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Abstract

In description logic (DL), ABoxes are used for describing the state of affairs
in an application domain. We consider the problem of updating ABoxes when
the state changes, assuming that update information is described at an atomic
level, i.e., in terms of possibly negated ABox assertions that involve only atomic
concepts and roles. We analyze such basic ABox updates in several standard
DLs, in particular addressing questions of expressibility and succinctness: can
updated ABoxes always be expressed in the DL in which the original ABox was
formulated and, if so, what is the size of the updated ABox? It turns out that
DLs have to include nominals and the ‘@’ constructor of hybrid logic for updated
ABoxes to be expressible, and that this still holds when updated ABoxes are
approximated. Moreover, the size of updated ABoxes is exponential in the role
depth of the original ABox and the size of the update. We also show that
this situation improves when updated ABoxes are allowed to contain additional
auxiliary symbols. Then, DLs only need to include nominals for updated ABoxes
to exist, and the size of updated ABoxes is polynomial in the size of both the
original ABox and the update.
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1. Introduction

Description Logics (DLs) are a traditional family of knowledge representation
formalisms which, in recent years, have played an important role as a logical
underpinning of ontology languages such as the W3C recommendation OWL [1].
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In DLs, a knowledge base (KB) typically consists of two parts: a TBox to
store intensional knowledge, i.e., a general formalization of the relevant concepts
and relationships of the application domain; and an ABox to store extensional
knowledge, i.e., instance level assertions that describe the current state of affairs
in the application. Just like database systems, DL knowledge bases are not
static entities, but have to be modified when the application domain evolves.
This raises the fundamental update problem, which consists of rewriting the
knowledge base to incorporate new information from the application without
unnecessarily losing any existing knowledge. In the case of a DL knowledge base,
at least three different incarnations of the update problem can be distinguished:

• TBox updates, triggered by changes of the intensional knowledge of the
application domain;

• ABox updates, which have to be carried out when the intensional knowl-
edge remains stable, but the state of affairs in the application changes;

• KB updates, which do not distinguish between the two levels of knowledge
and allow simultaneous modification of the TBox and the ABox.

In typical applications, instance level knowledge stored in the ABox tends to
change frequently whereas intensional knowledge in the TBox often remains
stable for longer periods of time. Moreover, automatic TBox modifications are
rarely desired because the TBox is typically the result of a careful and time-
consuming manual modeling process, and thus its syntactic structure should not
be changed in a radical way.

These observations lead us to study ABox updates as a fundamental and
basic form of updates in a DL context. A central property of DL ABoxes is that
they store incomplete knowledge, reflected by an open world semantics and the
use of compound logical expressions that can involve disjunction and existential
quantification. It follows that, technically, updating DL ABoxes is equivalent to
updating logical theories, a problem with a long tradition in both the database
and AI communities [4, 5, 6, 7, 8].

In the database and AI literature, for a long time no proper distinction was
made between updates as studied in this paper and the related notion of a re-
vision. While the purpose of update is to bring the knowlegde base up to date
when the world described by it changes, revision aims at incorporating new
knowledge that was obtained about a static world. Katsuno and Mendelzon [6]
discuss this distinction in detail, show that update and revision are fundamen-
tally different operations, and give 8 postulates that any rational update oper-
ator should satisfy. The protoypical update semantics that complies with these
postulates is Winslett’s well-known PMA semantics [4] whose general idea can,
in our context, be stated as follows. The models of the original knowledge base
K are viewed as those states of the world that are considered possible; when
K is to be updated with new information U , then the models of the resulting
updated knowledge base K� should satisfy U , but also be ‘as close as possible’
to the models of K (the principle of minimal change). In the case of updating
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propositional theories and logical databases as considered in [6, 4], the difficulty
of defining what ‘as close as possible’ means mainly derives from the following
two features: (i) the newly added information may be non-deterministic, e.g.
when it involves disjunction; and (ii) the updated theory must satisfy addi-
tional domain constraints stated in the form of a logical background theory. As
discussed in more detail in Section 6 of this paper, the combination of these
features with the first-order quantification present in description logics leads to
serious semantic difficulties and also to computational problems. For this rea-
son, we concentrate on a simple, yet fundamental form of update where (i) the
newly added information U consists of a set of ground literals, i.e., sets of ABox
assertions A(a) or r(a, b) and their negations, where A is a concept name and r

a role name (thus both are atomic); and (ii) no background theory is present,
i.e., the knowledge base K comprises only an ABox, but no TBox. In this case,
there seems to be only one sensible formalization of ‘as close as possible’: the
models of K� are obtained from the models of K by (deterministically!) apply-
ing the changes dictated by the ground literals in U . This semantics, which we
adopt in the current paper, can thus be viewed as an incarnation of Winslett’s
semantic that avoids the potentially controversial cases.

As a starting point for the current paper, we observe that, in standard
‘expressive’ DLs such as those between ALC and ALCQIO, we can find an
ABox A and update U of the restricted form described above such that the
result of updating A with U cannot be expressed in the given DL. As a concrete
example, take the following ABox A, which is formulated in ALC, the basic
expressive DL with Boolean operators. It states that John is a parent with only
happy children, that Peter is his child, and that Mary is a person:

john:Person � ∃has-child.Person � ∀has-child.(Person � Happy)
has-child(john, peter)
mary:Person

Suppose now that the situation changes by Mary becoming unhappy. The result
of updating A with U = {Mary : ¬Happy} can be represented by the following
ABox A�, which is formulated in ALCO, the extension of ALC with nominals
(individual names inside concept descriptions):

john:Person � ∃has-child.Person � ∀has-child.(Person � (Happy � {mary}))
has-child(john, peter)
mary:Person � ¬Happy

To understand why A� is appropriate, note that A provides no information
about whether or not Mary is a child of John. Because we cannot exclude that
this is the case, John may now have an unhappy child, which is Mary. Thus, the
new knowledge concerning Mary also resulted in an update of the knowledge
concerning John. Using the nominal {mary} in the assertion for john is actually
unavoidable as it can be shown that there is no ALC-ABox that is equivalent to
the ALCO-ABox A�. As a consequence, the update of the ALC-ABox A with
U cannot be expressed in ALC.
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We say that a description logic L does not have updates if there are an
L-ABox A and update U such that the result of updating A with U cannot
be expressed in L. The first main aim of this paper is to understand how the
problem of non-expressibility of updated ABoxes can be overcome. In particular,
we consider two options: (i) increasing the expressive power of DLs by adding
additional constructors and (ii) relaxing the definition of updated ABoxes.

Regarding (i), we show that the addition of nominals (as in the example
above) and the ‘@’ constructor from hybrid logic suffices to ensure the existence
of updated ABoxes in all DLs between ALC and ALCQIO. Intuitively, the
‘@’ constructor enables ‘jumps’ between individuals by allowing the formation
of concepts such as @aC which is satisfied at any point of an interpretation
whenever the individual a satisfies the concept C. We also show that the ‘@’-
constructor (but not nominals) can be replaced by Boolean ABoxes, i.e., ABoxes
that admit Boolean operators to be applied to ABox assertions.

Regarding (ii), we consider the following definitions of updated ABoxes. An
ABox A� is

• a semantic update of A with U if the models of A� are precisely those
interpretations that can be obtained from models of A by making the
assertions in U true (the standard definition);

• an approximate update of A with U regarding a DL L if A� entails exactly
the same L-ABox assertions as the semantic update of A with U ;

• a projective update of A with U if the models of A� are precisely the models
of the semantic update, after projecting both to the symbols in A and U ;

• a projective approximate update of A with U if A� entails exactly the same
L-ABox assertions ϕ as the semantic update of A with U as long as ϕ uses
only symbols from A and U .1

Observe that projective updates allow the use of fresh, auxiliary symbols in A�,
and so do projective approximate updates. Also note that (projective and non-
projective) approximate updates have an additional parameter, which is the DL
L in which entailed ABox assertions are formulated. It is not hard to see that
every semantic update is also an approximate update and a projective update,
which in turn are also projective approximate updates. Moreover, semantic
updates and approximate updates can be proved to be logically equivalent, if the
former exists. Due to the new symbols, this is in general not true for projective
updates. Similar forms of updates have been considered e.g. in [9, 11], see
Section 7 for more details.

Unfortunately, it turns out that the more relaxed definitions of updated
ABoxes only rarely help to overcome the problem of DLs not having updates.

1
Actually, the ‘real’ definitions of projective updates and projective approximate updates

are slightly stronger and use different (but more complicated to describe) sets of symbols. We

refer to Definition 4 for full details.
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More precisely, all DLs considered in this paper have approximate updates if,
and only if, they have semantic updates. Projective updates are slightly more
well-behaved: using a simple trick, one can see that a DL L has projective
updates if the extension of L with the ‘@’ constructor has semantic updates.
Thus, we can ensure the existence of projective updates in the DLs between ALC

and ALCQIO by adding only nominals (but not the ‘@’ constructor). Further
relaxing projective updates to projective approximate updates turns out to not
improve this situation.

The second main question studied in this paper concerns the size of updated
ABoxes. The first relevant observation is that our construction of semantic
updates in DLs that comprise nominals and the ‘@’ constructor incurs an expo-
nential blowup in the size of the update U and in the role depth of the original
ABox A, i.e., the nesting depth of existential and universal restrictions in A.
Although both measures are typically small in real applications, this raises the
questions (i) whether an exponential blowup of semantic updates can be avoided
by a more careful construction and (ii) whether other forms of update help to
avoid an exponential blowup. Concerning (i), we show that an exponential
blowup cannot be avoided unless NP ∩ co-NP is contained in the non-uniform
version of the complexity class NC1, which is considered very unlikely in com-
plexity theory. Note that similar results such as those obtained by Cadoli et al.
in [9] are not applicable due to the restricted form of updates considered in this
paper (however, our results strengthen some of the results obtained by Cadoli et
al.) Giving a positive answer to (ii), we then show that switching from semantic
updates to projective ones dramatically improves the situation: in DLs that
comprise nominals, not only the existence of projective updates is guaranteed,
but it is even possible to construct projective updates whose size is polynomial
both in the size of the original ABox and the update. Thus, projective up-
dates are particularly well-suited for use in practical applications. We note that
similar observations have already been made for the case of propositional logic
in [9], where it is shown that for some update semantics, the projective version
of updates is more succinct than the non-projective one.

Finally, we extend our update constructions to conditional updates, which
can express statements such as ‘A(a) is true after the update if C(b) was true
before’. We then apply the extended results to reasoning about actions in a
DL context, as recently proposed and studied in [12, 13, 14]. In particular,
we show that our construction of updated ABoxes can be used to implement a
progression approach to the central projection problem [7], reproving a number
of tight upper complexity bounds for this problem that have originally been
obtained using the method of regression.

This paper is organized as follows. In Section 2, we provide a brief intro-
duction to description logics, define the various kinds of ABox updates studied
in this paper, and present some basic results regarding these updates. In par-
ticular, we interrelate the various definitions of updated ABoxes and prove that
the ‘@’ constructor is intimately related to projective updates, and to Boolean
ABoxes.
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The non-existence of updated ABoxes in standard expressive DLs of the
ALC family is established in Section 3. We prove that DLs between ALC and
ALCQI

@ do not have approximate projective updates, and that DLs between
ALCO and ALCQIO do not have approximate updates. This section is ac-
tually the only one where we explicitly consider (projective or non-projective)
approximate updates since the positive results in subsequent sections all hold
for stronger, non-approximating definitions of updated ABoxes.

In Section 4, we show that adding nominals and the ‘@’ constructor to
the DLs ALC, ALCI, ALCQ, and ALCQI suffices to have semantic updates.
We also establish the single-exponential size of updated ABoxes announced be-
fore, both for the case of single updates and iterated updates. We prove that
an exponential blowup of updated ABoxes cannot be avoided, subject to the
complexity-theoretic assumption that NP∩co-NP �⊆ NC1. Finally, we consider
an extension of ALCQIO

@ with certain role constructors which allows a simple
construction of updated ABoxes that are exponential only in the size of the
update, but not in the size of the original ABox.

We then focus on projective updates in Section 5, showing that they are
enjoyed by all DLs between ALCO and ALCQIO

@, including those that do
not comprise the ‘@’ constructor. We also show that projective updates can
be constructed in polynomial time such that the resulting updated ABox is of
polynomial size. With a small trick, these time and space bounds also apply to
the case of iterated updates.

Section 6 is devoted to conditional updates and their application to reasoning
about actions using DLs. Finally, Section 7 wraps up the paper, analyzing some
possible extensions of our results (e.g. with TBoxes) and discussing related work.

This paper is a significantly extended and revised version of [15].

2. Preliminaries and Basic Definitions

We provide a brief introduction to description logics, define the various kinds
of ABox updates studied in this paper, and present some basic observations
regarding these updates. For the sake of readability, proofs for the results in
this section are deferred to Appendix A.

2.1. Description Logics

We introduce the expressive description logic ALCQIO
@ and its fragments

studied in this paper. Our presentation will be brief and the reader is referred
to [1] for more details. In DLs, concepts are inductively defined with the help
of a set of constructors, starting with a countably infinite set NC of concept
names, a countably infinite set NR of role names, and (possibly) a countably
infinite set NI of individual names. ALCQIO

@-concepts are formed using the
constructors shown in Figure 1. There, the inverse constructor is the only role
constructor (used to construct compound roles), whereas the remaining seven
constructors are concept constructors (used to construct compound concepts).
A role is either a role name r or the inverse r− of a role name r. In Figure 1 and
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Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C �D CI ∩DI

disjunction C �D CI ∪DI

at-least restriction (� n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
at-most restriction (� n r C) {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

Figure 1: Syntax and semantics of the description logic ALCQIO.

throughout the paper, we use #S to denote the cardinality of a set S, a and
b to denote individual names, r and s to denote roles, A,B to denote concept
names, and C,D to denote (possibly compound) concepts. As usual, we use �

as abbreviation for an arbitrary (but fixed) propositional tautology, ⊥ for ¬�,
→ and ↔ for the usual Boolean abbreviations, ∃r.C (existential restriction) for
(� 1 r C), and ∀r.C (universal restriction) for (� 0 r ¬C).

The fragment of ALCQIO
@ that allows only for negation, conjunction, dis-

junction, and universal and existential restrictions is called ALC. The avail-
ability of additional constructors is indicated by concatenation of a correspond-
ing letter: Q stands for number restrictions; I stands for inverse roles, O for
nominals and superscript ‘@’ for the @ constructor. This explains the name
ALCQIO

@ for our DL, and also allows us to refer to fragments in a simple
way. In particular, when we speak of all DLs between ALC and ALCQIO , we
mean the logics L that can be obtained from ALC by all possible combinations
of Q, I, and O. In particular, ALC and ALCQIO themselves are regarded as
DLs between ALC and ALCQIO. In the same way, we speak about all DLs
between ALC

@ and ALCQIO
@ and, in general, about all DLs between any two

descriptions logics. We note that, while the ‘@’ constructor from hybrid logic
[16] is somewhat unusual in a DL context, it will play an important role in the
computation of updates later on.

The semantics of ALCQIO
@-concepts is defined in terms of an interpreta-

tion I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the
interpretation function ·I maps

• each concept name A ∈ NC to a subset AI of ∆I ,

• each role name r ∈ NR to a binary relation rI on ∆I , and

• each individual name a ∈ NI to an element aI ∈ ∆I such that aI �= bI

whenever a and b are distinct (the unique name assumption, UNA).

The extension of ·I to inverse roles and arbitrary concepts is defined inductively
as shown in the third column of Figure 1. Two concepts C and D are equivalent,
written C ≡ D, iff CI = DI for all interpretations I.
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In DLs, extensional knowledge is stored in an ABox. An ALCQIO
@-ABox

is a finite set of concept assertions C(a), role assertions r(a, b), and negated
role assertions ¬r(a, b), where r is a role name. For readability, we sometimes
write concept assertions as a:C. As an abbreviation, we write r−(a, b) ∈ A

if r(b, a) is contained in the ABox A; similarly, ¬r−(a, b) ∈ A abbreviates
¬r(b, a) ∈ A. Observe that there is no need for explicitly introducing negated
concept assertions due to the availability of negation as a concept constructor
in ALCQIO

@ and its fragments. An ABox A is simple if C(a) ∈ A implies that
C is a concept literal, i.e., a concept name or a negated concept name. We use
Ind(A) to denote the set of all individual names a used in the ABox A (i.e., all
a such that there exists C(a) ∈ A or there exists C(b) ∈ A such that @a or {a}
occurs in C) and role(A) to denote the set of role names used in A.

An interpretation I satisfies a concept assertion C(a) iff aI ∈ CI , a role
assertion r(a, b) iff (aI , bI) ∈ rI , and a negated role assertion ¬r(a, b) iff
(aI , bI) /∈ rI . We write I |= ϕ to denote satisfaction of an ABox assertion
ϕ by an intepretation I. This notation is lifted to sets of interpretations Γ in
the obvious way, i.e., we write Γ |= ϕ iff I |= ϕ for all I ∈ Γ. An interpretation
I is a model of an ABox A, written I |= A, if I |= ϕ for all ϕ ∈ A.

We use M(A) to denote the set of all models of the ABox A. An ABox is
consistent iff M(A) �= ∅. Two ABoxes A and A� are equivalent, written A ≡ A�,
iff M(A) = M(A�). An ABox assertion ϕ is a consequence of an ABox A,
written A |= ϕ, if M(A) ⊆ M({ϕ}). This notion is lifted to ABoxes in the
obvious way: A� is a consequence of A, written A |= A�, if M(A) ⊆ M(A�).

2.2. Semantic Updates
We introduce the most natural form of ABox updates which we call ‘seman-

tic’ because of their purely model-theoretic definition. Such updates have also
been called ‘logical’ updates in the literature, see for example [9]. We start with
considering the update of an interpretation rather than an ABox.

Definition 1 (Interpretation Update). An update U is a consistent simple
ABox. Let U be an update and I an interpretation. Define an interpretation
IU by setting, for all individual names a, concept names A, and role names r:

∆I
U

= ∆I

a
I
U

= a
I

A
I
U

= (AI
∪ {a

I
| A(a) ∈ U}) \ {aI | ¬A(a) ∈ U}

r
I
U

= (rI ∪ {(aI , bI) | r(a, b) ∈ U}) \ {(aI , bI) | ¬r(a, b) ∈ U}

IU is called the result of updating I with U .

As the next step, updates are lifted to the level of ABoxes, which represent
classes of models rather than single models as in Definition 1.

Definition 2 (Semantic Update). Let A be an ALCQIO
@-ABox and U an

update. Define the class of updated models as

M(A)U = {I
U
| I ∈ M(A)}.
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An ALCQIO
@-ABox A� is a semantic update of A with U , written A =⇒U A�,

if
M(A�) = M(A)U .

A description logic L has semantic updates if for every L-ABox A and update
U , there is an L-ABox A� with A =⇒U A�.

To illustrate Definition 2, consider the following ABox E , which we use as a
running Example:

john : ∃has-child.Happy
mary : Happy � Clever

The following ABox E � is a semantic update of E with U = {¬Happy(mary)}:

john : ∃has-child.(Happy � {mary})
mary : ¬Happy � Clever

To understand the disjunction, note that there are two kinds of models of E :
those where John has a happy child that is not Mary, and those where Mary is
the only happy child of John. In models of the former kind, John still satisfies
∃has-child.Happy after the update (first disjunct); in models of the latter kind,
Mary is still a child of John after the update (second disjunct). For the sake of
completeness, we provide a proof of the following in Appendix A:

Observation 1. E =⇒U E �.

As captured by the following lemma, semantic updates are unique up to logical
equivalence and do not depend on the syntactic presentation of the original
ABox. The lemma is an immediate consequence of the definition of semantic
updates.

Lemma 1. Let A1,A2,A
�
1,A

�
2 be ALCQIO

@-ABoxes. Then A1 ≡ A2 and
Ai =⇒U A�

i
for i ∈ {1, 2} implies A�

1 ≡ A�
2.

We remark that making the UNA, as we do, has an impact on semantic updates.
To show the difference between updates with UNA and without, consider the
ABox A = {A(a1)} and the update U = {¬A(a2)}, where a1 �= a2. Then A∪U

is a semantic update of A with U under UNA, but the semantic update of A
with U without UNA is

U ∪ {a1 : ({a2} �A)}.

Thus, dropping the UNA results in a case distinctions regarding the identity of
the individual names a1 and a2. Apart from such case distinctions, dropping
the UNA poses no major technical problems.

Semantic updates are, in a sense, the ‘ideal’ kind of update. However, it
turns out that many standard DLs such as ALC do not have semantic updates.
For example, it can be proved that for the above ALC-ABox A and update U ,
there is no semantic update in ALC (and thus we had to resort to the ALCO-
ABox A� for presenting the semantic update). This problem, which is studied
in detail in Section 3, motivates the consideration of other, weaker forms of
updates.
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2.3. Approximate Updates

We obtain a weaker form of update by considering the logical consequences
of ABoxes instead of their models. This approach to weakening updates has
been introduced in a DL context in [11].

Definition 3 (Approximate updates). Let A be an ALCQIO
@-ABox, U an

update, and L a description logic. An ALCQIO
@-ABox A� is an approximate

update ofA with U regarding L, written A −→L

U
A�, if for all L-ABox assertions

ϕ, we have
M(A)U |= ϕ ⇔ M(A�) |= ϕ.

A description logic L has approximate updates if for every L-ABox A and
update U , there is an L-ABox A� with A −→L

U
A�.

As an example, reconsider the example ALC-ABox E and update U from Sec-
tion 2.2. The following ALC-ABox E �� is an approximate update of E with U

regarding ALC:
john : ∃has-child.(Happy � Clever)
mary : ¬Happy � Clever

Indeed, we prove in Appendix A:

Observation 2. E −→ALC

U
E ��.

Recall that, in contrast, there is no ALC-ABox that is a semantic update of E
with U .

We now relate approximate updates to semantic updates in a precise way. If
a semantic update exists, then an ABox is an approximate update regarding a
DL L iff it has the same L-consequences as the semantic update. This is Point 1
of the following Lemma, and it is an immediate consequence of the definition of
approximate updates. Point 2 follows from Point 1 and asserts that semantic
updates are approximate updates regarding any DL L.

Lemma 2. Let A and A� be ALCQIO
@-ABoxes, U an update, and L a de-

scription logic. Assume A =⇒U As. Then

1. A −→L

U
A� iff for all L-ABox assertions ϕ, A� |= ϕ ⇔ As |= ϕ;

2. A −→L

U
As.

Note that, in contrast to the semantic case, the definition of approximate up-
dates depends on the DL L used. Indeed, the choice of L can make a difference:
the ALCO-ABox E � from Section 2.2 is a semantic update of E with U , thus
by Lemma 2 also an approximate update of E with U regarding ALCO. Since
clearly E � and the above E �� have different ALCO-consequences, E �� is not an
approximate update of E with U regarding ALCO. However, as observed above,
E �� is an approximate update of E with U regarding ALC.

We can derive interesting additional properties of approximate updates re-
garding a DL L when we demand that the updated ABox is formulated in the
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same DL L, as in the definition of L ‘having approximate updates’. Then, ap-
proximate updates are unique up to logical equivalence and also equivalent to
semantic updates, if the latter exist. This is captured by Points 1 and 2 of the
following lemma.

Lemma 3. Let A1 and A2 be ALCQIO
@-ABoxes, U an update, L a descrip-

tion logic, and A�
1, A

�
2 L-ABoxes. Then

1. A1 ≡ A2 and Ai −→
L

U
A�

i
for i ∈ {1, 2} imply A�

1 ≡ A�
2;

2. A1 −→L

U
A�

1 and A1 =⇒U A�
2 imply A�

1 ≡ A�
2.

Point 1 is an immediate consequence of the fact that for any two L-ABoxes A
and A�: A |= ϕ iff A� |= ϕ for all L-ABox assertions ϕ implies A |= A� and
A� |= A, which in turn implies A ≡ A�. Point 2 follows together with Point 2
of Lemma 2. Note that, by Point 1 of Lemma 3, approximate updates do not
depend on the syntactic presentation of the original ABox.

We remark that approximate updates are less generally useful than semantic
ones. In particular, one main use of DL ABoxes is for query answering, see
for example [2, 17]. While semantic updates give correct answers to queries
formulated in any query language, approximate updates do not. For example,
it follows directly from the definition that approximate updates regarding a DL
L give correct answers to instance queries C(a) with C formulated in L, but
this is not true for unions of conjunctive queries (UCQs): the individual name
john is not included in the certain answer to the following UCQ q(x) when posed
to the approximate update E �� of E with U regarding ALC given above:

q(x) = has-child(x,mary) ∨ (∃y.has-child(x, y) ∧ Happy(y)).

In contrast, john is included in the certain answer to q(x) when posed to the
semantic update E � of E with U given in Section 2.2.

2.4. Semantic Projective Updates and Approximate Projective Updates

Although weaker, approximate updates turn out to be almost as elusive as
semantic ones and are not enjoyed by many standard DLs, see Section 3. For this
reason and to overcome the exponential blowup that we will encounter in the
construction of semantic updates (when they exist), we consider an additional
way of relaxing updated ABoxes, namely to allow additional ‘auxiliary’ symbols
(concept names, role names, and individual names) in the updated ABox. This
can be done both for semantic updates and approximate updates, which gives
rise to the four forms of update studied in this paper. Updates admitting
auxiliary symbols have been studied in [9, 10] in a propositional logic context.

Elements of NC∪NR∪NI are called symbols. A signature is a set of symbols.
The signature sig(C) of a concept C is the set of symbols that occur in C. The
signature sig(A) of an ABox A is defined likewise; in particular all individual
names used in A are included in sig(A). For a signature S, we use S to denote
(NC ∪ NR ∪ NI) \ S. The reduct I�S of an interpretation I to a signature S

is the interpretation obtained from I by ‘forgetting’ the interpretation of all
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symbols that are not in S; i.e., I�S interprets only the symbols in S, but not
other symbols. The notion of reducts is lifted to classes of models M by setting
M�S = {I�S | I ∈ M}.

Definition 4 (Projective updates).

Let A and A� be ALCQIO
@-ABoxes, U an update, and L a description logic.

Then Fr(A�) = sig(A�) \ (sig(A) ∪ sig(U)) is the set of fresh symbols of A�. We
call A� a

• semantic projective update of A with U , written A =⇒p
U
A�, if

M(A�)�Fr(A�) = M(A)U�Fr(A�)
.

• approximate projective update ofA with U regarding L, written A −→
p,L
U

A�,

if for all L-assertions ϕ with sig(ϕ) ⊆ Fr(A�), we have

M(A)U |= ϕ ⇔ M(A�) |= ϕ.

A description logic L

• has semantic projective updates iff for every L-ABox A and every update
U , there is an L-ABox A� such that A =⇒p

U
A�;

• has approximate projective updates iff for every L-ABox A and every
update U , there is an L-ABox A� such that A −→

p,L
U

A�.

As an example, consider the following ABox F

john : ∃has-friend.Smart

and update U = {¬has-friend(john,mary)}. We will show in the proof of The-
orem 2 that there is no L-ABox that is a semantic update of F with U and
neither an L-ABox that is an approximate update of F with U regarding L, for
many DLs L including ALC and ALCO. However, we find a semantic projective
update F � formulated in ALCO that consists of U and

john : (∃has-friend.Smart) � ∃r.({mary} � Smart),

where r is a fresh role name.

Observation 3. F =⇒p
U
F �.

We leave a formal proof of Observation 3 to the reader and only give an intuition
of why F � is a semantic projective update. Again, there are two kinds of models
of A: those where John has a smart friend that is not Mary, and those where
Mary is the only smart friend of John. In models of the former kind, John
still satisfies ∃has-friend.Smart after the update (first disjunct); in models of the
latter kind, Mary is still smart after the update. This is expressed by the second
disjunct, where the role name r only serves the technical purpose of ‘jumping’
from John to Mary in updated interpretations.

It is not hard to establish the following analogue of Lemma 2.
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Lemma 4. Let A and A� ALCQIO
@-ABoxes, U an update, L a description

logic, and assume A =⇒p
U
As. Then

1. A −→
p,L
U

A� iff for all L-ABox assertions ϕ with sig(ϕ) ⊆ Fr(A�) ∪ Fr(As),
we have A� |= ϕ ⇔ As |= ϕ;

2. A −→
p,L
U

As.

Concerning analogues of Lemmas 1 and 3, an obvious first observation is that,
due to the use of fresh symbols, semantic projective updates need not be logi-
cally equivalent to each other, and neither do approximate projective updates.
However, it is still a consequence of Definition 4 that semantic projective up-
dates and approximate projective updates do not depend on the syntactic form
of the original ABox.

Lemma 5. Let A1,A2, and A� be ALCQIO
@-ABoxes, U an update, and L a

description logic. Then

1. A1 ≡ A2 and A1 =⇒p
U
A� imply A2 =⇒p

U
A�;

2. A1 ≡ A2 and A1 −→
p,L
U

A� imply A2 −→
p,L
U

A�.

2.5. The ‘@’ constructor, Boolean ABoxes and projective updates

The example in Section 2.2 illustrates that, sometimes, nominals can help to
overcome the non-existence of updates. The example in Section 2.4 shows that
the same is true for projective updates. Indeed, we will show that among the DLs
introduced in Section 2.1, exactly the DLs that include nominals have semantic
projective updates (but not necessarily non-projective updates). Interestingly,
the positive effects of projective updates (but not those of nominals) can also be
attained in two other ways: by adding the ‘@’ concept constructor as introduced
in Section 2.1 and by replacing ABoxes with Boolean ABoxes. The latter are
sets of Boolean ABox assertions, i.e., combinations of ABox assertions expressed
in terms of the connectives ∧ and ∨ (recall that ABox assertions are already
closed under negation).

For illustration, reconsider the example from Section 2.4, i.e. the ABox F =
{john : ∃has-friend.Smart} update U = {¬has-friend(john,mary)}. Recall that
the semantic projective update F � of F consists of U and

john : (∃has-friend.Smart) � ∃r.({mary} � Smart).

To eliminate the auxiliary symbol r and thus obtain a semantic non-projective
update, we can use the ‘@’ concept constructor and replace the above assertion
with

john : (∃has-friend.Smart) �@marySmart.

Alternatively, we can eliminate the symbol r by using Boolean ABoxes, replacing
the above assertion with

(john : ∃has-friend.Smart) ∨ (mary : Smart).
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It is due to the simplicity of this example that the two presentations of the
semantic non-projective update do not involve nominals: in general, we might
still have to use nominals even when the ‘@’ constructor or Boolean ABoxes are
admitted. Indeed, we will show that among the DLs introduced in Section 2.1,
exactly those have semantic (non-projective!) updates that comprise nominals
and the ‘@’ constructor. A similar statement can be formulated for Boolean
ABoxes.

The aim of the current section is to present some basic observations regarding
the relationship between the ‘@’ constructor, Boolean ABoxes, and projective
updates. The following lemma shows that non-Boolean L@-ABoxes have ex-
actly the same expressive power as Boolean L-ABoxes provided that L contains
nominals. This does not hold, e.g., for ALC: while every ALC

@-ABox can be
translated into an equivalent Boolean ALC-ABox, it can be proved that no non-
Boolean ALC

@-ABox is equivalent to the Boolean ALC-ABox {A(a) ∨ r(b, c)}.
A proof of the following lemma can be found in Appendix A.

Lemma 6.

1. Let L be a DL between ALC and ALCQIO. Then for every Boolean L@-
ABox, there exists an equivalent Boolean L-ABox;

2. Let L be a DL between ALCO and ALCQIO. Then for every Boolean
L-ABox, there exists an equivalent non-Boolean L@-ABox.

We remark that the translation of a Boolean L-ABox into an L@-ABox involves
an exponential blowup while the converse translation does not.

Finally, the relationship between the ‘@’ constructor / Boolean ABoxes and
projective updates can easily be established by simulating the ‘@’ constructor
with a fresh role, as in the ABox F � in the above example.

Lemma 7. Let L be a DL between ALCO and ALCQIO. Then for every L@-
ABox A, there exists an L-ABox A� such that

M(A)�{r} = M(A�)�{r}

where r is a role name that does not occur in A.

Proof.(sketch) Let A be an L@-ABox and U an update. Construct an L-ABox
A� as follows. First convert all concepts in A into negation normal form (NNF),
in which negation occurs only in front of concept names, but not in front of
complex concepts [1]. Then replace every concept @aC with ∃r.({a} � C), r a
role name not used in A. It can be proved that the resulting ABox A� is as
required. �

3. Non-existence of Updates

We present two general non-existence results for updates. First, we show
that among the DLs introduced in Section 2.1, those without nominals do not
have approximate projective updates, thus no semantic updates, approximate
updates, and semantic projective updates either.
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Theorem 1. Let L be a DL between ALC and ALCQI
@. Then L does not

have approximate projective updates.

Proof. We exhibit an ALC-ABox and update for which we show that no ap-
proximate projective update exists in any of the DLs listed in Theorem 1.

Let A = {a : ∃r.A, r(b, a)}, U = {¬A(b)}, and

A
� = {¬A(b), r(b, a), a : ∃r.(A � {b})}.

We first show that the ALCO-ABox A� is a semantic update of A with U . Let
I be a model of A. We have to show that IU is a model of A�. By definition,
IU |= r(b, a) and IU |= ¬A(b). It remains to show that IU |= a : ∃r.(A � {b}).

First assume that (aI , bI) ∈ rI . Then (aI , bI) ∈ rI
U
and, therefore, IU |= a :

∃r.(A � {b}). Now assume (aI , bI) �∈ rI . Then, since I |= a : ∃r.A, there exists

d �= bI with (aI , d) ∈ rI and d ∈ AI . But then (aI , d) ∈ rI
U
and d ∈ AI

U
.

Again IU |= a : ∃r.(A � {b}). Conversely, assume that I � is a model of A�. We
have to show that there exists a model I of A such that IU = I �. Let I coincide
with I � except that bI

�
∈ AI if (aI

�
, bI

�
) ∈ rI

�
. Then I is a model of A and

I � = IU , as required.
We show that there exists no ALCQI

@-ABox B that is an approximate
projective update of A with U regarding ALC. It follows that for all of the DLs
L in Theorem 1, there is no L-ABox that is an approximate projective update
of A with U regarding L.

Assume to the contrary that such a B exists. We start with a high-level
sketch of the proof. Let ∃rn.C denote the n-fold nesting ∃r. · · · .∃r.C, with
∃r0.C = C. We first observe that a : ∃r.A is not an ALC-consequence of B,
while a : ∃r.(A�(∃rn.�)) is an ALC-consequence of B for each n > 0. Since B is
finite and formulated in ALCQI

@, it cannot impose any constraints on domain
element that exceed a certain ‘distance’ (in terms of the length of shortest role
paths in an interpretation) from any individual name in B. Thus, to entail all
assertions a : ∃r.(A � (∃rn.�)) without entailing a : ∃r.A, B must enforce an
r-cycle. Using a careful modification of the well-known unraveling technique
[18, 17] and certain guaranteed ALC-consequences of B, we show that no such
cycle is actually enforced by B.

We start with establishing some relevant (non)-entailments of B.

Claim 1.

(i) B �|= a : ∃r.A;
(ii) B |= a : ∃r.(A � (∃rn.�)), for all n ≥ 0;
(iii) B �|= a : ∃r2.�;

To prove (i), note that A� �|= a : ∃r.A. We obtain that B �|= a : ∃r.A because
B is an approximate projective update, a, r, A ∈ sig(A) and since a : ∃r.A is an
ALC-assertion.

By the arguments used in the proof of (i), we know that (ii) can be proved
by showing that A� |= a : ∃r.(A � (∃rn.�)) for all n > 0. Due to the fact that
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A� |= a : ∃r.(A � {b}), for every model I of A�, we have that aI �∈ (∃r.A)I

implies (aI , bI) ∈ rI , which in turn yields a ∈ (∃rn.�)I for all n ≥ 1 since
r(b, a) ∈ A�.

To prove (iii), note that the interpretation I with ∆I = {a, b, x}, aI = a,
bI = b, rI = {(b, a), (a, x)}, and AI = {x} is a model of A� such that aI �∈

(∃r2.�)I . Hence A� �|= a : ∃r2.�. We obtain B �|= a : ∃r2.� because B is an
approximate projective update, a, r ∈ sig(A) and since a : ∃r2.� is an ALC-
assertion.

Now take a model I of B with I �|= a : ∃r.A. We unravel I into a new model
J of B that has a forest-like shape and still satisfies J �|= a : ∃r.A. After the
unraveling, we further modify J which allows us to derive a contradiction to
Point (ii) of Claim 1.

As we want to preserve all ALCQI
@-concepts in concept assertions in B, we

apply an unraveling construction in which role-predecessors are not duplicated.
In detail, let ∆J be the set of all words w = d0s0d1s1 · · · sk−1dk, k ≥ 0, such
that

1. d1, . . . , dk ∈ ∆I ;
2. s0, . . . , sk−1 are roles (i.e. role names or their inverses);
3. there is a c ∈ NI such that d0 = cI ;
4. for all i < k, we have (di, di+1) ∈ sI

i
and if si = s

−

i+1, then di �= di+2;

5. if d0 = cI0 and d1 = cI1 for c0, c1 ∈ NI, then B �|= s0(c0, c1).

Condition 4 is the standard approach for dealing with the presence of both
number restrictions and inverse roles. Point 5 will be explained below. Define
the interpretation of symbols in J as follows:

• BJ := {d0 · · · dk ∈ ∆J | dk ∈ BI} for all B ∈ NC;

• for all s ∈ NR, s
J := {(cI1 , c

I

2 ) | B |= s(c1, c2)} ∪

{(w,wsd) | w,wsd ∈ ∆J
} ∪

{(ws−d, w) | w,ws−d ∈ ∆J
}.

• cJ := cI for all c ∈ NI.

Note the careful definition of sJ , where we do not include all pairs (cI1 , c
I
2 )

with (cI1 , c
I
2 ) ∈ sI as is often done when unraveling models of ABoxes. Indeed,

only this careful definition and Condition 5 above ensure that ABox elements
are not duplicated during unraveling, which would cause conflicts with number
restrictions.

Claim 2. For all ALCQI
@-concepts C and all w = d0 · · · dk ∈ ∆J , we have

w ∈ CJ iff dk ∈ CI .

The proof is by induction on the structure of C. We only do the cases C = @cD

and C = (� n s D) from the induction step, leaving the remaining cases to the
reader.
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Let w = d0 · · · dk ∈ ∆J and C = @cD. Then dk ∈ (@cD)I iff cI ∈ DI iff
(by IH) cJ ∈ DJ iff w ∈ (@cD)J .

Now let C = (� n s D) and w = d0 · · · dk. Assume first that k > 0. Let, for
any e ∈ ∆J , sI(e) = {d ∈ ∆I | (e, d) ∈ sI}, and likewise for sJ (e). Now, using
the IH and Condition 4, one can show that sI(dk)∩DI has the same cardinality

as sJ (w) ∩DJ . Therefore dk ∈ (� n s D)I iff w ∈ (� n s D)J , as required.
Now assume that k = 0. Then w = d0 ∈ ∆I ∩∆J and there exists a c0 ∈ NI

with cI0 = d0. If d ∈ sI(d0) and there is a c ∈ NI with cI = d and B |= s(c0, c),
then (d0, d) ∈ sJ by definition of sJ . If d ∈ sI(d0) and there is no such c, then
(d0, d0sd) ∈ sJ . Thus, there exists a bijection between sI(d0) and sJ (d0) and

we obtain, by applying the IH to the pairs in this bijection, that d0 ∈ (� n s D)I

iff d0 ∈ (� n s D)J , as required.

Claim 2 implies that J �|= a : ∃r.A as intended. Moreover, we have

Claim 3. J is a model of B.

To prove Claim 3, let ϕ ∈ B.

1. If ϕ = C(c) for an ALCQI
@-concept C, then we have I |= C(c), and thus

J |= C(c) by Claim 2.
2. If ϕ = s(c1, c2) for a role s name, then we have B |= s(c1, c2), and thus

J |= s(c1, c2) by definition of sJ ,
3. If ϕ = ¬s(c1, c2), then we have B �|= s(c1, c2) (since B is consistent) and

therefore J �|= s(c1, c2) by definition of sJ . Thus J |= ¬s(c1, c2).

This finishes the proof of Claim 3.
We define the depth d(C) of an ALCQI

@-concept C as the nesting depth of
number restrictions in C, with a ‘reset’ triggered by the ‘@’ constructor, i.e.,

d(B) = d(@aC) = 0

d(C �D) = d(C �D) = max{d(C), d(D)}

d(� n r C) = d(� n r C) = d(C) + 1

d(¬C) = d(C)

The depth d(B) of B is defined as max{d(C) | C(c) ∈ B}. As the next step, we
further modify J by ‘cutting off’ all paths in ∆J that are not in B at length
d(B). Thus, let ∆J

�
= {d0 · · · dk ∈ ∆J | k ≤ d(B)}, let BJ

�
and sJ

�
be the

restrictions of BJ and sJ to ∆J
�
for all B ∈ NC and s ∈ NR, and let cJ

�
= cJ

for all c ∈ NI (clearly, no cJ is dropped by the restriction of ∆J ). One can show
by induction on the structure of C:

Claim 4. For all ALCQI
@-concepts C with d(C) = i ≤ d(B) and all w =

d0 · · · dk ∈ ∆J with k ≤ d(B)− i, we have w ∈ CJ iff w ∈ CJ
�
.

Claims 3 and 4 imply that J � is a model of B: role assertions ϕ ∈ B are clearly
not invalidated when constructing J � from J and concept assertions C(c) ∈ B

are satisfied by Claim 4 and since they were satisfied in J .
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By Point (ii) of Claim 1, to obtain a contradiction it thus remains to show
that there exists an n > 0 such that J � �|= a : ∃r.(A�(∃rn.�)). Set n = d(B)+1.
First observe that J � �|= a : ∃r.A because J �|= a : ∃r.A. It remains to show
that J � �|= a : ∃rn+1.�. Observe that by Point (iii) of Claim 1, in B there is no
r-chain of length larger than 1 starting from a (more precisely: we have m ≤ 1
for any m with r(a, c1), r(c1, c2), . . . , r(cm−1, cm) ∈ B for some c1, . . . , cm ∈ NI).
Thus, by construction of J �, all r-paths d0, . . . , dk in J � with d0 = aJ

�
have

length k ≤ d(B) + 1. Thus, J � �|= a : ∃rn+1.�, as required. �
Our second non-existence result for updates states that among the DLs intro-

duced in Section 2.1 that include nominals, those that lack the ‘@’ constructor
do not have approximate updates, thus no semantic updates either. In con-
trast to the DLs considered in the previous theorem, the DLs addressed here do
have projective semantic updates (thus also projective approximate updates),
see Section 4.

Theorem 2. Let L be a DL between ALCO and ALCQIO. Then L does not
have approximate updates.

Proof. Let L be a DL between ALCO and ALCQIO. We construct an ALC-
ABox A and update U such that there is no ALCQIO-ABox A� that is an
approximate update of A with U regarding ALC. Let A = {a : ∃r.A}, U =
{¬r(a, b)} and

A
� = {a : ∃r.A �@bA,¬r(a, b)}.

It is not difficult to show that the ALC
@-ABox A� is a semantic update of A

with U , thus also an approximate update. It suffices to show that there is no
ALCQIO-ABox B with A� |= ϕ iff B |= ϕ for all ALC-assertions ϕ. Assume
to the contrary that such a B exists, and choose a role name s that does not
occur in A� and B (such a role name exists since B is finite). Now consider the
interpretations I and I � displayed in Figure 2. We assume that the individual
names a and b are mapped to the individuals of the same name as shown in
the figure. To satisfy the UNA, we also assume that there is an infinite set of
additional points that interpret the individual names distinct from a and b. On
these additional points, all concept and role names are interpreted as empty.
Note that I and I � are models of A�. By Point 2 of Lemma 3, they are thus also
models of B. Consider the additional interpretation I �� in Figure 3. We show
that I �� |= B and I �� �|= B, thus derive a contradiction.

Claim 1. I �� �|= B.

Assume I �� |= B. Define C = ¬A� ∃s.({a} � ∀r.¬A). Clearly, I �� |= C(b). Since
I �� |= B, it follows that B �|= ¬C(b). Hence, A� �|= ¬C(b). This is a contradiction
to the fact that A� |= ¬C(b) (note that ¬C ≡ A � ∀s.({a} → ∃r.A)).

Claim 2. I �� |= B.

To prove this claim we require an observation regarding models of ALCQIO-
ABoxes. Assume that I1 and I2 are interpretations whose domains are split
into two non-empty disjoint parts, say ∆I1 = ∆1,1�∆1,2 and ∆I2 = ∆2,1�∆2,2

such that
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❄
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�y A

�a � b✛ s

❄

r

Figure 2: The interpretations I and I�
.

I ��

�y

�a � b✛ s

❄

r

Figure 3: The interpretation I��
.

(i) the interpretation of individual names is split in the same way, i.e., aI1 ∈

∆1,1 iff aI2 ∈ ∆2,1 for all a ∈ NI;

(ii) no role name in I1 connects ∆1,1 and ∆1,2, i.e., sI1 ∩ (∆1,1 × ∆1,2) = ∅

and sI1 ∩ (∆1,2 ×∆1,1) = ∅ for all s ∈ NR;

(iii) the same for I2.

Now swap the submodel of I1 induced by ∆1,2 with the submodel of I2 induced
by ∆2,2 and use I1,2 to denote the resulting interpretation with domain ∆1,1 �

∆2,2 and I2 to denote the resulting interpretation with domain ∆2,1 �∆1,2. It
can be proved that

(∗) for all ALCQIO-ABox assertions ϕ, we have that I1 |= ϕ and I2 |= ϕ iff
I1,2 |= ϕ and I2,1 |= ϕ.

Actually, (∗) is easily verified for (possibly negated) role assertions ϕ. To es-
tablish it for concept assertions, one can prove by induction on the structure of
C that for all d ∈ ∆i,1, i ∈ {1, 2}, we have d ∈ CIi iff d ∈ C

Ii,i ; and for all
d ∈ ∆i,2, i ∈ {1, 2}, we have d ∈ CIi iff d ∈ C

Ii,i (where 1 = 2 and 2 = 1).

To apply the above observation, we first modify I, I �, and I �� by dropping
the s-edge from b to a. Call the resulting interpretations J , J �, and J ��,
respectively. As s does not occur in B, we have J |= B and J � |= B, and to
show I �� |= B it suffices to show that J �� |= B. Observe that J �� is the result of
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swapping the submodel Jb of J induced by the domain {b} with the submodel
J �

b
of J � induced by the domain {b}. Thus, (∗) yields that J �� is a model of B

as required. �

4. Computing semantic updates

The main result established in this section is that adding nominals and the
‘@’ constructor to the DLs ALC, ALCI, ALCQ, and ALCQI suffices to have
semantic updates. We also analyze the size of the updated ABoxes showing
that our proof incurs a blowup that is exponential in the role depth of concepts
used in the original ABox and in the size of the update, both in the case of a
single update and of iterated updates. We then show that this blowup is very
likely to be unavoidable, and that the somewhat unusual extension of ALCQIO

with Boolean role constructors and ‘nominal roles’ can be used to avoid the
exponential blowup in the role depth of the original ABox (but not the blowup
in the size of the update).

4.1. Semantic updates in DLs with nominals and ‘@’
We provide a detailed proof that ALCQIO

@ has semantic updates, thus
also approximate updates (and the projective versions of both). The proof can
easily be adapted to the fragments ALCO

@, ALCIO
@, and ALCQO

@.

As a preliminary, we observe that assertions that are already contained in
the original ABox A can be dropped from the update U .

Lemma 8. Let A, A� be ALCQIO
@-ABoxes and U an update. Then A =⇒U

A� iff A =⇒U\A A�.

Proof. Immediate consequence of the fact that for all models I of A, we have
IU = IU\A. �
Consequently, from now on we assume w.l.o.g. that A ∩ U = ∅ whenever A is
updated with U .

Our construction of semantic updates is an extension of the corresponding
construction for propositional logic described in [4]. We start with addressing
the update of single concept assertions, where the central technical construction
consists of converting a concept C into a concept CU that can be used after
the update with U to describe the set of exactly those domain elements that
have been in the extension of C before the update. The conversion proceeds by
induction on the structure of C as detailed in Figure 4. It seems appropriate to
remind the reader that r−(a, b) ∈ U is simply an abbreviation for r(b, a) ∈ U ,
and likewise for negated role assertions. To get to grips with the somewhat
intricate translation of number restrictions, the reader may find it easier to first
consider the more specialized clauses for existential restrictions and universal
restrictions, which are for convenience given in Figure 5. As an example, con-
sider the concept C = ∃r.A and the update U = {¬A(b), r(b, b)}. Modulo some
minor simplifications, we obtain

C
U =

�
¬{b} � ∃r.(A � {b})

�
�

�
{b} � ∃r.(¬{b} �A)

�
.
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AU = (A � �
¬A(a)∈U

{a}) � ¬( �
A(a)∈U

{a}) {a}U = {a}

(@aC)U = @aC
U (¬C)U = ¬CU

(C �D)U = CU �DU (C �D)U = CU �DU

(� m r C)U = (( �
a∈Ind(U)

¬{a}) � (≥ m r CU ))

� �
a∈Ind(U)

�
{a} � �

m1 + m2 = m
m2 ≤ |Ind(U)|

�
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r(a,b)∈U
¬{b}) � CU )

� �
S⊆{b|¬r(a,b)∈U},|S|=m2

�
b∈S

@bC
U��

(� m r C)U = (( �
a∈Ind(U)

¬{a}) � (≤ m r CU ))

� �
a∈Ind(U)

�
{a} � �

m1 + m2 = m
m2 ≤ |Ind(U)|

�
(≤ m1 r ( �

r(a,b)∈U
¬{b}) � CU )

� �
S⊆{b|¬r(a,b)∈U},|S|=m2+1

�
b∈S

¬@bC
U��

Figure 4: Constructing the concept update CU

The following lemma formally states the main property of the constructed con-
cepts CU , where we use ¬U to denote {¬̇ϕ | ϕ ∈ U} and ¬̇ϕ is obtained from
¬ϕ by eliminating double negation (i.e., it denotes ψ if ϕ = ¬ψ for some ψ and
¬ϕ otherwise). We will see later how to overcome the restriction that I has to
violate all assertions in U .

Lemma 9. For all interpretations I such that I |= ¬U , we have CI = (CU )I
U
.

Proof. Let I be an interpretation such that I |= ¬U and E an ALCQIO
@-

concept. By induction on the structure of E, we show that (EU )I
U
= EI .

• If E = A, for A a concept name, then (AU )I
U
is

�
A

I
U
∪

�

¬A(a)∈U

{a
I
U
}

�
\

�

A(a)∈U

{a
I
U
}

=
��

A
I
∪

�

A(a)∈U

{a
I
} \

�

¬A(a)∈U

{a
I
}

�
∪

�

¬A(a)∈U

{a
I
U
}

�
\

�

A(a)∈U

{a
I
U
}

=
��

A
I
∪

�

A(a)∈U

{a
I
} \

�

¬A(a)∈U

{a
I
}

�
∪

�

¬A(a)∈U

{a
I
}

�
\

�

A(a)∈U

{a
I
}

= AI

The last equality holds since, due to I |= ¬U , we have AI∩
�

A(a)∈U

{aI} = ∅

and
�

¬A(a)∈U

{aI} ⊆ AI .
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• The case E = {a} is immediate since I and IU interpret individual names
in the same way.

• The cases E = ¬C, E = C �D, E = C �D, and E = @aC are straight-
forward using the semantics and induction hypothesis.

• It remains to consider the cases E = (≥ m r C) and E = (≤ m r C). The
central observation is that we have (d, e) ∈ rI iff either

– d �= aI for all a ∈ Ind(U) and (d, e) ∈ rI
U
; or

– d = aI for an a ∈ Ind(U) and exactly one of the following holds:

∗ e �= bI for all r(a, b) ∈ Ind(U) and (d, e) ∈ rI
U

∗ e = bI for a b ∈ Ind(U) with ¬r(a, b) ∈ U (which implies
(d, e) ∈ rI since I |= ¬U and excludes the previous case since

(d, e) /∈ rI
U
).

This case distinction is directly reflected in the translation of the concepts
(� m r C) and (� m r C). Using this and the induction hypothesis, it is

possible to verify that (EU )I
U
= EI , as required.

�
The concepts CU are used as a central building block for defining updates of
ABoxes. Let A be an ALCQIO

@-ABox and U an update. Define the ABox AU

by setting
AU = {CU (a) | C(a) ∈ A} ∪

{r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U} ∪

{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}.

We now establish an analogue of Lemma 9, but formulated for ABoxes instead
of concepts.

Lemma 10. Let A be an ABox and U an update. For every interpretation I

with I |= ¬U , we have I |= A iff IU |= AU .

Proof. “⇒” Let I |= A. We show that IU |= AU . Let ϕ ∈ AU . If ϕ = r(a, b) or
ϕ = ¬r(a, b), then, by the definition of AU and IU , IU |= ϕ. If ϕ = EU (a) for
E(a) ∈ A, Lemma 9 yields IU |= EU (a).

“⇐” Let IU |= AU . We show that I |= A. Take ϕ ∈ A. First for the case
ϕ = r(a, b). There are two subcases:

1. ¬r(a, b) ∈ U . Then r(a, b) ∈ ¬U and since I |= ¬U , we obtain that
I |= r(a, b);

2. ¬r(a, b) �∈ U . Then r(a, b) ∈ AU , thus IU |= r(a, b). We have r(a, b) /∈ U

since we assume A ∩ U = ∅. By definition of IU , this yields I |= r(a, b).

The case ϕ = ¬r(a, b) is analogous to the previous one, and the case ϕ = E(a)
is immediate by Lemma 9. �
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(∃r.C)U =(( �
a∈Ind(U)

¬{a}) � ∃r.CU ) �

�
a∈Ind(U)

�
{a} � ( ∃r.(( �

r(a,b)∈U

¬{b}) � CU ) � �
¬r(a,b)∈U

@bC
U )

�

(∀r.C)U =(( �
a∈Ind(U)

¬{a}) → ∀r.CU ) �

�
a∈Ind(U)

�
{a} → ( ∀r.(( �

r(a,b)∈U

¬{b}) → CU ) � �
¬r(a,b)∈U

@bC
U )

�

Figure 5: Constructing CU
for existential and universal restrictions

Similar to the concepts CU , the construction of the ABox AU relies on the fact
that the model I of A violates all assertions in U . For a fixed model I of A,
we can overcome this problem by replacing CU with CU

�
, where U � = {ϕ ∈ U |

I �|= ϕ} is the update that consists of those assertions from U that are violated
in I. However, the original ABox A can have many different models I, which
may give rise to different adjustments U � of the update U . We address this issue
by considering all subsets U � ⊆ U of assertions that can potentially be violated
in a model of A, and then taking the disjunction of all the resulting updated
ABoxes AU

�
.

Let A be an ABox and U an update. Define the updated ABox A� as the
Boolean ABox

A
� =

�
U ∧

�

U �⊆U

�
A

U
�
.

Here, we use Boolean ABox operators only as an abbreviation for the “@”
constructor, see Lemma 6.

Lemma 11. A =⇒U A�.

Proof. We prove that both inclusions of M(A�) = {IU | I ∈ M(A)} hold.

“⊇” Let I |= A. We have to show that IU |= A�. By definition of IU , IU |= U .
Define a subset U � ⊆ U as U � = {ϕ ∈ U | I �|= ϕ}. By Lemma 10, we have
IU

�
|= AU

�
. Moreover, using the definition of U � and IU

�
, it can be verified that

IU
�
= IU , thus IU |= AU

�
which yields IU |= A�.

“⊆” Let I � |= A�. We need to show that there exists an interpretation I

such that I |= A and I � = IU . Since I � |= A�, there is a U � ⊆ U such that
I � |= AU

�
. Let I = (I �)¬(U �), i.e., we undo all the modifications in the selected

adjustment U �. Then I � = IU
�
= IU . Moreover, Lemma 10 yields I |= A. �

The presented construction of semantic updates can be adapted to the DLs
ALCO

@, ALCIO
@, and ALCQO

@. For the former two, we have to treat ex-
istential and universal restrictions in the CU translation rather than number
restrictions. The corresponding clauses are shown in Figure 5. The lemmas
proved above for ALCQIO

@ are then easily adapted.
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Theorem 3. The DLs ALCO
@, ALCIO

@, ALCQO
@, and ALCQIO

@ have
semantic updates.

4.2. The size of semantic updates

We show that the above construction yields semantic updates whose size is
at most exponential in the size of the role depth of the original ABox and the
size of the update. If the role depth of the original ABoxes is fixed, then the size
of the update is polynomial in the size of the original ABox and exponential in
the size of the update.

The length of a concept C, denoted by |C|, is the number of symbols needed
to write C. Numbers inside number restrictions can be coded in unary or
in binary, which yields |(� n r C)| ∈ O(n) and |(� n r C)| ∈ O(log n),
respectively. Since all our results hold independently of the chosen coding
scheme, we from now on assume binary coding. The role depth of a con-
cept C, denoted by rd(C), is the nesting depth of number restrictions in C, i.e.,
rd(A) = 0, rd(¬C) = rd(C), rd(C � D) = rd(C � D) = max(rd(C), rd(D)) + 1,
and rd(� n r C) = rd(� n r C) = rd(C) + 1.

The size of an ABox assertion C(a) is |C|, the size of r(a, b) and ¬r(a, b) is 1.
The size of an ABox A, denoted by |A|, is the sum of the sizes of all assertions
in A. The role depth of an ABox A, denotes by rd(A), is max{rd(C) | C(a) ∈ A}.

A close inspection of our construction of semantic updates reveals the fol-
lowing result.

Theorem 4. Let L ∈ {ALCO
@
,ALCIO

@
,ALCQO

@
,ALCQIO

@
}. Then for

every L-ABox A and update U , the semantic update A� of A with U computed
by our algorithm satisfies

|A
�
| ≤ |A| · 2O(log(|A|)·|U|·rd(A))

· 22|U|

and can be computed in time polynomial in |A�|.

Proof. By inspection of the construction given in Section 4.1. We distinguish
two cases. First, assume that rd(A) = 0. Then the size of each concept CU is
|C| · |U| and each ABox AU

�
is of size at most |A| · |U|. The semantic update

A� comprises 2|U| such ABoxes AU
�
plus the update U , thus the overall size is

clearly dominated by the given expression. Now assume that rd(A) > 0. View
CU as a syntax tree in which all purely Boolean subtrees are collapsed into a
single node, where a subtree is Boolean if none of its nodes is labeled with the
‘@’ constructor or a number restriction. By construction, it follows that CU has
outdegree at most |C| · 2O(|U|) and depth at most rd(C). Since every collapsed
node represents at most |C| ·2O(|U|) syntax tree nodes, the size of CU is bounded
by 2O(log(|C|)·|U|·rd(C)). Analogously, the size of each ABox AU

�
is bounded by

|A| · 2O(log(|A|)·|U|·rd(A)). The semantic update A� comprises 2|U| such ABoxes
AU

�
plus the update U , thus the overall size is again dominated by the given

expression. �
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Note that the bound stated in Theorem 4 is polynomial in the overall size of
the original ABox (which is potentially large), and exponential only in the role
depth of the original ABox and the size of the update, which are typically small.
In particular, if the input ABox does not comprise any number restrictions (and
neither existential and universal restrictions), then the size of updated ABoxes
is exactly as in propositional logic [9].

In many applications, the state of affairs evolves continuously which makes it
necessary to update the ABox over and over again. It is then clearly important
that the exponential blowups of the repeated updates do not add up, which
would result in a non-elementary growth of the produced semantic updates.
The following theorem shows that this is indeed not the case.

Theorem 5. Let L ∈ {ALCO
@
,ALCIO

@
,ALCQO

@
,ALCQIO

@
}, A0, . . . ,An

L-ABoxes, U1, . . . ,Un updates, and Ai+1 the semantic update of Ai with Ui+1

computed by our algorithm, for 0 ≤ i < n. Then

|An| ≤ |A0| · 2
O(log(|A0|)·(|U1|+···+|Un|)·rd(A0)) · 22(|U1|+···+|Un|).

Proof. The argument is analogous to the proof of Theorem 4. In particular,
viewing a concept ((CU1)···)Un as a syntax tree with collapsed nodes as in that
proof, it is not hard to see that the outdegree is at most |C| · 2O(|U1|+···+|Un|)

and the depth is at most rd(C). Since every collapsed Boolean node represents
at most O(|C| ·2O(|U1|+···+|Un|)) syntax tree nodes, the size of CU is bounded by

2O(log(|C|)·(|U1|+···+|Un|)·rd(C)). Analogously, the size of each ABox ((A
U

�
1

0 )···)U
�
n ,

with U �
1 ⊆ U1, . . . ,U

�
n ⊆ Un, is bounded by |A0| · 2O(log(|A0|)·(|U1|+···+|Un|)·rd(A0)).

The semantic update An is a Boolean combination of 2|U1|+···+|Un| such ABoxes

and 2|U2|+···+|Un| ABoxes of the form ((U
U

�
i+1

i
)···)U

�
n . The size of each of the

latter ABoxes is bounded by |U1| · · · · · |Un|. In summary, the size of An is thus
bounded by the expression given in Theorem 5. �

4.3. A lower bound for the size of semantic updates

We show that, in ALCQIO
@ and its fragments, an exponential blowup of

semantic updates cannot be avoided unless

NP ∩ co-NP ⊆ NC1,

where NC1 is the class of problems that is solvable by a family of circuits of
polynomial size and logarithmic depth. We work with the non-uniform version
of NC1 here, i.e., we do not demand that the circuit for a given input length can
be computed within certain resource bounds (or at all!). The stated inclusion
is widely believed to not hold. It is intimately related to the important open
question whether every problem that is efficiently solvable can be effectively
parallelized, i.e., whether PTime is a subset of uniform NC1, which is also
not believed to be the case. In particular, there are reasons to assume that
(non)-uniformity is irrelevant for inclusions of this sort, see e.g. [19].
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We obtain our result by relating semantic updates to Craig interpolants in
propositional logic, which allows us to transfer known lower bounds for the size
of such interpolants, see e.g. [20, 21, 22]. In what follows, we will deliberately
confuse propositional formulas and concepts that use only the Boolean construc-
tors ¬, �, and �. We use sig(ϕ) to denote the set of propositional letters that
occur in the propositional formula ϕ, and sig(A) to denote the concept and role
names that occur in the ABox A. Recall that, given two propositional formu-
las ϕ and ψ with ϕ |= ψ, a Craig interpolant of ϕ and ψ is a formula ϑ with
ϕ |= ϑ |= ψ and such that sig(ϑ) ⊆ sig(ϕ) ∩ sig(ψ). For a propositional formula
ϕ and a set of propositional letters S, we use ϕ[S/�] to denote the result of
replacing each letter from S in ϕ with � (i.e., logical truth).

Lemma 12. Let ϕ, ψ, and ϑ be propositional formulas with ϕ |= ψ. If A =
{ϕ(a)}, U = {p(a) | p ∈ sig(ϕ) \ sig(ψ)}, and A =⇒U {ϑ(a)}, then ϑ[S/�] is a
Craig interpolant of ϕ and ψ where S = sig(ϑ) \ (sig(ϕ) ∩ sig(ψ)).

Proof. Clearly, ϑ[S/�] contains only propositional letters from sig(ϕ)∩sig(ψ) as
required. It thus remains to show that ϕ |= ϑ[S/�] |= ψ. We start with noting
that

(∗) ϑ[S/�] ≡ ϑ[sig(U)/�]

To see (∗), note that (S \ sig(U)) ∩ (sig(A) ∪ sig(U)) = ∅, and thus A =⇒U

{ϑ(a)} implies that whenever I is a model of ϑ and I and J differ only in
the interpretation of symbols from S \ sig(U), then J is also a model of ϑ. It
follows that ϑ[sig(U)/�] has the same property. Thus, replacing all symbols
from S \ sig(U) in ϑ[sig(U)/�] with �, which yields ϑ[S/�], is an equivalence
preserving operation.

We now show that ϕ |= ϑ[S/�] |= ψ.

• ϕ |= ϑ[S/�].

Let I |= ϕ(a). Then IU |= ϑ(a). Moreover, IU |= p(a) for all p ∈ sig(U).
It follows that IU |= ϑ[sig(U)/�](a), thus IU |= ϑ[S/�](a) by (∗). Since
I and IU agree on the interpretation of all propositional letters from
sig(ϕ) ∩ sig(ψ), we get I |= ϑ[S/�](a).

• ϑ[S/�] |= ψ.

Let J |= ϑ[S/�](a). By (∗), J |= ϑ[sig(U)/�](a). Let J � be obtained
from J by interpreting all p ∈ sig(U) as true, i.e., pJ

�
= ∆J

�
. Clearly,

J � |= ϑ(a). Thus there is a model I of A with IU = J �. Since I |= ϕ(a),
we have I |= ψ(a). As I, J �, and J agree on the interpretation of all
propositional letters from sig(ψ), we get J |= ψ(a).

�
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As a side remark, we note that the formula ϑ[S/�] in Lemma 12 is even a
uniform interpolant for ϕ and sig(ψ): for any ψ� with sig(ψ�) ∩ sig(ϕ) ⊆ sig(ψ)
and ϕ |= ψ� we have ϑ[S/�] |= ψ�.

The semantic update {ϑ(a)} considered in Lemma 12 is of a rather particular
form. To establish a lower bound for the size of semantic updates in ALCQIO

@,
we observe that one cannot express ABoxes of the form {ϑ(a)}, ϑ a propositional
formula, more succinctly in ALCQIO

@. The following lemma states this fact
even for first-order logic (with equality), of whichALCQIO

@ is a fragment when
concept names are confused with unary predicates and role names with binary
predicates [23]. The lemma can easily be proved by standard manipulations of
FO formulas; details are left to the reader.

Lemma 13. Let ϑ(a) be an ABox assertion, where ϑ is a propositional formula,
and let ϕ be a first-order sentence that is equivalent to ϑ(a). Then there exists
a propositional formula ϑ� that is equivalent to ϑ such that |ϑ�(a)| ≤ |ϕ|.

Together with the observation from [20] that the size of Craig interpolants
cannot be bounded by a polynomial unless NP ∩ co-NP ⊆ NC1, Lemma 12
and 13 yield the desired result.

Theorem 6. If there exists a polynomial p such that, for all propositional
ABoxes A and updates U , there exists an ALCQIO

@-ABox A� such that A =⇒U

A� and |A�| ≤ p(|A| · |U|), then NP ∩ co-NP ⊆ NC1.

Proof. Assume there is a polynomial p as stated in Theorem 6. We show that
then p2 bounds the size of Craig interpolants in propositional logic, which implies
NP∩ co-NP ⊆ NC1 as observed in [20]. Let ϕ and ψ be propositional formulas
and take the ABox A = {ϕ(a)} and update U = {p(a) | p ∈ sig(ϕ) \ sig(ψ)}.
Then there is anALCQIO

@-ABoxA� withA =⇒U A� and |A�| ≤ p(|A|·|U|). By
our algorithm computing semantic updates, there is a propositional formula ϑ

such that A =⇒U {ϑ(a)}. By Lemma 1, A� and {ϑ(a)} are logically equivalent.
By Lemma 13, A� is logically equivalent to an ABox A�� = {ϑ�(a)} with ϑ� a
propositional formula and |A��| ≤ |A�|. Finally, by Lemma 12 this implies that
ϑ�[S/�], S = sig(ϑ�) \ (sig(ϕ)∩ sig(ψ)), is a Craig interpolant of ϕ and ψ, whose
size is bounded by p(|ϕ|2) (and independent of |ψ|). �
As shown in [22], it is possible to replace the complexity-theoretic proviso in
Theorem 6 with UP ⊆ P/poly, where UP is the class of problems in NP accepted
by a nondeterministic Turing machine with unique accepting paths and P/poly is
the non-uniform version of PTime. Just like the statement used in Theorem 6,
it is strongly believed that UP ⊆ P/poly does not hold.

We note that the result stated as Theorem 6 is closely related to a similar
result proved by Cadoli et al. which states that for semantic updates of proposi-
tional theories, an exponential blowup cannot be avoided unless the polynomial
hierarchy collapses [9]. However, Cadoli et al.’s technique does not appear to
work with the restricted form of updates U considered in this paper, where we
allow only literals but no compound concepts/formulas.
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4.4. Smaller updates in ALCQIO
+

An inspection of the construction of semantic updates presented in Sec-
tion 4.1 reveals that, in the case where the update U contains only concept
assertions but no role assertions, computing the concepts CU becomes a lot
simpler: we only have to replace every concept name A in C with

(A � �
¬A(a)∈U

{a}) � ¬( �
A(a)∈U

{a}).

In particular, the resulting semantic update AU is then only exponential in |U|,
but no longer in the role depth of A. To understand why such a simple rewriting
is not possible when roles are updated, note that the above construction makes
essential use of nominals, the ‘@’ constructor, and the Boolean concept con-
structors. In standard DLs, none of these constructors is available for roles: we
can neither construct the union of roles, nor their complement, nor a “nominal
role” {(a, b)} with a and b individual names. In this section, we consider a DL
that comprises such slightly unusual role constructors and show that it admits
simple semantic updates of the above form also in the case when the update
comprises role assertions.

Denote by ALCQIO
+ the DL that extends ALCQIO

@ by means of the role
constructors ∪ (role union), \ (set-theoretic difference of roles), and {(a, b)}
(nominal roles). In this language, compound roles are constructed by starting
from role names and nominal roles, and then applying ∪, \, and the inverse role
constructor ·−. The semantics of compound roles is as expected:

• {(a, b)}I = {(aI , bI)}, for all a, b ∈ NI;

• (r1 ∪ r2)I = rI1 ∪ rI2 ;

• (r1 \ r2)I = rI1 \ rI2 .

We note that ALCQIO
+ is of almost the same expressive power as C2, the two-

variable fragment of first-order logic with counting quantifiers [24]. In particular,
ALCQIO

+-ABoxes can easily be translated into formulas of C2. The following
is the main result of this section.

Theorem 7. There is a polynomial p such that, for every ALCQIO
+-ABox A

and every update U , there is an ALCQIO
+-ABox A� such that

1. A =⇒U A�;
2. |A�| ≤ |A| · 2p(|U|);
3. A� can be computed in time p(|A�|).

Proof. We modify the construction from Section 4.1. The construction of the
concepts CU is now as follows: replace every concept name A in C with

(A � �
¬A(a)∈U

{a}) � ¬( �
A(a)∈U

{a})
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and every role name r in C with

(r ∪
�

¬r(a,b)∈U

{(a, b)}) \
�

r(a,b)∈U

{(a, b)}.

The concepts CU are thus of size polynomial in |A| · |U|. The ABox A� can then
be constructed in the same way as in Section 4.1. �
Clearly, Theorem 7 is independent of the coding of numbers, and iterated up-
dates retain the same size bound, with |U| replaced by |U1| + · · · + |Un|. An
alternative to working with a description logic such as ALCQIO

+ is to work
directly with the two-variable fragment with counting C2. Then, a result anal-
ogous to Theorem 7 is easily obtained.

5. Computing projective updates

We consider projective updates and show that they are more well-behaved
than semantic ones: first, projective updates are enjoyed by all DLs between
ALCO and ALCQIO

@, including those that do not comprise the ‘@’ construc-
tor; and second, projective updates can be constructed in polynomial time and
without an exponential blowup. We prove this in detail for ALCQIO

@ us-
ing an approach that can easily be adapted to all DLs between ALCO

@ and
ALCQIO

@. These results then transfer to the corresponding DLs without the
‘@’ constructor thanks to Lemma 7.

Let A be an ALCQIO
@-ABox and U an update. We show how to construct

an ALCQIO
@-ABox A� such that A =⇒p

U
A�. Let sub(A) denote the closure

under subconcepts of {C | C(a) ∈ A}. The general approach to constructing A�

shares a lot of similarity with the construction of semantic updates in Section 4.1.
However, we need some subtle technical tricks to avoid the exponential blowups
that occur there, namely (i) during the construction of the concepts CU and
(ii) due to the final disjunction over all U � ⊆ U . The central idea to overcome
both blowups is to use fresh concept names XC and fresh role names ρr to
explicitly reconstruct in A� the extension of all concepts C ∈ sub(A) and all
roles name r ∈ role(A) before the update. This allows us to eliminate blowup
(i) because the concept names XC enable ‘structure sharing’, thus addressing
the multiple occurrences of concepts CU on the right-hand side of the clauses
in Figure 4; moreover, the role names ρr help to avoid the exponential case
distinction ‘for all S ⊆ {b | ¬r(a, b) ∈ U}’ in the clauses for number restrictions.
The use of the XC and ρr also allows us to eliminate blowup (ii) as the case
distinction ‘for all U � ⊆ U ’ can be replaced with some ‘freedom’ that we will
leave in the interpretation of the XC and ρr, and that intuitively corresponds
to an existential quantification over all U � ⊆ U . More details are given below
after the construction of A�. In what follows, we use ρr− to denote (ρr)−.

The projective updateA� will be the union of four ABoxes. First, A� contains
the update U . Second, we set up an ABox Ainit that stores the original ABox
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A using the concept names XC for C and role names ρr for r:

Ainit = {XC(a) | C(a) ∈ A} ∪

{ρr(a, b) | a, b ∈ Ind(U), r(a, b) ∈ A} ∪

{¬ρr(a, b) | a, b ∈ Ind(U),¬r(a, b) ∈ A}∪

{r(a, b) | {a, b} �⊆ Ind(U), r(a, b) ∈ A} ∪

{¬r(a, b) | {a, b} �⊆ Ind(U),¬r(a, b) ∈ A}

The remaining two ABoxes establish the relationship between ρr and r and XC

and C. First, we state that the interpretation of ρr coincides with r for all ABox
individuals that are not affected by the update U :

Ar = {(∃ρr.{b} ↔ ∃r.{b})(a) | a, b ∈ Ind(U), r ∈ role(A), r(a, b) /∈ U ,¬r(a, b) /∈ U}.

Second, we ensure that each concept name XC , C ∈ sub(A) represents the
extension of C before the update (and thus behaves like the concept CU ) by
taking the conjunction Cbi of all concepts in Figure 6, i.e., one biimplication for
each fresh concept name XC , C ∈ sub(A). Note that the biimplication for XA,
A ∈ NC, which is given in the first line, states thatXA is interpreted likeA except
on the individuals where an update of A occurred. In particular, if A �∈ sub(U),

then ( �
A(a) ∈ U or
¬A(a) ∈ U

¬{a}) is equivalent to � and, therefore, the concept in the first

line is equivalent to XA ↔ A. On those individuals where an update occurred,
the only constraints for XA are those given in Ainit. It can thus be verified that
the possible extensions of XA are precisely the possible extensions of A before
the update (in general, there is more than one possibility, e.g. if A(a) ∈ U and
{A(a),¬A(a)}∩A = ∅). The fresh roles ρr can be understood similarly, with the
ABox Ar playing the role of the biimplications for XA. However, there is also
one major difference: since we cannot express that ρr has the same extension as
r on non-ABox domain elements, we use r instead of ρr when dealing with such
elements. This is reflected by the use of both r and ρr in the biimplications for
number restrictions.

Unfortunately, ALCQIO
@ also lacks the expressive power to enforce that

Cbi is satisfied by all domain elements. We thus resort to enforcing that Cbi is
satisfied by all ‘relevant’ domain elements, i.e., by all domain elements that can
be reached from an ABox individual in A by a sequence of roles that occurs in
some concept C ∈ sub(A). Formally, we inductively associate with each concept
C ∈ sub(A) a set path(C) of words r1 . . . rn ∈ NR

∗ as follows, where ε denotes
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( �
A(a) ∈ U or
¬A(a) ∈ U

¬{a}) → (XA ↔ A)

X{a} ↔ {a}
X@aC ↔ @aXC

X¬C ↔ ¬XC

XC�D ↔ XC �XD

XC�D ↔ XC �XD

X(�m r C) ↔ (( �
a∈Ind(U)

¬{a}) � (≥ m r XC)) �
�
( �
a∈Ind(U)

{a}) � �
m1 + m2 = m
m2 ≤ |Ind(U)|

�
(≥ m1 r ( �

b∈Ind(U)
¬{b}) �XC)

� (≥ m2 ρr ( �
b∈Ind(U)

{b}) �XC)
��

X(�m r C) ↔ (( �
a∈Ind(U)

¬{a}) � (≤ m r XC)) �
�
( �
a∈Ind(U)

{a}) � �
m1 + m2 = m
m2 ≤ |Ind(U)|

�
(≤ m1 r ( �

b∈Ind(U)
¬{b}) �XC)

� (≤ m2 ρr ( �
b∈Ind(U)

{b}) �XC)
��

Figure 6: The conjuncts of Cbi.

the empty sequence:

path({a}) = {ε}

path(A) = {ε}

path(C1 � C2) = path(C1) ∪ path(C2)

path(C1 � C2) = path(C1) ∪ path(C2)

path(¬C) = path(C)

path(@aC) = path(C)

path(� m r C) = {rw | w ∈ path(C)} ∪ {ε}

path(� m r C) = {rw | w ∈ path(C)} ∪ {ε}

Let path(A) =
�
{path(C) | C ∈ sub(A)}. Now choose a fresh individual name

a∗ and a fresh role name u, and set

Arel = {∀uw.Cbi(a
∗) | w ∈ path(A)} ∪ {u(a∗, b) | b ∈ Ind(A)},

where ∀w.C abbreviates ∀r1. · · · .∀rn.C when w = r1 · · · rn. Finally, let

A
� = Ainit ∪ Ar ∪ Arel ∪ U .

Before proving that A =⇒p
U

A�, we give an example that also illustrates our
approach to avoiding the exponential blowup of type (ii) described above. Let
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A = {a : ∃r.A, a : ∃s.¬A} and U = {A(a1),¬A(a2)} and note that, due to the
UNA and since r does not occur in U , we can simplify a : (∃r.A)U to the equiva-
lent assertion a : ∃r.AU . Thus, the conjunction of U with the following assertion
is a simplified version of the semantic update computed by our algorithm:

a : ∃r.A ∧ a : ∃s.¬A

∨ a : ∃r.(A � ¬{a1}) ∧ a : ∃s.¬(A � ¬{a1})

∨ a : ∃r.(A � {a2}) ∧ a : ∃s.¬(A � {a2})

∨ a : ∃r.((A � {a2}) � ¬{a1}) ∧ a : ∃s.¬((A � {a2}) � ¬{a1})

Here, the four disjuncts are due to the fact that we have to take the disjunction
over all

�
AU

�
for U � ⊆ U . Intuitively, this disjunction reflects the fact that each

of A(a1) and ¬A(a2) might or might not be satisfied already before the update.
The projective update is the union of U and the following ABoxes (where we
have simplified Cbi by taking into account that for any role r �∈ sig(U), the right
hand side of the biimplication for ∃r.C is equivalent to ∃r.XC):

Ainit = {a : X∃r.A, a : X∃s.¬A}

Ar = ∅

Arel = {u(a∗, a)} ∪ {∀u.Cbi(a∗), ∀u.∀r.Cbi(a∗), ∀u.∀s.Cbi(a∗)} where
Cbi = (X∃r.A ↔ ∃r.XA) � (X∃s.¬A ↔ ∃s.X¬A) � (X¬A ↔ ¬XA)

� ( (¬{a1} � ¬{a2}) → (XA ↔ A) )

Observe that the interpretation of X∃r.A and X∃s.¬A on a1 and a2 is not con-
strained using a case distinction but by demanding that Ainit is satisfied.

Lemma 14. A =⇒p
U
A�.

Proof. Assume first that I ∈ M(A)U . We have to show that there exists a
model I � of A� that coincides with I for all symbols distinct from u, a∗, the role
names ρr, r ∈ role(A), and the concept names XC , C ∈ sub(A). By definition,
there exists a model I0 of A such that I = IU

0 . Now define I � in the same way
as I but extended by setting

(a∗)I
�

:= d0, for some d0 ∈ ∆I
,

u
I
�

:= {(d0, b
I) | b ∈ Ind(A)},

ρ
I
�

r := r
I0 , for r ∈ role(A),

X
I
�

C := C
I0 , for C ∈ sub(A).

It is easily verified that I � is a model of A� and, therefore, as required.

Conversely, assume that I is a model of A�. We construct a model I0

of A such that I = IU
0 . Define I0 as follows: for all concept names A �∈

sub(A)∩ sub(U), set AI0 = AI . For all concept names A ∈ sub(A)∩ sub(U), set
d ∈ AI0 iff:

1. d ∈ AI and d �∈ {aI | a ∈ Ind(U)}; or
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2. d ∈ XI

A
and d ∈ {aI | a ∈ Ind(U)}.

Similarly, for all role names r �∈ role(A) ∩ role(U), set rI0 = rI . For all role
names r ∈ roles(A) ∩ role(U), set (d1, d2) ∈ rI0 iff:

1. (d1, d2) ∈ rI and {d1, d2} �⊆ {aI | a ∈ Ind(U)}; or
2. (d1, d2) ∈ ρIr and {d1, d2} ⊆ {aI | a ∈ Ind(U)}.

We show that I0 is a model of A and I = IU
0 .

Claim 1. For all C(a) ∈ A, I0 |= C(a) iff I |= XC(a).

We show that for all C ∈ sub(A), subconcepts E of C, and words w and d ∈ ∆I

such that (bI , d) ∈ wI for some b ∈ Ind(A) and {wv | v ∈ path(E)} ⊆ path(C),
we have

d ∈ E
I0 iff d ∈ X

I

E .

Claim 1 then follows immediately by taking w = ε. The proof is by structural
induction on E and uses Arel. We consider the cases where E is a concept
name or of the form (� m r F ). First let E = A for a concept name A. Since
path(A) = {ε}, we have to consider all d with (bI , d) ∈ wI for some b ∈ Ind(A)
and w ∈ path(C). Assume d is given. If d �∈ {aI | a ∈ Ind(U)}, then d ∈ XI

A

iff d ∈ AI (first biimplication in Figure 6) iff d ∈ AI0 , by definition of AI0 .
Otherwise, if d ∈ {aI | a ∈ Ind(U)}, then d ∈ AI0 iff d ∈ XI

A
, again by definition

of AI0 .
Now consider the case E = (� m r F ). Assume (bI , d) ∈ wI for some

b ∈ Ind(A) and wv ∈ path(C) for all v ∈ path(E). Then wrv ∈ path(C) for all
v ∈ path(F ).

We distinguish the following cases:

• d �∈ {aI | a ∈ Ind(U)}. By the biimplication for X(�m r F ) in Figure 6, we
have that d ∈ XI

E
iff d ∈ (� m r XF )I . For all x we have that (d, x) ∈ rI

iff (d, x) ∈ rI0 . Moreover, for all x such that (d, x) ∈ rI , we have that
(bI , x) ∈ (wr)I . By IH, it holds that x ∈ F I0 iff x ∈ XI

F
. Thus we obtain

d ∈ XI

E
iff d ∈ (� m r F )I0 = EI0 .

• d ∈ {aI | a ∈ Ind(U)}. Again by the biimplication for X(�m r F ), we
have that d ∈ XI

E
iff for some m1,m2 such that m1 + m2 = m and

m2 ≤ |Ind(U)| we have both d ∈ (≥ m1 r �
b∈Ind(U)

¬{b}�XF )I and d ∈ (≥

m2 ρr �
b∈Ind(U)

{b} �XF )I .

Then d ∈ (≥ m1 r �
b∈Ind(U)

¬{b}�XF )I iff d ∈ (≥ m1 r �
b∈Ind(U)

¬{b}�F )I0

can be proved analogously to the previous case. Note that if x = cI

for some c ∈ Ind(A), then (d, x) ∈ rI0 iff (d, x) ∈ ρIr . Moreover, by

IH, cI ∈ F I0 iff cI ∈ XI

F
. Thus d ∈ (≥ m2 ρr �

b∈Ind(U)
{b} � XF )I iff

d ∈ (≥ m2 r �
b∈Ind(U)

{b}�F )I0 . Summing up the previus equivalences, we

obtain that d ∈ XI

E
iff d ∈ (� m r F )I0 = EI0 , as required.
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From Claim 1, the condition that I is a model of Ainit, and the definition of
rI0 , we obtain that I0 is a model of A.

It remains to show that I = IU
0 . First, interpretations of concept and role

names which do not appear in U are identical in I0 and I. Second, I and I0

interpret all role and concept names which appear in U in the same way on
the part of the domain ∆I unaffected by the update U : for concept names A,
the definition of AI0 , and the first biimplication in Figure 6 imply that for all
x ∈ ∆I \ {aI | A(a) ∈ U or ¬A(a) ∈ U} it holds that x ∈ AI0 iff x ∈ AI .
Smilarly, for role names r, the definition of rI0 and I |= Ar imply that for
all (x, y) ∈ (∆I × ∆I) \ {(aI , bI) | r(a, b) ∈ U or ¬r(a, b) ∈ U} it holds that
(x, y) ∈ rI0 iff (x, y) ∈ rI . Thus, since I |= U , we obtain that I = IU

0 . �
We now analyze the size of A� in terms of the size of A and U . Obviously,

|Ainit| ≤ |A| and |Ar| = O(|U|3). Since |Cbi| = O(|U|3 · |A|) (independently from
the coding of numbers inside number restrictions) and |path(A)| ≤ |A|2, we
obtain that |Arel| = O(|A|3 · |U|3). Summing up, we obtain |A�| = O(|U|3 · |A|3).

Together with Lemma 7, we thus obtain the following result, which in par-
ticular implies that all DLs between ALCO and ALCQIO

@ have projective
updates. It is independent of the coding of numbers inside number restrictions.

Theorem 8. Let L be a DL between ALCO and ALCQIO
@. Then there is a

polynomial p such that, for every L-ABox A and every update U , there is an
L-ABox A� such that

1. A =⇒p
U
A�;

2. |A�| ≤ p(|A| · |U|);
3. A� can be computed in time p(|A�|).

In a context where also TBoxes are available, it might be more appropriate to
store the conjuncts of Cbi in a TBox rather than in A�. In this way, we do not
need to introduce the new individual a∗ and can avoid the paths of role names
altogether. It can be seen that an acyclic TBox suffices, please see [15] to get a
more concrete idea.

We close this section with a brief discussion of iterated updates in the pro-
jective case. To start with, we note that it is possible to repeatedly compute
projective updates using the presented construction by simply treating fresh
symbols introduced by earlier updates as ‘normal’ symbols during all subse-
quent updates. These updates are then even stronger than necessary since later
updates preserve the meaning of fresh symbols introduced by earlier updates.
Unfortunately, it is easy to see that the projective update A� that is obtained by
starting with an ABox A and then consecutively applying updates U1, . . . ,Un

using our construction is exponential in n. In particular, ifA = A0, . . . ,An = A�

are the generated projective updates, then it is easy to see that each Ai contains
ki · |sub(A)| concept names XC , for some constant k. Despite this problem, it
is still straightforward to carry out repeated updates without ever obtaining
an ABox of exponential size. The simple workaround is to keep the original
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ABox A in memory and then to repeatedly update the updates Ui instead of
the projective updates Ai. More precisely, define a cumulative update

�Ui = Ui ∪ ( �Ui−1 \ ¬Ui+1).

for 1 ≤ i ≤ n. When processing the stream of updates U1, . . . ,Un, only keep
A and the latest cumulative update �Ui in memory. At any time, the ‘current’
projective update is obtained by applying our construction to A and �Ui. Clearly,
all projective updates obtained in this way are of size polynomial in |A| and
|U1|+ · · ·+ |Un|.

6. Conditional Updates and Reasoning about Action

Up to now, we have considered updates U that are unconditional in the sense
that all assertions in U are necessarily true after the update, not subject to any
conditions. In some applications, though, it is more useful to allow conditional
updates that are able to express statements such as ‘A(a) is true after the up-
date if C(b) was true before’. In particular, such a generalization is important
for reasoning about actions, which has recently been studied in a DL context
[12] and where ABox updates play a crucial role for implementing the reasoning
pattern of ‘progression’, as opposed to ‘regression’ approaches [7]. In this sec-
tion, we introduce conditional updates and show that all results that we have
proved for unconditional updates, both semantic and projective, are also true
for the corresponding version of conditional updates. As an application, we put
conditional updates to work for reasoning about action, using the progression
approach to reprove the optimal upper complexity bounds for the projection
problem of DL actions that were first established using regression in [12]. The
latter results will be based on projective updates.

Let L be a DL between ALC and ALCQIO
@. A conditional L-update U is

a finite set of expressions ϕ/ψ, where the precondition ϕ is an L-ABox assertion
and the postcondition ψ is, as in the unconditional case, an assertion of one of
the forms

A(a),¬A(a), r(a, b),¬r(a, b).

Intuitively, ϕ/ψ ∈ U means that if ϕ holds before the update, then ψ holds after
it. Analogously to the case of unconditional updates, we require a consistency
condition: if ϕ/ψ and ϕ�/¬ψ are both in U , then the ABox {ϕ, ϕ�} has to be
inconsistent. We now adapt the notion of an interpretation update to the case
of conditional updates.

Definition 5 (Conditional Interpretation Update). Let U be a conditional
update and I an interpretation. Define an interpretation IU by setting for all
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individual names a, concept names A, and role names r:

∆I
U
= ∆I

aI
U
= aI

AI
U
= (AI ∪ {aI | ϕ/A(a) ∈ U and I |= ϕ}) \ {aI | ϕ/¬A(a) ∈ U and I |= ϕ}

rI
U
= (rI ∪ {(aI , bI) | ϕ/r(a, b) ∈ U and I |= ϕ})

\ {(aI , bI) | ϕ/¬r(a, b) ∈ U and I |= ϕ}.

IU is called the result of updating I with U .

The conditional versions of semantic and projective updates are defined in the
same way as for unconditional updates. We repeat the definition for the reader’s
convenience.

Definition 6 (Semantic (Projective) Conditional Updates). Let A be an
ALCQIO

@-ABox and U a conditional update.
An ALCQIO

@-ABox A� is a semantic update of A with U , in symbols
A =⇒U A�, if

M(A�) = {I
U
| I ∈ M(A)}

A description logic L has semantic conditional updates if for every L-ABox A

and conditional L-update U , there is an L-ABox A� with A =⇒U A�.
An ALCQIO

@-ABox A� is a projective update of A with U , in symbols
A =⇒p

U
A, if

M(A�)�Fr(A�) = {I
U
| I ∈ M(A)}�Fr(A�),

where Fr(A�) = sig(A�) \ (sig(A) ∪ sig(U)) is the set of fresh symbols in A�.
A description logic L has semantic projective conditional updates if for every
L-ABox A and conditional L-update U , there is an L-ABox A� with A =⇒p

U
A�.

Note that conditional updates generalize unconditional ones since assertions
ψ of unconditional updates can be expressed as �(a)/ψ, with a an arbitrary
individual name. It follows that all non-existence results that we have proved
in Section 3 for unconditional updates hold for conditional updates as well.
Regarding results about the existence of updates, our first aim is to generalize
Theorems 3, 4, and 8 from the unconditional to the conditional case. We leave
the straightforward generalization of other results such as Theorem 7 to the
interested reader. We start with extending Theorem 3.

Theorem 9. ALCO
@, ALCIO

@, ALCQO
@, and ALCQIO

@ have semantic
conditional updates.

Proof. Let A be an ABox formulated in one of the DLs in Theorem 9 and U a
conditional update. The assertions that occur on the left-hand-side of update
statements in U is lhs(U) = {ϕ | ϕ/ψ ∈ U}. Each D ⊆ lhs(U) corresponds to
one possible choice of preconditions that are true before the update. For each
such D, the ABox

PreD = D ∪ {¬ϕ | ϕ ∈ lhs(U) \ D}
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identifies the models that realize the choice D and

PostD = {ψ | ϕ/ψ ∈ U , ϕ ∈ D}

is the unconditional update that has to be executed in those models. By
Lemma 11, we have

(A ∪ PreD) =⇒PostD AD

where
AD =

�
PostD ∧

�

U �⊆PostD

�
(A ∪ PreD)

U
�
.

By the semantics of ABox updates, it follows that A =⇒U A� where

A
� =

�

D⊆lhs(U)

��
PostD ∧

�

U �⊆PostD

�
(A ∪ PreD)

U
�
�
.

�
It follows from the construction of A� in the above proof that the upper

bound on the size of semantic updates given in Theorem 4 still applies in the
conditional case. We now consider projective conditional updates, generalizing
Theorem 8.

Theorem 10. Let L be a DL between ALCO and ALCQIO
@. Then there is a

polynomial p such that, for every L-ABox A and every conditional L-update U ,
there is an L-ABox A� such that

1. A =⇒p
U
A�;

2. |A�| ≤ p(|A| · |U|);
3. A� can be computed in time p(|A�|).

Proof. (sketch) Assume that A is an ALCQIO
@-ABox and U a conditional

ALCQIO
@-update. To define a projective update, introduce fresh concept

names XA for all A ∈ sub(A ∪ lhs(U)) and fresh role names ρA for all r ∈

role(A∪ lhs(U)). The additional names for concepts and roles in lhs(U) are used
to represent the preconditions of U that hold in the original interpretation. The
component Ainit is defined in the same way as in the proof of Theorem 8 by
setting

Ainit = {XC(a) | C(a) ∈ A} ∪

{ρr(a, b) | r(a, b) ∈ A} ∪

{¬ρr(a, b) | ¬r(a, b) ∈ A}

Set

Ar = {(∃ρr.{b} ↔ ∃r.{b})(a) | a, b ∈ Ind(U), r ∈ role(A ∪ lhs(U)),

r(a, b) /∈ rhs(U),¬r(a, b) /∈ rhs(U)}

and define Cbi in the same way as in Theorem 8 with the exception that Cbi

contains one biimplication for each XC , C ∈ sub(A ∪ lhs(U)) and U is replaced
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by rhs(U) in the implication for XA and the biimplications for qualified number
restrictions. Let, as before, a∗ be a fresh individual name and u a fresh role
name, and set

Arel = {∀uw.Cbi(a
∗) | w ∈ path(A ∪ lhs(U))} ∪ {u(a∗, b) | b ∈ Ind(A ∪ lhs(U))}.

Instead of including U in A� as in the case of unconditional updates, we have
to make sure that only those updates are triggered whose preconditions are
satisfied. This can be achieved by the ABox

Acond =
�

ϕ/ψ∈U

{a
∗ : �p(ϕ) → p(ψ)} ∪

�

ψ∈rhs(U)∩O

{a
∗ :

�
�

ϕ/ψ∈U

¬�p(ϕ)
�
→ (�p(ψ) ↔ p(ψ))},

where O denotes the set of ABox assertions using concept and role names from
A ∪ lhs(U) only,

p(ϕ) =






∃u.({a} � C) if ϕ = C(a)
∃u.({a} � ∃r.{b}) if ϕ = r(a, b)
∃u.({a} � ∀r.¬{b}) if ϕ = ¬r(a, b)

and �p is defined like p, but with C replaced by XC and r by ρr. The first line
of Acond states that if ϕ holds in the original interpretation, then ψ holds in the
updated interpretation, for every ϕ/ψ ∈ U . The second line says that if none
of the preconditions of an assertion ψ holds in the original interpretation, then
ψ holds in the updated interpretation if, and only if, it holds in the original
interpretation. Now set

A
� = Ainit ∪ Ar ∪ Arel ∪ Acond.

In the same way as in the proof of Theorem 8, one can show that A =⇒p
U
A�.

Moreover, by construction, there is a polynomial p such that |A�| ≤ p(|A| · |U|)
and A� can be computed in time p(|A�|). �

We now apply Theorem 10 to the projection problem in reasoning about
action as introduced in a DL context in [12]; see also [26, 27, 14] for related
work. The projection problem means to decide whether a given action achieves
a given goal in a given situation, i.e., whether the goal necessarily holds true
after the execution of the action. It is one of the fundamental problems in
reasoning about action, and many other important reasoning problems can be
reduced to it [7]. In the context of a DL L, the projection problem for L can be
formalized as deciding, given

• an L-ABox A that describes the situation in which the action is executed,

• a conditional L-update U that describes the action, and

• an L-ABox assertion ϕ that represents the goal,
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whether for every model I of A it holds that IU |= ϕ. In [12], algorithms for
the projection problem for various DLs have been given based on the approach
of regression, according to which one rewrites ϕ to a new assertion ϕ� such
that ϕ� is a consequence of the initial ABox if, and only if, ϕ holds after the
conditional update. In effect, one thus reduces the projection problem to a
standard reasoning problem for the initial ABox. The resulting algorithms yield
tight upper complexity bounds for the projection problem for all DLs between
ALC and ALCQIO.

Theorem 11 ([12]). The projection problem is

• PSpace-complete for ALC, ALCO, and ALCQO;

• ExpTime-complete for ALCI and ALCIO;

• co-NExpTime-complete for ALCQI and ALCQIO.

Interestingly, we obtain an alternative proof of the upper bounds stated in
Theorem 11 from our results on projective conditional updates. Let L be one of
the DLs mentioned in the theorem. Given an L-ABox A, a conditional L-update
U , and an L-ABox assertion ϕ, we can simply compute in polynomial time a
projective update A� of A with U that is of size polynomial in the sizes of A
and U and formulated in the extension LO of L with nominals (if not already
present in L), and then decide whether A� |= ϕ. We thus obtain a polynomial
time reduction from projection in L to ABox consequence in LO, a problem
that is

• in PSpace if LO is ALCO or ALCQO [28];

• in ExpTime if LO is ALCIO [29];

• in co-NExpTime if LO is ALCQIO [30].

Thus, the upper bounds of Theorem 11 follow immediately. From the perspec-
tive of reasoning about action, this approach corresponds to projection, i.e.,
instead of ‘regressing’ the goal ϕ back to the original ABox, we ’progress’ the
original ABox towards the goal.

We remark that the setup in [12] is somewhat more general than the one con-
sidered here as it adds acyclic TBoxes, so-called occlusions as part of an action
description that allows some concept/role memberships to change freely dur-
ing the execution of the action, and establishes the algorithms and complexity
bounds for sequences of actions rather than single ones. However, although it is
out of the scope of the current paper to go into any details, we conjecture that
our progression approach can be generalized in a straightforwards way to handle
all of these extensions. In particular, sequences of actions do not increase the
complexity of progression-based projection, c.f. the remark that closes Section 5.

Our proof of the upper bounds in Theorem 11 and the matching lower
bounds provided in [12] also have an interesting consequence from the ABox up-
date perspective taken in this paper. To express projective updates of ABoxes
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in the DLs ALC, ALCQ, ALCI, and ALCQI, thus overcoming the prob-
lems identified in Section 3, we have added nominals to the respective lan-
guages in Section 5. In the cases of ALCI and ALCQI, this actually means
switching to a language in which the standard reasoning problems ‘ABox con-
sistency’ and ‘ABox consequence’ have higher computational complexity: in
ALCI, ABox consequence is PSpace-complete whereas it is ExpTime-complete
in ALCIO; in ALCQI, ABox consequence is ExpTime-complete whereas it is
co-NExpTime-complete in ALCQIO. Now, our proof of Theorem 11 and the
lower bounds stated there entail that such an increase in complexity between
the language for initial ABoxes and the target language for projective updates
is unavoidable (modulo the assumption that the involved complexity classes are
distinct) if one wants projective updates to be of polynomial size and com-
putable in polynomial time: for ALCI, a target language with PSpace com-
plexity would prove that the projection problem for ALCI is in PSpace, thus
showing PSpace = ExpTime; for ALCQI a target language with ExpTime
complexity would prove that the projection problem for ALCQI is in ExpTime,
thus showing ExpTime = co-NExpTime.

7. Extensions and Related Work

We discuss some natural extensions of the framework considered in this pa-
per, in particular with TBoxes and more general forms of update. We also survey
the relevant literature on updates in description logic and, to some reasonable
extent, updates in propositional logic.

7.1. Extensions

As laid out in the introduction, this paper has concentrated on the rather
special case of ABox updates where no domain constraints are present (i.e., no
TBox) and updates can only consist of ground literals. Both restrictions are
severe from the point of view of many applications, and thus it is natural to
try and alleviate them. In both cases, this gives rise to significant new research
challenges, and we only make some basic observations in what follows.

We first consider updates that admit compound ABox assertions, i.e., up-
dates are sets of possibly negated assertions C(a) and r(a, b), where C can be a
compound concept. Due to the presence of disjunction and existential restric-
tions, updates can now be non-deterministic. Even in the propositional case,
there is no one-and-only generally accepted semantics for non-deterministic up-
dates, which has led to many different proposals [8, 4, 31, 32, 33, 34, 35, 7].
For the case of DLs, the benefits and drawbacks of the available semantics
still remain to be investigated. Unfortunately, at least under the rather natu-
ral Winslett PMA semantics [4], which is based on the idea of minimizing the
changes between models of the original ABox and models of the updated ABox,
it is known that it is impossible to compute the result of updating an ALCQI-
ABox and represent it in a formalism for which the consequence problem is
decidable—no matter whether semantic, projective, approximate, or projective

40



approximate updates are considered. This observation is a direct consequence
of the result obtained in [28] that the projection problem for ALCQI (as de-
fined in Section 6) under Winslett PMA semantics is undecidable. It does not
seem unlikely that other model-based update semantics induce similar compu-
tational problems. It remains an interesting open problem, however, whether
undecidability results can be established already for ALC and ALCI.

Next, we consider the addition of TBoxes to the framework studied in this
paper. While doing so, we assume that updates have the original restricted
form, i.e., are sets of ground literals. We start with the simple case of acyclic
TBoxes, where only primitive concept names are allowed in the update, but
no defined ones—see [1] for details on these notions. It has been shown in
[15] how the construction of semantic updates presented in Section 4.1 can
be adapted to this case, and how acyclic TBoxes can help to achieve a more
succinct presentation of updated ABoxes through structure sharing. All results
presented in this paper can be easily extended to acyclic TBoxes under the
described restrictions of updates. When this restriction is dropped, TBoxes
(no matter whether acyclic, cyclic, or general) induce the same semantic and
computational problems as compound concepts in the update. In fact, instead of
putting C(a) into the update with C a compound concept, one can equivalently
define the abbreviation A ≡ C in the TBox and then use the ground literal A(a)
in the update. Thus, we need an advanced semantics such as Winslett PMA
and encounter the same computational problems that were described above for
updates with compound ABox assertions. We refer the interested reader to [36]
for a pragmatic approach to this problem in the context of projection.

7.2. Related work in propositional logic

We discuss the relationship between updates of DL ABoxes as investigated in
this paper and the existing literature on updates and revisions of propositional
logic theories. Since propositional logic is expressively complete, which means
that every class of models can be described by a formula, the problem of non-
expressibility of updates that we address in the context of DLs does not exist
there. For the same reason, in propositional logic there is no difference between
approximate and semantic updates. In contrast, the problem of determining
the size of updated or revised propositional theories is of great interest and has
been extensively investigated. First examples of exponential blowups in the
representation of revised propositional theories were given by Nebel [37] and
Winslett [4]. A systematic discussion of succinctness issues for a large range of
different update and revision operators is provided by Cadoli et al. in [9]. In
fact, [9] seems to be the first paper to make the distinction between semantic
and projective updates and to study the impact that this distinction has on the
size of updates.2 We note, however, that the special case of updates by literals

2
Note that Cadoli et al. use a slightly different terminology; e.g., they call an update opera-

tor query compactable if it has projective updates of polynomial size and logically compactable
if it has semantic updates of polynomial size. Thus, in the terminology of [9], we have shown
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(as studied in this paper) is not considered in [9], where all considered forms of
update may involve any propositional formula.

7.3. Related work in description logic

The update, revision and evolution of description logic knowledge bases has
recently received considerable attention. In our discussion, we focus on the
update literature; summarizing the work on revision and evolution [42, 43] is
outside the scope of this paper, but see [38, 39, 40, 41] and [42, 43], respectively.

Besides of the work presented here that is based on and extends [15], instance
level updates have also been investigated for knowledge bases formulated in vari-
ants of the DL-Lite family of description logics [11, 44]. This family consists
of inexpressive DLs tailored towards capturing conceptual modeling constructs
while keeping reasoning, in particular conjunctive query answering, of very low
complexity [2]. Similarly to what we do in the current paper, Calvanese et al.
[11, 44] investigate the problem of updating a DL-Lite ABox by ground literals.
In addition, DL-Lite TBoxes serve as domain constraints. The work presented
in [11] assumes a model-based Winslett style semantics for updates and gives
a variety of results on the existence and size of semantic and approximate up-
dates for the description logic DL-LiteF . Unfortunately, as observed in [44], the
fundamental algorithm computeUpdate of [11] is unsound and some expressivity
results for Winslett style updates in DL-LiteF claimed in [11] do not hold. To
solve the resulting expressivity problems (as well as examples of non-intuitive
updates resulting from the interaction between the TBox and the updates), two
formula-based approaches to instance level updates under TBoxes in DL-Lite
are proposed in [44]. For these approaches, updates of polynomial size exist. It
would be of interest to investigate in how far such formula-based approach can
be extended to the expressive DLs considered in this paper.

TBox level updates have received much less attention than instance level
updates. A main reason may be that modifications of the TBox are typically
not the result of changes in the application domain, but rather invoked due to
the TBox engineer changing her understanding of the application domain. Thus,
on the TBox level the belief revision problem seems much more relevant than
the update problem, and the former is governed by different principles. Some
pros and cons of model-based and formula-based semantics in this context are
presented in [45].

8. Conclusion

We have studied updates of description logic ABoxes in the restricted, yet
fundamental case where no compound concepts are admitted in the ABox and
no TBoxes are present. Our results show that, while many description logics do

that for DLs between ALCO and ALCQIO
@
, the update operator considered in this paper

is query compactable.
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not have updates, by choosing the right DL (one that includes nominals), it is
possible to guarantee the existence of updates. Moreover, by choosing the right
notion of update (projective semantic), it is even possible to compute updated
ABoxes in polynomial time. We have also described an application of our results
in reasoning about action.

Regarding future work, it would be interesting to study less restricted cases
where the update U is allowed to contain compound concepts and TBoxes are
admitted. Note, though, that this involves some rather serious challenges that
we have identified and discussed in Section 6. It would also be interesting to
consider ABox revision instead of ABox update, for which a number of compet-
ing semantics are available; see [8, 9] and references therein. We believe that
the results and techniques established in this paper would also be useful to deal
with those semantics.
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Appendix A. Proofs for Section 2

Observation 1. E =⇒U E �.

Proof. Recall that

E = {john : ∃has-child.Happy, mary : Happy � Clever}

U = {¬Happy(mary)}

E � = {john : ∃has-child.(Happy � {mary}), mary : ¬Happy � Clever}

First, let I be a model of E . By definition of IU , we have mary
I
U
/∈ Happy

IU and
mary

I
U
∈ Clever

IU and thus the second assertion of E � is satisfied. For the first
assertion, first assume that there is a d ∈ Happy

I with (johnI , d) ∈ has-childI

and d �= mary
I . By definition of IU , we have john

IU ∈ (∃has-child.Happy)IU

and thus the first assertion is satisfied. If there is no such d, then we must have
(johnI ,mary

I) ∈ has-childI = has-childIU . Thus johnIU ∈ (∃has-child.{mary})IU

and the first assertion is satisfied.
Now let J be a model of E �. Let I be the interpretation obtained from

J by setting Happy
I = Happy

J
∪ {mary

J }. By definition, IU = J and I

satisfies the second assertion in E . Moreover, it is obvious that both john
J

∈

(∃has-child.Happy)J and john
J

∈ (∃has-child.{mary})J , one of which must be
the case, imply that I satisfies the first assertion in E . �

Observation 2. E −→U

ALC
E ��.

Proof. By Point 2 of Lemma 2, it is sufficient to show that the ABoxes

E � = {john : ∃has-child.(Happy � {mary}), mary : ¬Happy � Clever}

E �� = {john : ∃has-child.(Happy � Clever), mary : ¬Happy � Clever}

have the same ALC-consequences, i.e., E � |= ϕ iff E �� |= ϕ for all ALC-ABox
assertions E . We have that E � �|= ϕ implies E �� �|= ϕ since every model of E � is
also a model of E ��. For the converse, let E �� �|= ϕ. If ϕ is a (possibly negated)
role assertion, we are done since E � does not entail any such assertion. Hence,
let ϕ = C0(a0) be a concept assertion and take a model I of E �� with aI0 /∈ CI

0 .
Define a new model J with ∆J = ∆I × Ind(A) by interpreting concept names
A, role names r, and individual names a as follows:

AJ = {(d, a) | d ∈ AI and a ∈ Ind(E)}

rJ = {((d, a), (e, a)) | (d, e) ∈ rI and a ∈ Ind(E)}

aJ = (aI , a)

It can be proved by induction on the structure of C that d ∈ CI iff (d, a) ∈ CI

for all d ∈ ∆I , a ∈ Ind(E), and ALC-concepts C. It follows that J |= E ��

and a
J

0 /∈ C
J

0 . If J is a model of E �, we are done. Otherwise, J |= E ��

and J �|= E � jointly imply that there is a d ∈ (¬Happy � Clever)J such that
(johnJ , d) ∈ has-childJ . Distinguish the following two cases:
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1. a0 �= mary.
Then let J � be obtained from J by setting mary

J
�
= d. By construction

and since J |= A��, we have J � |= E �. Moreover, aJ
�

0 /∈ C
J

�

0 since aJ0 /∈ C
J

0 ,

a
J

�

0 = a
J

0 , and C0 does not contain nominals.
2. a0 = mary.

Then let J � be obtained from J by setting has-childJ
�
= has-childJ ∪

{(johnJ ,mary
J )}. We have J � |= E � and it remains to show that mary

J
�
/∈

C
J

�

0 . Let Ω denote the elements reachable in J � from mary, i.e., Ω is the
smallest set such that mary

J
�
∈ Ω and if d ∈ Ω and (d, e) ∈ rI for some

r ∈ NR, then e ∈ Ω. It can be shown by induction on the structure of
C that d ∈ CJ iff d ∈ CJ

�
for all d ∈ Ω and ALC-concepts C; a crucial

element of the proof is the observation that, due to the definition of J
and J �, johnJ

�
/∈ Ω. Obviously, aJ0 /∈ CJ then yields mary

J
�
/∈ C

J
�

0 as
required.

�

Lemma 6.

1. Let L be a DL between ALC and ALCQIO. Then for every Boolean
L@-ABox, there exists an equivalent Boolean L-ABox;

2. Let L be a DL between ALCO and ALCQIO. Then for every Boolean
L-ABox, there exists an equivalent non-Boolean L@-ABox.

Proof. Concerning (i), let A be a Boolean L@-ABox, and let ϕ be an assertion
from A such that @bD is a subconcept of some concept occurring in ϕ. Then
the ABox A� is obtained from A by replacing ϕ with (D(b) ∧ ϕ[�/@bD]) ∨
(¬D(b) ∧ ϕ[⊥/@bD]), where C[X/@bD] denotes the concept obtained from ϕ

by replacing all occurrences of @bD with X. Using the semantics, it is easy to
see that A� is equivalent to A. By iterating this replacement, we will eventually
obtain a Boolean L-ABox.

Concerning (ii), define a mapping ·∗ from ABox assertions in L to L@-
concepts as follows:

C(a)∗ := @aC

r(a, b)∗ := @a∃r.{b}

¬r(a, b)∗ := @a∀r.¬{b}

The mapping is extended to Boolean ABox assertion ϕ as follows: ϕ∗ is the L@-
concept obtained by replacing ∧ with �, ∨ with �, and every assertion ψ with
ψ∗. Now, let A = {ϕ1, . . . , ϕn} be a Boolean L-ABox. Define a non-Boolean
L@-ABox A� := {(ϕ∗

1 � · · · � ϕ∗
n)(a)}, where a is an arbitrary individual name.

Using the semantics, it is easy to see that A� is equivalent to A. �
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