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1 Introduction

In recent years, the use of ontologies to access instance data has become increasingly
popular. The general idea is that an ontology provides a vocabulary or conceptual model
for the application domain, which can then be used as an interface for querying instance
data and to derive additional facts. In this emerging area, called ontology-based data
access (OBDA), it is a central research goal to identify ontology languages for which
query answering scales to large amounts of instance data. Since the size of the data is
typically very large compared to the size of the ontology and the size of the query, the
central measure for such scalability is provided by data complexity—the complexity of
query answering where only the data is considered to be an input, but both the query
and the ontology are fixed.

In description logic (DL), ontologies take the form of a TBox, instance data is stored
in an ABox, and the most important class of queries are conjunctive queries (CQs).
A fundamental observation regarding this setup is that, for expressive DLs such as
ALC and SHIQ, the complexity of query answering is coNP-complete [12] and thus
intractable (when speaking of complexity, we always mean data complexity). The most
popular strategy to avoid this problem is to replace ALC and SHIQ with less expres-
sive DLs that are Horn in the sense that they can be embedded into the Horn fragment
of first-order (FO) logic and have minimal models that can be exploited for PTIME
query answering. Horn DLs in this sense include, for example, logics from the EL and
DL-Lite families as well as Horn-SHIQ, a large fragment of SHIQ for which CQ-
answering is still in PTIME [12]. While CQ-answering in Horn-SHIQ and the EL
family of DLs is also hard for PTIME, the problem has even lower complexity in DL-
Lite. In fact, the design goal of DL-Lite was to achieve FO-rewritability, i.e., that any
CQ q and TBox T can be rewritten into an FO query q′ such that the answers to q
w.r.t. T coincide with the answers that a standard database system produces for q′ [6].
Achieving this goal requires CQ-answering to be in AC0.

It thus seems that the data complexity of query answering in a DL context is well-
understood. However, all results discussed above are on the level of logics, i.e., each
result concerns a class of TBoxes that is defined syntactically through expressibility in a
certain logic, but no attempt is made to identify more structure inside these classes. The
aim of this paper is to advocate a fresh look on the subject, by taking a novel approach.
Specifically, we advocate a non-uniform study of the complexity of query answering



by considering data complexity on the level of individual TBoxes. For a TBox T , we
say that CQ-answering w.r.t. T is in PTIME if for every CQ q, there is a PTIME algo-
rithm that, given an ABoxA, computes the answers to q inA w.r.t. T . In a similar way,
we can define coNP-hardness and FO-rewritability on the TBox level. The non-uniform
perspective allows us to investigate more fine-grained questions regarding the data com-
plexity of query answering such as: given an expressive DL L such as ALC or SHIQ,
how can one characterize those L-TBoxes T for which CQ-answering is in PTIME?
How can we do the same for FO-rewritability? Is there a dichotomy for the complexity
of query answering w.r.t. TBoxes formulated in L, such as: for any L-TBox T , CQ-
answering w.r.t. T is either in PTIME or coNP-hard?

In this paper, we consider TBoxes formulated in the expressive DLALCFI, answer
some of the above questions, and take some steps towards others. Our main results are:

1. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALC-TBoxes if, and only if, Feder and Vardi’s dichotomy conjecture that “con-
straint satisfaction problems (CSPs) with finite template are in PTIME or NP-
complete” [10] is true; the same holds for ALCI-TBoxes;

2. there is no dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCF-TBoxes, unless PTIME = NP; moreover, PTIME-complexity of CQ an-
swering and many related problems are undecidable for ALCF .

3. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCFI-TBoxes of depth one, i.e., TBoxes where concepts have role depth ≤ 1;

4. FO-rewritability is decidable for Horn-ALCFI-TBoxes of depth two and all Horn-
ALCF-TBoxes;

It should be noted that there has been steady progress regarding the dichotomy con-
jecture of Feder and Vardi over the last fifteen years and though the problem is still
open, a solution does not seem completely out of reach [4, 5]. Our proof of Point 1 is
based on a novel connection between CSPs and query answering w.r.t. ALCI-TBoxes
that can be exploited to transfer numerous results from the CSP world to query answer-
ing w.r.t. ALCI-TBoxes and related problems. For example, together with [16, 5] we
obtain the following results on ‘FO-rewritability of ABox consistency’:

5. Given anALCI-TBox T , it can be decided in NEXPTIME whether there is an FO-
sentence ϕT such that for all ABoxesA,A is consistent w.r.t. T iffA viewed as an
FO-structure satisfies ϕT . Moreover, such a sentence ϕT exists iff ABox consis-
tency w.r.t. T can be decided in non-uniform AC0. Finally, if no such sentence ϕT
exists, then ABox consistency w.r.t. T is LOGSPACE-hard (under FO-reductions).

To prove our results, we introduce some new notions that are relevant for studying
the questions raised and prove some additional results of general interest. A central
such notion is materializability of a TBox T , which formalizes the existence of mini-
mal models as known from Horn-DLs. We show that, in the case of TBoxes of depth
one, materializability characterizes PTIME CQ-answering, which allows us to establish
Point 2 above. For TBoxes of unrestricted depth, non-materializability still provides a
sufficient condition for coNP-hardness of CQ-answering. We also develop the notion
of unraveling tolerance of a TBox T , which provides a sufficient condition for query



answering to be in PTIME. The resulting upper bound strictly generalizes the known
result that CQ-answering in Horn-ALCFI is in PTIME. Our framework also allows
to formally establish some common intuitions and beliefs held in the context of CQ-
answering in description logics. For example, we show that for any ALCFI-TBox T ,
CQ-answering is in PTIME iff answering positive existential queries is in PTIME iff
answering ELI-instance queries is in PTIME and likewise for FO-rewritability. An-
other observation in this spirit is that an ALCFI-TBox is materializable (has minimal
models) iff it is convex (a notion related to the entailment of disjunctions).

Most proofs in this paper are deferred to the (appendix of the) long version, which
is available at http://www.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries

We use standard notation for the syntax and semantics of ALCFI and other well-
known DLs. Our TBoxes are finite sets of concept inclusions C v D, where C and D
are potentially compound concepts, and functionality assertions func(r), where r is a
potentially inverse role. ABoxes are finite sets of assertions A(a) and r(a, b) with A a
concept name and r a role name. We use Ind(A) to denote the set of individual names
used in the ABox A and sometimes write r−(a, b) ∈ A instead of r(b, a) ∈ A. For the
interpretation of individual names, we make the unique name assumption.

A first-order query (FOQ) q(x) is a first-order formula with free variables x con-
structed from atoms A(t), r(t, t′), and t = t′ (where t, t′ range over individual names
and variables) using negation, conjunction, disjunction, and existential quantification.
The variables in x are the answer variables of q. A FOQ without answer variables is
Boolean. We say that a tuple a ⊆ Ind(A) is an answer to q(x) in an interpretation I if
I |= q[a], where q[a] results from replacing the answer variables x in q(x) with a. A
tuple a ⊆ Ind(A) is a certain answer to q(x) in A given T , in symbols T ,A |= q(a),
if I |= q[a] for all models I of A and T . Set certT (q,A) = {a | T ,A |= q(a)}.
A positive existential query (PEQ) q(x) is a FOQ without negation and equality and
a conjunctive query (CQ) is a positive existential query without disjunction. If C is
an ELI-concept and a ∈ NI, then C(a) is an ELI-query (ELIQ). EL-queries (ELQs)
are defined analogously. Note that ELI-queries and EL-queries are always Boolean. In
what follows, we sometimes slightly abuse notation and use FOQ to denote the set of
all first-order queries, and likewise for CQ, PEQ, ELIQ, and ELQ.

Definition 1. Let T be an ALCFI-TBox. Let Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then

– Q-answering w.r.t. T is in PTIME if for every q(x) ∈ Q, there is a polytime algo-
rithm that computes, given an ABox A, the answer certT (q,A);

– Q-answering w.r.t. T is coNP-hard if there is a Boolean q ∈ Q such that, given an
ABox A, it is coNP-hard to decide whether T ,A |= q;

– T is FO-rewritable for Q iff for every q(x) ∈ Q one can effectively construct an
FO-formula q′(x) such that for every ABox A, certT (q,A) = {a | IA |= q′(a)},
where IA denotes A viewed as an interpretation.

The above notions of complexity are rather robust under changing the query language:
as we show next, neither the PTIME bounds nor FO-rewritability depend on whether
we consider PEQs, CQs, or ELIQs.



Theorem 1. For all ALCFI-TBoxes T , the following equivalences hold:

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering w.r.t. T is in PTIME iff
ELIQ-answering w.r.t. T is in PTIME;

2. T is FO-rewritable for CQ iff it is FO-rewritable for PEQ iff it is FO-rewritable
for ELIQ.

If T is an ALCF-TBox, then we can replace ELIQ in Points 1 and 2 with ELQ.

The proof is based on Theorems 2 and 3 below. Theorem 1 allows us to (sometimes)
speak of the ‘complexity of query answering’ without reference to a query language.

3 Materializability

An important tool we use for analyzing the complexity of query answering is the notion
of materializability of a TBox T , which means that computing the certain answers to
any query q and ABoxA w.r.t. T reduces to evaluating q in a single model ofA and T .

Definition 2. Let T be an ALCFI-TBox and Q ∈ {CQ,PEQ,ELIQ,ELQ}. T is Q-
materializable if for every ABox A that is consistent w.r.t. T , there exists a model I of
T and A such that I |= q[a] iff T ,A |= q(a) for all q(x) ∈ Q and a ⊆ Ind(A).

We show that PEQ, CQ, and ELIQ-materializability coincide (and forALC-TBoxes, all
these also coincide with ELQ-materializability). Materializability is also equivalent to
the following disjunction property (sometimes also called convexity): a TBox T has the
ABox disjunction property if for all ABoxes A and ELIQs C1(a1), . . . , Cn(an), from
T ,A |= C1(a1) ∨ . . . ∨ Cn(an) it follows that T ,A |= Ci(ai), for some i ≤ n.

Theorem 2. Let T be an ALCFI-TBox. The following equivalences hold: T is PEQ-
materializable iff T is CQ-materializable iff T is ELIQ-materializable iff T has the
ABox disjunction property.

If T is an ALC-TBox, the above are equivalent to ELQ-materializability.

Because of Theorem 2, we sometimes use the term materializability without reference
to a query language. We call an interpretation I that satisfies the condition formulated
in Definition 2 for PEQs a minimal model of T andA. Note that in many cases, only an
infinite minimal models exists. For example, for T = {A v ∃r.A} and A = {A(a)}
every minimal model I of T and A comprises an infinite r-chain starting at aI . Every
TBox that is equivalent to an FO Horn sentence (in the general sense of [7]) is mate-
rializable: to construct a minimal model for such a TBox T and some ABox A, one
can take the direct product of all at most countable models of T and A (for additional
information on direct products in DLs, see [17]). Conversely, however, there are simple
materializable TBoxes that are not equivalent to FO Horn sentences.

Example 1. Let T = {∃r.(A u ¬B u ¬E) v ∃r.(¬A u ¬B u ¬E)}. One can easily
show that T is not preserved under direct products; thus, it is not equivalent to a Horn
sentence. However, one can construct a minimal model I for T and any ABox A by
taking the interpretation IA obtained by viewingA as an interpretation and then adding,



for any a ∈ Ind(A) with a ∈ (∃r.(Au¬B u¬E))IA , a fresh da such that (a, da) ∈ rI
and da is not in the extension of any concept name. PEQ-answering w.r.t. T is FO-
rewritable since for any PEQ q, certT (q,A) consists of precisely the answers to q in IA
(i.e., no query rewriting is necessary). Thus, PEQ-answering w.r.t. T is also in PTIME.

We show that materializability is a necessary condition for query answering being in
PTIME.

Theorem 3. If anALCFI-TBox T (ALCF-TBox T ) is not materializable, then ELIQ-
answering (ELQ-answering) is coNP-hard w.r.t. T .

The proof uses the violation of the ABox disjunction property stated in Theorem 2 and
generalizes the reduction of 2+2-SAT used in [19] to prove that instance checking in a
variant of EL is coNP-hard.

Materializability is not a sufficient condition for query answering to be in PTIME. In
fact, we show that for any non-uniform constraint satisfaction problem, there is a mate-
rializableALC-TBox for which Boolean CQ-answering has the same complexity, up to
complementation of the complexity class. For two finite relational FO-structuresR and
R′ over relation symbols Σ, we write Hom(R′,R) if there is a homomorphism from
R′ to R. The non-uniform constraint satisfaction problem for R, denoted by CSP(R),
is the problem to decide, for every finite R′ over Σ, whether Hom(R′,R). Numer-
ous algorithmic problems, among them many NP-complete ones such as k-SAT and
k-colourability of graphs, can be given in the form CSP(R). It is known that every
problem of the form CSP(R) is polynomially equivalent to some CSP(R′) with R′ a
digraph [10]. Thus, in what follows we can restrict ourselves to considering CSPs of
the form CSP(I), where I is a DL interpretation. A signature Σ is a set of concept and
role names. The signature sig(T ) of a TBox T is the set of concept and role names that
occur in T . A Σ-TBox is a TBox that uses symbols from Σ only. Similar notation is
used for ABoxes, concepts, and interpretations. For an ABox A, we denote by AΣ the
subset of A containing symbols from Σ only. We will often not distinguish between
ABoxes and finite interpretations.

Theorem 4. For every non-uniform constraint satisfaction problem CSP(I), one can
compute in polytime a materializable ALC-TBox T such that for all ABoxes A,

1. Hom(AΣ , I), with Σ = sig(I), iff A is consistent w.r.t. T ;
2. for any Boolean CQ q, answering q w.r.t. T is polynomially reducible to the com-

plement of CSP(I).

The proof Theorem 4 relies on the existence of ALC-concepts H whose value HI in
interpretations I cannot be detected directly using CQs, but which can be used in a
TBox to influence the values AI of concept names A and, therefore, have an indirect
effect on the answers to CQs. From the viewpoint of CQ query answering, they thus
behave similarly to second-order variables. More precisely, let, for a finite set V of
indices, Zv, rv, sv be concept and role names, respectively. Let

TV = {> v ∃rv.>,> v ∃sv.Zv | v ∈ V }, Hv = ∀rv.∃sv.¬Zv.

Lemma 1. For any ABoxA and sets Iv ⊆ Ind(A), v ∈ V , one can construct a minimal
model I of (TV ,A) such that HIv = Iv for all v ∈ V . TV is FO-rewritable for PEQ.



To prove Theorem 4, one extends the TBox TV . Assume CSP(I) is given. Let V = ∆I

and assume, for simplicity, that sig(I) = {r}. Define

T = TV ∪ {Hv u ∃r.Hw v ⊥ | v, w ∈ V, (v, w) 6∈ rI} ∪
{Hv uHw v ⊥ | v, w ∈ V, v 6= w} ∪ {

l

v∈V
¬Hv v ⊥}

Based on Lemma 1, it is possible to verify Points 1 and 2 of Theorem 4. For Point 2, it
can be seen that for all Boolean CQs q and ABoxes A, (T ,A) |= q iff (TV ,A) |= q or
not Hom(AΣ , I); since TV is FO-rewritable, the former can be checked in PTIME.

4 (Towards) Dichotomies

We start with a reduction of Boolean CQ-answering w.r.t. ALCI-TBoxes to CSPs that
yields, together with Theorem 4, a proof of Point 1 in the introduction: the dichotomy
problem for CSPs is equivalent to the dichotomy problem for CQ answering w.r.t.ALC-
(and ALCI-) TBoxes.

Theorem 5. Let T be an ALCI-TBox and C(a) an ELIQ. Then one can construct, in
time exponential in |T |+ |C|,

1. a Σ-interpretation I, Σ = (sig(T )∪ sig(C))] {P}, with P a concept name, such
that for all ABoxes A,
(a) there is a polynomial reduction of answering C(a) w.r.t. T to the complement

of CSP(I);
(b) there is a polynomial reduction from the complement of CSP(I) to Boolean

CQ-answering w.r.t. T ;
2. a Σ-interpretation I, Σ = sig(T ), such that for every ABox A, A is consistent

w.r.t. T iff Hom(AΣ , I).

For Point 1, I is in fact the interpretation that is obtained by the standard type elimi-
nation procedure for ALCI-TBoxes T and concepts C. More specifically, let S be the
closure under single negation of all subconcepts of T and C. A type t is a maximal
subset of S that is satisfiable w.r.t. T . Then ∆I is the set of all types, t ∈ AI iff A ∈ t,
and (t, t′) ∈ rI iff ∀r.D ∈ t implies D ∈ t′ and ∀r−.D ∈ t′ implies D ∈ t. For the
special concept name P , set P I = {t | C /∈ t}. With the type elimination algorithm, I
can be constructed in exponential time. The mentioned reductions are then as follows:

(a) (T ,A) |= C(a) iff not Hom(AΣP (a), I), where AP (a) results from A by adding
P (a) to A and removing all other assertions using P from A;

(b) not Hom(AΣ , I) iff (T ,A) |= ∃v.(P (v) ∧ C(v)).

Result 1 from the introduction can be derived as follows. Let CSP(I) be an NP-inter-
mediate CSP, i.e., a CSP that is neither in PTIME nor NP-hard. Take the TBox T
from Theorem 4. By Point 1 of that theorem and since consistency of ABoxes w.r.t. T
can trivially be reduced to the complement of answering Boolean CQs w.r.t. T , CQ-
answering w.r.t. T is not in PTIME. By Point 2, CQ-answering w.r.t. T is not coNP-
hard either. Conversely, let T be a TBox for which CQ-answering w.r.t. T is neither in



PTIME nor coNP-hard. Then by Theorem 1 and since every ELIQ is a CQ, the same
holds for ELIQ-answering w.r.t. T . Thus, there is a concrete ELIQ C(a) such that an-
swering C(a) w.r.t. T is coNP-intermediate. Let I be the interpretation constructed
in Point 1 of Theorem 5 for T and C(a). By Point 1a, CSP(I) is not in PTIME; by
Point 1b, it is not NP-hard either.

Result 5 from the introduction can be derived as follows. It is proved in [16, 5] that
the problem to decide whether the class of structures {I ′ | Hom(I ′, I)} is FO-definable
is NP-complete. We obtain a NEXPTIME upper bound since the template I associated
with T can be constructed in exponential time. The claims for AC0 and LOGSPACE
follow in the same way from other results in [16, 5].

We now develop a condition on TBoxes, called unraveling tolerance, that is suf-
ficient for PTIME CQ-answering and strictly generalizes Horn-ALCFI, the ALCFI-
fragment of Horn-SHIQ. For the case of TBoxes of depth one, we obtain a PTIME/coNP
dichotomy result. The notion of unraveling tolerance is based on an unraveling oper-
ation on ABoxes, in the same spirit as the well-known unraveling of an interpretation
into a tree interpretation. This is inspired by (i) the observation that, in the proof of
Theorem 3, the non-tree-shape of ABoxes is essential; and (ii) by Theorem 5 together
with the known fact the non-uniform CSPs are tractable when restricted to tree-shaped
input structures. The unraveling Au of an ABox A is the following ABox:

– the individual names Ind(Au) ofAu are sequences b0r0b1 · · · rn−1bn, b0, . . . , bn ∈
Ind(A) and r0, . . . , rn−1 (possibly inverse) roles such that for all i < n, we have
ri(bi, bi+1) ∈ A and bi+1 6= bi−1 (whenever i > 0);

– for each C(b) ∈ A and α = b0r0b1 · · · rn−1bn ∈ Ind(Au) with bn = b, we have
C(α) ∈ Au;

– for each b0r0b1 · · · rn−1bn ∈ Ind(Au), we have rn−1(bn−1, bn) ∈ Au.

For all β = b0r0 · · · rn−1bn ∈ Ind(Au), we write tail(β) to denote bn. Note that the
condition bi+1 6= bi−1 is needed to ensure that functional roles can still be interpreted
in a functional way after unraveling, despite the UNA.

Definition 3. A TBox T is unraveling tolerant if for all ABoxes A and ELIQs q, we
have that T ,A |= q implies T ,Au |= q.

It is not hard to prove that the converse direction ‘T ,Au |= q implies T ,A |= q’
is true for all ALCFI-TBoxes. We now show that the class of unraveling tolerant
ALCFI-TBoxes generalizes Horn-ALCFI. This is based on the original and most
general definition of Horn-SHIQ in [12] and thus also captures weaker variants as
used e.g. in [13, 9]. The TBox in Example 1, which is unraveling tolerant but not a
Horn-ALCFI-TBox, demonstrates that the generalization is strict.

Lemma 2. Every Horn-ALCFI-TBox is unraveling tolerant.

It is interesting to note that unraveling tolerance implies materializability. We shall see
that the converse is, in general, not true.

Lemma 3. Every unraveling-tolerant ALCFI-TBox is materializable.



We now show that unraveling tolerance yields a class of ALCFI-TBoxes for which
query answering is in PTIME. By Lemma 2 and since we actually exhibit a uniform
algorithm for query answering w.r.t. unraveling tolerant TBoxes, this also reproves the
known PTIME upper bound for CQ-answering in Horn-ALCFI [9]. This result is not
a consquence of Theorem 4 and known results for CSPs since we capture fullALCFI.

Theorem 6. If an ALCFI-TBox T is unraveling tolerant, then PEQ-answering w.r.t.
T is in PTIME.

To see that unraveling tolerance does not capture all ALCFI-TBoxes for which query
answering is in PTIME, we can invoke Theorem 4. For example, taking a CSP for
2-colorability, we obtain a TBox T for which CQ-answering is in PTIME and such
that an ABox A with sig(A) = {r} is consistent w.r.t. T iff A is 2-colorable. Thus,
A, T |= X(a),X a fresh concept name, iffA is not 2-colorable. It follows that T is not
unraveling tolerant. We conjecture that it is possible to generalize Theorem 6 to larger
classes of TBoxes by relaxing the operation of ABox unraveling such that it yields
ABoxes of bounded treewidth instead of tree-shaped ABoxes. Such a generalization
would still not capture 2-colorability.

We now turn to TBoxes of depth one. The central observation is that for this special
case, we can prove a converse of Lemma 3.

Lemma 4. Every materializable ALCFI-TBox of depth one is unraveling tolerant.

This brings us into the position where we can establish the announced dichotomy result
for ALCFI-TBoxes of depth one. If such a TBox T is materializable, then Lemma 4
and Theorem 6 yield that PEQ-answering w.r.t. T is in PTIME. Otherwise, ELIQ-
answering w.r.t. T is coNP-complete by Theorem 3. We thus obtain the following.

Theorem 7 (Dichotomy). For every ALCFI-TBox T of depth one, one of the follow-
ing is true:

– Q-answering w.r.t. T is in PTIME for any Q ∈ {PEQ,CQ,ELIQ};
– Q-answering w.r.t. T is coNP-complete for any Q ∈ {PEQ,CQ,ELIQ}.

5 Deciding FO-Rewritability

The results of this section are based on the observation that for materializable TBoxes of
depth one, FO-rewritability for CQ follows from FO-rewritability for atomic concepts,
i.e., concept names and ⊥. We say that an atomic concept A is FO-rewritable w.r.t. a
TBox T and a signatureΣ if there exists an FO-formula ϕA such that for allΣ-ABoxes
A and a ∈ Ind(A): T ,A |= A(a) iff IA |= ϕA[a]. Clearly, if T is FO-rewritable
for CQ, then every atomic concept is FO-rewritable w.r.t. T and any signature. For
materializable TBoxes of depth one, the converse is also true.

Lemma 5. A materializable ALCFI-TBox of depth one is FO-rewritable for CQs iff
all atomic concepts are FO-rewritable w.r.t. T and sig(T ).
Based on Lemma 5, we can use Theorem 5 and results from [16] to obtain the following
result, in a similar (but slightly more involved) way as in the proof of Result 5 from the
introduction.



Theorem 8. FO-rewritability for CQs is decidable in NEXPTIME, for any of the fol-
lowing classes of TBoxes: materializable ALCI-TBoxes of depth one, Horn-ALC-
TBoxes, and Horn-ALCI-TBoxes of depth two.

Theorem 5 does not apply to DLs with functional roles. To analyze FO-rewritability
in the presence of functional roles, we associate with every materializable TBox T of
depth one a monadic datalog program ΠT such that T and ΠT give the same answers
to queries A(a), A atomic. We then show that T is FO-rewritable if, and only if, ΠT is
equivalent to a non-recursive datalog program. The latter property is known as bound-
edness of a datalog program and has been studied extensively for fixpoint logics [3, 18]
and datalog programs [8]. Using existing decidability results for boundedness, we can
then establish a counterpart of Theorem 8 for the case of ALCFI.

For our purposes, a monadic datalog program Π consists of rules A(x) ← X ,
where A is a concept name and X is a finite set consisting of assertions of the form
B(x), r(x1, x2), and inequalities x1 6= x2, where B is a concept name, r a role, and
x, x1, x2 range over variables. Inequalities are required to model functional roles. We
also use a special unary predicate⊥ and rules⊥(x)← X stating thatX is inconsistent.
For an ABox A, we denote by Πi(A) the set of all assertions A(a) that can be derived
using i applications of rules from Π to A. We set Π∞(A) =

⋃
i≥0Π

i(A).

Definition 4 (Boundedness). Let Π be a datalog program and Σ a signature. An
atomic concept A is bounded in Π for Σ-ABoxes if there exists a k > 0 such that
for all Σ-ABoxes A and all a ∈ sig(A): A(a) ∈ Π∞(A) iff A(a) ∈ Πk(A).

Let T be a materializable TBox of depth one. A Σ-neighbourhood ABox (Σ-NH) con-
sists of a Σ-ABox A with a distinguished individual name f such that A consists of
assertions of the form r(f, a) with r a role and a 6= f and A(b) such that

– for each b 6= f with b ∈ Ind(A) there is exactly one r such that r(f, b) ∈ A;
– if r(f, b1) and r(f, b2) ∈ A and b1 6= b2, then there existsA(b1) ∈ AwithA(b2) 6∈
A or vice versa.

The ABox A in which each individual b is replaced by a variable xb is denoted by Ax.
Now define a monadic datalog program associated with T , where Σ = sig(T ):

ΠT = {A(xa)← Ax | A is a Σ-NH, a ∈ Ind(A), A ∈ Σ, (T ,A) |= A(a)} ∪
{⊥(x)← Ax | A is a Σ-NH that is not consistent w.r.t. T } ∪
{⊥(x)← r(y, y1), r(y, y2), y1 6= y2 | func(r) ∈ T } ∪
{A(x)← ⊥(x) | A ∈ Σ}.

The following lemma states that ΠT behaves as intended.

Lemma 6. For every materializableALCFI-TBox T of depth one, every A ∈ sig(T ),
every ABox A, and every a ∈ Ind(A), (T ,A) |= A(a) iff A(a) ∈ Π∞T (A). Moreover,
⊥(a) ∈ Π∞T (A) iff A is not consistent w.r.t. T .

Using unfolding tolerance of materializable TBoxes of depth one, one can show the
following equivalence for FO-rewritability and boundedness.



Lemma 7. For every materializable ALCFI-TBox T of depth one and signature Σ:
an atomic concept A is bounded in ΠT for Σ-ABoxes iff A is FO-rewritable w.r.t. T
and Σ.

Unfortunately, decidability results for boundedness of monadic datalog programs are
not directly applicable to ΠT since they assume programs without inequalities [8, 11].
However, using unfolding tolerance, one can employ instead recent decidability results
on boundedness of least fixed points over trees [18] to obtain the following theorem.

Theorem 9. FO-rewritability for CQs is decidable, for any of the following classes
of TBoxes: materializable ALCFI-TBoxes of depth one, Horn-ALCF-TBoxes, and
Horn-ALCFI-TBoxes of depth two.

6 Non-Dichotomy and Undecidability in ALCF

The aim of this section is to show that the addition of functional roles significantly com-
plicates the problems studied in the previous sections. More precisely, we show that
(i) for CQ-answering w.r.t.ALCF-TBoxes, there is no dichotomy between PTIME and
coNP unless PTIME = NP; and (ii) CQ-answering in PTIME is undecidable forALCF-
TBoxes, and likewise for coNP-hardness, materializability and FO-rewritability. Point (i)
is a consequence of the following result.

Theorem 10. For every language L in coNP, there is an ALCF-TBox T and query
rej(a), rej a concept name, such that the following holds:

1. there exists a polynomial reduction of deciding v ∈ L to answering rej(a) w.r.t. T ;
2. for every ELIQ q, answering q w.r.t. T is polynomially reducible to deciding v ∈ L.

Ladners theorem [15] states that unless PTIME = NP, coNP intermediate problems
exist. Suppose to the contrary of Point (i) that for everyALCF-TBox T , CQ answering
w.r.t. T is in PTIME or coNP-hard. Take a coNP-intermediate language L and let T
be the TBox from Theorem 10. By Point 1 of the theorem, CQ-answering w.r.t. T is
not in PTIME. Thus it must be coNP-hard. By Theorem 1 and since a dichotomy for
CQ-answering w.r.t. T also implies a dichotomy for ELIQ-answering w.r.t. T , ELIQ-
answering w.r.t. T is also coNP-hard. By Point 2 of Theorem 10, this is impossible.

The proof of Theorem 10 combines the ‘hidden’ concepts Hv from the proof of
Theorem 4 with ideas from a proof in [1] which establishes undecidability of a certain
query emptiness problem in ALCF . Using a similar strategy, we establish the undecid-
ability results announced as Point (ii) above, summarized by the following theorem.

Theorem 11. ForALCF-TBoxes T , the following problems are undecidable (Points 1
and 2 are subject to the side condition that PTIME 6= NP):

1. CQ-answering w.r.t. T is in PTIME;
2. CQ answering w.r.t. T is coNP-hard;
3. T is materializable.

In the appendix, we also prove that FO-rewritability for CQ is undecidable in ALCF ,
for a slightly modified definition of FO-rewritability that only considers consistent
ABoxes.



7 Conclusions

We have have introduced non-uniform data complexity of query answering w.r.t. de-
scription logic TBoxes and proved that it enables a more fine-grained analysis than the
standard approach. Many questions remain. In particular, the newly established CSP-
connection should be exploited further. We believe that the techniques introduced in
this paper can be extended to richer DLs such as SHIQ.
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A Proofs for Section 3

A.1 Proof of Theorem 2

We state the result to be proved again.

Theorem 2 Let T be a ALCFI TBox. The following conditions are equivalent:

1. T is PEQ materializable;
2. T is CQ materializable;
3. T is ELIQ materializable;
4. T has the ABox disjunction property.

To prove Theorem 2, we require the notions of a homomorphism and of finite ho-
momorphic embeddability. Let I1 and I2 be interpretations. A function f from ∆I1 to
∆I2 is called a homomorphism if

– d ∈ AI1 implies f(d) ∈ AI2 , for all d ∈ ∆I1 and all concept names A;
– (d1, d2) ∈ rI1 implies (f(d1, f(d2)) ∈ rI2 , for all d1, d2 ∈ ∆I1 and all role names
r;

– f(aI1) = aI2 for all individual names a interpreted in I1.

Say that an interpretation I1 is finitely homomorphically embeddable into I2 if for
every finite subset of the domain of I1 there exists a homomorphism from the induced
subinterpretation of I1 to I2. The following lemma is readily checked:

Lemma 8. The following conditions are equivalent, for all interpretations I1 and I2::

– I1 |= q[a] implies I2 |= q[a], for all CQs q(x) and sequences a of individual
names interpreted in I1;

– I1 is finitely homomorphically embeddable into I2;
– I1 |= q[a] implies I2 |= q[a] for all PEQs q(x) and sequences a of individual

names interpreted in I1.

Using Lemma 8, one can directly prove the following:

Lemma 9. For every ALCFI-TBox T , the following conditions are equivalent:

– T is CQ materializable;
– T is PEQ materializable;
– for every ABoxA such thatA is consistent w.r.t. T there exists a model I of (T ,A)

that is finitely homomorphically embeddable into any model J of (T ,A).

From Lemma 9, we obtain the equivalence of Points 1 and 2 in Theorem 2. We now
give a similar semantic characterization for ELIQs.

Definition 5 (Simulation). A relation S between interpretations I1 and I2 is a ELI-
simulation if the domain of S coincides with ∆I1 and

– If d1 ∈ AI1 and (d1, d2) ∈ S, then d2 ∈ AI2 , for all d1 ∈ ∆I1 ;



– If (d1, d2) ∈ S and (d1, d
′
1) ∈ rI1 for some role r, then there exists d′2 ∈ ∆I2 such

that (d′1, d
′
2) ∈ S and (d2, d

′
2) ∈ rI2 .

– (aI1 , aI2) ∈ S, for all individual names a interpreted in I1;

I1 is finitely simulated in I2 iff for every finite subset of the domain of I1 there exists
a simulation from the induced subinterpretation of I1 to I2. Let X be a set of individ-
ual names. An interpretation I is weakly covered by X if for all d ∈ ∆I there exist
d0, . . . , dn ∈ ∆I with aI = d0 and dn = d for some individual name a ∈ X such that
for all i < n there exists a role r with (di, di+1) ∈ rI .

Lemma 10. Let I1, I2 be interpretations and X a set of individual names. Assume
that I1 interprets exactly the individual names in X and is weakly covered by X . Then
following conditions are equivalent:

– I1 |= C(a) implies I2 |= C(a) for all ELIQs C(a) with a ∈ X;
– I1 is finitely simulated in I2.

From Lemma 10, we directly obtain the following

Lemma 11. For every ALCFI-TBox T , the following conditions are equivalent:

– T is ELIQ materializable;
– for every ABoxA such thatA is consistent w.r.t. T there exists a model I of (T ,A)

that is finitely simulated in any model J of (T ,A).

To show the equivalence of Points 1 and 3 of Theorem 2, it remains to relate simulations
to homomorphisms. The following result is based on the observation that on tree-like
interpretations simulations can be transformed into homomorphisms.

Lemma 12. For every ALCFI-TBox T , the following conditions are equivalent:

– for every ABoxA such thatA is consistent w.r.t. T there exists a model I of (T ,A)
that is finitely simulated in any model J of (T ,A).

– for every ABoxA such thatA is consistent w.r.t. T there exists a model I of (T ,A)
that is finitely homomorphically embeddable in any model J of (T ,A).

Proof. The proof of the direction from Point 2 to Point 1 is trivial. Conversely, assume
that A0 is an ABox and I is a model of (T ,A0) that is finitely simulated in any model
J of (T ,A0).

We unfold I into a forest-like interpretation I∗ as follows. (Observe that the con-
struction of I∗ from I is very similar to the construction of the unraveling Au of an
ABox A. The main difference is that we do not modify the part of I that interprets the
individual symbols of the ABox A0. We therefore obtain a forest-like structure, rather
than a tree-like structure.) The domain ∆I

∗
consists of all sequences

d0r1d1 . . . rndn

with n ≥ 0 and ri a role such that

– there exists a ∈ Ind(A) such that d0 = aI ;
– (di, di+1) ∈ rIi+1 for all i < n;



– if func(r1) ∈ T , then there does not exist any b with r1(a, b) ∈ A;
– if func(ri+1) ∈ T , then r−i 6= ri+1.

We set

– for all A ∈ NC:
AI
∗
= {d0 . . . dn ∈ ∆I

∗
| dn ∈ AI};

– for all r ∈ NR:

rI
∗
= {(σ, σrd) | σrd ∈ ∆I

∗
∪ {(σr−d, σ) | σr−d ∈ ∆I

∗
}.

– aI
∗
= aI , for all a ∈ Ind(A).

One can show that, by construction, I∗ is a model of (T ,A) and I∗ is simulated in I
by the simulation

S = {(σrd, d) | σrd ∈ ∆I
∗
}.

Thus, I∗ is finitely simulated in any model of (T ,A). Now let J be a model of (T ,A).
We want to finitely homomorphically embed I∗ into J . But, for any finite subset of the
domain of I∗ such an embedding is easily constructed from a simulation in J . o

Lemmas 9, 11, and 12 imply the equivalence of Points 1, 2, and 3 in Theorem 2. It
remains to show the equivalence of Point 3 and Point 4. Clearly, Point 4 follows from
Point 3. Conversely, assume that Point 3 does not hold. Let A be an ABox that is
consistent w.r.t. T and such that there does not exist any model I of (T ,A) such that
(T ,A) |= C(a) iff I |= C[a], for all ELIQ C(a) with a ∈ Ind(A). Then T ∪ A ∪ Γ ,
where

Γ = {¬C(a) | T ,A 6|= C(a), a ∈ Ind(A), C(a) an ELIQ},

is not satisfiable (any model I satisfying T ∪ A ∪ Γ would have the property that
(T ,A) |= C(a) iff I |= C[a], for all ELIQ C(a) with a ∈ Ind(A)). By compactness,
there is a finite subset Γ ′ of Γ such that T ∪ A ∪ Γ ′ is not satisfiable. Equivalently,

(T ,A) |=
∨

¬C(a)∈Γ ′
C(a).

By definition of Γ ′, (T ,A) 6|= C(a), for all ¬C(a) ∈ Γ ′. Thus, T does not have the
ABox disjunction property. This finishes the proof of Theorem 2.

A.2 Proof of Theorem 3

The proof is by reduction of 2+2-SAT, a variant of propositional satisfiability that
was first introduced by Schaerf as a tool for establishing lower bounds for the data
complexity of query answering in a DL context [19]. A 2+2 clause is of the form
(p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is a propositional letter or a truth
constant 0, 1. A 2+2 formula is a finite conjunction of 2+2 clauses. Now, 2+2-SAT is
the problem of deciding whether a given 2+2 formula is satisfiable. It is shown in [19]
that 2+2-SAT is NP-complete.



Theorem 3. If anALCFI-TBox T (ALCF-TBox T ) is not materializable, then ELIQ-
answering (ELQ-answering) is coNP-hard w.r.t. T .

Proof. We first show that if an ALCFI-T is not materializable, then Boolean UELIQ-
answering w.r.t. T is coNP-hard, where a Boolean UELIQ is a disjunction q1∨· · ·∨qk,
with each qi a Boolean ELIQ. We then sketch the modifications necessary to lift the
result to Boolean ELIQ-answering w.r.t. T .

Since T is not materializable, by Theorem 2 it does not have the disjunction prop-
erty. Thus, there is an ABox A∨ and ELIQs C0(a0), . . . , Ck(ak) such that T ,A∨ |=
C0(a0)∨ · · · ∨Ck(ak), but T ,A∨ 6|= Ci(ai) for all i ≤ k. Assume w.l.o.g. that this se-
quence is minimal, i.e., T ,A∨ 6|= C0(a0)∨· · ·∨Ci−1(ai−1)∨Ci+1(ai+1)∨· · ·∨Ck(ak)
for all i ≤ k. By minimality, we clearly have that

(∗) for all i ≤ k, there is a model Ii of T and A∨ with I |= Ci(ai) and I 6|= Cj(aj)
for all j 6= i.

We will useA∨ and the sequence C0(a0), . . . , Ck(ak) to generate truth values for vari-
ables in the input 2+2 formula.

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional letters q0, . . . , qm, and let
ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i ≤ n. Our aim is to define an ABox Aϕ and a
Boolean UELIQ q such that ϕ is unsatisfiable iff T ,Aϕ |= q. To start, we represent the
formula ϕ in the ABox Aϕ as follows:

– the individual name f represents the formula ϕ;
– the individual names c0, . . . , cn represent the clauses of ϕ;
– the assertions c(f, c0), . . . , c(f, cn), associate f with its clauses, where c is a role

name that does not occur in T ;
– the individual names q0, . . . , qm represent variables, and the individual names 0, 1

represent truth constants;
– the assertions ⋃

i≤n

{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

associate each clause with the four variables/truth constants that occur in it, where
p1, p2, n1, n2 are role names that do not occur in T .

We further extend Aϕ to enforce a truth value for each of the variables qi. To this end,
add to Aϕ copies A0, . . . ,Am of A∨ obtained by renaming individual names such that
Ind(Ai)∩ Ind(Aj) = ∅ whenever i 6= j. As a notational convention, let aij be the name
used for the individual name aj ∈ Ind(A∨) in Ai for all i ≤ m and j ≤ k (note that aj
comes from the ELIQ Cj(aj) in the sequence fixed above). Intuitively, the copy Ai of
A is used to generate a truth value for the variable qi, where we want to interpret qi as
true if the ELIQ C0(a

i
0) is satisfied and as false if any of the ELIQs Cj(aij), 0 < j ≤ k,

is satisfied. To actually relate each individual name qi to the associated ABox Ai, we
use role names r0, . . . , rk that do not occur in T . More specifically, we extend Aϕ as
follows:



– link variables qi to the ABoxesAi by adding assertions rj(qi, aij) for all i ≤ m and
j ≤ k; thus, truth of qi means that ∃r0.C0(qi) is satisfied and falsity means that
∃rj .Cj(qi) is satisfied for some j with 0 < j ≤ k;

– to ensure that 0 and 1 have the expected truth values, add a copy of C0 viewed as an
ABox with root 1′ and a copy of C2 viewed as an ABox with root 0′; add r0(1, 1′)
and r1(0, 0′).

Consider the query

q0 = ∃c.(∃p1.ff u ∃p2.ff u ∃n1.tt u ∃n2.tt)

which describes the existence of a clause with only false literals and thus captures falsity
of ϕ, where tt is an abbreviation for ∃r0.C0 and ff an abbreviation for the ELU-concept
∃r1.C1t· · ·t∃rk.Ck. It is straightforward to show that ϕ is unsatisfiable iffA, T |= q0.
To obtain the desired UELIQ q, it remains to take q and distribute disjunction to the
outside.

We now show how to improve the result from UELIQ-answering to ELIQ-answering.
Our aim is to change the encoding of falsity of a variable qi from satisfaction of ∃r1.C1t
· · · t ∃rk.Ck(qi) to satisfaction of ∃h.(∃r1.C1 u · · · u ∃rk.Ck)(qi), where h is an ad-
ditional role that does not occur in T . We can then replace the concept ff in the query
q0 with ∃h.(∃r1.C1 u · · · u ∃rk.Ck)(qi), which directly gives us the desired ELIQ q.

It remains to modify Aϕ to support the new encoding of falsity. The basic idea is
that each qi has k successors bi1, . . . , b

i
k reachable via h such that for 1 ≤ j ≤ k,

– ∃r`.C`(bij) is satisfied for all ` = 1, . . . , j − 1, j + 1, . . . , k and
– the assertion rj(bij , a

i
j) is in Aϕ.

Thus, (∃r1.C1 u · · · u ∃rk.Ck)(bij) is satisfied iff Cj(aij) is satisfied, for all j with
1 ≤ j ≤ k. In detail, the modification of Aϕ is as follows:

– for 1 ≤ j ≤ k, add to Aϕ a copy of Cj viewed as an ABox, where the root
individual name is dj ;

– for all i ≤ m, replace the assertions rj(qi, aij), 1 ≤ j ≤ k, with the following:
• h(qi, bi1), . . . , h(qi, bik) for all i ≤ m;
• rj(bij , aij), r1(bij , d1), . . . , rj−1(bij , dj−1), rj+1(b

i
j , dj+1), . . . , rk(b

i
j , dk) for all

i ≤ m and 1 ≤ j ≤ k.

This finishes the modified construction. Again, it is not hard to prove correctness.

It remains to note that, when T is an ALCF-TBox, then the above construction of
q yields an ELQ instead of an ELIQ. o

A.3 Proof of Lemma 1

We show Lemma 1 for singleton sets V . The extension to arbitrary finite V is straight-
forward. Thus, let Z be a concept name and z0, z1 role names. Let

TZ = {> v ∃z0.>,> v ∃z1.Z}, H = ∀z0.∃z1.¬Z.



Lemma 13. For any ABox A and set I ⊆ Ind(A), one can construct a model I of
(TZ ,A) such that

– HI = I;
– for all models J of (TZ ,A) there exists a homomorphism from I to J .

Thus, any such interpretation I is a minimal model of (TZ ,A).

Proof. Assume A and I ⊆ Ind(A) are given. Denote by Ib the interpretation based
on a binary tree in which every node has one z0-son and one z1-son, and every node
reachable with z1 satisfies Z. More precisely, the domain ∆Ib of Ib is the set of words
over {0, 1}, (σ, σ0) ∈ zIb0 for all σ ∈ ∆Ib , (σ, σ1) ∈ zIb1 for all σ ∈ ∆Ib , and
ZIb = {σ1 | σ ∈ ∆Ib}. Now, hook mutually disjoint copies of Ib to each a ∈ Ind(A)
(i.e., we identify the root of the copy of Ib with aI). The resulting interpretation, call it
I0, satisfies TZ and HJ0 = ∅. To satisfy the condition HI = I , we add for all a ∈ I
and d with (aI0 , d) ∈ zI00 a new d′ to I0 with (d, d′) ∈ zI1 and d′ 6∈ ZI . Also, hook a
copy of Ib to d′. The resulting interpretation, I, satisfies TZ and we haveHI = I . Now
let J be a model of (TZ ,A). To construct a homomorphism f , we set f(aI) = aJ for
all a ∈ Ind(A). Suppose d 6= aI for any a ∈ Ind(A) and f(d′) has been defined for
the unique z0 or z1-predecessor of d. If (d′, d) ∈ zI0 , by > v ∃z0.>, we find e with
(f(d′), e) ∈ zJ0 . Set f(d) = e. (Observe that d 6∈ ZI!). If (d′, d) ∈ zI1 , by > v ∃z1.Z,
we find e ∈ ZJ with (f(d′), e) ∈ zJ1 . Set f(d) = e. One can show that the resulting
function f is a homomorphism. o

A.4 Remarks on Theorem 4

The proof of Theorem 4 is straightforward, by using Lemma 1. It is of interest to find
out whether the reduction still works for TBoxes that are consistent w.r.t. any ABox.
We show that this is indeed the case.

Theorem 12. For every CSP(I), I a Σ-interpretation, one can compute a materializ-
able ALC-TBox T containing a fresh concept name A 6∈ Σ such that all ABoxes are
consistent w.r.t. T and the following are equivalent for all ABoxes A not containing A:

– (T ,A) |= ∃v.A(v);
– not Hom(AΣ , I).

Moreover, on connected ABoxes the CQ answering problem w.r.t. T is polynomially
reducible to the complement of CSP(I).

Proof. Assume that CSP(I) is given. Let V = ∆I and assume, for simplicity, that
Σ = {r}. We show that the TBox

T = {Hv u ∃r.Hw v A | v, w ∈ V, (v, w) 6∈ rI} ∪

{Hv uHw v A | v, w ∈ V, v 6= w} ∪ {t
v∈V
¬Hv v A} ∪

{A v ∀r.A, ∃r.A v A} ∪ TV



is as required. Consider an ABox A. Let A1, . . . ,An be the decomposition of A into
maximal connected components. Let I be the set of i such that there is a homomorphism
hi from AΣi to I. Let, for v ∈ V = ∆I ,

Iv =
⋃

1≤i≤n

{a ∈ Ind(Ai) | hi(a) = v}

By Lemma 1, we can take a minimal model J of TV with HIv = Iv for v ∈ V . Extend
J to model J ′ of (T ,A) by setting

AI
′
=

⋃
i 6∈I

{aI | a ∈ Ind(Ai)}.

It is readily checked that J ′ is a minimal model of (T ,A). (Since A is arbitrary, it
follows that all ABoxes are consistent w.r.t. T and that T is materializable.) It follows
that (T ,A) |= ∃v.A(v) iff there is no homomorphism from AΣ to I. This proves the
first claim.

We can also set
A′ = A ∪

⋃
i6∈I

{A(a) | a ∈ Ind(Ai)}.

Then, for any CQ q, we have (T ,A) |= q iff (TV ,A′) |= q, and the latter problem is in
PTIME. For a polynomial reduction for connected ABoxes, observe that for connected
A computing A′ reduces to checking not Hom(AΣ , I). o

B Proofs for Section 2

In this section, we prove Theorem 1. Note that in the proofs of Theorems 2 and 3 we
did not use Theorem 1. Thus, we can (and will) employ them in the proof below. We
formulate Theorem 1 again.

Theorem 1 For all ALCFI-TBoxes T , the following are equivalent:

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering w.r.t. T is in PTIME iff
ELIQ-answering w.r.t. T is in PTIME;

2. T is FO-rewritable for CQ iff it is FO-rewritable for PEQ iff it is FO-rewritable for
ELIQ.

We start the proof with the observation that the implications

– If PEQ-answering w.r.t. T is in PTIME, then CQ-answering w.r.t. T is in PTIME;
– If CQ answering w.r.t. T is in PTIME, then ELIQ-answering w.r.t. T is in PTIME;
– If T is FO-rewritable for PEQ, then T is FO-rewritable for CQ;
– If T is FO-rewritable for CQ, then T is FO-rewritable for ELIQ

are trivial, by the obvious inclusions between the sets of queries considered (we can
regard ELIQs as CQ). For the proofs of the other directions we can assume that T is
materializable: otherwise, by Theorems 2 and 3, ELIQ-answering w.r.t. T is coNP-hard
and the implications are trivial.

For materializable T , the implications



– If CQ-answering w.r.t. T is in PTIME, then PEQ-answering w.r.t. T is in PTIME;
– If T is FO-rewritable for CQ, then T is FO-rewritable for PEQ;

are trivial since the evaluation of a disjunction in an interpretation reduces to evaluating
all its disjuncts. Thus, it remains to show the following two implications:

1. If ELIQ answering w.r.t. T is in PTIME, then CQ-answering w.r.t. T is in PTIME;
2. If T is FO-rewritable for ELIQ, then T is FO-rewritable for CQ.

To show these implications, we introduce some notation and a lemma. For a sequence
r = r1 · · · rn of roles, we set ∃r.C = ∃r1. · · · ∃rn.C. In an interpretation I, the
distance distI(d1, d2) between d1, d2 ∈ ∆I is the minimal n such that there are
d1 = e0, . . . , en = d2 and roles r1, . . . , rn with (di, di+1) ∈ rIi+1 for i < n.

Lemma 14. Let C be an ELI concept and assume that (T ,A) |= ∃v.C(v). If T
is materializable, then there exists a sequence of roles r = r1 · · · rn of length n ≤
2(2(|T |+|C|) × 2|T ||C|+ 1 such that there exists a ∈ Ind(A) with (T ,A) |= ∃r.C(a).

Proof. (Sketch) Let I be a minimal model of (T ,A). We may assume that I is an un-
folded interpretation as described in the proof of Lemma 12. From (T ,A) |= ∃v.C(v),
we obtain CI 6= ∅. Choose d ∈ CI and a ∈ Ind(A) such that n := distI(d, a

I) is
minimal. (We assume, for simplicity, that there is only one such d. The argument is
easily generalized.) Assume n > 2(2(|T |+|C|) × 2|T ||C|+ 1.

Let aI = d0, . . . , dn = d and (di, di+1) ∈ rIi+1 for i < n. Let sub(T , C) denote
the closure under single negation of the set of subconcepts of concepts in T and C. Set

tI(e) = {D ∈ sub(T , C) | e ∈ DI}.

As n > 2(2(|T |+|C|) × 2|T ||C| + 1, there exist di and di+j with j > 1 and i + j < n
such that

tI(di) = tI(di+j), tI(di+1) = tI(di+j+1), ri+1 = ri+j+1

Now replace in I the interpretation induced by the subtree generated by di+j+1 by
the interpretation induced by the subtree generated by di+1 and denote the resulting
interpretation by J . J is still a model of (T ,A). But now J 6|= ∃r.C(a). We have
derived a contradiction since aI ∈ (∃r.C)I and therefore, since I is a minimal model
of (T ,A), (T ,A) |= (∃r.C)(a). o

Let q(x) = ∃y.ϕ(x,y) be a CQ with x = x1, . . . , xn and y = y1, . . . , ym. We regard
ϕ as a set of atoms. A splitting S = (Y,∼, f) of q(x) consists of a subset Y of y, an
equivalence relation ∼ on Ind(q) ∪ x ∪ Y and a mapping f

f : {u∼ | u ∈ Ind(q) ∪ x ∪ Y } → 2y\Y

(we denote by u∼ the equivalence class of u w.r.t. ∼) such that

– for every y ∈ y \ Y there exists u with y ∈ f(u∼);
– f(u∼) ∩ f(v∼) = ∅ whenever u∼ 6= v∼.
– if r(t, t′) ∈ ϕ or r(t′, t) ∈ ϕ and t ∈ f(u∼), then t′ ∈ u∼ or t′ ∈ f(u∼).



Let US denote the set of all equivalence classes w.r.t. ∼. Thus, if (Y,∼, f) is a splitting
of q(x), we can form

– ϕY consisting of all A(t) with t ∈ Ind(q) ∪ x ∪ Y and all r(t, t′) with t, t′ ∈
Ind(q) ∪ x ∪ Y ;

– for every u∼ ∈ US , ϕu consisting of all A(t) and r(t, t′) with t, t′ ∈ u∼ ∪ f(u∼).

Intuitively, splittings describe potential assignments π for the variables in x,y in an
unfolded minimal model I of (T ,A) in which

– all v ∈ u∼ receive the same value π(v) and this value is in Ind(A);
– all y ∈ f(u∼) receive values π(y) in the “anonymous” tree generated by π(u).

Using Lemma 14 (for those y that are not reachable in ϕ from any member of Ind(A)∪
x ∪ Y ) one can easily construct, for every u∼ ∈ US a disjunction Du =

∨
i∈Iu Ci of

ELI-concepts such that for all minimal models I of some (T ,A) and all a ∈ Ind(A),
(1.) implies (2.) and (2.) implies (3.), where

1. there exists an assignment π in I with
– π(u) = π(u′) = aI for all u′ ∈ u∼
– π(x) in the anonymous subtree generated by aI for all x ∈ f(u∼)
– I |=π ϕu.

2. aI ∈ DIu ;
3. there exists an assignment π in I with

– π(u) = π(u′) = aI for all u′ ∈ u∼
– I |=π ϕu.

For every splitting S = (Y,∼, f) of ϕ(x), set

χS = ϕY ∧
∧

u∼∈US

∧
t,t′∈u∼

(t = t′) ∧
∧

u∼∈US

Du.

To prove the implication (2.), assume that T is FO-rewritable for ELIQ. By materializ-
ability, T is FO-rewritable for unions of ELIQs. For every u∼ ∈ US , let χu be a FOQ
with

IA |= χu[a] ⇔ (T ,A) |= Du(a).

for all a ∈ Ind(A). Let χ∗S be the FOQ resulting from χS by replacing every Du with
χu. Then it is readily checked that

IA |=
∨

S is a splitting of q(x)

∃y.χ∗S [a] ⇔ (T ,A) |= q(a)

for all a ⊆ Ind(A). Thus, T is FO-rewritable for CQ.

We come to implication (1.). Assume that ELIQ-answering w.r.t. T is in PTIME. By
materializability, unions of ELIQs can be answered w.r.t. T in PTIME. We can evaluate
a CQ q(x) in polynomial time as follows: to decide whether (T ,A) |= q(a) for a



given a ⊆ Ind(A), go through all splittings S = (Y,∼, f) of q(x) and all assignments
π(y) ∈ Ind(A) for y ∈ Y and check

IA |=π ϕY ∧
∧

u∼∈US

∧
t,t′∈u∼

(t = t′)[a]

and
(T ,A) |=

∧
u∼∈US

Du(π(u)).

If both hold for at least one pair S, π, then (T ,A) |= q(a); otherwise (T ,A) 6|= q(a).
Both conditions can be checked in polynomial time.

C Proofs for Section 4

C.1 Proof of Theorem 5

We prove Theorem 5. To this end, it is sufficient to show the Claims (a) and (b) for the
“type-model” I based on the set of types S.

(a) (T ,A) |= C(a) iff not Hom(AΣP (a), I), where AP (a) results from A by adding
P (a) to A and removing all other assertions using P from A;

(b) not Hom(AΣ , I) iff (T ,A) |= ∃v.(P (v) ∧ C(v)).

We start by proving (a).

“⇒”. Assume Hom(AΣP (a), I). Let h : AΣP (a) → I be a witness homomorphism.
For each b ∈ Ind(A), let Ib be a copy of I (with isomophism hb : Ib → I). Hook each
Ib to AP (a) by identifying b with h(b). The resulting interpretation, H, is the disjoint
union of all Ib, b ∈ Ind(A) together with (a, b) ∈ rH whenever r(a, b) ∈ AΣ . It is
readily checked that

–
⋃
b∈Ind(A) hb is a Σ \ {P}-bisimulation (two-way!) betweenH and I.

Thus, for all subconcepts D of T and C and all b ∈ ind(A): b ∈ CH iff h(b) ∈ CI . We
obtain that H is a model of (T ,A). Moreover, a 6∈ CH since h(a) 6∈ CI and the latter
follows because otherwise h(a) 6∈ P I and P (a) ∈ AP (a) which would contradict that
h is a homomorphism. Thus, (T ,A) 6|= C(a).

“⇐”. Assume (T ,A) 6|= C(a). Take a witness interpretation J . The type t(d)
of d ∈ ∆I is the set of (negated) subconcepts D of C and T such that d ∈ DJ . The
mapping h : a 7→ t(aJ ), for a ∈ Ind(A) is a homomorphism fromAΣP (a) to I. We only
consider preservation of P . Assume P (b) ∈ AΣP (a). Then a = b. We have C 6∈ t(aJ ).
Thus C 6∈ h(a). Hence h(a) ∈ P I .

Consider (b). The proof is similar.

“⇐”. Assume (T ,A) 6|= ∃v.(P (v) ∧ C(v)). Take a witness interpretation J . The
type t(d) of d ∈ ∆I is the set of (negated) subconcepts D of C and T such that



d ∈ DJ . The mapping h : a 7→ t(aJ ), for a ∈ Ind(A) is a homomorphism from AΣ
to I. We only consider preservation of P . Assume P (b) ∈ AΣ . Then, since (T ,A) 6|=
∃v.(P (v) ∧ C(v)), C 6∈ t(bJ ). Then C 6∈ h(b). Hence h(a) ∈ P I .

“⇒”. Assume Hom(AΣ , I). Let h : AΣ → I be a witness homomorphism. For
each b ∈ Ind(A), let Ib be a copy of I (with isomophism hb : Ib → I). Hook each Ib
to A by identifying b with h(b). The resulting interpretation,H, is the disjoint union of
all Ib, b ∈ Ind(A) together with (a, b) ∈ rH whenever r(a, b) ∈ AΣ . For all concepts
X that do not occur in T or C (including, in particular, P ), we setXH = {b ∈ Ind(A) |
X(b) ∈ A}. It is readily checked that

–
⋃
b∈Ind(A) hb is a Σ \ {P}-bisimulation (two-way!) betweenH and I.

Thus, for all subconcepts D of T and C and all b ∈ Ind(A): b ∈ CH iff h(b) ∈ CI .
Thus, H is a model of (T ,A). Moreover, PH ∩ CH = ∅: if d ∈ PH, then d = bJ for
some b ∈ Ind(A) with P (b) ∈ A. Thus, h(b) ∈ P I . But then h(b) 6∈ CI . Therefore
b 6∈ CH, as required.

It follows that (T ,A) 6|= ∃v.(P (v) ∧ C(v)), as required.

C.2 Horn-ALCFI-TBoxes

Different versions of Horn-SHIQ have been proposed in the literature, giving rise to
different versions of Horn-ALCFI. The original and most general, but also rather tech-
nical definition was given in [12]. Applying some simple transformations, it is easy
to show that every Horn-ALCFI-TBox according to [12] is equivalent to a Horn-
ALCFI-TBox of the form introduced below.3 Our result that Horn-ALCFI-TBoxes
are unraveling tolerant thus also applies to the original definition from [12].

A Horn-ALCFI-TBox T consists of functionality assertions func(r), r a poten-
tially inverse role, and a single concept inclusion of the form > v CT , where CT is
built according to the topmost syntax rule in:

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | L→ R | ∃r.R | ∀r.R
L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃r.L

where r ranges over all roles, potentially inverse. Note that the concept CT is in nega-
tion normal form (NNF) and that concepts built according to L are ELIU⊥-concepts.
This version of Horn-ALCFI is a strict generalization of the simplified form of Horn-
ALCFI used e.g. in [13].

Lemma 2. Every Horn-ALCFI-TBox is unraveling tolerant.

Proof. Let T = {> v CT } be a Horn-ALCFI-TBox and A a potentially infinite
ABox. We give a characterization of the entailment of ELIQs by T and A that is in the
spirit of the rule-based (sometimes also called consequence-driven) algorithms com-
monly used for Horn description logics such as EL++ and Horn-SHIQ, see e.g. [2,
13, 14]. In this characterization, we use extended ABoxes, i.e., finite sets of assertions

3 Although this is not important here, we note that even a polytime transformation is possible.



C(a) with C a potentially compound concept and r(a, b). For an extended ABox A′
and an assertion C(a), C an ELIU⊥-concept, we write A′ ` C(a) if A′ syntactically
entails C(a), formally:

– A′ ` >(a) is unconditionally true;
– A′ ` ⊥(a) if ⊥(b) ∈ A′ for some b ∈ Ind(A);
– A′ ` A(a) if A(a) ∈ A′;
– A′ ` C uD(a) if A′ ` C(a) and A′ ` D(a);
– A′ ` C tD(a) if A′ ` C(a) or A′ ` D(a);
– A′ ` ∃r.C(a) if there is an r(a, b) ∈ A′ such that A′ ` C(b).

We produce a sequence of extended ABoxes A0,A1, . . . , starting with A0 = A ∪
{>(a>)}. Intuitively, a> is a representative for all individual names that do not occur
in A. In what follows, we use additional individual names of the form ar1C1 · · · rkCk
with a ∈ Ind(A0), r1, . . . , rk roles that occur in T , and C1, . . . , Ck ∈ sub(T ). We
assume that NI contains such names as needed and use the symbol a also to refer to
individual names of this compound form. Each extended ABox Ai+1 is obtained from
Ai by applying the following rules:

R1 if a ∈ Ind(Ai), then add CT (a).
R2 if C uD(a) ∈ Ai, then add C(a) and D(a);
R3 if C → D(a) ∈ Ai and IA |= C(a), then add D(a);
R4 if ∃r.C(a) ∈ Ai and func(r) /∈ T , then add r(a, arC) and C(arC);
R5 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and r(a, b) ∈ Ai, then add C(b);
R6 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and there is no r(a, b) ∈ Ai, then add r(a, arC)

and C(arC);
R7 if ∀r.C(a) ∈ Ai and r(a, b) ∈ Ai (or r−(b, a) ∈ Ai), then add C(b).

Let Ac =
⋃
i≥0Ai. Note that Ac may be infinite even if A is finite, and that none

of the above rules is applicable in Ac. In the following, we write Ac ` ⊥ instead of
Ac ` ⊥(a).

Claim 1. For all ELIQs C(a), we have

1. T ,A |= C(a) iff Ac ` C(a) or Ac ` ⊥;
2. T ,A |= C(a) iff Ac ` C(a>) or Ac ` ⊥ whenever a ∈ NI \ Ind(A).

We only sketch the proof. For the “if” directions, the central observation is that for any
model I of T and A, we can construct a homomorphism h from Ac to I, i.e., h is a
map from Ind(Ac) to ∆I such that the following conditions are satisfied:

(a) if C(a) ∈ Ac, then hi(a) ∈ CI ;
(b) if r(a, b) ∈ Ac, then (hi(a), hi(b)) ∈ rI .

More specifically, we inductively construct homomorphisms hi from Ai to I, that sat-
isfy Conditions (a) and (b) above withAc replaced byAi and such that h0 ⊆ h1 ⊆ · · · .
Then h =

⋃
i≥0 hi is the required homomorphism from Ac to I.

Let C(a) be an ELIQ. IfAc ` ⊥, the existence of a homomorphism h fromAc into
any model I of T and A implies that A is inconsistent w.r.t. T , whence T ,A |= C(a).



If Ac |= C(a), then preservation of ELIQs under homomorphisms also yields T ,A |=
C(a). For Point 2, assume Ac |= C(a>). We can construct the above homomorphisms
h such that h(a>) = a. Thus, we again obtain T ,A |= C(a).

For the “only if” direction of Point 1, we have to show that if Ac 6` C(a), where
C(a) is an ELIQ, and Ac 6` ⊥, then T ,A 6|= C(a) (and similarly for Point 2). Define
an interpretation I as follows:

∆I = Ind(Ac)
AI = {a | A(a) ∈ Ac} for all A ∈ NC

rI = {r(a, b) | r(a, b) ∈ Ac} for all r ∈ NR

aI = a for all a ∈ Ind(A)
aI = a> for all a ∈ NI \ Ind(A)

It can be shown that I is a model of Ac (thus A) and T . Moreover, it can be seen
that I |= D(b) iff Ac ` D(b) for all ELIQs D(b). Thus, I 6|= C(a), which yields
T ,A 6|= C(a) as required.

We now consider the application of the above construction to both the original ABox
A and its unravelingAu. Recall that individuals inAu are of the form a0r0a1 · · · rn−1an,
thus individuals inAuc are of the form a0r0a1 · · · rn−1ans1C1 · · · skCk. Forα ∈ Ind(Ac)
and β ∈ Ind(Auc ), we write α ∼ β if

α = ans1C1 · · · skCk and β = a0r0a1 · · · rn−1ans1C1 · · · skCk

for some a0, . . . , an, r0, . . . , rn−1, s1, . . . , sk, C1, . . . , Ck. This includes the case where
k = 0, i.e., the s1C1 · · · skCk component is empty in both α and β. The following claim
can be shown by induction on i.

Claim 2. For all α ∈ Ind(Ai) and β ∈ Ind(Aui ) with α ∼ β, we have

1. Ai ` C(α) iff Aui ` C(β) for all ELI-concepts C;
2. C(α) ∈ Ai iff C(β) ∈ Aui for all C ∈ sub(T ).

From Claims 1 and 2, we obtain thatA andAu entail exactly the same ELIQs. It follows
that T is unraveling tolerant. o

C.3 Unraveling Tolerance

Lemma 3. Every unraveling-tolerant ALCFI-TBox is materializable.

Proof. To show the contrapositive, assume that the ALCFI-TBox T is not materializ-
able. By Theorem 2, T does not have the disjunction property. Thus, there is an ABox
A∨ and ELIQs C0(a0), . . . , Ck(ak) such that T ,A∨ |= C0(a0) ∨ · · · ∨ Ck(ak), but
T ,A∨ 6|= Ci(ai) for all i ≤ k. Let Ai be Ci viewed as a tree-shaped ABox with root



bi, for all i ≤ k. Assume w.l.o.g. that none of the ABoxes A∨,A0, . . . ,Ak share any
individual names. Consider the ABox

A = A∨ ∪ A0 ∪ · · · ∪ Ak ∪ {r(b, b1), . . . , r(b, bk)}
∪

⋃
i≤k

{r0(bj , b0), . . . , rj−1(bj , bj−1), rj+1(bj , bj−1), . . . , rk(bj , bk)}

∪ {r0(b0, a0), . . . , rk(bk, ak)}

where b is a fresh individual name and r, r0, . . . , rk do not occur in T , and the ELIQ

q = ∃r.(∃r0.C0 u · · · u ∃rk.Ck).

The idea underlying this ABox and query is very similar to the second step in the proof
of Theorem 3, where UELIQs are replaced with ELIQs. It can be shown that T ,A |= q,
but T ,Aa 6|= q. o

Theorem 6. If an ALCFI-TBox T is unraveling tolerant, then PEQ-answering w.r.t.
T is in PTIME.

To prove Theorem 6, let T = {> v CT } be an unraveling tolerant TBox, where
we assume w.l.o.g. that CT is built from the constructors ¬, u, and ∃r.C, only. By
Theorem 1, it suffices to show that ELIQ-answering w.r.t. T is in PTIME. Thus, let
q = C0(a0) be an ELIQ. We use cl(T , q) to denote the set of subconcepts of T and q,
closed under single negation. For an interpretation I and d ∈ ∆I , we use tIT ,q(d) to
denote the set of concepts C ∈ cl(T , q) such that C ∈ dI . A T , q-type is a subset
t ⊆ cl(T , q) such that for some model I of T , we have t = tIT ,q(d). We use tp(T , q)
to denote the set of all T ,q-types. For t, t′ ∈ tp(T , q) and r a role, we write t  r t

′ if
the following conditions are satisfied:

– if C ∈ t′ then ∃r.C ∈ t, for all ∃r.C ∈ cl(T , q);
– if C ∈ t then ∃r−.C ∈ t′, for all ∃r−.C ∈ cl(T , q);
– ∃r.C ∈ t iff C ∈ t′, for all ∃r.C ∈ cl(T , q) with func(r) ∈ T .

A type assignment is a map Ind(A) → 2tp(T ,q). The PTIME algorithm for checking
whether T ,A |= q is based on the computation of a sequence of type assigments
π0, π1, . . . as follows. For every a ∈ Ind(A), π0(a) is the set of all types t ∈ tp(T , q)
such that A(a) ∈ A implies A ∈ t. Then, πi+1(a) is defined as the set of all types
ta ∈ πi(a) such that for all r(a, b) ∈ A, r a role name or the inverse thereof, there is a
type tb ∈ πi(b) such that ta  r tb.

Clearly, the sequence π0, π1, . . . will stabilize after at most O(|A)| steps and can
be computed in time polynomial in |A| (since |T | and thus |tp(T , q)| is a constant). Let
π be the final type assignment in the sequence. The following yields Theorem 6.

Lemma 15. T ,A |= q iff C0 ∈ t for all t ∈ π(a0).

Proof. By unraveling tolerance, we have T ,A |= q iff T ,Au |= q. It thus suffices to
show that for all t ∈ tp(T , q), we have t ∈ π(a0) iff there is a model I of T and Au
with tpIT ,q(a

I
0 ) = t.



“⇐”. Let I be a model of T and Au with tpIT ,q(a
I
0 ) = t. It is not hard to show by

induction on i that for all i ≥ 0 and all a0 · · · ak ∈ Ind(Au), we have tI(aIk ) ∈ πi(ak).
In particular, this implies that tI(a0) ∈ π(a0).

“⇒”. Let t ∈ π(a0). We build a model I of T andAu such that tI(aI0 ) = t, as follows.
First, construct a map λ : Ind(Au) → tp(T , q) such that for all a0 · · · ak ∈ Ind(Au),
we have λ(a0 · · · ak) ∈ π(ak). Start with setting λ(a0) = t. Then exhaustively apply
the following steps, where r is a role name:

– if λ(a0 · · · ak) is defined, r(ak, ak+1) ∈ A, and λ(a0 · · · akrak+1) is undefined,
then by the definition of the sequence π0, π1, . . . , there is a type t′ ∈ π(ak+1) such
that λ(a0 · · · ak) r t

′. Set λ(a0 · · · rak+1) = t′.
– if λ(a0 · · · ak) is defined, r(ak+1, ak) ∈ A, and λ(a0 · · · akr−ak+1) is undefined,

then by the definition of the sequence π0, π1, . . . , there is a type t′ ∈ π(ak+1) such
that λ(a0 · · · ak) r− t

′. Set λ(a0 · · · akr−ak+1) = t′.

By definition of types, for each α ∈ Ind(Au) we find a tree-shaped model Iα of T and
A and a dα ∈ ∆Iα such that tIαT ,q(dα) = λ(α). Assume w.l.o.g. that the domains of all
these models ∆Iα are disjoint. Define a new interpretation I as follows:

(i) take the disjoint union of the models Iα, for all α ∈ Ind(Au);
(ii) whenever (dα, e) ∈ rI , func(r) ∈ T , and there is an assertion r(α, β) ∈ Au, then

remove the subtree rooted at e;
(iii) for all r(α, β) ∈ Au, add (dα, dβ) to rI ;
(iv) set αI = dα, for all α ∈ Ind(Au).

We need to show that that I is a model of T andAu, and that tI(da0) = t. By definition
of π0 in the sequence π0, π1, . . . and Point (iii) in the definition of T , I is a model of
A. All functionality statements func(r) ∈ T are satisfied:

Claim 1. If func(r) ∈ T , then rI is a partial function.

Proof of claim. Since A is a model of T and by the UNA, for each a ∈ Ind(A) there is
at most one b ∈ Ind(A) with r(a, b) ∈ A. By definition of the unraveled ABox Au, it
follows that for each α ∈ Ind(Au) there is at most one β ∈ Ind(Au) with r(α, β) ∈ A.
By Points (ii) and (iii) of the definition of I and since each Iα is a model of T , rI is a
partial function.

It thus remains to show that I satisfies all concept inclusions in T and that tI(da0) =
t. Both is a consequence of the following.

Claim 2. For all C ∈ cl(T , q) and α ∈ Ind(Au), we have

1. dα ∈ CI iff C ∈ λ(α)
2. d ∈ CI iff d ∈ CIα , for all d ∈ ∆Iα \ {dα}.

The proof is by induction on the structure of C. Details are left to the reader. o



For the proof of Lemma 4, we need a preliminary. An ALCFI-TBox T is infinitely
materializable if for all finite and infinite ABoxes A that is consistent w.r.t. T , there
is a minimal model of T and A, i.e., a model I of T and A such that I |= q[a] iff
T ,A |= q[a] for every ELIQ q(x) and all a ⊆ Ind(A). As for plain materializability, it
would be equivalent to define infinite materializability based on CQs or PEQs.

Lemma 16. An ALCFI-TBox is materializable iff it is infinitely materializable.

This lemma follows from the observation that the proof of “3⇒ 4” of Theorem 2 goes
through also for infinite ABoxes without modification.

Lemma 4. Every materializable ALCFI-TBox of depth one is unraveling tolerant.

Proof. Let T be a materializable TBox of depth one, A an ABox, and q = C0(a0) an
ELIQ with Au, T 6|= q. The latter implies that Au is consistent w.r.t. T . Thus and since
T is infinitely materializable, there is a minimal model I for Au and T , and we have
I 6|= q. We may w.l.o.g. assume that I has forest-shape, i.e., that I can be obtained by
first taking the disjoint union of tree-shaped models, one for each α ∈ Ind(Au) with
root αI , and then adding role edges (αI , βI) to rI whenever r(α, β) ∈ Au. We may
also assume w.l.o.g. that αI = α for all α ∈ Ind(Au).

We show how to construct a model Î of T and the original ABox A such that
Î 6|= q. For a ∈ Ind(A), let I|a denote the tree model in I that is rooted at a (note that
a ∈ Ind(Au)). Construct Î as follows:

– take the disjoint union of the tree interpretations I|a, for each a ∈ Ind(A);
– set aÎ = a for all a ∈ Ind(A);
– add the edge (a, b) to rÎ whenever r(a, b) ∈ A.

For every d ∈ ∆I , let I|1d denote the 1-neighborhood of d in I, i.e., the restriction of I
to the domain

{d} ∪ {e | (d, e) ∈ rI for some r ∈ NR} ∪ {e | (e, d) ∈ rI for some r ∈ NR}.

The following is a central property of Î:

Claim 1. For every d ∈ ∆Î , we have that d in Î|1d is bisimilar to d in I|1d.

This is trivial for all d ∈ ∆Î with d /∈ Ind(A). Thus, let d = a ∈ Ind(A). Then a
bisimulation ∼ ⊆ ∆Î|1d ×∆I|1d can be defined as follows:

– a ∼ a;
– if e ∈ ∆Î|1d \ Ind(A), then e ∼ e;
– if b ∈ ∆Î|1d ∩ Ind(A) and b 6= a, then b ∼ arb for all roles r with r(a, b) ∈ A.

This finishes the proof of Claim 1.

Since I is a model of T and all concept assertions in T are of depth one, we obtain
by Claim 1 that Î satisfies all concept assertions in T . By construction, Î satisfies all
role assertions in A. By construction of Au and Claim 1, Î also satisfies all concept
assertions of A. Let func(r) ∈ T . We show that each d ∈ ∆Î has at most one r-
successor in Î. Distinguish two cases:



– d /∈ Ind(A). Then d has at most one r-successor since I satisfied func(r) and by
construction of Î.

– d = a ∈ Ind(A). Since Au is consistent w.r.t. T , there is at most one β with
r(a, β) ∈ Au. By definition of Au, this implies that there is at most one b with
r(a, b) ∈ A. Moreover, if there is a b with r(a, b) ∈ A, then there is a β with
r(a, β) ∈ Au. Together with the construction of Î, these observations imply that d
has at most one r-successor in Î.

Next, we show that Î 6|= q = C0(a0). Assume to the contrary that there is a match π
of q in Î, i.e., a mapping π : term(q) → ∆Î such that π(a0) = aÎ0 , A(t) ∈ q implies
π(t) ∈ AÎ , and r(t, t′) ∈ q implies (π(t), π(t′)) ∈ rÎ .4 We prove that this implies the
existence of a match π′ for q in I, which yields a contradiction to I 6|= q. First, we need
the following claim.

Claim 2. For all α, β ∈ Ind(Au) with tail(α) = tail(β) and all ELI-concepts C, we
have α ∈ CI iff β ∈ CI .

Assume to the contrary that α ∈ CI and β /∈ CI . By construction of Au and since
tail(α) = tail(β), we find an ABox-isomorphism ι : Ind(Au)→ Ind(Au) with ι(α) =
β, i.e., ι satisfies the following properties:

– if A(γ) ∈ Au, then A(ι(γ)) ∈ Au;
– if r(γ, γ′) ∈ Au, then r(ι(γ), ι(γ′)) ∈ Au.

Define a new interpretation I ′ as I, but put γI
′
= ι(γ)I for all γ ∈ Ind(Au). Clearly,

I ′ is a model of both Au and T . It follows that Au, T 6|= C(α). This is a contradiction
since I is a minimal model with I |= C(α), implying Au, T |= C(α), which finishes
the proof of the claim.

We start the construction of the match π′ of q in I as follows:

– start with setting π′(a0) = a0;
– if π′(x) = α for some α ∈ Ind(Au), r(x, y) ∈ q, and π(y) = b ∈ Ind(A), then set
π′(y) = αrb.

It thus remains to define π′(x) for all variables x in q such that π(x) 6= a for all a ∈
Ind(A). To this end, consider a t ∈ terms(q) with π′(t) already defined. Then π(t) = a
for some a ∈ Ind(A) and π′(t) = α for some α ∈ Ind(Au) with tail(α) = a. Let V
be the variables in q such that π(v) is an element of Î|a, the restriction of Î to the tree
rooted at a. Moreover, let J be the smallest subtree interpretation of Î|a that contains
π(v) for all v ∈ V . Since J is a finite tree interpretation, there is an ELI-concept CJ
that is satisfied at the root a of J and such that J is homomorphically embeddable into
any model of CJ . By construction of Î and of CJ , we have I |= CJ (a). By Claim 1,
this yields I |= CJ (α). Thus, there is a homomorphism h that embeds J into I such
that h(a) = α. To define the match π′ for the variables in V , compose π with h. It can
be verified that, by applying this construction for all a ∈ Ind(A), we ontain a match π′

for q in I. o

4 Here, we view q as a tree-shaped CQ whose root is the individual name a0 and whose non-root
nodes are all variables.



D Proofs for Section 5

D.1 FO-rewritability and Locality

In this section, we prove basic results about FO-rewritability. The main result is Theo-
rem 14 in which we characterize, for unraveling tolerant ALCFI-TBoxes and ELI⊥-
concepts C when there exists an FO-formula ϕC(x) such that (T ,A) |= C(a) iff
IA |= ϕC [a], for all ABoxes A and a ∈ Ind(A).

Definition 6. Let T be aALCFI-TBox,Σ a signature, andC na ELI⊥-concept. Then
C is called FO-rewritable w.r.t. T andΣ iff there exists an FO-formula ϕC(x) such that

(T ,A) |= C(a) ⇔ IA |= ϕC [a],

for all Σ-Aboxes A.

To characterize FO-rewritability, we require the following notions. A pointed interpre-
tation is a pair consisting of an interpretation I and some d ∈ ∆I . We identify finite
pointed interpretations with pairs (A, a) consisting of an ABox A and a distinguished
individual name a. The n-neighbourhood Ind of d in an interpretation I is the relativiza-
tion of I to the set

{d′ ∈ ∆I | distI(d, d
′) ≤ n}.

A class K of pointed interpretations (I, d) is n-local if (Ind , d) ∈ K whenever (I, d) ∈
K. Classes definable by modal logic formulas or, equivalently,ALC-concepts are known
to be n-local for some n > 0.

We are interested in the following classes of pointed interpretations. For anALCFI-
TBox T , signature Σ, and ELI-concept C let

KC,T ,Σ = {(A, a) | (T ,A) |= C(a), A a Σ-ABox}

Call a class K of pointed Σ-ABoxes FO-definable iff there exists an FO-formula ϕ(x)
such that

K = {(A, a) | IA |= ϕ[a], A a Σ-ABox}.

Clearly, KC,T ,Σ if FO-definable iff C is FO-rewritable w.r.t. T and Σ. For simplicity,
in what follows we mostly consider classes KA,T ,Σ , where A is an atomic concept.
Clearly, KC,T ,Σ if FO-definable if KA,T ′,Σ with T ′ = T ∪ {A ≡ C} is FO-definable.
In contrast to modal logic, even if KA,T ,Σ is FO-definable, it is no necessarily n-local
for any n.

Example 2. Let T = {A v >, B v ⊥} and Σ = {A,B}. KA,T ,Σ is defined by
ϕA(x) = A(x)∨ ∃y.B(y). Note that (A, a) ∈ KA,T ,Σ for A = {>(a), B(b)} because
A is not consistent w.r.t. T . However, Ana = {>(a)} for all n > 0 and so Ana 6∈
KA,T ,Σ , for any n > 0. Thus, KA,T ,Σ is not n-local, for any n > 0.

It turns out that, in some sense, inconsistency is the only reason for not being n-local for
any n for FO-definable classes of the form KA,T ,Σ . We now make this claim precise.

A classK of pointed interpretations (I, d) is weakly n-local if whenever (I, d) ∈ K,
then (

⋃+
e∈∆I Ine , d) ∈ K, where

⋃+
e∈∆I Ine denotes the disjoint union of all Ine with



e ∈ ∆I . K is monotone if it is closed under expansions: if (I, d) ∈ K and I ′ is an
interpretation with ∆I

′ ⊇ ∆I and XI
′ ⊇ XI for all X ∈ Σ, then (I ′, d) ∈ K. K

reflects disjoint copies if whenever (I, d) ∈ K and I is the disjoint union of isomorphic
copies I0, . . . , In, then (I0, d) ∈ K for the (unique) I0 with d ∈ ∆I0 .

Lemma 17. If a FO-definable class of pointed interpreations is monotone and reflects
disjoint copies, then it is weakly n-local, for some n > 0. More precisely, if K is FO-
definable using an FO-formula of quantifier depth q, then K is weakly n-local, for
n = 2q − 1.

Proof. Assume (I, d) ∈ K and ϕ(x) defines K. Let (J0, d) be the disjoint union of
(I, d) and q copies of

⋃+
e∈∆I Ine . Let (J1, d) be the disjoint union of (

⋃+
e∈∆I Ine , d)

and q additional copies of
⋃+
e∈∆I Ine . One can show, using Ehrenfeucht-Fraisse games

with q rounds, that J0 |= ϕA[d] iff J1 |= ϕA[d]: A winning strategy for the duplicator
is to keep in round m the distance 2q−m: if the spoiler’s move (say, e) in round m
is within distance 2q−m to a pebbled element, then the duplicator plays according to
the “local” isomorphism for all d’s within the neighbourhood I2q−me . Otherwise, the
duplicator responds within a new isomorphic copy.

By monotonicity, we have (J0, d) ∈ K. Thus we obtain (J1, d) ∈ K. Since K
reflects disjoint copies, we obtain that (

⋃+
e∈∆I Ine , d) ∈ K, as required. o

Theorem 13. Let A be an atomic concept. If A is FO-rewritable w.r.t. T and Σ, then
KA,T ,Σ it is weakly n-local, for some n > 0.

Proof. Follows from Lemma 17 and the observation that KA,T ,Σ is monotone and re-
flects disjoint copies. o

The converse of Theorem 13 can be proved for unraveling tolerant TBoxes. An
interpretation I is a tree interpretation if (∆I ,

⋃
r a role r

I) is a symmetric (possibly
infinite) tree and rI ∩ sI = ∅ for all distinct roles r and s. Observe that the unraveling
Au of an ABox A is the disjoint union of tree interpretations. An interpretation I is
n-generated by d if Ind = I. A tree interpretation I with root ρ has depth n if it
is n-generated by ρ. We define the notion of a tree interpretation of depth n without
redundancies by induction: A tree interpretation of depth n+ 1 has no redundancies if
for any two sons d1, d2 of its root ρ with (ρ, di) ∈ rI for i = 1, 2, the subinterpretation
Id1 and Id2 are not isomorphic and do not have redundancies. Clearly, the number of
tree interpretations of depth n without redundancies is finite, up to isomorphisms.

Theorem 14. Assume T is an unraveling tolerant ALCFI-TBox, Σ a signature, and
A an atomic concept. Then the following conditions are equivalent:

– A is FO-rewritable w.r.t. T and Σ;
– KA,T ,Σ is weakly n-local for some n > 0.

Proof. (sketch) Let KA,T ,Σ be weakly n-local for some n > 0. Let CA be the finite set
ofΣ-tree-interpretations with root ρ and of depth nwithout redundancies such that I |=
A[ρ]. We can define the class of all (A, a) with A a Σ-ABoxes and a a distinguished
element whose unraveling contains some (I, d) ∈ CA as a subinterpretation using an
FO-formulaϕA(x). Determine the formulaϕ⊥ in the same way. NowϕA(x)∨∃xϕ⊥(x)
is as required. o



D.2 Proofs of Lemma 5 and Theorem 8 (Part 1)

Lemma 5 A materializable ALCFI-TBox of depth one is FO-rewritable for CQs iff
all atomic concepts are FO-rewritable w.r.t. T and sig(T ).

Proof. We prove the direction from right to left. Assume that all atomic concepts are
FO-rewritable w.r.t. T and sig(T ). It is sufficient to show that T is FO-rewritable for
ELIQs. Consider an ELI-concept C. Take FO-formulas ϕA(x) for A ∈ sig(T ) ∪ {⊥}
such that (T ,A) |= A(a) iff IA |= ϕA(a), for all Σ-ABoxes A and a ∈ Ind(A).

For every subconcept D of C we construct an FO-formula ϕD(x) such that

(T ,A) |= D(b) ⇔ (T ,A) |= ϕD[b],

for all Σ-ABoxes A and b ∈ Ind(A). If D is a concept name A from T or A = ⊥, we
can take the formula ϕA(x) from above. Otherwise we set ϕA(x) = A(x) ∨ ϕ⊥(x). If
D = D1uD2, then we can take ϕD1(x)∧ϕD2(x). Now assume D = ∃r.D0. Let Ξ be
the set of sig(T ) ∪ sig(C)-NH ABoxes A, f such that (T ,A) |= ∃r.D0(f). Replace in
any Ax ∈ Ξ , any assertion B(y) by ϕB(y) and denote the result by AxFO. Then we set

ϕD(x) = (∃y.r(x, y) ∧ ϕD0
(y)) ∨

∨
(A,f)∈Ξ

∃x.
∧
AxFO

Using the condition that T has depth one, one can show that ϕD(a) is as required.
o

Lemma 18. For every ALCI-TBox T , signature Σ, and ELI⊥-concept C: C is FO-
rewritable w.r.t. T and Σ iff, for the interpretation I constructed in the proof of Theo-
rem 5, the class

HomΣ,P (I) = {A | A a Σ ∪ {P}-ABox, Hom(A, I)}

is FO-definable.

Proof. Let ϕ be an FO-sentence defining HomΣ,P (I). Recall that we have (T ,A) |=
C(a) iff not Hom(AP (a), I), where AP (a) results from A by adding P (a) to A and
removing all other assertions using P from A. Thus (T ,A) |= C(a) iff AP (a) |= ¬ϕ.
The latter conndition holds iff A |= ¬ϕ[P/a], where ϕ[P/a] denotes the result of
replacing every occurrence of P (z) by z = a. Thus,

A |= ¬ϕ[P/a] ⇔ (T ,A) |= C(a)

and we have shown FO-rewritability of C w.r.t. T and Σ.
Conversely, assume that

A |= ϕC(a) ⇔ (T ,A) |= C(a)

holds for all Σ-ABoxes A and a ∈ Ind(A). We have not Hom(A, I) iff (T ,A) |=
∃v.(P (v) ∧ C(v)), for all Σ ∪ {P}-ABoxes A. Thus ¬∃v.(P (v) ∧ ϕC(v)) defines
HomΣ,P (I). o



We can now prove the first part of Theorem 8.

Theorem 8 (Part 1) FO-rewritability for CQs is decidable in NEXPTIME, for the class
of materializable ALCI-TBoxes of depth one.

Proof. By Lemma 5, it is sufficient to show that FO-rewritability of atomic concepts
with respect to T and sig(T ) is in NEXPTIME. By [16], FO-definability of {I ′ |
Hom(I ′, I)} is decidable in NP. By Lemma 18, we obtain a NEXPTIME upper bound
since the templates I can be constructed in exponential time. o

D.3 Proof of Lemma 6, Lemma 7 and Theorem 9 (Part 1)

We formulate Lemma 6 again.

Lemma 6 For every materializable ALCFI-TBox T of depth one, every A ∈ sig(T ),
every ABox A, and every a ∈ Ind(A), (T ,A) |= A(a) iff A(a) ∈ Π∞T (A). ⊥(a) ∈
Π∞T (A) iff A is not consistent w.r.t. T .

Proof. Clearly, the program ΠT is sound in the sense that A(a) ∈ Π∞T (A) implies
(T ,A) |= A(a) and ⊥(a) ∈ Π∞T (A) implies that A is not consistent w.r.t. T .

Now assume that A(a0) 6∈ Π∞T (A) for some a0 ∈ Ind(A) and A ∈ Σ = sig(T ).
(The case A = ⊥ is considered similarly and left to the reader.) Define A′ = A ∪
Π∞T (A). For every a ∈ Ind(A′), letAa be the (unique up to renaming) maximal Σ NH
with distinguished individual name a such that there is an assignment π into IA′ with
π(xa) = a and IA′ |=π Axa. (Equivalently, there in a homomorphism fa : IAa → IA′
with f(a) = a.) Observe that there does not exist any a ∈ Ind(A) such that Aa is not
consistent w.r.t. T : otherwise, by the definition ofΠ∞T ,⊥(a) ∈ Π∞T (A) and, therefore,
A(a0) ∈ Π∞T (A); so we have derived a contradiction. The following three properties
of Aa are readily checked:

1. (T ,Aa) |= B(e) iff B(e) ∈ Aa, for all e ∈ Ind(Aa) and all B ∈ Σ;
2. For every b ∈ Ind(A) with r(a, b) ∈ A for some role r, there exists an e ∈ Ind(Aa)

and an assignment π with π(xa) = a and π(xe) = b such that A′ |=π Aa;
3. For every ELIF-concept C, every e ∈ Ind(Aa) and every assignment π such that
A′ |= Aa with π(xa) = a: (T ,Aa) |= C(e) implies (T ,A) |= C(π(xe)).

For every a ∈ Ind(A) we can take a minimal interpretation Ia of (T ,Aa). By Point 1,
we have eIa ∈ BIa iff B(e) ∈ Aa for all B ∈ Σ and e ∈ Ind(Aa). We can assume
that Ia is an unfolded interpretation as constructed in the proof of Lemma 12. Define
an interpretation I satisfyingA′ by hooking to every a ∈ Ind(A) the “anonymous tree”
I ′a generated by a in Ia.

We show that I is a model of T . Suppose that C v D ∈ T is refuted in I. Since
T has depth one, there exists a ∈ Ind(A) such that aI ∈ CI and aI 6∈ DI . We show
that C v D is refuted in Ia and, thus, derive a contradiction. It is sufficient to show
that aI ∈ CIa and aI 6∈ DIa . But a 6∈ DIa follows from Point 3 and a ∈ CIa follows
from the condition that C has depth one and Points 1 and 2. o



We now prove the following extended version of Lemma 7.

Lemma 19. Let T be a materializableALCFI-TBox of depth one,Σ a signature, and
A an atomic concept. Then the following conditions are equivalent:

– A is FO-rewritable w.r.t. T and Σ;
– KA,T ,Σ is weakly n-local for some n > 0;
– A is bounded in ΠT for Σ-ABoxes.

Proof. (3) implies (1). Assume A is bounded in ΠT for Σ-ABoxes. Take k > 0 such
that A(a) ∈ Πk

T (A) iff A(a) ∈ Π∞T (A) for all Σ-ABoxes A. From Πk
T , one can

directly construct a FO-formula ϕA(x) such that A(a) ∈ Πk
T (A) iff A |= ϕA[a] for all

Σ-ABoxes A. By Lemma 6, we obtain (T ,A) |= A(a) iff A |= ϕA[a], as required.

(1) implies (2). This is Theorem 13.

(2) implies (3). Assume KA,T ,Σ is weakly n-local. By unraveling tolerance, it is
sufficient to show that there exists a k ≥ 1 such that for every Σ-tree ABox (A, a)
of depth at most n: A(a) ∈ Π∞T (A) iff A(a) ∈ Πk

T (A). But this is trivial since it is
sufficient to consider the finite set of ABoxes (A, a) without redundancies. o

The boundedness problem for A in ΠT for Σ-ABoxes can easily be translated into a
boundedness problem for monadic least fixed points based on FO over trees in the sense
investigated in [18]. Thus we obtain from [18]:

Theorem 15. For T a unfolding tolerant (equivalently, materializable) ALCFI-TBox
of depth one, Σ a signature, and A an atomic concept, boundedness of A in ΠT for
Σ-ABoxes is decidable.

The first part of Theorem 9 now follows from Lemma 19 and Lemma 5.

Theorem 9 (Part 1) FO-rewritability for CQs is decidable, for the class of materializ-
able ALCFI-TBoxes of depth one.

D.4 Horn-ALCFI

In this section we prove the claims about Horn-TBoxes in Theorems 8 and 9. In fact, the
conditions we require to prove decidability (and decidability in NEXPTIME) are much
less restrictive than those given in the theorems.

To begin with, observe that for a Horn-ALCFI-TBox T and ABoxA that is consis-
tent w.r.t. T the interpretation I corresponding toAc as constructed above is a minimal
model of T . In what follows we call it the canonical minimal model of (T ,A) and de-
note it by IT ,A. Recall that its domain consists of sequences of the form ar1C1 · · · rkCk
with a ∈ Ind(A), r1, . . . , rk roles that occur in T , and C1, . . . , Ck ∈ sub(T ).

Recall that a Horn-ALCFI-TBox has the form T = {> v CT }∪F , where F is a
set of functionality assertions and CT is built according to the topmost syntax rule in:

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | L→ R | ∃r.R | ∀r.R
L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃r.L



Assume a Horn-ALCFI TBox T = {> v CT }∪F is given. We transform T into
another Horn-ALCFI-TBox T 1 of depth one such that, under certain conditions, T is
FO-rewritable for CQ iff all atomic concepts are FO-rewritable w.r.t. T 1 and sig(T )-
ABoxes. The right-role-depth d(R) of a concept R is defined as follows:

d(>) = d(⊥) = 0

d(A) = d(¬A) = 0

d(R uR′) = max{d(R), d(R′)}
d(L→ R) = d(R)

d(∃r.R) = d(R) + 1

d(∀r.R) = d(R) + 1

In what follows, we assume that CT satisfies the following condition:

– every concept L in T has role depth one;
– every L in T that occurs within the scope of ∃r or ∀r within a subconcept R of CT

is a concept name.

One can easily transform CT into such a concept and preserve FO-rewritability for
CQ by introducing abbreviations A ≡ L. We define a new concept C1

T by applying,
recursively, the following rule (∗) to an outermost occurrence of R in CT , where R has
the form Op r.R′, Op ∈ {∃,∀} such that R′ has right-role depth at least one:

(∗) Replace Op r.R′ by Op r.E, where E is a fresh concept name, and add E → R′ as
a conjunct to CT .

We sometimes denote the fresh concept E replacingR by ER. Observe that C1
T has

right-role-depth one and is still a Horn-ALCFI-TBox. Note that C1
T is of polynomial

size. We set T 1 = {> v C1
T } ∪ F . The following lemma is be checked by close

inspection of the construction of Ac.
Lemma 20. For every sig(T )-ABox A:

1. A is consistent w.r.t. T iff A is consistent w.r.t. T 1;
2. There is bijection f : ∆IT ,A → ∆IT 1,A with

– f(a) = a, for all a ∈ Ind(A);
– d ∈ AIT ,A iff f(d) ∈ AIT 1,A , for all d ∈ ∆IT ,A and A ∈ sig(T );
– (d, d′) ∈ rIT ,A iff (f(d), f(d′)) ∈ rIT 1,A for all d, d′ ∈ ∆IT ,A and A ∈

sig(T );
3. for every CQ q not containing fresh concepts:

T ,A |= q(a) ⇔ T 1,A |= q(a).

Say that T = {> v CT } ∪ F contains a return point if there exists a subconcept
R = ∃r.R′ of CT such that func(r) 6∈ F and R′ has a subconcept ∀r−.R′′ with R′′ of
right-role-depth at least one which is not within the scope of any ∃s or ∀s in R′. Note
that if T is a Horn-ALCF-TBox or has role depth at most two, then T contains no
return point.



Lemma 21. Let T be a Horn-ALCFI-TBoxes that has no return point. Then T is
FO-rewritable for CQ iff every atomic concept is FO-rewritable w.r.t. T 1 and sig(T ).

Proof. Assume T = {> v CT } ∪ F , where F is a set of functionality assertions.
Assume first that every atomic concept is FO-rewritable w.r.t. T 1 and sig(T ). Re-

call that T 1 is materializable and has role depth one. Then a straighforward extension
of Lemma 5 (to ABoxes of a fixed signature) shows that all CQs are FO-rewritable
w.r.t. T 1 and sig(T )-ABoxes. By Point 3 of Lemma 20, T is FO-rewritable for CQ.

For the converse direction, assume that T is FO-rewritable.

Claim 1. For any fresh ER with R not in the scope of any ∃r with r 6∈ func(r) there
exists a ELI-concept C such that for every sig(T )-ABox A:

E
IT 1,A
R = CIT 1,A .

The proof is by induction: we consider the first step, the induction step is similar and
left to the reader. Assume R is replaced by ER in the situation described in the claim.
There are R1, . . . , Rm+1 such that Rm+1 is a conjunct of CT and

R1 = (L0 → R0), Rj+1 = (Lj → (Rj uR′j),

for 1 ≤ j ≤ m and (i) R0 = ∀r.R or (ii) R0 = ∃r.R and func(r) ∈ F . In both cases,
set

C = ∃r−.(L0 u · · · u Lm+1).

It is readily checked that E
IT 1,A
R = CIT 1,A , as required.

It follows from Claim 1, Lemma 20, and the condition that T is FO-rewritable for
CQ (and hence for ELIQ) that every fresh ER with R not in the scope of any ∃r with
r 6∈ func(r) is FO-rewritable w.r.t. T 1 and sig(T )-ABoxes. Now, since T has no return
point, it is readily checked that for any fresh ER with R within the scope of some ∃r,
func(r) 6∈ F , we have EIT 1,A ∩ Ind(A) = ∅. Thus, any such ER is FO-rewritable
w.r.t. T 1 and sig(T )-ABoxes.

We have shown that all fresh ER are FO-rewritable w.r.t. T 1 and sig(T )-ABoxes.
By Lemma 20, all atomic concepts in sig(T ) are FO-rewritable w.r.t. T 1 and sig(T )-
Aboxes. Thus all atomic concepts are FO-rewritable w.r.t. T 1 and sig(T )-ABoxes, as
required. o

Observe that no Horn-ALCF-TBox nor Horn-ALCFI-TBox of depth two have
a return point. Thus, we obtain the claims about Horn-TBoxes in Theorems 8 and 9
from Lemma 21 and the fact that for materializable ALCFI-TBoxes (ALCI-TBoxes)
of depth 1, one can decide (in NEXPTIME) FO-rewritability of atomic concepts for
Σ-ABoxes, where Σ is an arbitrary signature.

E Proofs for Section 6

To formulate the result for FO-rewritability, we introduce a slightly modified version of
FO-rewritability that takes into account only those ABoxes that are consistent w.r.t. the
TBox.



Definition 7. Let T be a ALCFI-TBox. Let Q ∈ {CQ,PEQ,ELIQ,ELQ}. We say
that T is FO-rewritable for Q for consistent ABoxes iff for every q(x) ∈ Q one can
effectively construct a FOQ q′(x) such that for every ABoxA that is consistent w.r.t. T ,
certT (q,A) = {a | IA |= q′(a)}.

Using similar modifications of Definition 1, one can define the obvious notions of Q-
answering w.r.t. T being in PTIME for consistent ABoxes and Q-answering w.r.t. T
being coNP-hard for consistent ABoxes. Theorem 1 still holds for these modified no-
tions. For simplicity, we state the following result for CQs only.

We first prove an extended version of the undecidability result (Theorem 11) and
then modify the TBoxes constructed in its proof to show the non-dichomy result (The-
orem 10). The modified version of Theorem 11 is as follows:

Theorem 16. ForALCF-TBoxes T , the following problems are undecidable (Points 1
and 2 are subject to the side condition that PTIME 6= NP):

1. CQ-answering w.r.t. T is in PTIME (with and w/o restriction to consistent ABoxes);
2. CQ answering w.r.t. T is coNP-hard; (with and w/o restriction to consistent ABoxes);
3. T is materializable;
4. T is FO-rewritable for CQ for consistent ABoxes;

The proofs employ TBoxes that have been introduced in [1] to prove the undecidability
of the following emptiness problem: given anALCF-TBox T , a signature Σ with Σ ⊆
sig(T ) and a concept name A, does there exist a Σ-ABox A such that A is consistent
w.r.t. T and (T ,A) |= ∃v.A(v)? Note that this problem is of interest only for A 6∈ Σ
because otherwise one could clearly take the ABox {A(a)}.

We start by defining the TBoxes TP constructed in [1]. An instance of the finite
rectangle tiling problem (FRTP) is given by a triple P = (T, H, V ) with T a non-empty,
finite set of tile types including an initial tile Tinit to be placed on the lower left corner
and a final tile Tfinal to be placed on the upper right corner, H ⊆ T × T a horizontal
matching relation, and V ⊆ T×T a vertical matching relation. A tiling for (T, H, V ) is
a map f : {0, . . . , n}×{0, . . . ,m} → T such that n,m ≥ 0, f(0, 0) = Tinit, f(n,m) =
Tfinal, (f(i, j), f(i+1, j)) ∈ H for all i < n, and (f(i, j), f(i, j+1)) ∈ v for all i < m.
It is undecidable whether an instance P of the FRTP has a tiling. For simplicity, in the
following we fix a set T = {T1, . . . , Tp} of tile types and consider instances of the
FRTP over T only. It is easy to see that the tiling problem is still undecidable if T is
sufficiently large.

Now letΣ = {T1, . . . , Tp, x, y, x−, y−} be a signature consisting of a set T1, . . . , Tp
of concept names (identical to the tile types) and role names x, y, x−, and y− (we are
not assuming that x− and y− are interpreted as the inverse of xand y, respectively). In
[1], with any P = (T, H, V ) one associates the ALCF-TBox TP containing

F = {func(x), func(y), func(x−), func(y−)}

and CIs using additional concept names U,R,L,D,A, Y, Ix, Iy, C, Zc,1, Zc,2, Zx,1,
Zx,2, Zy,1. x and y are used to build the rectangle. U and R mark the upper and right
border of the rectangle. L and D (for “down”) mark the left and lower border of the



rectangle. In the following, for e ∈ {c, x, y}, we let Be range over all Boolean combi-
nations of the concept names Ze,1 and Ze,2, i.e., over all concepts L1 u L2 where Li
is a literal over Ze,i, for i ∈ {1, 2}. The TBox TP is defined as the union of F and the
following CIs, where (Ti, Tj) ∈ H and (Ti, T`) ∈ V :

Tfinal v Y u U uR
∃x.(U u Y u Tj) u Ix u Ti v U u Y
∃y.(R u Y u T`) u Iy u Ti v R u Y

∃x.(Tj u Y u ∃y.Y )
u∃y.(T` u Y u ∃x.Y )

uIx u Iy u C u Ti v Y
Y u Tinit v A

Bx u ∃x.∃x−.Bx v Ix
By u ∃y.∃y−.By v Iy

∃x.∃y.Bc u ∃y.∃x.Bc v C

U v ∀y.⊥
R v ∀x.⊥
U v ∀x.U
R v ∀y.R

t
1≤s<t≤p

Ts u Tt v ⊥

D v ∀y−.⊥
L v ∀x−.⊥
D v ∀x.D u ∀x−.D
L v ∀y.L u ∀y−.L

Y u Tinit v D u L

We note that the final five inclusions (and the concept names L and D) are not used in
[1]. We use them here to fix the left and lower border of the rectangle. Those inclusions
are not required in the present proof, but are used in the non-dichotomy proof below.

Call an ABox A a P-ABox (with initial node a) iff there is a tiling f for P with
domain {0, . . . , n} × {0, . . . ,m} and a bijection fP : {0, . . . , n} × {0, . . . ,m} →
Ind(A) with fP(0, 0) = a such that

– Tinit(fP(0, 0)) ∈ A;
– Tfinal(fP(n,m)) ∈ A;
– Ti(fP(k, j)) ∈ A iff Ti = f(k, j);
– x(b1, b2) ∈ A iff x−(b2, b1) ∈ A iff (b1, b2) = (fP(k, j), fP(k + 1, j))
– y(b1, b2) ∈ A iff y−(b2, b1) ∈ A iff (b1, b2) = (fP(k, j), fP(k, j + 1))

The following is shown in [1] (the proof is easily extended to cover the additional
concepts for the lower and left border):

Lemma 22. For every Σ-ABox A that is consistent w.r.t. TP, the following conditions
are equivalent:

– (TP,A) |= ∃v.A(v);



– A = A0 ∪ A1 for a P-ABox A0 and a, possibly empty, ABox A1 with Ind(A0) ∩
Ind(A1) = ∅.

Observe that the concept name A used in the CQ occurs only once in the TBox, on
the right-hand side of a CI. The CI for C enforces confluence, i.e., C is entailed at an
individual name a if there is an individual b that is both an x-y-successor and a y-x-
successor of a. This is so because, intuitively, Bc is universally quantified: if confluence
fails, we can interpret Zc,1 and Zc,2 in a way such that neither of the two conjuncts in
the precondition of the CI for C is satisfied. In a similar manner, the CI for Ix (resp. Iy)
is used to ensure that x− (resp. y−) acts as the inverse of x (resp. y) at all points in the
rectangle, which means that x (resp. y) is inverse functional within the rectangle. The
following characterization of tilings follows directly from Lemma 22.

Lemma 23. P admits a tiling iff there is a Σ-ABox A that is consistent with TP and
such that TP,A |= ∃v.A(v).

Set Σ = sig(TP) \Σ. To construct the TBoxes we use for the reduction, replace within
the TBoxes TP all B ∈ Σ by the concepts HB = ∀rB .∃sB .¬ZB and add

TZ = {> v ∃rB .>,> v ∃sB .ZB | B ∈ Σ}

to TP. Also, add the inclusion HA v B1 tB2, where B1, B2 are fresh concept names,
to TP. Denote the resulting TBox by T ∨P .

For any ABox A, we denote by AΣ the subset of A consisting of all assertions in
A that use only symbols from Σ.

Lemma 24. For any ABox A, T ∨P ,A |= ∃v.HA(v) iff TP,AΣ |= ∃v.A(v).

Proof. The direction from right to left is trivial. Conversely, suppose (TP,AΣP) 6|=
∃v.A(v). Take a model I of (TP,AΣ) such that AI = ∅. Since there are no existential
restrictions on the right hand side of CIs, we can assume that∆I = {aI | a ∈ Ind(A)}.
Now set, for B ∈ Σ, IB = {a ∈ Ind(A) | aI ∈ BI}. Using Lemma 1, we can find a
model I of (T ′P,A) refuting ∃v.HA(v). o

Lemma 25. Assume P does not admit a tiling. Then T ∨P is FO-rewritable for consistent
ABoxes. Hence T ∨P is materializable and CQ-answering w.r.t. T ∨P is in PTIME.

Proof. If P does not admit a tiling, then (TP,AΣ) 6|= ∃v.A(v), for any ABox A such
that A is consistent w.r.t. TP, by Lemma 23. Thus, (T ∨P ,A) 6|= ∃v.HA(v) for any
ABox A such that A is consistent w.r.t. T ∨P , by Lemma 24. But now one can show for
any ABox A that is consistent w.r.t. T ∨P and any CQ q,

(T ∨P ,A) |= q ⇔ (TZ ,A) |= q

TZ is FO-rewritable. Thus, T ∨P is FO-rewritable for consistent ABoxes. o



Lemma 26. Assume P admits a tiling. Then T ∨P is not materializable. Thus, T ∨P is not
FO-rewritable for consistent ABoxes and CQ-answering w.r.t. T is coNP-hard.

Proof. LetA be a Σ-ABox such that (TP,A) |= ∃v.A(v) andA is consistent w.r.t. TP.
Then (T ∨P ,A) |= ∃v.(B1(v)∨B2(v)) andA is consistent w.r.t. T ∨P . It is readily checked
that (T ∨P ,A) 6|= ∃v.B1(v) and (T ∨P ,A) 6|= ∃v.B2(v). Thus, T ∨P is not materializable.

o

From Lemmas 25 and 26, we obtain Points 3 and 4 of Theorem 16 as well as Points 1
and 2 for consistent ABoxes. Thus, to prove Theorem 16 it remains to show the follow-
ing lemma.

Lemma 27. Consistency of ABoxes w.r.t. T ∨P can be decided in polynomial time (in the
size of the ABox).

Proof. Assume A is given. Form AΣ and apply the following rules exhaustively:

– add Ix(a) to AΣ if there exists b with x(a, b), x−(b, a) ∈ A;
– add Iy(a) to AΣ if there exists b with y(a, b), y−(b, a) ∈ A;
– add C(a) to AΣ if there exist a1, a2, b with x(a, a1), y(a, a2), y(a1, b), x(a2, b) ∈
A.

Denote the resulting ABox by A′. Now remove the three inclusion schemata involving
the Boolean combinations B from TP and denote by T the resulting TBox. One can
show that (T ∨P ,A) is consistent iff (T ,A′) is consistent. The consistency of the latter
can be checked in polynomial time since T is a Horn-ALCF-TBox. o

We now come to the proof of Theorem 10.

Theorem 10 For every language L in coNP there exists a ALCF-TBox T and query
rej(a), rej a concept name, such that the following holds:

– there exists a polynomial reduction of deciding v ∈ L to answering rej(a) w.r.t. T ;
– for every Boolean ELIQ q, answering q w.r.t. T is polynomially reducible to decid-

ing v ∈ L.

Consider a non-deterministic TM M = (Q,Σ,∆, q0, qa, qr) with Q a finite set of
states, Σ a finite alphabet, q0 ∈ Q a starting state, ∆ ⊆ Q×Σ ×Q×Σ × {L,R} the
a transition relation, and qa, qr ∈ Q the accepting and rejecting states. We assume that
for any input v ∈ Σ∗, M halts after exactly |v|k steps in the accepting or rejecting state
and that it uses exactly nk cells for the computation. Denote by L(M) the language
accepted by M and assume that L = Σ∗ \ L(M).

The ABoxes we use to simulate input words v ∈ Σ∗ are m1 ×m2 grids in which
Tinit is written in the lower left corner followed by the the word v, Tfinal is written in the
upper right corner, and B (for blank) is written everywhere else. In our construction of
T we first build a TBox that “checks” whether the input ABox is of this form.

To define this part of the TBox, we re-use the above TBox TP, where P = (T, H, V )
with T = {B, Tfinal, Tinit} ∪Σ and H consisting of all pairs in T× T except

– (B, σ) for σ ∈ Σ,



– (σ, Tfinal) for σ ∈ Σ,
– (Tfinal, T ), (T, Tinit), for T ∈ T,

and V consisting of all pairs in T× T except

– (B, σ) for σ ∈ Σ,
– (σ1, σ2) for σ1, σ2 ∈ Σ,
– (σ, Tfinal) for σ ∈ Σ,
– (Tfinal, T ), (T, Tinit), for T ∈ T.

For any n,m ≥ 2, and any word v ∈ L∗ there is exactly one tiling f for P. That tiling
places Tinit in the lower left corner followed by the the word v, Tfinal in the upper right
corner, and B is written everywhere else. Thus, every P-ABox A (with initial node a)
is isomorphic to some n×m-grid with a word Tinitv (v ∈ L∗) written in the lower left
corner. We call this ABox the grid-ABox for the n×m-rectangle with word v. Set

Tgrid := TP, T SO
grid := T ∨P \ {HA v B1 tB2}.

Recall that T SO
grid contains the inclusions TZ for “second-order variables”.

To encode the computation of the TMM we use the following setZM of inclusions.
Intuitively, assume that a grid-ABox with initial node a for the n ×m-rectangle with
word v is given. Then (T SO

grid,A) |= HA(a). We introduce a concept nameHgrid denoting
all individual names in A:

HA v Hgrid, Hgrid v ∀r.Hgrid

for all r ∈ {x, y, x−, y−}. The remaining inclusions are all relativized to Hgrid. The
remaining inclusions use

– concept names q ∈ Q that indicate the state of the TM in the computation;
– concept names σ ∈ Σ for the input word;
– concept names Aσ , σ ∈ Σ, for symbols written during the computation (and as

copies of the symbols of the input word);
– a concept name H for the head of the TM.

We simulate the instructions of M by taking for (q, σ, q′) ∈ Q×Σ ×Q:

Hgrid uH u q uAσ v t
(q,σ,q′,σ′,L)∈∆

(∃y.(Aσ′ u q′ u ¬H u ∀x.¬H u ∃x−.H) t

t
(q,σ,q′,σ′,R)∈∆

∃y.(Aσ′ u q′ u ¬H u ∀x−.¬H u ∃x.H))

We state that cells can only change where H is:

Hgrid u ¬H uAσ v ∀y.Aσ, Hgrid u ¬H u ¬Aσ v ∀y.¬Aσ

We state that H cannot be introduced without a corresponding computation step:

Hgrid u ¬H u ∀x−.¬H u ∀x.¬H v ∀y.¬H.



We state that, when M starts, it is in state q0 and that the head is at the first cell:

Tinit uHgrid v q0, Tinit uHgrid ≡ ∃x.H u ∀y−.⊥ uHgrid.

We state that every state q is uniform over each step of the computation:

q uHgrid v ∀x.q u ∀x−.q.

We state that Aσ is true where σ from the input word is true:

Hgrid u σ ≡ Hgrid u ∀y−.⊥ uAσ,

for σ ∈ Σ. We close with

Hgrid uAσ uAσ′ v ⊥, Hgrid u q u q′ v ⊥,

for σ 6= σ′ and q 6= q′, and the assertion that rej is true everywhere in the ABox if the
machine reaches the rejecting state:

Hgrid u qr v rej, Hgrid u rej v ∀r.rej

for r ∈ {x, y, x−, y−}. This finishes the definition of ZM . As before, we replace every
concept name

B ∈ X := Q ∪ {Aσ | σ ∈ Σ} ∪ {Hgrid, H}

by HB = ∀rB .∃sB .¬ZB , add

TZ,1 = {> v ∃rB .>,> v ∃sB .ZB | B ∈ X}

to ZM and denote the resulting TBox by ZSO
M . We set T SO

M = T SO
grid ∪ZSO

M . Note that the
only “real” concept names in T SO

M are T and rej. The following lemma is straightforward
now and proves Part 1 of Theorem 10.

Lemma 28. IfA is the grid-ABox for them1×m2-rectangle with word v andm1,m2 ≥
nk for n = |v|, then (T SO

M ,A) |= rej(a) iff v 6∈ L(M).

By Lemma 28, to check v 6∈ L(M), it sufficient to construct the grid-ABox for the
nk × nk-rectangle with word v and then decide (T SO

M ,A) |= rej(a). Thus, we have
shown that there exists a polynomial reduction of deciding v ∈ L to answering rej(a)
w.r.t. T SO

M .
We now show that for every ELIQ C(f), answering C(f) w.r.t. T SO

M can be poly-
nomially reduced to deciding v ∈ L. Assume C(f) is given. Consider an ABox A.

Claim 1. It can be checked in polytime (in the size of A) whether A is consistent
w.r.t. T SO

M .

Observe that A is not consistent w.r.t. T SO
M iff

– A contains a grid-ABox for a m1 × m2-rectangle with word v and m1 < nk or
m2 < nk for n = |v|; or

– A is not consistent w.r.t. T SO
grid .



The first condition can clearly be checked in polytime and the latter is in PTIME by
Lemma 27.

Now, if A is consistent w.r.t. T SO
M , then one of the following two cases applies:

– f is in a grid-ABox for the m1 ×m2-rectangle with word v and m1,m2 ≥ nk for
n = |v| (there can be other disjoint components). In that case (T SO

M ,A) |= C(f)
iff (TV ,A′) |= C(f), where
• A′ is defined by setting A′ = A ∪ {rej(b) | b ∈ Ind(A)} if v 6∈ L(M); and
A′ := A otherwise.

• TV = TZ ∪ TZ,1.
Both conditions can be checked in polytime.

– f is not in a grid-ABox for the m1 × m2-rectangle with word v. In that case
(T SO
M ,A) |= C(f) iff (TZ ,A) |= C(f). The latter condition can be checked in

polytime.


