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Abstract. The standard reasoning problem, concept satisfiability, in the
basic description logic ALC is PSPACE-complete, and it is EXPTIME-
complete in the presence of unrestricted axioms. Several fragments of
ALC, notably logics in the FL, EL, and DL-Lite families, have an easier
satisfiability problem; sometimes it is even tractable. We classify the
complexity of the standard satisfiability problems for all possible Boolean
and quantifier fragments of ALC in the presence of general axioms.

1 Introduction

Standard reasoning problems of description logics, such as satisfiability or sub-
sumption, have been studied extensively. Depending on the expressivity of the
logic, the complexity of reasoning for DLs between fragments of the basic DL
ALC and the OWL 2 standard SROIQ is between trivial and NEXPTIME.

For ALC, concept satisfiability is PSPACE-complete [32]. In the presence of
unrestricted axioms, it is EXPTIME-complete due to the correspondence with
propositional dynamic logic [30, 34, 17]. Since the standard reasoning tasks are
interreducible, subsumption has the same complexity.

Several fragments of ALC, such as logics in the FL, EL or DL-Lite families,
are well-understood. They usually restrict the use of Boolean operators and of
quantifiers, and it is known that their reasoning problems are often easier than for
ALC. We now need to distinguish between satisfiability and subsumption because
they are no longer obviously interreducible if certain Boolean operators are missing.
Concept subsumption with respect to acyclic and cyclic terminologies, and even
with general axioms, is tractable in the logic EL, which allows only conjunctions
and existential restrictions, [4, 11], and it remains tractable under a variety of
extensions such as nominals, concrete domains, role chain inclusions, and domain
and range restrictions [5, 6]. Satisfiability for EL, in contrast, is trivial, i.e., every
EL-ontology is satisfiable. However, the presence of universal quantifiers usually
breaks tractability: Subsumption in FL0, which allows only conjunction and
universal restrictions, is coNP-complete [27] and increases to PSPACE-complete
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with respect to cyclic terminologies [3, 21] and to EXPTIME-complete with
general axioms [5, 20]. In [15, 16], concept satisfiability and subsumption for
several logics below and above ALC that extend FL0 with disjunction, negation
and existential restrictions and other features, is shown to be tractable, NP-
complete, coNP-complete or PSPACE-complete. Subsumption in the presence of
general axioms is EXPTIME-complete in logics containing both existential and
universal restrictions plus conjunction or disjunction [18], as well as in AL, where
only conjunction, universal restrictions and unqualified existential restrictions
are allowed [14]. In DL-Lite, where atomic negation, unqualified existential and
universal restrictions, conjunctions and inverse roles are allowed, satisfiability
of ontologies is tractable [13]. Several extensions of DL-Lite are shown to have
tractable and NP-complete satisfiability problems in [1, 2]. The logics in the EL
and DL-Lite families are so important for (medical and database) applications
that OWL 2 has two profiles that correspond to logics in these families.

This paper revisits restrictions to the Boolean operators in ALC. Instead
of looking at one particular subset of {u,t,¬}, we are considering all possible
sets of Boolean operators, and therefore our analysis includes less commonly
used operators such as the binary exclusive or ⊕. Our aim is to find for every
possible combination of Boolean operators whether it makes satisfiability of the
corresponding restriction of ALC hard or easy. Since each Boolean operator
corresponds to a Boolean function—i.e., an n-ary function whose arguments
and values are in {0, 1}—there are infinitely many sets of Boolean operators
that determine fragments of ALC. The complexity of the corresponding con-
cept satisfiability problems without theories has already been classified in [19]
between being PSPACE-complete, coNP-complete, tractable and trivial for all
combinations of Boolean operators and quantifiers.

The tool used in [19] for classifying the infinitely many satisfiability problems
was Post’s lattice [29], which consists of all sets of Boolean functions closed under
superposition. These sets directly correspond to all sets of Boolean operators
closed under composition. Similar classifications have been achieved for satisfi-
ability for classical propositional logic [22], Linear Temporal Logic [8], hybrid
logic [24], and for constraint satisfaction problems [31, 33].

In this paper, we classify the concept satisfiability problems with respect to
theories for ALC fragments obtained by arbitrary sets of Boolean operators and
quantifiers. We separate these problems into EXPTIME-complete, NP-complete,
P-complete and NL-complete, leaving only two single cases with non-matching
upper and lower bound. We will also put these results into the context of the
above listed results for ALC fragments.

This study extends our previous work in [25] by matching upper and lower
bounds and considering restricted use of quantifiers.

2 Preliminaries

Description Logic. We use the standard syntax and semantics of ALC [7], with
the Boolean operators u, t, ¬, >, ⊥ replaced by arbitrary operators ◦f that
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correspond to Boolean functions f : {0, 1}n → {0, 1} of arbitrary arity n. Let
NC, NR and NI be sets of atomic concepts, roles and individuals. Then the set of
concept descriptions, for short concepts, is defined by

C := A | ◦f (C, . . . , C) | ∃R.C | ∀R.C,

where A ∈ NC, R ∈ NR, and ◦f is a Boolean operator. For a given set B of
Boolean operators, a B-concept is a concept that uses only operators from B. A
general concept inclusion (GCI) is an axiom of the form C v D where C,D are
concepts. We use “C ≡ D” as the usual syntactic sugar for “C v D and D v C”.
A TBox is a finite set of GCIs without restrictions. An ABox is a finite set of
axioms of the form C(x) or R(x, y), where C is a concept, R ∈ NR and x, y ∈ NI.
An ontology is the union of a TBox and an ABox. This simplified view suffices
for our purposes.

An interpretation is a pair I = (∆I , ·I), where ∆I is a nonempty set and ·I
is a mapping from NC to P(∆I), from NR to P(∆I ×∆I) and from NI to ∆I

that is extended to arbitrary concepts as follows:

◦f (C1, . . . , Cn)I = {x ∈ ∆I | f(‖x ∈ CI1 ‖, . . . , ‖x ∈ CIn‖) = 1},
where ‖x ∈ CI1 ‖ = 1 if x ∈ CI1 and ‖x ∈ CI1 ‖ = 0 if x /∈ CI1 ,

∃R.CI = {x ∈ ∆I | {y ∈ CI | (x, y) ∈ RI} 6= ∅},
∀R.CI = {x ∈ ∆I | {y ∈ CI | (x, y) /∈ RI} = ∅}.

An interpretation I satisfies the axiom C v D, written I |= C v D, if CI ⊆ DI .
Furthermore, I satisfies C(x) or R(x, y) if xI ∈ CI or (xI , yI) ∈ RI . An
interpretation I satisfies a TBox (ABox, ontology) if it satisfies every axiom
therein. It is then called a model of this set of axioms.

Let B be a finite set of Boolean operators and Q ⊆ {∃,∀}. We use ConQ(B),
TQ(B) and OQ(B) to denote the set of all concepts, TBoxes and ontologies that
use operators in B only and quantifiers from Q only. The following decision
problems are of interest for this paper.

Concept satisfiability CSATQ(B):
Given a concept C ∈ ConQ(B), is there an interpretation I s.t. CI 6= ∅ ?

TBox satisfiability TSATQ(B):
Given a TBox T ⊆ TQ(B), is there an interpretation I s.t. I |= T ?

TBox-concept satisfiability TCSATQ(B):
Given T ⊆ TQ(B) and C ∈ ConQ(B), is there an I s.t. I |= T and CI 6= ∅ ?

Ontology satisfiability OSATQ(B):
Given an ontology O ⊆ OQ(B), is there an interpretation I s.t. I |= O ?

Ontology-concept satisfiability OCSATQ(B):
Given O ⊆ OQ(B) and C ∈ ConQ(B), is there an I s.t. I |= O and CI 6= ∅ ?

By abuse of notation, we will omit set parentheses and commas when stating Q
explicitly, as in TSAT∃∀(B). The above listed decision problems are interreducible
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independently of B and Q in the following way:

CSATQ(B) ≤log
m OSATQ(B)

TSATQ(B) ≤log
m TCSATQ(B) ≤log

m OSATQ(B) ≡log
m OCSATQ(B)

Some reductions in the main part of the paper consider another decision
problem which is called subsumption (SUBS) and is defined as follows: Given a
TBox T and two atomic concepts A,B, does every model of T satisfy A v B ?

Complexity Theory. We assume familiarity with the standard notions of complex-
ity theory as, e.g., defined in [28]. In particular, we will make use of the classes
NL, P, NP, coNP, and EXPTIME, as well as logspace reductions ≤log

m .

Boolean operators. This study is complete with respect to Boolean operators,
which correspond to Boolean functions. The table below lists all Boolean functions
that we will mention, together with the associated DL operator where applicable.

Function symbol Description DL operator symbol

0, 1 constant 0, 1 ⊥, >
and, or binary conjunction/disjunction ∧, ∨ u, t
neg unary negation ·̄ ¬
xor binary exclusive or ⊕ �
andor x ∧ (y ∨ z)
sd (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
equiv binary equivalence function

Table 1. Boolean functions with description and corresponding DL operator
symbol.

A set of Boolean functions is called a clone if it contains all projections (also
known as identity functions, the eponym of the I-clones below) and is closed
under composition (also referred to as superposition). The lattice of all clones has
been established in [29], see [10] for a more succinct but complete presentation.
Via the inclusion structure, lower and upper complexity bounds can be carried
over to higher and lower clones under certain conditions. We will therefore state
our results for minimal and maximal clones only, together with those conditions.

Given a finite set B of functions, the smallest clone containing B is denoted
by [B]. The set B is called a base of [B], but [B] often has other bases as well. For
example, nesting of binary conjunction yields conjunctions of arbitrary arity. The
table below lists all clones that we will refer to, using the following definitions.
A Boolean function f is called self-dual if f(x1, . . . , xn) = f(x1, . . . , xn), c-
reproducing if f(c, . . . , c) = c for c ∈ {0, 1}, and c-separating if there is an
1 ≤ i ≤ n s.t. for each (b1, . . . , bn) ∈ f−1(c), it holds that bi = c.

From now on, we will use B to denote a finite set of Boolean operators. Hence,
[B] consists of all operators obtained by nesting operators from B. By abuse of
notation, we will denote operator sets with the above clone names when this
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Clone Description Base

BF all Boolean functions {and, neg}
R0, R1 0-, 1-reproducing functions {and, xor}, {or, equiv}
M all monotone functions {and, or, 0, 1}
S1 1-separating functions {x ∧ y}
S11 1-separating, monotone functions {andor, 0}
D self-dual functions {sd}
L affine functions {xor, 1}
L0 affine, 0-reproducing functions {xor}
L3 affine, 0- and 1-reproducing functions {x xor y xor z xor 1}
E0, E conjunctions and 0 (and 1) {and, 0}, {and, 0, 1}
V0, V disjunctions and 0 (and 1) {or, 0}, {or, 0, 1}
N2, N negation (and 1) {neg}, {neg, 1}
I0, I 0 (and 1) {0}, {0, 1}

Table 2. List of all relevant clones in this paper with their standard bases.

is not ambiguous. Furthermore, we call a Boolean operator corresponding to
a monotone (self-dual, 0-reproducing, 1-reproducing, 1-separating) function a
monotone (self-dual, ⊥-reproducing, >-reproducing, >-separating) operator.

Known complexity results for CSAT. In [19], the complexity of concept satisfia-
bility has been classified for modal logics corresponding to all fragments of ALC
with arbitrary combinations of Boolean operators and quantifiers: CSATQ(B)
with Q ⊆ {∃,∀} is either PSPACE-complete, coNP-complete, or in P. Some of
the latter cases are trivial, i.e., every concept in such a fragment is satisfiable.
These results generalize known complexity results for ALE and the EL and FL
families. On the other hand, results for ALU and the DL-Lite family cannot be
put into this context because they only allow unqualified existential restrictions.
See [25] for a more detailed discussion.

3 Complexity Results for TSAT, TCSAT, OSAT, OCSAT

In this section we will almost completely classify the above mentioned satisfiability
problems for their tractability with respect to sub-Boolean fragments and put
them into context with existing results for fragments of ALC. Full proofs of every
theorem and auxiliary lemmata are given in [26].

We use ?SATQ(B) to speak about any of the four satisfiability problems
TSATQ(B),TCSATQ(B),OSATQ(B) and OCSATQ(B) introduced above; for
the three problems having the power to speak about a single individual, we
abuse this notion and write ?SAT∼Q(B) for the problems ?SATQ(B) without
TSATQ(B).

3.1 Both quantifiers

Theorem 1 ([30, 34, 17]). OCSAT∃∀(BF) ∈ EXPTIME.
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Due to the interreducibilities stated in Section 2, it suffices to show lower
bounds for TSAT and upper bounds for OCSAT. Moreover one can show that
a base independence result holds which enables us to restrict the proofs to the
standard basis of each clone for stating general results. Several proof sketches
involve the ability to express the constant > through a fresh concept. This
technique goes back to Lewis 1979 [22] and often will be referred to as >-knack.

The following theorem improves [25] by stating completeness results.

Theorem 2. Let B be a finite set of Boolean operators.

1. If I ⊆ [B] or N2 ⊆ [B], then TSAT∃∀(B) is EXPTIME-complete.
2. If I0 ⊆ [B] or N2 ⊆ [B], then ?SAT∼∃∀(B) is EXPTIME-complete.
3. If [B] ⊆ R0, then TSAT∃∀(B) is trivial.
4. If [B] ⊆ R1, then ?SAT∃∀(B) is trivial.

Proof sketch. 1. Membership is immediate from Theorem 1. Hardness can be
shown in two steps: via a reduction from the positive entailment problem for
Tarskian set constraints (cf. [18]) to TSAT∃∀(E) and eliminating in this reduction
the conjunction operator. The latter is achieved by an extended version of the
normalization algorithm in [12]. The case N2 ⊆ [B] then follows directly from
Lemma 1 in [25]. 2. follows from 1. by simulating the constant > with a fresh
concept. 3. and 4. follow from [25]. 2

Part (2) for I0 generalizes the EXPTIME-hardness of subsumption for FL0 and
AL with respect to GCIs [18, 14, 5, 20]. The contrast to the tractability of
subsumption with respect to GCIs in EL, which uses only existential quantifiers,
undermines the observation that, for negation-free fragments, the choice of
the quantifier affects tractability and not the choice between conjunction and
disjunction. DL-Lite and ALU cannot be put into this context because they use
unqualified restrictions.

Parts (1) and (2) show that satisfiability with respect to theories is already
intractable for even smaller sets of Boolean operators. One reason is that sets
of axioms already contain limited forms of implication and conjunction. This
also causes the results of this analysis to differ from similar analyses for sub-
Boolean modal logics in that hardness already holds for bases of clones that are
comparatively low in Post’s lattice.

Part (3) reflects the fact that TSAT is less expressive than the other three
decision problems: it cannot speak about one single individual.

3.2 Restricted quantifiers

In this section we investigate the complexity of the problems OCSATQ, OSATQ,
TCSATQ, and TSATQ, where Q contains at most one of the quantifiers ∃ or
∀. Even the case Q = ∅ is nontrivial: for example, TSATQ(B) does not reduce
to propositional satisfiability for B because restricted use of implication and
conjunction is implicit in sets of axioms.
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TSAT-Results

Theorem 3. Let B be a finite set of Boolean operators.

1. If L3 ⊆ [B] or M ⊆ [B], then TSAT∅(B) is NP-complete.

2. If E = [B] or V = [B], then TSAT∅(B) is P-complete.

3. If [B] ∈ {I,N2,N}, then TSAT∅(B) is NL-complete.

4. Otherwise (if [B] ⊆ R1 or [B] ⊆ R0), then TSAT∅(B) is trivial.

Proof sketch. For the monotone case in 1. it holds that IMP(M) ≤log
m TSAT∅(M)

where IMP(M) being coNP-complete is shown in [9]. For L3 using a knack
from Theorem 2 lets us easily state a reduction from the NP-complete problem
1-in-3-SAT involving the binary exclusive-or. Hardness in the E-case of 2. is
achieved via the hypergraph accessibility problem HGAP; for V = [B] we argue
via contraposition. Membership comes from containment in OCSAT∃(E). In case
3. hardness is shown for I = [B] by reducing from the graph inaccessibility problem
GAP. Membership is entailed by TCSAT∅(N). 4. follows from Theorem 2. 2

Theorem 4. Let B be a finite set of Boolean operators and Q ∈ {∀,∃}.

1. If M ⊆ [B] or N2 ⊆ [B], then TSATQ(B) is EXPTIME-complete.

2. If E = [B], V = [B], or I = [B], then TSATQ(B) is P-complete.

3. Otherwise (if [B] ⊆ R1 or [B] ⊆ R0), then TSATQ(B) is trivial.

Proof sketch. In case 1. with M ⊆ [B] and Q = ∃ we reduce from ELU-SUBS,
the subsumption problem of the logic ELU , whose EXPTIME-completeness has
been proven in [5]. For Q = ∀ we reduce from TSAT∃(B) in combination with a
contraposition argument. For N2, negation can simulate both constants which
leads to a simple reduction from TSAT∃∀(I). The hardness results of item 3.
follow from TSAT∃(I) whose hardness is via a reduction from the word problem
for a particular Turing machine model of the class P. The P-algorithm for the
case ∀ and ∃ extends the algorithm in [11]. The upper bound for TSAT∃(E)
results from OCSAT∃(E); for the remainder we use a contraposition argument. 2

Part (3) generalizes the fact that every EL- and FL0-TBox is satisfiable, and the
whole theorem shows that separating either conjunction and disjunction, or the
constants is the only way to achieve tractability for TSAT.

TCSAT-, OSAT-, OCSAT-Results.

Theorem 5. Let B be a finite set of Boolean operators.

1. If S11 ⊆ [B] or L3 ⊆ [B] or L0 ⊆ [B], then ?SAT∼∅ (B) is NP-complete.

2. If [B] ∈ {E0,E,V0,V}, then ?SAT∼∅ (B) is P-complete.

3. If [B] ∈ {I0, I,N2,N}, then ?SAT∼∅ (B) is NL-complete.

4. Otherwise (if [B] ⊆ R1), then ?SAT∼∅ (B) is trivial.
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Proof sketch. Hardness in 1. follows from the respective TSAT∅(B) case together
with the fact that these fragments can simulate >. Membership is via a reduction
to SAT involving a construction using implication for the terminology. In case 2.
we can adjust the lower bounds from TSAT∅(B) and [B] ∈ {V,E} by simulating
> again. Membership is due to OCSAT∃(E). In 3., membership for N is via
an algorithm that searches for cycles containing a concept and its negation in
the directed graph induced by the terminology. Hardness results from the case
TSAT∅(I) plus the >-knack. The last item is due to Theorem 1. 2

Theorem 6. Let B be a finite set of Boolean operators, and Q ∈ {∀,∃}.

1. If S11 ⊆ [B], N2 ⊆ [B], or L0 ⊆ [B] then ?SAT∼Q(B) is EXPTIME-complete.
2. If I0 ⊆ [B] ⊆ V, then TCSAT∃(B) and ?SAT∼∀ (B) are P-complete3.
3. If [B] ∈ {E0,E}, then ?SAT∼∀ (B) is EXPTIME-complete,

and ?SAT∼∃ (B) is P-complete.
4. If [B] ⊆ R1, then ?SAT∼Q(B) is trivial.

Proof sketch. For 1., combine EXPTIME-completeness of TSATQ(B) with the >-
knack. EXPTIME-hardness of TCSAT∀(B) in case 3. is achieved via a reduction
from FL0-SUBS which is EXPTIME-complete [5, 20]. P-hardness in 2. and 3.
result from TSATQ(I) again with the help of the >-knack. P-membership of
OCSAT∃(E) is accomplished through a reduction to the subsumption problem for
the logic EL++ [6], and a contraposition argument is used to reduce OCSAT∀(V)
to OCSAT∃(E). 4. is due to Theorem 2. 2

Theorem 6 shows one reason why the logics in the EL family have been much
more successful as “small” logics with efficient reasoning methods than the FL
family: the combination of the ∀ with conjunction is intractable, while ∃ and
conjunction are still in polynomial time. Again, separating either conjunction
and disjunction, or the constants is crucial for tractability.

Table 3 gives an overview of our results. [26] contains figures showing how the
results arrange in Post’s lattice.

4 Conclusion

With Theorems 2 to 6, we have completely classified the satisfiability problems
connected to arbitrary terminologies and concepts for ALC fragments obtained by
arbitrary sets of Boolean operators and quantifiers—only the fragments emerging
around ontologies with existential quantifier and disjunction as only allowed
connective resisted a full classification. In particular we improved and finished
the study of [25]. In more detail we achieved a dichotomy for all problems using
both quantifiers (EXPTIME-complete vs. trivial fragments), a trichotomy when
only one quantifier is allowed (trivial, EXPTIME-, and P-complete fragments),
and a quartering for no allowed quantifiers ranging from trivial, NL-complete,
P-complete, and NP-complete fragments.

3 OSAT∃(B) and OCSAT∃(B) are P-hard for [B] ∈ {V0,V} and in EXPTIME.
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TSATQ(B) I V E N/N2 M L3 to BF otherwise

Q = ∅ NL P NL NP trivial

|Q| = 1 P EXPTIME trivial

Q = {∃, ∀} EXPTIME trivial

?SAT∼Q(B) I/I0 V/V0 E/E0 N/N2 S11 to M L3/L0 to BF otherwise

Q = ∅ NL P NL NP trivial

Q = {∃} P P§ P EXPTIME trivial

Q = {∀} P EXPTIME trivial

Q = {∃, ∀} EXPTIME trivial

Table 3. Complexity overview for all Boolean function and quantifier fragments.
All results are completeness results for the given complexity class, except for the
case marked §: here, OCSAT and OSAT are in EXPTIME and P-hard.

Furthermore the connection to well-known logic fragments of ALC, e.g., FL
and EL now enriches the landscape of complexity by a generalization of these
results. These improve the overall understanding of where the tractability border
lies. The most important lesson learnt is that the separation of quantifiers together
with the separation of either conjunction and disjunction, or the constants, is
the only way to achieve tractability in our setting.

Especially in contrast to similar analyses of logics using Post’s lattice, this
study shows intractable fragments quite at the bottom of the lattice. This
illustrates how expressive the concept of terminologies and assertional boxes
is: restricted to only the Boolean function false besides both quantifiers we
are still able to encode EXPTIME-hard problems into the decision problems
that have a TBox and a concept as input. Thus perhaps the strongest source
of intractability can be found in the fact that unrestricted theories already
express limited implication and disjunction, and not in the set of allowed Boolean
functions alone.

For future work, it would be interesting to see whether the picture changes
if the use of general axioms is restricted, for example to cyclic terminologies—
theories where axioms are cycle-free definitions A ≡ C with A being atomic.
Theories so restricted are sufficient for establishing taxonomies. Concept satis-
fiability for ALC w.r.t acyclic terminologies is still PSPACE-complete [23]. Is
the tractability border the same under this restriction? One could also look at
fragments with unqualified quantifiers, e.g., ALU or the DL-lite family, which are
not covered by the current analysis. Furthermore, since the standard reasoning
tasks are not always interreducible under restricted Boolean operators, a similar
classification for other decision problems such as concept subsumption is pending.
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