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_ Abstract—We show that the satisfiability problem for the two- admits a model. When considering products of modal logics,
dimensional extensionK x K of unimodal K is nonelementary, it has been shown that the computational complexity of satis
hereby confirming a conjecture of Marx and Mikulas from giapijin: checking often increases drastically in companigo

2001. Our lower bound technique allows us to derive further th Il-behaved t loqi A | id
lower bounds for many-dimensional modal logics for which only € well-behaved component logics. AS an exampie, consider

elementary lower bounds were previously known. We also derive the basic modal logid< and its variantK4 for reasoning

nonelementary lower bounds on the sizes of Feferman-Vaught over the class of transitive frames. SatisfiabilityPSPACE-

decompositions w.r.t. product for any decomposable logic that is complete for bothK and K4 [4], while for K x K and

at least as expressive as unimoddK. Finally, we study the sizes K4 x K only elementary upper bounds were known [3]. Even

of Feferman-Vaught decompositions and formulas in Gaifman tisfiability b decidablelinx K x K [5

normal form for fixed-variable fragments of first-order logic. worse, salistiability becomes undeci _a ernx K x i (5]
and K4 x K4 [6]. To some extent, this can be explained by

. INTRODUCTION the grid-like shape of product structures.

A. Modal Logic and Many-Dimensional Modal Logic B. Logical Decomposition

Modal logic[1], [2] originated in philosophy and for a long Logical decompositioncan concisely be summarized as

time it was known as 'the logic of necessity and IOOSSibiJity,Lollows: A logic £ admits decomposition w.r.t. some operation

Later, it has been discovered that modal logics are well- . - . :
o : ; if all L£-properties that are interpreted on composed (with
suited to talk about relational structures, so cal(&gipke) P prop P p (

. . respect to the operatiasp) structures, are already determined
frames Rela_t|onal struc_tures appear in many branches 8{/ the L-properties of the component structures. Logical
computer science, (_:onS|der for gxample transition Sysmm_sdecomposition dates back to the work of Mostowski [10] and
verification, semantic networks in knowledge represemmati coterman and Vaught [11], where it is shown that first-order
or _attnbute _valge structures in I!ngwsncs. This has lead logic (FO) is decomposable w.r.t. a general product operation,
various appl|cat|on§ of modal I_O,g',c In areas such as compUlBhich covers also disjoint union and product. Later, both fo

science, mathematics, and artificial intelligence. more expressive logics and for more sophisticated opestio

Depending on the gpplication, a lot of different mOdaéuch decomposability results have been proven, see [12] for
operators have been introduced in the past, each of thsm excellent survey.

tailored towards expressing different features of the doma /o, proving decomposability for a logi€, one often

For instance there are modalities that talk about time, &pagi-.n< an effective procedure for computing such decompo-

knowledge, beliefs, etc. sitions: Given a formulay from £ evaluated on composed

However, it tumed out that recent application domaingctyres, one can effectively compute (i) a finite set of
require to express properties tltaimbinedifferent modalities, formulas {o; ¢n}, each being evaluated on some spe-
PR nijs

e.g., talk about the evollution of .knowledge over ti_me. IRific component, and (ii) a propositional formula whose
order to reflect these requirements in theamgny-dimensional ropositions are tests of the for@; £ ¢;, such that for all
modal logics have been studied intensively [7], [8]. A pa'}gomposed structures :op(Gl,...,Gk)Z]G = o if and only

ticular way of combining two logics; and £y is building it 5 ajuates to true. The size of the resulting decomposition
their product £, x Ly [3]. For products, the semantics iSg ically nonelementary in the size of the original folenu

given in terms of structures, whose frames are restricted - ot g proved that this is unavoidableit= FO [9]
be asynchronous products of the (one-dimensional) conmpone Decomposition theorems have powerful implications in

frames. The mterpretatlon. of the gtqmlc propositions iaedo computer science logic. Let us mention only four of them.
in an uninterpreted way, i.e., it is independent from the Firstly, assume some decomposable logicThen decid-

component frames. _ability of the £-theory of some composed structure, for in-

An_|m_p_ortant ar_ld yvell-stud|e_d problem in th_|s context Igiance a product structure, can be derived from the dedigabi
satisfiability checkingi.e., to decide whether a given formulaOf the £-theories of its component structures

Jean Christoph Jung was supported by the DFG project LU 1417/ Second_ly, let us mention th_‘m(_)del checkinga fixed £-
Markus Lohrey was supported by the DFG project GELO. formula (i.e. thedata complexity in a composed structure



is not harder than model checking fixetiformulas on the  In the same fashion, for the three-variable fragme@t
component structures: If the formula is fixed, also the decorof first-order logic, we can derive the following new results
position is fixed (although possibly large). (i) the size of Feferman-Vaught decompositions w.r.t.aiig;
Moreover, decompositional methods can be applied feum are inherently nonelementary and (ii) equivalent fdasiu
showing decidability ofatisfiability checkinglnstead of ask- in Gaifman normal form are inherently nonelementary. It is
ing whether a given formulg is satisfiable in a composedworth mentioning that (i) and (ii) were shown in [9] for full
model, one computes a decomposition {ar translates the FO. By inspecting the formulas in [9] it turns out that they
decomposition into disjunctive normal form, and finally cke are in fact FO*-formulas. However, it seems to be unclear
satisfiability of a conjunction of formulas in their correspl- whether the construction from [9] can be adapted so that it
ing components. Rabinovich proved that basic modal logjtelds FO*-formulas.
K is decomposable w.r.tinterpreted products [13], where  Finally, we provide effective doubly exponential (and henc
“interpreted” means that the interpretation of the profimss elementary) upper bounds for the two-variable fragnfedt
is inherited from the component structures. It is worth mgti of first-order logic both for Feferman-Vaught decompositio
that this, however, does not lead to decidabilityok K w.r.t. and for equivalent formulas in Gaifman normal form. This
the classical (uninterpreted) products mentioned abowe. Jupports former observations that in many aspd@s is
the contrary, satisfiability w.r.t. interpreted producsseiasily better behaved thaRO®. For instance, in contrast 80 it
reducible to the uninterpreted version. has a finite model property and satisfiability is decidabi.[1
Finally, an important application of logical decompositio We also prove (non-matching) lower bounds of the far¥
a la Feferman and Vaught is the (original) proof@difman’s (for any constant) for both Feferman-Vaught decomposition
locality theorem[14] stating that every first-order sentenceind equivalent formulas in Gaifman normal form fe®>.
is equivalent to a boolean combination of basic local sen-
tences, where a basic local sentence admits quantification
only relativized to finite neighbourhoods of elements. Gaif For i,j € Z let [4,j] be the interval[i,i + 1,...,j]. By
man’s locality theorem has important applications such &&= {0,1,...} we denote the non-negative integers. For a set
inexpressibility results for first-order logic. For a fuethand X We denote bybool(X) the set of boolean formulas with
more recent application of Gaifman’s locality theorem wdariables ranging oveX. Let u = uy---uy € X with u; € X
mention algorithmic meta-theorems for first-order logig]j1 for eachi e [1,k]. By |u| = k we denote thdengthof u.
stating that first-order properties can be efficiently sdlea A Kripke Frames and Structures
numerous classes of structures.

Il. PRELIMINARIES

Let us fix a countable set afction labelsA and a countable
C. Our Contributions and Related Work set ofpropositional variable®. For a finite sefA ¢ A of action

As our first main result we show that (even the interpretd@P€!S, anA-frameis a tuples = (W, {— a ¢ A}), whereW”
variant of) the satisfiability problem of two-dimensionabdal 1S Set ofworldsand — < W x W' is a binary (accessibility)
logic K2 = K x K has nonelementary complexity, herebyrelatlon overW for eacha € A. An (A,P)-Krlpke structure
solving a fundamental problem that has been open for mdf¥ (A, P)-structurefor short), for a finite sefA ¢ A of action
than 10 years. Gabbay and Shetman proved in 1998 ilghels and a fmllte se® ¢ P of propositional varlables,als a
satisfiability in K2 is decidable in a tower of exponentialdUple & = (W,{—a ¢ A}, {W, | p € P}), where (W, {—/|
[3]. To the best of the authors’ knowledge, the best knowh€¢ A}) is anA-frame andW, < W' is an interpretation for
lower bound has beeNEXP-hardness shown by Marx andeach propositional variable e P. By (&) W {Slae
Mikulas in 2001 [16]. In fact, we prove that satisfiability inA}) we denote the underlying-frame of &. By |G| = |[IV/|
K? restricted to formulas of switching depth(the minimal we denote thaizeof &. We say that5 is finite if W is finite.
modal rank among the two dimensions)isNEXP-complete, Forse W let Ng(s) def {ueW|3aeA:s—u} be the set
hereby confirming a conjecture of Marx and Miksl[16]. We of direct successors of in &. A pointed (A, P)-structureis
derive nonelementary lower bounds for the two-dimensionalpair (&, s) where& is an (A, P)-structure ands is a world
modal logicsK4 x K andS5; x K for which only elementary of &. An ({a}, P)-structure is also callednimodal We write
lower bounds were knowq [7]. _ (W, i>, {W, | peP}) instead of(W, {L}, {W, |peP}).

Our lower bound technique allows us to derive a nonele- . )
mentary lower bound for the size of Feferman-Vaught decorii: Multimodal Logic
positions w.r.t. product foK. Such a result was already shown Formulasof multimodal logicare defined by the following
in [17]. However, in contrast to [17], our proof techniqueyrammar, where: (resp.,p) ranges ovei\ (resp.,P):
implies that the nonelementary lower bound carries over to .
all decomposable logics that are at least as expressive as v | me [ ene | Oap
K. An instance of such a logic is the two-variable fragmee introduce the usual abbreviations pv-p for somep € P,
FO? of first-order logic. Moreover, we prove that the same = —T, ¢ Vs = =(—p1 A-a), andg, e = - Oy ~p. We say
lower bound holds when relativized to the class of finitedreethat ¢ is over (A, P) if the set of action labels (resp. the set
answering an open problem formulated in [17]. of propositional variables) that appears¢nis a subset ofA



(resp.P). For an(A, P)-structureS = (W, {—| a € A}, {W, | product structures (in the above sense) such that for some
peP}), we W, and a formulay over (A, P), we define the world w of & we have(&,w) E . For an interpretatiom,
satisfaction relatior(&, w) E ¢ by structural induction orp, a o-modelis a o-product structureS such that(&S,w) = ¢

wherea € A andp € P: for some worldw of G. We sayyp is uninterpreted satisfiable

def (resp., o-satisfiablg if ¢ has an uninterpreted (resps;)
(G,w)kp <= weW, product model. Let us introduce the following decision
def 7 H d.
(G,w)E—p S (S,w)H e problems for multimodal (um;’nodaK :
e MULTIMODAL (UNIMODAL ) K%-SAT
(S w)EpiAgy S (6,w)F e and(S,w) F e ( , ) S d
def . « , INPUT: A multimodal (unimodal)K“-formula ¢.
(Gw)ECap = Jw':w—w and(S,w')=¢  QUESTION: Is ¢ uninterpreted satisfiable?
Let ¢ be a multimodal logic formula ovefA, P). An (A,P)-  We introduce the corresponding variant in the presence of

structureS is amodelof ¢ if (&,w) & ¢ for some worldw  an interpretatiors of the atomic propositions.
of &. We say thaty is satisfiableif ¢ has a model. MULTIMODAL (UNIMODAL ) K¢-SAT

C. Asynchronous Products and Many-Dimensional ModgipUT: A multimodal (unimodal)K?-formula ¢ and
Logic some interpretatiom.

Fix non-empty, finite, and pairwise disjoint setQUESTION: Is ¢ o-satisfiable?

Ar,...,Aq € A of action labels and non-empty, finite, gjnce we mainly deal with the unimodal case in this paper,

and pairwise disjoint set®y,...,Pq ¢ P of propositional o sed_SAT as an abbreviation for UNIMODAIK(-SAT.

variables. LetA = U’?;[lvd] Ai and P = Uiqa Pi. FOr gpe following proposition is not hard to prove, but will be

Ai-framesg; = (Wi, {—i| a € A;}) (i € [1,d]) we define technically useful in Sections Il and IV.

the asynchronous producl;c(1 4] 3 def (W, {5 a € A})

to be theA-frame, whereW = W; x --- x Wy and where for

eachv = (vy,...,vq) € W andw = {(wy,...,wq) € W we

havew — w if and only if there is some ¢ [1,d] such

thata € A;, v; —; w; andw; = w; for eachyj e [1,d] ~ {i}. D. First-Order Logic

An (A,P)-structure® = (W,{—| a € A},{W, | p € P})  we assume standard definitions concerning first-order logic

is an uninterpreted product structuréf F(S) = I, i Only relational signatures will be considered. Fer 1, a

where eacl§; is someA;-frame. Thus, we do not make anyformula ¢ is an FO*-formula if at mostk different variables

restrictions on how atomic propositions are interpreted.  are used inp. Note that a formula, in which every subformula
Next, let us define interpretations of atomic propositiongas at most: free variables is equivalent to &©”-formula.

in products, as introduced in [13]. fproduct) interpretation The quantifier rankof a formula is the maximal nesting

is @ mappingo : P — bool(P). In our lower bound proofs in depth of quantifiers inp; it is denoted byqr(,).

Section Ill,o will be theidentity interpretationd with id(p) = N

pforall peP. Let &, = (W, {in:\ acA} {W,ilpeP}) E. Feferman-Vaught Decompositions

be an(A;, P;)-structure fori € [1,d]. For an interpretatiomr, The Feferman-Vaught decomposition theorem for multi-

their o-product [T7.; 4 ©; is defined as théA, P)-structure modal K? can be formulated as follows, and was proven in

S = W,{-5| a e A}, {W, | p € P}) such thatg(c) = [13]:

[ie(1,a) §(&:) and(ws, ..., wq) € Wy ifand only ifa = 0(p),  Theorem 2([13]). From an interpretations and a multimodal

wherea(q) =1 if and only if w; € W, ; for eachi € [1,d] adn(fj K-formulag over (Use(1.a Ai, Uie1.4) P2), ONe can compute

g € P;. If no interpretation is given, we defil;c;1.4)6: = a tuple (T3, ..., ¥ , 8) with U, = {4/ | j ¢ J;} a finite set of

Hﬁ[l,d] S;. multimodal formulas ove(A;,P;) and 3 a positive boolean
Let us generalize multimodal logic to higher dimensions. formula with variables fromX = {z? | i € [1,d],j € J;} such

multimodal formula of dimensiod > 1 (briefly, amultimodal that for every(A;, P;)-structure&; and every worldw; of &;

K4-formulg) is a formulay over (A =U%, A, P =UL Pi). (i e[1,d]):

If |A;| =1 for all ¢ € [1,d] then ¢ is a unimodal formula

Proposition 1. There is a polynomial time many-one reduction
from (MULTIMODAL) K2-SAT to (MULTIMODAL) K¢-
SAT, which preserves the switching depth.

of dimensiond > 1 (briefly, a unimodal K?-formula). For a ( JI Sifwr,...;wn))Ee < peEpB
multimodal K?-formula ¢ andi € [1,d] we definerank;(y) ie[1,d]

inductively: rank;(p) = 0 for p € P, rank;(=p) = rank;(p), ) . : N . j
ranki(p1 A p2) _ max{rank; (1), ranki (03) }. Here,u: X — {0,1} is defined byu(z7) = 1iff (&;,w;) £ ).
rank;(Cap) = ranki(p) for « € A ~ A;, and We call D = (¥,...,¥,4,3) the decompositiorof ¢ and

rank;(Gap) = ranki(¢) + 1 for a € A;. Finally, we define|D|=[5|+ Y, ;]| to be itssize We note that in the
define theswitching depthof ¢ asmin{rank;(¢) |1<i<d} same way one can define decompositions for the unimodal
[16]. An uninterpreted product modeif ¢ is an uninterpreted variant and for extensions of multimodal logic.



We note that Theorem 2 only holds in the presence of an
interpretations for the atomic propositions. We also mention val(s) = 175
that Theorem 2 has been proven in [13] for much more
elaborated notions of interpretations. However, note thwit 9
every logic admits decomposition: For instance the prgpert
EGp meaning “there is a maximal path (a path is maximal if it
is either infinite or ends in a dead-end) on which every world30f~ (51f  (52)  (33) (5200 (55) (36) (1)
satisfiesp” is not decomposable, as shown in [13]. Do P11 popi P2 PoP2  PiP2 PoPiP2
An analogous theorem can be stated for first-order seny, Db I b b Db
tences, see [12] for a survey. In the following theorem, we
view everyp € P = Ujc[1,4) Pi @s a unary predicate and everypscc  Psucc  Psucc  Psuce  Psucc
a € A = Uie1,4) Ai @s a binary predicate. Dprec

Theorem 3 ([11]). From an interpretations and an FO*- Fig. 1. Example of ar(1, 3)-treelike structure with value 175.
sentencep over the signatur¢ A, P) one can compute a tuple

i L ie ] ini k_ A . .
(V1,..., Vg, §) with \I’L ={Yjljedi} a flnlte_s_et ofFO least significant bitpy---b,,, whereb; = 1 precisely when the
sentences over the signatui;, P;) and 3 a positive boolean . ition 5, is satisfied ins;. Obviously, this number is

formula with variables fromX = {a7 [ € [1,d],j € Ji} SUCh  penyeeny and Tower(¢+1,1) - 1. Figure 1 gives an example

define a binary number (by convention, the leftmost bit is the

that for every(A;, P;)-structureS; (i « [1, d]): of an (1,3)-treelike structure with value75. First observe
g that s has8 = 23 = Tower(1,3) successorsy,...,s;. Next

iegd]& kg it pEp. note that in eachs; the evaluation of the propositions;

' 4 4 (7 € [0, 2]) gives a binary number equal toFor instance, i,

Here, ;i : X — {0,1} is defined byu(z]) =1 iff &, = ¢/. only p is true, hence the corresponding binary numbéiis

which is4. As indicated, the evaluation @f, gives rise to the
lll. K?-SAT 1s HARD binary numbem = 11110101 which equalsl75. For enforcing
The goal of this section is to show a nonelementary lowgfe described treelike structurés,s) we need additional
bound forK2-SAT and thus to close the complexity gap fobuxiliary propositional variablessucc, Pgec: Pprecs aNd pirec.
this problem. As a necessary preliminary step we show hoWese propositions provide more information about theryina
to enforce (nonelementary) big modelsk,. Using this, we numberp = bo*Drower(2,n)-1 €Ncoded by the successorssof

prove via a standard reduction from appropriate tiling prob i . L
lems thatKK-SAT is nonelementary. Applying Proposition 1 ° pi“cc marks the first (from left to right)) in b,
yields the nonelementary lower bound f&rx K. * Paucc Marks all vvprld; Ieft Ofpsuce,

Recall the functionTower : N x N — N defined as ° Prree marks the firstl in b, and
Tower(0,n) = n and Tower(£ + 1,n) = 2Twer(tn) for each ~ * Pprec marks all worlds left Ofpprec.
¢,n € N. In this section, we construct a famifyo,,, | £,n > 1}  INUitively, psucc (réSP.pprec) Marks the maximal position that
of unimodal K2-formulas such that for eachn ¢ N, () ¢changes when is increased(resp.decreasejiby 1. In other
lpe.n| < exp(£)-poly(n) and (i) if (6x&’, (s,s')) & @p.n, then words, increasing by 1 can be done by flipping all bits
&],|6"| > Tower(¢,n). Informally speaking, our intention is marked withpg,c. or p,.. and carrying over the remaining
that if (& x &', (s,s')) = ¢s., thenboth (&,s) and (&,s') ones. We refer again to Figure 1 for a valid evaluation of the

are of a particular structure that we will call, n)-treelike auxiliary propositions.

Before giving its formal definition, we provide some intoiti It is worth mentioning that(¢, n)-treelike structures are
about when a pointed structu¢e, s) is treelike (the definition similar to the tree§, (n) from [9, Definition 2]. As mentioned
of when (&', s) is treelike will be analogous). above, we add a few more unary predicates (propositional var

Intuitively, think of a pointed structuréS, s) to be (¢, n)- ables) since our structures will be enforced in 2-dimeraion

treelike if it contains a tree of depthrooted ins (possibly modal logic instead of first-order logic.

with additional worlds and transitions) such that In the following, we formally defing(/,n)-treelike struc-
« (8,t) is (¢ - 1,n)-treelike for every successorof s, t_ures and their as;ociated values. For this purpose, let us
« s hasTower({,n) SUCCESSOTS. fix the set of action labelsA = {a,a’} and for each

) . . def
For this purpose, we additionally assignvalue val(&,s) ” 2 1 define the set of propositional variables, =

def

to every (£,n)-treelike structure(&,s) and require that for {Po,...,pn-1} U Paux @and Q. = {qo,..-,qn-1} U Qaux
everyi € [0,m] with m = Tower(¢,n) - 1 there is a successorwith P, def {Pbs Psuce> Pace Pprecs Pree . @NA- Qaux def

s; of s with value ¢ (however, we cannot exclude copies o{qb,qsucc,q;cc,qprec,q;ec}. For the sake of simplicity, we call
s;). For ¢ = 0, the value is defined by propositional variable${a}, P,,)-structures (resp({a’}, Q. )-structures)left struc-
Do, - - -, Pn—1 Which define am-bit number, wherey, refers to tures (resp. right structure§. We give only the definition
the least significant bit. Fof > 0, the value is defined usingfor left pointed structures because the definition for right
an additional propositiop;. Intuitively, the worldssg,...,s,, structures is simply obtained by replacing every propositi



py by ¢, and - by . For ¢ > 0 we define them as follows:

The definition of(¢, n)-treelike structure¢&, s) and their def
associatedvaluesval(&, s) € [0, Tower(¢ + 1,n) — 1] is by €e.n ot B0 (ed 1, > (< @)
induction on ¢. Consider the left pointed structur@S, s) firste, =  B-pp AD-g
where & = (W, L AW, | peP,)). Then(&,s) is (0,n)=  lasty, e gy Amgy
treelike if Ng(s) = @. Thevalueof (&,s) is succe df oy A (edp 1, —

val(S,s) S b2 e [0,2" ~ 1], (Poace  Gyec) 1 {Hises 4 ~Puaec) = {20 > @)))
=0

In order to show the intuition of the introduced formulas we
whereb; = 1 if s e W, andb; = 0 otherwise. prove the following lemma.

For ¢ > 0, (6,s) is (E,ln)—treellke if the following hold, Lemma 4. Let ¢ > 0 and let (6, s) and (&', s') be left and
wherem = Tower(¢,n) - 1: . . . )
i ) right (¢,n)-treelike structures. Then the following holds:
(@) For all u € Ng(s), (6,u) is (£ - 1,n)-treelike. Let (@) (& & (5. 5))  val(G. 5) (&)
i def . . a X ,(S, S F eq ITT va ,8)=va ,8 ).
N, = N, (&, u) =i} f 0,m]. e T
s(8) = fueNe(s) | val(©, u) =i} for i ¢ [0.m] (b) (6 x &', (s,s")) E firsty,, iff val(&,s) =val(&',s") =0.

(b) Ni(s) # @ for everyi e [0,m]. ; / : /o
(c) If u,v e Ni(s) for somei € [0,m], thenw e W, if and (©) (6 x &, (s,5")) E lastyy, iff val(&,s) = val(&',s') =
Tower({+1,n) - 1.

only if v e W, for eachp € P,y. ) , ) ,
(d) If Ne(s) € W, thenW,__ n Ne(s) = @ and Ng(s) ¢ (d) (6x &', (s,s')) Esuccy,, iff val(&',s") =val(&,s) +1

Psucc

Pl o Now we give a family of formulasp, ,, with the idea that
(€) If Ne(s) » Wy, # @ andk € [0,m] is minimal such that eyery model ofy,,, is the product of a left(¢, n)-treelike

N&(3) N Wy, # 2, then for allv € Ne(s): v e Wy, iff  structure and a righte, n)-treelike structure with the same
val(6,v) = k andv e Wy, iff val(&,v) <k. value.
(f) If Ne(s)nW,, =@ thenW, NNg(s) =@ andNg(s) €

Wpe . Definition 5. Setyo,,, = eqq, AELA DL and definep, ,,, by
(9) If ]Vé,(s) nW,, + @ andk € [0,m] is minimal such that induction on, as the conjunction of the following formulas:

Ng(s) nWp, # @, then for allv e Ng(s): veW, iff (1) oo (e-1,n Afirste_q )
val(&,v) =k andv e W, iff val(&,v) <k. (2) 8O Qo1

Note that we make no restriction on the valuation of prop@3) m¢ ¢,y ,

sitions in the worlds. Moreover, also the sdil’,, N Ng(s) (4) & (m-lasty_1,, - dsucce_1.,)

is arbitrary, but this set uniquely determines the N (5) Bm(edp_yp, = Ap, b, (Pg < Gg))
-1,n g €Faux

Ng(s), Whpe. mNg(S), Wporee NNe(s), andWP;?ec NNe(s). (6) 80 (((Psuce vp;ec) = =) A ((Pec V Porec) = Pb)))
Finally, we define thevalue of (&, s) as follows: For: ¢ (7) B (SUCCr-1.n — Aue( V(g2 v @5) > pS)A
-1,n xe{succ,prec x T T
(ry — (47 Vaz))

[0,m], letb; = 0 if W, n N&(s) =2 andb,; = 1 otherwise.
(8) S (psucc VP:ucc) N oD (pprec \ p;ec)
def

Then,
val(8,s) = Y b;2" €[0,2™*" 1] = [0, Tower(¢ + 1,n) - 1]. Some remarks regarding the intuition of the formulas are
i=0 appropriate. In the following explanation we will, in angjo
Observe that this definition does not requinenéquesuccessor to left and right structures, distinguish left and right \dst
world s; for each valuei. In fact, one cannot enforce this in  Formulas (2) and (3) together imply inductively condition
modal logic. (@) from the definiton of(¢,n)-treelike structures (every
We will construct a family of formulag(ys »)enz0 that successor i$/-1,n)-treelike). Condition (b), the existence of
admit only (¢,n)-treelike structures as models. In order tg@uccessor worlds for each valdes [0, Tower(¢ + 1,n) — 1],
emphasize the two dimensions that we have in formulas oyerenforced by induction ork: Formula (1) enforces a left
({a} w{a'},P, ©Q,), we write & (resp.d) instead of&, (¢ - 1,n)-treelike structure with valud), thus establishing
(resp.&.) to refer to the modality of the first (resp. secondhe induction base. Formula (4) enforces for every left dorl
dimension of the product, and similarly for box formulas. with value & a right world with valuek + 1. Formula (3)
Before we define the formulas, ,,, we introduce auxiliary enforces a left world having the same value 1; this yields
formulas eqy ,,, firsty,, last,,, and succ,, whose names the induction step. Formula (5) enforces condition (c). The
indicate their intended purposes. Fof 0 they are as follows: remaining conditions (d)-(g) from the definiton @¥,n)-

def treelike structures can be reformulated as follows:
€ = Nie[0,n-1]1Pi <> i . . - -
first def A N (i) If a world satisfieSpsucc O Pprec (€SP-,Psucc OF Pprec),
o = Niel0n-1] P A then it does not satisfy, (resp., it satisfieg).
lasto,n = Aie[o,n-1]Pi N Gi (i)) If psucc OF Plucc (rESP.,Pprec OF Pprec) IS satisfied in a left
SUCCo, def Vie[o,n-1](=pi A @A yvorld of valuek > 0 thenpl,.. (resp.,py..) is satisfied
Nje[0,i-11(P5 A =@5) A Njeiv1,n-11P5 <> @5) in all left worlds with valuek — 1.



(ii)) If pgec (resp..py.c) is satisfied in a left world of value Let us start withK4 x K. We adapt the straightforward
k < Tower(£,n) -1, thenpg,.. OF psucc (F€SP.,pprec OF reduction fromK to K4 to the two-dimensional case. When

Dprec) IS satisfied in every left world of valug + 1. following a transition in aK4-frame one has no control
(iv) There is a successor world satisfying eithgr. or p5,.. over how far one is actually going due to transitivity of the
(resp.pprec OF Pprec)- frame. The idea for the reduction is to introduce additional

Clearly, (i) (resp. (iv)) is expressed by formula (6) (re€). prop(_)smons }_zo,...,i_zn and anorcelevels_ln_ the models.
Finally, formula (5) and (7) yield (ii) and (iii). For instas, Intuitively, h; is true inw’ precisely wh.er’w’ is in level: seen
if a left world with valuek > 0 satisfiesps.. OF puce, then from thg_ wo_rldw where _the formula is evaluated. Following
by formula (5) the corresponding right world satisfigg, or @ transition is thgn restricted to increase the level onlyi by
gsuce. FOrmula (7) implies thaps, . is satisfied in every left L€t ¢ be a unimodalK*-formula with rank, () = r and
world with valuek — 1. We are now ready to present our mairfiefine for every) < k < the translation functiom, by taking

theorem. te(p) = HgAp
Theorem 6. For every/? > 0 the following holds: te(=v) = Hin-te(y)
, , . . te(Y1 Ah2) = (Y1) At (2)

(@) (6x&',(s,s')) E e, iff (&,5) and(&',s") are (¢,n)- t(OY) = Ote(d)

treelike structures witlval(&, s) = val(&', s"). t(o) = HpAS(Hyst Atpa (V)
(b) |e.n| < 3°-poly(¢,n) and the formulap, ,, is computable

in time 3¢ - poly(£,n). where H, " hy A Ajur~h; and k < r in the definition
(c) The switching depth ap, , is ¢. of ¢(©v). We show that the translation is satisfiability

By making use of the models that are be emcOrcepo[eservmg. More precisely, we prove the following lemma.

by Theorem 6, we can finally prove a nonelementatyemma 9. For every unimodaK?-formula ¢ we have:p is
lower bound for K-SAT via a standard reduction fromid-satisfiable inK? iff ¢o(¢) is id-satisfiable inK4 x K.

an appropriately chosen tiling problem. LetNEXP = It is easy to see that Lemma 9 provides a reductioK@f
NTIME(Tower(¢, poly(n))). SAT to id-satisfiability in K4 x K. Finally, an adaption of
Proposition 7. For each? > 1, K2 -SAT restricted to formulas Proposition 1 to the logi®& 4 x K together with Proposition 7
of switching deptlY is (-NEXP-hard under polynomial time Yields the following result.

: ; 5 )
reductions. In particularKiy-SAT is nonelementary. Theorem 10. Satisfiability inK4 x K is nonelementary.

The following theorem is an immediate consequence of \oyt we study combinations dK with S5 and S5,. It
Proposition 1 and Proposition 7. is well-known that the complexity for checking satisfiatyili

Corollary 8. For each/ > 1, K2-SAT restricted to formulas jUmps fromNP for S5 to PSPACE for S5,. We will show that
of switching depttY is /-NEXP-hard under polynomial time also the complexity for deciding satisfiability in the pretu

reductions. In particularK2-SAT is nonelementary. logics S5 x K andS5; x K, respectively, differs. In particular,
we will again reduce fromKZ%-SAT in order to show a
IV. HARDNESSRESULTS FORK4 x K AND S5, x K nonelementary lower bound for the latter logic, which is in

. . sharp contrast to the following result by Marx [20].
In this section, we prove further nonelemementary lower

bound results for the satisfiability problem of two-dimemsil Theorem 11([20]). Satisfiability inS5xK is NEXP-complete.
modal logics on restricted classes of frames. We herebye clos popacE-hardness for satisfiability i$5, is shown by a

nonelementary complexity gaps that were stated as 0peR profightforward reduction fror [7]. We adapt this reduction
lems in [19]. Although in [19] uninterpreted product model§O the two-dimensional case by defining a translatidsy
for these logics are of interest, we prove our lower bounds fo

the id-interpretation only: For each of the logics studied here, ¢ = pnrg
the id-interpretation case can be reduced in polynomial time (p1nga)! = <PJ1r A@E
to the uninterpreted case in analogy to Proposition 1. ()" = p a=(e)
We define the following logics: (4>90)1 = o(eh )
« K4 x K: Two-dimensional unimodal logic restricted to (©p)" = P Aoi(p" AS2(p" A eh)
product modelsS x &’, whereF(&) is transitive wheres, and <, refer to the two modalities i85, andp* is

« S5 x K: Two-dimensional unimodal logic restricted toa fresh propositional variable in the left signature. Itinely,
product modelsS x &’ such that if§(&) = (W, =), then onetransition inK is simulated bytwo transitions inS5,. This
= is anequivalence relation is possible since the composition of two equivalence reahati

« S5;xK: Two-dimensional modal logic that is bimodal inis neither symmetric nor transitive in general and using the
the first dimension and unimodal in the second dimensidresh variablep* we can enforce a non-trivial transition, i.e.,
restricted to model$ x &’ such that if§(&) = (W,=; no loops. It can be proven along the lines of the proof in [7]
,=2), then both=; and=, are equivalence relations. that' preservesd-satisfiability.



Lemma 12. For every unimodaK*-formulay we haveipis X = {z; | j e Jyu{z}|j e J'} and that|8, 1| < g(h - 1).
id-satisfiable inK? iff ¢! is id-satisfiable inS5, x K. Hence,|X| < g(h-1).
Th . . . . For eachr € [0, Tower(h,2) — 1] we define a truth assign-
e following theorem is an immediate consequence (r)r%cent . X - {0.1} as follows:
Lemma 12, Proposition 7, and an adaption of Proposition 1 to fr - ’ '

S52 x K. pr(z;)=1 <=  (6,0,)E1;
Theorem 13. Satisfiability inS5, x K is nonelementary. pe(zi)=1 = (&) EFY;

V. FEFERMAN-VAUGHT DECOMPOSITIONS FORPRODUCTS  Since for 3,_; there are2l Xl < 29("=1) < Tower(h,2) many
truth assignments, there exigt< r < s < Tower(h,2) with

Having enforced nonelementarily branching trees with smatr = ts- Since(& x &', (vy, v7)) = @n-1,2, this implies (& x
2-dimensional unimodal formulas (Theorem 6) allows us & » {vr;v5)) & ¢n-1,2. But this contradicts (1). N
prove a nonelementary lower bound for the sizes of Feferman-Our lower bound also holds when only products of finite
Vaught decompositions foe-dimensional unimodal logic. rées are allowed as models, since for evény, there exists
Without making this explicit in the statement, our lower hdu @n (¢, n)-treelike structureS such thats (&) is a finite tree
is more general than the nonelementary lower bound2for (Of height?). u
dimensional unimodal logic from [17] in the following sense Note that the lower bound from Theorem 14 would even
We provide a family of small formulas which are “inherentiy10ld if we defined the size of a decompositioh, ..., W4, 5)
hard to decompose”. When assuming, by contradiction, tA& the size of the boolean formyseonly (and not accounting
existence of small decompositions for our formukmsymodel for the sizes of thew;); the same proof works for this
for them can be used to deduce the desired contradictid@/iant. In contrast to [17] the proof of Theorem 14 allows
whereas in [L7hppropriately chosen modetad to be defined to derive nonelementary lower bounds on decompositions for

for this. Our proof strategy is similar to the proof of Thewre @ny decomposable logic (in the sense of Theorem 2) that is
5.1. in [9]. at least as expressive as unimodal logic and only elemgntari

N ) less succinct than unimodal logic.
Theorem 14. Feferman-Vaught decompositions for unimodal

logic w.r.t. asynchronous product are inherently nonelemeCorollary 15. Every logic that is at least as expressive as and

tary. More precisely, for every elementary functigifn) @&t most elementary less succinct as unimodal logic does not
there exists¢ > 1 such that the unimodaK2-formula ;. have elementary sized Feferman-Vaught decompositiofs wit
from Definition 5 has no decompositid®, in the sense of '€SPeCt to asynchronous product.

Theorem 2 withDy| < f(|¢,2]). The same lower bound holds /|
when relativized to product structurésxT’, whereF (%) and
F(T'") are finite trees.

FEFERMAN-VAUGHT DECOMPOSITIONS FORSUMS

So far, we only considered Feferman-Vaught decompo-

sitions for asynchronous products. Another important and
Proof: Assume by contradiction that there is an elematural operation on structures is the disjoint sum. Let xis fi

mentary functionf : N — N such that for eacl > 1 a relational signature and fori ¢ [1,d] let &; = (D;, {Pi. |
there is a decompositio®, = (‘Ilge),\lfg),ﬁe) of w2 IN a e 7}) be ar-structure such thaD; n D; = @ for i # j.
the sense of Theorem 2 witlD,| < f(|¢e2]). In particular, Let A; ¢ 7 (i € [1,d]) be a fresh unary predicate symbol. The
1Bel < f(Jpe,2]). Sincelpy 2| < exp(£) by Theorem 6(b), there the disjoint sume:1 &; is the following structure over the
exists an elementary functiop such that|3,| < g(¢) for all signaturer u {A;,..., Ag}:
¢> 0. Thus, there exists ah > 0 with 29"~ < Tower(h,2);
let us fix such arh. G, « D, Piolaeryu{D;|ie[1,d]}).

By Theorem 6(a)s, 2 is id-satisfiable. Assume th&tS x ; (ie[LIJ,d] {ie[LiJ,d] « poililiell,dlh)
&', (w,w')) E @po for some left pointed structuréS,w)
and some right pointed structu(&’,w’). By Theorem 6(a)
(6,w) and (&',w') are (h,2)-treelike andval(&,w) =
val(6',w’) = k for somek € [0, Tower(h + 1,2) - 1]. By
the definition of(h, 2)-treelike structures, there exist for eaciheorem 16. For every FO*-sentencep over the signature
i € [0, Tower(h,2) — 1] worlds v; € Ng(w) andv} € Ng/(w') 7w {A1,...,Aq} one can compute a tuple¥y, ..., ¥y, 3),
such that(&,v;) and (&',v]) are (h — 1,2)-treelike and Where eachl; = {4/ | j € J;} is a finite set ofFO"-sentences
val(&,v;) = val(&’,v]) = i. Also note that over the signature and where3 is a positive boolean formula

with variables fromX = {z] | i € [1,d],j € J;} such that for

Here,U;[1,4) P« IS the interpretation fou € 7 and D; is the
' interpretation for the fresh symbal;. The following result is
again classical [11], [12].

(6 x &', (vi,vf)) Fprap = i=] @ r-structuresSy, ..., Sy:
for all 4,5 € [0, Tower(h,2) — 1]. Consider our decomposi- d
tion Dy_y = (U™, WD B, 1) of 1. Assume that > Gi=p ifandonlyif pEp.
U = (g | j ey and 0 = [yl | j e J'}. Recall =t

that 5,-1 is a positive boolean formula with variables fronHere, 1 : X — {0,1} is defined by;u(x{) =1iff 6, z/;f



The following result is a simple corollary of Corollary 15.1)5) that moreover starts with a quantifier. Clearly, every pure

Corollary 17. For everyk > 3, there is no elementary functionformUIa 's almost pure. Vice versa, we have:

f(n) such that evenFO”-formula ¢ has a Feferman-Vaught Lemma 19. From a given almost pure formul@ over the

decomposition w.r.t. disjoint sum of siZé|¢|). signatureru{A;, A5} one can compute a logically equivalent
cl

ure formulay’ of size2!<¢l- O(|]). If ¢ is an FO*-formula

Corollary 17 raises the question whether even Feferm . 5
theny' is an FO“-formula as well.

Vaught decompositions foFO* w.r.t. disjoint sum become

nonelementary. We give a negative answer to this question.  Proof: The idea is to replace the topmost occurrences of

Theorem 18. The following is computable in doubly exponenS€Ntences from the sg) by truth values in all possible ways

tial time: in a big disjunction over all possible truth assignmentsc8i

INPUT: An FO%-sentencey over r (A, Ag) sentences froanD' may also violate the pureness condition,

OUTPUT: A decompositiofy, . .., Uy, 3), wherew, = {1/’? | we have to iterate this replacement step. _

j e J;) is a finite set ofFO%-sentences over and 3 is a Let <p| be almost pure and leF be the set of all mappings

. Ci

positive boolean formula with variables frodi = {27 | i ¢ 1OM Q5 t0 {true,false}. For f ¢ 7 and a formula) let 0] f] be

[1,d],j ¢ J;} such that for allr-structures®, Gd? the formula that results frorfi by replacing every-maximal
s . formula ¢ from the set(Qy \ {6}) n Q% by the truth value

d S . .
Y6 k¢ it and only it 1= 5. f (). Then, we definey’ as the disjunction

= . 4 V (elf1n A (f(@) < 9[f]).
Here, 1 : X — {0,1} is defined byu(z)) = 1 iff &; £ . JeF beQg
We will prove Theorem 18 only for the case= 2. Hence, Clearly, ¢’ is equivalent top and ¢’ is pure. ]

let us fix a signature of relational symbols and let;, A5 ¢ 7
be two additional unary symbols. L&t; and&,, be relational
structures over the signature

We define a partial ordex on the set of all first-order
formulas by setting), < v if and only if ¢, is a subformula
of . For a formulay we denote withQ, the set of all , "
subformulas ofy that start with a quantifier. WitQ< we  * Qu € A = ¢'(z) and Qu € Az : ¢"(x) are almost pure
denote the set of those formulas @, that are closed, i.e., (where@ € {V, 3}). _ )
do not have free variables. In a formua : A;(z) A4 (resp.  * Forallae &, 61 +6; = ¢(a) iff 61+ 62+ ‘P”(a)'
Va: Ay(x) — ), wherei € {1,2}, we say that- is relativized ~ * FOr all a€ &2, 61+ 63 ¢(a) iff &1+ 62 k ¢"(a).
to A;, and for better readability we writgx € A; : ¢ (resp. Moreover,|Q7, |« 200D and Q% (] € 200D,

Vz e A; : ) for that formula.

A formula ¢ over the signature u {A;, A} is calledpure
if ¢ is a boolean combination of formulas,...,y, such
that for everyl < i < n there existsj € {1,2} such that for
every (Qz : ¢) € Q,, (where@ € {3,V}), z is relativized
to A; in Qz : +. Equivalently,¢ is pure, if for all (Qz :
V1), (Q2y : ¥2) € Qp With (Q1z : ¢p1) < (Qay : ¢2), i
relativized in(Q1x : 1) to the sameAd; asy in (Q2y : ¥2).
To prove Theorem 18 (forl = 2), it suffices to transform
an FO? sentence over the signatureu {A;, A,} in doubly (a) somea(z) € Q,, where onlyz may occur freely, or by
exponential time into an equivalent puf®>-sentence over (0) somef(y) € Q,, where onlyy may occur freely, or by

Lemma 20. From a givenFO?-formula ¢(z) over the signa-
ture 7 U {4, A2} with at most one free variable, one can
computeFO2-formulasy’(z) and " (z) of size22(#I) such
that the following holds for all structure§; and G, over the
signaturer.

Proof: Let us construct the formulg’(z) (¢”(x) is
constructed analogously) by induction over the structfitbe
formula ¢(x). The case that the top-most operatorifx) is
a boolean operator is clear, e.g., §et A ¢2)" = ] A 5.

Now, assume thato(z) = Iy : ¥(z,y). Since o(z) is
an FO?-formula, the formulay(z,y) can be obtained from
a positive boolean formul@(p1,...,px) by replacing every
propositonal variable; by

the signaturer U {A4;, A5} (c) a possibly negated atomic formula (i.e., a literal) that
A formula g over the signatureu{A;, A,} is calledalmost involves a subset of the variabl¢s, y }.
pure if it satisfies the following conditions: Let ¢'(z,y) be the formula that results from(z,y) by
« For all (Qz : 1) € Q,, = is relativized in(Qx : ) to replacing every subformuta(z) (resp.3(y)) of type (@) (resp.
either A, or As. (b)) by o/ (z) (resp.3’(y)). We can writeB as a DNF formula

o 1f (Quz 1), (Qay : 1) € Qu With (Quz:¥1) < (Qay: B = Vi Bi of size 20UBD | where everyB; is a conjunction
), then eitherz is relativized in(Qz : ) t|0 the of formulas of the types (a)—(c). Hence, we can wiliteas
sameA; asy in (Qay: 12), or there existy € QS with o _ ‘
(le:w1)50<(Q2y:w2). ks Bl_al(‘r)/\ﬂ’b(y)/\wl(m’ay)a

In other words, whenever a chain of subformulés = : ¢1) < where «; is a conjunction of type-(a) formulas?; is a
(Q2y : ¥2) = ¢ does not satisfy the pureness condition, theronjunction of type-(b) formulas, and(z,y) is a conjunction
(Q1z : 1) occurs within a proper subsentence @-y : of type-(c) formulas.



Clearly, over a structur®; + S,, the formulady : ¢)(z,y) Lemma 19 tod and obtain an equivalent pufed?-formula
is equivalent to3y € Ay s (z,y) v Iy € Ay (x,y), i€, to o of size212!. O(|9]). Since|d] ¢ 20U¢*) and|Qg| e 20D

Jy e Ay (a,y) v this yields the upper bounzt” " for the size ofy. [ ]

” ' ' Let us conclude this section with a (non-matching) lower
V Jy e Ay (a;(2) v Bi(y) vvi(z,y)). bound on Feferman-Vaught decompositions Far.

i=1

Proposition 22. There is no functionf(n) € o(/n) and

By induction, for allz € &,, this formula is equivalentto "1 1 that evenfFO?-formula ¢ has a Feferman-Vaught

e Ay (x,y) v (2) decompositions w.rt. disjoint sum of siz&V1eD.
\ Jy e As: (aj(x) A B (y) Avi(z,y)). (3) VIl. GAIFMAN NORMAL FORM
1=1

Our technique from the proof of Theorem 18 can be used
In line (3), every occurrence of a literal in(x,y), in which to prove a doubly exponential upper bound on the size (and
both = and y occur, can be replaced either byue (if the construction) of Gaifman normal forms [14]. Let us starttwit
literal is negative) ofalse (if the literal is positive). The reason g few definitions.
for this is that no atomic relations ab; + S, involve both Let & = (D,{P, | a e 7}) be a structure over a relational
elements ofS; and &2. We therefore obtain an equivalentsignaturer. Then theGaifman graphof & is the undirected
formula of the form graphG(&) = (D, E), where the edge relatiofi contains a
oo pair (u,v) € D x D with u # v if and only if there exists a
33/ €Ay (zy) v relati(on P, (a € 7) of arity sayn and a tuple(us,...,uy,) €
V (ai(z) Adia(z) ATy e As: (B (y) Adia(y))). P, such thatu,v € {uq,...,u,}. Foru,v € D, the distance
i=1 dg(u,v) is the length (number of edges) of a shortest path
Hered; 1 (2) (resp.d; »(y)) is the conjunction of all literals in from w to v in G(&). For a tuplew = (uy,...,u,) anduv,
~i(z,y) that only involve the variable: (resp.y). Let ¢/(z) let de(%@,v) = min{de(u;,v) | 1 < i < n}. Forn €N, the
be the above formula. We have to show that the formula n-Spherearoundi is Se . (u) = {v € D | ds(u,v) < n}. We
e A (z,y) v write S,,(u) for S, (w), if & is clear from the context.
” ’ Note that for everyr € N, there exists a first-order formula
V (aj(z) rdia(z) ATy e As: (B (y) Adi2(y))) | dn(Z,y) such that for all structure& and all elementsz, v
=1 of &, & k d,(u,v) if and only if ds(@,v) < n. For better
is almost pure. This follows inductively from the fact thiat € readability, we writed(z, y) < n instead ofd,, (z,y). The for-
A13y € Ay ' (z,y), 3w e Ay = af(x), andIy € Ay : 57 (y)  mulad(z,y) > n should be understood similarly. In a formula
are almost pure, and the fact thza € A> : (5;'(y) Adi2(y))  of the form 3y : d(T,y) <7 A% or Yy : d(T,y) <7 - 1, we
is closed. This concludes the cagéx) = 3y : ¢(z,y). The say that the variablg is relativizedto S, (z). A formula ¢ is
casep(z) = Vy: ¢ (z,y) can be treated analogously. calledr-local aroundz if for every occurrence of a subformula
If we allow A's and v’s of arbitrary width, then the depth (Qy : v) € Q,, the variabley is relativized in(Qy : 1) to
(i.e., the height of the syntax tree) gf () is bounded by a sphereS,(7) for someq < r. A sentencey is called an
O(|e|). Due to forming CNFs and DNFs, the width 85 and r-local Gaifman-sentenc# it is of the form
v's can be bounded b3/¥(®)l. Hence, the syntax tree ¢f (x)
has heightO(|¢|) and branching degre®¢(*)|, and therefore Frr,nwns N\ d(wsag)>2g8 N\ @),
has 2°0¢>) many nodes. Replacing’s and v's of arbitrary fsieasn tsisn
width < 21°(®)| by 2-ary A’s andv’s only multiplies the number Where everyp;(z;) is g-local around (the single variable)
of nodes by2l#@)l. Hence,y'(z) is of size20(#l*). for someq <r.
For the bound/QF, | < 299D note that in the above Thegrem 23 (Gaifman’s theorem [14]) Every first-order
constru_ct_lon., the number of closed subformulas that staht Wismula ©(7) is equivalent to a boolean combinatiaf(7)
a quantifier is increased by at most 1 (due to the formulas g ,._|ocal formulas aroundz and g-local Gaifman-sentences

Jy € Az = (B(y) A dia(y)) for i e [1,r]). Sincer is o syitabler andq (that are exponential in the size p{7)).
exponential in the size of the boolean formuba the bound
|Q;I,(x)| € 200eD follows. ] We call the formulay(z) from Theorem 23 aGaifman

normal formfor (). In [9] it was shown that (forFO*-
Theorem 21. From a given closedO’-formula ¢ over the formulas already) the size of equivalent formulas in Gaiima
signaturer U {4, A>} one can compute a pure clos€®*- normal form cannot be bounded elementarily. By using our
formulay of size22”""” such that for all structuress; and formulasy, , from Section Il and analogous ideas as in [9],
&, over the signaturer, 61 + G E ¢ iff &1 + Gy = . we can strengthen the latter resultR6°.

3.13€A1

Proof: We first apply Lemma 20 te and obtain a closed Proposition 24. There is no elementary functiof{n) such
almost pureFO*-formulad such thaﬁltGQ Epiff §;+6, = that every FO*-formula ¢ has an equivalent formula in
6. The size off is bounded by2°(¢"). Finally, we apply Gaifman normal form of siz¢(|y]).



Next, we show that for the fragmeR©? such an elementary Finally, we apply Lemma 26 t@ and obtain an equivalent

(in fact, doubly exponential) bound is possible:

Theorem 25. Every FO?-formula ¢(z) is equivalent to a

boolean combination)(x) of r-local formulas aroundr and

g-local Gaifman-sentences with< 3qr(¢), ¢ < 6qr(y), and
ol

[l <227

Boolean combination)(xz) of r-local formulas around: and
2r-local Gaifman sentences. The sizeyafr) is bounded by
26O 0(j9]). Since|d] < 2002 and |G(0)] < 20U#D | this
yields the upper bound?” ™" for the size of(z). a

Finally, we give a (non-matching) lower bound on the size
of equivalent formulas in Gaifman normal form f60?; the

In Theorem 25; is a single variable. This is no restriction,proof is again based on techniques from [9].

since everyFO-formula can be written as a boolean combi

nation of formulas that (i) start with a quantifier, and (gt

have at most one free variable. In the rest of this sectidn, %}J

r-local formulas will ber-local around a single variable For
the proof of Theorem 25 it is useful to defiaémostr-local
formulasaroundz andalmostr-local Gaifman-sentencebVe
do this by simultaneous induction:

Proposition 28. There is no functiorf (n) € o(y/n) andc > 1
ch that every?OQ-formuIacp has an equivalent formula in
aifman normal form of size/ (¥,

VIIl. OPENPROBLEMS

The main open problem concerns the size of Feferman-
Vaught decompositions (w.r.t. disjoint sum) and equivalen

« Every formula that is built up from atomic formulas andormulas in Gaifman normal form foFO?. For both for-

almostp-local Gaifman-sentences (for arbitrgpy using
boolean operators and quantifiers relativized}¢z) for
arbitrary ¢ < r is an almostr-local formula aroundx
(hence, every-local formula around: is almostr-local

malisms, we proved a doubly exponential upper bound and
a lower bound of the form°(v™ (for any constant > 1).

We conjecture that the upper bound can be improved to a
singly exponential bound.

aroundzx).
« If for somegq < r every formulay;(z;) is almostg-local

aroundz; (1 <14 < n), then the sentence M
2
1,z N\ d(@,x)>2g8 N i) A
1<i<j<n 1<i<n [3]
is an almostr-local Gaifman-sentence. 4]
For a formulay, let G(p) be the set of all almosp-local
Gaifman-sentences (for arbitrary p) with ¢ < . [5]
[6]

Lemma 26. From an almost-local formulap(z) (aroundzx)
one can compute a logically equivalent Boolean combinatiofy;
¢'(x) of r-local formulas aroundx and g¢-local Gaifman

sentences. Here, the sizeydtz) is bounded bR/¢@L.O(Jg|) &
and ¢ is the maximum of alp such thatG(y) contains an [
almostp-local Gaifman sentence.

Proof: Let ¢(z) be almostr-local aroundz and letF [10]
be the set of all mappings fror&(y) to {true,false}. For [11]

f e F and a formulad let 6[ f] be the formula that results
from 6 by replacing everk-maximal formulay from the set [12]
(G(0)~{0})nG(p) by the truth valuef (). Then, we define
¢’ as the disjunction

Vo (elfIn A (F@) < ¢[f])).

feF PeG(p)

Clearly, ¢’ is equivalent top and ¢’ is r-local aroundz. =

(13]
(14]
(15]
(16]

Lemma 27. From an FO®-formula () with at most one [17]
free variablez, one can compute an equivalent almedocal
formula ’(z) of size 20U with r < 3qr(p), |G(¥")| <
200D and everyy € G(¢') is an almost2r-local Gaifman
sentence.

(18]

[19]

Let us finally prove Theorem 25. We first apply Lemma 27
to p(x) and obtain an equivalent almostlocal formula

0(x) with |6] < 200#) Moreoverr < 3qr(y) and every [21]
sentence inG(#) is an almost2r-local Gaifman sentence.
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