
Towards a Unifying Approach to Representing
and Querying Temporal Data in Description

Logics

Vı́ctor Gutiérrez-Basulto1 and Szymon Klarman2

1 Department of Computer Science, Universität Bremen
victor@informatik.uni-bremen.de

2 Department of Computer Science, Vrije Universiteit Amsterdam
s.klarman@vu.nl

Abstract. Establishing a generic approach to representing and querying
temporal data in the context of Description Logics (DLs) is an important,
and still open challenge. The difficulty lies in that a proposed approach
should reconcile a number of valuable contributions coming from diverse,
yet relevant research lines, such as temporal databases and query answer-
ing in DLs, but also temporal DLs and Semantic Web practices involving
rich temporal vocabularies. Within such a variety of influences, it is crit-
ical to carefully balance theoretical foundations with good prospects for
reusing existing techniques, tools and methodologies. In this paper, we
attempt to make first steps towards this goal. After providing a compre-
hensive overview of the background research and identifying the core re-
quirements, we propose a general mechanism of defining temporal query
languages for time-stamped data in DLs, based on combinations of linear
temporal logics with first-order queries. Further, we advocate a controlled
use of epistemic semantics in order to warrant practical query answering.
We systematically motivate our proposal and highlight its basic theoret-
ical and practical implications. Finally, we outline open problems and
key directions for future research.

1 Introduction

The use of Description Logic (DL) ontologies for describing and interpreting
data is acknowledged by now as a self-standing paradigm of data management
in different areas of computer science — most prominently on the Semantic Web
(SW), where DL-based ontology languages play a key architectural role. One big
and yet unresolved challenge in this context, called for by numerous applications,
is to formally incorporate and operationalize the notion of data’s validity time,
i.e. the explicitly declared time span within which the data is known to be true.

Problem: In this paper, we study the problem of managing temporal data in the
framework of DLs. Our goal is to make first steps towards establishing a unifying
approach to representing and querying such data under DL ontologies. Given the
multifaceted nature of the problem and the scope of expected applications, one

of main challenges which must be faced lies in reconciling a number of valuable
contributions developed within diverse research areas. In particular:

– temporal databases: for ensuring commensurability with the commonly adop-
ted temporal data models for representing validity time and with standard
query languages based on temporal first-order logic,

– query answering in DLs: for enabling transfer of known query answering
techniques, complexity results, and facilitating reuse of existing tools,

– temporal DLs: for enabling the possibility of managing temporal data under
DL ontologies which capture temporal constraints on the intensional level,

– SW temporal vocabularies: for supporting typical SW practices involving
OWL-based time ontologies, which provide rich temporal vocabularies em-
ployed on the level of queries and data annotations.

Clearly, under such a variety of influences, it is critical to carefully balance
theoretical foundations of a proposed approach with good prospects for reusing
existing techniques, tools and methodologies.

Contributions: We introduce a basic framework for representing temporal data
in arbitrary DLs, where the data takes the form of time-stamped ABox assertions
[t1, t2] : α, stating validity of the assertion α during the interval [t1, t2]. Then
we propose a general mechanism of defining corresponding temporal query lan-
guages, based on combinations of linear temporal logics with classes of first-order
queries — specifically, with well-known conjunctive queries. In particular:

– we systematically motivate the proposed mechanism, present the syntax and
certain answer semantics for the query languages that the mechanism gen-
erates, and the relationship of those languages to temporal first-order logic.

– we advocate a controlled use of epistemic semantics in order to warrant
practical query answering in the defined setting. Under this restriction, we
deliver a PSpaceQA(L)-completeness bound for the combined complexity of
answering temporal queries in an arbitrary DL L, where QA(L) is an oracle
answering conjunctive queries in L. We highlight some essential theoretical
and practical implications of this result.

– we discuss the possibility of pushing the approach further towards integration
with temporal DLs and SW temporal vocabularies.

Structure of the paper: In Section 2, we provide a comprehensive overview of
the background research and identify the core requirements for the proposed
approach. Next, we discuss DL preliminaries in Section 3 and introduce the
temporal data model in Section 4. In Section 5, we present and study the pro-
posed mechanism of defining temporal query languages. In Section 6 we discuss
similarities to existing approaches and outline some future research directions.
We conclude the paper in Section 7.

2 Overview and Background

Extending information systems with capabilities for managing temporal informa-
tion has been deeply studied and advocated in many areas of computer science,
particularly, in those concerned with relational databases and knowledge rep-
resentation. Surprisingly, despite the successful use of the ontology-based data
access (OBDA) paradigm as an application of DL technologies in databases,
the development of mechanisms for extending the OBDA approach towards ac-
cessing temporal data have not been yet investigated. A proposed mechanism
should naturally take into account the already well-founded research lines on rep-
resenting and querying temporal information, as well as valuable contributions
in related areas, which we outline in the following paragraphs.

Ontology-Based Data Access The ontology-based data access is a paradigm
of managing data in presence of background knowledge, represented as a formal
ontology, enabling convenient query answering over incomplete data. In recent
years, special attention has been given to ontologies based on DL languages. A
considerable amount of research has been devoted to the problem of query an-
swering in DLs, focusing predominantly on conjunctive queries (CQs). This has
lead to establishing a clear picture of the computational complexity of CQ an-
swering, and to the development of algorithmic approaches. The study has been
focused on two major lines: 1) utilization of classical DLs with high expressive
power, where the complexity of query answering turns out typically too high
for practical applications [1]; 2) development of DLs allowing efficient query an-
swering over large amounts of data. Calvanese et.al. [2] introduced the DL-Lite
family of DLs, for which efficient OBDA can be achieved by reduction to query
answering in relational database management systems (RDBMSs). One of the
key motivations behind the design of the temporal query languages presented in
this paper is to enable easy, modular reuse of the known techniques and results
on query answering in DLs in the context of temporal data querying.

Temporal Databases During the 90s, the database community conducted an
exhaustive study on temporal extensions of the standard relational data models,
supporting management of temporal information. The common way of construct-
ing temporal relational databases (TDBs) is to enrich traditional data models
with time-stamps representing data’s validity time, i.e. the time span within
which the data is known to be true. As one of the crucial requirements for our
approach we pose formal compatibility with the TDB paradigm of represent-
ing temporal data. Inspired by the notion of concrete temporal database [3], we
construct a temporal ABox by time-stamping every ABox assertion with a weak-
interval of the form [t1, t2], compactly representing a set of time points in which
the assertion is valid. The semantics of a temporal ABox, by analogy to TDBs
case [3], is given by mapping each time point in the underlying time domain
to the non-temporal (standard) ABox — a so-called snapshot — containing
exactly the assertions valid in that point. Eventually, the OBDA paradigm is
applied within the scope of respective snapshots.

Regarding the choice of the time domain, the TDB literature reports on a
number of possible representations, each one having far-reaching philosophical,
logical and computational consequences [4]. The available degrees of freedom
concern, among others: the nature of the atomic time entities (points vs. inter-
vals), their ordering relationships (linear vs. branching vs. partial orders), the
density (discrete vs. continuous), the boundaries (finite vs. infinite). Although
strict commitment to any representation is always arbitrary to some extent, ar-
guably one of the most natural and commonly used setups in TDBs, which we
also adopt here, is the one capturing the intuition of a point-based time line [4].

A temporal data model is complemented by an adequate temporal query lan-
guage for querying temporal data. In this aspect, we ground our proposal in
two well-known research lines. 1) Following the research on TDBs, we consider
languages based on fragments of temporal first-order logic, which has been ad-
vocated as a suitable high-level formalism for querying TDBs [3]. It has been
shown, that queries expressed in temporal first-order logic can be translated di-
rectly to TSQL2 [5] — a temporal extension of the standard database query
language SQL — and thus efficiently handled using existing TDB systems. 2)
Given the known landscape of complexity results and developed techniques for
query answering in DLs, we pay special attention to the expressiveness of the
first-order component within the intended fragments of temporal first-order logic.
As explained in detail in Section 5, our motivation is to provide a mechanism
for defining such fragments in a controlled, modular manner, by selecting par-
ticular sets of temporal operators and particular classes of first-order queries to
be combined. By specifying those two parameters one should effectively obtain
a ready query language of a well-characterized computational behavior. To this
end we make use of the methodology of temporalizing logic systems [6].

Semantic Web & Temporal DLs In recent years, the problem of managing
time-varying knowledge has gained a lot of interest also in the Semantic Web
research community. Particularly, the need for describing temporal information
on the Web gave rise to various time ontologies [7], which formalize common
temporal notions, such as temporal instants, temporal intervals and calendar
terms, and offer standardized formats for representing different types of temporal
information. Although such ontologies succeed in facilitating exchange of time-
oriented data among Web agents, they are not accompanied by any formally
grounded methodologies of processing such information. Specifically, they offer
no inference mechanisms to support genuinely temporal reasoning. This lack of
rigorous logical foundations, is in practical scenarios partially remedied by the
use of programming tools and ad-hoc hybrid architectures [8,9].

Some alternative approaches, building more systematically on the TDB phi-
losophy, were also proposed for representing and querying temporal data in
RDFs [10,11] and OWL [12]. Although employing the same or similar temporal
data models as in our case, these frameworks are mostly technology-driven and
do not consider the design of query languages in sufficient generality.

A somewhat orthogonal research effort has gone into designing a family of
temporal description logics (TDLs) [13] tailored for representing and reasoning

with inherently temporal terminologies. As proper combinations of temporal
logics with DLs, TDLs count with a well-defined temporal semantics, which
makes them very appealing from the theoretical perspective. Nevertheless, most
of the contributions in this area focus on traditional reasoning tasks such as
satisfiability and subsumption, related mostly to conceptual modeling rather
than querying temporal data, with very few, limited exceptions [14]. In general,
a potential transfer of the known query answering techniques for DLs to the
TDL setting seems highly non-trivial.

Although in this paper we do not address the problems related to querying
temporal data with support of SW temporal vocabularies or in presence of TDL
ontologies, we do acknowledge them as worthwhile challenges for future research,
and we briefly reconsider them in Section 6.

3 Description Logic Preliminaries

We use the standard nomenclature and notation for the syntax and semantics
of DLs (see [15] for full details). A DL language L is defined over a vocabulary
Σ = (NC,NR,NI), where NC,NR,NI are countably infinite sets of concept names,
role names and individual names, respectively. By convention, we use letters A,B
to denote concept names, r, s for role names and a, b for individual names. The
grammar for complex concepts, roles and axioms is defined relative to a given DL
dialect. For instance, the DL ALC provides the following concept constructors:

¬C | C uD | C tD | ∃r.C | ∀r.C

where C,D are (possibly complex) concepts. A TBox T is a finite set of concept
inclusions of the form C v D, whereas an ABox A is a finite set of assertions of
types A(a) and r(a, b). By following the DL-based OBDA paradigm, we consider
a TBox to be the ontology through which one accesses the data represented as
an ABox.

The semantics of L is given through interpretations I = (∆I , ·I), where ∆I

is a non-empty domain of individuals and ·I is an interpretation function, which
maps AI ⊆ ∆I , for every A ∈ NC, rI ⊆ ∆I×∆I , for every r ∈ NR, and aI ∈ ∆I ,
for every a ∈ NI, and is inductively extended over complex expressions according
to the fixed conditions associated with each constructor [15]. An interpretation
I is a model of a TBox T (resp. ABox A), written I |= T (resp. I |= A) iff
it satisfies all the concept inclusions in T (resp. assertions in A), where the
satisfaction relation for concept inclusions and assertions is defined in the usual
way. An ABox A is consistent w.r.t. a TBox T iff there exists an interpretation
I which is a model of both A and T , written as I |= T ,A.

Next, we recall the standard notion of conjunctive queries — the most com-
monly studied query formalism in the context of DLs [1]. Let NV be a countably
infinite set of variables. A conjunctive query (CQ) over a DL vocabulary Σ is
a first-order formula ∃~y.ϕ(~x, ~y), where ~x, ~y are sequences of variables. The se-
quence ~x denotes the free, answer variables in the query, while ~y the quantified

ones. The formula ϕ is a conjunction of atoms over Σ of the form A(u), r(u, v),
where u, v ∈ NV ∪ NI are called terms.

Let I be an interpretation and q(~x) a CQ with the answer variables ~x =
x1, . . . , xk. By term(q) we denote the set of all terms occurring in q. For a
sequence ~a = a1, . . . , ak ∈ NI, an ~a-match to a query q(~x) in I is a mapping
µ : term(q) 7→ ∆I , such that µ(xi) = ai

I , for every 1 ≤ i ≤ k, µ(a) = aI , for
every a ∈ NI ∩ term(q), for every A(u) in q it is the case that µ(u) ∈ AI and
for every r(u, v) in q it is the case that (µ(u), µ(v)) ∈ rI . We write I |= q[~a]
whenever there exists an ~a-match to q in I, and T ,A |= q[~a] whenever there
exists an ~a-match to q in every model of T and A. In the latter case ~a is called
a certain answer to q w.r.t. T and A.

In what follows we implicitly assume that all considered TBoxes, ABoxes and
CQs are expressed over the same DL vocabulary Σ.

4 Temporal Data Model

A temporal data model is formally specified by two basic characteristics: the
choice of the underlying time domain and the syntax and semantics of temporal
annotations linking data to a time domain. As outlined in Section 2, a time
domain permitted in our scenario is a structure defined as a linear ordering of a
set of time instants [4].

Definition 1 (Time domain). A time domain is a tuple (T,<), where T is
a nonempty set of elements called time instants and < is an irreflexive, linear
ordering on T .

Some popularly considered structures satisfying this definition are based on sets
of numbers, e.g. naturals (N, <), integers (Z, <), reals (R, <), with the ordering
< being interpreted as the usual smaller-than relation. By convention, we write
≤ to denote the reflexive closure of <.

Temporal annotations are based on the weak-interval time-stamping mech-
anism. Intuitively, a time-stamped ABox assertion [t1, t2] : α states that the
axiom α is valid in all time instants within the interval [t1, t2]. Additionally, we
allow special symbols −∞ and +∞ to represent possibly unbounded intervals.

Definition 2 (Temporal ABox). Let (T,<) be a time domain. A temporal
assertion is an expression in one of the following forms:

[t1, t2] : α | [−∞, t1] : α | [t1,+∞] : α | [−∞,+∞] : α

where α is an ABox assertion and t1, t2 ∈ T . A temporal ABox AT is a finite
set of temporal ABox assertions. A t-snapshot of AT , for t ∈ T , is the smallest
ABox AT (t) containing all assertions α, for which any of the following conditions
hold:

[t1, t2] : α ∈ A and t1 ≤ t ≤ t2,
[−∞, t1] : α ∈ A and t ≤ t1,
[t1,+∞] : α ∈ A and t1 ≤ t,

[−∞,+∞] : α ∈ A.

The standard DL semantics is extended in a natural way by adding the tem-
poral dimension and assigning a single DL interpretation to every time instant.

Definition 3 (Snapshot semantics). Let (T,<) be a time domain, T a TBox
and AT a temporal ABox. A temporal interpretation of T and AT is a tuple
M = (T,<, I), where I is a function assigning to every t ∈ T a DL interpretation
I(t) = (∆(t), ·I(t)). We say that M is a model of T and AT , whenever I(t) is
a model of T and AT (t), for every t ∈ T .

5 Temporal Query Language

In this section, we define and study a novel temporal query language T QL,
or strictly speaking, a family of such languages for querying temporal ABoxes
w.r.t. standard TBoxes. At its core, our contribution should be seen as a general
mechanism for constructing practical query formalisms, based on combinations
of temporal logics with certain classes of first-order queries over DLs. This mech-
anism can be shortly described as follows. Consider a temporal logic T L and a
class of queries Q. We aim at identifying a fragment of temporal first-order logic,
based on the operators of T L, whose first-order component coincides with the
class Q. To this end, we follow the well-studied methodology of temporalization
of logic systems, introduced by Finger and Gabbay [6]. Essentially, T QL is de-
fined as the set of all T L-formulas whose atomic subformulas are substituted
with Q-queries. The central motivation behind such a construction is to enable
decoupling the problem of answering embedded Q-queries from reasoning in T L,
which can be both efficiently addressed by existing, specialized tools. As it turns
out, some potential interactions between the Boolean operators of T L-formulas
with those of Q-queries make such decoupling still impossible in general. Hence,
as a solution, we advocate a controlled use of epistemic semantics for interpret-
ing the embedded Q-queries, along the lines proposed by Calvanese et al. [16].
This, as we argue in Section 5.2, leads to a desirable theoretical and practical
characterization of T QL.

In our scenario, we focus on the class of conjunctive queries, as the most
popular type of queries studied in the context of DLs. As the baseline tempo-
ral language we consider first-order monadic logic of orders (FOMLO), which
is known to be expressively complete w.r.t. all linear orders [17], and thus sub-
sumes a number of most popular linear temporal logics, including the prominent
Propositional Linear Temporal Logic (PLTL).

5.1 Syntax and semantics

To keep the design of T QL possibly modular, and yet maximally generic, we first
introduce a mechanism of abbreviating the temporal components of the queries
into customary temporal connectives. Those connectives, defined analogical to
Chomicki and Toman [18], are used as templates to be instantiated with partic-
ular CQs and further combined by means of Boolean operators. The syntax of

FOMLO is based on a countably infinite set TV of time instant variables, such
that TV ∩ NV = ∅, one binary predicate < and a countably infinite set PV of
monadic predicate variables.

Definition 4 (Temporal connectives: syntax). A φ-formula is an expres-
sion constructed according to the grammar:

φ ::= u < v | ¬φ | φ ∧ φ | ∀x.φ | X(u)

where u, v ∈ T ∪ TV, x ∈ TV and X ∈ PV. An n-ary temporal connective is a
φ-formula containing k ≥ 0 free variables x1, . . . , xk ∈ TV, called the temporal
answer variables, and n ≥ 0 predicate variables X1, . . . , Xn ∈ PV. We define
Ω to be a finite set of temporal connectives, where each connective ω ∈ Ω is
given via a definition consisting of a name ω(~x)(~X), with ~x = x1 . . . , xk and
~X = X1, . . . , Xn, and a (definitional) φ-formula ω∗.

Intuitively, the predicate variables are place holders for CQs, which we add in
the next step. The temporal answer variables range over time instants, which
are explicitly represented in the answers to temporal queries.3 A small sample
of possible temporal connectives is given in Figure 1. Note, that we use some
common abbreviations, such as ∃,→,≤, as well as compositions x1 < x2 < x3,
whose meaning is as expected.

always(X1) , ∀x1.X1(x1)

sometime(X1) , ∃x1.X1(x1)

in(x1)(X1) , X1(x1)

after(x1, x2) , x2 < x1
during-interval(x1, x2)(X1) , x1 ≤ x2 ∧ ∀x3.(x1 ≤ x3 ≤ x2 → X1(x3))

in-since(x1)(X1, X2) , ∃x2.(x2 < x1 ∧X2(x2) ∧ ∀x3.(x2 < x3 ≤
x1 → X1(x3)))

in-until(x1)(X1, X2) , ∃x2.(x1 < x2 ∧X2(x2) ∧ ∀x3.(x1 ≤ x3 <
x2 → X1(x3)))

Fig. 1. Examples of temporal connectives.

The satisfaction relation is defined in terms of the standard first-order seman-
tics, modulo an extra condition warranting the satisfaction of predicate variables.

Definition 5 (T -substitution). For a time domain (T,<), a T -substitution is
a mapping π : T ∪ TV 7→ T such that π(t) = t for every t ∈ T .

3 In practice, the range of answer variables might need to be further restricted in order
to finitize the number of possible answers. In the context of temporal databases, it
is common to consider only time instants that are explicitly mentioned in the data
(in our case: temporal ABox). This, however, might require certain normalization of
the used time-stamps — a problem which we do not address here.

Definition 6 (Temporal connectives: satisfaction relation). Let M =
(T,<, I) be a temporal model and ω ∈ Ω a temporal connective with the defini-
tional formula ω∗. For a T -substitution π, the satisfaction relation M, π |= ω∗

is defined inductively as follows:

– M, π |= u < v iff π(u) < π(v),
– M, π |= ¬φ iff M, π 6|= ¬φ,
– M, π |= φ ∧ ψ iff M, π |= φ and M, π |= ψ,
– M, π |= ∀x.φ iff for every t ∈ T it is the case that M, π[x 7→ t] |= φ,
– M, π |= Xi(u) iff the CQ associated with Xi is satisfied in M, π(u) (see

Definition 8).

where π[x 7→ t] denotes a T -substitution exactly as π except for that we fix
π(x) = t.

Finally, we define the syntax and semantics of the temporal query language.

Definition 7 (Temporal query language: syntax). The temporal query
language T QL is induced by the following grammar:

ψ ::= ω(~x)(q1(~y1), . . . , qn(~yn)) | ¬ψ | ψ ∧ ψ

where ω ∈ Ω is an n-ary temporal connective with temporal answer variables
~x, and every qi(~yi) is a CQ with answer variables ~yi, for 1 ≤ i ≤ n. We write
ψ(~x, ~y), to denote a T QL query ψ with temporal answer variables ~x and CQ
answer variables ~y.

An answer to a T QL query is a pair of sequences of time instants from T and
individual names from NI, which substituted for the respective temporal and CQ
answer variables must satisfy the query. The answer variables of both types can
be shared among different CQs and temporal connectives occurring in the query,
thus facilitating descriptions of complex dependencies between temporal data (cf.
Example 1). To formally introduce the semantics of T QL queries, we first fix
useful notation for handling subsequences of CQ answers. Let ~y = y1, . . . , yk
be a sequence of answer variables and ~a = a1, . . . , ak a corresponding sequence
of individual names. For an arbitrary subsequence ~y′ ⊆ ~y, i.e. a subset of ~y
preserving the ordering, we write ~a|~y′ to denote the subsequence of ~a such that
for every 1 ≤ i ≤ k, ai occurs in ~a|~y′ iff yi occurs in ~y′.

Definition 8 (Temporal query language: semantics). Let ψ(~x, ~y) be a
T QL query, with ~x = x1, . . . , xk and ~y = y1, . . . , yl. For a pair of sequences
(~t,~a), where ~t = t1, . . . , tk ∈ T and ~a = a1, . . . , al ∈ NI, a (~t,~a)-match to ψ
in a model M = (T,<, I) is a T -substitution π, such that π(xi) = ti, for ev-
ery 1 ≤ i ≤ k, and M, π |=~a ψ, where the satisfaction relation |=~a is defined
inductively as follows:

– M, π |=~a ω(~xi)(q1(~y1), . . . , qn(~yn)) iff M, π |= ω∗ (see Definition 6), where
for every 1 ≤ i ≤ n and any T -substitution π′ we set:

M, π′ |= Xi(π
′(u)) iff I(π′(u)) |= qi[~a|~yi

], (†)

– M, π |=~a ¬ϕ iff M, π 6|=~a ϕ,
– M, π |=~a ϕ ∧ ψ iff M, π |=~a ϕ and M, π |=~a ψ.

We write M |= ψ[~t,~a] whenever there exists a (~t,~a)-match to ψ in M and
T ,AT |= ψ[~t,~a], whenever there exists a (~t,~a)-match to ψ in every model of
T and AT . In the latter case ~t,~a is called a certain answer to ψ w.r.t. T ,AT .

Example 1. We formulate a T QL query ψ(x1, x2, y) requesting all patients y who
have been ever diagnosed with some allergy, at some point x1 were administered
a new drug, and at some point x2, after x1, had symptoms of an allergic reaction.
The precise meaning of the temporal connectives used in the query is as defined
in Figure 1.

ψ(x1, x2, y) ::= sometime(∃x.(Patient(y) ∧ diagnosedWith(y, x) ∧ Allergy(x)))
∧ in(x1)(∃x.(administered(y, x) ∧ NewDrug(x))) ∧

∧ after(x2, x1)
∧ in(x2)(∃x.(hasSymptom(y, x) ∧ AllergicReaction(x)))

Consider the TBox T containing axioms:

AllergicPatient v Patient u ∃diagnosedWith.Allergy
TestPatient v Patient u ∃administered.NewDrug

and the temporal ABox A containing time-stamped assertions:

[1, 5] : AllergicPatient(john) [2, 3] : Patient(carl)
[1, 2] : hasSymptom(john, id1) [1, 2] : hasSymptom(carl , id3)
[2, 2] : AllergicReaction(id1) [2, 2] : AllergicReaction(id3)
[4, 5] : TestPatient(john) [2, 3] : diagnosedWith(carl, id4)
[6, 6] : hasSymptom(john, id2) [2, 3] : Allergy(id4)
[6, 6] : AllergicReaction(id2) [5, 5] : TestPatient(carl)

Given the time domain of natural numbers (N, <) there are two certain answers
to the query ψ(x1, x2, y), namely: (4, 6, john) and (5, 6, john).

5.2 Practical query answering

As it turns out, under the introduced semantics the expressive power of T QL is
still too high to provide reasonable guarantees for the worst-case complexity of
temporal query answering, and for the possibility of reusing the existing query
answering techniques and tools. The level of interaction between the Boolean
operators of the temporal language with CQs is sufficient to enable encoding
Boolean combinations of conjunctive queries (BCCQs) over DLs, i.e. formulas
induced by the grammar:

ϕ ::= q | ¬ϕ | ϕ ∧ ψ.

where q is a CQ. The decidability of BCCQs answering over DLs is, to the
best of our knowledge, an open problem. Some of the largest classes of queries
whose decidability has been studied so far are in fact unions (disjunctions) of
CQs [1] and their syntactic generalization — positive existential queries [19]. In

order to render query answering in T QL practical, we therefore need to employ
some means of constraining the language. Quite a trivial fix is to tame the
expressiveness of CQs, for instance by considering only CQs without existentially
bounded variables — thus a variation of instance queries. In such case, the query
answering can be reduced to reasoning with temporalized ABox axioms w.r.t.
global TBox. As explained in [13], for a temporal logic coinciding with PLTL and
an arbitrary DL with at least PSpace-hard satisfiability problem, the complexity
of the task remains the same as for the satisfiability in the underlying DL.

A much more interesting way of alleviating the problem of handling BC-
CQs, however, is to restrict the level of interaction between the operators of the
temporal language with those of the embedded CQs, without reducing the ex-
pressiveness of the queries. To this end we propose to apply a limited form of the
Closed World Assumption (CWA). Although essentially incompatible with the
open-world semantics of DLs, a controlled use of CWA is claimed to be justified
and beneficial in various application scenarios related to OBDA and Semantic
Web reasoning [20,16,21]. In our case, we are interested in restricting T QL in a
way that would enable answering individual CQs under the standard semantics,
but at the same time, interpreting negation in front of CQs as Negation-As-
Failure, and reducing the problem of answering BCCQs to Boolean operations
over the certain answers to CQs. A clean and straightforward method of achiev-
ing this effect, advocated and studied in depth in [16], is to bind every occurrence
of a CQ in a T QL query with the autoepistemic K-operator. Essentially, the op-
erator K enforces that a bounded CQ is satisfied in a model, for a given answer,
only if this answer is known to be certain, or formally:

I |= Kq[~a] iff T ,A |= q[~a]

where I is a model of T andA. This immediately entails the requested reductions
of a limited, closed-world flavor:

T ,A |= Kq[~a] iff T ,A |= q[~a]
T ,A |= ¬Kq[~a] iff T ,A 6|= q[~a]

T ,A |= Kq1[~a] ∨Kq2[~b] iff T ,A |= q1[~a] or T ,A |= q2[~b]

Observe that the set of certain answers to a single CQ is invariant to the possi-
ble application of the K-operator in front of the query. Thus, the closed-world
reasoning, emerging only on the level of Boolean combinations of CQs, does not
affect the basic assumption of possible incompleteness of data, inherent to the
OBDA paradigm.

Eventually, by replacing every q in T QL queries with Kq, or simply by
interpreting it as if it was bounded by K (as we do below), we obtain the desired,
well-behaved temporal query language.

Definition 9 (T QL semantics with epistemic interpretation of CQs).
The semantics of T QL with epistemic interpretation of embedded CQs is exactly
the same as in Definition 8, modulo the replacement of the condition (†) with
the following one:

M, π′ |= Xi(π
′(u)) iff T ,AT (π′(u)) |= qi[~a|~yi

]. (‡)

To witness the difference between evaluating T QL queries under the two
compared semantics, consider an example involving TBox T = {A v ¬D, B u
C v D}, temporal ABox A = {[1, 1] : A(a), [1, 2] : B(a), [2, 3] : C(a)} and
query ψ(x, y) ::= ¬in(x)(D(y)). Under the original semantics, presented in
Definition 8, the query returns a unique certain answer (1, a). On the other hand,
by enforcing the epistemic interpretation of the embedded CQ q(y) ::= D(y), as
argued above, and setting the time domain of natural numbers, we obtain an
infinite set of certain answers {(t, a) | 2 6= t ∈ N}.

Notably, the condition T ,AT (π′(u)) |= qi[~a|~yi
] in (‡) is an instance of the

standard CQ answering problem. Moreover, it is the only point in the revised
semantics where DL reasoning is intertwined with reasoning over the temporal
language. What follows, is that the most natural algorithm answering T QL
queries can be constructed by augmenting any standard decision procedure for
the satisfiability in the temporal language with an oracle answering CQs over
the designated snapshots of the ABox w.r.t. the TBox. As the decision problem
in FOMLO is known to be PSpace-complete [17], we thus obtain a result on
the combined complexity of answering T QL queries.

Theorem 1 (Combined complexity of T QL query answering). Let ψ be
a T QL query over a temporal ABox AT w.r.t. TBox T , where ABox and TBox
axioms are expressed in a DL language L. The combined complexity of deciding
T ,AT |= ψ[~t,~a], for a pair of sequences ~t,~a, under the epistemic interpretation

of the CQs embedded in ψ, is PSpaceQA(L)-complete, where QA(L) is an oracle
answering CQs in L.

This seemingly unsurprising result has some significant theoretical and prac-
tical implications. On the theoretical side, it guarantees that answering T QL
queries under the epistemic interpretation of CQs remains decidable, as long as
answering CQs over the respective DLs is decidable. Moreover, it establishes a
bridge for an immediate transfer of the combined complexity results. For in-
stance, when L = ALC, answering T QL queries is PSpaceExpTime-complete,
thus effectively ExpTime-complete, as the combined complexity of CQ answer-
ing in ALC is ExpTime-complete [22]. Analogically, for L = SHIQ, the problem
is PSpace2ExpTime-complete, and effectively 2ExpTime-complete. In general,
the combined complexity of answering T QL queries for an arbitrary DL L is
equal to the complexity of answering CQs in L, provided that the latter prob-
lem is at least PSpace-hard. This observation naturally generalizes over query
languages based on combinations of FOMLO with arbitrary classes of first-order
queries. Whenever the complexity of answering Q-queries over L, for a given
query class Q and a DL L, is at least PSpace-hard then answering the result-
ing temporal queries over L remains in the same complexity class. Otherwise
it is PSpace-complete. This demonstrates that the temporalization technique
employed here yields computationally cheap, yet expressive, temporal query lan-
guages over temporal ABoxes. In fact, temporalization of query languages for
expressive DLs, subsuming ALC, comes for free.

From the practical perspective, the restricted interaction between the tem-
poral component and CQs, reflected in Theorem 1, promises relatively straight-

forward implementations of T QL query engines based on existing technologies,
e.g.: temporal theorem provers and CQ answering tools. Roughly, to determine
whether a candidate answer to a query ψ is certain for T ,AT , it suffices to
check whether the direct rendering of ψ into FOMLO is satisfiable, where every
CQ embedded in ψ is seen as a predicate variable, whose truth-value in a given
time instant is determined by a call to an external CQ answering tool over the
respective snapshot of AT w.r.t. T .4

Some further interesting prospects concern answering T QL queries over the
DL-Lite family of DLs, enjoying the FO-rewritability property [2]. It is known
that CQ answering in DL-Lites can be carried out efficiently using highly opti-
mized RDBMSs. In a nutshell, for TBox T , ABox A and a CQ q, one can always
find a first-order query qT , such that for every ~a it is the case that T ,A |= q[~a]
iff A |= qT [~a], where the latter problem can be solved directly in an RDBMS.
Clearly, an analogical approach should enable rewriting a T QL query over T ,AT

into a temporal first-order formula, which could be then efficiently encoded and
evaluated as a TSQL2 query [5] over a temporal database AT . Although pro-
viding precise definition of such a translation and proving its correctness is left
as future work, we expect it to be straightforward given that every T QL query
corresponds to a temporal formula with embedded CQs, where each CQ q can
be replaced with the corresponding first-order formula qT obtained by means of
established FO-rewritability techniques.

6 Discussion and Outlook

The design of the language T QL follows closely the principles of query languages
for temporal databases, as outlined in e.g. [18]. In the general TDB setup, the
query componentQ is based on the full first-order logic, while temporal operators
defined in FOMLO can be nested within each other. Hence, the resulting lan-
guage is expressively equivalent to the temporal first-order logic. In T QL, we are
deliberately constraining the query component and disallow nesting of operators
in order to enable practical decoupling of the DL-level from the temporal-level
reasoning. In the context of the SW, similar approaches have been proposed to
deal with time-stamped RDF data [10,12] and OWL axioms [12]. Both contri-
butions, however, lack the generality of our proposal. The temporal component
of the query languages is in both cases highly restricted in order to ensure finite
answer sets. In particular, Motik [12] introduces a specially fixed number of most
practical temporal operators that can be combined with the data-level queries.
All these can be easily restated in FOMLO, and so the language of [12] can be
easily defined using the T QL mechanism.

An interesting open challenge is a potential integration of the framework with
two orthogonal approaches to managing temporal information in the context of

4 For time domains based on natural numbers and integers, FOMLO formulas can
be translated into PLTL [17], and thus decided using off-shelf PLTL provers, such
as listed in http://www.cs.man.ac.uk/~schmidt/tools/. CQ answering in selected
DLs is supported by such systems as QuOnto, REQUIEM, Presto.

http://www.cs.man.ac.uk/~schmidt/tools/

DLs, mentioned in Section 2, i.e. SW temporal vocabularies and temporal DLs.
As argued below, our choice of standard temporal semantics and logic-based
query formalism, renders such prospects quite realistic. A remarkable feature,
shared by the two potential extensions, is that unlike the current framework,
they aim to support reasoning with incomplete data, where the incompleteness
occurs in the temporal dimension. Such characteristic might be conceptually
attractive considering the open-world philosophy of DLs.

Supporting temporal vocabularies and semantic annotations The practice of rep-
resenting and reasoning with temporal information on the Semantic Web, for
instance in the field of health care support [23], suggests that the presented
data model and query language might not be sufficiently flexible for real-life
applications. In particular, we are incapable of:

– directly expressing typical temporal patterns occurring in temporal queries
and constraints used in clinical applications, such as:

• Visit 17 must occur at least 1 week but no later than 4 weeks after the
end of 2003 ragweed season.

• Administer Rapamune 1 week from Visit 0 daily for 84 days.

– supporting semantic annotations whose meaning could be described in terms
of rich temporal vocabularies, e.g. for a temporal assertion τ : α:

• τ is a time interval from 15.05.2005 until some day on 06.2005,
• τ is a periodic interval, of duration 5 hours, recurring 5 times every 10

hours, starting some time on 12.05.2008.

In practice, such functionalities are supported by ad-hoc architectures, which
retrieve temporal information encoded in OWL-based time ontologies and pro-
cess it with application-specific tools, thus sacrificing some theoretical rigor and
formal transparency of provided inferences [9]. Within our framework, a natu-
ral solution to this problem is to extend the temporal language with additional
predicates (e.g. involving periodicity constraints [24]) to enable ontological-style
axiomatization of the background knowledge about the underlying time domain
per se, e.g. the Gregorian calendar. Such predicates could be then meaningfully
used and reasoned with on the query- and annotation-level. Such a philosophy
motivates to a great extent the framework proposed by Zimmerman et al. [11].
There, however, the annotation language is a non-standard, task-specific formal-
ism, which cannot be directly translated into temporal logics or OWL.

Integration with TDLs The framework studied in this paper is focused on query-
ing temporal data with respect to a fixed, time-invariant terminology. A natural
extension to this approach is to introduce means of querying temporal ABoxes
in presence of temporal constraints occurring on the intensional, terminological
level. Temporal DLs are a family of two-dimensional DLs, developed intensively
in the recent years [13], intended specifically for the representation of this kind of
terminologies. By allowing operators of temporal logics to occur in DL concepts,
TDLs enable, for instance, to express the following axiom:

Patient u ∃diagnosedWith.Allergy v AllergicPatient U ∀diagnosedWith.¬Allergy

The axiom states that whenever a patient is diagnosed with an allergy, she
should be considered an allergic patient until (U) she is diagnosed with no aller-
gies. Interestingly, TDL TBoxes are interpreted over the same type of semantic
structures as used in our framework, i.e. tuples M = (T,<, I). This means, that
from the formal perspective integration of T QL with TDLs can be achieved
seamlessly. Obviously, query answering in such setting should likely be compu-
tationally more expensive, considering that already the satisfiability problem in
TDLs is usually harder than in the underlying DLs. So far the only query lan-
guage for TDLs has been proposed by Artale et al. [14]. Differently than here,
the queries are defined as unions of CQs, where the atomic predicates can be
possibly preceded by temporal operators. As a consequence, the reuse of existing
CQ answering techniques is not directly possible within this approach.

7 Conclusions

We believe that the framework proposed in this paper marks a first promising
step towards establishing a generic approach to representing and querying tem-
poral data under DL ontologies. Naturally, a number of important problems,
which we merely touched upon, are left open to future research. Among others,
it is critical to conduct a systematic study of possible ways of restricting the
T QL-like languages, in order to turn the query answering problem feasible in
practice. The use of epistemic semantics, suggested here, is only one of possible
options. Other might involve more fine-grained constraints on the expressiveness
of the temporal component, the first-order component or both. We also advo-
cate a study of possible extensions of the framework towards integration with
temporal DLs and rich SW temporal vocabularies.

References

1. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for
the description logic SHIQ. In: Journal of Artificial Intelligence Research. (2008)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3) (2007) 385–429

3. Chomicki, J., Toman, D.: Temporal Databases. In: Handbook of Temporal Rea-
soning in Artificial Intelligence (Foundations of Artificial Intelligence), Elsevier
Science Inc. (2005) 429–468

4. Montanari, A., Chomicki, J.: Time domain. In: Encyclopedia of Database Systems.
(2009) 3103–3107

5. Böhlen, M.H., Chomicki, J., Snodgrass, R.T., Toman, D.: Querying TSQL2
Databases with Temporal Logic. In Apers, P.M.G., Bouzeghoub, M., Gardarin,
G., eds.: EDBT. Volume 1057 of Lecture Notes in Computer Science., Springer
(1996) 325–341

6. Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. Journal
of Logic, Language and Information 1(3) (1992) 203–233

7. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans.
Asian Lang. Inf. Process. 3(1) (2004) 66–85

8. Batsakis, S., Stravoskoufos, K., Petrakis, E.G.M.: Temporal Reasoning for Sup-
porting Temporal Queries in OWL 2.0. In König, A., Dengel, A., Hinkelmann, K.,
Kise, K., Howlett, R.J., Jain, L.C., eds.: KES (1). Volume 6881 of Lecture Notes
in Computer Science., Springer (2011) 558–567

9. O’Connor, M.J., Das, A.K.: A method for representing and querying temporal
information in OWL. Biomedical Engineering Systems and Technologies (Selected
Papers) (2011) 97–110

10. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE
Trans. Knowl. Data Eng. 19(2) (2007) 207–218

11. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated Semantic Web data. Web
Semantics: Science, Services and Agents on the World Wide Web 11 (2012) 72–95

12. Motik, B.: Representing and querying validity time in RDF and OWL: A logic-
based approach. Web Semantics: Science, Services and Agents on the World Wide
Web 12-13 (2012) 3–21

13. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey.
In: Proc. of TIME-08. (2008)

14. Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M.: A temporal description
logic for reasoning over conceptual schemas and queries. In: Proc. of the European
Conference on Logics in Artificial Intelligence. JELIA ’02 (2002)

15. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press (2003)

16. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Eql-lite:
Effective first-order query processing in description logics. In: Proc. of IJCAI-07.
(2007)

17. Reynolds, M.: The complexity of decision problems for linear temporal logics.
Journal of Studies in Logic 3(1) (2010) 1917

18. Chomicki, J., Toman, D.: Temporal logic in information systems. In Chomicki,
J., Saake, G., eds.: Logics for Databases and Information Systems, Kluwer (1998)
31–70

19. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning 41 (2008)
61–98

20. Grimm, S., Motik, B.: Closed world reasoning in the semantic web through epis-
temic operators. In: Second International Workshop on OWL: Experiences and
Directions (OWLED 2006). (2005)

21. Lutz, C., Seylan, I., Wolter, F.: Mixing open and closed world assumption in
ontology-based data access: Non-uniform data complexity. In: Proc. of the Inter-
national Workshop on Description Logics (DL2012). (2012)

22. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Proc. of IJCAR-08. Number 5195 in LNAI (2008) 179–193

23. Shankar, R.D., Martins, S.B., O’Connor, M.J., Das, A.K.: An ontological approach
to representing and reasoning with temporal constraints in clinical trial protocols.
In: HEALTHINF (1), INSTICC - Institute for Systems and Technologies of Infor-
mation, Control and Communication 87–93

24. Demri, S.: LTL over integer periodicity constraints. Theoretical Computer Science
360 (August 2006) 96–123

	Towards a Unifying Approach to Representing and Querying Temporal Data in Description Logics

