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Abstract—We show that the satisfiability problem for the two-
dimensional extensionK ×K of unimodal K is nonelementary,
hereby confirming a conjecture of Marx and Mikul ás from
2001. Our lower bound technique allows us to derive further
lower bounds for many-dimensional modal logics for which only
elementary lower bounds were previously known. We also derive
nonelementary lower bounds on the sizes of Feferman-Vaught
decompositions w.r.t. product for any decomposable logic that is
at least as expressive as unimodalK. Finally, we study the sizes
of Feferman-Vaught decompositions and formulas in Gaifman
normal form for fixed-variable fragments of first-order logic.

I. I NTRODUCTION

A. Modal Logic and Many-Dimensional Modal Logic

Modal logic [1], [2] originated in philosophy and for a long
time it was known as ’the logic of necessity and possibility’.
Later, it has been discovered that modal logics are well-
suited to talk about relational structures, so called(Kripke)
frames. Relational structures appear in many branches of
computer science, consider for example transition systemsin
verification, semantic networks in knowledge representation,
or attribute value structures in linguistics. This has leadto
various applications of modal logic in areas such as computer
science, mathematics, and artificial intelligence.

Depending on the application, a lot of different modal
operators have been introduced in the past, each of them
tailored towards expressing different features of the domain.
For instance there are modalities that talk about time, space,
knowledge, beliefs, etc.

However, it turned out that recent application domains
require to express properties thatcombinedifferent modalities,
e.g., talk about the evolution of knowledge over time. In
order to reflect these requirements in theory,many-dimensional
modal logics have been studied intensively [7], [8]. A par-
ticular way of combining two logicsL1 andL2 is building
their product L1 × L2 [3]. For products, the semantics is
given in terms of structures, whose frames are restricted to
be asynchronous products of the (one-dimensional) component
frames. The interpretation of the atomic propositions is done
in an uninterpreted way, i.e., it is independent from the
component frames.

An important and well-studied problem in this context is
satisfiability checking, i.e., to decide whether a given formula
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admits a model. When considering products of modal logics,
it has been shown that the computational complexity of satis-
fiability checking often increases drastically in comparison to
the well-behaved component logics. As an example, consider
the basic modal logicK and its variantK4 for reasoning
over the class of transitive frames. Satisfiability isPSPACE-
complete for bothK and K4 [4], while for K × K and
K4×K only elementary upper bounds were known [3]. Even
worse, satisfiability becomes undecidable inK ×K ×K [5]
andK4 ×K4 [6]. To some extent, this can be explained by
the grid-like shape of product structures.

B. Logical Decomposition

Logical decompositioncan concisely be summarized as
follows: A logic L admits decomposition w.r.t. some operation
op if all L-properties that are interpreted on composed (with
respect to the operationop) structures, are already determined
by the L-properties of the component structures. Logical
decomposition dates back to the work of Mostowski [10] and
Feferman and Vaught [11], where it is shown that first-order
logic (FO) is decomposable w.r.t. a general product operation,
which covers also disjoint union and product. Later, both for
more expressive logics and for more sophisticated operations
such decomposability results have been proven, see [12] for
an excellent survey.

When proving decomposability for a logicL, one often
obtains an effective procedure for computing such decompo-
sitions: Given a formulaϕ from L evaluated on composed
structures, one can effectively compute (i) a finite set of
formulas {ϕ1, . . . , ϕn}, each being evaluated on some spe-
cific component, and (ii) a propositional formulaβ, whose
propositions are tests of the formSi ⊧ ϕj , such that for all
composed structuresS = op(S1, . . . ,Sk): S ⊧ ϕ if and only
if β evaluates to true. The size of the resulting decomposition
is typically nonelementary in the size of the original formula.
Dawar et al. proved that this is unavoidable ifL = FO [9].

Decomposition theorems have powerful implications in
computer science logic. Let us mention only four of them.

Firstly, assume some decomposable logicL: Then decid-
ability of the L-theory of some composed structure, for in-
stance a product structure, can be derived from the decidability
of theL-theories of its component structures.

Secondly, let us mention thatmodel checkinga fixed L-
formula (i.e. thedata complexity) in a composed structure



is not harder than model checking fixedL-formulas on the
component structures: If the formula is fixed, also the decom-
position is fixed (although possibly large).

Moreover, decompositional methods can be applied for
showing decidability ofsatisfiability checking: Instead of ask-
ing whether a given formulaϕ is satisfiable in a composed
model, one computes a decomposition forϕ, translates the
decomposition into disjunctive normal form, and finally checks
satisfiability of a conjunction of formulas in their correspond-
ing components. Rabinovich proved that basic modal logic
K is decomposable w.r.t.interpreted products [13], where
“interpreted” means that the interpretation of the propositions
is inherited from the component structures. It is worth noting
that this, however, does not lead to decidability ofK×K w.r.t.
the classical (uninterpreted) products mentioned above. To
the contrary, satisfiability w.r.t. interpreted products is easily
reducible to the uninterpreted version.

Finally, an important application of logical decomposition
à la Feferman and Vaught is the (original) proof ofGaifman’s
locality theorem[14] stating that every first-order sentence
is equivalent to a boolean combination of basic local sen-
tences, where a basic local sentence admits quantification
only relativized to finite neighbourhoods of elements. Gaif-
man’s locality theorem has important applications such as
inexpressibility results for first-order logic. For a further and
more recent application of Gaifman’s locality theorem we
mention algorithmic meta-theorems for first-order logic [15],
stating that first-order properties can be efficiently solved on
numerous classes of structures.

C. Our Contributions and Related Work

As our first main result we show that (even the interpreted
variant of) the satisfiability problem of two-dimensional modal
logic K

2 = K × K has nonelementary complexity, hereby
solving a fundamental problem that has been open for more
than 10 years. Gabbay and Shetman proved in 1998 that
satisfiability in K

2 is decidable in a tower of exponentials
[3]. To the best of the authors’ knowledge, the best known
lower bound has beenNEXP-hardness shown by Marx and
Mikul ás in 2001 [16]. In fact, we prove that satisfiability in
K

2 restricted to formulas of switching depthk (the minimal
modal rank among the two dimensions) isk-NEXP-complete,
hereby confirming a conjecture of Marx and Mikulás [16]. We
derive nonelementary lower bounds for the two-dimensional
modal logicsK4×K andS52×K for which only elementary
lower bounds were known [7].

Our lower bound technique allows us to derive a nonele-
mentary lower bound for the size of Feferman-Vaught decom-
positions w.r.t. product forK. Such a result was already shown
in [17]. However, in contrast to [17], our proof technique
implies that the nonelementary lower bound carries over to
all decomposable logics that are at least as expressive as
K. An instance of such a logic is the two-variable fragment
FO

2 of first-order logic. Moreover, we prove that the same
lower bound holds when relativized to the class of finite trees,
answering an open problem formulated in [17].

In the same fashion, for the three-variable fragmentFO
3

of first-order logic, we can derive the following new results:
(i) the size of Feferman-Vaught decompositions w.r.t. disjoint
sum are inherently nonelementary and (ii) equivalent formulas
in Gaifman normal form are inherently nonelementary. It is
worth mentioning that (i) and (ii) were shown in [9] for full
FO. By inspecting the formulas in [9] it turns out that they
are in factFO4-formulas. However, it seems to be unclear
whether the construction from [9] can be adapted so that it
yields FO3-formulas.

Finally, we provide effective doubly exponential (and hence
elementary) upper bounds for the two-variable fragmentFO

2

of first-order logic both for Feferman-Vaught decompositions
and for equivalent formulas in Gaifman normal form. This
supports former observations that in many aspectsFO

2 is
better behaved thanFO3. For instance, in contrast toFO3 it
has a finite model property and satisfiability is decidable [18].
We also prove (non-matching) lower bounds of the formc

√
n

(for any constantc) for both Feferman-Vaught decomposition
and equivalent formulas in Gaifman normal form forFO

2.

II. PRELIMINARIES

For i, j ∈ Z let [i, j] be the interval[i, i + 1, . . . , j]. By
N = {0,1, . . .} we denote the non-negative integers. For a set
X we denote bybool(X) the set of boolean formulas with
variables ranging overX. Let u = u1⋯uk ∈ Σ∗ with ui ∈ Σ
for eachi ∈ [1, k]. By ∣u∣ = k we denote thelengthof u.

A. Kripke Frames and Structures

Let us fix a countable set ofaction labelsA and a countable
set ofpropositional variablesP. For a finite setA ⊆ A of action
labels, anA-frame is a tupleF = (W,{ a

Ð→∣ a ∈ A}), whereW
is set ofworlds and

a
Ð→ ⊆W ×W is a binary (accessibility)

relation overW for eacha ∈ A. An (A,P)-Kripke structure
(or (A,P)-structurefor short), for a finite setA ⊆ A of action
labels and a finite setP ⊆ P of propositional variables, is a
tuple S = (W,{ a

Ð→∣ a ∈ A},{Wp ∣ p ∈ P}), where(W,{ a
Ð→∣

a ∈ A}) is anA-frame andWp ⊆ W is an interpretation for

each propositional variablep ∈ P. By F(S) def
= (W,{ a

Ð→∣ a ∈
A}) we denote the underlyingA-frame ofS. By ∣S∣ = ∣W ∣
we denote thesizeof S. We say thatS is finite if W is finite.
For s ∈W let NS(s) def

= {u ∈W ∣ ∃a ∈ A ∶ s
a
Ð→ u} be the set

of direct successors ofs in S. A pointed(A,P)-structure is
a pair(S, s) whereS is an(A,P)-structure ands is a world
of S. An ({a},P)-structure is also calledunimodal. We write
(W, a
Ð→,{Wp ∣ p ∈ P}) instead of(W,{ a

Ð→},{Wp ∣ p ∈ P}).
B. Multimodal Logic

Formulasof multimodal logicare defined by the following
grammar, wherea (resp.,p) ranges overA (resp.,P):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ◇a ϕ

We introduce the usual abbreviations⊺ = p∨¬p for somep ∈ P,
� = ¬⊺, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), and◻aϕ = ¬◇a¬ϕ. We say
that ϕ is over (A,P) if the set of action labels (resp. the set
of propositional variables) that appears inϕ is a subset ofA
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(resp.P). For an(A,P)-structureS = (W,{ a
Ð→∣ a ∈ A},{Wp ∣

p ∈ P}), w ∈W , and a formulaϕ over (A,P), we define the
satisfaction relation(S,w) ⊧ ϕ by structural induction onϕ,
wherea ∈ A andp ∈ P:

(S,w) ⊧ p def

⇔ w ∈Wp

(S,w) ⊧ ¬ϕ def

⇔ (S,w) /⊧ ϕ
(S,w) ⊧ ϕ1 ∧ϕ2

def

⇔ (S,w) ⊧ ϕ1 and(S,w) ⊧ ϕ2

(S,w) ⊧◇aϕ
def

⇔ ∃w′ ∶ w
a
Ð→ w′ and(S,w′) ⊧ ϕ

Let ϕ be a multimodal logic formula over(A,P). An (A,P)-
structureS is a modelof ϕ if (S,w) ⊧ ϕ for some worldw
of S. We say thatϕ is satisfiableif ϕ has a model.

C. Asynchronous Products and Many-Dimensional Modal
Logic

Fix non-empty, finite, and pairwise disjoint sets
A1, . . . ,Ad ⊆ A of action labels and non-empty, finite,
and pairwise disjoint setsP1, . . . ,Pd ⊆ P of propositional
variables. LetA = ⋃i∈[1,d]Ai and P = ⋃i∈[1,d] Pi. For
Ai-framesFi = (Wi,{ a

Ð→i∣ a ∈ Ai}) (i ∈ [1, d]) we define
the asynchronous product∏i∈[1,d] Fi

def
= (W,{ a

Ð→∣ a ∈ A})
to be theA-frame, whereW = W1 × ⋯ ×Wd and where for
eachv = ⟨v1, . . . , vd⟩ ∈ W and w = ⟨w1, . . . ,wd⟩ ∈ W we
have v

a
Ð→ w if and only if there is somei ∈ [1, d] such

that a ∈ Ai, vi
a
Ð→i wi and vj = wj for eachj ∈ [1, d] ∖ {i}.

An (A,P)-structureS = (W,{ a
Ð→∣ a ∈ A},{Wp ∣ p ∈ P})

is an uninterpreted product structureif F(S) = ∏di=1 Fi,
where eachFi is someAi-frame. Thus, we do not make any
restrictions on how atomic propositions are interpreted.

Next, let us define interpretations of atomic propositions
in products, as introduced in [13]. A(product) interpretation
is a mappingσ ∶ P → bool(P). In our lower bound proofs in
Section III,σ will be the identity interpretationid with id(p) =
p for all p ∈ P. Let Si = (Wi,{ a

Ð→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi})
be an(Ai,Pi)-structure fori ∈ [1, d]. For an interpretationσ,
their σ-product∏σi∈[1,d]Si is defined as the(A,P)-structure

S = (W,{ a
Ð→∣ a ∈ A},{Wp ∣ p ∈ P}) such thatF(S) =

∏i∈[1,d] F(Si) and⟨w1, . . . ,wd⟩ ∈Wp if and only ifα ⊧ σ(p),
whereα(q) = 1 if and only if wi ∈Wq,i for eachi ∈ [1, d] and

q ∈ Pi. If no interpretation is given, we define∏i∈[1,d]Si
def
=

∏id
i∈[1,d]Si.
Let us generalize multimodal logic to higher dimensions. A

multimodal formula of dimensiond ≥ 1 (briefly, a multimodal
K
d-formula) is a formulaϕ over (A = ⋃di=1Ai,P = ⋃di=1 Pi).

If ∣Ai∣ = 1 for all i ∈ [1, d] then ϕ is a unimodal formula
of dimensiond ≥ 1 (briefly, a unimodalKd-formula). For a
multimodalKd-formula ϕ and i ∈ [1, d] we defineranki(ϕ)
inductively: ranki(p) = 0 for p ∈ P, ranki(¬ϕ) = ranki(ϕ),
ranki(ϕ1 ∧ ϕ2) = max{ranki(ϕ1), ranki(ϕ2)},
ranki(◇aϕ) = ranki(ϕ) for a ∈ A ∖ Ai, and
ranki(◇aϕ) = ranki(ϕ) + 1 for a ∈ Ai. Finally, we
define theswitching depthof ϕ asmin{ranki(ϕ) ∣ 1 ≤ i ≤ d}
[16]. An uninterpreted product modelof ϕ is an uninterpreted

product structureS (in the above sense) such that for some
world w of S we have(S,w) ⊧ ϕ. For an interpretationσ,
a σ-model is a σ-product structureS such that(S,w) ⊧ ϕ
for some worldw of S. We sayϕ is uninterpreted satisfiable
(resp., σ-satisfiable) if ϕ has an uninterpreted (resp.,σ-)
product model. Let us introduce the following decision
problems for multimodal (unimodal)Kd:

MULTIMODAL (UNIMODAL ) Kd-SAT

INPUT: A multimodal (unimodal)Kd-formulaϕ.
QUESTION: Is ϕ uninterpreted satisfiable?

We introduce the corresponding variant in the presence of
an interpretationσ of the atomic propositions.

MULTIMODAL (UNIMODAL ) Kd
σ -SAT

INPUT: A multimodal (unimodal)Kd-formula ϕ and
some interpretationσ.

QUESTION: Is ϕ σ-satisfiable?

Since we mainly deal with the unimodal case in this paper,
we useKd

σ-SAT as an abbreviation for UNIMODALKd
σ-SAT.

The following proposition is not hard to prove, but will be
technically useful in Sections III and IV.

Proposition 1. There is a polynomial time many-one reduction
from (MULTIMODAL) K

d
σ-SAT to (MULTIMODAL) K

d-
SAT, which preserves the switching depth.

D. First-Order Logic

We assume standard definitions concerning first-order logic.
Only relational signatures will be considered. Fork ≥ 1, a
formula ϕ is anFO

k-formula if at mostk different variables
are used inϕ. Note that a formula, in which every subformula
has at mostk free variables is equivalent to anFOk-formula.
The quantifier rankof a formulaϕ is the maximal nesting
depth of quantifiers inϕ; it is denoted byqr(ϕ).
E. Feferman-Vaught Decompositions

The Feferman-Vaught decomposition theorem for multi-
modalKd can be formulated as follows, and was proven in
[13].

Theorem 2([13]). From an interpretationσ and a multimodal
K
d-formulaϕ over(⋃i∈[1,d]Ai,⋃i∈[1,d] Pi), one can compute

a tuple(Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji} a finite set of
multimodal formulas over(Ai,Pi) and β a positive boolean
formula with variables fromX = {xji ∣ i ∈ [1, d], j ∈ Ji} such
that for every(Ai,Pi)-structureSi and every worldwi of Si

(i ∈ [1, d]):
(

σ

∏
i∈[1,d]

Si, ⟨w1, . . . ,wn⟩) ⊧ ϕ ⇔ µ ⊧ β

Here,µ ∶X → {0,1} is defined byµ(xji ) = 1 iff (Si,wi) ⊧ ψji .
We call D = (Ψ1, . . . ,Ψd, β) the decompositionof ϕ and

define ∣D∣ = ∣β∣ +∑i,j ∣ψji ∣ to be itssize. We note that in the
same way one can define decompositions for the unimodal
variant and for extensions of multimodal logic.
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We note that Theorem 2 only holds in the presence of an
interpretationσ for the atomic propositions. We also mention
that Theorem 2 has been proven in [13] for much more
elaborated notions of interpretations. However, note thatnot
every logic admits decomposition: For instance the property
EGp meaning “there is a maximal path (a path is maximal if it
is either infinite or ends in a dead-end) on which every world
satisfiesp” is not decomposable, as shown in [13].

An analogous theorem can be stated for first-order sen-
tences, see [12] for a survey. In the following theorem, we
view everyp ∈ P = ⋃i∈[1,d] Pi as a unary predicate and every
a ∈ A = ⋃i∈[1,d]Ai as a binary predicate.

Theorem 3 ([11]). From an interpretationσ and an FO
k-

sentenceϕ over the signature(A,P) one can compute a tuple
(Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji} a finite set ofFOk-
sentences over the signature(Ai,Pi) andβ a positive boolean
formula with variables fromX = {xji ∣ i ∈ [1, d], j ∈ Ji} such
that for every(Ai,Pi)-structureSi (i ∈ [1, d]):

σ

∏
i∈[1,d]

Si ⊧ ϕ ⇔ µ ⊧ β.

Here,µ ∶X → {0,1} is defined byµ(xji ) = 1 iff Si ⊧ ψ
j
i .

III. K
2-SAT IS HARD

The goal of this section is to show a nonelementary lower
bound forK2-SAT and thus to close the complexity gap for
this problem. As a necessary preliminary step we show how
to enforce (nonelementary) big models inK2

id. Using this, we
prove via a standard reduction from appropriate tiling prob-
lems thatK2

id-SAT is nonelementary. Applying Proposition 1
yields the nonelementary lower bound forK ×K.

Recall the functionTower ∶ N × N → N defined as
Tower(0, n) = n and Tower(ℓ + 1, n) = 2Tower(ℓ,n) for each
ℓ, n ∈ N. In this section, we construct a family{ϕℓ,n ∣ ℓ, n ≥ 1}
of unimodal K2-formulas such that for eachℓ, n ∈ N, (i)
∣ϕℓ,n∣ ≤ exp(ℓ)⋅poly(n) and (ii) if (S×S′, ⟨s, s′⟩) ⊧ ϕℓ,n, then
∣S∣, ∣S′∣ ≥ Tower(ℓ, n). Informally speaking, our intention is
that if (S ×S′, ⟨s, s′⟩) ⊧ ϕℓ,n then both (S, s) and (S′, s′)
are of a particular structure that we will call(ℓ, n)-treelike.
Before giving its formal definition, we provide some intuition
about when a pointed structure(S, s) is treelike (the definition
of when(S′, s′) is treelike will be analogous).

Intuitively, think of a pointed structure(S, s) to be(ℓ, n)-
treelike if it contains a tree of depthℓ rooted ins (possibly
with additional worlds and transitions) such that
● (S, t) is (ℓ − 1, n)-treelike for every successort of s,
● s hasTower(ℓ, n) successors.

For this purpose, we additionally assign avalue val(S, s)
to every (ℓ, n)-treelike structure(S, s) and require that for
everyi ∈ [0,m] with m = Tower(ℓ, n)− 1 there is a successor
si of s with value i (however, we cannot exclude copies of
si). For ℓ = 0, the value is defined by propositional variables
p0, . . . , pn−1 which define ann-bit number, wherep0 refers to
the least significant bit. Forℓ > 0, the value is defined using
an additional propositionpb. Intuitively, the worldss0, . . . , sm

s

val(s) = 175

s0

pb

p←succ
pprec

s1

p0

pb

p←succ

s2

p1

pb

p←succ

s3

p0p1

pb

p←succ

s4

p2

psucc

s5

p0p2

pb

s6

p1p2

s7

p0p1p2

pb

Fig. 1. Example of an(1,3)-treelike structure with value 175.

define a binary number (by convention, the leftmost bit is the
least significant bit)b0⋯bm, wherebi = 1 precisely when the
proposition pb is satisfied insi. Obviously, this number is
between0 andTower(ℓ+1, n)−1. Figure 1 gives an example
of an (1,3)-treelike structure with value175. First observe
that s has 8 = 23 = Tower(1,3) successorss0, . . . , s7. Next
note that in eachsi the evaluation of the propositionspj
(j ∈ [0,2]) gives a binary number equal toi. For instance, ins4
only p2 is true, hence the corresponding binary number is001

which is4. As indicated, the evaluation ofpb gives rise to the
binary number⃗b = 11110101 which equals175. For enforcing
the described treelike structures(S, s) we need additional
auxiliary propositional variablespsucc, p←succ, pprec, and p←prec.
These propositions provide more information about the binary
numberb⃗ = b0⋯bTower(ℓ,n)−1 encoded by the successors ofs:

● psucc marks the first (from left to right)0 in b⃗,
● p←succ marks all worlds left ofpsucc,
● pprec marks the first1 in b⃗, and
● p←prec marks all worlds left ofpprec.

Inuitively, psucc (resp.pprec) marks the maximal position that
changes when⃗b is increased(resp.decreased) by 1. In other
words, increasing⃗b by 1 can be done by flipping all bits
marked withpsucc or p←succ and carrying over the remaining
ones. We refer again to Figure 1 for a valid evaluation of the
auxiliary propositions.

It is worth mentioning that(ℓ, n)-treelike structures are
similar to the trees̃Th(n) from [9, Definition 2]. As mentioned
above, we add a few more unary predicates (propositional vari-
ables) since our structures will be enforced in 2-dimensional
modal logic instead of first-order logic.

In the following, we formally define(ℓ, n)-treelike struc-
tures and their associated values. For this purpose, let us
fix the set of action labelsA = {a, a′} and for each
n ≥ 1 define the set of propositional variablesPn

def
=

{p0, . . . , pn−1} ∪ Paux and Qn
def
= {q0, . . . , qn−1} ∪ Qaux

with Paux
def
= {pb, psucc, p←succ, pprec, p←prec} and Qaux

def
=

{qb, qsucc, q←succ, qprec, q←prec}. For the sake of simplicity, we call
({a},Pn)-structures (resp.({a′},Qn)-structures)left struc-
tures (resp. right structures). We give only the definition
for left pointed structures because the definition for right
structures is simply obtained by replacing every proposition

4



pg by qg and
a
Ð→ by

a′

Ð→.
The definition of(ℓ, n)-treelike structures(S, s) and their

associatedvaluesval(S, s) ∈ [0,Tower(ℓ + 1, n) − 1] is by
induction on ℓ. Consider the left pointed structure(S, s)
whereS = (W, a

Ð→,{Wp ∣ p ∈ Pn}). Then (S, s) is (0, n)–
treelike if NS(s) = ∅. The valueof (S, s) is

val(S, s) def
=

n−1
∑
i=0

bi2
i ∈ [0,2n − 1],

wherebi = 1 if s ∈Wpi andbi = 0 otherwise.
For ℓ > 0, (S, s) is (ℓ, n)-treelike if the following hold,

wherem = Tower(ℓ, n) − 1:
(a) For all u ∈ NS(s), (S, u) is (ℓ − 1, n)-treelike. Let

N i
S
(s) def

= {u ∈ NS(s) ∣ val(S, u) = i} for i ∈ [0,m].
(b) N i

S
(s) ≠ ∅ for every i ∈ [0,m].

(c) If u, v ∈ N i
S
(s) for somei ∈ [0,m], thenu ∈ Wp if and

only if v ∈Wp for eachp ∈ Paux.
(d) If NS(s) ⊆ Wpb thenWpsucc ∩NS(s) = ∅ andNS(s) ⊆

Wp←succ
.

(e) If NS(s) ∖Wpb ≠ ∅ andk ∈ [0,m] is minimal such that
Nk

S
(s) ∖Wpb ≠ ∅, then for allv ∈ NS(s): v ∈ Wpsucc iff

val(S, v) = k andv ∈Wp←succ
iff val(S, v) < k.

(f) If NS(s)∩Wpb = ∅ thenWpprec∩NS(s) = ∅ andNS(s) ⊆
Wp←prec

.
(g) If NS(s) ∩Wpb ≠ ∅ andk ∈ [0,m] is minimal such that

Nk
S
(s) ∩Wpb ≠ ∅, then for allv ∈ NS(s): v ∈ Wpprec iff

val(S, v) = k andv ∈Wp←prec
iff val(S, v) < k.

Note that we make no restriction on the valuation of propo-
sitions in the worlds. Moreover, also the setWpb ∩NS(s)
is arbitrary, but this set uniquely determines the setsWpsucc ∩

NS(s), Wp←succ
∩NS(s), Wpprec ∩NS(s), andWp←prec

∩NS(s).
Finally, we define thevalue of (S, s) as follows: Fori ∈

[0,m], let bi = 0 if Wpb ∩N
i
S
(s) = ∅ and bi = 1 otherwise.

Then,

val(S, s) def
=

m

∑
i=0

bi2
i ∈ [0,2m+1 − 1] = [0,Tower(ℓ+ 1, n)− 1].

Observe that this definition does not require auniquesuccessor
world si for each valuei. In fact, one cannot enforce this in
modal logic.

We will construct a family of formulas(ϕℓ,n)ℓ,n≥0 that
admit only (ℓ, n)-treelike structures as models. In order to
emphasize the two dimensions that we have in formulas over
({a} ⊎ {a′},Pn ⊎ Qn), we writex (resp.y) instead of◇a

(resp.◇a′) to refer to the modality of the first (resp. second)
dimension of the product, and similarly for box formulas.

Before we define the formulasϕℓ,n, we introduce auxiliary
formulas eqℓ,n, firstℓ,n, lastℓ,n, and succℓ,n whose names
indicate their intended purposes. Forℓ = 0 they are as follows:

eq0,n
def
= ⋀i∈[0,n−1] pi ↔ qi

first0,n
def
= ⋀i∈[0,n−1] ¬pi ∧ ¬qi

last0,n
def
= ⋀i∈[0,n−1] pi ∧ qi

succ0,n
def
= ⋁i∈[0,n−1](¬pi ∧ qi∧
⋀j∈[0,i−1](pj ∧ ¬qj) ∧⋀j∈[i+1,n−1] pj ↔ qj)

For ℓ > 0 we define them as follows:

eqℓ,n
def
= ⊟ q (eqℓ−1,n → (pb ↔ qb))

firstℓ,n
def
= ⊟¬pb ∧ q¬qb

lastℓ,n
def
= ⊟pb ∧ qqb

succℓ,n
def
= x¬pb ∧ ⊟ q (eqℓ−1,n →(psucc ↔ qprec) ∧ ((¬p←succ ∧ ¬psucc)→ (pb ↔ qb)))

In order to show the intuition of the introduced formulas we
prove the following lemma.

Lemma 4. Let ℓ ≥ 0 and let (S, s) and (S′, s′) be left and
right (ℓ, n)-treelike structures. Then the following holds:

(a) (S ×S′, ⟨s, s′⟩) ⊧ eqℓ,n iff val(S, s) = val(S′, s′).
(b) (S ×S′, ⟨s, s′⟩) ⊧ firstℓ,n iff val(S, s) = val(S′, s′) = 0.
(c) (S × S′, ⟨s, s′⟩) ⊧ lastℓ,n iff val(S, s) = val(S′, s′) =

Tower(ℓ + 1, n) − 1.
(d) (S ×S′, ⟨s, s′⟩) ⊧ succℓ,n iff val(S′, s′) = val(S, s) + 1

Now we give a family of formulasϕℓ,n with the idea that
every model ofϕℓ,n is the product of a left(ℓ, n)-treelike
structure and a right(ℓ, n)-treelike structure with the same
value.

Definition 5. Setϕ0,n = eq0,n ∧ ⊟� ∧ q� and defineϕℓ,n, by
induction onℓ, as the conjunction of the following formulas:

(1) xy (ϕℓ−1,n ∧ firstℓ−1,n)
(2) ⊟yϕℓ−1,n
(3) qxϕℓ−1,n
(4) ⊟ (q¬lastℓ−1,n →ysuccℓ−1,n)
(5) ⊟ q (eqℓ−1,n → ⋀pg∈Paux

(pg ↔ qg))
(6) ⊟ q (((psucc ∨ p←prec)→ ¬pb) ∧ ((p←succ ∨ pprec)→ pb)))
(7) ⊟ q (succℓ−1,n → ⋀x∈{succ,prec}((qx ∨ q←x )→ p←x )∧(p←x → (q←x ∨ qx))
(8) xy (psucc ∨ p←succ) ∧ xy (pprec ∨ p←prec)

Some remarks regarding the intuition of the formulas are
appropriate. In the following explanation we will, in analogy
to left and right structures, distinguish left and right worlds.

Formulas (2) and (3) together imply inductively condition
(a) from the definiton of(ℓ, n)-treelike structures (every
successor is(ℓ−1, n)-treelike). Condition (b), the existence of
successor worlds for each valuek ∈ [0,Tower(ℓ + 1, n) − 1],
is enforced by induction onk: Formula (1) enforces a left
(ℓ − 1, n)-treelike structure with value0, thus establishing
the induction base. Formula (4) enforces for every left world
with value k a right world with valuek + 1. Formula (3)
enforces a left world having the same valuek + 1; this yields
the induction step. Formula (5) enforces condition (c). The
remaining conditions (d)-(g) from the definiton of(ℓ, n)-
treelike structures can be reformulated as follows:

(i) If a world satisfiespsucc or p←prec (resp.,p←succ or pprec),
then it does not satisfypb (resp., it satisfiespb).

(ii) If psucc or p←succ (resp.,pprec or p←prec) is satisfied in a left
world of valuek > 0, thenp←succ (resp.,p←prec) is satisfied
in all left worlds with valuek − 1.
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(iii) If p←succ (resp.,p←prec) is satisfied in a left world of value
k < Tower(ℓ, n) − 1, then p←succ or psucc (resp.,p←prec or
pprec) is satisfied in every left world of valuek + 1.

(iv) There is a successor world satisfying eitherpsucc or p←succ
(resp.pprec or p→prec).

Clearly, (i) (resp. (iv)) is expressed by formula (6) (resp.(8)).
Finally, formula (5) and (7) yield (ii) and (iii). For instance,
if a left world with valuek > 0 satisfiesp←succ or psucc, then
by formula (5) the corresponding right world satisfiesq←succ or
qsucc. Formula (7) implies thatp←succ is satisfied in every left
world with valuek−1. We are now ready to present our main
theorem.

Theorem 6. For everyℓ ≥ 0 the following holds:

(a) (S×S′, ⟨s, s′⟩) ⊧ ϕℓ,n iff (S, s) and (S′, s′) are (ℓ, n)-
treelike structures withval(S, s) = val(S′, s′).

(b) ∣ϕℓ,n∣ ≤ 3ℓ ⋅poly(ℓ, n) and the formulaϕℓ,n is computable
in time 3ℓ ⋅ poly(ℓ, n).

(c) The switching depth ofϕℓ,n is ℓ.

By making use of the models that are be enforced
by Theorem 6, we can finally prove a nonelementary
lower bound for K2

id-SAT via a standard reduction from
an appropriately chosen tiling problem. Letℓ-NEXP =
NTIME(Tower(ℓ,poly(n))).
Proposition 7. For eachℓ ≥ 1, K2

id-SAT restricted to formulas
of switching depthℓ is ℓ-NEXP-hard under polynomial time
reductions. In particular,K2

id-SAT is nonelementary.

The following theorem is an immediate consequence of
Proposition 1 and Proposition 7.

Corollary 8. For eachℓ ≥ 1, K2-SAT restricted to formulas
of switching depthℓ is ℓ-NEXP-hard under polynomial time
reductions. In particular,K2-SAT is nonelementary.

IV. H ARDNESSRESULTS FORK4 ×K AND S52 ×K

In this section, we prove further nonelemementary lower
bound results for the satisfiability problem of two-dimensional
modal logics on restricted classes of frames. We hereby close
nonelementary complexity gaps that were stated as open prob-
lems in [19]. Although in [19] uninterpreted product models
for these logics are of interest, we prove our lower bounds for
the id-interpretation only: For each of the logics studied here,
the id-interpretation case can be reduced in polynomial time
to the uninterpreted case in analogy to Proposition 1.

We define the following logics:

● K4 ×K: Two-dimensional unimodal logic restricted to
product modelsS ×S′, whereF(S) is transitive.

● S5 × K: Two-dimensional unimodal logic restricted to
product modelsS×S′ such that ifF(S) = (W,≡), then
≡ is anequivalence relation.

● S52×K: Two-dimensional modal logic that is bimodal in
the first dimension and unimodal in the second dimension
restricted to modelsS ×S′ such that ifF(S) = (W,≡1
,≡2), then both≡1 and≡2 are equivalence relations.

Let us start withK4 × K. We adapt the straightforward
reduction fromK to K4 to the two-dimensional case. When
following a transition in aK4-frame one has no control
over how far one is actually going due to transitivity of the
frame. The idea for the reduction is to introduce additional
propositionsh0, . . . , hn and enforcelevels in the models.
Intuitively, hi is true inw′ precisely whenw′ is in level i seen
from the worldw where the formula is evaluated. Following
a transition is then restricted to increase the level only by1.

Let ϕ be a unimodalK2-formula with rank1(ϕ) = r and
define for every0 ≤ k ≤ r the translation functiontk by taking

tk(p) = Hk ∧ p

tk(¬ψ) = Hk ∧ ¬tk(ψ)
tk(ψ1 ∧ ψ2) = tk(ψ1) ∧ tk(ψ2)

tk(yψ) = ytk(ψ)
tk(xψ) = Hk ∧x(Hk+1 ∧ tk+1(ψ))

where Hk
def
= hk ∧ ⋀i≠k ¬hi and k < r in the definition

of tk(xψ). We show that the translation is satisfiability
preserving. More precisely, we prove the following lemma.

Lemma 9. For every unimodalK2-formulaϕ we have:ϕ is
id-satisfiable inK2 iff t0(ϕ) is id-satisfiable inK4 ×K.

It is easy to see that Lemma 9 provides a reduction ofK
2

id-
SAT to id-satisfiability in K4 × K. Finally, an adaption of
Proposition 1 to the logicK4×K together with Proposition 7
yields the following result.

Theorem 10. Satisfiability inK4 ×K is nonelementary.

Next, we study combinations ofK with S5 and S52. It
is well-known that the complexity for checking satisfiability
jumps fromNP for S5 to PSPACE for S52. We will show that
also the complexity for deciding satisfiability in the product
logicsS5×K andS52×K, respectively, differs. In particular,
we will again reduce fromK

2

id-SAT in order to show a
nonelementary lower bound for the latter logic, which is in
sharp contrast to the following result by Marx [20].

Theorem 11([20]). Satisfiability inS5×K isNEXP-complete.

PSPACE-hardness for satisfiability inS52 is shown by a
straightforward reduction fromK [7]. We adapt this reduction
to the two-dimensional case by defining a translation† by

q† = p∗ ∧ q
(ϕ1 ∧ϕ2)† = ϕ†

1
∧ϕ†

2(¬ϕ)† = p∗ ∧ ¬(ϕ†)
(yϕ)† = y(ϕ†)
(xϕ)† = p∗ ∧x1(¬p∗ ∧x2(p∗ ∧ϕ†))

wherex1 andx2 refer to the two modalities inS52 andp∗ is
a fresh propositional variable in the left signature. Intuitively,
onetransition inK is simulated bytwo transitions inS52. This
is possible since the composition of two equivalence relations
is neither symmetric nor transitive in general and using the
fresh variablep∗ we can enforce a non-trivial transition, i.e.,
no loops. It can be proven along the lines of the proof in [7]
that † preservesid-satisfiability.
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Lemma 12. For every unimodalK2-formulaϕ we have:ϕ is
id-satisfiable inK2 iff ϕ† is id-satisfiable inS52 ×K.

The following theorem is an immediate consequence of
Lemma 12, Proposition 7, and an adaption of Proposition 1 to
S52 ×K.

Theorem 13. Satisfiability inS52 ×K is nonelementary.

V. FEFERMAN-VAUGHT DECOMPOSITIONS FORPRODUCTS

Having enforced nonelementarily branching trees with small
2-dimensional unimodal formulas (Theorem 6) allows us to
prove a nonelementary lower bound for the sizes of Feferman-
Vaught decompositions for2-dimensional unimodal logic.
Without making this explicit in the statement, our lower bound
is more general than the nonelementary lower bound for2-
dimensional unimodal logic from [17] in the following sense.
We provide a family of small formulas which are “inherently
hard to decompose”: When assuming, by contradiction, the
existence of small decompositions for our formulas,anymodel
for them can be used to deduce the desired contradiction,
whereas in [17]appropriately chosen modelshad to be defined
for this. Our proof strategy is similar to the proof of Theorem
5.1. in [9].

Theorem 14. Feferman-Vaught decompositions for unimodal
logic w.r.t. asynchronous product are inherently nonelemen-
tary. More precisely, for every elementary functionf(n)
there existsℓ ≥ 1 such that the unimodalK2-formula ϕℓ,2
from Definition 5 has no decompositionDℓ in the sense of
Theorem 2 with∣Dℓ∣ ≤ f(∣ϕℓ,2∣). The same lower bound holds
when relativized to product structuresT×T′, whereF(T) and
F(T′) are finite trees.

Proof: Assume by contradiction that there is an ele-
mentary functionf ∶ N → N such that for eachℓ ≥ 1

there is a decompositionDℓ = (Ψ(ℓ)
1
,Ψ
(ℓ)
2
, βℓ) of ϕℓ,2 in

the sense of Theorem 2 with∣Dℓ∣ ≤ f(∣ϕℓ,2∣). In particular,
∣βℓ∣ ≤ f(∣ϕℓ,2∣). Since∣ϕℓ,2∣ ≤ exp(ℓ) by Theorem 6(b), there
exists an elementary functiong such that∣βℓ∣ ≤ g(ℓ) for all
ℓ ≥ 0. Thus, there exists anh ≥ 0 with 2g(h−1) < Tower(h,2);
let us fix such anh.

By Theorem 6(a),ϕh,2 is id-satisfiable. Assume that(S ×

S′, ⟨w,w′⟩) ⊧ ϕh,2 for some left pointed structure(S,w)
and some right pointed structure(S′,w′). By Theorem 6(a),
(S,w) and (S′,w′) are (h,2)-treelike and val(S,w) =
val(S′,w′) = k for somek ∈ [0,Tower(h + 1,2) − 1]. By
the definition of(h,2)-treelike structures, there exist for each
i ∈ [0,Tower(h,2) − 1] worlds vi ∈ NS(w) andv′i ∈ NS′(w′)
such that(S, vi) and (S′, v′i) are (h − 1,2)-treelike and
val(S, vi) = val(S′, v′i) = i. Also note that

(S ×S
′, ⟨vi, v′j⟩) ⊧ ϕh−1,2 ⇔ i = j (1)

for all i, j ∈ [0,Tower(h,2) − 1]. Consider our decomposi-
tion Dh−1 = (Ψ(h−1)

1
,Ψ
(h−1)
2

, βh−1) of ϕh−1,2. Assume that
Ψ
(h−1)
1

= {ψj ∣ j ∈ J} and Ψ
(h−1)
2

= {ψ′j ∣ j ∈ J ′}. Recall
that βh−1 is a positive boolean formula with variables from

X = {xj ∣ j ∈ J} ∪ {x′j ∣ j ∈ J ′} and that∣βh−1∣ ≤ g(h − 1).
Hence,∣X ∣ ≤ g(h − 1).

For eachr ∈ [0,Tower(h,2) − 1] we define a truth assign-
mentµr ∶X → {0,1} as follows:

µr(xj) = 1 ⇔ (S, vr) ⊧ ψj
µr(x′j) = 1 ⇔ (S′, v′r) ⊧ ψ′j

Since forβh−1 there are2∣X ∣ ≤ 2g(h−1) < Tower(h,2) many
truth assignments, there exist0 ≤ r < s < Tower(h,2) with
µr = µs. Since(S ×S′, ⟨vr, v′r⟩) ⊧ ϕh−1,2, this implies(S ×

S′, ⟨vr, v′s⟩) ⊧ ϕh−1,2. But this contradicts (1).
Our lower bound also holds when only products of finite

trees are allowed as models, since for everyℓ, n, there exists
an (ℓ, n)-treelike structureS such thatF(S) is a finite tree
(of height ℓ).

Note that the lower bound from Theorem 14 would even
hold if we defined the size of a decomposition(Ψ1, . . . ,Ψd, β)
as the size of the boolean formulaβ only (and not accounting
for the sizes of theΨi); the same proof works for this
variant. In contrast to [17] the proof of Theorem 14 allows
to derive nonelementary lower bounds on decompositions for
any decomposable logic (in the sense of Theorem 2) that is
at least as expressive as unimodal logic and only elementarily
less succinct than unimodal logic.

Corollary 15. Every logic that is at least as expressive as and
at most elementary less succinct as unimodal logic does not
have elementary sized Feferman-Vaught decompositions with
respect to asynchronous product.

VI. FEFERMAN-VAUGHT DECOMPOSITIONS FORSUMS

So far, we only considered Feferman-Vaught decompo-
sitions for asynchronous products. Another important and
natural operation on structures is the disjoint sum. Let us fix
a relational signatureτ and for i ∈ [1, d] let Si = (Di,{Pi,a ∣
a ∈ τ}) be a τ -structure such thatDi ∩ Dj = ∅ for i ≠ j.
Let Ai /∈ τ (i ∈ [1, d]) be a fresh unary predicate symbol. The
the disjoint sum∑di=1Si is the following structure over the
signatureτ ∪ {A1, . . . ,Ad}:
d

∑
i=1

Si
def
= ( ⋃

i∈[1,d]
Di,{ ⋃

i∈[1,d]
Pi,a ∣ a ∈ τ} ∪ {Di ∣ i ∈ [1, d]}).

Here,⋃i∈[1,d] Pi,a is the interpretation fora ∈ τ andDi is the
interpretation for the fresh symbolAi. The following result is
again classical [11], [12].

Theorem 16. For everyFOk-sentenceϕ over the signature
τ ⊎ {A1, . . . ,Ad} one can compute a tuple(Ψ1, . . . ,Ψd, β),
where eachΨi = {ψji ∣ j ∈ Ji} is a finite set ofFOk-sentences
over the signatureτ and whereβ is a positive boolean formula
with variables fromX = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for
all τ -structuresS1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here,µ ∶X → {0,1} is defined by:µ(xji ) = 1 iff Si ⊧ ψ
j
i .
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The following result is a simple corollary of Corollary 15.

Corollary 17. For everyk ≥ 3, there is no elementary function
f(n) such that everyFOk-formulaϕ has a Feferman-Vaught
decomposition w.r.t. disjoint sum of sizef(∣ϕ∣).

Corollary 17 raises the question whether even Feferman-
Vaught decompositions forFO2 w.r.t. disjoint sum become
nonelementary. We give a negative answer to this question.

Theorem 18. The following is computable in doubly exponen-
tial time:
INPUT: An FO

2-sentenceϕ over τ ⊎ {A1, . . . ,Ad}
OUTPUT: A decomposition(Ψ1, . . . ,Ψd, β), whereΨi = {ψji ∣
j ∈ Ji} is a finite set ofFO2-sentences overτ and β is a
positive boolean formula with variables fromX = {xji ∣ i ∈[1, d], j ∈ Ji} such that for allτ -structuresS1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here,µ ∶X → {0,1} is defined by:µ(xji ) = 1 iff Si ⊧ ψ
j
i .

We will prove Theorem 18 only for the cased = 2. Hence,
let us fix a signatureτ of relational symbols and letA1,A2 /∈ τ
be two additional unary symbols. LetS1 andS2 be relational
structures over the signatureτ .

We define a partial order⪯ on the set of all first-order
formulas by settingψ1 ⪯ ψ2 if and only if ψ1 is a subformula
of ψ2. For a formulaϕ we denote withQϕ the set of all
subformulas ofϕ that start with a quantifier. WithQcl

ϕ we
denote the set of those formulas inQϕ that are closed, i.e.,
do not have free variables. In a formula∃x ∶ Ai(x)∧ψ (resp.
∀x ∶ Ai(x)→ ψ), wherei ∈ {1,2}, we say thatx is relativized
to Ai, and for better readability we write∃x ∈ Ai ∶ ψ (resp.
∀x ∈ Ai ∶ ψ) for that formula.

A formula ϕ over the signatureτ ∪{A1,A2} is calledpure
if ϕ is a boolean combination of formulasϕ1, . . . , ϕn such
that for every1 ≤ i ≤ n there existsj ∈ {1,2} such that for
every (Qx ∶ ψ) ∈ Qϕi

(whereQ ∈ {∃,∀}), x is relativized
to Aj in Qx ∶ ψ. Equivalently,ϕ is pure, if for all (Q1x ∶

ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), x is
relativized in(Q1x ∶ ψ1) to the sameAi asy in (Q2y ∶ ψ2).
To prove Theorem 18 (ford = 2), it suffices to transform
an FO

2 sentence over the signatureτ ∪ {A1,A2} in doubly
exponential time into an equivalent pureFO2-sentence over
the signatureτ ∪ {A1,A2}.

A formulaϕ over the signatureτ∪{A1,A2} is calledalmost
pure if it satisfies the following conditions:

● For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in(Qx ∶ ψ) to
eitherA1 or A2.

● If (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶

ψ2), then eitherx is relativized in (Q1x ∶ ψ1) to the
sameAi asy in (Q2y ∶ ψ2), or there existsθ ∈ Qcl

ϕ with
(Q1x ∶ ψ1) ⪯ θ ≺ (Q2y ∶ ψ2).

In other words, whenever a chain of subformulas(Q1x ∶ ψ1) ⪯
(Q2y ∶ ψ2) ⪯ ϕ does not satisfy the pureness condition, then
(Q1x ∶ ψ1) occurs within a proper subsentence of(Q2y ∶

ψ2) that moreover starts with a quantifier. Clearly, every pure
formula is almost pure. Vice versa, we have:

Lemma 19. From a given almost pure formulaϕ over the
signatureτ ∪{A1,A2} one can compute a logically equivalent
pure formulaϕ′ of size2∣Q

cl
ϕ∣ ⋅O(∣ϕ∣). If ϕ is anFO

2-formula
thenϕ′ is an FO

2-formula as well.

Proof: The idea is to replace the topmost occurrences of
sentences from the setQcl

ϕ by truth values in all possible ways
in a big disjunction over all possible truth assignments. Since
sentences fromQcl

ϕ may also violate the pureness condition,
we have to iterate this replacement step.

Let ϕ be almost pure and letF be the set of all mappings
fromQcl

ϕ to {true, false}. Forf ∈ F and a formulaθ let θ[f] be
the formula that results fromθ by replacing every⪯-maximal
formula ψ from the set(Qθ ∖ {θ}) ∩Qcl

ϕ by the truth value
f(ψ). Then, we defineϕ′ as the disjunction

⋁
f∈F
(ϕ[f] ∧ ⋀

ψ∈Qcl
ϕ

(f(ψ)↔ ψ[f])).

Clearly,ϕ′ is equivalent toϕ andϕ′ is pure.

Lemma 20. From a givenFO2-formulaϕ(x) over the signa-
ture τ ∪ {A1,A2} with at most one free variablex, one can
computeFO2-formulasϕ′(x) andϕ′′(x) of size2O(∣ϕ∣

2) such
that the following holds for all structuresS1 andS2 over the
signatureτ .

● Qx ∈ A1 ∶ ϕ
′(x) andQx ∈ A2 ∶ ϕ

′′(x) are almost pure
(whereQ ∈ {∀,∃}).

● For all a ∈S1, S1 +S2 ⊧ ϕ(a) iff S1 +S2 ⊧ ϕ′(a).
● For all a ∈S2, S1 +S2 ⊧ ϕ(a) iff S1 +S2 ⊧ ϕ′′(a).

Moreover,∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) and ∣Qcl

ϕ′′(x)∣ ∈ 2O(∣ϕ∣).
Proof: Let us construct the formulaϕ′(x) (ϕ′′(x) is

constructed analogously) by induction over the structure of the
formulaϕ(x). The case that the top-most operator inϕ(x) is
a boolean operator is clear, e.g., set(ϕ1 ∧ϕ2)′ = ϕ′1 ∧ϕ′2.

Now, assume thatϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is
an FO

2-formula, the formulaψ(x, y) can be obtained from
a positive boolean formulaB(p1, . . . , pk) by replacing every
propositonal variablepi by

(a) someα(x) ∈ Qϕ, where onlyx may occur freely, or by
(b) someβ(y) ∈ Qϕ, where onlyy may occur freely, or by
(c) a possibly negated atomic formula (i.e., a literal) that

involves a subset of the variables{x, y}.
Let ψ′(x, y) be the formula that results fromψ(x, y) by
replacing every subformulaα(x) (resp.β(y)) of type (a) (resp.
(b)) byα′(x) (resp.β′(y)). We can writeB as a DNF formula
B = ⋁ri=1Bi of size2O(∣B∣), where everyBi is a conjunction
of formulas of the types (a)–(c). Hence, we can writeBi as

Bi = αi(x) ∧ βi(y) ∧ γi(x, y),
where αi is a conjunction of type-(a) formulas,βi is a
conjunction of type-(b) formulas, andγi(x, y) is a conjunction
of type-(c) formulas.
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Clearly, over a structureS1 +S2, the formula∃y ∶ ψ(x, y)
is equivalent to∃y ∈ A1 ∶ ψ(x, y) ∨ ∃y ∈ A2 ∶ ψ(x, y), i.e., to

∃y ∈ A1 ∶ ψ(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (αi(x) ∨ βi(y) ∨ γi(x, y)).
By induction, for allx ∈S1, this formula is equivalent to

∃y ∈ A1 ∶ ψ
′(x, y) ∨ (2)

r

⋁
i=1

∃y ∈ A2 ∶ (α′i(x) ∧ β′′i (y) ∧ γi(x, y)). (3)

In line (3), every occurrence of a literal inγi(x, y), in which
both x and y occur, can be replaced either bytrue (if the
literal is negative) orfalse (if the literal is positive). The reason
for this is that no atomic relations ofS1 +S2 involve both
elements ofS1 and S2. We therefore obtain an equivalent
formula of the form

∃y ∈ A1 ∶ ψ
′(x, y) ∨

r

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))).
Hereδi,1(x) (resp.δi,2(y)) is the conjunction of all literals in
γi(x, y) that only involve the variablex (resp.y). Let ϕ′(x)
be the above formula. We have to show that the formula

∃x ∈ A1

⎛
⎜
⎝
∃y ∈ A1 ∶ ψ

′(x, y) ∨
r

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)))
⎞
⎟
⎠

is almost pure. This follows inductively from the fact that∃x ∈
A1∃y ∈ A1 ∶ ψ

′(x, y), ∃x ∈ A1 ∶ α
′
i(x), and∃y ∈ A2 ∶ β

′′
i (y)

are almost pure, and the fact that∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))
is closed. This concludes the caseϕ(x) = ∃y ∶ ψ(x, y). The
caseϕ(x) = ∀y ∶ ψ(x, y) can be treated analogously.

If we allow ∧’s and∨’s of arbitrary width, then the depth
(i.e., the height of the syntax tree) ofϕ′(x) is bounded by
O(∣ϕ∣). Due to forming CNFs and DNFs, the width of∧’s and
∨’s can be bounded by2∣ϕ(x)∣. Hence, the syntax tree ofϕ′(x)
has heightO(∣ϕ∣) and branching degree2∣ϕ(x)∣, and therefore
has2O(∣ϕ∣

2) many nodes. Replacing∧’s and∨’s of arbitrary
width ≤ 2∣ϕ(x)∣ by 2-ary∧’s and∨’s only multiplies the number
of nodes by2∣ϕ(x)∣. Hence,ϕ′(x) is of size2O(∣ϕ∣

2).
For the bound∣Qcl

ϕ′(x)∣ ∈ 2O(∣ϕ∣) note that in the above
construction, the number of closed subformulas that start with
a quantifier is increased by at mostr + 1 (due to the formulas
∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)) for i ∈ [1, r]). Since r is
exponential in the size of the boolean formulaB, the bound
∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) follows.

Theorem 21. From a given closedFO2-formula ϕ over the
signatureτ ∪ {A1,A2} one can compute a pure closedFO2-
formulaψ of size22

O(∣ϕ∣)

such that for all structuresS1 and
S2 over the signatureτ , S1 +S2 ⊧ ϕ iff S1 +S2 ⊧ ψ.

Proof: We first apply Lemma 20 toϕ and obtain a closed
almost pureFO2-formulaθ such thatS1+S2 ⊧ ϕ iff S1+S2 ⊧
θ. The size ofθ is bounded by2O(∣ϕ∣

2). Finally, we apply

Lemma 19 toθ and obtain an equivalent pureFO2-formula
ψ of size2∣Q

cl
θ ∣ ⋅O(∣θ∣). Since∣θ∣ ∈ 2O(∣ϕ∣2) and ∣Qcl

θ ∣ ∈ 2O(∣ϕ∣)
this yields the upper bound22

O(∣ϕ∣)

for the size ofψ.
Let us conclude this section with a (non-matching) lower

bound on Feferman-Vaught decompositions forFO
2.

Proposition 22. There is no functionf(n) ∈ o(√n) and
c > 1 such that everyFO2-formula ϕ has a Feferman-Vaught
decompositions w.r.t. disjoint sum of sizeco(

√
∣ϕ∣).

VII. G AIFMAN NORMAL FORM

Our technique from the proof of Theorem 18 can be used
to prove a doubly exponential upper bound on the size (and
construction) of Gaifman normal forms [14]. Let us start with
a few definitions.

Let S = (D,{Pa ∣ a ∈ τ}) be a structure over a relational
signatureτ . Then theGaifman graphof S is the undirected
graphG(S) = (D,E), where the edge relationE contains a
pair (u, v) ∈ D ×D with u ≠ v if and only if there exists a
relationPa (a ∈ τ ) of arity sayn and a tuple(u1, . . . , un) ∈
Pa such thatu, v ∈ {u1, . . . , un}. For u, v ∈ D, the distance
dS(u, v) is the length (number of edges) of a shortest path
from u to v in G(S). For a tupleu = (u1, . . . , un) and v,
let dS(u, v) = min{dS(ui, v) ∣ 1 ≤ i ≤ n}. For n ∈ N, the
n-spherearoundu is SS,n(u) = {v ∈ D ∣ dS(u, v) ≤ n}. We
write Sn(u) for SS,n(u), if S is clear from the context.

Note that for everyn ∈ N, there exists a first-order formula
dn(x, y) such that for all structuresS and all elementsu, v
of S, S ⊧ dn(u, v) if and only if dS(u, v) ≤ n. For better
readability, we writed(x, y) ≤ n instead ofdn(x, y). The for-
mulad(x, y) > n should be understood similarly. In a formula
of the form∃y ∶ d(x, y) ≤ r ∧ ψ or ∀y ∶ d(x, y) ≤ r → ψ, we
say that the variabley is relativizedto Sr(x). A formulaϕ is
calledr-local aroundx if for every occurrence of a subformula
(Qy ∶ ψ) ∈ Qϕ, the variabley is relativized in(Qy ∶ ψ) to
a sphereSq(x) for someq ≤ r. A sentenceψ is called an
r-local Gaifman-sentenceif it is of the form

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕi(xi),

where everyϕi(xi) is q-local around (the single variable)xi
for someq ≤ r.

Theorem 23 (Gaifman’s theorem [14]). Every first-order
formula ϕ(x) is equivalent to a boolean combinationψ(x)
of r-local formulas aroundx and q-local Gaifman-sentences
for suitabler andq (that are exponential in the size ofϕ(x)).

We call the formulaψ(x) from Theorem 23 aGaifman
normal form for ϕ(x). In [9] it was shown that (forFO4-
formulas already) the size of equivalent formulas in Gaifman
normal form cannot be bounded elementarily. By using our
formulasϕℓ,n from Section III and analogous ideas as in [9],
we can strengthen the latter result toFO3.

Proposition 24. There is no elementary functionf(n) such
that every FO

3-formula ϕ has an equivalent formula in
Gaifman normal form of sizef(∣ϕ∣).
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Next, we show that for the fragmentFO2 such an elementary
(in fact, doubly exponential) bound is possible:

Theorem 25. Every FO
2-formula ϕ(x) is equivalent to a

boolean combinationψ(x) of r-local formulas aroundx and
q-local Gaifman-sentences withr ≤ 3qr(ϕ), q ≤ 6qr(ϕ), and
∣ψ∣ ≤ 22

O(∣ϕ∣)

.

In Theorem 25,x is a single variable. This is no restriction,
since everyFO2-formula can be written as a boolean combi-
nation of formulas that (i) start with a quantifier, and (ii) that
have at most one free variable. In the rest of this section, all
r-local formulas will ber-local around a single variablex. For
the proof of Theorem 25 it is useful to definealmostr-local
formulasaroundx andalmostr-local Gaifman-sentences. We
do this by simultaneous induction:

● Every formula that is built up from atomic formulas and
almostp-local Gaifman-sentences (for arbitraryp) using
boolean operators and quantifiers relativized toSq(x) for
arbitrary q ≤ r is an almostr-local formula aroundx
(hence, everyr-local formula aroundx is almostr-local
aroundx).

● If for someq ≤ r every formulaϕi(xi) is almostq-local
aroundxi (1 ≤ i ≤ n), then the sentence

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕi(xi)

is an almostr-local Gaifman-sentence.

For a formulaϕ, let G(ϕ) be the set of all almostp-local
Gaifman-sentencesψ (for arbitraryp) with ψ ⪯ ϕ.

Lemma 26. From an almostr-local formulaϕ(x) (aroundx)
one can compute a logically equivalent Boolean combination
ϕ′(x) of r-local formulas aroundx and q-local Gaifman
sentences. Here, the size ofϕ′(x) is bounded by2∣G(ϕ)∣ ⋅O(∣ϕ∣)
and q is the maximum of allp such thatG(ϕ) contains an
almostp-local Gaifman sentence.

Proof: Let ϕ(x) be almostr-local aroundx and letF
be the set of all mappings fromG(ϕ) to {true, false}. For
f ∈ F and a formulaθ let θ[f] be the formula that results
from θ by replacing every⪯-maximal formulaψ from the set
(G(θ)∖{θ})∩G(ϕ) by the truth valuef(ψ). Then, we define
ϕ′ as the disjunction

⋁
f∈F
(ϕ[f] ∧ ⋀

ψ∈G(ϕ)
(f(ψ)↔ ψ[f])).

Clearly,ϕ′ is equivalent toϕ andϕ′ is r-local aroundx.

Lemma 27. From an FO
2-formula ϕ(x) with at most one

free variablex, one can compute an equivalent almostr-local
formula ϕℓ(x) of size2O(∣ϕ∣

2) with r ≤ 3qr(ϕ), ∣G(ϕℓ)∣ ≤
2O(∣ϕ∣), and everyψ ∈ G(ϕℓ) is an almost2r-local Gaifman
sentence.

Let us finally prove Theorem 25. We first apply Lemma 27
to ϕ(x) and obtain an equivalent almostr-local formula
θ(x) with ∣θ∣ ≤ 2O(∣ϕ∣

2). Moreover r ≤ 3qr(ϕ) and every
sentence inG(θ) is an almost2r-local Gaifman sentence.

Finally, we apply Lemma 26 toθ and obtain an equivalent
Boolean combinationψ(x) of r-local formulas aroundx and
2r-local Gaifman sentences. The size ofψ(x) is bounded by
2∣G(θ)∣ ⋅O(∣θ∣). Since ∣θ∣ ≤ 2O(∣ϕ∣2) and ∣G(θ)∣ ≤ 2O(∣ϕ∣), this
yields the upper bound22

O(∣ϕ∣)

for the size ofψ(x). ⊓⊔

Finally, we give a (non-matching) lower bound on the size
of equivalent formulas in Gaifman normal form forFO2; the
proof is again based on techniques from [9].

Proposition 28. There is no functionf(n) ∈ o(√n) andc > 1
such that everyFO2-formula ϕ has an equivalent formula in
Gaifman normal form of sizecf(∣ϕ∣).

VIII. O PEN PROBLEMS

The main open problem concerns the size of Feferman-
Vaught decompositions (w.r.t. disjoint sum) and equivalent
formulas in Gaifman normal form forFO2. For both for-
malisms, we proved a doubly exponential upper bound and
a lower bound of the formco(

√
n) (for any constantc > 1).

We conjecture that the upper bound can be improved to a
singly exponential bound.
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