
Ontology-Based Access to Probabilistic Data
with OWL QL

Jean Christoph Jung and Carsten Lutz

Universität Bremen, Germany
{jeanjung,clu}@informatik.uni-bremen.de

Abstract. We propose a framework for querying probabilistic instance
data in the presence of an OWL2 QL ontology, arguing that the interplay
of probabilities and ontologies is fruitful in many applications such as
managing data that was extracted from the web. The prime inference
problem is computing answer probabilities, and it can be implemented
using standard probabilistic database systems. We establish a PTime vs.
#P dichotomy for the data complexity of this problem by lifting a corre-
sponding result from probabilistic databases. We also demonstrate that
query rewriting (backwards chaining) is an important tool for our frame-
work, show that non-existence of a rewriting into first-order logic implies
#P-hardness, and briefly discuss approximation of answer probabilities.

1 Introduction

There are many applications that require data to be first extracted from the
web and then further processed locally, by feeding it into a relational database
system (RDBMS). Such web data differs in several crucial aspects from tradi-
tional data stored in RDBMSs: on the one hand, it is uncertain because of the
unreliability of many web data sources and due to the data extraction process,
which relies on heuristic decisions and is significantly error prone [23]; on the
other hand, web data is often provided without explicit schema information and
thus requires interpretation based on ontologies and other semantic techniques.
This latter aspect is addressed by ontology languages such as OWL2. In par-
ticular, the OWL2 QL profile is a popular lightweight ontology language that is
tailored towards enriching standard RDBMS query answering with an ontology
component, thus allowing the user of semantic technologies to take advantage of
the maturity and effiency of such systems [6]. While the current techniques de-
veloped around OWL2 QL are well-suited to deal with the interpretation aspect
of web data, they are not able to deal with its uncertainty. In this paper, we
propose and analyze a framework for data storage and querying that supports
ontologies formulated in (a fragment of) OWL2 QL, but also features prominent
aspects of probabilistic database models to explicitly represent uncertainty. In
a nutshell, our approach relates to probabilistic database systems (PDBMSs) in
the same way that traditional OWL2 QL query answering relates to RDBMSs.

In our framework, we adopt data models from the recently very active area of
probabilistic databases [7,31], but use an open world assumption as is standard in

2 Jean Christoph Jung and Carsten Lutz

the context of OWL2 QL. Specifically, we store data in description logic ABoxes
enriched with probabilities that are attached to probabilistic events, which can
either be modeled explicitly (resulting in what we call pABoxes) or be implicitly
associated with each ABox assertion (resulting in ipABoxes). For example, a
pABox assertion SoccerPlayer(messi) can be associated with an event expression
e1∨e2, where e1 and e2 represent events such as ‘web extraction tool x correctly
analyzed webpage y stating that Messi is a soccer player’. We generally assume
all events to be probabilistically independent, which results in a straightforward
semantics that is similar to well-known probabilistic versions of datalog [27,12].
Ontologies are represented by TBoxes formulated in the description logic DL-
Lite, which forms a logical core of the ontology language OWL2 QL. We are then
interested in computing the answer probabilities to conjunctive queries (CQs);
note that probabilities can occur only in the data, but neither in the ontology
nor in the query. We believe that this setup is of general interest and poten-
tially useful for a wide range of applications including the management of data
extracted from the web, machine translation, and dealing with data that arises
from sensor networks. All these applications can potentially benefit from a fruit-
ful interplay between ontologies and probabilities; in particular, we argue that
the ontology can help to reduce the uncertainty of the data.

In database research, practical feasibility is usually identified with PTime
data complexity, where data complexity means to treat only the (probabilistic)
data as an input while considering both the TBox and the query to be fixed. The
main aim of this paper is to study the data complexity of ontology-based access
to probabilistic data (pOBDA) in the concrete framework described above. As a
central tool, we use query rewriting (also called backwards chaining), which is
an important technique for traditional ontology based data access (OBDA), i.e.,
answering CQs in the presence of a DL-Lite TBox over non-probabilistic data [6].
Specifically, the idea is to rewrite a given CQ q and DL-Lite TBox T into an SQL
(equivalently: first-order) query qT such that for any ABoxA, the certain answers
to q over A relative to T are identical with the answers to qT over A viewed as
a relational database instance. We set out with observing that rewritings from
traditional OBDA are useful also in the context of pOBDA: for any pABox A,
the probability that a tuple a is a certain answer to q over A relative to T
is identical to the probability that a is an answer to qT over A viewed as a
probabilistic database. This lifting of query rewriting to the probabilistic case
immediately implies that one can implement pOBDA based on existing PDBMSs
such as MayBMS, Trio, and MystiQ [1,33,5].

Lifting also allows us to carry over the dichotomy between PTime and #P-
hardness for computing the probabilities of answers to unions of conjunctive
queries (UCQs) over probabilistic databases recently obtained by Dalvi, Suciu,
and Schnaitter [8] to our pOBDA framework provided that we restrict ourselves
to ipABoxes, which are strictly less expressive than pABoxes. Based on a care-
ful syntactic analysis, we provide a transparent characterization of those CQs q
and DL-Lite TBoxes T for which computing answer probabilities is in PTime.
We then proceed to showing that query rewriting is a complete tool for proving

Ontology-Based Access to Probabilistic Data with OWL QL 3

PTime data complexity in pOBDA, in the following sense: we replace DL-Lite
with the strictly more expressive description logic ELI, which is closely related
to the OWL2 profile OWL2 EL and where, in contrast to DL-Lite, rewritings
into first-order queries do not exist for every CQ q and TBox T ; we then prove
that if any (q, T) does not have a rewriting, then computing answer probabil-
ities for q relative to T is #P-hard. Thus, if it is possible at all to prove that
some (q, T) has PTime data complexity, then this can always be done using
query rewriting. Both in DL-Lite and ELI, the class of queries and TBoxes
with PTime data complexity is relatively small, which leads us to also consider
the approximation of answer probabilities, based on the notion of a fully poly-
nomial randomized approximation scheme (FPRAS). It is not hard to see that
all pairs (q, T) have an FPRAS when T is formulated in DL-Lite, but this is
not the case for more expressive ontology languages such as ALC. Note that
these results are in the spirit of the non-uniform analysis of data complexity
recently initiated in an OBDA context in [26]. We defer some proofs to the ap-
pendix of the long version of this paper, available at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

Related Work. The probabilistic ABox formalism studied in this paper is inspired
by the probabilistic database models in [9], but can also be viewed as a variation
of probabilistic versions of datalog and Prolog, see [27,12] and references therein.
There have recently been other approaches to combining ontologies and proba-
bilities for data access [11,14], with a different semantics; the setup considered
by Gottlob, Lukasiewicz, and Simari in [14] is close in spirit to the framework
studied here, but also allows probabilities in the TBox and has a different, rather
intricate semantics based on Markov logic. In fact, we deliberately avoid proba-
bilities in the ontology because (i) this results in a simple and fundamental, yet
useful formalism that still admits a very transparent semantics and (ii) it enables
the use of standard PDBMSs for query answering. There has also been a large
number of proposals for enriching description logic TBoxes (instead of ABoxes)
with probabilities, see [24,25] and the references therein. Our running application
example is web data extraction, in the spirit of [16] to store extracted web data
in a probabilistic database. Note that It has also been proposed to integrate both
probabilities and ontologies directly into the data extraction tool [13]. We be-
lieve that both approaches can be useful and could even be orchestrated to play
together. Finally, we note that the motivation for our framework is somewhat
similar to what is done in [30], where the retrieval of top-k-answers in OBDA is
considered under a fuzzy logic-like semantics based on ‘scoring functions’.

2 Preliminaries

We use standard notation for the syntax and semantics of description logics
(DLs) and refer to [3] for full details. As usual, NC, NR, and NI denote countably
infinite sets of concept names, role names, and individual names, C,D denote
(potentially) composite concepts, A,B concept names, r, s role names, R and S

4 Jean Christoph Jung and Carsten Lutz

role names or their inverse, and a, b individual names. When R = r−, then as
usual R− denotes r. We consider the following DLs.

In DL-Lite, TBoxes are finite sets of concept inclusions (CIs) B v B′ and
BuB′ v ⊥ with B and B′ concepts of the form ∃r, ∃r−, > or A. Note that there
is no nesting of concept constructors in DL-Lite. This version is sometimes called
DL-Litecore and includes crucial parts of the OWL2 QL profile; some features of
OWL2 QL are omitted in DL-Litecore, mainly to keep the presentation simple.
ELI is a generalization of DL-Lite without ⊥ (which we will largely disregard

in this paper for reasons explained later on) and offers the concept constructors
>, C uD, ∃r.C, and ∃r−.C. In ELI, a TBox is a finite set of CIs C v D with
C and D (potentially) compound concepts.

In DLs, data is stored in an ABox, which is a finite set of concept assertions
A(a) and role assertions r(a, b). We use Ind(A) to denote the set of individual
names used in the ABox A and sometimes write r−(a, b) ∈ A for r(b, a) ∈ A.

The semantics of DLs is based on interpretations I = (∆I , ·I) as usual [3].
An interpretation is a model of a TBox T (resp. ABox A) if it satisfies all
concept inclusions in T (resp. assertions in A), where satisfaction is defined in
the standard way. An ABox A is consistent w.r.t. a TBox T if A and T have a
common model. We write T |= C v D if for all models I of T , CI ⊆ DI and
say that C is subsumed by D relative to T .

Conjunctive queries (CQs) take the form ∃y.ϕ(x,y), with ϕ a conjunction
of atoms of the form A(t) and r(t, t′) and where x,y denote (tuples of) variables
taken from a set NV and t, t′ denote terms, i.e., a variable or an individual name.
We call the variables in x the answer variables and those in y the quantified
variables. The set of all variables in a CQ q is denoted by var(q) and the set
of all terms in q by term(q). A CQ q is n-ary if it has n answer variables and
Boolean if it is 0-ary. Whenever convenient, we treat a CQ as a set of atoms and
sometimes write r−(t, t′) ∈ q instead of r(t′, t) ∈ q.

Let I be an interpretation and q a CQ with answer variables x1, . . . , xk. For
a = a1 · · · ak ∈ NI

k, an a-match for q in I is a mapping π : term(q)→ ∆I such
that π(xi) = ai for 1 ≤ i ≤ k, π(a) = aI for all a ∈ term(q)∩NI, π(t) ∈ AI for all
A(t) ∈ q, and (π(t1), π(t2)) ∈ rI for all r(t1, t2) ∈ q. We write I |= q[a] if there
is an a-match of q in I. For a TBox T and an ABox A, we write T ,A |= q[a] if
I |= q[a] for all models I of T and A. In this case and when all elements of a
are from Ind(A), a is a certain answer to q w.r.t. A and T . We use certT (q,A)
to denote the set of all certain answers to q w.r.t. A and T .

As done often in the context of OBDA, we adopt the unique name assumption
(UNA), which requires that aI 6= bI for all interpretations I and all a, b ∈ NI with
a 6= b. Note that, in all logics studied here, query answers with and without UNA
actually coincide, so the assumption of the UNA is without loss of generality.

3 Probabilistic OBDA

We introduce our framework for probabilistic OBDA, starting with the definition
of a rather general, probabilistic version of ABoxes. Let E be a countably infinite

Ontology-Based Access to Probabilistic Data with OWL QL 5

set of atomic (probabilistic) events. An event expression is built up from atomic
events using the Boolean operators ¬, ∧, ∨. We use expr(E) to denote the set of
all event expressions over E . A probability assignment for E is a map E → [0, 1].

Definition 1 (pABox). A probabilistic ABox (pABox) is of the form (A, e, p)
with A an ABox, e a map A → expr(E), and p a probability assignment for EA,
the atomic events in A.

Example 1. We consider as a running example a (fictitious) information extrac-
tion tool that is gathering data from the web, see [16] for a similar setup. Assume
we are gathering data about soccer players and the clubs they play for in the
current 2012 season, and we want to represent the result as a pABox.

(1) The tool processes a newspaper article stating that ‘Messi is the soul of the
Argentinian national soccer team’. Because the exact meaning of this phrase
is unclear (it could refer to a soccer player, a coach, a mascot), it generates
the assertion Player(messi) associated with the atomic event expression e1 with
p(e1) = 0.7. The event e1 represents that the phrase was interpreted correctly.

(2) The tool finds the Wikipedia page on Lionel Messi, which states that he is
a soccer player. Since Wikipedia is typically reliable and up to date, but not
always correct, it updates the expression associated with Player(messi) to e1∨ e2
and associates e2 with p(e2) = 0.95.

(3) The tool finds an HTML table on the homepage of FC Barcelona saying
that the top scorers of the season are Messi, Villa, and Pedro. It is not stated
whether the table refers to the 2011 or the 2012 season, and consequently we
generate the ABox assertions playsfor(x,FCbarca) for x ∈ {messi, villa, pedro} all
associated with the same atomic event expression e3 with p(e3) = 0.5. Intuitively,
the event e3 is that the table refers to 2012.

(4) Still processing the table, the tool applies the background knowledge that
top scorers are typically strikers. It generates three assertions Striker(x) with
x ∈ {messi, villa, pedro}, associated with atomic events e4, e′4, and e′′4 . It sets
p(e4) = p(e′4) = p(e′′4) = 0.8. The probability is higher than in (3) since being
a striker is a more stable property than playing for a certain club, thus this
information does not depend so much on whether the table is from 2011 or 2012.

(5) The tool processes the twitter message ‘Villa was the only one to score a
goal in the match between Barca and Real’. It infers that Villa plays either for
Barcelona or for Madrid, generating the assertions playsfor(villa,FCbarca) and
playsfor(villa, realmadrid). The first assertion is associated with the event e5, the
second one with ¬e5. It sets p(e5) = 0.5.

Now for the semantics of pABoxes (A, e, p). Each E ⊆ EA can be viewed as
a truth assignment that makes all events in E true and all events in EA \E false.

Definition 2. Let (A, e, p) be a pABox. For each E ⊆ EA, define a corre-
sponding non-probabilistic ABox AE := {α ∈ A | E |= e(α)}. The function p
represents a probability distribution on 2EA , by setting for each E ⊆ EA:

p(E) =
∏
e∈E

p(e) ·
∏

e∈EA\E

(1− p(e)).

6 Jean Christoph Jung and Carsten Lutz

The probability of an answer a ∈ Ind(A)n to an n-ary conjunctive query q over
a pABox A and TBox T is

pA,T (a ∈ q) =
∑

E⊆EA : a∈certT (q,AE)

p(E).

For Boolean CQs q, we write p(A, T |= q) instead of pA,T (() ∈ q), where ()
denotes the empty tuple.

Example 2. Consider again the web data extraction example discussed above.
To illustrate how ontologies can help to reduce uncertainty, we use the DL-Lite
TBox

T = { ∃playsfor v Player Player v ∃playsfor
∃playsfor− v SoccerClub Striker v Player }

Consider the following subcases considered above.

(1) + (3) The resulting pABox comprises the following assertions with associated
event expressions:

Player(messi) e1 playsfor(messi,FCbarca) e3

playsfor(villa,FCbarca) e3 playsfor(pedro,FCbarca) e3

with p(e1) = 0.7 and p(e3) = 0.5. Because of the statement ∃playsfor v Player,
using T (instead of an empty TBox) increases the probability of messi to be an
answer to the query Player(x) from 0.7 to 0.85.

(5) The resulting pABox is

playsfor(villa,FCbarca) e5 playsfor(villa, realmadrid) ¬e5

with p(e5) = 0.5. Although Player(villa) does not occur in the data, the proba-
bility of villa to be an answer to the query Player(x) is 1 (again by the TBox-
statement ∃playsfor v Player).

(3)+(4) This results in the pABox

playsfor(messi,FCbarca) e3 Striker(messi) e4

playsfor(villa,FCbarca) e3 Striker(villa) e′4
playsfor(pedro,FCbarca) e3 Striker(pedro) e′′4

with p(e3) = 0.5 and p(e4) = p(e′4) = p(e′′4) = 0.8. Due to the last three CIs in T ,
each of messi, villa, pedro is an answer to the CQ ∃y.playsfor(x, y)∧SoccerClub(y)
with probability 0.9.

Related Models in Probabilistic Databases. Our pABoxes can be viewed as an
open world version of the probabilistic data model studied by Dalvi and Suciu
in [9]. It is as a less succinct version of c-tables, a traditional data model for
probabilistic databases due to Imielinski and Lipski [18]. Nowadays, there is an
abundance of probabilistic data models, see [15,29,2] and the references therein.

Ontology-Based Access to Probabilistic Data with OWL QL 7

All these models provide a compact representation of distributions over poten-
tially large sets of possible worlds. Since we are working with an open world
semantics, pABoxes instead represent a distribution over possible world descrip-
tions. Each such description may have any number of models. Note that our
semantics is similar to the semantics of (“type 2”) probabilistic first-order and
description logics [17,25].

Dealing with Inconsistencies. Of course, some of the ABoxes AE might be incon-
sistent w.r.t. the TBox T used. In this case, it may be undesirable to let them
contribute to the probabilities of answers. For example, if we use the pABox

Striker(messi) e1 Goalie(messi) e2

with p(e1) = 0.8 and p(e2) = 0.3 and the TBox Goalie u Striker v ⊥, then
messi is an answer to the query SoccerClub(x) with probability 0.24 while one
would probably expect it to be zero (which is the result when the empty TBox is
used). We follow Antova, Koch, and Olteanu and advocate a pragmatic solution
based on rescaling [2]. More specifically, we remove those ABoxes AE that are
inconsistent w.r.t. T and rescale the remaining set of ABoxes so that they sum
up to probability one. In other words, we set

p̂A,T (a ∈ q) =
pA,T (a ∈ q)− p(A, T |= ⊥)

1− p(A, T |= ⊥)

where ⊥ is a Boolean query that is entailed exactly by those ABoxes A that are
inconsistent w.r.t. T . The rescaled probability p̂A,T (a ∈ q) can be computed in
PTime when this is the case both for pA,T (a ∈ q) and p(A, T |= ⊥). Note that
rescaling results in some effects that might be unexpected such as reducing the
probability of messi to be an answer to Striker(x) from 0.8 to ≈0.74 when the
above TBox is added.

In the remainder of the paper, for simplicity we will only admit TBoxes T
such that all ABoxes A are consistent w.r.t. T .

4 Query Rewriting

The main computational problem in traditional OBDA is, given an ABox A,
query q, and TBox T , to produce the certain answers to q w.r.t. A and T . In the
context of lightweight DLs such as DL-Lite, a prominent approach to address
this problem is to use FO-rewriting, which yields a reduction to query answering
in relational databases. The aim of this section is to show that this approach
is fruitful also in the case of computing answer probabilities in probabilistic
OBDA. In particular, we use it to lift the PTime vs. #P dichotomy result on
probabilistic databases recently obtained by Dalvi, Suciu, and Schnaitter [8] to
probabilistic OBDA in DL-Lite.

8 Jean Christoph Jung and Carsten Lutz

4.1 Lifting FO-Rewritings to probabilistic OBDA

We first describe the query rewriting approach to traditional OBDA. A first-
order query (FOQ) is a first-order formula q(x) constructed from atoms A(x) and
r(x, y) using negation, conjunction, disjunction, and existential quantification.
The free variables x are the answer variables of q(x). For an interpretation I,
we write ans(q, I) to denote the answers to q in I, i.e., the set of all tuples a
such that I |= q[a]. In what follows, we use IA to denote the ABox A viewed as
an interpretation (in the obvious way). A first-order (FO) TBox is a finite set
of first-order sentences.

Definition 3 (FO-rewritable). A CQ q is FO-rewritable relative to an FO
TBox T if one can effectively construct a FOQ qT such that certT (q,A) =
ans(qT , IA) for every ABox A. In this case, qT is a rewriting of q relative to T .

For computing the answers to q w.r.t. A and T in traditional OBDA, one can
thus construct qT and then hand it over for execution to a database system that
stores A.

The following observation states that FO-rewritings from traditional OBDA
are also useful in probabilistic OBDA. We use pdA(a ∈ q) to denote the prob-
ability that a is an answer to the query q given the pABox A viewed as a
probabilistic database in the sense of Dalvi and Suciu [8]. More specifically,

pdA(a ∈ q) =
∑

E⊆EA |a∈ans(q,IAE)

p(E)

The following is immediate from the definitions.

Theorem 1 (Lifting). Let T be an FO TBox, A a pABox, q an n-ary CQ,
a ∈ Ind(A)n a candidate answer for q, and qT an FO-rewriting of q relative
to T . Then pA,T (a ∈ q) = pdA(a ∈ qT).

From an application perspective, Theorem 1 enables the use of probabilistic
database systems such as MayBMS, Trio, and MystiQ for implementing proba-
bilistic OBDA [1,33,5]. Note that it might be necessary to adapt pABoxes in an
appropriate way in order to match the data models of these systems. However,
such modifications do not impair applicability of Theorem 1.

From a theoretical viewpoint, Theorem 1 establishes query rewriting as a
useful tool for analyzing data complexity in probabilistic OBDA. We say that
a CQ q is in PTime relative to a TBox T if there is a polytime algorithm
that, given an ABox A and a candidate answer a ∈ Ind(A)n to q, computes
pA,T (a ∈ q). We say that q is #P-hard relative to T if the afore mentioned
problem is hard for the counting complexity class #P, please see [32] for more
information. We pursue a non-uniform approach to the complexity of query
answering in probabilistic OBDA, as recently initiated in [26]: ideally, we would
like to understand the precise complexity of every CQ q relative to every TBox T ,
against the background of some preferably expressive ‘master logic’ used for T .
Note, though, that our framework yields one counting problem for each CQ and

Ontology-Based Access to Probabilistic Data with OWL QL 9

TBox, while [26] has one decision problem for each TBox, quantifying over all
CQs.

Unsurprisingly, pABoxes are too strong a formalism to admit any tractable
queries worth mentioning. An n-ary CQ q is trivial for a TBox T iff for every
ABox A, we have certT (A, q) = Ind(A)n.

Theorem 2. Over pABoxes, every CQ q is #P -hard relative to every first-order
TBox T for which it is nontrivial.

Proof. The proof is by reduction of counting the number of satisfying assign-
ments of a propositional formula.1 Assume that q has answer variables x1, . . . , xn
and let ϕ be a propositional formula over variables z1, . . . , zm. Convert ϕ into
a pABox A as follows: take q viewed as an ABox, replacing every variable x
with an individual name ax; then associate every ABox assertion with ϕ viewed
as an event expression over events z1, . . . , zm and set p(zi) = 0.5 for all i. We
are interested in the answer a = ax1

· · · axn . For all E ⊆ EA with E 6|= ϕ, we
have AE = ∅ and thus a /∈ certT (q,AE) since q is non-trivial for T . For all
E ⊆ EA with E |= ϕ, the ABox AE is the ABox-representation of q and thus
a ∈ certT (q,AE). Consequently, the number of assignments that satisfy ϕ is
pA,T (a ∈ q) ∗ 2m. Thus, there is a PTime algorithm for counting the number of
satisfying assignments given an oracle for computing answer probabilities for q
and T . o

Theorem 2 motivates the study of more lightweight probabilistic ABox for-
malisms. While pABoxes (roughly) correspond to c-tables, which are among
the most expressive probabilistic data models, we now move to the other end
of the spectrum and introduce ipABoxes as a counterpart of tuple independent
databases [9,12]. Argueably, the latter are the most inexpressive probabilistic
data model that is still useful.

Definition 4 (ipABox). An assertion-independent probabilistic ABox (short:
ipABox) is a probabilistic ABox in which all event expressions are atomic and
where each atomic event expression is associated with at most one ABox asser-
tion.

To save notation, we write ipABoxes in the form (A, p) where A is an ABox
and p is a map A → [0, 1] that assigns a probability to each ABox assertion.
In this representation, the events are only implicit (one atomic event per ABox
assertion). For A′ ⊆ A, we write p(A′) as a shorthand for p({e ∈ E | ∃α ∈ A′ :
e(α) = e}). Note that p(A′) =

∏
α∈A′ p(α) ·

∏
α∈A\A′(1 − p(α)) and thus all

assertions in an ipABox can be viewed as independent events; also note that for
any CQ q, we have pA,T (a ∈ q) =

∑
A′⊆A:a∈certT (q,A′) p(A

′). Cases (1) and (4) of

our web data extraction example yield ipABoxes, whereas cases (2), (3), and (5)
do not. We refer to [31] for a discussion of the usefulness of ipABoxes/tuple
independent databases. For the remainder of the paper, we assume that only
ipABoxes are admitted unless explicitly noted otherwise.

1 Throughout the paper, we use the standard oracle-based notion of reduction origi-
nally introduced by Valiant in the context of counting complexity [32].

10 Jean Christoph Jung and Carsten Lutz

4.2 Lifting the PTime vs. #P Dichotomy

We now use Theorem 1 to lift a PTime vs. #P dichotomy recently obtained in
the area of probabilistic databases to probabilistic OBDA in DL-Lite. Note that,
for any CQ and DL-Lite TBox, an FO-rewriting is guaranteed to exist [6]. The
central observation is that, by Theorem 1, computing the probability of answers
to a CQ q relative to a TBox T over ipABoxes is exactly the same problem as
computing the probability of answers to qT over (ipABoxes viewed as) tuple
independent databases. We can thus analyze the complexity of CQs/TBoxes
over ipABoxes by analyzing the complexity of their rewritings. In particular,
standard rewriting techniques produce for each CQ and DL-Lite TBox an FO-
rewriting that is a union of conjunctive queries (a UCQ) and thus, together with
Theorem 1, Dalvi, Suciu and Schnaitter’s PTime vs. #P dichotomy for UCQs
over tuple independent databases [8] immediately yields the following.

Theorem 3 (Abstract Dichotomy). Let q be a CQ and T a DL-Lite TBox.
Then q is in PTime relative to T or q is #P-hard relative to T .

Note that Theorem 3 actually holds for every DL that enjoys FO-rewritability,
including full OWL2 QL. Although interesting from a theoretical perspective,
Theorem 3 is not fully satisfactory as it does not tell us which CQs are in
PTime relative to which TBoxes. In the remainder of this chapter, we carry out
a careful inspection of the FO-rewritings obtained in our framework and of the
dichotomy result obtained by Dalvi, Suciu and Schnaitter, which results in a
more concrete formulation of the dichotomy stated in Theorem 3 and provides
a transparent characterization of the PTime cases. For simplicity and without
further notice, we concentrate on CQs that are connected, Boolean, and do not
contain individual names.

For two CQs q, q′ and a TBox T , we say that q T -implies q′ and write q vT q′
when certT (q,A) ⊆ certT (q′,A) for all ABoxes A. We say that q and q′ are T -
equivalent and write q ≡T q′ if q vT q′ and q′ vT q. We say that q is T -minimal
if there is no q′ (q such that q ≡T q′. When T is empty, we simply drop it from
the introduced notation, writing for example q v q′ and speaking of minimality.
To have more control over the effect of the TBox, we will generally work with
CQs q and TBoxes T such that q is T -minimal. This is without loss of generality
because for every CQ q and TBox T , we can find a CQ q′ that is T -minimal
and such that q ≡T q′ [4]; note that the answer probabilities relative to T are
identical for q and q′.

We now introduce a class of queries that will play a crucial role in our analysis.

Definition 5 (Simple Tree Queries). A CQ q is a simple tree if there is a
variable xr ∈ var(q) that occurs in every atom in q, i.e., all atoms in q are of
the form A(xr), r(xr, y), or r(y, xr) (y = xr is possible). Such a variable xr is
called a root variable.

As examples, consider the CQs in Figure 1, which are all simple tree queries.
The following result shows why simple tree queries are important. A UCQ q̂ is
reduced if for all disjuncts q, q′ of q̂, q v q′ implies q = q′.

Ontology-Based Access to Probabilistic Data with OWL QL 11

r

s

t

t′
A

q1

s

r

t A

q2

ss

r

q3

Fig. 1. Example queries

Theorem 4. Let q be a CQ and T a DL-Lite TBox such that q is T -minimal
and not a simple tree query. Then q is #P-hard relative to T

Proof. (sketch) Let qT be a UCQ that is an FO-rewriting of q relative to T . By
definition of FO-rewritings, we can w.l.o.g. assume that q occurs as a disjunct
of qT . The following is shown in [8]:

1. if a minimal CQ does not contain a variable that occurs in all atoms, then
it is #P-hard over tuple independent databases;

2. if a reduced UCQ q̂ contains a CQ that is #P-hard over tuple independent
databases, then q̂ is also hard over tuple independent databases.

Note that since q is T -minimal, it is also minimal. By Points 1 and 2 above,
it thus suffices to show that qT can be converted into an equivalent reduced
UCQ such that q is still a disjunct, which amounts to proving that there is no
disjunct q′ in qT such that q v q′ and q′ 6v q. The details of the proof, which is
surprisingly subtle, are given in the appendix. o

To obtain a dichotomy, it thus remains to analyze simple tree queries. We say
that a role R can be generated in a CQ q if one of the following holds: (i) there
is an atom R(xr, y) ∈ q and y 6= xr; (ii) there is an atom A(xr) ∈ q and
T |= ∃R v A; (iii) there is an atom S(x, y) ∈ q with x a root variable and such
that y 6= x occurs only in this atom, and T |= ∃R v ∃S. The concrete version
of our dichotomy result is as follows. Its proof is based on a careful analysis of
FO-rewritings and the results in (the submitted journal version of) [8].

Theorem 5 (Concrete Dichotomy). Let T be a DL-Lite TBox. A T -minimal
CQ q is in PTime relative to T iff

1. q is a simple tree query, and
2. if r and r− are T -generated in q, then {r(x, y)} vT q or q is of the form
{S1(x, y), . . . , Sk(x, y)}.

Otherwise, q is #P-hard relative to T .

As examples, consider again the queries q1, q2, and q3 in Figure 1 and let T∅ be
the empty TBox. All CQs are T∅-minimal, q1 and q2 are in PTime, and q3 is
#P-hard (all relative to T∅). Now consider the TBox T = {∃s v ∃r}. Then q1
is T -minimal and still in PTime; q2 is T -minimal, and is now #P-hard because

12 Jean Christoph Jung and Carsten Lutz

both s and s− is T -generated. The CQ q3 can be made T -minimal by dropping
the r-atom, and is in PTime relative to T .

Theorems 4 and 5 show that only very simple CQs can be answered in PTime.
This issue is taken up again in Section 6. We refrain from analyzing in more detail
the case where also answer variables and individual names can occur in CQs, and
where CQs need not to be connected. It can however be shown that, whenever
a connected Boolean CQ q is in PTime relative to a DL-Lite TBox T , then any
CQ obtained from q by replacing quantified variables with answer variables and
individual names is still in PTime relative to T .

5 Beyond Query Rewriting

We have established FO-rewritability as a tool for proving PTime results for CQ
answering in the context of probabilistic OBDA. The aim of this section is to
establish that, in a sense, the tool is complete: we prove that whenever a CQ q is
not FO-rewritable relative to a TBox T , then q is #P-hard relative to T ; thus,
when a query is in PTime relative to a TBox T , then this can always be shown
via FO-rewritability. To achieve this goal, we select a DL as the TBox language
that, unlike DL-Lite, also embraces non FO-rewritable CQs/TBoxes. Here we
choose ELI, which is closely related to the OWL2 EL profile and properly gen-
eralizes DL-Lite (as in the previous sections, we do not explicitly consider the
⊥ constructor). Note that, in traditional OBDA, there is a drastic difference in
data complexity of CQ-answering between DL-Lite and ELI: the former is in
AC0 while the latter is PTime-complete.

We focus on Boolean CQs q that are rooted, i.e., q involves at least one
individual name and is connected. This is a natural case since, for any non-
Boolean connected CQ q(x) and potential answer a, the probability pA,T (a ∈
q(x)) that a is a certain answer to q w.r.t. A and T is identical to the probability
p(A, T |= q[a]) that A and T entail the rooted Boolean CQ q[a]. Our main
theorem is as follows.

Theorem 6. If a Boolean rooted CQ q is not FO-rewritable relative to an ELI-
TBox T , then q is #P-hard relative to T .

Since the proof of Theorem 6 involves some parts that are rather technical, we
defer full details to the appendix and present only a sketch of the ideas. A central
step is the following observation, whose somewhat laborious proof consists of a
sequence of ABox transformations. It uses a notion of boundedness similar to
the one introduced in [26], but adapted from instance queries to CQs.

Lemma 1. If a Boolean rooted CQ q is not FO-rewritable relative to an ELI-
TBox T , then there exists an ABox A and assertions R3(a3, a2), R2(a2, a1),
R1(a1, a0) such that A, T |= q, but A′, T 6|= q when A′ is A with any of the
assertions R3(a3, a2), R2(a2, a1), R1(a1, a0) dropped.

We now prove Theorem 6 by a reduction of the problem of counting the number of
satisfying assignments for a monotone bipartite DNF formula, which is known to

Ontology-Based Access to Probabilistic Data with OWL QL 13

R2

a3

b1
R3

R3

...

c1

cny

a0
...

R1

R1
bnx

...

...

R2

Fig. 2. Gadget for the #P-hardness proof.

be #P-hard. The reduction is similar to what was done in [9]. More specifically,
input formulas are of the form ψ = (xi1 ∧ yj1) ∨ · · · ∨ (xik ∧ yjk) where the set
X of variables that occur on the left-hand side of a conjunction in ψ is disjoint
from the set Y of variables that occur on the right-hand side of a conjunction
in ψ.

For the reduction, let ψ be a formula as above, X = {x1, . . . , xnx}, and
Y = {y1, . . . , yny}. We define an ipABox (Aψ, pψ) by starting with the ABox A
from Lemma 1 and duplicating the assertions R3(a3, a2), R2(a2, a1), R1(a1, a0)
using fresh individual names b1, . . . , bnx and c1, . . . , cny . This is indicated in
Figure 2 where, in the middle part, there is an R2-edge from every bi to every
cj . Apart from what is shown in the figure, each bi receives exactly the same
role assertions and outgoing edges that a2 has in A, and each ci is, in the same
sense, a duplicate of a1 in A.

In the resulting ipABoxAψ, every assertion except those of the formR3(a3, bi)
and R1(ci, a0) has probability 1; specifically, these are all assertions in Aψ that
are not displayed in the snapshot shown in Figure 2 and all R2-edges in that
figure. The edges of the form R3(a3, bi) and R1(ci, a0) have probability 0.5.
For computing the answer probability p(Aψ, T |= q), one has to consider the
ABoxes A′ ⊆ Aψ with p(A′) > 0. Each such ABox has probability 1

2|X|+|Y |
and

corresponds to a truth assignment δA′ to the variables in X ∪ Y : for xi ∈ X,
δA′(xi) = 1 iff R3(a3, bi) ∈ A′ and for yi ∈ Y , δA′(yi) = 1 iff R1(ci, a0) ∈ A′.
Let #ψ the number of truth assignments to the variables X ∪ Y that satisfy ψ.
To complete the reduction, we show that p(Aψ, T |= q) = #ψ

2|X|+|Y |
. By what was

said above, this is an immediate consequence of the following lemma, proved in
the appendix.

Lemma 2. For all ABoxes A′ ⊆ Aψ with pψ(A′) > 0, δA′ |= ψ iff A′, T |= q.

This finishes the proof of Theorem 6. As a by-product, we obtain the following;
the proof can be found in the long version.

Theorem 7 (ELI dichotomy). Let q be a connected Boolean CQ and T an
ELI-TBox. Then q is in PTime relative to T or #P-hard relative to T .

6 Monte Carlo Approximation

The results in Sections 4 and 5 show that PTime complexity is an elusive prop-
erty even for ipABoxes and relatively inexpressive TBox languages such as DL-

14 Jean Christoph Jung and Carsten Lutz

Lite and ELI. Of course, the same is true for probabilistic databases, even for
very simple data models such as tuple independent databases. To address this
fundamental problem, researchers are often trading accuracy for efficiency, re-
placing exact answers with approximate ones. In particular, it is popular to use
Monte Carlo approximation in the incarnation of a fully polynomial randomized
approximation scheme (FPRAS). In this section, we discuss FPRASes in the
context of probabilistic OBDA.

An FPRAS for a Boolean CQ q and TBox T is a randomized polytime
algorithm that, given an ipABox A and an error bound ε > 0, computes a real
number x such that

Pr
(|p(A, T |= q)− x|

p(A, T |= q)
≤ 1

ε

)
≥ 3

4
.

In words: with a high probability (the value of 3
4 can be amplified by standard

methods), the algorithm computes a result that deviates from the actual result
by at most the factor 1

ε .
It follows from the proof of Theorem 2 and the fact that there is no FPRAS

for the number of satisfying assignments of a propositional formula (unless the
complexity classes RP and NP coincide, which is commonly assumed not to be
the case) that, over pABoxes, there is no FPRAS for any CQ q and TBox T .
Thus, we again have to restrict ourselves to ipABoxes. As observed in [9], it is an
easy consequence of a result of Karp and Luby [21] that there is an FPRAS for
every CQ over tuple independent databases. By Theorem 1, there is thus also an
FPRAS for every CQ q and DL-Lite TBox T over ipABoxes. The same is true
for every FO-rewritable TBox formulated in ELI or any other TBox language.
This observation clearly gives hope for the practical feasibility of probabilistic
OBDA.

It is a natural question whether FPRASes also exist for (CQs and) TBoxes
formulated in richer ontology languages. No general positive result can be ex-
pected for expressive DLs that involve all Boolean operators; the basic such
DL is ALC with concept constructors ¬C, C u D, and ∃r.C, a typically well-
behaved fragment of OWL DL. As analyzed in detail in [26], there is a large
class of Boolean CQs q and ALC-TBoxes T such that, given a non-probabilistic
ABox A, it is coNP-hard to check the entailment A, T |= q. A computation
problem whose decision version is coNP-hard cannot have an FPRAS [19], and
thus we obtain the following.

Theorem 8. There are CQs q and ALC-TBoxes T such that there is no FPRAS
for q and T .

In ELI, entailment by non-probabilistic ABoxes can be checked in PTime for all
CQs q and TBoxes T . By what was said above, the interesting cases are those
that involve a TBox which is not FO-rewritable. For example, answering the
query A(a) and TBox {∃r.A v A} over ipABoxes roughly corresponds to a di-
rected, two-terminal version of network reliability problems, for which FPRASes
can be rather hard to find, see for example [20,34]. We leave a detailed analysis

Ontology-Based Access to Probabilistic Data with OWL QL 15

of FPRASes for (CQs q and) ELI-TBoxes T as interesting future work. Ideally,
one would like to have a full classification of all pairs (q, T) according to whether
or not an FPRAS exists.

7 Conclusion

We have introduced a framework for ontology-based access to probabilistic data
that can be implemented using existing probabilistic database system, and we
have analyzed the data complexity of computing answer probabilities in this
framework. There are various opportunities for future work. For example, it
would be interesting to extend the concrete dichotomy from the basic DL-Lite
dialect studied in this paper to more expressive versions of DL-Lite that, for ex-
ample, allow role hierarchy statements in the TBox. It would also be worthwhile
to add probabilities to the TBox instead of admitting them only in the ABox;
this is done for example in [27,12], but it remains to be seen whether the seman-
tics used there is appropriate for our purposes. Finally, it would be interesting
to study the existence of FPRASes for approximating answer probabilities when
TBoxes are formulated in ELI.

Acknowledgement This work was supported by the DFG project Prob-DL
(LU1417/1-1).

References

1. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple relational processing
of uncertain data. In: Proc. of ICDE. 983–992 (2008)

2. Antova, L., Koch, C., Olteanu, D.: 10106 worlds and beyond: efficient representation
and processing of incomplete information. VLDB J. 18(5), 1021–1040 (2009)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press (2003)

4. Bienvenu, M., Lutz, C., Wolter, F.: Query containment in description logics recon-
sidered. In: Proc. of KR (2012)

5. Boulos, J., Dalvi, N.N., Mandhani, B., Mathur, S., Ré, C., Suciu, D.: MYSTIQ:
a system for finding more answers by using probabilities. In: Proc. of SIGMOD.
891–893 (2005)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

7. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

8. Dalvi, N.N., Schnaitter, K., Suciu, D.: Computing query probability with incidence
algebras. In: Proc. of PODS. 203–214. ACM (2010)

9. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4), 523–544 (2007)

10. Dalvi, N.N, Suciu, D.: The Dichotomy of Probabilistic Inference for Unions of
Conjunctive Queries. submitted to Journal of the ACM.

16 Jean Christoph Jung and Carsten Lutz

11. Finger, M., Wassermann, R., Cozman, F.G.: Satisfiability in EL with sets of prob-
abilistic ABoxes. Proc. of DL. CEUR-WS, Vol. 745 (2011)

12. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of infor-
mation retrieval and database systems. ACM Trans. Inf. Syst. 15(1), 32–66 (1997)

13. Furche, T., Gottlob, G., Grasso, G., Gunes, O., Guo, X., Kravchenko, A., Orsi,
G., Schallhart, C., Sellers, A.J., Wang, C.: Diadem: domain-centric, intelligent,
automated data extraction methodology. In Proc. of WWW. 267–270. ACM (2012)

14. Gottlob, G., Lukasiewicz, T., Simari, G.I.: CQ answering in probabilistic
datalog+/− ontologies. In Proc. of RR. Vol. 6902 of LNCS, 77–92. Springer (2011)

15. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information.
IEEE Data Engineering Bulletin 29(1), 17–24 (2006)

16. Gupta, R., Sarawagi, S.: Creating probabilistic databases from information extrac-
tion models. In Proc. of VLDB. 965–976. ACM (2006)

17. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311–350 (1990)

18. Imielinski, T., Jr., W.L.: Incomplete information in relational databases. J. of the
ACM 31(4), 761–791 (1984)

19. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

20. Karger, D.R.: A randomized fully polynomial time approximation scheme for the
all-terminal network reliability problem. SIAM J. Comput. 29(2), 492–514 (1999)

21. Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability prob-
lems. In Proc. of FoCS. 56–64. IEEE Computer Society (1983)

22. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In Proc. of KR. AAAI Press (2010)

23. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey
of web data extraction tools. SIGMOD Record 31(2), 84–93 (2002)

24. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Sem. 6(4), 291–308 (2008)

25. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In Proc. of KR. AAAI Press (2010)

26. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: Proc. of KR. AAAI Press (2012)

27. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In Proc. of IJCAI. 2468–2473. AAAI Press (2007)

28. Rossmann, B.: Homomorphism preservation theorems. J. ACM. 55(3). 1–54 (2008).
29. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working models for uncer-

tain data. In: Proc. of ICDE. IEEE Computer Society (2006)
30. Straccia, U.: Top-k retrieval for ontology mediated access to relational databases.

In: Information Sciences. 108, 1–23 (2012).
31. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-

tures on Data Management, Morgan & Claypool Publishers (2011)
32. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.

Comput. 8(3), 410–421 (1979)
33. Widom, J.: Trio: A system for integrated management of data, accuracy, and lin-

eage. In Proc. of CIDR. 262–276 (2005)
34. Zenklusen, R., Laumanns, M.: High-confidence estimation of small s-t reliabilities

in directed acyclic networks. Networks 57(4), 376–388 (2011)

Ontology-Based Access to Probabilistic Data with OWL QL 17

A Proofs for Section 4

A.1 Theorem 4

Throughout the whole section, we assume CQs to be Boolean and connected, and
to not contain individual names. In this section and the subsequent ones, we will
sometimes make use of canonical models as defined in [22], introduced here as a
preliminary. To construct the canonical model IA,T of an ABox A and a DL-Lite
TBox T , we start withA viewed as an interpretation and then exhaustively apply
the CIs from T as rules, introducing fresh elements for existential quantifiers.
Formally, the domain of IA,T consists of paths of the form aR1 · · ·Rn, n ≥ 0,
such that the following conditions hold:

(agen) A, T |= ∃R1(a) but R1(a, b) /∈ A for all b ∈ Ind(A)

(rgen) for i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1 (written cRi cRi+1).

We denote by tail(σ) the last element in a path σ. Now, IA,T is defined as follows:

∆IA,T = {a · cR1
· · · cRn | a ∈ Ind(A), n ≥ 0, a cR1

 · · · cRn},
aIA,T = a, for all a ∈ Ind(A),

AIA,T = {a ∈ Ind(A) | K |= A(a)} ∪ {σ ·R ∈ ∆IA,T | T |= ∃R− v A},
P IA,T = {(a, b) ∈ Ind(A)× Ind(A) | P (a, b) ∈ A} ∪

{(σ, σ · cP) ∈ ∆IA,T ×∆IA,T | tail(σ) cP } ∪
{(σ · cP− , σ) ∈ ∆IA,T ×∆IA,T | tail(σ) cP−},

where ‘·’ denotes concatenation. Domain elements in ∆IA,T that are true path
(i.e., do not only consists of an individual name) are called anonymous. The
following is the central property of canonical models.

Theorem 9 ([22]). For every consistent DL-Lite KB K = (T ,A) and every
CQ q, we have a ∈ certT (q,A) iff IA,T |= q[a].

We will sometimes also use canonical models Iq,T for a CQ q and a TBox T ,
defined as IAq,T where Aq is q viewed as an ABox, i.e., the variables in q are
viewed as the ABox individuals of Aq. In particular, we thus have

∆Iq,T = {x · cR1 · · · cRn | x ∈ var(q), n ≥ 0, x cR1 · · · cRn in Aq}.

The following is easy to prove.

Lemma 3 ([4]). q vT q′ iff there is a homomorphism from q′ to Iq,T , i.e., a
map h : var(q′)→ ∆Iq,T such that the following conditions are satisfied:

1. if A(t) ∈ q′, then h(t) ∈ AIq,T ;
2. if r(t, t′) ∈ q′, then (h(t), h(t′)) ∈ rIq,T .

As explained in the proof sketch in the main paper, Theorem 4 is a conse-
quence of the following lemma. We call an FO-rewriting of a CQ q and a TBox T
that happens to be a UCQ a UCQ-rewriting.

18 Jean Christoph Jung and Carsten Lutz

Lemma 4. Let q be a CQ and T a DL-Lite TBox such that q is T -minimal.
Then there is a UCQ-rewriting qT of q relative to T that is reduced and such
that q occurs as a disjunct in qT . Moreover, if q is a simple tree query, then so
is every disjunct of qT .

Proof. Let qT be a UCQ-rewriting of q relative to T . It is easily verified that
standard approaches such as the one from [6] will generate a UCQ in which
every disjunct is a simple tree query if q is a simple tree query. By definition of
FO-rewritings, qT ∨ q is also an FO-rewriting and thus we can w.l.o.g. assume
that qT contains q as a disjunct. Since q is T -minimal and thus minimal, we
can further assume that every disjunct of qT is minimal. We show that q is not
eliminated when qT is converted into reduced form, i.e., that for every disjunct q′

of qT with q v q′, we have q ≡ q′. Choose such a disjunct q′. Using the definition
of FO-rewritings, it is not hard to show that we must have q′ vT q.

We first consider the case where q has two root variables. Then q must be of
the form {s1(x, y), . . . , sk(x, y)}, where the si are role names or inverse roles. If
k > 1, then q′ vT q implies that q′ = q or q′ = {s1(x, x), . . . , sk(x, x)}. In both
cases, we obtain q′ v q, which yields q ≡ q′. If k = 1, then q has the form s(x, y)
with x 6= y and since q v q′ and the CQ q′ (like any CQ) cannot be empty, we
have q′ = q and are done.

Now assume that q has only a single root variable. As a preliminary, we make
the following observation.

Claim. If x′ is a root variable of q′, then there is a homomorphism from q′ to q
that maps x′ to the unique root variable of q.

Proof of claim. Since q v q′, there is a homomorphism g from q′ to q. Let x′

be a root variable in q′ and x the root of q. We want to show that g(x′) = x.
Assume to the contrary that this is not the case. Then g(x′) = y 6= x. Since q
has only one root variable, y is not a root variable and q does neither contain
concept atoms nor reflexive role atoms on y. Since g is a homomorphism, q′ thus
does not contain concept atoms or reflexive role atoms on x′. Since q and q′ are
simple tree queries, all variables from var(q′) \ {x′} are connected via some role
atom to x′ in q′ and the only variable in q connected via some role atom to y is
the root x. Therefore, we have g(y′) = x for all y′ ∈ var(q′) \ {x′}.

– There is a role R such that for all atoms S(y′, x′) in q′, we have R = S.
Since q′ is minimal, it then has the form R(y′, x′). Due to the existence of
g, there is an atom R(x, y) in q. Since q′ ⊆T q, we have R(x, y) vT q. Since
q is T -minimal, this yields q = R(x, y). This is a contradiction to q having
only one root variable.

– There are atoms R1(y′1, x
′) and R2(y′2, x

′) in q′ such that R1 6= R2.
For all atoms R(y′, x′) in q′, we have R(x, y) ∈ q since g(x′) = y and
g(y′) = x. Since there is more than one role name R that occurs in such
an atom, the restriction of q to the query qy containing those atoms from q
that involve y is not tree-shaped. Since q′ vT q, there is a homomorphism h
from q to Iq′,T . By construction of the latter and since qy is not tree-shaped,
the restriction of h to qy is a homomorphism from qy to q′. Thus, there is a

Ontology-Based Access to Probabilistic Data with OWL QL 19

y′0 in q′ such that for all atoms R(y′, x′) ∈ q′, we have R(y′0, x
′) ∈ q′. Since

q′ is minimal, it thus cannot contain any other variables than y′0 and x′.
Since y is not a root variable of q, there must be at least one atom in q
that involves x, but not y. Let q− be obtained from q by dropping all such
atoms. Then g is also a homomorphism from q′ to q−. By construction of
Iq−,T , we find a homomorphism g+ from Iq′,T to Iq−,T with g+(x′) = y
and g+(y′0) = x. Composing the homomorphism h, restricted to q−, with g+

yields a homomorphism from q to Iq−,T . Consequently, q′ vT q in contra-
diction to the minimality of q.

This finishes the proof of the claim.

Since q′ vT q, there is a homomorphism h from q to Iq′,T . Define the subset
Z ⊆ q′ of atoms that are ‘hit by h’ as

Z = {A(x′) ∈ q′ | ∃A(x) ∈ q : h(x) = x′} ∪
{r(x′, y′) ∈ q′ | ∃r(x, y) ∈ q : h(x) = x′ ∧ h(y) = y′}.

We distinguish the following cases.

– A(x) ∈ q implies A(h(x)) ∈ Z and r(x, y) ∈ q implies r(h(x), h(y)) ∈ Z.
Then q′ v q and thus q ≡ q′. Consequently, we are done.

– There is an A(x) ∈ q with A(h(x)) /∈ Z.
Then x is the root variable in the simple tree query q. Since h(x) ∈ AIq,T ,
one of the following cases applies:
1. h(x) is anonymous in Iq,T .

Let h(x) = x′cR1
· · · cRk with k > 0. Since q is a simple tree query, it

follows that h maps all variables in q to the subtree of Iq′,T rooted at x′,
i.e., all elements in the range of h have x′ as a (not necessarily proper)
prefix. Moreover, since the root variable x is not mapped to x′ and all
concept atoms in q involve x, there is even a match of q in the subtree
rooted in Iq′,T at x′ when all concept atoms at the root of that subtree
are removed. By construction of Iq′,T , there is thus a single atom at in
q′ such that q has a match in Iat,T . Since q v q′, we must find at also
in q, modulo renaming of variables. Since q is T -minimal, this implies
q = {at}. Since q v q′ and q′ is non-empty and minimal, we must have
q′ = at, thus q = q′ and we are done.

2. There is a B(h(x)) ∈ q′ such that T |= B v A.
Then h(x) is a root variable of q′. By the above claim, there is a ho-
momorphism g from q′ to q with g(h(x)) = x and thus B(x) ∈ q. Since
T |= B v A, this is a contradiction against T -minimality of q and the
fact that A(x) ∈ q.

3. There is an R(h(x), y′) ∈ q′ such that T |= ∃R v A.
If h(x) is a root variable of q′, we can argue as in the previous case.
Otherwise, h must map all variables in q to h(x), a root variable y′ of q′

with S(y′, h(x)) ∈ q′ for at least one S, and to the anonymous subtree
rooted at h(x). Let X ′ = {R1(y′, h(x)), . . . Rm(y′, h(x))} be all assertions

20 Jean Christoph Jung and Carsten Lutz

in q′ of this form. By construction of Iq′,T , there is a match of q in IX′,T
and thus X ′, T |= q. Since q v q′, we find X ′ as a subquery X in q,
probably after identifying the two variables in X. Since X, T |= q, this is
a contradiction against T -minimality of q and the fact that A(x) ∈ q\X.

– There is an R(x, y) ∈ q with R(h(x), h(y)) /∈ Z.
Then either x or y is a root variable. We assume w.l.o.g. that x is the root
variable, the other case is symmetric. Make a case distinction as follows:
1. h(x) is anonymous in Iq,T .

Then we can argue as in Case 1 above.
2. h(x) is a root variable of q′.

Since (h(x), h(y)) ∈ RIq,T \Z and h(x) is not anonymous, h(y) must be
anonymous by construction of Iq′,T . Thus, (h(x), h(y)) ∈ SIq′ ,T implies
S = R, which yields that S(x, y) ∈ q implies S = R. Moreover, q does not
contain any concept atoms on y since y is not a root variable and thus,
in summary, y is not involved in any other atoms than R(x, y) in q. By
the claim, there is a homomorphism g from q′ to q with g(h(x)) = x. By
construction of Iq′,T , (h(x), h(y)) ∈ RIq′,T with h(y) anonymous implies
that there is no atom R(h(x), z) in q′. Thus, g is still a homomorphism
from q′ to q− := q\{R(x, y)}. Consequently, there is an outgoing R-edge
from x in Iq−,T . Thus and since y is not involved in any other atoms
than R(x, y) in q, we have q− vT q, in contradiction to the T -minimality
of q.

3. h(x) is a non-root variable of q′.
Then, h must map all variables in q to h(x), a root variable y′ of q′

with S(y′, h(x)) ∈ q′ for at least one S, and to the anonymous subtree
rooted at h(x). Let X ′ = {R1(y′, h(x)), . . . Rm(y′, h(x))} be all assertions
in q′ of this form. By Since (h(x), h(y)) ∈ RIq,T \ Z and h(x) is not
anonymous, h(y) must be anonymous. By construction of Iq′,T , R− is
thus not among the R1, . . . , Rm. Moreover, there is a match of q in
IX′,T and thus X ′, T |= q. We can argue as in the previous case that
y is not involved in any other atoms than R(x, y) in q. Since q v q′,
we find X ′ as a subquery X of q, probably after identifying the two
variables in X ′. Clearly X, T |= q. If y does not occur in X, then X (q,
in contradiction to the T -minimality of q. Otherwise, since R− is not
among the R1, . . . , Rm and y occurs in no other atoms than R(x, y) in
q, we must have X ′ = R(y′, h(x)). From X ′, T |= q, we thus obtain
{R(x, y)}, T |= q. Since q is T -minimal and R(x, y) ∈ q, we must have
q = R(x, y). This is a contradiction to q having only one root variable.

o

A.2 Theorem 5

To prove Theorem 5, we analyze the results in [8,10]. As a preparation for that
proof, we first introduce some notions and results, all taken from [10], to which
we also refer for further explanations and examples.

Ontology-Based Access to Probabilistic Data with OWL QL 21

A disjunctive sentence is a disjunction of connected CQs. A disjunctive sen-
tence q = q1 ∨ · · · ∨ qk is symbol-connected if the graph (V,E) with

– V = {q1, . . . , qk}
– (qi, qj) ∈ E iff there is a relational symbol that occurs both in qi and qj

has precisely one connected component. A root variable of a UCQ q is a variable
that occurs in all atoms of q. A root variable x of q is a separator variable of q if
additionally for every relation name r that occurs in the query, there is a number
ir such that every atom in q with symbol r contains exactly one occurrence of x
and that is on position ir.

Let x1, . . . , xn be a set of variables. A set Θ of predicates of the form xi < xj
is called consistent if there is a total order <∗ such that xi < xj ∈ Θ implies
xi <

∗ xj . A CQ q is ranked if the set

{x < y | r(x, y) ∈ q}

is consistent.
In what follows, we assume the disjunctive sentence q to be reduced and all

disjuncts p of q to be minimal, i.e., there is no p′ (p with p′ v p. We call a
disjunctive sentence q immediately unsafe if it is symbol-connected, contains at
least one variable, and does not have a separator.

Theorem 10 (Theorem 4.4 of ??). If a disjunctive query q is ranked and
immediately unsafe, then computing P (q) is #P-hard.

The following also follows from this theorem and the algorithm in ??.

Corollary 1. If a disjunctive query q is ranked and does not have a separator,
then computing P (q) is #P-hard.

Proof. We can write q as q1 ∨ . . . ∨ qk where q1, . . . , qk are symbol-connected
disjunctive sentences. The algorithm in ?? computes P (q) as 1 − (1 − P (q1)) ·
. . . · (1− P (qk)). Since q is not ranked, there exists i such that qi does not have
a separator. Hence, the algorithm fails in the computation of P (qi) because of
Theorem 10.

o

In ??, the following is proven (note that we use slightly different notation,
e.g., D denotes a tuple-independent probabilistic database).

Proposition 1. Every UCQ q is computationally equivalent to a ranked UCQ q
over an extended vocabulary, i.e., the problem “given a probabilistic database D,
compute PD(q)” can be reduced in polynomial time to “given D compute PD(q)”,
and vice versa.

Since the construction of q in the proof of this Proposition is needed later, we
present it here for the binary case. We define three functions τ=, τ<, τ> as
follows:

τ=(x1, x2) = (x1)
τ<(x1, x2) = (x1, x2)
τ>(x1, x2) = (x2, x1)

22 Jean Christoph Jung and Carsten Lutz

Additionally, introduce for every binary relation symbol R occurring in q three
fresh relation symbols R= (which is unary), R<, and R> (both binary). Finally
define Ω = {=, <,>}.

If p = p0, R1(y1, z1), . . . , Rm(ym, zm) is a CQ in q such that p0 contains
precisely the unary atoms of p and ∼1, . . . ,∼m ∈ Ω we call the CQ

p0,

m∧
i=1

R∼ii (τ∼i(yi, zi)), yi ∼i zi (1)

the ∼1, . . . ,∼m-reduct of p. We call the reduct strict if ∼i ∈ {<,>} for all
i ∈ {1, . . . ,m}.

The ranking q of q is now the disjunction of all ∼1, . . . ,∼m-reducts of some
disjunct p in q and ∼1, . . . ,∼m ∈ Ω. Obviously, the set of appended order
predicates yi ∼i zi might be inconsistent and therefore the corresponding reduct
can be dropped from the ranking. However, it is easy to see that there is a
consistent reduct of every disjunct p of a UCQ q. Moreover, there is even a
consistent strict reduct of every p in q when one ∼i is fixed (to < or >). We
prove that strict reducts are not removed during the reduction of the obtained
UCQ.

Lemma 5. If q is a reduced UCQ and p′ a strict ∼1, . . . ,∼m-reduct of some CQ
p in q. Then p′ is contained in the ranking q of q, i.e., p′ is not removed during
the reduction q.

Proof. Suppose to the contrary that there is some CQ p1 in q and ∼′1, . . . ,∼′k ∈
Ω such that the ∼′1, . . . ,∼′k-reduct p′1 of p1 satisfies p′1 v p′ and p′1 6= p′. Thus,
there is a homomorphism h from p′ to p′1. We claim that h is also a homomor-
phism from p to p1. Let p = p0, R1(y1, z1), . . . , Rm(ym, zm) such that p0 contains
precisely the unary atoms of p. Then we have:

– If A(x) ∈ p, formula (1) implies that A(x) ∈ p′ and since h is homomorphism,
we have also A(h(x)) ∈ p′1. Using again formula (1) yields A(h(x)) ∈ p1.

– Let Ri(x, y) ∈ p. Since p′ is a strict reduct, we have to distinguish two cases:
• Let ∼i= <. Then R<i (x, y) ∈ p′ and since h is a homomorphism, we have

that R<i (h(x), h(y)) ∈ p′1. By formula (1), Ri(h(x), h(y)) ∈ p1.
• Let ∼i= >. Then R>i (y, x) ∈ p′ and since h is a homomorphism, we have

that R>i (h(y), h(x)) ∈ p′1. By formula (1), Ri(h(x), h(y)) ∈ p1.

Because of the homomorphism from p to p1, we obtain p1 v p. Since q is reduced
this yields p1 = p and minimality of p implies that the homomorphism h is
surjective (from p to p1). Hence, h is also a surjective homomorphism from p′ to
p′1 o

With the next lemma we provide an intuition why the notion of “being T -
generated” is central in the presence of rewritings.

Lemma 6. Let q be a simple tree query and T a DL-Lite TBox such that q
is T -minimal. Then there exists a reduced UCQ-rewriting qT of q relative to T
such that the following conditions are satisfied:

Ontology-Based Access to Probabilistic Data with OWL QL 23

1. every disjunct of qT is a simple tree query;

2. q is a disjunct in qT ;

3. for every role R the following are equivalent

– R is T -generated in q or {R(x, y)} vT q
– there exists a disjunct q′ in qT such that q′ contains an atom R(x, y)

where x is a root variable of q′ and x 6= y

Proof. Let q be a simple tree query and T a DL-Lite TBox. The reduced UCQ-
rewriting qT whose existence is guaranteed by Lemma 4 satisfies Conditions 1
and 2 of Lemma 6. It thus remains to show that it also satisfies Condition 3. We
deal with the two directions separately.

“⇒”: If {R(x, y)} vT q, we can set q′T ≡ qT ∨ {R(x, y)} and it is clear that the
disjunct {R(x, y)} is not removed during reduction of q′T . If R is a role that is
T -generated in q, then one of the following cases applies:

– R(x, y) ∈ q, x is a root variable, and x 6= y.

By choice of qT , q is a disjunct of qT and we are done.

– A(x) ∈ q and T |= ∃R v A.

Let qR = (q \ {A(x)}) ∪ {R(x, y)} with y a fresh variable. Clearly, we have
AqR , T |= q, thus IAqR |= qT . Let q′ be a disjunct of qT with IAqR |= q′.
Then qR v q′ and we find a homomorphism h from q′ to qR.

We show that there must be an atom R(x′, y′) ∈ q′ with h(x′) = x, h(y′) = y.
Assume to the contrary that this is not the case. Let q− = qR \ {R(x, y)}
and observe that, since A(x) /∈ q−, we have q− (q. Then h is also a ho-
momorphism from q′ to q− and thus q− v q′ and also q v q′. Since qT is
reduced and both q and q′ are disjuncts of qT , it follows from the latter that
q = q′. Thus q− v q′ means in fact q− v q, which is a contradiction to the
minimality of q.

Consider the atom R(x′, y′) ∈ q′ with h(x′) = x, h(y′) = y whose existence
we have just proved. Clearly, x′ 6= y′. Thus, it remains to show that x′ is
a root variable in q′. Assume to the contrary that x′ is not a root variable.
Then y′ must be a root variable and there must be an atom in q′ that involves
y′, but not x′. This implies that q contains an atom that involves y, but not
x, in contradiction to x being a root variable of q.

– S(x, y) ∈ q such that y occurs only once and T |= ∃S v ∃R.

Identical to previous case.

“⇐”: Assume that there is a disjunct q′ in qT that contains R(x, y) and x is a
root variable and x 6= y. We can assume the following:

(A) there is no q′′ (q′ with q′′ vT q.
(B) (q′ \ {S(x, z)}) ∪ {S(x, z′)} 6vT q where

– x is root variable in q′,

– z occurs more than once, and

– z′ is a fresh variable.

24 Jean Christoph Jung and Carsten Lutz

If Point (A) is not satisfied, set q′T = qT ∨ q′. It is clear that q′T ≡ qT and that
during reduction of q′T the disjunct qi will be removed since qi v q′i. However, q′i
will not be removed since qi was also not removed from qT . If Point (B) is not
satisfied, the same arguments apply.

We show that R is T -generated in q. Since q′ vT q, Lemma 3 implies the
existence of a homomorphism h from q to Iq′,T . We distinguish two cases:

– Assume that q′ is of the form {S1(x, y), . . . , Sk(x, y)}, where the Si are role
names or inverse roles and R is among them. Hence, both x and y are root
variables.

• If q has two root variables and k > 1, it is clear that q ≡ q′, because
of Points (A) and (B). Hence, R is T -generated in q. If k = 1, then
{R(x, y)} = q′ vT q.

• If q has one root variable xr, assume first that h(xr) /∈ {x, y}, i.e.,
xr is mapped to some anonymous element of Iq1,T . This clearly gives
a contradiction to Point (B) since q is a simple tree query and, thus,
not both x and y are in the image of h. Hence, we have h(xr) ∈ {x, y}.
Assume w.l.o.g. that h(xr) = x. By Point (A), none of the atoms Si(x, y)
can be dropped from q′. By Point (B), there has to be one variable z ∈
var(q) such that h(z) = y and Si(xr, z) ∈ q for all i ∈ {1, . . . , k}. Hence
we obtain q v q′. By Lemma 4, q is a disjunct in qT . Since qT is reduced,
this implies q ≡ q′. Thus, q has two root variables, contradiction.

– Assume that q′ contains an atom at∗ that involves x but not y. Thus, x
is a root variable in q′ and y is not. We distinguish cases regarding the
root variable(s) of q. In the first two cases we identify atoms at that can
be dropped from q′ such that still q′ \ {at} vT q. However, this contradicts
Point (A).

• q has two root variables, i.e., it is of the form {S1(xr, yr), . . . , Sk(xr, yr)}.
Let first be k > 1. If (h(xr), h(yr)) ∈ {(x, y), (y, x)}, then at∗ can be
dropped. Otherwise, we can drop R(x, y).
If k = 1 and (h(xr), h(yr) ∈ {(x, y), (y, x)}, then at∗ can be dropped.
Otherwise, if either h(xr) or h(yr) are in the anonymous part of Iq′,T ,
then one can drop all but one atoms from q′, i.e., either at∗ or R(x, y). If
S1(h(xr), h(yr)) ∈ q′, one can drop all atoms except for S1(h(xr), h(yr)).
• q has precisely one root variable xr and h maps xr to y′ 6= x. If y′ =
y · cR1

· · · cRn (possibly n = 0), then at∗ can be dropped from q1, since q
is a simple tree query. Analogously, if y′ 6= y · cR1 · · · cRn , one can drop
all but one atoms from q′, i.e., one of at∗ or R(x, y) can be omitted.
• The homomorphism h maps the root variable xr of q to x. If there

is R(xr, z) ∈ q such that h(z) = y, then z 6= xr, and thus R is T -
generated in q. If not, there has to be either an atom B(xr) ∈ q and
T |= ∃R v B or an atom S(xr, z) ∈ q such that z 6= xr occurs only once
and T |= ∃R v ∃S, otherwise Point (A) from above is not satisfied, as
R(x, y) can be dropped from q′. In both cases R is T -generated in q.

o

Ontology-Based Access to Probabilistic Data with OWL QL 25

We are finally ready to prove Theorem 5 which we state again for completeness.

Theorem 5 Let T be a DL-Lite-TBox. A T -minimal CQ q is in PTime relative
to T iff

1. q is a simple tree query, and
2. if r and r− are T -generated in q, then {r(x, y)} vT q or q is of the form
{S1(x, y), . . . , Sn(x, y)}.

Otherwise, q is #P-hard relative to T .

Proof. “⇒”: We show the contrapositive. Assume first that q is not a simple
tree query. Then Theorem 4 implies that answering q relative to T is #P-hard.
Assume now that q is a simple tree query but condition 2 from Theorem 5 is
not satisfied, i.e., there is a role r such that both r and r− can be generated
in q w.r.t. T but (i) {r(x, y)} 6vT q and (ii) q 6= {S1(x, y), . . . , Sn(x, y)}. By
Point 1 of Lemma 6, we can view qT as a query where one variable xr occurs in
all atoms. We make a case distinction on how r and r− are generated.

– {r(xr, y), r(y, xr)} ⊆ q. W.l.o.g. we can assume that q has to contain an
atom at that involves xr but not y because of (ii). We assume here that
at = A(xr), the case where at = s(xr, y

′) is treated analogously. By Lemma 4,
we can assume that q is contained in qT . Since xr is root variable of q but no
separator, the same holds for qT . Because qT is not ranked, Corollary 1 is not
applicable. However, due to the construction in (the proof of) Proposition 1,
the ranking qT of qT contains strict reducts q1, q2 of q such that

{r<(xr, y1), r>(xr, y1), xr < y1, A(xr)} ⊆ q1
{r>(y2, xr), r

<(y2, xr), xr > y2, A(xr)} ⊆ q2

According to Lemma 5, q1 and q2 are not removed during the reduction
of qT . Moreover, it is clear that q1 6≡ q2. Observe now that xr is still root
variable but no separator, e.g., in r< it occurs both in position 1 and 2. Now,
the application of Corollary 1 to (the reduction of) qT yields #P-hardness
of q.

– Assume {r(xr, y), r(y, xr)} 6⊆ q. Since both r and r− are T -generated, Point 3
of Lemma 6 implies the existence of disjuncts q1, q2 in qT such that
• q1 contains r(xr, y1) and y1 6= x, and
• q2 contains r(y2, xr) and y2 6= x.

By definition of qT we have that qi vT q, hence q1 6= {r(xr, y1)} and
q2 6= {r(y2, xr)} by (i). We argue first that y1 is not a root variable of
q1: If it is, q1 is of the form {R1(xr, y1), . . . , Rm(xr, y1)} with m > 1 be-
cause of the previous argument. Since q1 vT q, there is a homomorphism
h from q to Iq1,T . W.l.o.g. we can assume that q1 satisfies Points (A)
and (B) from the proof of Lemma 6. If m > 1, then h has to ’hit’ all atoms
R1(xr, y1), . . . , Rm(xr, y1). This yields q1 v q and thus q1 ≡ q, since qT is
reduced. But this is in contradiction with (ii). The same arguments apply to
variable y2 in q2.

26 Jean Christoph Jung and Carsten Lutz

It is clear that xr is not a separator because it occurs in position 1 and 2 for
r. If qT is ranked then it is #P-hard, by Corollary 1. If qT is not ranked,
consider its ranking qT . The construction in (the proof of) Proposition 1
together with Lemma 5 imply the existence of disjuncts q′1, q′2 such that

• {r<(xr, y1), x < y1} ⊆ q′1 and
• {r<(y2, xr), y2 < x} ⊆ q′2

where in both queries xr is a root variable but y1 and y2 are not. Thus, qT
does not have a separator and Corollary 1 implies #P-hardness of qT and
thus of q.

“⇐”. Assume that q and T satisfy Conditions 1 and 2 from the Theorem.
By Theorem 1, it suffices to show that, for the FO-rewriting qT of q relative to
T , answer probabilities over tuple-independent databases can be computed in
PTime. Hence, let D be the ipABox A viewed as a tuple-independent database.
For a Boolean CQ p, we write pD(p) instead of pdD(() ∈ p) and omit D whenever
it is clear from the context.

By Point 2 of Lemma 6, we may assume that qT is a UCQ in which all
disjuncts are simple tree queries. Hence, we can assume w.l.o.g. that there is a
variable xr occurring in all atoms of qT . Lemma 6 helps us also to prove the
following useful claim.

Claim. Let r be a role name such that either r or r− is not T -generated in q.
There are no two disjuncts q1 and q2 of qT such that r(xr, y1) ∈ q1 with xr 6= y1
and r(y2, xr) ∈ q2 with xr 6= y2.

Proof of Claim. Assume to the contrary that there are such q1, q2. By Point 3 of
Lemma 6, we have that both r and r− are T -generated in q or {r(x, y)} vT q.
The former is excluded by our assumption, hence the latter is the case. Set
q′T = qT ∨ {r(x, y)}. It is easy to see that q′T ≡ qT and that during reduction
of q′T the added disjunct is not removed but q1 and q2 are (unless they are
equivalent to {r(x, y)}). This finishes the proof of the claim.

Now, we distinguish three cases.
Case (i). For all role names r, either r or r− is not T -generated in q. The

above claim provides a necessary condition for xr being a separator. However, it
is not yet sufficient, since there might be ‘reflexive‘ atoms of the form r(xr, xr)
occurring in qT . We show that these atoms can be removed in the following way.
If ∼ is an equivalence relation over var(q′) and at an atom, we define at∼ by
taking

A(x)∼ = A(x)

R(x, y)∼ =

{
R 6=(x, y) if x � y

R=(x) if x ∼ y

Denote with EQ(q′) the set of all equivalence relations over var(q′). Then,
define q′T as ∨

q′∈qT

∨
EQ(q′)

{at∼ | at ∈ q′}

Ontology-Based Access to Probabilistic Data with OWL QL 27

It is not hard to prove that D can be transformed in polynomial time into some
D′ such that PD(qT) = PD′(q

′
T). Moreover, it should be clear that the statement

of the claim remains true after this transformation. Finally observe that xr is a
separator variable in q′T .

We now perform the following steps in order to compute pD′(q
′
T):

– If q′T is not symbol-connected and its symbol-connected components are
q1, . . . , qk, compute:

P (q′T) = 1− (1− P (q1)) · . . . · (1− P (qk))

– Continue with qi, which is clearly symbol-connected and, by construction,
still has the separator xr. Compute

P (qi) = 1−
∏

a∈Ind(A)

(1− P (qi[a/xr])

– The query qi[a/xr] comprises disjuncts q′i with var(q′i) = {z1, . . . , zm} of the
form

A1(a) ∧ . . . ∧An(a) ∧ q′i1 ∧ . . . q′im (?)

where each q′ij is obtained from q′i by restricting to all atoms that involve
zj , i.e., q′ij is of the form S1(a, zj), . . . , S`(a, zj).
In order to compute p(qi[a/xr]), we apply the distributivity law and dis-
tribute the ‘∧’s in (?) over the (outer) disjunctions. We obtain a conjunction
of N disjunctive sentences q∧ = p1 ∧ . . . ∧ pN . The restricted form of the
conjuncts in (?) implies that each pi is a disjunction of CQs of the form A(a)
or S1(a, y), . . . , S`(a, y).

– The probability p(q∧) can be computed using the (dual) inclusion/exclusion
principle as follows:

p(q∧) =
∑

∅⊂Y⊆[N]

(−1)|Y |+1P (qY)

where [N] = {1, . . . , N} and qY =
∨
y∈Y py. Note that qY is a disjunctive

sentence for all Y ⊆ [N].
– Let us analyze the structure of qY for some (non-empty) Y ⊆ [N]. Since its

disjuncts are obtained from some combination of the pi, qY can be parti-
tioned into qA1 , . . . , qAk , and qY ′ such that
• qAi = Ai(a) and
• qY ′ contains only CQs of the form S1(a, y), . . . , S`(a, y)

In tuple-independent databases, the disjuncts of the former form are pairwise
independent of each other and independent of disjuncts of the latter form,
so compute

p(qY) = 1− (1− p(qY ′)) ·
k∏
i=1

(1− p(qAi))

– Observe that p(qAi) can be read off from D for all i.

28 Jean Christoph Jung and Carsten Lutz

– For computing p(qY ′) observe that qY ′ can be viewed as a query with a
separator z, since every atom has precisely one free variable. Hence, we can
compute

p(qY ′) = 1−
∏

b∈Ind(A)

(1− p(qY ′ [b/z]))

– The query qY ′ [b/z] consists of disjuncts of the form S1(a, b) ∧ . . . ∧ S`(a, b).
Again, distribute the ∧’s over the outer disjunctions to obtain a conjunction
of disjunctive sentences where each disjunctive sentence comprises only one
atom S(a, b) and apply the (dual) inclusion/exclusion principle. Each dis-
junctive sentence qd obtained in this way is of the form S1(a, b)∨. . .∨Sn(a, b).
Hence, its probability can be computed as

p(qd) = 1− (1− p(S1(a, b)) · · · (1− p(Sn(a, b))))

which can be read off from D.

Case (ii). There is a role name r such that both r and r− is T -generated in q,
but q is not of the form {S1(x, y), . . . , Sk(x, y)}. Statement 2 from the Theorem
tells us that for those r we have {r(x, y)} vT q. In the same way as in the proof
of the claim we obtain that there are no disjuncts q1 and q2 in qT with the
properties described in the statement of the claim. Hence, we can continue with
computing pD(qT) in the same way as in Case (i).

Case (iii). There is a role name r such that both r and r− is T -generated in q
and q is of the form {S1(x, y), . . . , Sk(x, y)}. It is not hard to prove that q′ vT q
implies actually q′ v q. Hence, qT ≡ q and it suffices to compute pD(q). Again,
xr is root variable but no separator, since q contains atoms r(x, y) and r(y, x)
(recall that r and r− are T -generated). Thus, q is not ranked and we need to
consider the ranking q of q in order to compute p(q). Following (the proof of)
Proposition 1, q is obtained as

S=
1 (x), . . . , S=

k (x)
∨ S<1 (x, y), . . . , S<k (x, y), x < y
∨ S>1 (x, y), . . . , S>k (x, y), x > y

where S=
i = s=i (independent from Si being si or s−i), S<i is s<i (s>i , respectively)

when Si = si (Si = s−i , respectively), and analogously for S>i . It is easy to see
that q has the separator x. Observe that the ranking also removes reflexive atoms,
hence we can continue with computing p(q) using the algorithm in Case (i).

o

B Proofs for Section 5

Let T be an ELI-TBox and q a Boolean connected CQ that involves at least
one individual name. We first show that we can assume w.l.o.g. that T contains

Ontology-Based Access to Probabilistic Data with OWL QL 29

only CIs of the forms

A v B A v ∃R.B
B1 uB2 v A ∃R.B v A

where R ranges over role names and their inverse and A, B, B1, B2 over concept
names and >. Let sub(T) denote the set of all subconcepts of (concepts that
occur in) T and reserve a concept name XC for every C ∈ sub(T) \ (NC ∪ {>})
such that XC occurs neither in T nor in q. Set

σ(C) =


C if C ∈ NC ∪ {>}
XD1 uXD2 if C = D1 uD2

∃r.XD if C = ∃r.D

Then put

T ′ =
⋃

CvD∈T

XC v XD ∪
⋃

C∈sub(T)\(NC∪{>})

XC ≡ σ(C)

where C ≡ D abbreviates C v D,D v C. After further replacing each CI of the
form A v B1 u B2 with A v B1 and A v B2, T ′ is of the required syntactic
form. Clearly, the conversion can be done in polynomial time.

We want to replace T with the TBox T ′ in normal form. To implement this,
we consider ABoxes in a restricted signature. A predicate is a set of concept
names and role names and a signature is a set of predicates. We use sig(T) to
denote the set of predicates that occur in T and likewise for sig(q). A Σ-ABox
is an ABox that contains only symbols from Σ. Due to the following result,
we shall indeed be able to replace T with T ′ when we are careful about ABox
signatures.

Theorem 11. Let Σ = sig(T) ∪ sig(q).

1. q is FO-rewritable relative to T (over all ABoxes) iff q is FO-rewritable
relative to T ′ over Σ-ABoxes;

2. q is #P-hard relative to T (over all ipABoxes) iff q is #P-hard relative to T ′
over Σ-ipABoxes.

Proof. For Point 1, first assume that q is FO-rewritable relative to T and let qT
be an FO-rewriting. We show that qT is also an FO-rewriting of q relative to T ′
over Σ-ABoxes. To this end, let A be a Σ-ABox. Since the fresh concept names
XC occur neither in q nor in A, it is easy to show that A, T |= q iff A, T ′ |= q.
In summary, A, T ′ |= q iff A, T |= q iff IA |= qT , thus we are done. Conversely,
assume that q is FO-rewritable relative to T ′ over Σ-ABoxes and let qT ′ be an
FO-rewriting. Since each non-Σ-symbol is interpreted as the empty set in IA
for any Σ-ABox A, we can w.l.o.g. assume that no such symbol occurs in qT ′

(if it does, replace it with false). We show that qT ′ is also an FO-rewriting of
q relative to T . Let A be an ABox and A|Σ the result of dropping all non-Σ-
assertions from A. We have A, T |= q iff A|Σ , T |= q (since q and T contain

30 Jean Christoph Jung and Carsten Lutz

only Σ-symbols) iff A|Σ , T ′ |= q (since the XC occur neither in q nor in A|Σ)
iff IAΣ |= qT ′ (since qT ′ is an FO-rewriting) iff IA |= qT ′ (since there are no
non-Σ-symbols in qT ′).

For Point 2, first assume that q is #P-hard relative to T . Since T and q
contain only Σ-symbols, we have A, T |= q iff A|Σ , T |= q for all ABoxes A. It
follows that q is #P-hard relative to T over Σ-ABoxes. Since we have A, T |= q
iff A, T ′ |= q for all Σ-ABoxes A (see proof of Point 1 above) and thus also
p(A, T |= q) = p(A, T ′ |= q), answering q relative to T over Σ-ABoxes is simply
the same problem as answering q relative to T ′ over Σ-ABoxes and we are done.
For the converse direction, p(A, T |= q) = p(A, T ′ |= q) for all Σ-ABoxes A
means that answering q relative to T ′ over Σ-ABoxes is simply a subproblem of
answering q relative to T , thus #P-hardness of the former implies #P-hardness
of the latter. o

The proof of Theorem 6 is based on a connection between FO-rewritability
and boundedness of an appropriate fixpoint operator, similar to what was ob-
served in [26]. Given an ABox A and an a ∈ Ind(A), we denote with A|a the
neighbourhood of a, i.e., the restriction of A to the individual name a and all
members of {b | R(a, b) ∈ A} ∪ {b | R(b, a) ∈ A} (where R is a role name or its
inverse). For a TBox T , define

fT (A) = A ∪ {A(a) | a ∈ Ind(A) ∧ A|a, T |= A(a)}

and set f∞T (A) :=
⋃
i≥0 f

i
T (A), where f iT (·) denotes application of fT , iterated i

times. Note that the application of fT (·) yields ABoxes, though not necessarily
Σ-ABoxes, Σ = sig(T) ∪ sig(q). It is not hard to prove that for all A ∈ NC

and a ∈ NI, we have A, T |= A(a) iff A(a) ∈ f∞T (A) [26]. We want to establish
an analogous claim for CQs, which requires first introducing several technical
notions. In particular, we construct a query qT from q and T such that answering
q over a Σ-ABox A is equivalent to answering qT over f∞T (A). Note that qT is
in general not an FO-rewriting of q relative to T , which are not guaranteed to
exist in ELI; intuitively, qT constitutes the part of the FO-rewriting that deals
with objects generated by existential quantifiers.

We use EQ(q) to denote the set of all equivalence relations on term(q) such
that a 6∼ b for all distinct a, b ∈ NI. Every ∼ ∈ EQ(q) defines the following
collapsing of q:

q∼ = {r(s[t], s[t′]) | r(t, t′) ∈ q} ∪ {A(s[t]) | A(t) ∈ q}.

where s[t] = a if the individual name a is in [t] and s[t] is the fresh variable z[t]
otherwise.

We call a CQ tree-shaped if the undirected graph (Vq, Eq) with Vq = term(q)
and Eq = {{t, t′} | r(t, t′) ∈ q} is a tree in which an individual name occurs, if at
all, only at the root. A splitting S of a CQ q is a partition q0, . . . , qk of q (with
q0 possibly empty and q1, . . . , qk non-empty) such that for 1 ≤ i ≤ k, we have

1. q1, . . . , qk are tree-shaped queries with roots t1, . . . , tk

Ontology-Based Access to Probabilistic Data with OWL QL 31

2. term(qi) ∩ term(qj) = ∅ for i < j ≤ k
3. term(q0) ∩ term(qi) = {ti}.

Let split(q) denote the set of all splittings of q and CN(T) the concept names
that occur in T . For a subset ρ ⊆ CN(T), we use Aρ to denote the ABox
{A(â) | A ∈ ρ} where â is a fixed, ‘special’ individual name. Given a splitting
S = q0, . . . , qk of a CQ q, a map ρ : {1, . . . , k} → 2CN(T) is a justification for S
relative to T if for all i ∈ {1, . . . , k}, we haveAρ(i), T |=â qi meaning that in every
model I of Aρ(i) and T , there is a match of the tree-shaped Boolean query qi
that maps its root ti to âI . We use qρ(i) to denote the query

∧
A∈ρ(i)A(ti) where,

again ti denotes the root of qi. Let just(S, T) denote all possible justifications of
S relative to T . For each ∼ ∈ EQ(q), set

q̂∼ = ∃z[t̂1] · · · ∃z[t̂n]
∨

S=q0,...,qk∈split(q∼)

∨
ρ∈just(S,T)

(
q0 ∧

k∧
i=1

qρ(i)
)

where [t̂1], . . . , [t̂n] are the equivalence classes of ∼ that do not contain an indi-
vidual name. Finally, we define the CQ qT as

∨
∼∈EQ(q) q̂∼. Clearly, qT is a UCQ.

Theorem 12. For any CQ q, ELI-TBox T in normal form, and Σ-ABox A,
where Σ = sig(T) ∪ sig(q), we have A, T |= q iff If∞T (A) |= qT .

To prove Theorem 12, we introduce canonical models for ABoxes and ELI-
TBoxes. Let A be an ABox and T an ELI-TBox in normal form. A type for T
is a set T ⊆ CN(T). When a ∈ Ind(A), T, T ′ are types for T , and R is a role, we
write

– a R T if A, T |= ∃R.uT (a) and for each type S for T with T (S, we
have A, T 6|= ∃R.uT (a);

– T R T ′ if T |= uT v ∃R.uT ′ and for each type S for T with T ′ (S,
we have T 6|=uT v ∃R.uS.

A path for A and T is a sequence p = aR1T1 · · ·Tn−1RnTn, n ≥ 0, with
a ∈ Ind(A), R1, . . . , Rn roles, and T1, . . . , Tn types for T such that a R1

T1
and Ti Ri Ti+1 for 1 ≤ i < n. When n > 0, we use tail(p) to denote Tn. Define
the interpretation IA,T as follows:

∆IA,T = the set of all paths for A and T
AIA,T = {a ∈ Ind(A) | A, T |= A(a)} ∪

{p ∈ ∆I \ Ind(A) | T |=u tail(p) v A}
rIA,T = {(a, b) ∈ Ind(A)× Ind(A) | r(a, b) ∈ A} ∪

{(p, prT) | prT ∈ Paths} ∪
{(pr−T, p) | pr−T ∈ Paths}

aIA,T = a

It is standard to prove that IA,T is canonical in the following sense.

32 Jean Christoph Jung and Carsten Lutz

Lemma 7. For any CQ q, ELI-TBox T in normal form, and ABox A, we have
A, T |= q iff IA,T |= q.

We are now ready to prove Theorem 12.

Proof.(sketch of Theorem 12) “if”. Assume that If∞T (A) |= qT and let π be
a match of qT in If∞T (A). Let q′ be the disjunct of qT with If∞T (A) |= q′. By
definition of qT , there is an S = q0, . . . , qk ∈ split(q∼) and a ρ ∈ just(S, T)

such that q′ = q0 ∧
∧k
i=1 qρ(i). For 1 ≤ i ≤ k, we have Aρ(i), T |=â qi and, by

Lemma 7, there is thus a match πi of qi in IAρ(i),T such that the root ti of qi is
mapped to â. Since π is a match of qρ(i) in IA,T , it can be shown that there is a
homomorphism from IAρ(i),T to IA,T with h(â) = π(ti). Thus, we find a match
π′i of qi in IA,T with π′i(ti) = π(ti). It can be verified that π ∪ π1 ∪ · · · ∪ πk is a
match of q in IA,T . By Lemma 7, we have A, T |= q as required.

“only if”. Assume that A, T |= q. By Lemma 7, this means IA,T |= q. Let π
be a match of q in IA,T and let a1, . . . , ak be the elements of Ind(A) that are in
the range of π. Define a splitting S = q0, . . . , qk of q, where q0 is the restriction
of q to the terms t with π(t) ∈ Ind(A) and each qi is the restriction of q to the
terms t with π(t) = aip for some non-empty p. Define a justification ρ for S
relative to T by setting ρ(i) = {A ∈ CN(T) | ai ∈ AIA,T } for 1 ≤ i ≤ k. Then

q′ = q0 ∧
∧k
i=1 qρ(i) is a disjunct in qT and it can be verified that If∞T (A) |= q′.

o

We say that a CQ q is k-bounded relative to a TBox T over Σ-ABoxes if for
every Σ-ABox A, we have that IfkT (A) |= qT iff If∞T (A) |= qT . We say that q is
bounded relative to a TBox T over Σ-ABoxes if it is k-bounded for some k.

Theorem 13. If a CQ q is bounded relative to T over Σ-ABoxes, Σ = sig(T)∪
sig(q), then it is FO-rewritable relative to T over Σ-ABoxes.

Proof. Assume that q is bounded relative to T over Σ-ABoxes and let k > 0 be
such that IfkT (A) |= qT iff If∞T (A) |= qT for every Σ-ABox A.

Observe that we work with finite Σ, and thus there are only finitely many
neighborhoods Aa that can occur in a Σ-ABox A, up to isomorphism. Every
such neighborhood N with individual name a in the center can be converted in
a straightforward way into an existential, conjunctive, positive FO-formula:

ϕN =
∧

A(a)∈N

A(x) ∧
∧

b∈Ind(N)

∃y :
(∧
R(a,b)∈N

R(x, y) ∧
∧

B(b)∈N

B(y)
)

where R(x, y) denotes r(y, x) when R = r−. For each concept name A, we use
ΓA to denote the set of neighborhoods N with center a such that N |= A(a).
For every concept name A and i ≥ 0, set

– q0A(x) := A(x)

– qi+1
A (x) := qiA ∨

∨
N∈ΓA

ϕ′N where ϕ′N is obtained from ϕN by replacing, for

each concept name B, every atom B(z) with qiB [z/x].

Ontology-Based Access to Probabilistic Data with OWL QL 33

The following can be proved by induction on i:

Claim. For every Σ-ABox A and i ≥ 0, we have IA |= qiA[a] iff A(a) ∈ f iT (A).

Let q̂T be qT with every atom A(t) replaced with qkA[t/x]. We show that q̂T is an
FO-rewriting of q relative to T , which finishes the proof. By the above claim and
due to the fact that fkT (A) differs from A only by additional concept assertions,
we have IA |= q̂T iff IfkT (A) |= qT . This is the case iff If∞T (A) |= qT (by choice of

k) iff A, T |= q (by Theorem 12). o

The next and central step is to prove the following result.

Theorem 14. If a CQ q is unbounded relative to an ELI-TBox T over Σ-
ABoxes, then q is #P-hard relative to T over Σ-ABoxes.

Let q be unbounded relative to T over Σ-ABoxes and set

m = |T | · |qT | · (|T |+ |qT |)|qT |+2 + 1.

Since q is not bounded relative to T , there is a Σ-ABox A0 such that IfmT (A0) |=
qT , but Ifm−1

T (A0)
6|= qT . Choose a concrete match π of qT in IfmT (A0). In the fol-

lowing, when writing R(a, b) ∈ A with R = r−, we mean r(b, a) ∈ A. Construct
a Σ-ABox A1 as follows:

– a π-path in A0 of length n is a sequence p = a0R1a1 · · ·Rnan such that
a0 ∈ ran(π) and Ri(ai−1, ai) ∈ A0 for 1 ≤ i ≤ n; we use tail(p) to denote an;

– Ind(A1) is the set of all π-paths in A0 of length at most m+ |qT |;
– if A(a) ∈ A0, p ∈ Ind(A1), and tail(p) = a, then A(p) ∈ A;
– if pRa ∈ Ind(A1), then R(p, pRa) ∈ A1;
– if r(a, b) ∈ A0 and a, b ∈ ran(π), then r(a, b) ∈ A1.
– these are all assertions in A1.

Note that A1 has, in a loose sense, a forest shape: the roots, which are the
elements of Ind(A1) ∩ Ind(A0), form a ‘core’ whose relational structure is not
restricted in any way; moreover, each root a gives rise to a tree-shaped sub-
ABox of A1, namely the restriction to the individuals p that have a as a prefix.

Lemma 8. IfmT (A1) |= qT , but Ifm−1
T (A1)

6|= qT .

Proof. We first prove the following.

Claim. For all i ≤ m, p ∈ Ind(A1) of length at most m+ |qT |−i with tail(p) = a,
and A ∈ NC, we have A(p) ∈ f iT (A1) iff A(a) ∈ f iT (A0).

The proof is by induction on i. The induction start is trivial by construction
of A1. For the induction step, we have A(p) ∈ f iT (A1) iff f i−1T (A1)|a, T |=
A(p) (by definition of the function fT) iff f i−1T (A0)|a, T |= A(a) (by induction
hypothesis) iff A(a) ∈ f iT (A0).

To see that IfmT (A1) |= qT , consider the match π used in the construction of
A1. By the claim, for all a ∈ ran(π) and A ∈ NC, we have A(a) ∈ fmT (A0) iff
A(a) ∈ fmT (A1). It follows that π is also a match of qT in IfmT (A1).

34 Jean Christoph Jung and Carsten Lutz

For Ifm−1
T (A1)

6|= qT , assume that there is a match τ of qT in Ifm−1
T (A1)

and

select a concrete disjunct q′ of qT that is matched by τ . Since q is connected and
contains at least one individual name, by construction the same holds for q′. It
follows that all paths p ∈ ran(τ) are of length at most |qT |. By the claim, it follows
that for all p ∈ ran(τ) with tail(p) = a and A ∈ NC, we have A(a) ∈ fm−1T (A0)
iff A(p) ∈ fm−1T (A1). This, in turn, implies that the function τ ′ defined by
setting τ ′(t) := tail(τ(t)) for all t ∈ term(q′) is a match of q′ in Ifm−1

T (A0)
, in

contradiction to Ifm−1
T (A0)

6|= qT . o

We further modify A1 by exhaustively applying the following operation: if p ∈
Ind(A1) is a non-root (i.e., p is a path with length > 1) and If∞T (A−p) |= qT ,2

where A−p is obtained from A1 by removing the subtree rooted at p, then replace
A1 with A−p . Let A be the Σ-ABox finally obtained. For i ≥ 0, we say that A
has outdegree at most i if for every p ∈ Ind(A1), the cardinality of the set

{p′ ∈ Ind(A1) \ Ind(A0) | ∃R : R(p, p′) ∈ A1}

is bounded by i. In words, every individual in A1 has at most i successors that
are non-root nodes.

Lemma 9.

1. Ifm′T (A) |= qT , but I
fm
′−1

T (A)
6|= qT for some m′ ≥ m;

2. A has outdegree at most |T |+ |qT |.

Proof. For Point 1, it suffices to show that Ifm−1
T (A) 6|= qT and If∞T (A) |= qT .

The former is a consequence of the facts that Ifm−1
T (A1)

6|= qT , A ⊆ A1, and qT
is a UCQ; the latter is is immediate by construction of A.

For Point 2, assume to the contrary of what is to be shown that there is a
p ∈ Ind(A) such that the cardinality of

Γ = {p′ ∈ Ind(A) \ Ind(A0) | ∃R : R(p, p′) ∈ A}

exceeds |T |+ |qT |. Fix a match π of qT in If∞T (A) and select all individual names
in Γ that are in the range of π. For each ∃r.A v B ∈ T such that B(p) ∈ f∞T (A),
select an individual name p′ ∈ Γ such that

1. r(p, p′) ∈ A and A(p′) ∈ f jT (A) for some j < m;
2. there is no p′ that satisfies Point 1 for some smaller j.

Note that such a p′ need not exist, in which case no node is selected for ∃r.A v B.
Since |Γ | ≥ |T |+ |qT |, there is at least one element p0 ∈ Γ that is not selected.
Consider the ABox A−p0 obtained from A by dropping the subtree rooted at p0.
Exploiting that T is in normal form and using the definition of the function
fT (·), it is not difficult to show that no deductions are lost at the individuals

2 For the remainder of the proof, is it essential to consider all matches here instead of
only the match π used to define A0.

Ontology-Based Access to Probabilistic Data with OWL QL 35

that remain in A−p0 , i.e.,

Claim. For all i ≥ 0, p ∈ A−p0 , and concept names A, we have A(p) ∈ f iT (A−p0)

iff A(p) ∈ f iT (A).

Consequently, π is still a match of qT in IfmT (A−p0)
. This is a contradiction to the

fact that the subtree rooted at p0 has not been dropped during the construction
of A. o

Since iterated applications of fT can assign, in the worst case, every concept
name from T to every individual name, the following is immediate.

Lemma 10. On every ABox B with |Ind(B)| = i, we have f `T (B) = f `+1
T (B)

where ` = |T | · i.

We say that a path p′ ∈ Ind(A) is an extension of a path p ∈ Ind(A) if p′ = pRa
for some R and a. Set d = |qT |+ 3. We claim that the ABox A must contain a
sequence

Rd(pd, pd−1), . . . , R1(p1, p0)

such that pd is of length one and pi is an extension of pi+1 for all i < d. Assume
this is not the case. Then all paths in Ind(A) are of length at most d − 1.
Since A is forest-shaped with at most |qT | roots, Point 2 of Lemma 9 yields
|Ind(A)| ≤ |qT | · (|T | + |qT |)d−1 and by Lemma 10 we have f `T (B) = f `+1

T (B)
where ` = |T |·|qT |·(|T |+|qT |)d−1. This is a contradiction to Point 1 of Lemma 9
and the fact that m′ > m > `.

Lemma 11. If at least one of R3(p3, p2), R2(p2, p1), R1(p1, p0) is dropped from
A resulting in an ABox A′, then A′, T 6|= q.

Proof. Let Ri(pi, pi−1) be the assertion that was dropped from A to obtain
A′ and assume to the contrary of what is to be shown that A′, T |= q. Thus
If∞T (A′) |= qT by Theorem 12 and we can choose a concrete match π of qT in
If∞T (A′). Since the length of pi−1 exceeds |qT | and qT is rooted (contains at least
one individual name and is connected), none of pi−1, . . . , p0 can appear in the
range of π and thus π is also a map from term(qT) to Ind(A−pi−1

). Trivially, we

have A(p) ∈ f∞T (A′) iff A(p) ∈ f∞T (A−pi−1
) for all p ∈ Ind(A−pi−1

) and concept
names A. It follows that π is actually a match of qT in IA−pi−1

. This is a contra-

diction to the fact that the subtree rooted at pi−1 was not removed during the
construction of A. o

We now prove Theorem 14 by a reduction of the problem of counting the number
of satisfying assignments for a monotone bipartite DNF formula, which is known
to be #sc P-hard. More specifically, input formulas are of the form

ψ = (xi1 ∧ yj1) ∨ · · · ∨ (xik ∧ yjk)

where the set X of variables that occur on the left-hand side of a conjunction in
ψ is disjoint from the set Y of variables that occur on the right-hand side of a
conjunction in ψ.

36 Jean Christoph Jung and Carsten Lutz

For the reduction, let ψ be a formula as above, X = {x1, . . . , xnx}, and
Y = {y1, . . . , yny}. Define an ipABox (Aψ, pψ) by starting with the ABox A con-
structed above and ‘multiplying’ the assertions R3(a3, a2), R2(a2, a1), R1(a1, a0)
from Lemma 11 using fresh individual names b1, . . . , bnx and c1, . . . , cny . In de-
tail:

– start with the ABox A constructed above without the assertions R3(a3, a2),
R2(a2, a1), R1(a1, a0) from Lemma 11, assign probability 1 to all assertions;

– add the following assertions with probability 1:

A(bi) for all A(a2) ∈ A and 1 ≤ i ≤ nx
R(bi, d) for all R(a2, d) ∈ A and 1 ≤ i ≤ nx
A(ci) for all A(a1) ∈ A and 1 ≤ i ≤ ny

R(ci, d) for all R(a1, d) ∈ A and 1 ≤ i ≤ ny
R2(bi` , cj`) for 1 ≤ ` ≤ k;

– add the following assertions with probability 0.5,

R3(a3, bi) for 1 ≤ i ≤ nx
R1(ci, a0) for 1 ≤ i ≤ ny.

We are interested in ABoxes A′ ⊆ Aψ with pψ(A′) > 0. Each such ABox has
probability 1

2|X|+|Y |
and corresponds to a truth assignment δA′ to the variables in

X ∪ Y : for xi ∈ X, δA′(xi) = 1 iff R3(a3, bi) ∈ A′ and for yi ∈ Y , δA′(yi) = 1 iff
R1(ci, a0) ∈ A′. Let #ψ the number of truth assignments to the variables X ∪Y
that satisfy ψ. To complete the reduction, we show that p(Aψ, T |= q) = #ψ

2|X|+|Y |
.

By what was said above, this is an immediate consequence of the following
observation.

Lemma 12. For all ABoxes A′ ⊆ Aψ with pψ(A′) > 0, δA′ |= ψ iff A′, T |= q.

Proof. “if”. Let δA′ 6|= ψ and assume to the contrary of what is to be shown
that A′, T |= q. Since δA′ 6|= ψ and by construction of Aψ, there are no i, j such
thatR3(a3, bi), R2(bi, cj), R1(cj , a0) ∈ A′. LetA′′ be the restriction ofA′ to those
individuals names that are reachable along role assertions from individual names
that are roots, i.e., that occur already in A and are paths of length one. Since q
contains at least one individual name (which must be a root) and is connected,

we have A′′, T |= q. Let Â be A without R1(a1, a0) and let h : Ind(A′′)→ Ind(A)
be the identity on Ind(A′′)∩ Ind(A) and such that h(bi) = a2 for all bi ∈ Ind(A′′)
and h(ci) = a1 for all ci ∈ Ind(A′′). One can prove the following by induction
on i.

Claim. For all i ≥ 0, p ∈ Ind(A′′), and A ∈ NC, A(h(p)) ∈ f iT (A′′) implies

A(p) ∈ f iT (Â).

Since A′′, T |= q, by Lemma 7 there is a match π of qT in If∞T (A′′). By the

above claim, π is also a match of qT in If∞T (Â), thus Â, T |= q by Lemma 7, in

contradiction to Lemma 11.

Ontology-Based Access to Probabilistic Data with OWL QL 37

“only if”. By construction of Aψ, δA′ |= ψ implies that, up to renaming of
individual names that do not occur in q, we have A ⊆ A′. Since A, T |= q by
choice of A, we must thus also have A′, T |= q. o

Theorem 7 (ELI dichotomy). Let q be a connected Boolean CQ and T an
ELI-TBox. Then q is in PTime relative to T or #P-hard relative to T .

Proof. If q is not FO-rewritable relative to T , then it is #P-hard by Theo-
rem 6. Using the semantics of CQs and of ELI, it is not hard to show that FO-
rewritings of CQs relative to ELI-TBoxes are FO-formulas that are preserved
under homomorphisms. By Rossman’s homomorphism preservation theorem on
finite structures [?], we thus obtain that whenever there is an FO-rewriting for
a CQ q and ELI-TBox T , then there is an FO-rewriting for q and T that is a
UCQ. 3 Thus Theorem 1 and the PTime vs. #P dichotomy for UCQs over tuple
independent databases [8,31] immediately yields the dichotomy. o

3 We are grateful to Meghyn Bienvenu for suggesting this argument.

