X = > By initialization of construction of M.

• X = A ∈ NC Direct by construction of M.

• X = 〈A〉B ∈ PO〈A〉 (⇒) Assume 〈A〉B ∈ Q(a,w)

1. B ∈ Q(a,w) ∧ w is an A-world. Then, by I.H. a ∈
BI(w), and thus a ∈ 〈A〉BI(w).

2. B 6∈ Q(a,w), w 6= 〈A〉B. Then, by rule R2, B ∈
Q(a, 〈A〉B): By I.H. a ∈ BI(〈A〉B). Then, by seman-
tics, a ∈ (〈A〉B)I(w).

3. B 6∈ Q(a,w), w = 〈A〉B. Then, by rule R3, B ∈
Q(a, ε〈A〉B): By I.H. a ∈ AI(ε〈A〉B).
(⇐) Assume a ∈ 〈A〉BI(w). By the semantics, there is
an A-world v such that a ∈ BI(v). I.H. A ∈ Q(a, v).
Then, by S5, 〈A〉B ∈ Q(a, v′) for all worlds v′ ∈ W .
In particular, 〈A〉B ∈ Q(a,w).

• X = 〈A〉B 6∈ PO〈A〉
(⇒) Assume 〈A〉B ∈ Q(a,w) Then, by S6 there is
an A′ ∈ MC such that A′ vT C A. By case before,
a ∈ 〈A′〉BI(w). By semantics and A′ vT C A, a ∈
(〈A〉B)I(w).
(⇐) Assume a ∈ 〈A〉BI(w). Then, by R6 there is an
A′ ∈MC such that A′ vT C A. By case before, 〈A′〉B ∈
Q(a,w). By R6, 〈A′〉B ∈ Q(a,w).

• [A]B ∈ PO[A].

(⇒) Assume [A]B ∈ Q(a,w). By rule R4, B ∈ Q(a, v)
for all v that are an A-world. Then, by I.H. a ∈ BI(v).
Thus, by semantics, a ∈ ([A]B)I(w).
(⇐) Assume a ∈ ([A]B)I(w). Then a ∈ BI(v) for all
v that are an A-world. Hence, a ∈ BI([A]) and a ∈
BI(ε[A]). I.H. B ∈ Q(a, [A]) ∩Q(a, ε[A]). Thus, by rule
R7, [A]B ∈ Q(a, v) for all v, in particular w.

• [A]B 6∈ PO[A].

As in the case of 〈A〉B 6∈ PO〈A〉 but using rule R8.

• ∃r.A
(⇒) Assume ∃r.A ∈ Q(a,w). Then, by rule R9,
(a, (A,w)) ∈ R(r, w) and A ∈ Q((A,w), w). By I.H.,
(A,w) ∈ AI(w). By construction, (a, (A,w)) ∈ rI(w).
Therefore, a ∈ (∃r.A)I(w).
(⇐) Assume a ∈ (∃r.A)I(w). Then, there is an element
(B,w) such that (B,w) ∈ AI(w) and (a, (B,w)) ∈
rI(w). By I.H. A ∈ Q((B,w), w) and, by construction,
(a, (B,w)) ∈ R(r, w). Now, by R10, ∃r.A ∈ Q(a,w).

We show that the interpretation M is indeed a model for
the TBox T O. We make case distinction according with the
type of GCIs

• X1u . . .uXn v Xn. Let a ∈ (X1u . . .uXn)I(w). Then,
a ∈ X

I(w)
i , i ≤ n. By statement above, Xi ∈ Q(a,w).

By rule R1, X ∈ Q(a,w). Again, by statement above,
a ∈ XI(w).

• X v ∃r.A. Let a ∈ XI(w). Then, X ∈ Q(a,w). By rule
R9, A ∈ Q((A,w), w) and (a, (A,w)) ∈ R(r, w). Then,
by statement above, (A,w) ∈ AI(w). By construction,
(a, (A,w)) ∈ rI(w). Therefore, a ∈ (∃r.A)I(w).

• ∃r.A v X . Let a ∈ (∃r.A)I(w). By the semantics, there
is a b ∈ AI(w) such that (a, b) ∈ rI(w). By statement
above, A ∈ Q(b, w). By definition of the interpretation,
(a, b) ∈ R(r, w). By rule, R10,X ∈ Q(a,w). Therefore,
a ∈ XI(w).

Now, it remains to prove that I, εAO |= AO.

• A(a). By definition of the initial quasimodel, we have
A ∈ Q(a, εAO). By statement above, a ∈ AI(εAO).

• r(a, b) By construction of the model, (a, b) ∈ rI(ε(AO))

(⇐)
We prove this direction by using several invariants that

hold during the completion algorithm.
Next we introduce the invariants for the point or the

“point”Q((A,w), v) withC =
d
X∈Q((A,w),v)X . We make

a case distinction according to the type of w, v world.
1. w ∈ {〈A〉B2, ε〈A〉B2 , [A], ε[A]} and V ∈ {[B], ε[B]}.

Then, K |= 〈A〉A v [B]C.
2. w ∈ {〈A〉B2, ε〈A〉B2

, [A], ε[A]} and v ∈
{〈B〉B1, ε〈B〉B1

} such that B1 6∈ C. Then,
K |= 〈A〉A v [B]C.

3. w ∈ {〈A〉B2, ε〈A〉B2
, [A], ε[A]} and v ∈

{〈B〉B1, ε〈B〉B1
} such that B1 ∈ C. Then,

K |= 〈A〉A v 〈B〉C.
4. w = v Then, K |= A v C
5. A ∈ Q(a, εAO), a ∈ Ind(AO). Then, K |= A(a).
6. A ∈ Q(a, v), v an A-world, a ∈ Ind(AO). Then, K |=
〈A〉A(a).

7. A ∈ Q(a, v), v ∈ {[A], ε[A]} a ∈ Ind(AO). Then, K |=
[A]A(a).

8. An invariant for the structure R, (a, b) ∈ R(r, v) implies
∃X,∃A.(X ∈ Q(a, v))∧X v ∃r.A ∈ T O ∧ b = (A, v).
It is not hard to show by induction on the number of rule

applications that the invariants hold. It is clear that the ini-
tial quasimodel satisfies these invariants, and they are pre-
served by each rule application. Then, Invariant 5 yields the
desired result, i.e., for all A0 ∈ NC and a0 ∈ Ind(AO),
A0 ∈ Q(a, εAO) implies K |= A0(a). q

It is readily checked that the cardinality of BCO is linear
on the size ofO. Since no rule removes elements ofQ(a,w)
for some a ∈ Ω, w ∈W or R(r) for some r ∈ NOR the total
number of rule applications is polynomial.
Theorem 9 Instance checking in ALELEL can be decided in
PTIME

Note that the same algorithm can be used to decide sub-
sumption w.r.t. global TBoxes. In this case the ABox is
empty.
Corollary 1 Given an object TBox T O, and A,B ∈ NC .
A vT O B if and only if for each a ∈ Ω, w ∈ W , A ∈
Q(a,w) implies B ∈ Q(a,w)
Corollary 2 Subsumption w.r.t. to global TBoxes in ALELEL
can be decided in PTIME

Now, to check satisfiability in ALELEL we also need to
check axioms C : ϕ.

First note that, we can introduce a fresh concept name A′
and include the axioms A v C and C v A. Now, we need
to check A′ : ϕ.

We show how to handle each different case:

• ϕ = A v B We use the subsumption algorithm restricting
to check whether A ∈ Q(a,w) implies B ∈ Q(a,w) for
the w that are A′-worlds.

• ϕ = B(a) We only need to check if B ∈ Q(a, [A′]) or
B ∈ Q(a, ε[A′]).

• ϕ = r(a, b) We only need to check if (a, b) ∈ R(r, w) for
the w that are A′-worlds.

Theorem 10 Satisfiability in ALELEL is in PTIME.

NEXPTIME/EXPTIME upper bounds
In this section we derive some NEXPTIME and EXPTIME
upper bounds which transfer directly to all decision prob-
lems of the same complexity discussed in the paper. In
fact, the results obtained here apply to more expressive log-
ics. Namely, we prove 1) the NEXPTIME upper bound for
ALLSHIO with object axioms of the form C : ϕ, where ϕ is
any boolean combination of DL formulas, possibly involv-
ing context operators, and where L ∈ {SHIO, EL++}; 2)
the EXPTIME upper bound for ALEL

++

SHI . Notably, the logic
EL++ properly subsumes EL (Baader, Brandt, and Lutz
2008), SHI subsumes ALC and SHIO subsumes ALCO
(Tobies 2001).

The decision procedures devised here are essentially vari-
ants of the type-based techniques, commonly used in prov-
ing the complexity results for the satisfiability problem in
various modal logics and their combinations (Kurucz et al.
2003). First, we introduce a number of notational conven-
tions and auxiliary results that should ease the layout of the
target proofs. Whenever necessary we distinguish between
the languages under consideration.

Consider an AIS K = (C,O) in ALML . We use the fol-
lowing notation to mark the sets of symbols of particular
type occurring in K:
• conc(K): the set of all metalanguage concepts, closed un-

der negation (M = SHIO),
• conc(K): the set of all metalanguage concepts (M =
EL++),

• conop
c (K) ⊆ conc(K): the set of all metalanguage con-

cepts occurring inside the context operators,
• cono(K): the set of all object language concepts, closed

under negation,
• rolc(K): the set of all metalanguage roles,

• rol+c (K) ⊆ rolc(K): the set of all transitive metalanguage
roles (M = SHIO),

• rolo(K): the set of all object roles,

• rol+o (K) ⊆ rolo(K): the set of all transitive object roles,
• objo(K): the set of object individual names,
• subo(K): the set of all object (sub)formulas, closed under

negation.
By ·− we denote the inverse constructor for roles and as-
sume that (r−)− = r (resp. (r−)− = r). Let f be a set
of SHIO formulas. Then by v∗f we denote the reflexive-
transitive closure of v on {r v s, s− v r− | r v s ∈ f}

(resp. {r v s, s− v r− | r v s ∈ f). Without loss of gener-
ality we assume that neither [·], ∀ nor t occur in K. Further,
in order to reduce the syntactic load in the considered cases,
whenever possible we apply the following replacements of
all the respective formulas with their equivalents:

a : C ⇒ {a} v C, (L = SHIO)
r(a, b) ⇒ {a} v ∃r.{b}, (L = SHIO)
a : C ⇒ {a} v C,
r(a, b) ⇒ {a} v ∃r.{b},
dom(r) v C ⇒ ∃r.> v C, (M = EL++)

An object type for K is a subset to ⊆ cono(K), where:
• ¬> 6∈ to and ⊥ 6∈ to,
• C ∈ to iff ¬C 6∈ to, for all C ∈ cono(K),
• C uD ∈ to iff {C,D} ⊆ to, for all C uD ∈ cono(K),
• {∃s.C | ∃r.C ∈ tc} ⊆ tc, for every s ∈ rolc(K) such

that r v∗C s,
• {¬∃s.C | ¬∃r.C ∈ tc} ⊆ tc, for every s ∈ rolc(K) such

that s v∗C r.
The set of all object types for K is denoted by Π. An object
formula type for K is a subset f ⊆ subo(K), where:
• ϕ ∈ f iff ¬ϕ 6∈ f , for all ϕ ∈ subo(K),
• ϕ ∧ ψ ∈ f iff {ϕ,ψ} ⊆ f , for all ϕ ∧ ψ ∈ subo(K),
The set of all object formula types for K is denoted by Φ. A
context type for K is a subset tc ⊆ conc(K), where:
• ¬> 6∈ tc and ⊥ 6∈ tc,
• C ∈ tc iff ¬C 6∈ tc, for all C ∈ conc(K), (M = SHIO)
• C u D ∈ tc iff {C,D} ⊆ tc, for all C u D ∈ conc(K),
• {∃s.C | ∃r.C ∈ tc} ⊆ tc, for every s ∈ rolc(K) such that

r v∗C s,
• {¬∃s.C | ¬∃r.C ∈ tc} ⊆ tc, for every s ∈ rolc(K) such

that s v∗C r.
The set of all context types for K is denoted by Ξ.

The following two definitions introduce the notions of
matching object role-successor and matching S5-successor,
used in the proofs for reconstructing the role relationships
and accessibility relations between individuals in the object
dimension.
Definition 12 (matching object role-successor) Let to, t

′
o

be two object types for K. For any r ∈ rolo(K), t′o is a
matching r-successor for to under f ⊆ subo(K) iff the fol-
lowing conditions are satisfied:
• {¬C | ¬∃r.C ∈ to} ⊆ t′o and {¬C | ¬∃r−.C ∈ t′o} ⊆
to,

• if {r, r−} ∩ rol+
o (K) 6= ∅ then {¬∃r.C ∈ to} ⊆ t′o and

{¬∃r−.C ∈ t′o} ⊆ to,
• t′o is a matching s-successor for every s ∈ rolo(K) such

that r v∗f s.
Definition 13 (matching S5-successor) For any object
type to for K, let m(to) denote the set of all object concepts
containing context operators in to, i.e.: m(to) = {〈C〉D,
¬〈C〉D ∈ to | C ∈ conc(K), D ∈ cono(K)}. Then, two
object types to, t′o for K are matching S5-successors iff
m(to) = m(t′o).

The analogous definition of matching role-successor ap-
plies to metalanguage roles inM = SHIO:

Definition 14 (matching metalanguage role-successor)
Let tc, t′c be two context types for K. For any r ∈ rolc(K),
t′c is a matching r-successor for tc under C iff the following
conditions are satisfied:

• {¬C | ¬∃r.C ∈ tc} ⊆ t′c and {¬C | ¬∃r−.C ∈ t′c} ⊆ tc,
• if {r, r−} ∩ rol+

c (K) 6= ∅ then {¬∃r.C ∈ tc} ⊆ t′c and
{¬∃r−.C ∈ t′c} ⊆ tc,

• t′c is a matching s-successor for every s ∈ rolc(K) such
that r v∗C s.

Definition 15 (C-admissibility) Let S be a set of context
types forK = (C,O). We say that S is C-admissible iff there
exists a model (S, ·J) for C, such that for every tc ∈ S and
C ∈ conc(K), tc ∈ CJ iff C ∈ tc.
Theorem 11 (C-admissibility) Let S× be a multiset of con-
text types for K = (C,O), where C is a knowledge base in
L ∈ {SHIO, EL++}, such that:

• S is the underlying set of elements of S×,
• for every a ∈ obj c(K) and tc, t′c ∈ S×, if {a} ∈ tc ∩ t′c

then tc = t′c.

Then the following two conditions are equivalent:

1. There exists a model (S×, ·J) for C, such that for every
tc ∈ S× and C ∈ conc(K), tc ∈ CJ iff C ∈ tc.

2. S is C-admissible.

Proof. Intuitively, since neither of L ∈ {SHIO, EL++}
involves cardinality restrictions, it is straightforward to turn
a model for C implied by condition (1) into a model im-
plied by (2) (from Definition 15), and vice versa. This can
be done simply by collapsing (resp. duplicating) individu-
als which realize the same type in the model. Formally, we
demonstrate this by establishing a direct correspondence be-
tween both type of models. Let π : S× 7→ S be a surjective
mapping, such that for every tc ∈ S×, π(tc) = tc. Then
(S×, ·J×) is a model implied by (1) iff (S, ·J) is a model
implied by (2), provided that for every for every tc, t′c ∈ S×
the following conditions are satisfied:

• tc ∈ CJ× iff π(tc) ∈ CJ ,

• 〈tc, t′c〉 ∈ rJ× iff 〈π(tc), τ(t′c)〉 ∈ rJ .

By structural induction over constructs of L it is easy to find
out that the models are bisimilar, and thus satisfy exactly the
same formulas from C. q

As a consequence of Definition 15 and Theorem 11, sat-
isfiability of C can be reduced to the problem of finding
a C-admissible set of context types. The following theo-
rems provide effectively verifiable, language-specific con-
ditions for deciding whether a given set of context types is
C-admissible.

Theorem 12 (Deciding C-admissibility in SHIO) Let S
be a set of context types for K = (C,O), where C is ex-
pressed in SHIO. Then, S is C-admissible iff the following
conditions are satisfied:

1. for every C v D ∈ C and tc ∈ S, if C ∈ tc then D ∈ tc,
2. for every a ∈ obj c(K) there is a unique tc ∈ S such that
{a} ∈ tc,

3. for every ∃s.C ∈ conc(K) and tc ∈ S with ∃s.C ∈ tc,
there is t′c ∈ S, such that C ∈ t′c and t′c is a matching
s-successor for tc under C.

The conditions can be effectively verified in a time at most
exponential in the size of K.

Proof. First, we construct a SHIO-model (S, ·J) for C im-
plied by C-admissibility of S, as follows. For every tc, t′c ∈
S:

• aJ = tc iff {a} ∈ tc, for every a ∈ obj c(K),

• tc ∈ CJ iff C ∈ tc, for every C ∈ conc(K),

• 〈tc, t′c〉 ∈ sJ iff t′c is a matching s-successor for tc under
C, for every s ∈ rolc(K).

(⇐) We show that (S, ·J) is indeed a model for C. Observe
that the respective conditions in the theorem guarantee that:

1. all GCIs are satisfied,

2. all individual names (and so the nominals) are given
unique interpretations,

3. all individuals satisfying existential restrictions obtain
proper role successors, and moreover, by Def. 14, it is en-
sured that:

• role names and their inverses are interpreted as rela-
tions which are inverses of each other,
• transitive roles are interpreted as transitive relations,
• the role hierarchies entailed by C are respected,
• for every tc ∈ S, and r ∈ rolc(K) all concepts of the

form ¬∃r.C ∈ tc are satisfied in the model.

The first two points are clear by the construction of the
model and the conditions 1 and 2 in the theorem. The third
one follows from the construction of the model, definition
of context type (DCT) and of matching metalanguage role
successor (Def. 14). We proceed by induction. Consider any
tc, t
′
c ∈ S, such that t′c is a matching s-successor for tc under

C for some s ∈ rolc(K) at the top level of the role hierarchy.
Then 〈tc, t′c〉 ∈ sJ and, by Def. 14, tc has to be a match-
ing s−-successor for t′c under C, and thus 〈t′c, tc〉 ∈ (s−)J .
In both cases all concepts of the form ¬∃s.C ∈ tc and
¬∃s−.C ∈ t′c need to be satisfied. Also, by the construction
of the model, it is ensured that for all tc ∈ S all concepts
∃s.C ∈ tc are satisfied as well. Further, suppose s is a transi-
tive role. Then for every t′′c which is a matching s-successor
for t′c under C, t′′c has to be also a matching s-successor for
tc under C and so 〈tc, t′′c 〉 ∈ sJ , which inductively extends
over the whole interpretation of s, rendering it a transitive
relation. In such case, Def. 14 guarantees that the model sat-
isfies all ¬∃s.C ∈ tc and ¬∃s−.C ∈ t′′c .

Now, suppose that for some role r there is s v∗C r and
let t′c be a matching s-successor for tc under C, for some
tc, t
′
c ∈ S. Then by Def. 14, t′c must be also a match-

ing r-successor for tc under C, and so by the construction
of the model 〈tc, t′c〉 ∈ rJ and 〈t′c, tc〉 ∈ (r−)J , which

fulfills the semantics of the role inclusion. Finally, sup-
pose s is a transitive role and 〈tc, t′c〉, 〈t′c, t′′c 〉 ∈ sJ , for
some tc, t′c, t

′′
c ∈ S. Since, as argued above, t′′c must be

also a matching s-successor for tc under C, it follows that
〈tc, t′′c 〉 ∈ sJ . But then, by (DCT), for every concept of the
form ¬∃r.C ∈ to, there already is ¬∃s.C ∈ to, and conse-
quently, by transitivity of s, also ¬∃s.C ∈ t′o. Therefore, it
is also the case that t′′c is a matching r-successor for tc un-
der C and 〈tc, t′′c 〉 ∈ rJ . Clearly, all concepts of the form
¬∃r.C ∈ tc and ¬∃r−.C ∈ t′′c are satisfied in the model.
By induction, the argument carries over to all roles in the
hierarchy.

(⇒) We demonstrate that (S, ·J), constructed as above, sat-
isfies the conditions stated in the theorem. The first two
are immediate. For the third one, suppose that for some
∃s.C ∈ conc(K) and tc ∈ S there is ∃s.C ∈ tc. Clearly, by
the semantics, there must be a t′c ∈ S, such that 〈tc, t′c〉 ∈ sJ

and t′c ∈ CJ , and thus with C ∈ t′c. We show that in such
case t′c is a matching s-successor for tc under C, i.e. that
the three conditions in Def. 14 are satisfied. The first one is
obvious. For the second one, suppose that s is transitive and
some¬∃s.D is satisfied in tc. Then it must be the case that ei-
ther t′c has no s-successors in the model (in such case ¬∃s.D
is vacuously satisfied in t′c) or it has some s-successors. In
the latter case, by transitivity of s, such successors have to
satisfy all D such that tc ∈ (¬∃s.D)J . It follows that all
such ¬∃s.D have to be satisfied also in t′c, and so the condi-
tion holds. Finally, by induction over the role hierarchy, t′c is
clearly a matching r-successor for tc under C, for all r such
that s v∗C r.

Observe that the size ofv∗C is at most polynomial in `(K),
while |S| ≤ 2`(K) and |tc| ≤ `(K) for every tc ∈ S (see
also the proof of Lemma 2). Thus, deciding the conditions
specified in the theorem cannot take more than a polynomial
time in the size of S and, exponential in `(K). q

In order to formulate a similar claim forM = EL++ we
require some additional notation. We write C ` r v s iff
r = s or C contains role inclusions r1 v r2, . . . , rn−1 v rn
with r1 = r and rn = s. Further, we write C ` ran(r) v C if
there is a role name s with C ` r v s and ran(s) v C ∈ C.

Let X ⊆ conc(K). Then by XvC we denote the closure of
X under subsumption in C w.r.t. conc(K), i.e.:

• X ⊆ XvC ,

• if C,D ∈ XvC then C u D ∈ XvC , for every C u D ∈
conc(K),

• for every C ∈ XvC and D ∈ conc(K), if C |= C v D then
D ∈ XvC .

Since the subsumption problem in EL++ is tractable
(Baader, Brandt, and Lutz 2008), it is clear that XvC can be
computed in a polynomial time. By an abuse of notation we
write CvC , whenever X = {C} for any C.

Algorithm 1 computes a C-admissible set SC,Ω of context
types for K, provided such set exists at all, and its subset
UC,Ω. The subscript Ω ⊆ conc(K) denotes an extra set of

concepts which must be also satisfied in the model corre-
sponding to SC,Ω. This parameter and the set UC,Ω are nec-
essary later on, when satisfiability of the whole knowledge
base K is considered. In the special case, for Ω = ∅, SC,Ω
corresponds exactly to the canonical model of C. That is, for
every EL++ concept C, there exists Y ∈ SC,Ω with C ∈ Y
iff C is satisfied in every model of C, provided such mod-
els exist. This dramatically reduces the search space for C-
admissible sets of context types for M = EL++, which
paves the way to the EXPTIME upper bound for ALEL

++

SHI .

Algorithm 1 Computation of a set of context types for K in
EL++.
Input: (context) ontology C, a set of concepts Ω ⊆ conc(K)
Output: two sets of context types SC,Ω and UC,Ω

1: S := ∅, U := ∅, Marked := ∅
2: if objc(K) = ∅ and Ω = ∅ then
3: add >vC to S
4: else
5: for all a ∈ objc(K) do
6: add {a}vC to S
7: end for
8: for all C ∈ Ω do
9: add CvC to S and to U

10: end for
11: end if
12: while applicable do
13: for all Y ∈ S and ∃s.C ∈ Y do
14: if ∃s.C 6∈ Marked then
15: add ({C} ∪ {D | C ` ran(s) v D})vC to S and

add ∃s.C to Marked
16: end if
17: end for
18: for all a ∈ objc(K) and Y,Z ∈ S do
19: if {a} ∈ Y ∩ Z then
20: replace Y and Z in S with (Y ∪ Z)vC
21: end if
22: if Y ∈ U or Z ∈ U then
23: remove Y,Z from U and add (Y ∪ Z)vC to U
24: end if
25: end for
26: end while
27: if ⊥ 6∈ Y for every Y ∈ S then
28: SC,Ω := S and UC,Ω
29: else
30: SC,Ω := ∅ and UC,Ω = ∅
31: end if

Theorem 13 (Semi-deciding C-admissibility in EL++)
Let K = (C,O) be a knowledge base, where C is expressed
in EL++, and S be a set of context types for K. Then S is
C-admissible if the following conditions are satisfied:

1. S = SC,Ω, where SC,Ω is computed by Algorithm 1 for
some Ω ⊆ conc(K),

2. SC,Ω is non-empty.
For a fixed Ω, the algorithm runs in a time polynomial in the
size of K.

Proof. Suppose SC,Ω is non-empty. Then clearly, every ele-
ment of SC,Ω is a context type forK. We construct an EL++-
model (SC,Ω, ·J) for C, implied by C-admissibility of SC,Ω,
as follows. For every tc, t′c ∈ S fix:

• aJ = tc iff {a} ∈ tc, for every a ∈ obj c(K),

• tc ∈ CJ iff C ∈ tc, for every C ∈ conc(K),

• 〈tc, t′c〉 ∈ sJ iff {D | C ` ran(s) v D} ⊆ t′c.

Extend ·J inductively over all roles by ensuring that for ev-
ery tc, t′c, t

′′
c ∈ S:

• if 〈tc, t′c〉 ∈ r and 〈t′c, t′′c 〉 ∈ s then 〈tc, t′′c 〉 ∈ r ◦ s, for
every r ◦ s ∈ rolc(K),

• if 〈tc, t′c〉 ∈ (r1 ◦ . . . ◦ rn)J then 〈tc, t′c〉 ∈ sJ , for every
r1 ◦ . . . ◦ rn v s ∈ C.

It is not hard to verify, that (SC,Ω, ·J) defined in this way
is indeed a model for C. In particular, by the construction of
the model and definition of the algorithm, it is guaranteed
that all GCIs are satisfied (by closure of the generated types
under v in C), individual names obtain unique interpreta-
tions (by merging types containing the same nominals) and
that all individuals satisfying existential restrictions obtain
proper successors. The only issue requiring more attention
is the satisfaction of role ranges. Clearly, the ranges of roles
included in existential restrictions are respected by the def-
inition of the algorithm. For the inductive extension of ·J
over the remaining roles, we resort to the syntactic restric-
tion permitting tractable reasoning in EL++, which has been
identified in (Baader, Brandt, and Lutz 2008). The restriction
states:

If r1 ◦ . . . ◦ rn v s ∈ C with n ≥ 1 and C ` ran(s) v D,
then C ` ran(rn) v D.

It immediately follows, that whenever 〈tc, t′c〉 ∈ sJ is in-
cluded in ·J , for any tc, t′c ∈ SC , because of some role in-
clusion r1 ◦ . . . ◦ rn v s ∈ C, it is the case, that {D | C `
ran(s) v D} ⊆ t′c if {D | C ` ran(rn) v D} ⊆ t′c. But then,
by induction, it is easy to see that the appropriate range re-
strictions are carried over from the roles occurring in some
existential restrictions, which are sufficiently handled by the
algorithm.

Observe, that the number of distinct concepts of the form
∃r.C occurring in SC,Ω is linearly bounded by the size of C,
and thus, computing SC,Ω must terminate in a time polyno-
mial in the size of K. q

Theorem 14 (Satisfiability as C-admissibility in EL++)
Let K = (C,O) be a knowledge base, where C is expressed
in EL++, and let Ω ⊆ conc(K). Then C is satisfied in some
model which also satisfies every C ∈ Ω iff SC,Ω, computed
by Algorithm 1, is non-empty.

Proof. (⇒) Let (C, ·J) be a model of C satisfying every
C ∈ Ω. Define a mapping τ : C 7→ Ξ, such that for ev-
ery c ∈ C and C ∈ conc(K), C ∈ τ(c) iff c ∈ CJ . Now,

let S = {τ(c) | c ∈ C}. Observe, that the algorithm gen-
erating the context types from SC,Ω is deterministic and en-
forces only the necessary consequences of C and the seman-
tics of EL++. Hence, for every tc ∈ SC,Ω there must be
some t′c ∈ S, such that tc ⊆ t′c. Obviously, no tc ∈ S con-
tains ⊥. Thus, whenever C has a model satisfying all con-
cepts from Ω, there has to exist a non-empty output from the
algorithm.

(⇐) Suppose SC,Ω is non-empty. By the construction of
SC,Ω, for every C ∈ Ω there exists a type tc ∈ SC,Ω, such
that C ∈ tc. Thus, by Algorithm 1, Theorem 13 and Def-
inition 15 there has to exist a model of C satisfying every
C ∈ Ω. q

A context structure 〈S,S〉 for K is a pair consisting of a
set S ⊆ Ξ of context types for K and a non-empty set S of
tuples of the form 〈tc, f, ν〉, where tc ∈ S, f ⊆ subo(K)
is an object formula type for K, ν : objo(K) 7→ Π assigns
unique object types to individual object names, and such that
the following conditions are satisfied:
(CS1) for every a ∈ obj c(K) there is a unique tc ∈ S such

that {a} ∈ tc, and at most one 〈tc, f, ν〉 ∈ S. If a : ϕ ∈
O, for any ϕ, then such 〈tc, f, ν〉 ∈ S must exist,

(CS2) S is C-admissible,
(CS3) for every 〈tc, f, ν〉 ∈ S and C : ϕ ∈ O, if C ∈ tc

then ϕ ∈ f ,
In the case of languages with full object formulas, the fol-
lowing requirement has to be also satisfied:
(CS4) for every 〈tc, f, ν〉 ∈ S it holds that:
• if C ∈ tc and ϕ ∈ f then 〈C〉ϕ ∈ f , for every 〈C〉ϕ ∈

subo(K),
• for every 〈C〉ϕ ∈ f there is 〈t′c, f ′, ν′〉 ∈ S, such that

C ∈ t′c and ϕ ∈ f ′,
• for every ¬〈C〉¬ϕ ∈ f and 〈t′c, f ′, ν′〉 ∈ S, if C ∈ t′c

then ϕ ∈ f ′.
Intuitively, a context structure contains all the pieces

necessary for reconstructing a single ALML -interpretation.
However, not all such interpretations might correspond to
a genuine ALML -model. To filter out the proper ones, some
additional conditions need to be imposed. These are intro-
duced in the notion of quasimodel candidate, and further,
in the notions of quasimodel associated with specific logics
under consideration.

Definition 16 (Quasimodel candidate) A quasimodel can-
didate QS

S for K, where 〈S,S〉 is a context structure for K,
is a set of pairs 〈k, to〉, such that k ∈ S, to ∈ Π, satisfying
the following conditions:

(QC1) for every k ∈ S, with k = 〈tc, f, ν〉, and a ∈
objo(K), 〈k, ν(a)〉 ∈ QS

S.

For every 〈k, to〉 ∈ QS
S, with k = 〈tc, f, ν〉:

(QC2) if ¬〈C〉¬D ∈ to and C ∈ tc then D ∈ to, for all
¬〈C〉¬D ∈ cono(K),

(QC3) if C ∈ tc and D ∈ to then 〈C〉D ∈ to, for all
〈C〉D ∈ cono(K),

(QC4) for every k′ ∈ S, there is some 〈k′, t′o〉 ∈ QS
S such

that to, t′o are matching S5-successors,

(QC5) if 〈C〉D ∈ to then there is 〈k′, t′o〉 ∈ QS
S, such that

k′ = 〈t′c, f ′, ν′〉,C ∈ t′c, D ∈ t′o and to, t′o are matching
S5-successors. Moreover, if to 6= t′o then k′ 6= k,

(QC6) for every ∃r.C ∈ to there is 〈k, t′o〉 ∈ QS
S, such that

C ∈ t′o and t′o is a matching r-successor for to under f .

Lemma 2 (Quasimodel candidate space bound) The size
of a quasimodel candidate is exponentially bounded in the
size of K.

Proof. By `(K) we denote the size of K, measured in the
number of symbols used, and by |X|— the number of ele-
ments of setX . We observe that the following (very liberally
estimated) inequalities hold:

|conc(K)| ≤ 2`(K), |cono(K)| ≤ 2`(K),
|subo(K)| ≤ 2`(K), |objo(K)| ≤ `(K)

|Π| ≤ 2cono(K) ≤ 22`(K), |Ξ| ≤ 2conc(K) ≤ 22`(K),
|Φ| ≤ 2subo(K) ≤ 22`(K)

|Π|objo(K)|| = |Π||objo(K)| ≤ 22`(K)2

|S| ≤ |Ξ| · |Φ| · |Π|objo(K)|| ≤ 22`(K)2+4`(K)

|QS
S| ≤ |S| · |Π| ≤ 22`(K)2+6`(K)

Since the maximum size of a single tuple in a quasimodel
candidate is polynomial in `(K) therefore the maximum size
of a quasimodel is never greater than 2p(`(K)), where p is a
fixed polynomial. q

The structure of the proofs:

1. definition of a quasimodel

2. the quasimodel lemma

3. an algorithm with a specified time resource bound

Theorem 15 Knowledge base satisfiability in ALLSHIO, for
L ∈ {SHIO, EL++}, with full object formulas and only
local roles is in NEXPTIME.

Proof. We begin by defining the relevant notion of quasi-
model.

Definition 17 (Quasimodel) A quasimodel candidate QS
S

for K, where K is a knowledge base in ALLSHIO, for L ∈
{SHIO, EL++}, with full object formulas and only local
roles, is called a quasimodel for K iff the following condi-
tions are satisfied:

(QM1) for every 〈k, to〉 ∈ QS
S, with k = 〈tc, f, ν〉, and

a ∈ objo(K), {a} ∈ to iff to = ν(a).

For every k ∈ S with k = 〈tc, f, ν〉:
(QM2) C v D ∈ f iff for every 〈k, to〉 ∈ QS

S if C ∈ to
then D ∈ to, for every C v D ∈ subo(K).

(QM3) ¬(C v D) ∈ f iff there is 〈k, to〉 ∈ QS
S such that

{C,¬D} ⊆ to, for every ¬(C v D) ∈ subo(K),

(QM4) ¬(r v s) ∈ f iff r 6v∗f s and there is
〈k, to〉, 〈k, t′o〉 ∈ QS

S such that t′o is a matching r-
successor for to under f , for every ¬(r v s) ∈ subo(K).

Next, we show the correspondence between quasimodels
and models.

Lemma 3 (Quasimodel lemma) A knowledge base K has
an ALLSHIO-model, for L ∈ {SHIO, EL++}, iff there is a
quasimodel for K.

Proof. (⇒) Let M = (Θ,C, ·J ,∆, {·I(c)}c∈C) be a model
for K. First, we fix a mapping τ from Θ, C and ∆ to the
corresponding context/object types. For every c ∈ Θ set
τ(c) = tc, such that:

• C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),

For every 〈c, d〉 ∈ C×∆ set τ(〈c, d〉) = to, such that:

• C ∈ to iff d ∈ CI(c), for every C ∈ cono(K).

Further, for every c ∈ C set τ(c) = 〈tc, f, ν〉, such that the
following correspondences hold:

• C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),

• ϕ ∈ f iff M, c |= ϕ, for every ϕ ∈ subo(K),

• ν(a) = τ(〈c, aI(c)〉) for every a ∈ objo(K).

Fix S = {τ(c) | c ∈ Θ} and S = {τ(c) | c ∈ C}.
By Theorem 11, 〈S,S〉 is a proper context structure sat-
isfying all conditions (CSx). Next, define the quasimodel
QS

S = {〈τ(c), τ(〈c, d〉)〉 | 〈c, d〉 ∈ C×∆, }. It is easy to see,
that all conditions (QC1)-(QC5) and (QM1)-(QM3) have to
be satisfied. Since the notion of matching role successor is
exactly the same for the object and metalanguage roles in
SHIO, the satisfaction of (QC6) can be demonstrated by
the same argument as used in the proof of Theorem 12. Fi-
nally, for (QM4), observe that whenever c |= ¬(r v s)
holds in c ∈ C, then there have to be d, d′ ∈ ∆, such that
〈d, d′〉 ∈ rJ and 〈d, d′〉 6∈ sJ and so that the condition
(QM4) has to be satisfied in QS

S defined as above.

(⇐) Let QS
S be a quasimodel for K. In the following steps

we define a model M = (Θ,C, ·J ,∆, {·I(c)}c∈C) for K.
The interpretation of the context dimension follows imme-
diately from the definition of the context structure. Since
〈S,S〉 is a context structure, then S must be a C-admissible
set of context types. But then, by Theorem 11, for any mul-
tiset S× such that S ⊆ S×, there must be some interpre-
tation function ·J such that (S×, ·J) is a model for C. Fix
C = {kto | 〈k, to〉 ∈ QS

S} and Θ = {tkc | k = 〈tc, f, ν〉 ∈
C} ∪ {tc ∈ S | 〈tc, f, ν〉 6∈ C for any f, ν}. Then clearly,
(Θ, ·J) is also a model for C. The tuple (Θ,C, ·J) is incor-
porated into M.

Now, consider the object dimension. For every k ∈ C, we
fix the set of object types Tk = {to | 〈k, to〉 ∈ QS

S} realized
in this context. A run ρ through QS

S is a function which to
every k ∈ C assigns a single type from Tk, such that:

• for every k, k′ ∈ C it is the case that ρ(k), ρ(k′) are
matching S5-successors,

• for every k ∈ C, if 〈C〉D ∈ ρ(k) then there is k′ ∈ C,
such that k′ = 〈t′c, f ′, ν′〉, C ∈ t′c and D ∈ ρ(k′)′.

A set R of runs through QS
S is called coherent iff the fol-

lowing conditions are satisfied:

• for every k ∈ C and to ∈ Tk, there is a ρ ∈ R such that
ρ(k) = to,

• for every a ∈ objo(K) and k ∈ C, with k = 〈to, f, ν〉,
there is a unique ρ ∈ R, such that ρ(k) = ν(a),

Next, we define the interpretation of the object dimension
as follows. First, fix the object domain as:

• ∆ := R

Then, for every k ∈ C, with k = 〈tc, f, ν〉, and ρ, ρ′ ∈ ∆ set
the interpretation function as:

• aI(k) = ρ iff ν(a) = ρ(k), for every a ∈ objo(K),

• ρ ∈ CI(k) iff C ∈ ρ(k), for every C ∈ cono(K),

• 〈ρ, ρ′〉 ∈ rI(k) iff ρ′(k) is a matching r-successor for
ρ(k) under f .

As all the conditions (CSx), (QCx) and (QMx) are sat-
isfied by the assumption, it is not difficult to verify that
M = (Θ,C, ·J ,∆, {·I(c)}c∈C), defined as above, is indeed
an ALLSHIO-model for K, for L ∈ {SHIO, EL++}. Again
for the interpretation of the roles (including inverses and
transitive roles) and satisfaction of the role hierarchy we ap-
ply the same argument as used for the case of the context
ontology in the proof of Theorem 12. q

By Lemmas 2 and 3, the simplest brute-force NEXPTIME
algorithm for checking satisfiability of K first guesses a
quasimodel and then checks whether all conditions (CSx),
(QCx) and(QMx) are satisfied. Clearly, such a check can be
accomplished in a polynomial time in the size of the quasi-
model, and thus in at most an exponential time in the size of
K. q

Theorem 16 Knowledge base satisfiability in ALEL
++

SHI ,
with only local roles, is in EXPTIME.

Proof.
Again, we start by defining the relevant notion of quasi-

model.

Definition 18 (Quasimodel) A quasimodel candidate QS
S

for K, where K is a knowledge base in ALEL
++

SHI , with only
local roles, is called a quasimodel iff it satisfies the follow-
ing conditions:

(QM1) for every k, k′ ∈ S, with k = 〈tc, f, ν〉 and k′ =
〈t′c, f ′, ν′〉, and to ∈ Π, whenever tc = t′c then 〈k, to〉 ∈
QS

S iff 〈k′, to〉 ∈ QS
S,

(QM2) for every 〈k, to〉 ∈ QS
S, with k = 〈tc, f, ν〉, and

C v D ∈ f , if C ∈ to then D ∈ to.
For every k ∈ S with k = 〈tc, f, ν〉:
(QM3) if a : C ∈ f then C ∈ ν(a),

(QM4) if r(a, b) ∈ f then ν(b) is a matching r-successor
for ν(a) under f ,

(QM5) (rigid object names) for every a ∈ objo(K) and
k′ ∈ S with k′ = 〈t′c, f ′, ν′〉, ν(a) and ν′(a) are match-
ing S5-successors,

(QM6) (rigid object names) for every a ∈ objo(K) and
〈C〉D ∈ ν(a) there is 〈t′c, f ′, ν′〉 ∈ S, such that C ∈ t′c,
D ∈ ν′(a).
Next, we prove the corresponding quasimodel lemma.

Lemma 4 (Quasimodel lemma) A knowledge base K has
an ALEL

++

SHI -model iff there is a quasimodel for K.

Proof. The proof is slightly more involved than in the case
of Lemma 3, as here we need to restrict the space of possi-
ble quasimodels only to those built over the minimal context
structures, generated by Algorithm 1.

(⇒) Let M = (Θ,C, ·J ,∆, {·I(c)}c∈C) be a model for K.
As in the proof of Lemma 3, we first fix a mapping τ from C
and ∆ to the corresponding context/object types. For every
c ∈ Θ set τ(c) = tc, such that:

• C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),
For every 〈c, d〉 ∈ C×∆ set τ(〈c, d〉) = to, such that:

• C ∈ to iff d ∈ CI(c), for every C ∈ cono(K).
Further, for every c ∈ C set τ(c) = 〈tc, f, ν〉, such that the
following correspondences hold:

• C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),
• ϕ ∈ f iff M, c |= ϕ, for every ϕ ∈ subo(K),

• ν(a) = τ(〈c, aI(c)〉) for every a ∈ objo(K).

Define set Ω = {C | (〈C〉D)I(c) 6= ∅ for any 〈C〉D ∈
cono(K) and c ∈ C}. The set contains all those metalan-
guage concepts whose satisfaction is enforced by means of
object concepts containing context operators which are actu-
ally satisfied in the model. Then compute the set SC,Ω. Ob-
serve, that by Theorem 14, SC,Ω has to be non-empty. Next,
for every tc ∈ SC,Ω, set f(tc) = {ϕ | C : ϕ ∈ O,C ∈ tc}
and define the context structure 〈S,S〉 and the quasimodel
QS

S by applying the following steps.

1. Set S = SC,Ω, S := ∅, QS
S := ∅, and Ttc := ∅, for every

tc ∈ SC,Ω.
2. For every c ∈ C and every tc ∈ SC,Ω:
• let τ(c) = 〈t′c, f ′, ν〉. If tc ⊆ t′c, then add 〈tc, f(tc), ν〉

to S and for all d ∈ ∆ add τ(〈c, d〉) to Ttc .
3. For every k ∈ S, with k = 〈tc, f, ν〉, and to ∈ Ttc , add
〈k, to〉 to QS

S.
It is not difficult to verify that all conditions (CSx), (QCx)
and (QM1)-(QM4) have to be satisfied by 〈S,S〉 and QS

S.
Conditions (QM5) and (QM6) are special variants of (QC4)
and (QC5) and impose rigid name assumption on individ-
ual object names, i.e. the requirement that for every a ∈
obj o(K) and c, c′ ∈ C, it is always the case that aI(c) =
aI(c′). It is not hard to see that whenever an ALEL

++

SHI -model
satisfies this constraint, (QM5) and (QM6) are also satisfied
in the corresponding quasimodel.

(⇐) Let QS
S be a quasimodel for K. In order to construct a

model M = (Θ,C, ·J ,∆, {·I(c)}c∈C) forK we proceed in a
similar manner as in the proof of Lemma 3. In the case with-
out the rigid name assumption, we first fix the interpretation

of the context dimension (Θ,C, ·J) and define runs through
QS

S as before, and impose only one coherency condition on
sets of runs. We say that a set R of runs through QS

S is called
coherent iff the following condition is satisfied:

• for every k ∈ C and to ∈ Tk, there is a ρ ∈ R such that
ρ(k) = to.

Next, we define the interpretation of the object dimension as
follows. First, fix the object domain as:

• ∆ := R

Then, for every k ∈ C, with k = 〈tc, f, ν〉, and ρ, ρ′ ∈ ∆ set
the interpretation function as:

• ρ ∈ CI(k) iff C ∈ ρ(k), for every C ∈ cono(K),

• 〈ρ, ρ′〉 ∈ rI(k) iff ρ′(k) is a matching r-successor for
ρ(k) under f .

Finally, we fix the interpretation of the individual object
names. For every k ∈ C, with k = 〈tc, f, ν〉, and a ∈
objo(K):

• aI(c) = ρ(k), for some unique ρ ∈ R such that ν(a) =
ρ(k).

When the rigid name assumption applies, first pick any
k ∈ S, with k = 〈tc, f, ν〉, and then remove all k′ from
S, with k′ = 〈t′c, f ′, ν′〉, and 〈k′, to〉 from QS

S, such that
for some a ∈ objo(K), ν′(a) and ν(a) are not matching
S5-successors. By conditions (QM5) and (QM6) the result-
ing sets S and QS

S

′ must be still a context structure and a
quasimodel, respectively. Then we formulate the coherency
conditions as:

• for every k ∈ C and to ∈ Tk, there is a ρ ∈ R such that
ρ(k) = to,

• (rigid object names) for every a ∈ objo(K) there is a
unique run ρa ∈ R such that for every k ∈ C, with k =
〈tc, f, ν〉, it is the case that ν(a) = ρa(k).

The construction of the model remains the same as in the
case without the assumption, with the only difference in
assigning the interpretation to individual names. For every
k ∈ C and a ∈ objo(K):

• aI(c) = ρa(k).

In both cases, one can see by the construction that the
resulting interpretation M = (Θ,C, ·J ,∆, {·I(c)}c∈C), is
an ALEL

++

SHI -model for K. q

The EXPTIME procedure, which we sketch here, finds a
quasimodel for K, whenever it exists. This, by Lemma 4,
provides a decision for the satisfiability ofK. The procedure
combines computations of Algorithm 1 with the type elim-
ination technique. It involves two non-deterministic steps
marked with (♣) and (♠) below, which, as shown later, can
be reduced to a deterministic computation over exponen-
tially many possible choice.

Let f(tc) = {ϕ | C : ϕ ∈ O and C ∈ tc}, for every
tc ∈ Ξ. Start by (♣) picking a subset P ⊆ conopc (K), fixing
Ω = P ∪ {{a} | a : ϕ ∈ O} and computing SC,Ω and UC,Ω.
Then fix a context structure 〈S,S〉 as follows:

• Set S := SC,Ω and S,
• (♠) for every tc ∈ UC,Ω and a ∈ objc(K), such that {a} ∈
tc add a single tuple 〈tc, f(tc), ν〉 ∈ S, for some unique
mapping ν : objc(K) 7→ Π;

• for every tc ∈ UC,Ω, such that {a} 6∈ tc for every a ∈
objc(K), add 〈tc, f(tc), ν〉 ∈ S, for every mapping ν :
objc(K) 7→ Π.
Then define a set QS

S = {〈k, to〉 | k ∈ S, to ∈ Π} and
proceed with elimination of elements of QS

S and S:

• for (QC1): eliminate k from S, whenever it violates
the condition. Subsequently, eliminate every 〈k, to〉 from
QS

S,

• for (QC2)-(QC6): eliminate 〈k, to〉 from QS
S, whenever

it violates any of the conditions,
• for (QM1): eliminate 〈k, to〉 from QS

S, whenever 〈k, to〉
gets eliminated,

• for (QM2): eliminate 〈k, to〉 from QS
S, whenever it vio-

lates the condition,
• for (QM3)-(QM4), (rigid name assumption (QM3)-

(QM4)): eliminate k from S, whenever it violates any of
the conditions. Subsequently, eliminate every 〈k, to〉 from
QS

S.

Let QS
S be the result of the elimination. If QS

S 6= ∅ and
〈S,S〉 is a context structure, then clearly QS

S is a quasi-
model. In such case, by Lemma 4, the algorithm returns “K
is satisfiable”. Else, the algorithm repeats the elimination
procedure using a different subset P ⊆ conopc (K) in step (♣)
and/or a different set of mappings ν : objc(K) 7→ Π in step
(♠). Note, that by Theorem 14, and the fact that only con-
cepts in conopc (K) might occur inside the context operators,
it follows that if a quasimodel for K exists, there has to exist
also a quasimodel based on a context structure correspond-
ing to one of the pairs SC,Ω, UC,Ω computed by Algorith 1.
Thus, if for all such combinations the procedure fails to find
a quasimodel, then evidently such quasimodel does not exist
and, by Lemma 4, the procedure returns “K is unsatisfiable”.

It is easy to see, that at the start of the elimination
the exponential space-bound for quasimodel candidates,
Lemma 2, applies also to QS

S. Consequently, a single run
of the elimination procedure cannot take more than an expo-
nential time in order to terminate. Further, observe that the
non-deterministic steps (♣) and (♠) can be replaced by a de-
terministic enumeration of all possible choices. In both cases
there are at most exponentially many of them. For (♣) it is
2|conop

c (K)|, while for (♠) — (|Π||objo(K)|)|objc(K)|, which all
together results in at most 2`K · 22`K3

= 22`K3+`K possible
sets QS

S to perform elimination on. Therefore, the algorithm
has to return the correct answer in a time at most exponential
in the size of K. q

