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Abstract. When using ontologies to access instance data, it can be useful to
make a closed world assumption (CWA) for some predicates and an open world
assumption (OWA) for others. The main problem with such a setup is that con-
junctive query (CQ) answering becomes intractable already for inexpressive de-
scription logics such as DL-Lite and EL. We take a closer look at this situation
and carry out a fine-grained complexity analysis by considering the complex-
ity of CQ answering w.r.t. individual TBoxes. Our main results are a dichotomy
between AC0 and CONP for TBoxes formulated in DL-Lite and a dichotomy be-
tween PTIME and CONP for EL-TBoxes. In each tractable case, CQ answering
coincides with CQ answering under pure OWA; the CWA might still be useful as
it allows queries that are more expressive than CQs.

1 Introduction

Description logics (DLs) increasingly find application in ontology-based data access
(OBDA), where an ontology is used to enrich instance data and the chief aim is to pro-
vide efficient query answering services. In this context, it is common to make the open
world assumption (OWA). Indeed, there are applications where the data is inherently
incomplete and the OWA is semantically adequate, for example when the data is ex-
tracted from the web. In other applications, however, it is more reasonable to make a
closed world assumption (CWA) for some predicates in the data. In particular, when
the instance data is taken from a relational database, then the CWA can be appropri-
ate for the data predicates while additional predicates in the ontology should always
be interpreted under the OWA (this is the very idea of OBDA). As a concrete example,
consider geographical databases such as OpenStreetMap which contain pure geographi-
cal data as well as rich annotations, stating for example that a certain polygon describes
a ‘popular Thai restaurant’. As argued in [11, 7], it is useful to pursue an OBDA ap-
proach to take full advantage of the annotations, where one would naturally interpret
the geographical data under the CWA and the annotations under the OWA.

In the DL literature, there are a variety of approaches to adopting the CWA, often
based on epistemic operators or rules [6, 8, 10, 19, 22]. In this paper, we adopt the stan-
dard semantics from relational databases, which is natural, and straightforward: CWA
predicates have to be interpreted exactly as described in the data, assuming standard



(and thus unique) names for data constants; for example, when A is a closed concept
name and A an ABox, then in any model I of A we must have AI = {a | A(a) ∈ A}.
Note that this semantics is also used in the recently proposed DBoxes [23]. In fact,
the setup considered in this paper generalizes both standard OBDA (only OWA predi-
cates permitted) and DBoxes (only CWA predicates permitted in data) by allowing to
freely mix OWA and CWA predicates both in the TBox and in the data. For readability,
we will from now on speak of open and closed predicates rather than OWA and CWA
predicates.

A major problem in admitting closed predicates is that query answering easily be-
comes intractable regarding data complexity (where the TBox and query are assumed
to be fixed and thus of constant size). In fact, this is true already for instance queries
(IQs), when only closed predicates are admitted in the data, and for TBoxes formulated
in inexpressive DLs such as the core dialect of DL-Lite [5] and EL [3]; this is shown
for conjunctive queries (CQs) and DL-Lite in [9], can easily be transfered to EL, and
strengthened to IQs by adapting a well-known reduction of Schaerf [21]. While this is a
relevant and interesting first step, it was recently demonstrated in [15, 16] in the context
of standard OBDA with more expressive DLs that a more fine grained, ‘non-uniform’
analysis is possible by studying data complexity on the level of individual TBoxes in-
stead of on the level of logics. In our context, we work with TBoxes of the form (T , Σ),
where T is a set of TBox statements as usual and Σ is a set of predicates (concept and
role names) that are declared to be closed. We say that CQ answering w.r.t. (T , Σ) is
in PTIME if for every CQ q(x), there exists a polytime algorithm that computes for a
given ABox A the certain answers to q in A given (T , Σ); CQ answering w.r.t. (T , Σ)
is CONP-hard if there is a Boolean CQ q such that, given an ABoxA, it is CONP-hard to
decide whether q is entailed byA given T . Other complexities are defined analogously.
The main aim of this paper is to carry out a non-uniform analysis of data complexity
for query answering with closed predicates in DL-Lite and EL.

Our main results are a dichotomy between AC0 and CONP for TBoxes formulated in
DL-Lite and a dichotomy between PTIME and CONP for EL-TBoxes. In each case, we
provide a transparent characterization that separates the easy cases from the hard cases.
These results are interesting when contrasted with query answering w.r.t. TBoxes that
are formulated in the expressive DLs ALC and ALCI, where the data complexity is
also between AC0 and CONP, but where the existence of a dichotomy between PTIME
and CONP is a deep open question that is equivalent to the Feder-Vardi conjecture
for the existence of a dichotomy between PTIME and NP in non-uniform constraint
satisfaction problems [16]. We also show that when CQ answering w.r.t. (T , Σ) is in
PTIME, then the certain answers to any CQ q in any ABox A given (T , Σ) (which
respect the closed-world declarations in Σ) coincide with the open world answers to q
in A given T—for ABoxes that are satisfiable w.r.t. T . In a sense, we thus show that
CQ answering with closed predicates is inherently intractable: in all the tractable and
consistent cases, the declaration of closed predicates does not have any impact on query
answers.

While this sounds discouraging, there is still a potential benefit of closed predicates
in tractable cases: for the ‘closed part’ of the signature, we can go beyond conjunctive
queries and admit (almost) full first-order queries without becoming undecidable and,



indeed, without any negative impact on data complexity. We propose a concrete query
language that implements this idea and show that AC0 data complexity is preserved for
DL-Lite TBoxes and PTIME data complexity is preserved for EL-TBoxes when CQs
are replaced with queries formulated in the extended language.

2 Preliminaries

We use standard notation from description logic [4]. Let NC and NR be countably infi-
nite sets of concept and role names. A DL-Lite-concept is either a concept name from
NC or a concept of the form ∃r.> or ∃r−.>, where r ∈ NR. A DL-Lite-inclusion is an
expression of the form B1 v B2 or B1 v ¬B2, where B1, B2 are DL-Lite-concepts.
A DL-Lite-TBox is a finite set of DL-Lite-inclusions. In the literature, this version of
DL-Lite is often called DL-Litecore. EL-concepts are constructed according to the rule
C,D := > | A | C u D | ∃r.C, where A ∈ NC and r ∈ NR. An EL-inclusion is
an expression of the form C v D, where C,D are EL-concepts. An EL-TBox is a
finite set of EL-inclusions. ELI extends EL with the constructor ∃r−.C. ABoxes are
finite sets of assertions A(a) and r(a, b) with A ∈ NC, r ∈ NR, and a, b individual
names. We use Ind(A) to denote the set of individual names used in the ABox A and
write r−(a, b) ∈ A instead of r(b, a) ∈ A. We sometimes also use infinite ABoxes,
but this will be stated explicitly. Interpretations I are defined as usual, where for the
interpretation of individual names we make the standard name assumption (SNA), i.e.,
aI = a. Note that this implies the unique name assumption (UNA); to avoid enforcing
infinite models, we assume that interpretations need not interpret all individual names
and use Ind(I) to denote the individual names interpreted by I. A concept C (ABoxA)
is satisfiable w.r.t. a TBox T if there exists a model I of T with CI 6= ∅ (that satisfies
A, respectively).

Every ABox A corresponds to an interpretation IA whose domain is Ind(A) and in
which a ∈ AIA iff A(a) ∈ A, for all A ∈ NC and a ∈ Ind(A) and similarly for role
names. Conversely, every interpretation I corresponds to a (possibly infinite) ABoxAI
whose individual names are ∆I .

A predicate is a concept or role name. A signature Σ is a finite set of predicates.
The signature sig(C) of a concept C, sig(T ) of a TBox T , and sig(A) of an ABox A,
is the set of predicates occurring in C, T , andA, respectively. For being able to declare
predicates as closed, we add an additional component to TBoxes. A pair (T , Σ) with
T a TBox T and Σ a signature is a TBox with closed predicates. For any ABox A, a
model I of (T , Σ) and A is an interpretation I with Ind(A) ⊆ Ind(I) that satisfies T
and A and such that

AI = {a | A(a) ∈ A} for all A ∈ Σ ∩ NC

rI = {(a, b) | r(a, b) ∈ A} for all r ∈ Σ ∩ NR.

Note that TBox statements that only involve closed predicates are effectively integrity
constraints in the standard database sense [1]. In a DL context, integrity constraints are
discussed for example in [6, 8, 17–19].

A first-order query (FOQ) q(x) is a first-order formula constructed from atoms
A(t), r(t, t′), and t = t′, where t, t′ range over individual names and variables and x =



x1, . . . , xk contains all free variables of q. We call x the answer variables of q(x). A
conjunctive query (CQ) q(x) is a FOQ using conjunction and existential quantification,
only. A tuple a = a1, . . . , ak ⊆ Ind(A) is a certain answer to q(x) in A given (T , Σ),
in symbols T ,A |=c(Σ) q(a), if I |= q[a1, . . . , ak] for all models I of (T , Σ) and
A. When computing certain answers we assume that all individual names in the query
occur in the ABox. If Σ = ∅, then we simply omit Σ and write T ,A |= q(a) instead
of T ,A |=c(Σ) q(a). If C is an ELI-concept, then the CQ corresponding to C(a) is
defined in the usual way and called an ELI-instance query. EL-instance queries are
defined analogously.

The following definition generalizes the definition of non-uniform data complexity
introduced in [16] to TBoxes with closed predicates.

Definition 1. Let (T , Σ) be a TBox with closed predicates. Then

– CQ answering w.r.t. (T , Σ) is in PTIME if for every CQ q(x) there is a polytime al-
gorithm that computes, for a given ABoxA, all a ⊆ Ind(A) with T ,A |=c(Σ) q(a);

– CQ answering w.r.t. (T , Σ) is CONP-hard if there is a Boolean CQ q such that it is
CONP-hard to decide, given an ABox A, whether T ,A |=c(Σ) q.

For other classes of queries such as FOQs and ELI-instance queries, analogous notions
can be defined. It is known that for Σ = ∅, CQ answering is in PTIME for EL-TBoxes
[5, 13] and in AC0 for DL-Lite [5, 2]. FOQ-answering is undecidable even for the empty
TBox, due to the OWA.

The following property, plays a central role in our analysis; see [16] which also
makes intensive use of this notion (there called ABox disjunction property).

Definition 2 (Disjunction property). A TBox with closed predicates (T , Σ) has the
disjunction property if for all ABoxes A and ELI-instance queries C1(a) and C2(a),
T ,A |=c(Σ) C1(a) ∨ C2(a) implies T ,A |=c(Σ) Ci(a) for some i ∈ {1, 2}.

It is standard to show that DL-Lite and EL TBoxes without closed predicates have the
disjunction property [16].

3 Main Results and Illustrating Examples

We first formulate the dichotomy result for DL-Lite. The next definition introduces a
class of TBoxes with closed predicates that turn out to be exactly the TBoxes for which
query answering is in AC0.

Definition 3. A DL-Lite TBox T with closed predicates Σ is safe if there are no DL-
Lite-concepts B1, B2 and role r such that

1. B1 is satisfiable w.r.t. T ;
2. T |= B1 v ∃r.> and T |= ∃r−.> v B2; and
3. B1 6= ∃r.>, sig(B2) ⊆ Σ, and sig(r) ∩Σ = ∅.3

3 In other words, r is a role name and r 6∈ Σ or r = s− for a role name s 6∈ Σ.



Note that it is easy to check in PTIME whether a given DL-Lite TBox is safe since
subsumption in DL-Lite can be decided in PTime [5]. Our results concerning DL-Lite
are summarized by the following theorem.

Theorem 1 (DL-Lite dichotomy). Let (T , Σ) be a DL-Lite-TBox with closed predi-
cates. Then the following holds:

1. If (T , Σ) is not safe, then the disjunction property fails and there is an ELI-
instance query C(a) such that answering C(a) w.r.t. (T , Σ) is coNP-hard.

2. If (T , Σ) is safe, then
(a) CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. (T , ∅) for all

ABoxes that are satisfiable w.r.t. (T , Σ), i.e., for every CQ q(x) and a ⊆
Ind(A), we have T ,A |=c(Σ) q(a) iff T ,A |= q(a).

(b) CQ answering w.r.t. (T , Σ) is in AC0 and (T , Σ) has the disjunction property.

The following example illustrates Theorem 1.

Example 1. (a) Let T = {A v ∃r.>,∃r−.> v B} and Σ = {B}. (T , Σ) is not safe.
The disjunction property can be refuted as follows. Let A = {A(a), B(b1), A1(b1),
B(b2), A2(b2)}, where A1, A2 are fresh concept names. Then

1. T ,A |=c(Σ) ∃r.(A1 uB)(a) ∨ ∃r.(A2 uB)(a);
2. T ,A 6|=c(Σ) ∃r.(Ai uB)(a) for i = 1, 2.

Point 1 should be clear since in any model I of (T , Σ) and A one has to link a with
r to b1 or to b2 to satisfy T . For Point 2 and i ∈ {1, 2}, consider the model Ii that
corresponds to A expanded with r(a, bi). Then Ii is a model of (T , Σ) and A (note
that r 6∈ Σ) but a 6∈ (∃r.(Ai u B))Ii where 1 = 2 and 2 = 1. Thus T ,A 6|=c(Σ)

∃r.(Ai uB)(a). When we add any of A,A1, A2 to Σ, all statements are still true.
(b) The failure of the disjunction property for the ABox A and TBox T results

in a choice that enables a coNP-hardness proof by reduction of 2+2-SAT, a variant of
propositional satisfiability where each clause contains precisely two positive literals and
two negative literals [21]. For this reduction, it suffices to use an EL-query that uses the
above queries ∃r.(Ai uB)(a), i = 1, 2, as subqueries for encoding truth values.

The proof of Theorem 1 is given in the next section. We now come to the case of
TBoxes formulated in EL, where we start with examples. Observe that we can find
an EL-TBox without the disjunction property by a reformulation of the DL-Lite TBox
from Example 1. Let T ′ = {A v ∃r.B} with Σ = {B}. Then, in the same way as
for (T , Σ) one can show that the disjunction property fails for (T ′, Σ) and that CQ
answering is coNP-hard. In EL, however, there is an additional (and more subtle) cause
for non-tractability, which we discuss in the following example.

Example 2. Consider again T ′ = {A v ∃r.B}, but now set Σ′ = {r}. We first show
that (T ′, Σ′) does not have the disjunction property. LetA′ = {A(a), r(a, b1), A1(b1),
r(a, b2), A2(b2)}, where A1, A2 are fresh concept names. Then one can easily show
that the disjunction property fails:

– T ′,A′ |=c(Σ′) ∃r.(A1 uB)(a) ∨ ∃r.(A2 uB)(a);



– T ′,A′ 6|=c(Σ′) ∃r.(Ai uB)(a), for i = 1, 2.

It is crucial that B 6∈ Σ′. The proof of CONP-hardness is very similar to the proof
mentioned in Example 1.

Observe that one cannot reproduce this example in DL-Lite: for the TBox T =
{A v ∃r.>,∃r−.> v B} with Σ′ = {r}, we have T ,A′ |=c(Σ′) B(bi) for i =
1, 2 and, therefore, T ,A′ |=c(Σ′) ∃r.(Ai u B)(a), for i = 1, 2. Thus, the disjunction
property is not violated.

We now identify a class of EL-TBoxes with closed predicates that turn out to be exactly
the TBoxes for which CQ answering is in PTIME. We call a concept E a top-level
conjunct (tlc) of C if C is of the form D1 u · · · u Dn with n ≥ 1 and E = Di for
some i.

Definition 4. Let (T , Σ) be an EL-TBox with closed predicates. (T , Σ) is safe if there
exists no EL-inclusion C v ∃r.D such that

1. T |= C v ∃r.D;
2. there does not exist a tlc ∃r.C ′ of C with T |= C ′ v D;
3. one of the following is true:

(s1) r 6∈ Σ and sig(D) ∩Σ 6= ∅;
(s2) r ∈ Σ, sig(D) 6⊆ Σ and there is no Σ-concept E with T |= C v ∃r.E and

T |= E v D.

Note that Condition 3(s1) of Definition 4 is similar to the definition of safety for DL-
Lite. Example 2 shows why Condition 3(s2) is needed. The following example illus-
trates the additional requirement of 3(s2) that no “interpolating” Σ-concept E exists.

Example 3. Let T = {A v ∃r.E,E v B} and first assume that Σ = {r}. Then the
inclusion A v ∃r.B satisfies Condition 3(s2) and thus (T , Σ) is not safe. Now assume
Σ = {r, E}. Then, the inclusion A v ∃r.B does not violate safety because E can be
used as a ‘Σ-interpolant’. Note that the ABox A′ from Example 2, which we used to
refute the disjunction property in a very similar situation, is simply unsatisfiable w.r.t.
(T , Σ) because E has to interpreted as the empty set. Indeed, it can be shown that
(T , Σ) is safe.

Note that, unlike the DL-Lite case, the definition of safety of EL-TBoxes with closed
predicates does not immediately suggest a decision procedure since there are infinitely
many candidates for the concepts C, D, and E. We conjecture that safety is decidable
in PTIME, but pursuing this further is left for future work.

Theorem 2 (EL-dichotomy). Let (T , Σ) be an EL-TBox with closed predicates. Then
the following holds:

1. If (T , Σ) is not safe, then the disjunction property fails and there exists an EL-
instance query C(a) such that answering C(a) w.r.t. (T , Σ) is coNP-hard.

2. If (T , Σ) is safe, then
(a) CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. (T , ∅) for all

ABoxes that are satisfiable w.r.t. (T , Σ).



(b) CQ answering w.r.t. (T , Σ) is in PTIME and (T , Σ) has the disjunction prop-
erty.

As noted in the introduction, Theorems 1 and 2 essentially show that CQ answering
with closed predicates is inherently intractable. Note, though, that Points 2(a) of these
theorems refer only to satisfiable ABoxes. In fact, TBox statements that refer only to
closed predicates act as integrity constraints also in the tractable cases. Moreover, safe
TBoxes admit any integrity constraint that can be formulated in the DL at hand, i.e., if a
TBox T formulated in DL-Lite or EL is safe, then it is still safe after adding any concept
inclusions that refers only to closed predicates. In the appendix, we show that checking
satisfiability of ABoxes w.r.t. safe TBoxes is in AC0 for DL-Lite and in PTIME for EL
(for data complexity).

Another way of taking advantage of closed predicates without losing tractability is
to admit more expressive query languages. Indeed, mixing open and closed predicates
seems particularly useful when large parts of the data stem from a relational database,
as in the geographical database application mentioned in the introduction. In such a
setup, one would typically not want to give up FOQs (SQL queries) available in the
relational system to accomodate open world predicates. We propose a query language
that combines, in a straightforward way, FOQs for closed predicates with CQs for open
(and closed) predicates. We then show that, for safe TBoxes with closed predicates,
such queries can be answered as efficiently as CQs both in the case of DL-Lite and
of EL.

As in the relational database setting, we allow only FOQs that are domain-inde-
pendent and thus correspond to expressions of relational algebra (and SQL queries).
Formally, a FOQ q(x) is domain-independent if for all interpretations I and J such
that P I = PJ for all P ∈ sig(q(x)), we have I |= q[d] iff J |= q[d] for all tuples
d ⊆ ∆I ∪ ∆J . Intuitively, the truth value of a domain-independent FOQ depends
only on the interpretation of the data predicates, but not on the actual domain of the
interpretation. For example, ¬A(x), is not domain-independent whereasB(x)∧¬A(x)
is domain-independent. In our query language, we allow domain-independent FOQs
over closed predicates as atoms in CQs.

Definition 5. LetΣ be a signature that declares closed predicates. A conjunctive query
with FO(Σ) plugins (abbreviated CQFO(Σ)) is of the form ∃x1 · · · ∃xn(ϕ1 ∧ . . .∧ϕm),
where n ≥ 0, m ≥ 1, and each ϕi is either a CQ or a domain-independent FOQ whose
signature is included in Σ.

The subsequent theorem shows that switching from CQs to CQFO(Σ)s does not increase
data complexity.

Theorem 3.

1. CQFO(Σ)-answering w.r.t. safe DL-Lite-TBoxes with closed predicates is in AC0.
More precisely, for every such TBox (T , Σ) and CQFO(Σ) q(x), there exists a FOQ
q′(x) such that for all A and a ⊆ Ind(A): T ,A |=c(Σ) q(a) iff IA |= q′(a).

2. CQFO(Σ)-answering w.r.t. safe EL-TBoxes is in PTIME.



Query languages between CQs and FOQs have been studied before. In the standard
setup where all predicates are open, it was shown in [20] that extending CQs with union
and atomic negation results in coNP-hardness both in DL-Lite and in EL, and that ex-
tending CQs with union and inequality results in undecidability in EL. In our query
language CQFO(Σ), we avoid these problems by allowing only CQs for the open pred-
icates while restricting the expressive power of FOQs (which admits disjunction, full
negation, and (in)equality) to closed predicates. The language EQL-Lite(CQ) proposed
in [6] can, in some sense, be viewed as a fragment of our language that admits the full
expressivity of FOQs, but in which only closed predicates are admitted. Note though,
that the EQL-Lite approach closes predicates only for querying while all predicates are
interpreted as open world for TBox reasoning.

4 Proof Sketches

We sketch proofs of Theorems 1 and 2. We begin with the first part of Theorem 1.

Lemma 1. If a DL-Lite-TBox T with closed predicates Σ is not safe, then the disjunc-
tion property fails and there exists an ELI-instance query C(a) such that answering
C(a) w.r.t. (T , Σ) is coNP-hard.

Proof. Assume that B1 v ∃r.>,∃r−.> v B2 satisfy the conditions of Definition 3.
Take a finite model I of T with a0 ∈ BI1 ; such a model exists since B1 is satisfiable
w.r.t. T and DL-Lite has the finite model property. Let S = {b ∈ ∆I | (a0, b) ∈ rI}.
Since B1 6= ∃r.>, we have a0 ∈ BIS1 for the interpretation IS obtained from I by
removing all pairs (a0, b) with b ∈ S from rI . Take the ABox AS corresponding to IS
and let A be the disjoint union of two copies of AS . We denote the individual names of
the first copy by (b, 1), b ∈ ∆I , and the elements of the second copy by (b, 2), b ∈ ∆I .
Let

A′ = A ∪ {A1(b, 1) | b ∈ BI2 } ∪ {A2(b, 2) | b ∈ BI2 },
whereA1 andA2 are fresh concept names. Now one can show that the disjunction prop-
erty fails: (T ,A′) |=c(Σ) ∃r.(A1uB2)(a0, 1)∨∃r.(A2uB2)(a0, 1) and (T ,A′) 6|=c(Σ)

∃r.(Ai uB2)(a0, 1) for i = 1, 2.
The CONP-hardness proof is now similar to the proof for Example 1 given in the

appendix. o

For the second part of Theorem 1, we first prove (a):

Lemma 2. Let (T , Σ) be a DL-Lite TBox with closed predicates. If (T , Σ) is safe,
then CQ answering w.r.t. (T , Σ) coincides with CQ answering w.r.t. T without closed
predicates for ABoxes that are satisfiable w.r.t. (T , Σ).

Proof. Let (T , Σ) be safe and assume that A is satisfiable w.r.t. (T , Σ). We remind
the reader of the construction of a canonical model I of T and A (without closed
predicates!) [12]. I is the interpretation corresponding to an ABox Ac that is the limit
of a sequence of ABoxes A0,A1, . . .. Let A0 = A and assume a0, . . . is an infinite list
of individual names such that Ind(A0) = {a0, . . . , ak}. Assume Aj has been defined
already. Let i be minimal such that there exists B1 v B2 ∈ T with Aj |= B1(ai) but
Aj 6|= B2(ai) (if no such i exists, then set Ac := Aj). Then



– if B2 is a concept name, let Aj+1 = Aj ∪ {B2(ai)};
– ifB2 = ∃s.>, then take a fresh individual bai,s and setAj+1 = Aj∪{s(ai, bai,s)}.

Now let J be the interpretation corresponding to the ABoxAc =
⋃
i≥0Ai. It is known

that J is a model of (T ,A) with the following properties:

1. For all CQs q(x) and a ⊆ Ind(A): T ,A |= q(a) iff J |= q[a].
2. For any individual bai,s ∈ Ind(Ac) \ Ind(A) introduced as a witness for some
B2 = ∃s.>, we have B(bai,s) ∈ Ac iff T |= ∃s−.> v B, for every DL-Lite-
concept B.

To show that J is a model of (T , Σ) and A we prove the following

Claim 1. For all i ≥ 0 and for all a ∈ Ind(Ai), if B1 v B2 ∈ T with Ai |= B1(a) but
Ai 6|= B2(a), then sig(B2) ∩Σ = ∅.

Claim 1 holds for all Ai, i ≥ 0, and all a ∈ Ind(A): otherwise, Ai+1 is unsatisfiable,
in contradiction to Point 1. It follows that Claim 1 holds for i = 0. We proceed by
induction, assuming that Claim 1 has been proved for Ai, but that to the contrary of
what is to be shown there are B1 v B2 ∈ T with Ai+1 |= B1(a), Ai+1 6|= B2(a), and
sig(B2)∩Σ 6= ∅, i.e., sig(B2) ⊆ Σ. By what was said above, we have a 6∈ Ind(A) and
thus a was introduced as a witness for some ∃s.>. By IH, sig(s) ∩ Σ = ∅ and there
exists B1 6= ∃s.> with B1 v ∃s.> ∈ T . Point 2 yields T |= ∃s−.> v B2, in contrary
to (T , Σ) being safe. This finishes the proof of Claim 1.

It follows from Claim 1 that J is a model of (T , Σ) and A. Thus, we have for CQs
q(x) and a ⊆ Ind(A): if T ,A 6|= q(a), then J 6|= q[a], and so T ,A 6|=c(Σ) q(a), as
required. o

To obtain a proof of Part 2 of Theorem 1, it remains to show that, for safe (T , Σ),
it is in AC0 to decide whether an ABox is satisfiable w.r.t. (T , Σ). To this end, it is
readily checked that an ABox A which is satisfiable w.r.t. T is satisfiable w.r.t. a safe
(T , Σ) iff T ,A |= B(a) implies A |= B(a) for all DL-Lite concepts B over Σ.
To see that this condition is in AC0, let ϕB(x) be an FO query with T ,A |= B(a)
iff IA |= ϕB(a), where IA is the interpretation corresponding to A. Then A is not
satisfiable w.r.t. (T , Σ) iff IA |= ∃x

∨
B∈X(ϕB(x)∧¬B(x)) where X denotes the set

of all DL-Lite concepts over Σ.
We now come to Theorem 2. With the exception of proof steps involving Condi-

tion 3(s2) of Definition 4, the proof technique for Theorem 2 extends the proof tech-
nique introduced for DL-Lite. We therefore focus on 3(s2) and refer the reader to the
appendix for the full proof. We require a certain interpolation property. This interpo-
lation property has been studied before for ALC and several of its extensions in the
context of query rewriting for DBoxes and Beth definability [23, 24]. Note that it is
different from the interpolation property investigated in [14], which requires the inter-
polant to be a TBox instead of a concept.

Lemma 3 (Interpolation). Let T1, T2 be EL-TBoxes, T1 ∪ T2 |= D0 v D1 with
sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Then there exists a Σ-concept F such that T1 ∪ T2 |=
D0 v F and T1 ∪ T2 |= F v D1.



The following lemma is the crucial step for proving Part 1 of Theorem 2 if 3(s2) applies.

Lemma 4. Let (T , Σ) be an EL-TBox with closed predicates such that safety is vio-
lated by C v ∃r.D ∈ T because 3(s2) holds. Then the disjunction property fails.

Proof. Assume C v ∃r.D is given. Take the canonical model IT ,C of T and C as
defined in [14] (its domain ∆IT ,C consists of names aF , F a subconcept of T or C,
and aF ∈ GIT ,C iff T |= F v G, for all EL-concepts G). Assume for simplicity that
(aF , aC) 6∈ rIT ,C for any aF ∈ ∆IT ,C . Let

S = {aG ∈ ∆IT ,C | (aC , aG) ∈ rIT ,C ,∃r.G is not a top level conjunct of C}

and let IS be the interpretation obtained from IT ,C by removing all pairs (d, d′) with
d′ ∈ S from rIT ,C . We have aC ∈ CIS . Let AS be the ABox corresponding to IS and

K = {G | ∃r.G ∈ sub(T ), T |= C v ∃r.G}.

Since there is no tlc C ′ of C with T |= C ′ v D, by a result of [14] (Lemma 16), there
exists G ∈ K with T |= G v D.

Introduce copies X0 and X1 of any non-Σ-predicate X . Denote by E0 and E1

the resulting concept if each non-Σ predicate X in E is replaced by X0 and, respec-
tively, X1. Similarly, denote by T 0 and T 1 the TBoxes obtained from T by replacing
all concepts E in T by E0 and E1, respectively. The following can be proved using
Lemma 3:

Fact. For all G ∈ K: T 0 ∪ T 1 6|= G0 v D1.

Now one can take the canonical models JG := IT 0∪T 1,G0 for any G ∈ K and obtain
for aG := aG0 that aG 6∈ (D1)JG . Let AG,Σ be the Σ-reduct of the ABox correspond-
ing to JG and assume that the Ind(AG,Σ) are mutually disjoint, for G ∈ K, and that
aG ∈ Ind(AG,Σ), for all G ∈ K. Introduce two copies A1

G,Σ and A2
G,Σ of AG,Σ , for

G ∈ K. We denote the elements of the first copy by (a, 1), for a ∈ Ind(AG,Σ) and the
elements of the second copy by (a, 2), for a ∈ Ind(AG,Σ). Define the ABox A by tak-
ing two fresh concept names A1 and A2 and the union of AS ∪

⋃
G∈K A1

G,Σ ∪ A2
G,Σ

and the assertions r(aC , (aG, 1)), r(aC , (aG, 2)), A1(aG, 1), and A2(aG, 2), for ev-
ery G ∈ K and A1(aD′), for every tlc ∃r.D′ of C. One can show that the disjunc-
tion property is violated: T ,A |=c(Σ) ∃r.(A1 u D)(aC) ∨ ∃r.(A2 u D)(aC) and
T ,A 6|=c(Σ) ∃r.(Ai uD)(aC), for i = 1, 2. o

5 Future Work

We have presented first results regarding the non-uniform complexity of query answer-
ing in the presence of open and closed world predicates. We expect the proposed ex-
tension of CQs with FO-plugins to be useful in practical applications where closed
predicates are important and safe TBoxes suffice. As future work, we plan to extend
our investigation to more expressive DLs. For example, we conjecture that transparent
dichotomy results can still be obtained for the extensions of DL-Litecore and EL with
role hierarchies.
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A Proofs for Section 3

We prove coNP-hardness for Example 1. Recall that T = {A v ∃r.>,∃r−.> v B}
and Σ = {r}. The coNP-hardness proof is by reduction of 2+2-SAT, a variant of
propositional satisfiability that was first introduced by Schaerf as a tool for establishing
lower bounds for the data complexity of query answering in a DL context [21]. In
fact, our proof is very similar to Schaerf’s original proof. A 2+2 clause is of the form
(p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is a propositional letter or a truth
constant 0, 1. A 2+2 formula is a finite conjunction of 2+2 clauses. Now, 2+2-SAT is
the problem of deciding whether a given 2+2 formula is satisfiable. It is shown in [21]
that 2+2-SAT is NP-complete.

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional letters q0, . . . , qm, and let
ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i ≤ n. Our aim is to define an ABox Aϕ and
and an instance query C(a) such that ϕ is unsatisfiable iff T ,Aϕ |=c(Σ) q. To start, we
represent the formula ϕ in the ABox Aϕ as follows:

– the individual name f represents the formula ϕ;
– the individual names c0, . . . , cn represent the clauses of ϕ;
– the assertions c(f, c0), . . . , c(f, cn), associate f with its clauses, where c is a role

name that does not occur in T ;
– the individual names q0, . . . , qm represent variables, and the individual names 0, 1

represent truth constants;
– the assertions ⋃

i≤n

{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

associate each clause with the four variables/truth constants that occur in it, where
p1, p2, n1, n2 are role names that do not occur in T .

We further extend Aϕ to enforce a truth value for each of the variables qi and the truth-
constants 0, 1. To this end, add to Aϕ copies A0, . . . ,Am of A obtained by renaming
individual names such that Ind(Ai) ∩ Ind(Aj) = ∅ whenever i 6= j. Moreover, assume
that qi coincides with the ith copy of a. Intuitively, the copyAi ofA is used to generate
a truth value for the variable qi, where we want to interpret qi as true if the query
∃r.(A1 uB)(qi) is satisfied and as false if the query ∃r.(A2 uB)(qi) is satisfied.

To ensure that 0 and 1 have the expected truth values, add the ABoxes A(1) =
{r(1, c1), A1(c1), B(c1)} and A(0) = {r(0, c2), A2(c2), B(c2)}. Let B be the result-
ing ABox.

Consider the query

q0 = ∃c.(∃p1.ff u ∃p2.ff u ∃n1.tt u ∃n2.tt)

which describes the existence of a clause with only false literals and thus captures falsity
of ϕ, where tt is an abbreviation for ∃r.(A1uB) and ff an abbreviation for ∃r.(A2uB).
It is straightforward to show that ϕ is unsatisfiable iff T ,B |=c(Σ) q0.



B Proofs for Section 4

We first provide the missing step for the proof of Lemma 1.

Lemma 5. With the definitions from the proof of Lemma 1:
(1) (T ,A′) |=c(Σ) ∃r.(A1 uB2)(a0, 1) ∨ ∃r.(A2 uB2)(a0, 1)
(2) (T ,A′) 6|=c(Σ) ∃r.(Ai uB2)(a0, 1) for i = 1, 2.

Proof. (1) Let J be a model of (T , Σ) and A′. We have (a0, 1) ∈ BJ1 . Since J
is a model of T , there exists e ∈ ∆J with ((a0, 1), e) ∈ rJ and e ∈ BJ2 . Since
sig(B2) ⊆ Σ, and by the definition of A′, e is of the form (e′, i) with e′ ∈ BI2 and
i ∈ {1, 2}. If i = 1, we have A1(e

′, 1) ∈ A′ and so (a0, 1) ∈ ∃r.(A1 u B2)
J ,

as required. If i = 2, we have A2(e
′, 2) ∈ A′ and so (a0, 1) ∈ ∃r.(A2 u B2)

J , as
required.

(2) We construct a model J of (T , Σ) and A′ with (a0, 1) 6∈ (∃r.(A1 u B2))
J . J

is defined as the interpretation corresponding to the ABox A′ extended by

{r((a0, 1), (e, 2)) | (a0, e) ∈ rI} ∪ {r((a0, 2)), (e, 1)) | (a0, e) ∈ rI}

It is readily checked that J is a model of (T , Σ) andA′. Moreover, (a0, 1) 6∈ (∃r.(A1u
B2))

J . To construct a model J of (T , Σ) and A′ with (a0, 1) 6∈ (∃r.(A2 u B2))
J

swap the roles of the two copies of IS : in this case, J is defined as the interpretation
corresponding to the ABox A′ extended by

{r((a0, 1), (e, 1)) | (a0, e) ∈ rI} ∪ {r((a0, 2)), (e, 2)) | (a0, e) ∈ rI}

Again J is a model of (T , Σ) and A′, and (a0, 1) 6∈ (∃r.(A2 uB2))
J . o

We now prove Theorem 2. We split Part 1 of Theorem 2 into two parts, and begin
with the case in which condition 3(s1) for non-safety is satisfied.

Lemma 6. Let (T , Σ) be a EL-TBox with closed predicates such that safety is violated
by the inclusion C v ∃r.D because 3(s1) holds: r 6∈ Σ and sig(D) ∩ Σ 6= ∅. Then
the disjunction property fails and there exists an EL-instance query C(a) such that
answering C(a) w.r.t. (T , Σ) is coNP-hard.

Proof. Assume C v ∃r.D with the properties of Lemma 6 is given. We remind the
reader of the canonical model IT ,C of a EL-TBox T and EL-concept C [14]. Assume
w.l.o.g. that C does not occur in T (if it does, replace C by A u C for a fresh concept
name A). The canonical model IC,T = (∆C,T , ·C,T ) of C and T is defined as follows:

– ∆C,T = {aC} ∪ {aC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T )};
– aD0

∈ AIC,T if T |= D0 v A, for all A ∈ NC and aD0
∈ ∆IT ,C ;

– (aD0
, aD1

) ∈ rIT ,C if T |= D0 v ∃r.D1 and ∃r.D1 ∈ sub(T ) or ∃r.D1 is a tlc of
D0, for all aD0

, aD1
∈ ∆IT ,C and r ∈ NR.

IT ,C is a model of T and

Fact 1. The following conditions are equivalent for all D0 with aD0
∈ ∆IT ,C and all

EL-concepts D1:



1. T |= D0 v D1;
2. aD0 ∈ D

IT ,C
1 .

Note that by our assumptions there is no aD ∈ ∆IT ,C with (aD, aC) ∈ sIT ,C for any
role name s. Let

S = {aD ∈ ∆IT ,C | (aC , aD) ∈ rIT ,C ,∃r.D is not a tlc of C}

Let IS be the interpretation obtained from IT ,C by removing all pairs (d, d′) with
d′ ∈ S from rIT ,C . Observe that aC ∈ CIS . Let AS be the ABox corresponding to
IS and let A be the disjoint union of two copies of AS . We denote the elements of the
first copy by (d, 1) for d ∈ ∆IT ,C and the elements of the second copy by (d, 2), for
d ∈ ∆IT ,C . Let A1 and A2 be fresh concept names and

A′ = A ∪ {A1(d, 1) | d ∈ ∆IT ,C} ∪ {A2(d, 2) | d ∈ ∆IT ,C}

If some concept name E ∈ Σ occurs in D, then fix one such E and denote by Di

the resulting concept after one occurrence of E is replaced by Ai u E. Similarly, if no
concept name from Σ occurs in D, then let s ∈ Σ be such that a concept of the form
∃s.G occurs in D. Denote by Di the resulting concept after one occurrence of ∃s.G is
replaced by Ai u ∃s.G.

Claim 1.
(1) (T ,A′) |=c(Σ) ∃r.D1(aC , 1) ∨ ∃r.D2(aC , 1)
(2) (T ,A′) 6|=c(Σ) ∃r.Di(aC , 1) for i = 1, 2.

(1) is straightforward using the condition that T |= C v ∃r.D. (2) We construct a
model J of (T , Σ) andA′ with (aC , 1) 6∈ (∃r.D1)

J . J is defined as the interpretation
corresponding to the ABox A′ extended by

{r((aC , 1), (e, 2)) | e ∈ S} ∪ {r((aC , 2)), (e, 1)) | e ∈ S}

Since IT ,C is a model of T it is readily checked that J is a model of (T , Σ) and A′.
Moreover, (aC , 1) 6∈ (∃r.D1)

J . To prove this assume (aC , 1) ∈ (∃r.D1)
J . Then one

of the following two conditions holds:

– there exists a tlc ∃r.C ′ of C such that (aC′ , 1) ∈ DJ1 ;
– there exists aC′ with (aC , aC′) ∈ rIT ,C such that (aC′ , 2) ∈ DJ1 .

The first condition leads to a contradiction since it implies, by Fact 1, that T |= C ′ v D
for a tlc ∃r.C ′ of C. Hence C v ∃r.D does not violate safety of (T , Σ). The second
condition cannot hold since no point (aC′ , 2) can reach along a role-path in J any point
in the first copy ofAS and A1 applies only to points in the first copy (here we need that
aC is not reachable).

The construction of a model J of (T , Σ) and A′ with (aC , 1) 6∈ (∃r.D2)
J is

similar and left to the reader.
The coNP-hardness proof is exactly the same as in Example 1. o



For proving that also violation of condition 3(s2) for non-safety gives rise to coNP-
hardness, we introduce some preliminaries including the well-known tree-shaped canon-
ical models for EL. Let T be an EL-TBox and A a (possibly infinite) ABox. In the
construction, we use extended ABoxes, i.e., sets of assertions C(a) with C a poten-
tially compound concept and r(a, b). We produce a sequence of extended ABoxes
A0,A1, . . . , starting withA0 = A. In what follows, we use additional individual names
of the form ar1C1 · · · rkCk with a ∈ Ind(A0), r1, . . . , rk role names that occur in T ,
and C1, . . . , Ck ∈ sub(T ). Each extended ABoxAi+1 is obtained fromAi by applying
the following rules:

R1 if C uD(a) ∈ Ai, then add C(a) and D(a) to Ai;
R2 if Ai |= C(a) and C v D ∈ T , then add D(a) to Ai;
R3 if ∃r.C(a) ∈ Ai and there exist b ∈ Ai with r(a, b) ∈ Ai and T ,Ai |= C(b), then

add C(b) to Ai; otherwise add r(a, arC) and C(arC) to Ai.

Let Ac =
⋃
i≥0Ai. Note that Ac may be infinite even if A is finite, and that none of

the above rules adds anything to Ac. Denote by JT ,A the interpretation corresponding
to Ac. The following lemma is standard:

Lemma 7. Let T be an EL-TBox and A a possibly infinite ABox. Then

– JT ,A is a model of T and A;
– for all p ∈ ∆JT ,A\Ind(A) and all EL-conceptsD: p ∈ DJT ,A iff T |= tail(p) v D;
– for all CQs q(x) and a ⊆ Ind(A): T ,A |= q(a) iff JT ,A |= q[a].

We now construct the tree-shaped canonical model of a TBox and a concept C. A path
in a concept C is a finite sequence C0 · r1 ·C1 · · · · rn ·Cn, where C0 = C, n ≥ 0, and
∃ri+1.Ci+1 is a tlc of Ci, for 0 ≤ i < n. We use paths(C) to denote the set of paths in
C. If p ∈ paths(C), then tail(p) denotes the last element of p. The canonical ABoxAC
associated with C is defined as

AC = {r(p, q) | p, q ∈ paths(C); q = p · r · C ′}
{A(p) | A a tlc of tail(p), p ∈ paths(C)}

Let JT ,C := JT ,AC . Then the following is straightforward:

Lemma 8. Let T be an EL-TBox and C a concept. Then

– JT ,C is a model of T ;
– for all p ∈ ∆JT ,C and all EL-concepts D: p ∈ DJT ,C iff T |= tail(p) v D;

We also require a lemma on the connection of reasoning with concepts and reason-
ing with ABoxes. Let A be an ABox. For a ∈ Ind(A) we define a concept Cma by
“unfolding” A at a up to depth m:

C0
a = (

l

A(a)∈A

A), Cm+1
a = (

l

A(a)∈A

A) u (
l

r(a,b)∈A

∃r.Cmb )

The following is shown in [14] (Lemma 22).



Lemma 9. For all EL-TBoxes T , ABoxes A and EL-concepts C:

T ,A |= C(a) ⇔ ∃m : T |= Cma v C

We are in the position now to prove Lemma 3.

Lemma 3 Let T1 ∪ T2 |= D0 v D1 with sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Then there
exists a Σ-concept F such that T1 ∪ T2 |= D0 v F and T1 ∪ T2 |= F v D1.

Proof. Let T1 ∪ T2 |= D0 v D1 with sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Assume that the
required Σ-concept F does not exist. Consider the canonical tree-model JT1∪T2,D0

.
Denote by AΣ the ABox corresponding to the Σ-reduct of JT1∪T2,D0 . For the sake of
readability, denote the individual names in AΣ by ap instread of by p.

Claim 1. T1 ∪ T2,AΣ 6|= D1(aD0
).

To see this, assume that T1 ∪ T2,AΣ |= D1(aD0
). By Lemma 9, there is a Σ-concept

F such that T1 ∪ T2,AΣ |= F (aD0
) and T1 ∪ T2 |= F v D1; the former yields

aD0
∈ FJT1∪T2,D0 and thus by Lemma 8 we obtain T1 ∪ T2 |= D0 v F . This is in

contradiction to our assumption that no such concept F exists.

Consider the canonical tree modelJT1∪T2,AΣ and letJ be the union of the sig(T1, D0)-
reduct of JT1∪T2,D0

and of JT1∪T2,AΣ . Note that ∆JT1∪T2,D0 ⊆ ∆JT1∪T2,AΣ and J
can be constructed by starting with the interpretation JT1∪T2,AΣ and then expanding
some XJT1∪T2,AΣ , for X ∈ sig(T1, D0) \Σ. J satisfies T1 ∪T2, but refutes D0 v D1.

o

We now provide a full proof of Lemma 4 (and, thus, finish the proof of Part 1 of
Theorem 2).

Lemma 4 Let (T , Σ) be an EL-TBox with closed predicates such that safety is violated
by the inclusion C v ∃r.D because 3(s2) holds. Then the disjunction property fails
and there exists an EL-instance query C(a) such that answering C(a) w.r.t. (T , Σ) is
coNP-hard.

Proof. Consider the interpretation IS from the the proof of Lemma 6 and let AS be the
corresponding ABox. Consider

K = {G | ∃r.G ∈ sub(T ), T |= C v ∃r.G}

Since there is no tlc ∃r.C ′ of C with T |= C ′ v D, by a result of [14] (Lemma 16),
there exists G ∈ K with T |= G v D.

Introduce copies X0 and X1 of any non-Σ-predicate X . Denote by G0 and G1 the
resulting concept if each non-Σ predicate X in G is replaced by X0 and, respectively,
X1. Similarly, denote by T 0 and T 1 the TBoxes obtained from T by replacing all
concepts G in T by G0 and G1, respectively.

Claim 1. For all G ∈ K: T 0 ∪ T 1 6|= G0 v D1.

Assume Claim 1 does not hold. Let G ∈ K with T 0 ∪ T 1 |= G0 v D1. By Lemma 3,
there exists a Σ-concept F such that T 0 ∪ T 1 |= G0 v F and T 0 ∪ T 1 |= F v D1.



Then T |= G v F and T |= F v D. We have T |= C v ∃r.G. Hence T |= C v ∃r.F
and we have derived a contradiction to Condition 3(s2).

By Claim 1 we can take the canonical models JG := IT 0∪T 1,G0 for any G ∈ K
and obtain for aG := aG0 that aG 6∈ (D1)JG . Let AG,Σ be the Σ-reduct of the ABox
corresponding to JG. We assume that the Ind(AG,Σ) are mutually disjoint, for G ∈ K,
and that aG ∈ Ind(AG,Σ), for all G ∈ K.

Claim 2. For every G ∈ K, there exist
(1) a model I1G of (T , Σ) and AG,Σ whose domain coincides with Ind(AG,Σ) and

for which aG ∈ GI
1
G and aG ∈ HI

1
G implies T |= G v H , for all EL-conceptsH with

sig(H) ⊆ sig(T , C,D);
(2) a model I2G of (T , Σ) andAG,Σ whose domain coincides with Ind(AG,Σ) such

that aG 6∈ DI
2
G and aG ∈ HI

2
G implies T |= G v H , for all EL-concepts H with

sig(H) ⊆ sig(T , C,D).

The interpretation I1G is obtained from JG by interpreting all non-Σ-symbols X ∈
sig(T , C,D) as XI

1
G := (X0)JG . The interpretation I2G is obtained from JG by inter-

preting all non-Σ-symbols X ∈ sig(T , C,D) as XI
2
G := (X1)JG .

Introduce two copiesA1
G,Σ andA2

G,Σ ofAG,Σ , forG ∈ K. We denote the elements
of the first copy by (a, 1), for a ∈ Ind(AG,Σ) and the elements of the second copy by
(a, 2), for a ∈ Ind(AG,Σ). Now define the ABox A by taking two fresh concept names
A1 and A2 and the union

AS ∪
⋃
G∈K

A1
G,Σ ∪ A2

G,Σ

and the additional assertions

– r(aC , (aG, 1)), r(aC , (aG, 2)), for every G ∈ K;
– A1(aG, 1), for every G ∈ K;
– A1(aD′), for every tlc ∃r.D′ of C;
– A2(aG, 2), for every G ∈ K.

Claim 3.
(1) T ,A |=c(Σ) ∃r.(A1 uD)(aC) ∨ ∃r.(A2 uD)(aC).
(2) T ,A 6|=c(Σ) ∃r.(Ai uD)(aC), for i = 1, 2.

(1) is straightforward since T |= C v ∃r.D.
(2) We first show T ,A 6|=c(Σ) ∃r.(A2 u D)(aC). The interpretation J showing

this is obtained by expanding all A2
G,Σ , G ∈ K, to I2G and all A1

G,Σ , G ∈ K, to I1G.
The ABoxAS is transformed into the interpretation IS . Using the properties of I1G and
I2G from Claim 2, it is readily checked that J is a model of (T , Σ) and A. Moreover,
aC 6∈ (∃r.(A2 u D))J since (aG, 2) 6∈ DJ for any G ∈ K (by the properties of I2G
from Claim 2).

We now show T ,A 6|=Σ ∃r.(A1 u D)(aC). The interpretation J showing this is
obtained by expanding allA2

G,Σ ,G ∈ K, to I1G and allA1
G,Σ ,G ∈ K, to I2G. The ABox

AS is again transformed into IS . Using the properties of I1G and I2G from Claim 2, it is



readily checked that J is a model of (T , Σ) and A. Moreover, aC 6∈ (∃r.(A1 uD))J

since aC′ 6∈ DJ for any tlc ∃r.C ′ of C and since (aG, 1) 6∈ DJ for any G ∈ K.
The coNP-hardness proof is exactly the same as in Example 1. o

We come to the proof of Part 2 of Theorem 2. We first show (a):

Lemma 10. Let (T , Σ) be safe. Then CQ answering w.r.t. (T , Σ) coincides with CQ
answering w.r.t. T without closed predicates for ABoxes that are satisfiable w.r.t. (T , Σ).

Proof. Let (T , Σ) be safe. Consider an ABox A that is satisfiable w.r.t. (T , Σ).
We show that JT ,A is a model of (T , Σ) and A (from which the lemma follows by

Lemma 7).
To show this, it is sufficient to observe

– if a ∈ AJT ,A for some a ∈ Ind(A) and A ∈ Σ, then A(a) ∈ A.
– if a ∈ (∃r.>)JT ,A for some a ∈ Ind(A) and r ∈ Σ, then there exists b ∈ Ind(A)

with r(a, b) ∈ A.
– if p ∈ Ind(Ac) \ Ind(A), then there is no Σ-concept F 6= > such that p ∈ FJT ,A .

Point 1 follows from Lemma 7 since A is satisfiable w.r.t. (T , Σ). For Point 2, assume
this is not the case. Then T ,A |= ∃r.C(a) for some C such that there does not exist
b ∈ A with r(a, b) ∈ A and T ,A |= C(b). But then, by Lemma 9, there exists m
such that T |= Cma v ∃r.C and there is no tlc ∃r.Cm−1b of Cma with T |= Cm−1b v
C. If sig(∃r.C) ⊆ Σ we have a contradiction to the condition that A is satisfiable
w.r.t. (T , Σ). Otherwise, sig(C) 6⊆ Σ and we have a contradiction to the assumption
that (T , Σ) is safe.

To show Point 3, assume such p and F exist. Then p = ar1C1 · · · rkCk for some
a ∈ Ind(A). We assume that no example shorter than p exists. Then r1 6∈ Σ. By
Lemma 7, T ,A |= ∃r1.(C1 u · · · ∃r.k.(Ck uF )). By construction of JT ,A, there is no
b with r1(a, b) ∈ A such that T ,A |= C1(b). From

T ,A |= ∃r1.(C1 u · · · ∃r.k.(Ck u F ))(a)

we obtain that there existsmwith T |= Cma v ∃r1.(C1u· · · ∃r.k.(CkuF )). Moreover,
there exists no tlc C ′ of Cma with T |= C ′ v (C1 u · · · ∃r.k.(Ck u F )). We thus have
derived a contradiction to (T , Σ) being safe. o

To show Condition (b) for Theorem 2 it now suffices to show:

Lemma 11. Let (T , Σ) be safe. Then it can be decided in polytime (data complexity)
whether an ABox A is satisfiable w.r.t a safe (T , Σ).

To show Lemma 11, we first show:

Lemma 12. If (T , Σ) is safe, then there exists an EL-TBox T ′ that is equivalent to T
such that for any C v D ∈ T ′, sig(D) ⊆ Σ or sig(D) ∩Σ = ∅.

Proof. We modify the TBox T as follows: first, replace any C v D with D a proper
conjunction of concepts by the set of C v D′ with D′ a tlc of D. Second, replace
recursively,



– any C v ∃r.D such that sig(∃r.D) 6⊆ Σ for which exists a tlc ∃r.C ′ of C with
T |= C ′ v D by the inclusions C ′ v D′ with D′ a tlc of D;

– any C v ∃r.D with r ∈ Σ and sig(D) 6⊆ Σ by C v ∃r.F and F v D′ for every
tlc D′ of D, where F is a Σ-concept with T |= C v ∃r.F and T |= F v D. Such
a Σ-concept F exists by Condition 3(s2).

The resulting TBox T ′ is as required. o

Now Lemma 11 follows from the observation that A is satisfiable w.r.t. a safe
(T , Σ) iff, for T ′ of the form above, whenever T ,A |= F (a) for some C v F ∈ T ′
with sig(F ) ⊆ Σ, then A |= F (a). This condition can be checked in polytime (data
complexity).

C Proof of Theorem 3

Let (T , Σ) be a safe DL-Lite-TBox or a safe EL-TBox with closed predicates and let
ϑ(x) be a CQFO(Σ). In the following, we will only consider satisfiable ABoxes w.r.t.
(T , Σ). This is w.l.o.g. because unsatisfiable ABoxes do not affect the results we want
to show (cf. the proofs of Theorem 1 and Theorem 2).

Now the case where ϑ(x) is a CQ and (T , Σ) is a DL-Lite-TBox is covered by
Theorem 1; and the case where ϑ(x) is a CQ and (T , Σ) is an EL-TBox is covered
by Theorem 2. Thus, suppose that ϑ(x) is a CQFO(Σ) that is not a CQ. This means
that there is some conjunct ϕ of ϑ(x) that is a complex, i.e., not of the form A(t)
or r(t, t′), domain-independent first-order formula over Σ. W.l.o.g. we assume that ϕ
is the only domain-independent first-order formula over Σ in ϑ(x); because if this is
not the case then we can reorder the conjuncts of ϑ(x) so that domain-independent
first-order formula over Σ come before other formulae meaning that the conjunction of
initial formulae over Σ is now a domain-independent first-order formula over Σ itself.

Now if ϑ(x) = ϕ then by the domain-independence of ϕ and sig(ϕ) ⊆ Σ, it
immediately follows that for every satisfiable ABox A w.r.t. (T , Σ) and every a ⊆
Ind(A), we have

T ,A |=c(Σ) ϑ(a) iff IA |= ϕ[a],

where IA is the interpretation corresponding toA. Thus, suppose that ϑ(x) = ∃y1 . . . ∃yn(ϕ∧
ψ1 ∧ . . . ∧ ψm), where n ≥ 0, m ≥ 1, and sig(ψi) ∩ Σ = ∅ for all i ∈ {1, . . . ,m}.
Note that (i) some of the variables in {y1, . . . , yn}may not occur free in ϕ and (ii) some
others from the same set may not occur free in any one of ψi. W.l.o.g. let {y1, . . . , yk}
be the set of variables of type (i), {yk+1, . . . , yj} be the set of variables of type (ii), and
{yj+1, . . . , yn} be the remaining set of variables, where k ≤ j ≤ n. We rewrite ϑ(x)
to obtain the formula

∃yj+1 . . . ∃yn[∃yk+1 . . . ∃yjϕ ∧ ∃y1 . . . ∃yk(ψ1 ∧ . . . ∧ ψm)].

Obviously this formula is equivalent to ϑ(x), and ∃y1 . . . ∃yk(ψ1 ∧ . . . ∧ ψm) is a CQ.
Thus, we can assume w.l.o.g. that ϑ(x) is of the form ∃y1 . . . ∃yn(ϕ ∧ ψ), where

the occurrence of each yi is free in both ϕ and ψ, ϕ is a domain-independent first-order
formula with sig(ϕ) ⊆ Σ, and ψ is a CQ with sig(ψ) ∩Σ = ∅.



Let A be a satisfiable ABox w.r.t. (T , Σ) and let a be a tuple of individual names
from Ind(A) that is of the same length as x. Denote by ϕ(a) (ψ(a)) the formula ob-
tained from ϕ (respectively ψ) by substituting the occurrence of each free variable from
x by the corresponding individual name from a. ϕ(a) and ψ(a) may have more free
variables and these free variables are exactly y1, . . . , yn in both of these formulae. Us-
ing this fact and the domain-independence of ϕ(a), we conclude

T ,A |=c(Σ) ϑ(a) iff ∃b ⊆ Ind(A) such that T ,A |=c(Σ) ϕ(a, b) ∧ ψ(a, b), (1)

where ϕ(a, b) and ψ(a, b) are obtained from ϕ(a) and ψ(a) respectively by substitut-
ing b for y1, . . . , yn. Obviously,

T ,A |=c(Σ) ϕ(a, b) ∧ ψ(a, b) iff T ,A |=c(Σ) ϕ(a, b) and T ,A |=c(Σ) ψ(a, b). (2)

Now by the domain-independence of ϕ(a, b), sig(ϕ) ⊆ Σ, and the fact that any model
of (T , Σ) and A agrees on the extension of predicates in Σ with IA we obtain

T ,A |=c(Σ) ϕ(a, b) iff IA |= ϕ(a, b). (3)

So far we have assumed that T is either a DL-Lite-TBox or an EL-TBox. In the rest
of the proof we will distinguish between these two cases to show the desired results. In
both cases though, we make use of (1), (2), and (3).

C.1 DL-Lite

We know by Lemma 2 and [5] that there is some domain-independent first-order query
ψ′ such that for every satisfiable ABoxA w.r.t. (T , Σ) and every a ⊆ Ind(A), we have

T ,A |=c(Σ) ψ(a) iff IA |= ψ′[a]. (4)

Then by (1), (2), (3), and (4), we obtain

T ,A |=c(Σ) ϕ(a, b) ∧ ψ(a, b) iff IA |= ϕ(a, b) ∧ ψ′(a, b). (5)

Obviously,

IA |= ϕ(a, b) ∧ ψ′(a, b) iff IA |= ∃y1, . . .∃yn(ϕ ∧ ψ′)[a]. (6)

(1), (5), and (6) now imply the desired result for DL-Lite.

C.2 EL

By (1), (2), and (3), we have

T ,A |=c(Σ) ϑ(a) iff ∃b ⊆ Ind(A) such that IA |=c(Σ) ϕ(a, b) and T ,A |=c(Σ) ψ(a, b).

This suggests an algorithm for CQFO(Σ)-answering in EL. In particular, the algorithm
goes through all tuples b ⊆ Ind(A) until one that satisfies IA |= ϕ(a, b) and T ,A |=c(Σ)

ψ(a, b) can be found. There are polynomially many such tuples in the size of the data
since ϕ is fixed, IA |= ϕ(a, b) can be checked in AC0, and T ,A |=c(Σ) ψ(a, b) is stan-
dard CQ answering in EL, which can be done in PTIME. Hence for safe EL-TBoxes
with closed predicates, CQFO(Σ)-answering is in PTIME.


