
Complexity of Branching Temporal Description Logics
Vı́ctor Gutiérrez-Basulto and Jean Christoph Jung and Carsten Lutz 1

Abstract. We study branching-time temporal description logics
(TDLs) based on the DLsALC and EL and the temporal logics CTL
and CTL∗. The main contributions are algorithms for satisfiability
that are more direct than existing approaches, and (mostly) tight el-
ementary complexity bounds that range from PTIME to 2EXPTIME

and 3EXPTIME. A careful use of tree automata techniques allows
us to obtain transparent and uniform algorithms, avoiding to deal di-
rectly with the intricacies of CTL∗.

1 Motivation

Classical Description Logics (DLs), such as those that underly the
W3C recommendation OWL, are fragments of first order logic and
aim at the representation of and reasoning about static knowledge.
The inability to capture dynamic and temporal aspects has often been
criticized because many relevant applications depend on this type of
knowledge, for example: (1) in medical ontologies such as SNOMED

CT and FMA [9], there are many concepts that can only be accu-
rately described by referring to dynamic aspects; think, for example,
of repeating patterns that indicate a disease such as malaria or of find-
ings such as hyperplasia (a proliferation of cells) which potentially
develop into a tumor in the future. (2) DLs are used as a language
for describing the conceptual model of databases and considerable
research has been devoted to extending this approach to capture also
the evolution of databases over time [2, 5]. As a reaction to this short-
coming of classical DLs, various kinds of temporal description logics
(TDLs) have been proposed, for details please see the surveys [1, 18]
and references therein.

A prominent approach to TDLs, originated in [20] and surveyed
in [18], is to combine static DLs with temporal logics that are com-
monly used in hardware and software verification, based on a two-
dimensional product-like semantics. While a large body of literature
is available for linear-time TDLs based on combinations of DLs with
the temporal logic LTL [3, 7, 4, 13], only limited research was de-
voted to branching-time TDLs based on CTL and CTL∗ [15, 8].
From the perspective of ontology applications such as those dis-
cussed under (1) above, this is slightly surprising because using LTL
operators often results in a modeling that is unrealistically strict.
As an example, consider the statement ‘each student will eventu-
ally be a graduate’. In TDLs based on LTL, this is modeled as
Student v 3Graduate or Student v StudentUGraduate, exclud-
ing the possibility that a student leaves university without a degree.
In TDLs based on CTL, it is possible to use the much more cautious
statement Student v EStudentUGraduate based on the existen-
tial path quantifier E, stating that there is a possible future in which
the student obtains a degree and leaving open the possibility of other

1 Bremen Universität,Germany, email: {victor, jeanjung,
clu}@informatik.uni-bremen.de

possible futures. Strict statements such as ‘each human will eventu-
ally die’ can be expressed as Human v A3A2Dead based on the
universal path quantifier A.

It has been shown in [15] in the context of monodic temporal first-
order logic that TDLs based on CTL are typically decidable whereas
TDLs based on CTL∗ have to be appropriately restricted in order to
attain decidability: inside concept implications, only state concepts
should be allowed, but no path concepts (these correspond to state
formulas and path formulas in CTL∗). Since decidability is obtained
by translating into monadic second order logic on trees, these results
only come with a non-elementary upper complexity bound. The aim
of this paper is to reconsider branching-time TDLs based on CTL
and CTL∗ (under the mentioned restriction), to develop more direct
algorithms for the satisfiability problem, and to analyze the compu-
tational complexity. We concentrate on TDLs that are most natural
from the perspective of ontology applications: we consider the ba-
sic DLs ALC and EL, allow the application of temporal operators
to concepts and (sometimes) to TBox statements (but never to roles),
and assume constant domains—please consult [18] for more infor-
mation on these choices.

Our investigation starts with the TDLs CTLALC and CTL∗ALC in
the case where temporal operators can only be applied to concepts
(Section 3). We use a uniform approach to both logics that consists
of a combination of Pratt-style type elimination and methods based
on non-deterministic tree automata. The approach is enabled by the
fact that the interaction between the DL dimension and the tempo-
ral dimension is limited, similar to the fusion of modal logics [14].
Note, however, that fusions correspond to expanding domains while
we use constant domains which impose additional technical difficul-
ties. We emphasize that the careful combination of types and exist-
ing tree automata for CTL and CTL∗ allows us to avoid many of the
technical intricacies of CTL∗, resulting in a rather transparent over-
all approach. We obtain EXPTIME-completeness for satisfiability in
CTLALC and 2EXPTIME-completeness for satisfiability in CTL∗ALC ,
thus the combined logics are computationally no more complex than
their components.

As the next step, we stick with CTLALC and CTL∗ALC , but addi-
tionally allow the application of temporal operators to TBoxes (Sec-
tion 4). To establish an elementary upper bound, we again use a uni-
form approach; it is based on a careful combination of alternating
2-way tree automata and non-deterministic tree automata for CTL
and CTL∗. We obtain a 2EXPTIME upper bound for CTLALC and
a 3EXPTIME upper bound for CTL∗ALC . For CTLALC , we prove
a matching lower bound using a reduction from the word problem
of alternating Turing machines, which shows that, in the presence
of temporal TBoxes, the combination of ALC and CTL results in
an increase of computational complexity by one exponential. For
CTL∗ALC , the complexity remains open between 2EXPTIME and
3EXPTIME.

Finally, we consider the combinations of the inexpressive DL EL
with fragments of CTL, allowing the application of temporal opera-
tors to concepts, only (Section 5). The crucial advantage of EL over
ALC is that it admits efficient (polytime) reasoning and our main aim
is to understand in how far this property transfers to a TDL based on
EL. It is interesting to note that linear-time TDLs based on EL and
LTL are computationally not very attractive as they turn out to be of
the same complexity as the corresponding combination of ALC and
LTL [3]. In the branching time case, we are able to identify a poly-
time TDL that could be viewed as an analog of non-temporal EL; it
includes the temporal operators E3 and E2. Most other versions of
CTLEL turn out to be hard for PSPACE or EXPTIME.

Proof details are deferred to the appendix of the long ver-
sion of this paper, made available at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

2 Preliminaries
We introduce CTL∗ALC and CTLALC . Let NC and NR be countably
infinite sets of concept names and role names. CTL∗ALC-state con-
cepts C and CTL∗ALC-path concepts C, D are defined by the gram-
mar

C ::= > | A | ¬C | C uD | ∃r.C | EC
C,D ::= C | C u D | ¬C | ©C | 2C | CUD

where A ranges over NC, r over NR, C,D over state concepts, and
C, D over path concepts. CTLALC is the fragment of CTL∗ALC in
which temporal operators ©,2,U must be immediately preceded
by the path quantifier E. Without further qualification, the term con-
cept refers to a state concept. As usual, we use ⊥ to abbreviate the
state concept ¬>, C tD for ¬(¬C u ¬D), and ∀r.C for ¬∃r.¬C;
other Boolean operators such as C ↔ D are defined as usual. In
CTL∗ALC , we additionally use AC to abbreviate the state concept
¬E¬C and 3C for the path concept ¬2¬C. In CTLALC , the abbre-
viations A©C, ACUD, E3C, and A3C are defined as is usual in
CTL [11].

A CTL∗ALC-TBox T is a finite set of concept inclusions (CIs)
C v D with C,D CTL∗ALC-state concepts. A CTLALC-TBox is de-
fined analogously. Note that inclusions between path concepts are
not admitted as they result in undecidability [15].

The semantics of classical, non-termporal DLs such as ALC is
given in terms of interpretations of the form I = (∆, ·I), where
∆ is a non-empty set called the domain and ·I is an interpretation
function that maps each A ∈ NC to a subset AI ⊆ ∆ and each
r ∈ NR to a binary relation rI ⊆ ∆×∆. The semantics of branching
TDLs is given in terms of temporal interpretations, which are infinite
trees in which every node is associated with a classical interpretation.
For the purposes of this paper, a tree is a directed graph T = (W,E)
where W ⊆ (N \ {0})∗ is a prefix-closed non-empty set of nodes
and E = {(w,wc) | wc ∈ W,w ∈ N∗, c ∈ N} a set of edges;
we generally assume that wc ∈ W and c′ < c implies wc′ ∈ W
and that E is a total relation. The node ε ∈ W is the root of T . For
brevity and since E can be reconstructed from W , we will usually
identify T with W .

A temporal interpretation is a structure I = (∆, T, {Iw}w∈W)
where T = (W,E) is a tree, and for each w ∈W , Iw is an interpre-
tation with domain ∆. We usually write AI,w instead of AIw , and
intuitively d ∈ AI,w means that in the interpretation I, the object d
is an instance of the concept name A at time point w. Note that each
time point shares the same domain ∆, i.e., we make the constant do-
main assumption. Intuitively, this means that objects are not created

or destroyed over time; it is the most general choice since expanding,
decreasing, and varying domains can all be simulated [14].

We now define the semantics of CTL∗ALC-concepts. A path in a
tree T = (W,E) starting at a node w is a minimal set π ⊆ W such
that w ∈ π and for each w′ ∈ π, there is a c ∈ N with w′c ∈ π.
We use Paths(w) to denote the set of all paths starting at the nodew.
For a path π = w0w1w1 · · · and i ≥ 0, we use π[i] to denote wi and
π[i..] to denote the path wiwi+1 · · · . The mapping ·I,w is extended
from concept names to CTL∗ALC-state concepts as follows:

>I,w = ∆

(C uD)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ∆ | ∃e : (d, e) ∈ rI,w ∧ e ∈ CI,w}
(E C)I,w = {d ∈ ∆ | d ∈ CI,π for some π ∈ Paths(w)}

where CI,π refers to the extension of CTL∗ALC-path concepts on a
given path π, defined as:

CI,π = CI,π[0] for state concepts C
(¬C)I,π = ∆ \ CI,π

(C u D)I,π = CI,π ∩ DI,π

(©C)I,π = {d ∈ ∆ | d ∈ CI,π[1..]}
(2C)I,π = {d ∈ ∆ | ∀j ≥ 0.d ∈ CI,π[j..]}

(CUD)I,π = {d ∈ ∆ | ∃ j ≥ 0.(d ∈ DI,π[j..]

∧(∀ 0 ≤ k < j. d ∈ CI,π[k..]))}.

A temporal interpretation I is a model of a concept C if CI,ε 6= ∅;
it is a model of a TBox T if CI,w ⊆ DI,w for all w ∈ W and all
C v D in T . Thus, a TBox T is interpreted globally in the sense
that it has to be satisfied at every time point. As an example, consider
the TBox

Student v E3(Graduated uA2∃worksFor.Company)

Prof v A(Prof URetired u (Retired→©Retired))

and note that the first CI is formulated in CTLALC while the latter is
CTL∗ALC proper.

3 CTL∗ALC and CTLALC: The Basic Case
Our aim is to establish algorithms and tight complexity bounds for
deciding satisfiability in CTLALC- and CTL∗ALC , which is the fol-
lowing problem: given a concept C and a TBox T , decide whether
there is a model I of T with CI,ε 6= ∅.

Non-deterministic Tree Automata

A crucial ingredient to our approach are nondeterministic Büchi tree
automata for CTL and CTL∗ as described in [17, 22], which we now
introduce in some detail. Let Σ be a finite alphabet and k ≥ 1. A
Σ-labeled k-ary tree is a pair (T, τ) where T is a tree in which every
node has exactly k successors and τ : T → Σ assigns a letter from
Σ to each time point. We sometimes identify (T, τ) with τ . A nonde-
terministic Büchi tree automaton (NBTA) over Σ-labeled k-ary trees
is a tuple A = (Q,Σ, Q0, δ, F) where Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, F ⊆ Q is a set of recurring
states, and δ : Q× Σ→ 2Q

k

is the transition function.
Let (T, τ) be a Σ-labeled k-ary tree. A run of A on τ is a Q-

labeled k-ary tree (T, r) such that r(ε) ∈ Q0 and for each node
w ∈ T , we have 〈r(w · 1), . . . , r(w · k)〉 ∈ δ(r(w), τ(w)). The run
is accepting if for every path π = w0w1 · · · which starts at ε, we
have r(wi) ∈ F for infinitely many i. The set of trees accepted by

2

A is denoted by L(A). The emptiness-problem for NBTAs, which
will be used as a part of our algorithm, can be decided in quadratic
time [24].

We now assert the existence of NBTAs for CTL and CTL∗, as
well as their constructability within certain time bounds. We refrain
from introducing CTL and CTL∗ in full detail, and only mention
that they are obtained from CTLALC and CTL∗ALC by dropping the
constructor ∃r.C; their semantics is based on 2NC -labeled trees of
unrestricted arity (in this context, we refer to the elements of NC

as propositional letters). Please refer to [11] for full details. We use
pl(ϕ) to denote the set of propositional letters in a CTL∗-formula ϕ.
For n > 0, we use Modn(ϕ) to denote the set of all 2pl(ϕ)-labeled
n-ary trees that satisfy ϕ at the root. Note that ϕ is satisfiable iff
Mod#E(ϕ) 6= ∅, where #E(ϕ) is the number of subformulas of ϕ
that are of the form Eψ.

Theorem 1 ([17, 22]) For a CTL∗-formula ϕ and n ≥ 0, one can
construct an NBTA Aϕ = (Q,Σ, δ, Q0, F) in time poly(|Q| + n)

such that L(Aϕ) = Modn(ϕ), Σ = 2pl(ϕ), |Q| ∈ 22poly(|ϕ|)
,

and |Q| ∈ 2poly(|ϕ|) when ϕ is a CTL formula.

The Decision Procedure

We now describe the uniform decision procedure for satisfiability in
CTLALC and CTL∗ALC . It yields a tight EXPTIME upper bound for
the former case and a tight 2EXPTIME upper bound for the latter.
The lower bounds are inherited from CTL and CTL∗ [12, 23].

Let C be a concept and T a TBox, formulated in CTL∗ALC or
its fragment CTLALC . We assume w.l.o.g. that T is of the form
{> v CT } and use cl(T) to denote the set of state concepts that
occur in T , closed under subconcepts and single negation. A type for
T is a set t ⊆ cl(T) such thatCT ∈ t. A temporal type for T has the
form (t, i) with t a type for T and i ≥ 0 a distance that denotes how
far a time point w of a tree structure is from the root (i.e., the length
|w| of the word w). For any n ≥ 0, we use ttpn(T) to denote the
set of all temporal types (t, i) for T with i ≤ n. The algorithm starts
with the set of temporal types ttpn0

(T) for some appropriate bound
n0 to be determined later and then generates a decreasing sequence
S0 ⊇ S1 ⊇ . . . where S0 = ttpn0

(T) and Sj+1 is obtained from
Sj by eliminating temporal types that, intuitively, cannot occur in
any model of T . The algorithm terminates when no further types are
eliminated, i.e., when Sj = Sj+1. It returns “satisfiable” if there is a
surviving (t, i) with C ∈ t and i = 0, and “unsatisfiable” otherwise.

We now formally describe the elimination condition. For a type t,
let t denote the result of replacing every concept C ∈ t \ NC with
a fresh concept name XC , and let cn denote the set of all resulting
concept names, including those in T . For C ∈ cl(T), let C denote
the result of replacing in C every subconcept ∃r.D with X∃r.D . Let
]E(T) denote the number of state concepts in cl(T) that are of the
form EC. A temporal type (t, i) is removed from Sj if it violates one
of the following:

1. if ∃r.C ∈ t, then there is a (t′, i) ∈ Sj such that {C} ∪ {¬D |
¬∃r.D ∈ t} ⊆ t′;

2. (t, i) is Sj-realizable, i.e., there is a 2cn-labeled]E(T)-ary tree
(T, τ) that satisfies the following conditions, where ρ(i) =
min{n0, i}:

(a) for some w ∈ T with |w| = i, we have τ(w) = t;

(b) for each w ∈ T , there is a (t, ρ(i)) ∈ Sj with τ(w) = t;

(c) ε satisfies A2
∧

XC∈cn

XC ↔ C.

Condition 1 takes care of the DL dimension of CTL∗ALC while Con-
dition 2 takes care of the (Boolean constructors and the) temporal di-
mension; intuitively, the tree (T, τ) describes the temporal evolution
of a single domain element. The intuition behind the number n0 and
the use of ρ(·) in Condition 2 is that time points which are close to
the root of the structure behave in a special way. For example, when
T = {> v A©©¬A}, then time points w with distance |w| < 2
are special in that they can satisfy A. Using binary counting, one can
construct similar examples where time points with exponential dis-
tance are still special; see [18] for a similar observation for LTLALC .
The final result S of type elimination represents the infinite expan-
sion Sω := S ∪ {(t,m) | (t, n0) ∈ S ∧m > n0}. For being able to
build a model, we want all (t, i) ∈ Sω to satisfy Conditions 1 and 2
when, in Condition 2, ρ(i) is replaced with i. This suggests the main
property to attain by choosing an appropriate bound n0:

(∗) if (t, n0) ∈ S is S-realizable, then (t, n0 + `) is S-realizable for
any ` ≥ 0.

One might be tempted to choose n0 = |tp(T)|. While this is indeed
sufficient for CTLALC , it does not work for CTL∗ALC , where types
do not capture enough information about models and time points of
double exponential distance can still be special. To solve this prob-
lem, we observe that NBTAs can used to verify Condition 2 above,
and that this suggests a concrete bound n0. Specifically, let ϕ be the
formula from Condition 2(c) and Aϕ the corresponding NBTA from
Theorem 1 with set of states Q.

Lemma 1 When choosing n0 := |Q| · |tp(T)| as a bound for the
type elimination procedure, then Property (∗) is satisfied and “satis-
fiable” is returned iff C is satisfiable w.r.t. T .

The proof of the first part of Lemma 1 that asserts satisfaction of (∗) is
rather subtle and involves a very careful use of automata techniques.
We have not yet said how NBTAs can be used to verify Condition 2.
The idea is to construct three NBTAs, one for each of the parts (a)
to (c), build the intersection NBTA which accepts precisely the 2cn-
trees required for Condition 2, and then to perform an emptiness test.
For part (c), we can simply use Aϕ. Moreover, it is easy to define an
NBTA At,i with i ≤ n0 states that verifies the condition in part (a),
and the same is true for part (b) and an NBTA ASj with n0 states.
Details are left to the reader.

It remains to show that the algorithm runs in double exponential
time in the case of CTL∗ALC and in exponential time for CTLALC .
We use |T | to denote the size of T , which is the number of symbols
needed to write it. The bound n0 is inO(22poly(|T |)

) for CTLALC and
in O(2poly(|T |)) for CTL∗ALC . The number of steps of the type elimi-
nation procedure is bounded by 2O(|T |) ·n0. The number of states in
Aϕ is n0 and thus it remains to recall that the intersection of a con-
stant number of NBTAs can be constructed with only a polynomial
blowup and that emptiness can be decided in quadratic time.

Theorem 2 Satisfiability is EXPTIME-complete for CTLALC and
2EXPTIME-complete for CTL∗ALC .

4 CTL∗ALC and CTLALC: Temporal TBoxes
We again study satisfiability of CTL∗ALC- and CTLALC-TBoxes, but
now allow temporal operators to be applied also to concept inclusions
in a TBox. CTL∗ALC-state TBoxes ϕ and CTL∗ALC-path TBoxes ψ, ϑ
are formed according to the grammar

ϕ ::= C v D | ¬ϕ | ϕ ∧ ϕ | Eψ
ψ, ϑ ::= ϕ | ¬ψ | ϑ ∧ ψ | ©ψ | ψUϑ.

3

We define truth relations I, w |= ϕ and I, π |= ψ (where I is
a temporal model, w a time point in I, and π a path in I) in the
obvious way, c.f. Section 2; in particular, I, w |= C v D iff
CI,w ⊆ DI,w. A temporal CTL∗ALC-TBox is a CTL∗ALC-state TBox;
temporal CTLALC-TBoxes are defined in the expected way. We say
that I is a model of a temporal CTL∗ALC-TBox ϕ if I, ε |= ϕ. Tem-
poral TBoxes are useful for expressing the dynamics of policies; for
example, the temporal CTLALC-TBox

A3(Student u ∃fails.MajorExam v A2¬Student)

says that, in all possible futures, there will be a policy such that all
students who fail a single major exam will immediately and lastingly
be exmatriculated.

Alternating Automata

To derive algorithms and upper bounds for the satisfiability of tem-
poral TBoxes, we use a careful mixture of NBTAs and alternating
Büchi tree automata. More precisely, an alternating 2-way Büchi
tree automaton (2ABTA) over Σ-labeled k-ary trees is a tuple A =
(Q,Σ, Q0, δ, F) where all components except δ are as for NBTAs.
For a set X , let B+(X) be the set of Boolean formulas built from
elements in X using ∧, ∨, true and false. Let Y ⊆ X . We say that
Y satisfies a formula θ ∈ B+(X) if assigning true to the mem-
bers of Y and assigning false to the members of X \ Y makes
θ true. Let [k] = {−1, 0, . . . , k}. For any w ∈ (N \ {0})∗ and
m ∈ k, we put mov(w,m) = w if m = 0, mov(w,m) = w · m
if m > 0, and mov(w,m) = u if m = −1 and w = uc
with c ∈ N. The transition function δ of a 2ABTA is a function
δ : Q× Σ× {t, f} → B+([k]×Q).

Let (T, τ) be a Σ-labeled k-ary tree. For w ∈ T , put root(w) = t
if w = ε and root(w) = f otherwise. A run of A on τ is a T × Q-
labeled tree (Tr, r) such that r(ε) = (ε, q0) for some q0 ∈ Q0 and
whenever x ∈ Tr, r(x) = (w, q), and δ(q, τ(w), root(w)) = θ,
then there is a set S = {(m1, q1), . . . , (mn, qn)} ⊆ [k] × Q such
that S satisfies θ and for 1 ≤ i ≤ n, we have x · i ∈ Tr , mov(w,mi)
is defined, and τr(x · i) = (mov(w,mi), qi). The emptiness prob-
lem for 2ABTAs is EXPTIME-complete [21]. Using the root flag as
an additional third component in the transition function is slightly
unorthodox, but easily seen to not cause any problems. It will allow
use to construct more compact 2ABTAs later on.

The Decision Procedure

Let ϕ be a temporal CTL∗ALC-TBox whose satisfibility is to be de-
cided. We use cl(ϕ) to denote the set of state concepts that occur
in ϕ, closed under subconcepts and single negation. A concept type
for ϕ is a set t ⊆ cl(ϕ) and tp(ϕ) denotes the set of all concept types
for T . We use sub(ϕ) to denote the set of all state subformulas of ϕ.

A quasi-world for ϕ is a pair (S1, S2) with S1 ⊆ tp(ϕ) a set of
concept types and S2 ⊆ sub(ϕ) a formula type such that

1. if t ∈ S1 and ∃r.C ∈ t, then there is a t′ ∈ S1 with {C}∪ {¬D |
¬∃r.D ∈ t} ⊆ t′;

2. for allC v D ∈ sub(ϕ), we haveC v D ∈ S2 iff, for all t ∈ S1,
C ∈ t implies D ∈ t.

Let qw(ϕ) denote the set of all quasi-worlds for ϕ. A quasi-model
M for ϕ is a qw(ϕ)-labeled tree, of any outdegree.

For t ∈ tp(ϕ), t is the result of replacing every C ∈ t \ NC with
a fresh concept name XC , and cnX denotes the set of all resulting

concept names, including those in T . For C ∈ cl(T), C denotes the
result of replacing in C every subconcept ∃r.D with X∃r.D . For ev-
ery ψ ∈ sub(ϕ), ψ denotes the result of replacing every subformula
C v D of ψ with a fresh concept name Yψ (which plays the role of a
propositional letter for CTL / CTL∗) and cnY is the set of all concept
names thus introduced. For S ⊆ sub(ϕ), we set S = {ψ | ψ ∈ S}.
For M a quasi-model, we use M2 to denote the 2cnY -labeled tree
obtained by associating each node w ∈M with the label S2(w).

A quasi-model M = (T, τ) is proper if the following conditions
are satisfied:

1. M2 |= ϕ;
2. for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a

2cnX -labeled tree (T, τ ′) such that

(a) τ ′(w) = s;

(b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such

that τ ′(w′) = s′;

(c) ε satisfies A2
∧

XC∈cnX

(XC ↔ C).

Intuitively, Condition 1 ensures that M satisfies the temporal TBox ϕ
and Condition 2 guarantees that, for each required domain element,
we can consistently select a type from the quasi-world at each node
of M. The following result shows that to decide satisfiability of ϕ, it
suffices to check the existence of a proper quasi-model for ϕ.

Proposition 2 ϕ is satisfiable iff there is a proper quasi-model forϕ.

The following NBTAs will be used in our decision procedure. Let ϑ
be the formula in Condition 2(c). By Theorem 1, we find an NBTA
Aϕ = (Q1,Σ1, δ1, Q

0
1, F1) that accepts exactly the 2cnY -labeled

#f
E(ϕ)-ary trees which satisfy ϕ, where #f

E(ϕ) denotes the set of
state formulas of the form Eψ in sub(ϕ); we also find an NBTA
Aϑ = (Q2,Σ2, δ2, Q

0
2, F2) that accepts exactly the 2cnX -labeled

#c
E(ϕ)-ary trees which satisfy ϑ, where #c

E(ϕ) denotes the set of
state concepts of the form EC in sub(ϕ).

We aim at constructing a 2ABTA A on qw(ϕ)-labeled trees that
accepts precisely the proper quasi-models for ϕ. For doing this, we
have to restrict the outdegree of quasi-models in an appropriate way.
Set k := |qw(ϕ)|·|tp(ϕ)|·|Q2|. The following is proved by replacing
Condition 2(c) with a version based on the NBTA Aϑ and carefully
analyzing its runs.

Lemma 3 There is a proper quasi-model for ϕ iff there is a quasi-
model for ϕ that is a k-ary tree.

The desired 2ABTA A will thus run on k-ary trees. For simplicity
and because Theorem 1 admits any outdegree, we can actually as-
sume both Aϕ and Aϑ to run on trees of outdegree k (this does
not result in a change to the state set Q2, thus does not impact k).
Since 2ABTAs are trivially closed under intersection, it suffices to
construct separate 2ABTAs A1 and A2 to deal with Conditions 1
and 2 of proper quasi-models. To obtain A1, manipulate Aϕ so that
it has input alphabet qw(ϕ) and each symbol (S1, S2) is treated
as S2, and view the resulting automaton as a 2ABTA. The 2ABTA
A2 = (Q,Σ, δ, {q0}, F) verifies Condition 2 by simulating a run
of Aϑ for every w ∈ T with τ(w) = (S1, S2) and every s ∈ S1.
Formally, set Q∗2 = Q2 ∪ {∗} and

Q = {q0} ∪ (Q2 ×Q∗2) ∪ (Q2 × 2cnX ×Q∗2)

4

and the transition relation δ is as follows, for ω = (S1, S2):

δ(q0, ω, ·) =
∧k
i=1(i, q0) ∧

∧
s∈S1

∨
q∈Q2

(0, (q, s, ∗))

δ((q, q′), ω, ·) =
∨
s∈S1

(0, (q, s, q′))

δ((q, s, q′), ω, t) =
∨

(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}
∧k
i=1(i, (qi, ∗))

δ((q, s, q′), ω, f) =
∨
p∈Q2

(−1, (p, q′))) ∧∨
(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}

∧k
i=1(i, (qi, ∗))

where · in the third component means that the transition exists both
when the component is t and f, and ‘∗’ behaves like a wildcard for
all states of Q2 with the test ∗ ∈ {q1, . . . , qk} always being success-
full. Finally, we set F = F2. Note that runs of the original NBTA
Aϑ must start at the root of the tree, but when simulating Aϑ in A,
we have to start at an arbitrary tree node. In fact, this is the reason
why we need a 2-way automaton and states of the form (q, q′) and
(q, s, q′), which intuitively mean that we are currently simulating a
run of Aϑ in state q and have already decided to assign q′ to some
successor of the current node (we do not need to memorize which
successor since the transitions of Aϑ are closed under permuting the
successors). The state (q, s, q′) additionally selects an s ∈ S1 for the
current tree node, see Condition 2. A careful analysis shows that our
approach yields the following upper bounds.

Theorem 3 Satisfiability of temporal TBoxes is in 2EXPTIME for
CTLALC and in 3EXPTIME for CTL∗ALC .

For CTLALC , we can establish a matching 2EXPTIME lower
bound by reducing the word problem of exponentially space-
bounded, alternating Turing machine (ATM). The reduction is too
long to be presented here in full detail, so we only sketch some cen-
tral ideas. Assume an ATMM and an input word α toM are given.
We construct a temporal CTLALC-TBox ϕM,α such that models of
ϕM,α correspond to accepting computation trees ofM on α. In par-
ticular, the computation tree is represented by the temporal develop-
ment of a single domain element d0 with each time point w corre-
sponding to a tape cell and a configuration ofM being represented
by exponentially many consecutive time points. A major challenge
is to transport information (a symbol found on a type cell) exponen-
tially far down the tree using a polysize TBox. The solution is to store
the information in additional domain elements generated with exis-
tential restrictions; to recover the stored information to the ‘main’
domain element d0, we cannot use r since roles can vary freely over
time; instead, we use the temporal TBox to exchange information be-
tween domain elements. In a nutshell, this can be done by temporal
TBox statements such as

A2(> v A ∨ > v ¬A)

which ensures that the truth value of A, and thus a single bit of in-
formation, is shared by all domain elements. To transport symbols in
our ATM reduction, we need to refine this basic idea, for example
by using a suitable set of binary counters to manage distances in the
tree. The resulting TBox ϕM,α has the form A2ψ with ψ a Boolean
combination of CIs C v D.

Theorem 4 Satisfiability of temporal CTLALC-TBoxes is
2EXPTIME-complete.

5 Fragments of CTLEL

The EL-family of DLs is a popular family of lightweight ontology
languages [6] whose key feature is to admit polytime reasoning while

still providing sufficient expressiveness for many applications. In
particular, members of the EL-family are used in medical ontolo-
gies such as SNOMED CT and underlie the OWL 2 EL profile of
the OWL 2 ontology language. We consider fragments of CTLEL,
the fragment of CTLALC that disallows the constructor ¬ (and thus
also the abbreviations CtD and ∀r.C). Throughout this section, we
only allow the application of temporal operators to concepts, but not
to TBoxes. As an example, consider the following CTLEL-TBox:

PhDStudent v E3(Phd uE3∃worksFor.Uni),
∃worksFor.Uni v E3E2Professor

Because of the absence of negation, satisfiability in CTLEL is triv-
ial; as in non-temporal EL, we therefore consider subsumption as the
central reasoning problem. Formally, a concept D subsumes a con-
cept C w.r.t. a TBox T , written T |= C v D, if CI ⊆ DI for
all temporal interpretations I that are a model of T . For example, the
above TBox implies that every PhD student has the possible future of
becoming a professor, formally T |= PhDStudent v E3Professor.

With the aim of identifying a computationally efficient branching-
time TDL, we consider various fragments of CTLEL obtained by
admitting sets of temporal operators. In this context, we view each
operator from the set E©C, A©C, E3C, E2C, A3C, A2C,
ECUD and ACUD as primitive instead of as an abbreviation. For
uniformity, we denote fragments of CTLEL by putting the available
temporal operators in superscript; for example, CTLE3,E2

EL is CTLEL
with only the operators E3 and E2. We obtain a landscape of tem-
poral variants of EL with the complexity of subsumption ranging
from PTIME over PSPACE-hard to EXPTIME-complete.

A tractable fragment

We assume that the input TBox is in the following normal form.
A basic concept is a concept of the form >, A, ∃r.A,E3A,E2A
where A is a concept name. Now, every CI in the input TBox is re-
quired to be of the form

X1 u . . . uXn v X

withX1, . . . , Xn, X basic concepts. Every TBox can be transformed
into this normal form in polytime such that (non-)subsumption be-
tween the concept names that occur in the original TBox is preserved,
c.f. [6]. We show that concept subsumption w.r.t. CTLE3,E2

EL -TBoxes
can be decided in polynomial time by reducing it to subsumption in
the extension EL++ [6] of EL. In particular, EL++ allows to specify
properties on roles, such as reflexivity, transitivity, and role hierarchy
statements of the form r v s. We introduce fresh role names succ3
and succ2. Intuitively, a role name succ3 represents the ‘going on
step to the future’ relation and a subrole succ2 of succ3 is used to
deal with concepts of the form E2A. We require that

• succ3 is transitive and reflexive,
• succ3 and succ2 are total; and
• succ2 v succ3.

We obtain an EL++-TBox T ′ from a CTLE3,E2
EL -TBox T by (i) re-

placing every subconcept E3A with ∃succ3.A, (ii) replacing ev-
ery subconcept E2A with MA for some fresh concept name MA,
(iii) adding for each fresh concept name MA introduced in step
(ii) the concept inclusion

MA v A u ∃succ2.MA

5

and (iv) including the properties of roles listed above. Note that the
role inclusion succ2 v succ3 is needed since ∅ |= E2A v E3A.
It is now possible to show the following.

Lemma 4 Let A,B be two concept names occurring in T . Then,
T |= A v B iff T ′ |= A v B.

Since concept subsumption in EL++ can be decided in PTIME [6],
we obtain the desired result.

Theorem 5 In CTLE3,E2
EL , subsumption can be decided in PTIME.

We note that this is the first temporal description logic based on EL
that turns out to admit PTIME reasoning; see also [3]. While the
expressive power of CTLE3,E2

EL is clearly rather restricted, we be-
lieve that it might still be sufficient for some applications. In some
sense, the situation parallels the one for non-temporal EL. Note that
the example given at the beginning of this section is formulated in
CTLE3,E2

EL .

Intractable Fragments

We show that CTLE3,E2
EL is a maximal tractable fragment of CTLALC

in the sense that adding further temporal operators destroys tractabil-
ity. We start with the extension CTLE3,E2,A2

EL and prove the fol-
lowing by a reduction from QBF validity. Since the strategy of the
reduction is rather standard, we defer details to the technical report.

Theorem 6 Subsumption in CTLE3,E2,A2
EL is PSPACE-hard.

We conjecture that ELE3,E2,A2 is actually PSPACE-complete, but
leave an upper bound as future work.

The remaining candidate operators for extending CTLE3,E2
EL are

E©, A©, A3, EU , AU . It turns out that subsumption is EXP-
TIME-complete in any of the resulting extensions. In fact, one does
not even need both temporal operators from CTLE3,E2

EL for the lower
bounds.

Theorem 7 Subsumption is EXPTIME-complete in

(a) CTLA3,E3
EL (b) CTLE3,E©

EL (c) CTLA3,A©
EL

(d) CTLEU
EL (e) CTLAU

EL (f) CTLA©
EL

The upper bounds are obvious since all listed TDLs are a fragment
of CTLALC , and the lower bounds are established as follows. It is
well-known that every non-convex extension of EL is at least as
hard as ALC, where convexity means that whenever T |= C v
D1 t · · · t Dn with n ≥ 2, then T |= C v Di for some i [6].
The same is true for non-convex fragments of CTLEL and CTLALC .
To establish the lower bound in Theorem 7, it thus suffices to ar-
gue that the listed fragments are not convex. For example, consider
CTLA3,E3

EL , set T = ∅ and

C = A3A uA3B
D1 = E3(A uE3B)
D2 = E3(B uE3A)

Clearly, T |= C v D1 t D2, but neither T |= C v D1 nor T |=
C v D2. Most remaining cases are similar to related fragments of
LTLEL studied in [3] and are treated in detail in the technical report.

The logic CTLA©
EL is an exceptional case since it can be proved

to be convex. However, it is nevertheless EXPTIME-hard, which fol-
lows from the observation that, after dropping the contructor ∃r.C,
CTLA©

EL is a notational variant of the description logic FL0 which
is shown to be EXPTIME-complete in [6, 16].

6 Conclusion
As future work, it would be interesting to determine the precise
complexity of satisfiability of temporal CTL∗ALC-TBoxes, which is
currently open between 2EXPTIME and 3EXPTIME, and to analyze
branching-time TDLs based on the DL-Lite family of DLs. It also
seems natural to generalize the expressive power of the branching
time component as demanded by applications. This includes captur-
ing statements such as ‘it is likely that an irregular mole develops
into a melanoma in the future’ and ‘all students will graduate within
8 semesters’.

REFERENCES
[1] Alessandro Artale and Enrico Franconi, ‘Temporal description logics’,

in Handbook of Time and Temporal Reasoning in Artificial Intelligence,
pp. 375–388, 2005.

[2] Alessandro Artale, ‘Reasoning on temporal conceptual schemas with
dynamic constraints’, in TIME, pp. 79–86, 2004.

[3] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter,
and Michael Zakharyaschev, ‘Temporalising tractable description log-
ics’, in TIME, pp. 11–22. IEEE Computer Society, (2007).

[4] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev, ‘Past and future of DL-Lite’, in AAAI, 2010.

[5] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev, ‘Tailoring temporal description logics for rea-
soning over temporal conceptual models’, in FroCos, volume 6989 of
LNCS, pp. 1–11, 2011.

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz, ‘Pushing the EL
envelope’, in IJCAI, pp. 364–369, 2005.

[7] Franz Baader, Silvio Ghilardi, and Carsten Lutz, ‘LTL over description
logic axioms’, in KR, pp. 684–694, 2008.

[8] Sebastian Bauer, Ian M. Hodkinson, Frank Wolter, and Michael Za-
kharyaschev, ‘On non-local propositional and weak monodic quantified
CTL’, J. Log. Comput., 14(1), pp. 3–22, 2004.

[9] Olivier Bodenreider and Songmao Zhang, ‘Comparing the represen-
tation of anatomy in the FMA and SNOMED CT’, in AMIA Annual
Symposium, pp. 46–50, 2006.

[10] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer, ‘Alterna-
tion’, J. ACM, 28(1), pp. 114–133, 1981.

[11] Edmund. M. Clarke, Orna Grumberg, and Doron Peled, Model check-
ing, MIT Press, 1999.

[12] Michael J. Fischer and Richard E. Ladner, ‘Propositional dynamic logic
of regular programs’, J. Comput. Syst. Sci., 18(2), pp. 194–211, 1979.

[13] Enrico Franconi and David Toman, ‘Fixpoints in temporal description
logics’, in IJCAI, pp. 875–880, 2011.

[14] Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev,
Many-dimensional modal logics: theory and applications, Studies in
Logic, 148, 2003.

[15] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev, ‘Decid-
able and undecidable fragments of first-order branching temporal log-
ics’, in LICS, pp. 393–402. 2002.

[16] Martin Hofmann, ‘Proof-theoretic approach to description-logic’, in
LICS, pp. 229–237, 2005.

[17] Orna Kupferman and Moshe Y. Vardi, ‘Safraless decision procedures’,
in FOCS, pp. 531–542, 2005.

[18] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev, ‘Temporal de-
scription logics: A survey’, in TIME, pp. 3–14, 2008.

[19] Christos H. Papadimitriou, Computational complexity, Academic Inter-
net Publ., 2007.

[20] Klaus Schild, ‘Combining terminological logics with tense logic’, in
EPIA, volume 727 of LNCS, pp. 105–120, (1993).

[21] Moshe Y. Vardi, ‘Reasoning about the past with two-way automata’, in
ICALP, volume 1443 of LNCS, pp. 628–641, 1998.

[22] Moshe Y. Vardi, ‘Automata-theoretic techniques for temporal reason-
ing’, in In Handbook of Modal Logic, pp. 971–989, 2006.

[23] Moshe Y. Vardi and Larry J. Stockmeyer, ‘Improved upper and lower
bounds for modal logics of programs: Preliminary report’, in STOC, pp.
240–251, 1985.

[24] Moshe Y. Vardi and Pierre Wolper, ‘Automata-theoretic techniques for
modal logics of programs’, J. Comput. Syst. Sci., 32(2), 183–221, 1986.

6

A Proofs for Section 3

By the following lemma, which is proved using standard automata-
theoretic constructions, we can assume all states of Aϕ (with ϕ the
formula from Condition 2(c)) to be initial. We will from now on make
this assumption throughout the appendix.

Lemma 5 For every CTL∗-formula A2ψ and the correspond-
ing NBTA AA2ψ = (Q,Σ, δ, Q0, F), we can construct in time
O(poly(|Q × Σ|)) an NBTA ÂA2ψ such that L(AA2ψ) =

L(ÂA2ψ) and every state in ÂA2ψ is an initial state.

Proof. Let A′ = (Q′,Σ, δ′, Q′0, F
′) be defined by setting Q′ =

Q × Σ, Q′0 = Q0 × Σ, and F ′ = F × Σ. Intuitively, a state
(q, σ) ∈ Q′ behaves just as q in AA2ψ when reading σ and re-
jects otherwise. More precisely, if (q1, . . . , qk) ∈ δ(q, σ), then
((q1, σ1), . . . , (qk, σk)) ∈ δ′((q, σ), σ) for all σ1, . . . , σk ∈ Σ. For
all σ′ 6= σ we define δ′((q, σ), σ′) = ∅. It is easy to see that AA2ψ

and A′ accept the same language. Moreover, if r is an accepting run
of A′ on some structure (T, τ), then for all w ∈ T we have

τ(w) = σ ⇔ ∃qw ∈ Q′.r(w) = (qw, σ) (1)

We call a state q ∈ Q′ active if there is some model (T, τ) of
A2ψ that admits an accepting run r of A′ such that r(w) = q for
some w ∈ T . Obviously, dropping inactive states does not change
the language of A′. So, let ÂA2ψ be the variant of A′ where Q̂ is
the set of active states in Q′ and Q̂0 = Q̂, i.e., all states are initial
states. We prove the following claim.

Claim. L(A′) = L(ÂA2ψ).
Proof of the claim. The direction “⊆” is immediate. For “⊇” assume
that T = (T, τ) ∈ L(Âψ). Hence, there is an accepting run (T, r) of
Âψ on T. Let r(ε) = (q, σ). Since, by assumption, (q, σ) is active,
there is an accepting run r′ of A′ on some structure T′ = (T, τ ′)
with r′(w) = (q, σ) for some w ∈ T . By Equation (1), τ ′(w) = σ.
Let T′′ = (T, τ ′′) the structure obtained from T′ be replacing the
subtree rooted at w by T. It is straightforward to prove that T′′ is
accepted by A′, hence T′′ is a model of A2ψ. Because A2ψ is a
formula starting with A2, the semantics implies that also the subtree
of T′′ rooted at w is a model of ψ. Hence, it is accepted by A′. By
construction, the subtree of T′′ rooted at w is exactly T; thus, T is
accepted by A′. This finishes the proof of the claim.

It remains to argue that we can check if a given state is active: Let
A′′ = (Q′, Q′ × Σ, δ′′, Q′0, F

′) be defined by

δ′′(q, (q′, σ)) =

{
δ′(q, σ) if q = q′

∅ otherwise

Intuitively, when reading a symbol (q, σ), a state q behaves inA′′ just
as in A′ when reading σ; it rejects when reading (q′, σ) for q′ 6= q.
This implies that (T, r) is an accepting run of A′ on some structure
(T, τ) if and only if (T, r) is an accepting run of A′′ψ on (T, τ ′)
where τ ′(w) = (r(w), τ(w)) for all w ∈ T . We can easily devise
an NBTA Bq that checks whether in Q′ × Σ-structure there is some
world labeled with (q, σ) for some σ. Hence, a state q is active if and
only if the language of A′′ψ ∩ Bq is not empty.

Since conjunction and emptiness check are polynomial time op-
erations on Büchi tree-automata, this also yields that ÂA2ψ can be
computed in polynomial time. o

In the appendix, we proceed in a slightly different order, i.e., we first
give details on how to prove Lemma ??, before we come to prove
correctness of the algorithm (Lemma ??).

Let S be the final result of type elimination. We extend S to a set
Ŝ that contains temporal types annotated with states of the automa-
ton Aϕ. Specifically, an extended type for T is a triple (t, q, i) with
(t, i) a temporal type for T and q ∈ Q. Let Ŝ be the set of all ex-
tended types (t, q, i) such that (t, i) ∈ S and there is an 2cn-labeled
tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ) such that

• for some w ∈ T with |w| = i, we have τ(w) = t and r(w) = q;
• for each w ∈ T , there is a (t, ρ(i)) ∈ S with τ(w) = t.

Since S satisfies Condition 2, S is the projection of Ŝ to the first and
last component of triples. We observe the following.

Lemma 6 For all (t, q, i) ∈ Ŝ, we have

1̂. if ∃r.C ∈ t, then there is a (t′, q′, i) ∈ Ŝ such that {C} ∪ {¬D |
¬∃r.D ∈ t} ⊆ t′;

2̂. there is a 2cn-labeled tree (T, τ) and an accepting run (T, r) of
Aϕ on (T, τ) such that

(a) for some w ∈ T with |w| = i, we have τ(w) = t and r(w) =
q;

(b) for each w ∈ T with |w| = j, there is a (t′, q′, ρ(j)) ∈ Ŝ with
τ(w) = t′ and r(w) = q′.

Proof. Condition 1̂ is immediate. For condition 2̂ observe that
(t, q, i) ∈ Ŝ because there is a 2cn-labeled tree (T, τ) and an ac-
cepting run (T, r) of Aϕ such that there is some w∗ ∈ T such with
|w∗| = i, τ(w∗) = t and r(w∗) = q and for all w ∈ T with
|w| = j, there is (t, ρ(j)) ∈ S with τ(w) = t. By definition of Ŝ, r
and τ also witness that for all w ∈ T we have (t′, r(w), ρ(|w|)) ∈ Ŝ
where τ(w) = t

′. Thus, τ and r together with w∗ show that condi-
tion 2̂ is satisfied. o

Let Ti = {(t, q) | (t, q, i) ∈ Ŝ} for all i ≤ n0. We show the
following monotonicity lemma:

Lemma 7 For all i ≤ n0, we have

1. Ti+1 ⊆ Ti;
2. Ti = Ti+1 implies Ti = Ti+` for all i+ ` ≤ n0

Proof. 1. Let M = Ŝ ∪ {(t, q, j) | (t, q, i) ∈ Ŝ, for some j ≤ i}.
We will show that M is consistent under the conditions 1̂ and 2̂. Let
(t, q, j) ∈ M . By definition of M , either (t, q, j) ∈ Ŝ or there is
some i ≥ j such that (t, q, i) ∈ Ŝ. In the first case, it is immediate,
so consider the second case.

• Lemma 6 implies that there is (t′, q′, i) ∈ Ŝ witnessing condition
1̂. Hence, (t′, q′, j) ∈M and (t, q, j) satisfies condition 1̂.

• Lemma 6 implies that there is a 2cn-labeled tree (T, τ) and an
accepting run (T, r) ofAϕ on (T, τ) such that (a) for some world
w ∈ T with |w| = i, we have τ(w) = t and r(w) = q, and (b) for
all v ∈ T with |v| = j, there is a (t′, q′, ρ(j)) ∈ Ŝ with τ(v) = t

′

and r(w) = q′. Let w = uv be such that |v| = j and let (T, τ ′)
be the subtree of (T, τ) rooted at w′ and (T, r′) be the subtree of
r rooted atw′. Since all states ofAϕ are initial states, (T, r′) is an
accepting run of Aϕ on (T, τ ′). By construction, τ ′(v) = t and
r′(v) = q, hence condition 2̂(a) is satisfied. Also condition 2̂(b)
is satisfied by definition of M .

7

2. Assume Ti = Ti+1 and let M = Ŝ ∪ {(t, q, j) | (t, q, i) ∈
Ŝ and i ≤ j ≤ n0}. As in the previous case it is enough to check that
all elements of M satisfy conditions 1̂ and 2̂. So let (t, q, j) ∈ M .
By definition of M there is some (t, q, i) ∈ Ŝ with i ≤ j.

• By Lemma 6, there is some (t′, q′, i) ∈ Ŝ witnessing condition 1̂.
Thus, (t′, q′, j) ∈M and (t, q, j) satisfies condition 1̂.

• We show by induction on j that (t, q, j) is not eliminated. The
cases j = i and j = i+1 are trivial. For the induction step, assume
Ti = Ti+` for all i+ ` < j. By this assumption and the fact that
(t, q, i) ∈ M , we know that (t, q, j − 1) ∈ M . By condition 2̂,
there is a structure (T, τ) and an accepting run (T, r) of Aϕ on
(T, τ) such that (a) there is a world w ∈ T with |w| = j − 1 and
τ(w) = t and r(w) = q, and (b) for all v ∈ T with |v| = j, there
is a (t′, q′, ρ(j)) ∈ Ŝ with τ(v) = t

′ and r(w) = q′. Letw = u·c
for some c ∈ N and τu = t′ and r(u) = q′. Since |u| = j−2, we
have (t′, q′, j−2) ∈M and by hypothesis (t′, q′, j−1) ∈M . By
condition 2̂, there is a structure (T, τ ′) and an accepting run (T, r′

of Aϕ on (T, τ ′) such that for some v ∈ T with |v| = j − 1 such
that τ ′(v) = t′ and r′(v) = q′. We define the tree (T, τ ′′) (the run
(T, r′′), respectively) to be the tree that is obtained from (T, τ ′)
(from (T, r′), respectively) by replacing the subtree rooted at v by
the subtree of (T, τ) (of (T, r), respectively) rooted at w′. Since
τ ′(v) = τ(w′) and r′(v) = r(w′), (T, r′′) is an accepting run of
Aϕ on (T, τ ′′). By construction, τ ′′(v · c) = t and r′′(v · c) = q.
Thus, (T, τ ′′) and (T, r′′) satisfy condition 2̂(a). By construction,
they also satsify condition 2̂(b).

o

Next, we define the infinite continuation of Ŝ as Ŝω = {(t, q, i) |
(t, q, ρ(i)) ∈ Ŝ}. Further, derive the conditions 1̂

′
and 2̂

′
from 1̂ and

2̂ by allowing all i ∈ N and replacing ρ(i) by i in 2̂(b).

Lemma 8 Every (t, q, i) ∈ Ŝω satisfies conditions 1̂
′

and 2̂
′
.

Proof. Since by the choice of n0, |T0| ≤ n0, Lemma 7 implies
that either Tn0 = ∅ or Tn0 = Tn0−1. In the first case Ŝω = ∅
and we are done. In the second case, we show by induction that over
i ≥ 0 that all triples (t, q, n0 + i − 1) satisfiy conditions 1̂

′
and 2̂

′
.

The induction base for i = 0 and i = 1 is trivial. For the induction
step assume (t, q, i) ∈ Ŝω and that all (t′, q′, `) satisfy 1̂

′
and 2̂

′
for

` < i. Now, we can proceed as in part 2 of the proof of Lemma 7 to
show that (t, q, i) satisfies conditions 1̂

′
and 2̂

′
. o

So Lemma 8 justifies the choice of n0. Finally, we come back to
the Lemma ??.

Lemma ?? If S is the result of type elimination and (t, n0) ∈ S is
S-realizable, then (t, n0 + `) is S-realizable, for any ` ≥ 0.

Proof. We define conditions 1’ and 2’ as variants of condition 1
and 2 by admitting every i ∈ N and replacing ρ(i) with i in condition
2. Observe that Sω = S ∪ {(t,m) | (t, n0) ∈ S,m > n0} as
defined in the paper is precisely the projection of Ŝω to the first and
third component of the triples. So, let (t, n0) ∈ S be S-realizable.
By definition of Ŝ, there is some q such that (t, q, n0) ∈ Ŝ. By
Lemma 8, (t, q, n0 + `) ∈ Ŝω for every ` ≥ 0, i.e., (t, q, n0 + `)

satisfies conditions 1̂
′
and 2̂

′
. Thus, there is some (t′, q′, n0+`) ∈ Ŝω

witnessing condition 1̂
′
. By definition of Ŝω , (t′, q′, n0) ∈ Sω , thus

(t, n0) ∈ S and (t, n0 + `) ∈ Sω . Hence, condition 1’ is satisfied
for (t, n0 + `). Analogously, it can be shown that (t, n0 + `) satisfies
condition 2’. Hence, it is S-realizable. o

Lemma ?? The algorithm returns “satisfiable” iff T is satisfiable.

Proof.
“⇒”: Let Sω be the result of the type elimination procedure. In

the following fix k =]E(T) and let T the complete k-ary tree. Due
to condition 2’, for every (t, i) ∈ Sω there is a 2cn-labeled k-ary
tree (T, τt,i) that is a model for ϕ. Define the temporal interpretation
I = (∆, T, {Iw}w∈T) by taking ∆ = Sω and

AI,w = {(t, i) | A ∈ τt,i(w)}
rI,w = {(t, i), (t′, i) | ∃r.C ∈ τt,i(w) implies

{A} ∪ {¬E | ¬∃r.E ∈ τt,i(w)} ⊆ τt′,i(w)}

Since condition 1’ is satisfied for every (t, i) ∈ Sω , I is a valid
temporal model. Now, by definition, CT ∈ t for all (t, i) ∈ Sω .
Thus XCT ∈ t for all (t, i) ∈ SΩ and ϕ ensures that CT is satisfied
in every point. Hence I is a model of T .

“⇐”: Let I = (∆, T, {Iw}w∈W) a model of T . Define for every
d ∈ ∆ the 2cl(T)-labeled tree (T, τd) by

τd(w) = {C ∈ cl(T) | d ∈ CI,w}

and the 2cn-labeled tree τd by τd(w) = τd(w) for all w ∈ T . Now
define

S = {(τd(w), i) | w ∈ T, d ∈ ∆, i ≤ ρ(|w|)}

It remains to verify that every (t, i) ∈ S is S-realizable. Condition 1
is immediately satisfied by definition of S. For condition 2 let (t, i) ∈
S, i.e., there is some w ∈ T , d ∈ ∆ such that t = τd(w) and i ≤
ρ(|w|). Now, let w = uv with |v| = i (possible, since i ≤ ρ(|w|)
and thus i ≤ |w|). It can be shown that the subtree of (T, τd) rooted
at u satifies precisely the requirements of condition 2. o

B Proofs for Section 4
Proposition 2 Let ϕ be a temporal CTL∗ALC-TBox. ϕ is satisfiable if
and only if there exists a proper quasi-model of ϕ.

Proof.⇒: Let I = (∆, T, {Iw}w∈W) be a temporal model of ϕ.
We define a q(w)-labeled tree structure M = (T, τ) such that for all
w ∈ T , τ(w) is defined as follows:

S2(w) = {Ψ ∈ sub(ϕ) | I, w |= Ψ}
π(d,w) = {C ∈ cl(ϕ) | d ∈ CI,w}
S1(w) = {π(d,w) | d ∈ ∆};

We obtain the 2cnY - labeled tree M2 by associating each w ∈ M
with the label S2(w). Moreover, it is clear that for all w ∈ T with
τ(w) = (S1, S2) and all π(d,w) ∈ S1 there is a 2cnX -labeled tree
(T, τ ′) satisfying 2(a)-(c). Then, M is indeed a proper-quasimodel
of ϕ.
⇐: Let M = (T, τ) be a proper-quasimodel of ϕ. According to

Condition 2 , for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1

there is a there is a 2cnX -labeled tree (T, τw,s) satisfying 2(a)-(c).
We define the temporal interpretation I = (∆, T, {Iw}w∈W) with
∆ = {(w, s) | s ∈ S1(w)} given by:

AI,w = {(v, s) ∈ ∆ | A ∈ τv,s(w)} for all A ∈ NC

rI,w = {((v, s), (v′, s′)) | ∃r.A ∈ Lv,s(w) implies
{A} ∪ {¬E | ¬∃r.E ∈ τv,s(w)} ⊆ τv′,s′(w)}
for all r ∈ NR.

By using the properties of a proper-quasimodel we can prove that I
is a temporal model of ϕ. o

8

Lemma 3 There is a proper quasi-model for ϕ iff there is a quasi-
model for ϕ that is a k-ary tree.
Proof.

The “if”-direction is trivial. For the other direction let M = (T, τ)
be an arbitrary proper quasi-model. We can assume that everyw ∈ T
has outdegree at least k, since otherwise we can just duplicate some
successors of w.

Now, we modify Condition 2 by restating 2(c) in terms of au-
tomata:

2.’ for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a
2cnX -labeled]cE-ary tree (T ′, τ ′) with T constructed from T such
that

(a) τ ′(w) = s;

(b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such

that τ ′(w′) = s′;

(c) There is an accepting run (T ′, r) of Aϑ on (T ′, τ ′).

This is sufficient, because if there is a tree-shaped model of ϑ,
then there is one with branching degree]cE ; and L(Aϑ) is precisely
Mod]c

E
(ϑ). In the following we denote with “s ∈ τ(w)” the fact that

s ∈ S1 when τ(w) = (S1, S2). Fix for every w ∈ T , s ∈ τ(w):

• the tree (Tw,s, τw,s) witnessing condition 2’,
• the corresponding run rw,s from 2’(c), and
• the set of states Qw,s that Aϑ assigns to s in all accepting runs,

i.e.,

Qw,s = {rw′,s′(w) | w ∈ Tw′,s′ , τw′,s′(w) = s}

Now, we duplicate quasi-worlds of M and modify the trees
(Tw,s, τw,s) and the corresponding runs rw,s such that at most pre-
cisely one type in every quasi-world is assigned a state from some
run, i.e., after the modification it is∑

s∈τ(w)

|Qw,s| = 1

for every w ∈ T . More formally, we define the quasi-model M̂ =
(T̂ , τ̂) with T̂ = (Ŵ , Ê) by taking

Ŵ = {(w, s, q) | w 6= ε ∈ T, s ∈ τ(w), q ∈ Qw,s}
∪{ε}

Ê = {((w, s, q), (w′, s′, q′)) | (w,w′) ∈ E}∪
{(ε, (w, s, q)) | (ε, w) ∈ E}

τ̂(w, s, q) = τ(w)
τ̂(ε) = τ(ε)

Note that, by definition of τ̂ , Condition 1 is still satisfied for M̂.
We make use of Tw,s, τw,s, and rw,s to show that M̂ satisfies also
Condition 2’. For all (w, s, q) ∈ T̂ and t ∈ τ̂(w, s, q) define

T(w,s,q),t = {(w′, τw,t(w′), rw,t(w′)) | w′ ∈ Tw,t \ {w}}
∪ {(w, s, q)}

τ(w,s,q),t(w
′) = τw,t(w

′)

r(w,s,q),t(w
′) = rw,t(w

′)

We argue now that for each w,w1, w2 ∈ T and (w,w1) ∈ E,
(w,w2) ∈ E and τ(w1) = τ(w2), we can remove either the sub-
tree (T̂ , τ̂ ′) of M̂ rooted at (w1, s, q) or the subtree (T̂ , τ̂ ′′) of M̂
rooted at (w2, s, q) from M̂. Without loss of generality, let us re-
move (T̂ , τ̂ ′′). We show that the resulting M̂′ = (T̂ ′, τ̂ ′) continues
satisfying condition 2′.

• We use w′ to denote a node of the form (w′, s′, q′). For ev-
ery (Tw′,t, τw,t) that contains (w2, s, q) we can construct a
(Tw′,t, τ

′
w′,t) by replacing the subtree of (Tw′,t, τw,t) rooted in

(w2, s, q) by an appropriate (Tw′,t, τ
′′
w′,t) with root (w1, s, q).

More formally,

τ ′w′,t(w) =

{
τ ′′w′,t(w) if w ∈ (Tw′,t, τ

′′
w′,t)

τw′,t(w) otherwise

r′w′,t(w) =

{
r′′w′,t(w) if w ∈ (Tw′,t, τ

′′
w′,t)

rw′,t(w) otherwise

Now, it is not hard to see that M̂ ′ satisfies the condition 2’, and
that it it is a k-ary tree.

o

Lemma 9 For a temporal CTL∗ALC TBox ϕ, one can construct a
2ABTA A = (Q,Σ, δ, {q0}, F) where Σ = 2qw(ϕ), |Q| ∈ 22poly(|ϕ|)

and |Q| ∈ 2poly(|ϕ|) when ϕ is a temporal CTLALC temporal TBox
such that L(A) is the set of proper-quasimodels satisfying ϕ.

Proof. Using k from Lemma 3, we construct A on k-ary qw(ϕ)-
labeled trees.A is constructed as presented in Section 4, i.e., we con-
struct separately 2ABTAsA1 andA2 to deal with conditions 1 and 2
of proper quasimodels. To construct A1 and verify its correctness is
straightforward (cf. Section 4). We proceed to check the correctness
of A2 = (Q,Σ, δ, {q0}, F) checking condition 2:

1. for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a
2cnX -labeled tree (T, τ ′) such that

(a) τ ′(w) = s;

(b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such

that τ ′(w′) = s′;

(c) ε satisfies ϑ = A2
∧

XC∈cnX

(XC ↔ C).

A2 verifies Condition 2 by simulating a run of Aϑ =
(Q2,Σ2, δ2, Q

0
2, F2) for every w ∈ T with τ(w) = (S1, S2) and

every s ∈ S1 where Aϑ is the NBTA on 2cnX -trees accepting the
models of ϑ.
A2 is sound. To check that given an accepting run (Tr, r) on a

k-ary qw(ϕ)-labeled tree M = (T, τ), then M fulfils condition 2.
Recall that a run on M is a T × Q-labeled tree. Then, it is not hard
to see that with the labellings τr(x) = (w, q) for q of the form (q, s)
with q ∈ Q2, s ∈ 2cnX , using the second component, we can con-
struct for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1 a 2cnX -
labeled tree (T, τ ′) satisfying conditions 2(a)-(b). Moreover, the first
component provide us with an accepting run of Aϑ on (T, τ ′). In
particular, note that F = F2, and as discussed in Section 4 we define
adequately predecessor states to ensure that the accepting run of Aϑ
starts at ε. Hence, 2(c) is satisfied.
A2 is complete. To check that a given a proper-quasimodel M =

(T, τ) is accepted by A2. This is, there is an accepting run (Tr, τr)
of A2 on M. Let Mw,s = (T, τ) be a 2cnX -labeled tree for some
w ∈ T, s ∈ S1 satisfying 2. Due to 2(c) there is an accepting run
(T, r) of Aϑ on Mw,s. Since A simulates the runs of Aϑ, its clear
that we can use r to define a partial run forA. By using the accepting
runs of Aϑ on all Mw′,s′ we can define a run for A2. Moreover
F = F2, and thus (Tr, τr) is an accepting run on M.

9

The number of states Aϑ is in O(22poly(ϑ)

), and O(2poly(ϑ)) if we
consider CTLALC-TBoxes. Then,

Q = {q0} ∪Q1 ∪ (Q1 × 2cnX) ∪ (Q1 ×Q1) ∪ (Q1 × 2cnX ×Q1)

is in O(22poly(ϕ)

) (O(2poly(ϕ)) if we consider CTLALC-TBoxes).
o

Theorem 3 Satisfiability of temporal TBoxes is in 2EXPTIME for
CTLALC and in 3EXPTIME for CTL∗ALC .

Proof. By Lemma 9 Aϕ has O(22poly(ϕ)

) states if ϕ is a temporal
CTL∗ALC TBox, and (O(2poly(ϕ)) if ϕ is a temporal CTLALC TBox,
and the emptiness for 2ABTA can be decided in exponential time in
the number of states. Therefore, satisfiability of temporal TBoxes is
in 2EXPTIME for CTLALC and in 3EXPTIME for CTL∗ALC o

Lemma 10 Satisfiabilty of temporal CTLALC TBoxes is 2-
EXPTIME-hard

Proof. The proof is by reduction of the word problem for ex-
ponentially space alternating Turing machines. An ATM is a tuple
M = (Q,Σ,Γ, q0, δ), where:

• Q is a set of states containing pairwise disjoint sets of existential
states Q∃, universal states Q∀, and halting states {qa, qr}, where
qa is an accepting and qr a rejecting state;

• Σ is an input alphabet and Γ a working alphabet, containing the
blank symbol such that Σ ⊆ Γ and 6∈ Σ;

• q0 ∈ Q∃ ∪Q∀ is the initial state;
• δ is a transition relation is of the form δ ⊆ Q × Γ × Q × Γ ×
{`, r, n}. We write (q′, b,m) ∈ δ(q, a) for (q, a, q′, b,m) ∈ δ.
We assume that q ∈ Q∃ ∪ Q∀ implies δ(q, b) 6= ∅ for all b ∈ Γ
and q ∈ {qa, qr} implies δ(q, b) = ∅ for all b ∈ Γ. Intuitively,
the triple (q′, b,m) describes the transition to state q′, involving
overwriting of symbol a with b and a shift of the head to the left
(m = l), to the right (m = r) or no shift (m = n).

A configuration of an ATM is a word wqw′ with w,w′ ∈ Γ∗

and q ∈ Q stating that the tape contains the word ww′ (with only
blanks before and behind it), the machine is in state q, and the head
is on the leftmost symbol of w′. The successor configurations of a
configuration wqw′ are defined in terms of the transition relation δ.
A halting configuration is of the form wqw′ with q ∈ {qa, qr}.

A computation path of an ATMM on a word w is a (finite or in-
finite) sequence of configurations c1, c2, . . . such that c1 = q0w and
ci+1 is a successor configuration of ci for i ≥ 0. All ATMs consid-
ered in this paper have only finite computation paths on any input2.
A halting configuration is accepting iff it is of the form wqaw

′. A
non-halting configurations c = wqw′ is accepting if at least one (all)
successor configurations is accepting for q ∈ Q∃ (q ∈ Q∀, respec-
tively). An ATM accepts an input w if the initial configuration q0w
is accepting. We denote L(M) the language {w ∈ Σ∗ |M accepts
w}.

We set the configurations of an accepting computation of an ATM
M on a word w in an acceptance tree which is a finite tree whose
nodes are labelled with configurations such that

• the root node is labelled with the initial configuration q0w;

2 As this case is simpler than the general one, we define acceptance for ATMs
with finite computation paths only, and refer to [10] for the full definition.

• if a node s in the tree is labelled with wqw′, q ∈ Q∃, then s
has exactly one successor, and this successor is labelled with a
successor configuration of wqw′;

• if a node s in the tree is labelled with wqw′, q ∈ Q∀, then there
is exactly one successor of s for each successor configuration of
wqw′;

• leaves are labelled with accepting halting configurations.

According to [10], the problem of deciding whether w ∈ L(M) is
2-EXPTIME-hard. We assume that the length of every computation
ofM on w ∈ Σk is bounded by 22k

, and for all configurations uqu′

in this computation | uu′ |≤ 2k.

LetM = (Q,Σ,Γ, q0, δ) be an ATM and w = σ0, . . . , σk−1 the
word for which we want to decide whether w ∈ L(M), then we
construct a temporal CTLALC TBox TM,w such that w ∈ L(M) iff
TM,w is satisfiable. In a model of TM,w an accepting computation
ofM is identified with a (temporal) tree structure of the model. In
this way each time point of the tree is associated with a single tape
cell of a configuration ofM, and clearly going to a successor leads
to next tape cell in the current configuration or to the first cell of
the successor configuration. The temporal TBox TM,w is formed by
the conjunction of several formulas. First, we introduce formulas that
allow us to establish the basic features of the tree structure.

• There exists always a time successor until we reach the head in a
halting configuration.

A2(¬(Qa tQr) v E©>) (2)

• Every time point has globally associated the alphabet letter of a
tape cell.

A2(
∨
a∈Γ

> v Aa) (3)

• Each tape cell is labelled with exactly one alphabet letter.

A2(> v u
a,a′∈Γ,a6=a′

¬(Aa uAa′)) (4)

• We use several counters over the temporal tree structure for
transversing it. Each counter consists of a number of inclusions
of polynomial size. In particular, a counter permits us to identify
time points on the branches at a fixed distance 2k. Constraints (5)-
(9) implement an exemplary counter, based on atomic concepts
Xi for 1 ≤ i ≤ k, which simulate the bits of a number in binary .

(CountX = 0) ≡
nu
j=1
¬Xj , (5)

¬Xi u ¬Xj v A©¬Xi, for every 1 ≤ j < i ≤ k, (6)

Xi u ¬Xj v A©Xi, for every 1 ≤ j < i ≤ k, (7)

¬Xj uXj−1 u . . .uX1 v A©Xj , for every 1 ≤ j ≤ k, (8)

Xj uXj−1 u . . .uX1 v A©¬Xj , for every 1 ≤ j ≤ k. (9)

We instantiate the above pattern to encode different counters X ,
e.g., Counttape denotes a tape counter. We use CountX = N
as the obvious abbreviation for setting the counter X to the value
N . Further, we introduce the abbreviations EndX and StartX to
denote CountX = 2k − 1 and CountX = 0, respectively. Now,
we enforce the conditions that ensure that the model actually rep-
resents an accepting computation ofM on w. First, we introduce
the following auxiliary concept names

– H to mark the tape cells right of the head;

10

– Qq for every q ∈ Q;

– Mq,a,m for every (q, a,m) ∈ Θ = {(q, a,m) |
(q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q};

– Counttape.

• In each configuration every tape cell is labelled with at most one
state variable Qq:

A2(> v u
q,q′∈Q

¬(Qq uQq′)) (10)

• H marks the tapes cells that are to the right of the head in the
current configuration.

A2(t
q∈Q

Qq v A©H) (11)

A2(H u ¬End tape v A©H) (12)

• In every configuration at most one cell is labelled with a state:

A2(H v ¬ t
q∈Q

Qq) (13)

• Mq,a,m concepts serve for carrying the information generated by
the transition function, and use to determine the successor con-
figuration. Information about the transitions is generated depend-
ing on whether the state is universal (14) or existential (15) and
then carried to the end of the tape (16). Moreover, we initialize a
counter (implemented with concept names Ri) marking the posi-
tion of the head (14) - (15).

A2(Aa uQq v u
(q′b′m)∈δ(q,a)

Mq′,b,m u Starthead) (14)

for every a ∈ Γ, q ∈ Q∀

A2(Aa uQq v t
(q′b′m)∈δ(q,a)

Mq′,b,m u Starthead) (15)

for every a ∈ Γ, q ∈ Q∃

A2(Mq,a,m u ¬End tape v A©Mq,a,m) (16)

• When moving to a successor configuration in order to avoid
clashes in the information we create copies Nq,a,m for concepts
Mq,a,m (17)-(18).

A2(Mq,a,m u End tape v E©Nq,a,m) (17)

for every (q, a,m) ∈ Θ

A2(Nq,a,m u ¬End tape v A©Nq,a,m) (18)

• At most one concept Nq,a,m is true in a tape cell

A2(> v u
(q,a,m),(q′,a′,m′)∈Θ

¬(Nq,a,m uNq′,a′,m′)) (19)

• To avoid further clashes while synchronizing adjacent configura-
tions, we create a copy (20)-(21) of the head counter Counthead,
Counthead

′
implemented with concepts R′i.

A2(End tape uRi v R′i) (20)

A2(End tape u ¬Ri v ¬R′i) (21)

• Changes imposed by the transition relation are implemented: write
the new tape symbol (22), and place the state variable in the cor-
rect position (23) - (25). The transition (26) - (27) does not push
the head beyond the tape.

A2(Nq,a,m u Starthead
′
v Aa), for every (q, a,m) ∈ Θ

(22)

A2(Nq,a,m u Starthead
′
v Qq), for every (q, a, n) ∈ Θ (23)

A2(Nq,a,m u Starthead
′
v A©Qq), for every (q, a, r) ∈ Θ

(24)
A2(Nq,a,m u Endhead′

v Qq), for every (q, a, l) ∈ Θ (25)

A2(Starthead
′
uStart tape v ¬Nq,a,m), for every (q, a, l) ∈ Θ

(26)
A2(Endhead′

u End tape v ¬Nq,a,m), for every (q, a, r) ∈ Θ
(27)

• We propagate the information of each i-th tape cell that do not
change during the transition. This information is store in fresh el-
ements, i.e., new r-successors, and synchronized via the counter
Countercell with the content of the i-th cell in the previous con-
figuration. To store the labelled of a tape cell we introduce concept
names Wa, Sa for every a ∈ Γ.

– The information is spread through the tape to the previous con-
figuration.

A2(¬End tape uE©Wa vWa) for every a ∈ Γ (28)

A2(¬End tape uE© Sa v Sa) for every a ∈ Γ (29)

– An element stores exactly on alphabet letter.

A2(> v u
a,a′∈Γ,a 6=a′

¬(Wa uWa′)) (30)

A2(> v u
a,a′∈Γ,a6=a′

¬(Sa u Sa′)) (31)

– Sa is used as a copy of the concept Wa in the previous config-
uration.

A2(End tape uE©Wa v Sa) for every a ∈ Γ (32)

– A representative of each cell (not meant to change) is generated
and its label Aa is store Wa

A2((¬Starthead
′
Aa v ∃r.Wa u Startcell)u (33)

– We synchronize the content of i-th cell with that of the i-th cell
in the previous configuration.

A2(Aa u Sb u Startcell v ⊥), for every b 6= a ∈ Γ. (34)

• The input w = σ0, . . . σk−1 is accepted. Recall that in our set-
ting any computation is terminating, moreover halting configura-
tions are the only configurations without successor configurations.
Then, the input is accepted if the rejecting state is not reached.

A2(> v ¬Qqr) (35)

11

• The initial configuration q0wstarting at A0 is encoded as follows

A0 = Aa1 uQq0 u Start tape uE©A1

Ai = Aai+1 uE©Ai+1

An = A((A u ¬End tape)U(A u End tape))

¬(> v ¬A0) (36)

The definition of TM,ω is the conjunction of the TBoxes introduced
above. Now, it is not hard to see that the size of TM,ω is polynomial
in k. Finally, following the intuitive meaning of each conjunct given
above, it is also not hard to check that TM,ω is satisfiable iff w ∈
L(M). o

Theorem 4 Satisfiability of temporal CTLALC-TBoxes is
2EXPTIME-complete

Proof. The upper bound follows from Lemma 9, and the lower
bound from Lemma 10. o

C Proofs for Section 5
Lemma 4 LetA0, B0 two concepts ocurring in T . Then,A0 vT B0

iff A0 vT ′ B0.

Proof. We use Ĉ to denote the translation introduced in Section 5,
i.e., ˆE3A = ∃succ3.A and ˆE2A = MA for some fresh concept
name MA.
⇒) We show the contrapositive, i.e., T ′ |= A0 6v B0, then T |=

A0 6v B0. T ′ |= A0 6v B0 if and only if there is a model I of
T

′
such that there is a x ∈ AI0 , but x 6∈ BI0 . Then, we construct a

temporal model I = (∆, T, {Iw}w∈W) of T based on I such that
x ∈ AI,ε

0 , but x 6∈ BI,ε
0 . From now on, w.l.o.g. we assume that I is

tree shaped.
We define sequences ∆0,∆1, . . ., W0,W1, . . ., E0, E1, . . ., and

partial mappings π0, π1, . . .with πi : ∆i×Wi → ∆I and mappings
R0, R1, . . . with Ri : NR ×Wi → ∆i ×∆i. We obtain our desired
sets ∆,W,E in the limit. To start the construction of I, we set

• ∆0 := {d0}, W0 := {w0}, E0 := ∅
• π0(d0, w) := d with d the root of I
• R0(r, w0) := ∅ for all r ∈ NR

For the induction step, we start by setting ∆i = ∆i−1,Wi =
Wi−1, Ei = Ei−1Ri := Ri−1 and πi = πi−1. Then, we proceed as
follows:

(I) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = e and (e, f) ∈ rI

for some r ∈ NR. Then, add a fresh element d′ to ∆i, and set
πi(d

′, w) := f .
(II) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = dA for some A ∈

NC ∪ {>} and T ′ |= A v ∃r.B. Then, add a fresh element d′ to
∆i, add (d, d′) to Ri(r, w) and set πi(d′, w) := dB ;

(III) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = e and (e, f) ∈
succI3. Then, add fresh worlds w′ and w′′ to Wi, add (w,w′) and
(w′, w′′) to Ei and, set πi(d,w′) := d>; and πi(d,w′′) := f.

(IV) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = dA and T ′ |= A v
∃succ3.B. Then, add fresh worlds w′ and w′′ to Wi, add (w,w′)
and (w′, w′′) to Ei and, set πi(d,w′) := d>; and πi(d,w′′) :=
dB .

(V) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = e and (e, f) ∈ succI2.
Then, add a fresh world w′ to Wi, add (w,w′) to Ei and set
πi(d,w

′) := f .

(VI) Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = dA for some A ∈
NC ∪ {>}, and T ′ |= A v ∃succ2B. Then, add a fresh world w′

to Wi, add (w,w′) to Ei and, set πi(d,w′) := dA.
(VII) Let d ∈ ∆i and w0 . . . wk ∈ Wi such that for all 0 ≤ j < k,

(wj , wj+1) ∈ Ei, πi(d,wj) is not defined and πi(d,wk) defined.
Then, for all j < k set πi(d′, wj) := πi(d

′, wk).
(VIII) Let d ∈ ∆i and w,w′ ∈ Wi such that (w,w′) ∈ Ei, πi(d,w′) is

not defined and πi(d,w) defined. Then, set πi(d,w′) := d>.

Finally, set ∆ :=
⋃
i≥0 ∆i, W :=

⋃
i≥0 Wi,E :=

⋃
i≥0 Ei. The

temporal interpretation I = (∆, T, {Iw}w∈W) is then given by:

AI,w = {d ∈ ∆ | π(d,w) ∈ AI}∪
{d ∈ ∆ | π(d,w) = dB and T ′ |= B v A}
for all A ∈ NC \ {MA}

rI,w = {(d, d′)∆×∆ | (π(d,w), π(d′, w)) ∈ rI}∪
{(d, d′) ∈ ∆×∆ | (d, d′) ∈ R(r, w)} for all r ∈ NR.

Claim: For all d, e ∈ ∆I, w ∈W and basic concepts C we have:

1. If π(d,w) = dA then

• d ∈ CI,w iff A vT ′ Ĉ;

• (d, e) ∈ rI,w iff A vT ′ ∃r.B. and π(e, w) = dB

2. else

• d ∈ CI,w iff π(d,w) ∈ ĈI ;

• (d, e) ∈ rI,w iff (π(d,w), π(e, w)) ∈ rI .

Proof of Claim. We prove the statement by structural induction.

• Let C = A ∈ NC. Then it follows directly from the definitions.
• Let C = ∃r.A. Follows from definition of i
• Let C = E3A, i.e., Ĉ = ∃succ3.A

1.⇐: We have that π(d,w) = dB and T ′ |= B v ∃succ3.A. By
rule (IV), there exist w′, w′′ such that {(w,w′), (w′w′′)} ⊆ E

and π(d,w′′) := dA. Now, by I.H., d ∈ AI,w′′
. Therefore, d ∈

(E3A)I,w.
⇒: We have that π(d,w) = dB and d ∈ (E3A)I,w. Then by
the semantics of E3A, there exists a path w0w1 . . . with w = w0

such that d ∈ AI,wj for some j ≥ 0. Note that by construction
π(d,wj) = dB′ for some B′, and by I.H., T ′ |= B′ v A. In
particular, we have that π(d,w), π(d,w1), . . . π(d,wj) was de-
fined by the application of the rules (IV), (VI), or (VIII). Now, we
distinguish the following cases:

– π(d,w0), π(d,w1), . . . π(d,wj) was defined by applying rule
(IV), then we have that the following GCIs hold

T ′ |= B v ∃succ3.A1,
T ′ |= A1 v ∃succ3.A2,

. . .
T ′ |= Aj−1 v ∃succ3.B′

Therefore, T ′ |= B v succ3.A. Since T ′ |= succ2 v succ3
the same argument follows if we apply rule (VI), or both (IV)
and (VI) to define π(d,w0), π(d,w1), . . . π(d,wj).

– A fragment π(d,wi) . . . π(d,wj), 0 ≤ i ≤ j was defined by
rule (VIII). Then, π(d,wj) = d> and by I.H., T ′ |= > v A.
In particular, T ′ |= B v A, and since succ3 is reflexive T ′ |=
B v ∃succ3.A.

12

2. ⇐: Let π(d,w) ∈ ĈI . Then, π(d,w) ∈ (∃succ3.A)I . By
the semantics, there is exists a e ∈ ∆I such that e ∈ AI and
(π(d,w), e) ∈ succI3. By rule (II), there exist a w′, w′′ ∈ W
such that {(w,w′), (w′, w′′)} ⊆ E and π(d,w′′) = e. By I.H.,
d ∈ AI,w′′

. Therefore, d ∈ (E3A)I,w.
⇒: Let d ∈ (E3A)I,w. Then, by the semantics of E3A, there
exists a path w0w1 . . . with w = w0 such that d ∈ AI,wj for
some j ≥ 0. We show that (π(d,wi), π(d,wi+1)) ∈ succI3 for
all i < j, and then by transitivity of succ3, (π(d,w), π(d,wj)) ∈
succI3. Let i be arbitrary from [0, . . . , j − 1]. First note that not
both π(d,wi) and π(d,wi+1) were defined by rule (I). Hence, we
distinguish the following cases:

– π(d,wi+1) was defined by rule (III), then, by definition,
(π(d,wi), π(d,wi+1)) ∈ succI3

– π(d,wi+1) was defined by rule (V), then
(π(d,wi), π(d,wi+1)) ∈ succI2, and then, by succ2 v succ3,
to succI3.

– π(d,wi+1) was defined by rule (VII), then π(d,wi) =
π(d,wi+1) = π(d,wk) for some i+ 1 < k ≤ j. Since, succ3
is reflexive, (π(d,wi), π(d,wi+1)) ∈ succI3.

Now, by I.H., π(d,wj) ∈ AI , and together with
(π(d,w), π(d,wj)) ∈ succI3 implies π(d,w) ∈ (∃succ3.A)I .
We can also have the case that π(d,wi+1) was defined by rule
(VIII). Then, π(d,wi+1) = d>. By claim 1, > vT ′ ∃succ3.A.
Therefore, π(d,w) ∈ (∃succ3.A)I

• C = E2A i.e., Ĉ = MA

1. ⇐: We have that π(d,w) = dB and T ′ |= B v MA. Since
T ′ |= MA v A u ∃succ2.MA (†). Then, T ′ |= B v A u
∃succ2.MA. Thus, by rule (VI) there exist w′ ∈ W such that
(w,w′) ∈ E and π(d,w′) = dB . We have that by (†), B vT ′

A, and by I.H, d ∈ AI,w and d ∈ AI,w′
. Since succ2 is total

and by (†) is not hard to see that we obtain an infinite sequence
w0w1w2 . . . with w = w0 and w1 = w′ such that for all i ≥ 0,
d ∈ AI,wi . Therefore, d ∈ (E2A)I,w.
⇒: We have that π(d,w) = dB and d ∈ (E2A)I,w. By the
semantics of E2A, there exists a path w0w1 . . . with w = w0

such that for all j ≥ 0 d ∈ AI,wj . By (†), to show T ′ |= B v
Au∃succ2.MA. In particular, we have that π(d,w), π(d,w1), . . .
was defined by the application of the rules (IV), (VI), or (VIII).
First, assume w0, w1, . . . where introduced by rule (VI) to satisfy
E2A i.e., π(d,w) = dB and B vT ′ ∃succ2.MA, then we are
done. Otherwise, we distinguish the following cases:

– The world w1 was introduced by rule (IV) then π(d,w1) is
defined by rule (VIII). Analogously π(d,w1) is defined by
rule (VIII), if w1 was introduced by rule (VI) for B vT ′

∃succ2.B′.
– π(d,w1) is defined by rule (VIII). Then, π(d,w1) = d> and

by I.H., T ′ |= > v MA. In particular, T ′ |= B v MA.
Therefore, T ′ |= B v A u ∃succ2.MA.

2.⇐: Let π(d,w) ∈ ĈI . Then, π(d,w) ∈ MIA. Since T ′ |=
MA v A u ∃succ2.MA (†), π(d,w) ∈ (A u ∃succ2.MA)I . By
the semantics, there is exists a e ∈ ∆I such that e ∈ MIA and
(π(d,w), e) ∈ succI2. By rule (V), there exists a w′ ∈ W such
that (w,w′) ∈ E and π(d,w′) = e. Then, by (†) and by I.H.,
d ∈ AI,w′

. Using that succ2 is total and (†) one can prove by
induction on the number of applications of (V) that we obtain an
infinite path w0w1w2 . . . ∈ W with w0 = w and w1 = w′ such
that for each i ≥ 0, d ∈ AI,wi . Therefore, d ∈ (E2A)I,w.

⇒: Let d ∈ (E2A)I,w. Then, by the semantics of E2A, there
exists a path w0w1 . . . with w = w0 such that for all j ≥ 0
d ∈ AI,wj . Since T ′ |= MA v A u ∃succ2.MA (†), to
show (π(d,w0), π(d,w1)) ∈ succI2 and π(d,w1) ∈ MIA. Note
that not both π(d,w0) and π(d,w1) were defined by rule (I).
First, we assume that the worlds w0, w1, . . . where introduced
by repeated applications of rule (V). In this case, by definition
(π(d,w0), π(d,w1)) ∈ succI2, and by I.H. π(d,w1) ∈ MIA.
Then, π(d,w) ∈ (∃succ2.MA)I . Otherwise, π(d,w1) was de-
fined by the following rules:

– If the world w1 was introduce by rule (IV) then π(d,w1) is
defined by rule (VIII).

– π(d,w1) was defined by rule (VII), then π(d,w0) =
π(d,w1) = π(d,wk) for some k ≥ 1 but then π(d,wk+1)
is defined either by rule (V) or (VIII) falling in the other cases.

– π(d,w1) was defined by rule (VIII), then π(d,w1) = d>.
Then, by I.H., > vT ′ A and succ2 is total, > vT ′

∃succ2.MA. Therefore, π(d,w0) ∈ (∃succ2.MA)I .

Now we show that I |= T . Let X1 uX2 u . . . uXn v X ∈ T .
• Assume first d ∈ XI,w

i for all i ∈ 1, . . . , n. By our claim, d ∈
XI,w
i . Since I |= T ′ and X̂1 u . . .u X̂n v X ∈ T , we have also

π(d,w) ∈ X̂I , hence, again by the claim, d ∈ XI,w.
• Assume now π(d,w) = dA and d ∈ XI,w

i for all i ∈ 1, . . . , n.
By our claim, A vT ′ X̂i. Since X1 u . . . uXk v X ∈ T ′, we
have also A vT ′ X , thus again by our claim d ∈ XI,w.

Obviously d ∈ AI,w \BI,w. Therefore, A vT B.
⇐) We show the contrapositive, i.e., if T |= A 6v B then T ′ |=

A 6v B for all concept namesA,B. Let I = (∆, T, {Iw}w∈W) be a
model of T such that d0 ∈ AI,ε \BI,ε for some domain element d0.
We construct a model J of T ′ that has some d ∈ AJ \ BJ . Define
∆J := ∆ ∪ {dA, eA | A ∈ NC} and ·J as follows:

AJ = AI ∪ {dB | T |= B v A}
∪ {eB | T |= E2B v A}

MJA = {(w, d) | d ∈ (E2A)I,w}
∪ {dB | T |= B v E2A}
∪ {eB | T |= E2B v E2A}

rJ = rI

∪ {(dA, dB) | T |= A v ∃r.B}
∪ {(eA, dB) | T |= E2A v ∃r.B}

succJ2 = {((w, d), eA) | d ∈ (E2A)I,w}
∪ {(dA, eB) | T |= A v E2B}
∪ {(eA, eB) | T |= E2A v E2B}

succJ3 = clrt(E
∪ {(dA, eB) | T |= A v E3B}
∪ {(eA, eB) | T |= E2A v E3B}
∪ {((w, d), eA) | d ∈ (E3A)I,w})

where clrt is the transitive and reflexive closure of E.
Claim. For all basic concepts C we have

1. (w, d) ∈ ĈJ iff (w, d) ∈ CI;
2. dA ∈ ĈJ iff A vT C;
3. eA ∈ ĈJ iff E2A vT C.

Proof of Claim. We prove the statement by structural induction.

• If C = A is a concept name, it follows directly from our defini-
tions.

13

• Let Ĉ = C = ∃r.D for some concept name D. Then both 1., 2.,
and 3. follow immediately from the construction.

• Let C = E3D, i.e., Ĉ = ∃succ3.D.
⇒: Let first be (w, d) ∈ ĈJ . By definition of succI3,
there is either some (w′, d) ∈ DJ such that w <rt

w′ in which case we are done, or there is a sequence
(w0, d), (w1, d), . . . , (wk, d), eA1 , . . . , eA` with w0 = w, wi <
wi+1, (wk, d) ∈ (E2A1)I, Ai vT E2Ai+1, and finally A` =
D. Then, by the semantics, (wk, d) ∈ (E2A`)

I ⊆ (E3A`)
I. By

temporal semantics, thus also (w, d) ∈ (E3D)I, since A` = D.
Let now be dA ∈ ĈJ . By the definition of succJ3 , there is some
eB ∈ DJ with (dA, eB) ∈ succJ3 , thus B vT D and A vT
E3B. Therefore, A vT E3D.
Let now be eA ∈ ĈJ . By the definition of succJ3 , there is some
eB ∈ DJ with (dA, eB) ∈ succJ3 , thus B vT D and E2A vT
E3B. Therefore, E2A vT E3D.
⇐: Let first be (w, d) ∈ (E3D)I. Thus, there is a w′ with
w <rt w′ and (w′, d) ∈ DI. By definition of the interpretation
J , (w, d) ∈ (∃succ3.D)J .
Let now be A vT E3D. By definition (dA, eD) ∈ succJ3 . Triv-
ially, eD ∈ DJ , thus dA ∈ (∃succ3.D)J .
Let now be E2A vT E3D. By definition (eA, eD) ∈ succJ3 .
Trivially, eD ∈ DJ , thus dA ∈ (∃succ3.D)J .

• Let C = E2D, i.e., Ĉ = MD .
The claim follows directly from the definition of MJD

Now we show that J |= T ′. First observe that (i) succJ3 is
reflexive and transitive, (ii) succJ2 ⊆ succI3, and (iii) MA v
A u ∃succ2.MA is satisfied:

• Assume first some (w, d) ∈ MJA . By the claim, d ∈ (E2C)I,w.
By the definition of J we have that ((w, d), eA) ∈ succJ2 and
(eA, eA) ∈ succJ2 . Obviously eA ∈ MJA and d ∈ CI,w, thus
(w, d) ∈ AJ by the claim. Together, this implies that (w, d) ∈
(A u ∃succ2.MA)J .

• Assume now dB ∈ MJA . By the claim, T |= B v E2A, hence
(dB , eA) ∈ succJ2 and T |= B v A, thus dBinAJ . Now, we
can continue as in the first case.

• Assume now eB ∈ MJA . By the claim, T |= E2B v E2A,
hence (dB , eA) ∈ succJ2 and T |= B v A, thus dB ∈ AJ .
Now, we can continue as in the first case.

It remains to show that the original GCIs are still satisfied. Let
X̂1 u . . . u X̂k v X̂ ∈ T ′.

• Assume first (w, d) ∈ X̂Ji for all i ∈ 1, . . . , k. By our claim,
d ∈ X̂I,w

i . Since I |= T and X1 u . . . uXk v X ∈ T , we have
also d ∈ XI,w, hence, again by the claim, (w, d) ∈ X̂J .

• Assume now dA ∈ X̂Ji for all i ∈ 1, . . . , k. By our claim, T |=
A v Xi. Since X1 u . . . u Xk v X ∈ T , we have also T |=
A v X , thus dA ∈ X̂J .

• Assume finally eA ∈ X̂Ji for all i ∈ 1, . . . , k. By our claim,
T |= E2A v Xi. Since X1 u . . . uXk v X ∈ T , we have also
T |= E2A v X , thus eA ∈ X̂J .

Obviously, (w0, d0) ∈ AJ \ BJ , thus A 6vT ′ B. This finishes
the proof of this direction.

o

Theorem Subsumption in CTLE3,E2,A2
EL is PSPACE-hard.

Proof. The proof is by reduction of the validity of QBFs, i.e., for-
mulas of the form Ψ = Q1x1 . . . Qnxn.ϕ where Qi ∈ {∃, ∀} for
1 ≤ i ≤ n and ϕ a propositional formula in negation normal form.

For a formal definition of QBFs, and their validity problem, please
consult [19]. Given a QBF Ψ = Q1x1 . . . Qnxn.ϕ with ϕ we con-
struct in polynomial time a CTLE2,E3,A2

EL TBox TΨ such that for
certain concept names A0, B0, we have TΨ |= A0 v B0 iff Ψ is
valid.

• We introduce fresh concept names Xψ for every subformula ψ of
ϕ, so in particular for each variable xi concept names Xxi and
X¬xi .

• We construct a binary tree of depth n rooted inA0 representing all
possible evaluations of {x1, . . . , xn}. and we use concept names
Ai, 0 ≤ i ≤ n to distinguish the levels of the tree. Specifically,
Tψ contains the following CI for every 1 ≤ i < n:

Ai v E3(Ai+1 uXxi+1) uE3(Ai+1 uX¬xi+1)

• Once we have decided the truth value of a variable we keep it
through all descendants.

Xxi v A2Xxi for all 0 ≤ i ≤ n
X¬xi v A2X¬xi for all 0 ≤ i ≤ n

• We need to evaluate the formula in each leaf.

An uXχ uXθ v Xχ∧θ for all subformulas χ ∧ θ of Ψ
An uXχ and An uXθ v Xχ∨θ for all subformulas χ ∨ θ of Ψ

• To evaluate the formula we proceed from the leafs to the root. We
identify each level with a quantifier in Ψ. For every 1 ≤ i ≤ n
with Qi = ∃ we have

Ai−1 uE3(Ai uXxi uXϕ) v Xϕ
Ai−1 uE3(Ai uX¬xi uXϕ) v Xϕ

while for Qi = ∀ we have that

Ai−1 u E3(Ai uXxi uXϕ)
u E3(Ai uX¬xi uXϕ) v Xϕ

It is not hard to check that Ψ is valid iff TΨ |= A0 v Xϕ. o

Theorem 7 We consider the logic ELE3,A3, and set T = ∅ and

C = A3A uA3B
D1 = E3(A uE3B)
D2 = E3(B uE3A)

Proof. Now, we show that the above witnesses non-convexity.

Lemma 11 T |= C vtDi but T 6|= Di for 0 < i ≤ 2.

Proof. For the former, let I a model with d ∈ CI,ε. Then, ∃j ≥
0, k ≥ 0.(d ∈ AI,π[j]) ∧ d ∈ BI,π[k]) for all π ∈ Paths(ε). Then,
for some π′ ∈ Paths(ε) depending on whether k ≤ j or j ≤ k
implies d ∈ DI,ε

i .
For the latter, we construct a temporal model I =

(∆, T, {Iw}w∈W) with ∆ = {d} and T a 1-ary tree such
that d ∈ CI,ε and d 6∈ DI,ε1 . Let w1 = ε · 1 and w2 = w1 · 1. Then,
set

AI,w1 := ∆

AI,w := ∅ for w 6= w1

BI,w2 := ∆

BI,w := ∅ for w 6= w2

It is clear d ∈ (A3A u A3B)I,ε but d 6∈ (E3(A u E3B))I,ε.
Following the previous ideas we can construct a model I′ such that
d ∈ CI′,ε but d 6∈ DI′,ε

2 . o

14

Now that we have established the non-convexity of CTLA3,E3
EL

standard proof techniques from [6] can be used to show EXPTIME-
hardness. o

For the remaining BTLS consider in Theorem 7 non-convexity can
be shown following the ideas of Lemma 11 . In particular, for all
cases we use the TBox T = ∅. For ELE3,E© set

C = E3A
D1 = A
D2 = E©E3A

For ELEU set
C = E(AUB)
D1 = B
D2 = A uE(AUB)

Analogously, for the extensions with for all path quantifier A.

15

