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Abstract

In ontology-based data access (OBDA), ontologies are
used as an interface for querying instance data. Since in
typical applications the size of the data is much larger
than the size of the ontology and query, data complex-
ity is the most important complexity measure. In this
paper, we propose a new method for investigating data
complexity in OBDA: instead of classifying whole log-
ics according to their complexity, we aim at classify-
ing each individual ontology within a given master lan-
guage. Our results include a P/coNP-dichotomy theo-
rem for ontologies of depth one in the description logic
ALCFI, the equivalence of a P/coNP-dichotomy the-
orem for ALC/ALCI-ontologies of unrestricted depth
to the famous dichotomy conjecture for CSPs by Feder
and Vardi, and a non-P/coNP-dichotomy theorem for
ALCF -ontologies.

1 Introduction
In recent years, the use of ontologies to access instance
data has become increasingly popular (Poggi et al. 2008;
Dolby et al. 2008). The general idea is that an ontology pro-
vides an enriched vocabulary or conceptual model for the
application domain, thus serving as an interface for query-
ing instance data and allowing to derive additional facts. In
this emerging area, called ontology-based data access, it is
a central research goal to identify ontology languages for
which query answering scales to large amounts of instance
data. Since the size of the data is typically very large com-
pared to the size of the ontology and the size of the query,
the central measure for such scalability is provided by data
complexity—the complexity of query answering where only
the data is considered to be an input, but both the query and
the ontology are fixed.

In description logic (DL), ontologies take the form of a
TBox, instance data is stored in an ABox, and the most
important class of queries are conjunctive queries (CQs).
A fundamental observation regarding this setup is that, for
expressive DLs such as ALC and SHIQ, the complexity
of query answering is CONP-complete and thus intractable
(when speaking of complexity, we always mean data com-
plexity; references are given at the end of this section). The
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most popular strategy to avoid this problem is to replace
ALC and SHIQ with less expressive DLs that are Horn
in the sense that they can be embedded into the Horn frag-
ment of first-order (FO) logic. Horn DLs in this sense in-
clude logics from the EL and DL-Lite families as well as
Horn-SHIQ, a large fragment of SHIQ for which CQ-
answering is still in PTIME.

It thus seems that the data complexity of query answer-
ing in a DL context is well-understood. However, all re-
sults discussed above are on the level of logics, i.e., each
result concerns a class of TBoxes that is defined in a syn-
tactic way in terms of expressibility in a certain logic, but
no attempt is made to identify more structure inside these
classes. The aim of this paper is to advocate a fresh look
on the subject, by taking a novel approach. Specifically, we
initiate a non-uniform study of the complexity of query an-
swering by considering data complexity on the level of in-
dividual TBoxes. We say that CQ-answering w.r.t. a TBox
T is in PTIME if for every CQ q, there is a PTIME algo-
rithm that computes, given an ABox A, the answers to q in
A w.r.t. T ; CQ-answering w.r.t. T is CONP-hard if there ex-
ists a Boolean CQ q such that it is CONP-hard to answer q
in ABoxes A w.r.t. T . Other complexities can be defined
similarly. The ultimate goal of our approach is as follows:

For a fixed master DL L, classify all TBoxes T in L accord-
ing to the complexity of CQ-answering w.r.t. T .

In this paper, we consider as master DLs the basic expres-
sive DL ALC, its extensions ALCI with inverse roles and
ALCF with functional roles, and their union ALCFI. It
turns out that, even for ALC, fully achieving the above goal
is far beyond the scope of a single research paper. In fact,
we show that a full classification of the complexity ofALC-
TBoxes is essentially equivalent to a full classification of the
complexity of non-uniform constraint satisfaction problems
with finite templates (CSPs). The latter is a major research
programme ongoing for many years that combines complex-
ity theory, graph theory, logic, and algebra; see below for
references and additional details.

In the current paper, we mainly concentrate on un-
derstanding the boundary between PTIME and CONP-
hardness of CQ-answering w.r.t. DL TBoxes, mostly ne-
glecting other relevant classes such as AC0, LOGSPACE, and
NLOGSPACE. Our main results are as follows.



1. There is a PTIME/coNP-dichotomy for CQ-answering
w.r.t. ALCFI-TBoxes of depth one, i.e., TBoxes in which
existential/universal restrictions are not nested.

Note that this is a relevant case since most TBoxes from
practical applications have depth one. In particular, all
TBoxes formulated in DL-Lite and its extensions pro-
posed in (Calvanese et al. 2006; Artale et al. 2009) have
depth one, and the same is true for more than 85 per-
cent of all TBoxes in the TONES ontology repository
(http://owl.cs.manchester.ac.uk/repository/).

2. There is a PTIME/coNP-dichotomy for CQ-answering
w.r.t. ALC-TBoxes if and only if Feder and Vardi’s di-
chotomy conjecture for CSPs is true; the same holds for
ALCI-TBoxes.

The proof of this result establishes the close link between
CQ-answering in ALC and CSP that was mentioned above.
While dichotomy questions are mainly of theoretical inter-
est, linking these two worlds is potentially very relevant also
for applied DL research.

3. There is no PTIME/CONP-dichotomy for CQ-answering
w.r.t. ALCF-TBoxes (unless PTIME = NP).

This is proved by showing that, for every problem in coNP,
there is an ALCF-TBox for which CQ-answering has the
same complexity (up to polytime reductions); it then re-
mains to apply Ladner’s Theorem, which guarantees the
existence of NP-intermediate problems. Consequently, we
cannot expect an exhaustive classification of the complexity
of CQ-answering w.r.t. ALCF-TBoxes.

To prove these results, we introduce two new notions that
are of independent interest and general utility. The first one
is materializability of a TBox T , which means that answer-
ing a CQ over an ABox A w.r.t. T can be reduced to query
evaluation in a single model of A and T . Note that such
models play a crucial role in the context of Horn DLs, where
they are often called least models or canonical models. In
contrast to the Horn DL case, however, we only require the
existence of such a model without making any assumptions
about its form or construction.

4. If an ALCFI-TBox T is not materializable, then CQ-
answering w.r.t. T is CONP-hard.

Perhaps in contrary to the intuitions that arise from the ex-
perience with Horn-DLs, materializability of a TBox T is
not a sufficient condition for CQ-answering w.r.t. T to be
in PTIME (unless PTIME = NP). This leads us to study the
notion of unraveling tolerance of a TBox T , meaning that
answers to tree-shaped CQs over an ABox A w.r.t. T are
preserved under unraveling the ABoxA. In CSP, unraveling
tolerance corresponds to the existence of tree obstructions,
a notion that characterizes the well-known arc consistency
condition (Krokhin 2010; Dechter 2003). It can be shown
that every TBox formulated in Horn-ALCFI (the intersec-
tion of ALCFI and Horn-SHIQ) is unraveling tolerant
and that there are unraveling tolerant TBoxes which are not
equivalent to any Horn-ALCFI-TBox. Thus, the following

result yields a rather general (and uniform!) PTIME upper
bound for CQ-answering.

5. If an ALCFI-TBox T is unraveling tolerant, then CQ-
answering w.r.t. T is in PTIME.

Although the above result is rather general, unraveling tol-
erance of a TBox T is not a necessary condition for CQ-
answering w.r.t. T to be in PTIME (unless PTIME = NP).
However, for ALCFI-TBoxes T of depth one, being ma-
terializable and being unraveling tolerant turns out to be
equivalent. We thus obtain that CQ-answering w.r.t. T is
in PTIME iff T is materializable iff T is unraveling toler-
ant while, otherwise, CQ-answering w.r.t. T is CONP-hard.
This establishes the first main goal above.

Our framework also allows to formally capture some in-
tuitions and beliefs commonly held in the context of CQ-
answering in DLs. For example, we show that for every
ALCFI-TBox T , CQ-answering is in PTIME iff answer-
ing positive existential queries is in PTIME iff answering
ELI-instance queries (tree-shaped CQs) is in PTIME. This
implies that all results mentioned above apply not only to
CQ answering, but also to answering queries in any of these
other languages. In fact, the use of multiple query languages
and in particular of ELI-instance queries does not only yield
additional results, but is also at the heart of our proof strate-
gies, which would not work for CQs alone.

Another interesting observation in this spirit is that an
ALCFI-TBox is materializable iff it is convex, a condi-
tion that is also called the disjunction property and plays
a central role in attaining PTIME complexity for standard
reasoning in Horn DLs such as EL, DL-Lite, and Horn-
SHIQ; see for example (Baader, Brandt, and Lutz 2005;
Krisnadhi and Lutz 2007) for more details..

Most proofs are deferred to the long version, available at
http://www.csc.liv.ac.uk/∼frank/publ/publ.html.

Related Work
An early reference on data complexity in DLs is (Schaerf
1993), showing CONP-hardness of instance queries in the
moderately expressive DL ALE . A CONP upper bound
for instance queries in the much more expressive SHIQ
was obtained in (Hustadt, Motik, and Sattler 2007) and
generalized to CQs in (Glimm et al. 2008). Horn-SHIQ
was first defined in (Hustadt, Motik, and Sattler 2007),
where also a PTIME upper bound for instance queries is
established; the generalization to CQs can be found in
(Eiter et al. 2008). See also (Krisnadhi and Lutz 2007;
Calvanese et al. 2006) and references therein for data com-
plexity in DLs and (Barany, Gottlob, and Otto 2010; Baget
et al. 2011) for related work beyond standard DLs.

To the best of our knowledge, the current paper presents
the first study of data complexity in OBDA at the level of in-
dividual TBoxes and the first formal link between OBDA
and CSP. There is, however, a vague technical similarity
to the link between view-based query processing for regu-
lar path queries (RPQs) and CSP found in (Calvanese et al.
2000; 2003b; 2003a). In this case, the recognition problem



for perfect rewritings for RPQs can be polynomially reduced
to non-uniform CSP and vice versa.

The work on CSP dichotomies started with Schaefer’s
PTIME/NP-dichotomy theorem, stating that every binary
CSP is in PTIME or NP-hard (Schaefer 1978). Here, a bi-
nary CSP is defined by a relational structure B whose do-
main consists of two elements and the problem is to decide
for a given relational structure C over the same relation sym-
bols, whether there is a homomorphism from C to B. To ap-
preciate Schaefer’s result, recall that Ladners theorem guar-
antees, in general, the existence of problems that are NP-
intermediate and thus neither in PTIME nor NP-hard, un-
less PTIME = NP (Ladner 1975). Schaefer’s theorem was
followed by a dichotomy result for CSPs with graph tem-
plates (Hell and Nesetril 1990) and the seminal Feder-Vardi
PTIME/NP-dichotomy conjecture for all CSPs (Feder and
Vardi 1993), confirmed for ternary CSPs in (Bulatov 2002).
Interesting results have also been obtained for other com-
plexity classes such as AC0 (Allender et al. 2005; Larose,
Loten, and Tardif 2007). The state of the art is summa-
rized, for example, in (Bulatov, Jeavons, and Krokhin 2005;
Kun and Szegedy 2009; Bulatov 2011).

2 Preliminaries
We start with introducing the DL ALC and its extensions
ALCI and ALCFI. As usual, we use NC, NR, and NI to
denote countably infinite sets of concept names, role names,
and individual names, respectively. ALC-concepts are con-
structed according to the rule

C,D := > | ⊥ | A | C uD | C tD | ¬C | ∃r.C | ∀r.C
where A ranges over NC and r ranges over NR. ALCI-
concepts admit, in addition, inverse roles from the set N−R =
{r− | r ∈ NR}. To avoid heavy notation, we set r− = s
if r = s− for a role name s. An ALC-TBox is a finite set
of concept inclusions (CIs) C v D, where C,D are ALC-
concepts, and likewise for ALCI-TBoxes. An ALCFI-
TBox is an ALCI-TBox that additionally admits function-
ality assertions func(r), where r ∈ NR ∪ N−R .

An ABox A is a finite set of assertions of the form A(a)
and r(a, b) with A ∈ NC, r ∈ NR, and a, b ∈ NI. In some
cases, we drop the finiteness condition on ABoxes and then
explicitly speak about infinite ABoxes. We use Ind(A) to
denote the set of individual names used in the ABox A and
sometimes write r−(a, b) ∈ A instead of r(b, a) ∈ A.

The semantics of DLs is given by interpretations I =
(∆I , ·I), where ∆I is a non-empty set and ·I maps each
concept nameA ∈ NC to a subsetAI of ∆I , each role name
r ∈ NR to a binary relation rI on ∆I , and each individual
name a to an element aI ∈ ∆I . We make the unique name
assumption, i.e., aI 6= bI whenever a 6= b. The extension
CI ⊆ ∆I of a concept C under the interpretation I is de-
fined as usual, see (Baader et al. 2003). For the purposes of
this paper, it is often convenient to work with interpretations
that interpret only some individual names, but not all. In this
case, we use Ind(I) to denote the set of individual names
interpreted by I.

We say that I satisfies a CI C v D if CI ⊆ DI , an asser-
tion A(a) if a ∈ Ind(I) and aI ∈ CI , an assertion r(a, b)

if a, b ∈ Ind(I) and (aI , bI) ∈ rI , and a functionality as-
sertion func(r) if rI is a function. Finally, I is a model of
a TBox T (ABox A) if it satisfies all inclusions in T (all
assertions in A). The class of all models of T and A is de-
noted by Mod(T ,A). We call an ABoxA consistent w.r.t. a
TBox T if Mod(T ,A) 6= ∅.

Throughout this paper, we consider several query lan-
guages which can all be seen as fragments of positive exis-
tential queries (PEQs). A PEQ q(~x) is a first-order formula
with free variables ~x constructed from atoms A(t), r(t, t′),
and t = t′, (where A ∈ NC, r ∈ NR, and t, t′ range over
individual names and variables) using conjunction, disjunc-
tion, and existential quantification. The variables in ~x are
the answer variables of q. A PEQ without answer variables
is Boolean. We say that a tuple~a ⊆ Ind(A) of the same arity
as ~x is an answer to q(~x) in an interpretation I if I |= q[~a],
where q[~a] results from replacing the answer variables ~x in
q(~x) with ~a. Moreover, ~a is a certain answer to q(~x) in A
w.r.t. T , in symbols (T ,A) |= q(~a), if I |= q[~a] for all
I ∈ Mod(T ,A). The set of all certain answers is denoted
with certT (q,A) = {~a | (T ,A) |= q(~a)}.

For Boolean queries q, we write (T ,A) |= q instead
of certT (q,A) = {()} with () the empty tuple; we then
speak of deciding (T ,A) |= q rather than of computing
certT (q,A).

Example 1. (1) Let Tr = {∃r.A v A} and q0(x) = A(x).
For any ABox A, certTr (q0,A) is the set of all a ∈ Ind(A)
such that there is an r-path in A from a to some b with
A(b) ∈ A; i.e., there are r(a0, a1), . . . , r(an−1, an) ∈ A,
n ≥ 0, with a0 = a, an = b, and A(b) ∈ A.

(2) Consider an undirected graph represented as an ABox
Awith assertions r(a, b), r(b, a) ∈ A iff there is an edge be-
tween a and b. Let A1, . . . , Ak,M be fresh concept names.
Then A is k-colorable iff (Tk,A) 6|= ∃x.M(x), where

Tk = {Ai uAj vM | 1 ≤ i < j ≤ k}∪
{Ai u ∃r.Ai vM | 1 ≤ i ≤ k}∪
{> v t

1≤i≤k
Ai}.

a

As additional query languages, we consider conjunctive
queries (CQs), which are PEQs without disjunction, as well
as the following two weaker languages that are frequently
used in an OBDA context.

Recall that EL-concepts are constructed from NC and
NR using conjunction, existential restriction, and the >-
concept (Baader, Brandt, and Lutz 2005). ELI-concepts
additionally admit inverse roles. If C is an ELI-concept
and a ∈ NI, then C(a) is called an ELI-query (ELIQ); if C
is an EL-concept, then C(a) is called an EL-query (ELQ).
Note that every ELIQ (and, therefore, every ELQ) can be
regarded as an acyclic Boolean CQ. For example, the ELIQ
∃r.(A u ∃s−.B)(a) is equivalent to the Boolean CQ

∃x∃y.(r(a, x) ∧A(x) ∧ s(y, x) ∧B(y)).

In what follows, we will not distinguish between an ELIQ
and its translation into a Boolean CQ and freely apply no-
tions introduced for PEQs also to ELIQs and ELQs.



For an ABox A, we denote by IA the interpretation with
∆IA = Ind(A), aIA = a for all a ∈ Ind(A), and

AI = {a | A(a) ∈ A}
rI = {(a, b) | r(a, b) ∈ A}

for any A ∈ NC and r ∈ NR. Note that Ind(I) = Ind(A).
In what follows, we sometimes slightly abuse notation

and use PEQ to denote the set of all first-order queries, and
likewise for CQ, ELIQ, and ELQ. We now introduce the
main notions investigated in this paper.

Definition 2 (Complexity). Let T be anALCFI-TBox and
let Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then

• Q-answering w.r.t. T is in PTIME if for every q(~x) ∈
Q, there is a polytime algorithm that computes, given an
ABox A, the set certT (q,A);

• Q-answering w.r.t. T is CONP-hard if there is a Boolean
q ∈ Q such that, given an ABox A, it is coNP-hard to
decide whether (T ,A) |= q.

Note that Q-answering w.r.t. T is in PTIME iff for every
Boolean query q ∈ Q, there is a polytime algorithm decid-
ing, given an ABox A, whether (T ,A) |= q. We give some
examples that illustrate the above notions.

Example 3. (1) CQ-answering w.r.t. Tr from Example 1 is
in PTIME since for any ABox A, certTr (q,A) can be com-
puted as follows. Let A′ by the ABox obtained from A by
adding A(a) toA if there is an r-path from a to some b with
A(b) ∈ A. Then certTr (q,A) = {~a | IA′ |= q(~a)} can
be computed in PTIME (actually in AC0) by evaluating the
PEQ q in the structure IA′ .

(2) Consider the TBoxes Tk from Example 3 that express
k-colorability . For k ≥ 3, CQ-answering w.r.t. Tk is CONP-
hard since k-colorability is NP-hard. However, in contrast
to the tractability of 2-colorability, CQ-answering w.r.t. T2 is
CONP-hard as well. This follows from Theorem 11 below
and, intuitively, is the case because T2 ‘entails a disjunction’:
for A = {B(a)}, we have (T2,A) |= A1(a) ∨ A2(a), but
neither (T2,A) |= A1(a) nor (T2,A) |= A2(a). a
Interestingly, PTIME upper bounds (and the observations in
Example 3) do not depend on whether we consider PEQs,
CQs, or ELIQs.

Theorem 4. For all ALCFI-TBoxes T ,

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering
w.r.t. T is in PTIME iff ELIQ-answering w.r.t. T is in
PTIME.

2. ELIQ-answering w.r.t. T is in PTIME iff ELQ-answering
w.r.t. T is in PTIME, provided that T is an ALCF-ABox.

The proof is based on Theorems 9 and 11 below. Theorem 4
gives a uniform explanation for the fact that, in the tradi-
tional logic-centered approach to data complexity in OBDA,
the complexity of answering PEQs, CQs, and ELIQs has
turned out to be identical for many DLs. It allows us to
(sometimes) speak of the ‘complexity of query answering’
without reference to a concrete query language.

3 Materializability
We introduce materializability of a TBox T as a central tool
for analyzing the complexity of query answering. Our main
result is that non-materializability of a TBox is a sufficient
condition for query answering being CONP-hard.
Definition 5 (Materializable). Let T be an ALCFI-TBox
and Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then,
• a model I of T and an ABox A is a Q-materialization of
T andA if for all queries q(~x) ∈ Q and potential answers
~a ⊆ Ind(A), we have I |= q[~a] iff (T ,A) |= q(~a);
• T isQ-materializable if for every ABox A that is consis-

tent w.r.t. T , there is a Q-materialization of T and A.
It can be proved that, in Example 3 (1), the interpretation
IA′ is a PEQ-materialization of Tr and A. Note that a Q-
materialization can be viewed as a more abstract version of a
canonical model as often used in the context of ‘Horn DLs’
such as EL and DL-Lite (Lutz, Toman, and Wolter 2009;
Kontchakov et al. 2010). In fact, the ELQ-materialization in
the next example is exactly the ‘compact canonical model’
from (Lutz, Toman, and Wolter 2009).
Example 6. Let T = {A v ∃r.A} and A be an ABox with
at least one assertion of the form A(a). To obtain an ELQ-
materializationMA of T andA, start with the interpretation
IA, add a fresh domain element dr, and set

AMA = AIA ∪ {dr}
rMA = rIA ∪ {(a, dr) | A(a) ∈ A} ∪ {(dr, dr)}. a

Trivially, a PEQ-materialization is a CQ-materialization is
an ELIQ-materialization is an ELQ-materialization. We
show below as part of Lemma 8 that the converse holds
for the CQ-PEQ case. However, the following example
demonstrates that ELQ-materializations are different from
ELIQ-materialization. A similar argument separates ELIQ-
materializations from CQ-materializations.
Example 7. Let T be as in Example 6,

A = {B1(a), B2(b), A(a), A(b)} and
q = (B1 u ∃r.∃r−.B2)(a),

Then the ELQ-materialization MA from Example 6 is not
a Q-materialization for any Q ∈ {ELIQ,CQ,PEQ}. For
example, we have MA |= q, but (T ,A) 6|= q. An
ELIQ/CQ/PEQ-materialization of T and A is obtained by
unfolding MA: instead of using only one additional indi-
vidual dr as a witness for ∃r.A, we attach to both a ad b an
infinite r-path of elements that satisfy A. Note that every
CQ/PEQ-materialization of Tr and A must be infinite. a
Before linking materializations to the complexity of query
answering, we characterize them semantically in terms of
simulations and homomorphisms. This is interesting in
its own right and establishes a close connection between
materialization and initial models as studied in model the-
ory, algebraic specification, and logic programming (Mal-
cev 1971; Meseguer and Goguen 1985; Makowsky 1987).
It also allows us to show that, despite the discrepancies be-
tween materializations for different query languages pointed
out above, materializability coincides for PEQs, CQs, and
ELIQs (and ELQs when the TBox is formulated in ALCF).



Analyzing Materializability
A simulation from an interpretation I1 to an interpretation
I2 is a relation S ⊆ ∆I ×∆I such that

1. for all A ∈ NC: if d1 ∈ AI1 and (d1, d2) ∈ S, then
d2 ∈ AI2 ;

2. for all r ∈ NR: if (d1, d2) ∈ S and (d1, d
′
1) ∈ rI1 ,

then there exists d′2 ∈ ∆I2 such that (d′1, d
′
2) ∈ S and

(d2, d
′
2) ∈ rI2 ;

3. for all a ∈ Ind(I1): a ∈ Ind(I2) and (aI1 , aI2) ∈ S.

We call S an i-simulation if Condition 2 is satisfied also for
inverse roles and a homomorphism if S is a function. An
interpretation I is called hom-initial in a class K of inter-
pretations if for every J ∈ K, there exists a homomorphism
from I to J . I is called sim-initial (i-sim-initial) in a class
K of interpretations if for every J ∈ K, there exists a simu-
lation (i-simulation) from I to J .

An interpretation I is generated if every d ∈ ∆I is reach-
able from some aI , a ∈ Ind(I), in the undirected graph
(∆I , {{d, d′} | (d, d′) ∈

⋃
r∈NR

rI}). The next result re-
lates simulations and homomorphisms to materializations.

Lemma 8. Let T be an ALCFI-TBox, A an ABox, and
I ∈ Mod(T ,A). Then I is

1. an ELIQ-materialization of T and A iff it is i-sim-initial
in Mod(T ,A);

2. a CQ-materialization of T and A iff it is a PEQ-
materialization of T and A iff it is hom-initial in
Mod(T ,A), provided that I is countable and generated;

3. an ELQ-materialization of T and A iff it is sim-initial in
Mod(T ,A), provided that T is an ALCF-TBox.

Proof. (Sketch) The proofs of “⇐” are straightforward since
matches of PEQs, CQs, and ELIQs are preserved under i-
simulations and homomorphisms, and matches of ELQs are
preserved under simulations. We thus concentrate on “⇒”.

(1) Assume I is an ELIQ-materialization and let J ∈
Mod(T ,A). If J has finite outdegree, an i-simulation from
I to J can be constructed in the same way as in standard
proofs showing that simulations characterize the expressive
power of EL-concepts (Lutz, Piro, and Wolter 2011). If J
has infinite outdegree, then one can construct a selective un-
folding J ∗ ∈ Mod(T ,A) of J whose outdegree is finite
and such that there is a homomorphism from J ∗ to J . It
remains to compose an i-simulation from I to J ∗ with the
homomorphism from J ∗ to J .

For (2), we show that any countable and generated
CQ-materialization is hom-initial. If I is such a CQ-
materialization and J ∈ Mod(T ,A), then by the semantics
of CQs we can find a homomorphism from any finite subin-
terpretation of I to J . If J is of finite outdegree, we can
assemble all those homomorphisms into a homomorphism
from I to J in a direct way (using that I is countable and
generated). For J of non-finite outdegree, we compose the
homorphism from I to J ∗ with the homomorphism from
J ∗ to J , with J ∗ constructed as in (1). The claim for
ALCF-TBoxes is proved similarly to (1). o

In Point 2 of Lemma 8, we cannot drop the condition that I
is generated without losing correctness, please see the long
version for details. It is open whether the same is true for
countability.

We now show that materializability coincides for the
query languages studied in this paper.
Theorem 9. Let T be an ALCFI-TBox. Then

1. T is PEQ-materializable iff T is CQ-materializable iff T
is ELIQ-materializable;

2. the above is the case iff Mod(T ,A) contains a hom-initial
I for every ABox A iff Mod(T ,A) contains an i-sim-
initial I for every ABox A;

3. the above is the case iff T is ELQ-materializable iff
Mod(T ,A) contains a sim-initial I for every ABox A,
provided that T is an ALCF-TBox.

This theorem is essentially a consequence of Lemma 8. The
proof of “⇐” in Point 2 employs a selective unfolding tech-
nique (similar to the one used in the the proof of Lemma 8)
to transform an i-simulation into a homomorphism. Due to
this technique, the conditions of generatedness and count-
ability from Point 2 of Lemma 8 can be avoided in Theo-
rem 9.

Because of Theorem 9, we sometimes speak of material-
izability without reference to a query language and of mate-
rializations instead of PEQ-materializations. Interestingly,
materializability turns out to (also) be equivalent to the dis-
junction property, which is sometimes also called convexity
and plays a central role in attaining PTIME complexity for
standard reasoning in DLs (Baader, Brandt, and Lutz 2005).
This observation will be useful for the proof of our main
theorem below.

A TBox T has the ABox disjunction property if for all
ABoxes A and ELIQs C1(a1), . . . , Cn(an), it follows from
(T ,A) |= C1(a1)∨ . . . ∨Cn(an) that (T ,A) |= Ci(ai) for
some i ≤ n.
Theorem 10. An ALCFI-TBox T is materializable iff it
has the disjunction property.
Proof. For the nontrivial “⇐” direction, let A be an ABox
that is consistent w.r.t. T and such that there is no ELIQ-
materialization of T andA. Then T ∪A∪Γ is not satisfiable,
where

Γ = {¬C(a) | (T ,A) 6|= C(a), a ∈ Ind(A), C(a) ELIQ}.
In fact, any satisfying interpretation would be an ELIQ-
materialization. By compactness, there is a finite subset Γ′

of Γ such that T ∪ A ∪ Γ′ is not satisfiable, i.e. (T ,A) |=∨
¬C(a)∈Γ′ C(a). By definition of Γ′, (T ,A) 6|= C(a), for

all ¬C(a) ∈ Γ′. Thus, T lacks the ABox disjunction prop-
erty. o

Materializability and CONP-hardness
Based on Theorems 9 and 10, we now establish the main
result on materializability.
Theorem 11. If an ALCFI-TBox T (ALCF-TBox T ) is
not materializable, then ELIQ-answering (ELQ-answering)
is CONP-hard w.r.t. T .



The proof exploits failure of the ABox disjunction property
to generalize the reduction of 2+2-SAT used in (Schaerf
1993) to show that ELQ-answering in a variant of EL is
CONP-hard.

The converse of Theorem 11 fails, i.e., there are TBoxes
that are materializable, but for which ELIQ-answering is
CONP-hard. In fact, materializations of such a TBox T and
ABox A are guaranteed to exist, but cannot always be com-
puted in PTIME (unless PTIME = CONP). Technically, this
follows from Theorem 20 later on which states that for ev-
ery non-uniform CSP, there is a materializable ALC-TBox
for which Boolean CQ-answering has the same complexity,
up to complementation of the complexity class.

Theorem 11 also allows us to prove Theorem 4 (for this
purpose, it is crucial for Theorem 11 to refer to ELIQs and
ELQs rather than CQs or PEQs).
Proof of Theorem 4 (sketch). By Theorem 11, it is suffi-
cient to consider materializable TBoxes when proving The-
orem 4. To show, for example, that if CQ-answering w.r.t. T
is in PTIME then PEQ-answering w.r.t. T is in PTIME, one
can first transform a PEQ q(~x) into an equivalent union of
CQs t

i∈I
qi(~x). CQ-materializability of T implies that, for

any ABox A, we have certT (q,A) =
⋃
i∈I certT (qi,A).

It thus remains to note that each set certT (qi,A) can be
computed in PTIME. The remaining reductions are more
involved, but based on similar ideas.

4 Unraveling Tolerance
We develop a condition on TBoxes, called unraveling tol-
erance, that is sufficient for PTIME query answering and
strictly generalizes syntactic ‘Horn conditions’ such as the
ones used to define the DL Horn-SHIQ, which was de-
signed as a maximal DL with PTIME query answering (Hus-
tadt, Motik, and Sattler 2007; Eiter et al. 2008). Unraveling
tolerance is based on an unraveling operation on ABoxes, in
the same spirit as the well-known unraveling of an interpre-
tation into a tree interpretation. More precisely, the unrav-
eling Au of an ABox A is the following (possibly infinite)
ABox:

• Ind(Au) is the set of sequences b0r0b1 · · · rn−1bn, n ≥ 0,
with b0, . . . , bn ∈ Ind(A) and r0, . . . , rn−1 ∈ NR ∪ N−R
such that for all i < n, we have ri(bi, bi+1) ∈ A and
(bi−1, r

−
i−1) 6= (bi+1, ri) when i > 0;

• for each C(b) ∈ A and α = b0 · · · bn ∈ Ind(Au) with
bn = b, we have C(α) ∈ Au;

• for each α = b0r0 · · · rn−1bn ∈ Ind(Au) with n > 0, we
have rn−1(b0 · · · bn−1, α) ∈ Au.

For all α = b0 · · · bn ∈ Ind(Au), we write tail(α) to de-
note bn. Note that the condition (bi−1, r

−
i−1) 6= (bi+1, ri) is

needed to ensure that functional roles can still be interpreted
in a functional way after unraveling.

Definition 12 (Unraveling Tolerance). A TBox T is unrav-
eling tolerant if for all ABoxesA and ELIQs q, we have that
(T ,A) |= q implies (T ,Au) |= q.

It is not hard to prove that the converse direction ‘(T ,Au) |=
q implies (T ,A) |= q’ is true for allALCFI-TBoxes. Note
that it makes no sense to define unraveling tolerance for
queries that are not necessarily tree shaped, such as CQs.
Example 13. (1) The ALC-TBox T1 = {A v ∀r.B} is un-
raveling tolerant. This can be proved by showing that (i) for
any (finite or infinite) ABox A, the interpretation I+

A that is
obtained from IA by setting BI

+
A = BIA ∪ (∃r−.A)IA is

an ELIQ-materialization of T1 and A; and (ii) I+
A |= C(a)

iff I+
Au |= C(a) for all ELIQs C(a). The proof of (ii) is

based on a simple induction on the structure of the ELI-
concept C. As witnessed by the ABox A = {r(a, b), A(a)}
and ELIQ B(b), the use of inverse roles in the definition of
Au is crucial here despite the fact that T1 does not use in-
verse roles.

(2) A simple example for anALC-TBox that is not unrav-
eling tolerant is T2 = {A u ∃r.A v B,¬A u ∃r.¬A v B}.
For A = {r(a, a)}, it is easy to see that we have (T2,A) |=
B(a) (use a case distinction on the truth value of A at a!),
but (T2,Au) 6|= B(a). a
Before we show that unraveling tolerance indeed implies
PTIME query answering, we first demonstrate the gener-
ality of this property by relating it to Horn-ALCFI, the
ALCFI-fragment of Horn-SHIQ. Different versions of
Horn-SHIQ have been proposed in the literature, giving
rise to different versions of Horn-ALCFI (Hustadt, Motik,
and Sattler 2007; Krötzsch, Rudolph, and Hitzler 2007;
Eiter et al. 2008; Kazakov 2009). As the original definition
from (Hustadt, Motik, and Sattler 2007) based on polarity
is rather technical, we prefer to work with the following,
more direct syntax. A Horn-ALCFI-TBox has the form
T = {> v CT } ∪ F , where F is a set of functionality
assertions and CT is built according to the topmost rule in

R,R′ ::=> | ⊥ | A | ¬A | R uR′ | L→ R | ∃r.R | ∀r.R
L,L′ ::=> | ⊥ | A | L u L′ | L t L′ | ∃r.L

where r ranges over NR ∪ N−R and L → R := ¬L t R. By
applying some simple transformations, it is not hard to show
that every Horn-ALCFI-TBox according to the original,
polarity-based definition is equivalent to a Horn-ALCFI-
TBox of the form introduced here. Although not important
in our context, we note that even a polytime transformation
is possible.
Theorem 14.
Every Horn-ALCFI-TBox is unraveling tolerant.

Proof. (hint) Based on a generalization of the argument in
Example 13 (1), where the ad hoc materialization I+

A is re-
placed with a systematically constructed canonical model of
T and A. o

Theorem 14 shows that unraveling tolerance and Horn logic
are closely related. Yet, the next example shows that there
are unraveling tolerant ALCFI-TBoxes that are not equiv-
alent to any Horn sentence of FO. Since any Horn-ALCFI-
TBox is equivalent to such a sentence, it follows that un-
raveling tolerant ALCFI-TBoxes strictly generalize Horn-
ALCFI-TBoxes. This increased generality will pay off in



Section 5 when we establish a dichotomy result for TBoxes
of depth one.
Example 15. Take the ALC-TBox

T = {∃r.(A u ¬B1 u ¬B2) v ∃r.(¬A u ¬B1 u ¬B2)}.

One can show as in Example 13 (1) that T is unraveling tol-
erant; here, the materialization is actually IA itself instead
of some I+

A , i.e., as far as ELIQ (and even PEQ) answer-
ing is concerned, T cannot be distinguished from the empty
TBox.

It is well-known that FO Horn sentences are preserved
under direct products of interpretations (Chang and Keisler
1990). To show that T is not equivalent to any such sen-
tence, it thus suffices to show that T is not preserved un-
der direct products. This is simple: let I1 and I2 con-
sist of a single r-edge between elements d and e, and let
e ∈ (AuB1 u¬B2)I1 and e ∈ (Au¬B1 uB2)I2 ; then the
direct product I of I1 and I2 still has the r-edge between
(d, d) and (e, e) and satisfies (e, e) ∈ (A u ¬B1 u ¬B2)I ,
thus is not a model of T . a
We now establish the PTIME upper bound for unraveling
tolerant TBoxes.
Theorem 16. If anALCFI-TBox T is unraveling tolerant,
then PEQ-answering w.r.t. T is in PTIME.
Proof.(sketch) Let T be unraveling tolerant. By Theorem 4,
it suffices to show that ELIQ-answering w.r.t. T is in PTIME.
Let A be an ABox and q = C0(a0) an ELIQ. Let cl(T , C0)
denote the closure under single negation of the set of sub-
concepts of T and C0. tp(T , C0) denotes the set of all
types (aka Hintikka sets or maximal consistent sets) over
cl(T , C0). A type assignment is a map Ind(A)→ 2tp(T ,q).

The PTIME algorithm for checking whether (T ,A) |= q
is based on the computation of a sequence of type assig-
ments π0, π1, . . . as follows. For every a ∈ Ind(A), π0(a)
is the set of types t ∈ tp(T , q) such that A(a) ∈ A im-
plies A ∈ t. Then, πi+1(a) is defined as the set of types
ta ∈ πi(a) such that for all r(a, b) ∈ A, r a role name
or the inverse thereof, there is a type tb ∈ πi(b) such
that ta  r tb, where we write ta  r tb if the follow-
ing conditions are satisfied: if C ∈ tb then ∃r.C ∈ ta,
for all ∃r.C ∈ cl(T , C0); if C ∈ ta then ∃r−.C ∈ tb,
for all ∃r−.C ∈ cl(T , C0); ∃r.C ∈ ta iff C ∈ tb, for
all ∃r.C ∈ cl(T , C0) with func(r) ∈ T ; ∃r−.C ∈ tb iff
C ∈ ta, for all ∃r−.C ∈ cl(T , C0) with func(r−) ∈ T .

Clearly, the sequence π0, π1, . . . stabilizes after at most
O(|A|) steps and can be computed in time polynomial in |A|
(since the cardinality of tp(T , q) is bounded by a constant).
Let π be the final type assignment in the sequence. In the
long version, we show that (T ,A) |= q iff C0 ∈ t for all
t ∈ π(a0). o

By Theorems 4 and 14 and since we actually exhibit a uni-
form algorithm for ELIQ-answering w.r.t. unraveling toler-
ant TBoxes, Theorem 16 also reproves the known PTIME
upper bound for CQ-answering in Horn-ALCFI (Eiter et
al. 2008).

By Theorems 11 and 16, unraveling tolerance implies ma-
terializability unless PTIME = NP. Based on the disjunc-

tion property, this implication can also be proved without the
side condition.

Lemma 17. Every unraveling tolerant ALCFI-TBox is
materializable.

The converse of Lemma 17 and, more generally, of The-
orem 16 fails (unless PTIME = NP). In fact, while un-
raveling tolerance is a sufficient condition for PTIME query
answering, it is not a necessary one. An example is given
in Section 6, where it is shown that the TBox T2 from Ex-
ample 1 that represents 2-colorability has PTIME query an-
swering, but is not unraveling tolerant.

The PTIME algorithm in Theorem 16 resembles the stan-
dard arc consistency algorithm for CSPs (Dechter 2003).
This link to CSPs can be formalized for ALCI-TBoxes us-
ing the templates IT ,q constructed in the proof of Theo-
rems 22 and 24 below: it is known that a CSP can be solved
using arc consistency iff it has tree obstructions (Krokhin
2010). Also, one can show that an ALCI-TBox T is unrav-
eling tolerant iff all templates IT ,q from Theorem 24 have
tree obstructions. Consequently, for any ALCI-TBox T ,
ELIQs can be answered using an arc consistency algorithm
iff T is unraveling tolerant.

5 Dichotomy for Depth One
We establish a dichotomy between PTIME and CONP for
TBoxes of depth one, i.e., sets of CIs C v D such that the
maximum nesting depth of the constructors ∃r.E and ∀r.E
in C and D is one.1 All examples given in the present paper
up to this point use TBoxes of depth one.

Our main observation is that, when the depth of TBoxes
is restricted to one, we can prove a converse of Theorem 17.

Theorem 18. Every materializable ALCFI-TBox of depth
one is unraveling tolerant.

Proof. (sketch) Let T be a materializable TBox of
depth one, A an ABox, and q an ELIQ with (T ,Au) 6|= q.
We have to show that (T ,A) 6|= q. It follows from
(T ,Au) 6|= q that Au is consistent w.r.t. T and thus there
is a materialization Iu for T and Au (even though Au can
be infinite, see long version). We have Iu 6|= q and our aim
is to convert Iu into a model I of T andA such that I 6|= q.
This is done in two steps.

As a preliminary to the first step, we note that Iu can be
assumed w.l.o.g. to have forest-shape, i.e., Iu can be con-
structed by selecting a tree-shaped interpretation Iα with
root α for each α ∈ Ind(Au), then taking the disjoint union
of all these interpretations, and finally adding role edges
(α, β) to rI

u

whenever r(α, β) ∈ Au. In fact, to achieve the
desired shape we can simply unravel Iu starting from the el-
ements Ind(Au) ⊆ ∆I

u

and then use Point 1 of Lemma 8
and the fact that there is an i-simulation from the unravel-
ing of Iu to Iu to show that the obtained model is still a
materialization of T and A.

1Our results even apply to TBoxes that have depth one af-
ter replacing all ELI-subconcepts with concept names, since
ELI-concept definitions do not affect the complexity of ELIQ-
answering. This captures >90% of the TONES repository TBoxes.



Now, step one of the construction is to uniformize Iu such
that for all α, β ∈ Ind(Au) with tail(α) = tail(β), the tree
component Iα of Iu is isomorphic to the tree component
Iβ of Iu. To achieve this while preserving the property that
Iu 6|= q, we rely on the self-similarity of the ABox Au: for
all α, β ∈ Ind(Au) with tail(α) = tail(β), we can find an
automorphism on Au that maps α to β.

Step two is to construct the desired model I of T and
the original ABox A, starting from the uniformized version
of Iu: take the disjoint union of all the tree components
Ia of Iu, with a ∈ Ind(A) (note that Ind(A) ⊆ Ind(Au)),
and add (a, b) to rI whenever r(a, b) ∈ A. Due to the uni-
formity of Iu, we can find an i-simulation from I to Iu.
Since matches of ELIQs are preserved under i-simulations,
Iu 6|= q thus implies I 6|= q. o

The desired dichotomy follows: If an ALCFI-TBox T of
depth one is materializable, then PEQ-answering w.r.t. T
is in PTIME by Theorems 18 and 16. Otherwise, ELIQ-
answering w.r.t. T is CONP-complete by Theorem 11.
Theorem 19 (Dichotomy). For every ALCFI-TBox T of
depth one, one of the following is true:

• Q-answering w.r.t. T is in PTIME for any Q ∈
{PEQ,CQ,ELIQ};

• Q-answering w.r.t. T is CONP-complete for any Q ∈
{PEQ,CQ,ELIQ}.

We close this section by a brief discussion of why analyzing
the complexity of query answering is easier for TBoxes of
depth one than for TBoxes of unrestricted depth, when there
is no such difference for other reasoning problems such as
subsumption. Of course, every TBox can be converted to a
TBox of depth one by introducing additional concept names
AC that replace compound concepts C which occur as an
argument in ∃r.C or ∀r.C. The trouble is that these concept
names can then be used in a CQ, which results in an ‘import’
ofC into the query language. This is obviously problematic,
for example when C has the form ∀r.D, which is otherwise
not expressible as a CQ. In the next section, we will use this
effect to reduce CSPs to query answering with TBoxes of
depth > 1.

6 Query Answering in ALC/ALCI = CSP
We show that query answering w.r.t. ALC- and ALCI-
TBoxes has the same computational power as non-uniform
CSPs in the following sense: (i) for every CSP, there is an
ALC-TBox such that query answering w.r.t. T is of the same
complexity, up to complementation; conversely, (ii) for ev-
ery ALCI-TBox T and ELIQ q, there is a CSP that has
the same complexity as answering q w.r.t. T , up to com-
plementation. This has many interesting consequences, a
main one being that the Feder-Vardi conjecture holds if and
only if there is a PTIME/CONP-dichotomy for query an-
swering w.r.t. ALC-TBoxes (equivalently ALCI-TBoxes).
All this is true already for materializable TBoxes. By The-
orem 4 and since we carefully choose the appropriate query
language in each technical result below, it is true for any
of the languages ELIQ, CQ, and PEQ (and ELQ for ALC-
TBoxes).

We begin by introducing non-uniform CSPs. Since ev-
ery non-uniform CSP is polynomially equivalent to a non-
uniform CSP with one binary predicate (Feder and Vardi
1993), we consider CSPs over unary and binary predicates
(concept names and role names), only. A signature Σ is a
finite set of concept and role names. An interpretation I
is a Σ-interpretation if Ind(I) = ∅ and XI = ∅ for all
X ∈ (NC ∪ NR) \ Σ. For two finite Σ-interpretations I and
I ′, we write Hom(I ′, I) if there is a homomorphism from I ′
to I. Any Σ-interpretation I gives rise to the following non-
uniform constraint satisfaction problem in signature Σ, de-
noted by CSP(I): given a finite Σ-interpretation I ′, decide
whether Hom(I ′, I). Numerous algorithmic problems can
be given in the form CSP(I). For example, k-colorability
is CSP(Ck), where Ck is an {r}-interpretation defined by
setting ∆Ck = {1, . . . , k} and rCk = {(i, j) | i 6= j}.2

We first show how to convert a CSP into a (materializable)
ALC-TBox. For a Σ-interpretation I, AI denotes I viewed
as an ABox: AI = {A(ad) | A ∈ Σ ∩ NC ∧ d ∈ AI}∪
{r(ad, ae) | r ∈ Σ ∩ NR ∧ (d, e) ∈ rI}.
Theorem 20. For every non-uniform constraint satisfaction
problem CSP(I) in signature Σ, one can compute (in poly-
time) a materializable ALC-TBox TI such that

1. Hom(J , I) iff AJ is consistent w.r.t. TI , for all Σ-inter-
pretations J ;

2. for any Boolean PEQ q, answering q w.r.t. TI is polynomi-
ally reducible (in fact, FO-reducible) to the complement
of CSP(I).

Note that CSP(I) and TI ‘have the same complexity’ in
the following sense: by Point 1 of Theorem 20, CSP(I) re-
duces to consistency of ABoxes w.r.t. TI ; since an ABox A
is consistent w.r.t. TI iff (TI ,A) 6|= A(a) with A a fresh
concept name and a ∈ Ind(A), this also yields a reduc-
tion from the complement of CSP(I) to ELQ-answering
w.r.t. TI ; conversely, Point 2 ensures that (Boolean) PEQ-
answering w.r.t. TI reduces to the complement of CSP(I).
All reductions are extremely simple, in polytime and in fact
even FO-reductions.

Our approach to proving Theorem 20 is to generalize the
reduction of k-colorability to query answering w.r.t. ALC-
TBoxes discussed in Examples 1 and 3, where the main
challenge is to overcome the observation from Example 3
that PTIME CSPs such as 2-colorability may be translated
into CONP-hard TBoxes. Note that this is due to the dis-
junction in the TBox Tk of Example 1, which causes non-
materializability. Our solution is to replace the concept
names A1, . . . , Ak in Tk with compound concepts that are
‘invisible to the query’, behaving essentially like second-
order variables. Unlike the original depth one TBox Tk, the
resulting TBox is of depth three.

In detail, fix a constraint satisfaction problem CSP(I),
reserve a concept name Zd and role names rd, sd for any
d ∈ ∆I , and set

T = {> v ∃rd.>,> v ∃sd.Zd | d ∈ ∆I}
Hd = ∀rd.∃sd.¬Zd, d ∈ ∆I

2Although the input to CSP(Ck) formally is a digraph, it is
treated like an undirected graph.



The following shows that we can use the concepts Hd as
unary predicates to represent the ‘values’ of CSP(I) (these
values are the domain elements of I).
Lemma 21. For every ABox A and family of sets
Id ⊆ Ind(A), d ∈ ∆I , there is a materialization J of T
and A such that HJd = Id for all d ∈ ∆I .
Now, the TBox TI for CSP(I) in signature Σ from Theo-
rem 20 is T extended with the following CIs:

> v t
d∈∆I

Hd

Hd uHe v ⊥ for all d, e ∈ ∆I , d 6= e

Hd u ∃r.He v ⊥ for all d, e ∈ ∆I , r ∈ Σ, (d, e) 6∈ rI

Hd uA v ⊥ for all d ∈ ∆I , A ∈ Σ, d 6∈ AI .
Based on Lemma 21, it can be verified that TI satisfies Con-
ditions 1 and 2 of Theorem 20. For Point 2, we show that
for all Boolean PEQs q and ABoxes A, (TI ,A) |= q iff
(T ,A) |= q or not Hom(IΣ

A, I) where IΣ
A is the restric-

tion of IA to signature Σ and with Ind(IΣ
A) = ∅. More-

over, it is not hard to see that T is unraveling tolerant, thus
(T ,A) |= q is in PTIME.

We now come to the conversion of an ALCI-TBox and
query q into a CSP. We start with considering Boolean CQs
of the form ∃x.C(x) with C an ELI-concept, which is not
strong enough to obtain the desired dichotomy result, but
serves as a warmup that is conceptually cleaner than the ver-
sion for ELIQs that we present afterwards. We use sig(T ) to
denote the signature of the TBox T , and likewise for a CQ q.
Theorem 22. Let T be an ALCI-TBox, q = ∃x.C(x)
with C an ELI-concept, and Σ = sig(T ) ∪ sig(q). Then
one can construct (in time exponential in |T | + |C|) a Σ-
interpretation IT ,q such that for all ABoxes A:

(HomDual) (T ,A) |= q iff not Hom(IΣ
A, IT ,q)

Proof.(sketch) The interpretation IT ,q can be obtained us-
ing a standard type-based construction. We use the sets
cl(T , C), tp(T , C), and the relation  r between types as
defined in the proof of Theorem 16. A T -type t that omits q
is an element of tp(T , C) that is satisfiable in a model J
of T with CJ = ∅. Then ∆IT ,q is the set of all T -types
that omit q, t ∈ AIT ,q iff A ∈ t, for all A ∈ Σ, and
(t, t′) ∈ rIT ,q iff t  r t

′, for all r ∈ Σ. It is shown in
the long version that condition (HomDual) is satisfied. A
Pratt-style type elimination algorithm can be used to con-
struct IT ,q in exponential time (Pratt 1979). o

Example 23. Let T = {A v ∀r.B} and define q =
∃x.B(x). Then IT ,q is defined, up to isomorphism, by
∆IT ,q = {a, b, c}, AIT ,q = {b}, BIT ,q = ∅, and rIT ,q =
{(a, a), (a, b), (a, c)}. a
For ELIQs, the conversion of a TBox and query into a CSP
is similar to the construction above, but employs a con-
cept name P that represents the individual name used in the
ELIQ.
Theorem 24. Let T be anALCI-TBox, C(a) an ELIQ and
Σ = sig(T ) ∪ sig(C) ∪ {P}, where P is a fresh concept
name. Then one can construct (in time exponential in |T |+
|C|) a Σ-interpretation IT ,q such that for all ABoxes A:

1. (T ,A) |= C(a) iff not Hom(IΣ
A′ , IT ,q), where A′ is ob-

tained from A by adding P (a) and removing all other
assertions that use P ;

2. (T ,A) |= ∃x.(P (x) ∧ C(x)) iff not Hom(IΣ
A, IT ,q).

As a consequence of Theorems 20 and 24, we obtain:

Theorem 25. There is a dichotomy between PTIME and
CONP for CQ-answering w.r.t. ALC-TBoxes if and only if
the Feder-Vardi conjecture is true.

The same is true for ALCI-TBoxes, for ELIQs, and
PEQs. For ALC-TBoxes, it additionally holds for ELQs.

Proof. Let CSP(I) be an NP-intermediate CSP, i.e., a CSP
that is neither in PTIME nor NP-hard. Take the TBox TI
from Theorem 20. By Point 1 of that theorem (and the men-
tioned reduction of ABox consistency to the complement of
ELQ-answering), CQ-answering w.r.t. T is not in PTIME.
By Point 2, CQ-answering w.r.t. T is not CONP-hard.

Conversely, let T be an ALC-TBox for which CQ-
answering w.r.t. T is neither in PTIME nor CONP-hard.
Then by Theorem 4 and since every ELIQ is a CQ, the same
holds for ELIQ-answering w.r.t. T . It follows that there is
concrete ELIQ q such that answering q w.r.t. T is CONP-
intermediate. Let IT ,q be the interpretation constructed in
Point 1 of Theorem 24. By Point 1 of that theorem, CSP(I)
is not in PTIME; by Point 2, it is not NP-hard. o

The construction underlying Theorem 24 cannot be general-
ized from ELIQs to CQs. To discuss this further, let us con-
sider the simpler ‘warmup’ Theorem 22 instead. We show
that it is impossible to construct an interpretation IT ,q which
satisfies (HomDual) for Boolean CQs that are not of the sim-
ple form ∃x.C(x). This is true even when the TBox isempty.
It is thus crucial to use ELIQs even when proving the di-
chotomy result for CQs and PEQs. The following theorem
states this more formally.

Theorem 26. Let q be a Boolean CQ without individual
names, sig(q) = Σ, and T∅ the empty TBox. Then there
is a Σ-interpretation Iq,T∅ that satisfies (HomDual) iff q is
logically equivalent to a CQ of the form ∃x.C(x) with C an
ELI-concept.

Proof. This is a consequence of results on homomorphism
dualities (Nesetril and Tardif 2000), the problem of con-
structing, for a given Σ-interpretation I, a Σ-interpretation
I such that the following duality holds for all Σ-interpreta-
tions J :

Hom(I,J ) iff not Hom(J , I).

By (Nesetril and Tardif 2000; Nesetril 2009), such an I ex-
ists iff the undirected graph induced by I is a tree. It re-
mains to observe that for any Boolean CQ q without indi-
vidual names and all Σ-interpretations J , we have AJ |= q
iff Hom(Iq,J ), where Iq is the interpretation with ∆Iq the
variables in q and in which x ∈ AIq (resp. (x, y) ∈ rIq ) if
A(x) (resp. r(x, y)) is a conjunct of q. o

Interestingly, (Nesetril 2009) presents five constructions of
I, one of which resembles our type elimination procedure
(but, of course, without taking into account TBoxes).



7 Non-Dichotomy in ALCF
We show that the complexity landscape for query answer-
ing w.r.t. ALCF-TBoxes is much richer than for ALC
and ALCI. In particular, we show that (i) for CQ-
answering w.r.t. ALCF-TBoxes, there is no dichotomy be-
tween PTIME and CONP unless PTIME = NP; and (ii) it is
undecidable whether CQ-answering is in PTIME for a given
ALCF-TBox, and likewise for CONP-hardness and materi-
alizability. Point (i) is a consequence of the following, much
stronger, result.

Theorem 27. For every language L ∈ CONP, there is an
ALCF-TBox T and ELIQ rej(a), rej a concept name, such
that the following holds:

1. there is a polynomial reduction of L to answering rej(a)
w.r.t. T ;

2. for every ELIQ q, answering q w.r.t. T is polynomially
reducible to L.

We now use Theorem 27 to establish Point (i) from above.
Assume to the contrary of what is to be shown that for ev-
ery ALCF-TBox T , CQ answering w.r.t. T is in PTIME
or CONP-hard. By Ladner’s Theorem, there is a CONP-
intermediate language L. Let T be the TBox from Theo-
rem 27. By Point 1 of the theorem, CQ-answering w.r.t. T
is not in PTIME. Thus it must be CONP-hard. By Theo-
rem 4 and since a dichotomy for CQ-answering w.r.t. T also
implies a dichotomy for ELIQ-answering w.r.t. T , ELIQ-
answering w.r.t. T is also CONP-hard. By Point 2 of Theo-
rem 27, this is impossible.

The proof of Theorem 27 combines the ‘hidden’ concepts
Hd from the proof of Theorem 20 with a modification of
the TBox constructed in (Baader et al. 2010) to prove the
undecidability of query emptiness inALCF . Using a similar
strategy, we establish the undecidability results announced
as Point (ii) above, summarized by the following theorem.

Theorem 28. For ALCF-TBoxes T , the following prob-
lems are undecidable (Points 1 and 2 are subject to the side
condition that PTIME 6= NP):

1. CQ-answering w.r.t. T is in PTIME;
2. CQ-answering w.r.t. T is CONP-hard;
3. T is materializable.

8 Future Work
Much work remains to be done in order to fully accomplish
the general research goal set out in the introduction. We
propose four interesting directions.
(1) It would be interesting to consider additional complex-
ity classes such as LOGSPACE, NLOGSPACE, and AC0.
The latter is particularly relevant in the context of FO-
rewritability and the implementation of query answering us-
ing standard relational database systems, see (Calvanese et
al. 2007) for details. Note that even for TBoxes of depth one,
the complexity landscape is still rich. Relevant results can be
found in (Calvanese et al. 2006): (i) there are EL-TBoxes of
depth one for which CQ-answering is PTIME-complete; and
(ii) CQ-answering w.r.t. the EL-TBox {∃r.A v A}, which

encodes reachability in directed graphs, is NLOGSPACE-
complete. We add that CQ-answering w.r.t. the Horn-ALC-
TBox {∃r.A v A,A v ∀r.A} corresponds to reachability
in undirected graphs and can be shown to be LOGSPACE-
complete. Also note that every DL-Lite TBox is of depth
one, which gives a whole class of TBoxes for which CQ-
answering is in AC0.

(2) We conjecture that for a given ALCFI-TBox of depth
one, it is decidable whether CQ-answering is in PTIME,
NLOGSPACE, LOGSPACE, and AC0. A first step towards
establishing these result is the observation from (Lutz and
Wolter 2011) that FO-rewritability of CQ-answering, which
is very closely related to CQ-answering being in AC0, is de-
cidable for ALCFI-TBoxes of depth one. As an encourag-
ing example of how results from the CSP world can be em-
ployed to obtain significant insights into CQ-answering, we
note that for ALCI-TBoxes, one can establish this result by
using Theorem 24 and the fact that deciding FO-definability
of a a CSP is in NP (Larose, Loten, and Tardif 2007). This
yields a NEXPTIME upper bound due to the exponential size
of the template constructed in the proof of Theorem 24.

(3) To better understand the complexity of TBoxes whose
depth is larger than one, it would be interesting to generalize
the notion of unraveling tolerance without leaving PTIME.
In the CSP world, the corresponding notions of arc con-
sistency and tree obstructions have both been significantly
generalized, for example to structures of bounded treewidth
(Bulatov, Krokhin, and Larose 2008).

(4) Alternatively to classifying the complexity of TBoxes
while quantifying over all queries as in our Definition 2, one
could also consider pairs (T , q) and classify the complexity
of answering q w.r.t. T , for all such pairs. This setup is
significantly different from the one considered in this paper,
and will required different techniques.

Acknowledgments. C. Lutz was supported by the DFG
SFB/TR 8 “Spatial Cognition”.
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A Proofs for Section 2
In this section, we prove Theorem 4. Note that in the proofs
of Theorems 9 and 11 we do not use Theorem 4. Thus, we
can (and will) employ them in the proof below. We formu-
late Theorem 4 again.

Theorem 4 For all ALCFI-TBoxes T , the following are
equivalent:

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering
w.r.t. T is in PTIME iff ELIQ-answering w.r.t. T is in
PTIME;

2. T is FO-rewritable for CQ iff it is FO-rewritable for PEQ
iff it is FO-rewritable for ELIQ.

If T is an ALCF-TBoxes, then we can replace ELIQ in
Points 1 and 2 with ELQ.

We start the proof with the observation that the implications

• If PEQ-answering w.r.t. T is in PTIME, then CQ-
answering w.r.t. T is in PTIME;

• If CQ answering w.r.t. T is in PTIME, then ELIQ-
answering w.r.t. T is in PTIME;

• If T is FO-rewritable for PEQ, then T is FO-rewritable
for CQ;

• If T is FO-rewritable for CQ, then T is FO-rewritable for
ELIQ

are trivial, by the obvious inclusions between the sets of
queries considered. For the proofs of the other directions
we can assume that T is materializable: otherwise, by The-
orems 9 and 11, ELIQ-answering w.r.t. T is CONP-hard and
the implications are trivial.

For materializable T , the implications

• If CQ-answering w.r.t. T is in PTIME, then PEQ-
answering w.r.t. T is in PTIME;

• If T is FO-rewritable for CQ, then T is FO-rewritable for
PEQ;

are obvious since the evaluation of a disjunction in an in-
terpretation reduces to evaluating all its disjuncts. Thus, it
remains to show the following two implications:

1. If ELIQ answering w.r.t. T is in PTIME, then CQ-
answering w.r.t. T is in PTIME;

2. If T is FO-rewritable for ELIQ, then T is FO-rewritable
for CQ.

To show these implications, we introduce some notation and
a lemma. For a sequence ~r = r1 · · · rn of roles, we set
∃~r.C = ∃r1. · · · ∃rn.C. In an interpretation I, the distance
distI(d1, d2) between d1, d2 ∈ ∆I is the minimal n such
that there are d1 = e0, . . . , en = d2 and roles r1, . . . , rn
with (di, di+1) ∈ rIi+1 for i < n.

Lemma 29. Let C be an ELI-concept and assume that
(T ,A) |= ∃v.C(v). If T is materializable, then there
exists a sequence of roles ~r = r1 · · · rn of length n ≤
2(2(|T |+|C|)×2|T ||C|+ 1 such that there exists a ∈ Ind(A)
with (T ,A) |= ∃~r.C(a).



Proof. Let I be a PEQ-materialization of T andA. We may
assume that I is i-unfolded. From (T ,A) |= ∃v.C(v), we
obtain CI 6= ∅. Choose d ∈ CI and a ∈ Ind(A) such that
n := distI(d, aI) is minimal. (We assume, for simplicity,
that there is only one such d. The argument is easily gener-
alized.) Assume n > 2(2(|T |+|C|) × 2|T ||C|+ 1.

Let aI = d0, . . . , dn = d and (di, di+1) ∈ rIi+1 for i < n.
Let sub(T , C) denote the closure under single negation of
the set of subconcepts of concepts in T and C. Set

tI(e) = {D ∈ sub(T , C) | e ∈ DI}.

As n > 2(2(|T |+|C|) × 2|T ||C| + 1, there exist di and di+j
with j > 1 and i+ j < n such that

tI(di) = tI(di+j), tI(di+1) = tI(di+j+1), ri+1 = ri+j+1

Now replace in I the interpretation induced by the subtree
generated by di+j+1 by the interpretation induced by the
subtree generated by di+1 and denote the resulting inter-
pretation by J . J is still a model of (T ,A). But now
J 6|= ∃~r.C(a). We have derived a contradiction since
aI ∈ (∃~r.C)I and therefore, since I is a minimal model
of (T ,A), (T ,A) |= (∃~r.C)(a). o

Let q(~x) = ∃~y.ϕ(~x, ~y) be a CQ with ~x = x1, . . . , xn and
~y = y1, . . . , ym. We regard ϕ as a set of atoms. A split-
ting S = (Y,∼, f) of q(~x) consists of a subset Y of ~y, an
equivalence relation ∼ on Ind(q) ∪ ~x ∪ Y and a mapping f

f : {u∼ | u ∈ Ind(q) ∪ ~x ∪ Y } → 2~y\Y

(we denote by u∼ the equivalence class of u w.r.t. ∼) such
that
• for every y ∈ ~y \ Y there exists u with y ∈ f(u∼);
• f(u∼) ∩ f(v∼) = ∅ whenever u∼ 6= v∼.
• if r(t, t′) ∈ ϕ or r(t′, t) ∈ ϕ and t ∈ f(u∼), then t′ ∈ u∼

or t′ ∈ f(u∼).
Let US denote the set of all equivalence classes w.r.t. ∼.
Thus, if (Y,∼, f) is a splitting of q(~x), we can form
• ϕY consisting of all A(t) with t ∈ Ind(q)∪ ~x∪ Y and all
r(t, t′) with t, t′ ∈ Ind(q) ∪ ~x ∪ Y ;

• for every u∼ ∈ US , ϕu consisting of all A(t) and r(t, t′)
with t, t′ ∈ u∼ ∪ f(u∼).

Intuitively, splittings describe potential assignments π for
the variables in ~x, ~y in an unfolded CQ-materialization I of
(T ,A) in which
• all v ∈ u∼ receive the same value π(v) and this value is

in Ind(A);
• all y ∈ f(u∼) receive values π(y) in the “anonymous”

tree generated by π(u).
Using Lemma 29 (for those y that are not reachable in ϕ
from any member of Ind(A) ∪ ~x ∪ Y ) one can easily con-
struct, for every u∼ ∈ US a disjunction Du =

∨
i∈Iu Ci

of ELI-concepts such that for all CQ-materializations I of
some (T ,A) and all a ∈ Ind(A), (1.) implies (2.) and (2.)
implies (3.), where

1. there exists an assignment π in I with

• π(u) = π(u′) = aI for all u′ ∈ u∼
• π(x) in the anonymous subtree generated by aI for all
x ∈ f(u∼)

• I |=π ϕu.

2. aI ∈ DIu ;

3. there exists an assignment π in I with

• π(u) = π(u′) = aI for all u′ ∈ u∼
• I |=π ϕu.

For every splitting S = (Y,∼, f) of ϕ(~x), set

χS = ϕY ∧
∧

u∼∈US

∧
t,t′∈u∼

(t = t′) ∧
∧

u∼∈US

Du.

To prove the implication (2.), assume that T is FO-
rewritable for ELIQ. By materializability, T is FO-
rewritable for unions of ELIQs. For every u∼ ∈ US , let
χu be a FOQ with

IA |= χu[a] ⇔ (T ,A) |= Du(a).

for all a ∈ Ind(A). Let χ∗S be the FOQ resulting from χS by
replacing every Du with χu. Then it is readily checked that

IA |=
∨

S is a splitting of q(~x)

∃~y.χ∗S [~a] ⇔ (T ,A) |= q(~a)

for all ~a ⊆ Ind(A). Thus, T is FO-rewritable for CQ.

We come to implication (1.). Assume that ELIQ-
answering w.r.t. T is in PTIME. By materializability, unions
of ELIQs can be answered w.r.t. T in PTIME. We can eval-
uate a CQ q(~x) in polynomial time as follows: to decide
whether (T ,A) |= q(~a) for a given ~a ⊆ Ind(A), go through
all splittings S = (Y,∼, f) of q(~x) and all assignments
π(y) ∈ Ind(A) for y ∈ Y and check

IA |=π ϕY ∧
∧

u∼∈US

∧
t,t′∈u∼

(t = t′)[~a]

and
(T ,A) |=

∧
u∼∈US

Du(π(u)).

If both hold for at least one pair S, π, then (T ,A) |= q(~a);
otherwise (T ,A) 6|= q(~a). Both conditions can be checked
in polynomial time.

B Proofs for Section 3
We introduce some notions and notations. For any interpre-
tation I, we define its i-unfolding I∗. The domain ∆I

∗
of

I∗ consists of all words d0r1 . . . rndn with n ≥ 0, di ∈ ∆I ,
and ri (possibly inverse) roles such that

• there exists a ∈ Ind(A) with d0 = aI ;

• for 0 < i ≤ n there does not exists a ∈ Ind(A) such that
di = aI ;

• for 0 ≤ i < n: (di, di+1) ∈ rIi+1 and if r−i = ri+1, then
di−1 6= di+1.

For d0 · · · dn ∈ ∆I
∗
, we set tail(d0 · · · dn) = dn. Now set



• for all A ∈ NC:

AI
∗

= {w ∈ ∆I
∗
| tail(w) ∈ AI}

• for all r ∈ NR:

rI
∗

= {(σ, σrd) |, σ, σrd ∈ ∆I
∗
∪

{(σr−d, σ) | σ, σr−d ∈ ∆I
∗
}

• Ind(I∗) = Ind(I) and aI
∗

= aI , for all a ∈ Ind(I).
We call an interpretation I i-unfolded if it is isomorphic to
its own i-unfolding. Clearly, every i-unfolding I∗ of an in-
terpretation I is i-unfolded.

For ALCF-TBoxes it is not required to unfold along in-
verse roles. Thus, we define the domain ∆I

+

of the unfold-
ing I+ of I as the set of all words d0r1 . . . rndn with n ≥ 0,
di ∈ ∆I , and ri role names. The definition of the interpreta-
tion of concept, role and individual names remains the same
(but can be simplified). We call an interpretation I unfolded
if it is isomorphic to its own unfolding. Every unfolding I+

of an interpretation I is unfolded.
Lemma 30. Let I be an interpretation.

• f(w) := tail(w), w ∈ ∆I
∗
, is a homomorphism from I∗

to I;
• f(w) := tail(w), w ∈ ∆I

+

, is a homomorphism from I+

to I;
• for any interpretation J , if there is an i-simulation be-

tween I and J , then there is a homomorphism from I∗ to
J ;

• For any interpretation J , if there is a simulation between
I and J , then there is a homomorphism from I+ to J ;

• If I is a model of (T ,A) with T an ALCFI-TBox, then
I∗ is a model of (T ,A);

• If I is a model of (T ,A) with T an ALCF-TBox, then
I+ is a model of T ,A.

We formulate Lemma 8 again.

Lemma 8 Let T be an ALCFI-TBox and A and ABox. A
model I of T ,A is

1. an ELIQ-materialization of T and A iff it is i-sim-initial
in Mod(I,A);

2. a PEQ-materialization of T and A iff it is a CQ-
materialization of T and A iff it is hom-initial in
Mod(T ,A).

If T is a ALCF-TBox, then I is an ELQ-materialization of
T and A iff it is sim-initial in Mod(T ,A).

Proof. We apply Lemma 30.
(1) We consider the direction from left to right only. Let I

be an ELIQ-materialization and J ∈ Mod(T ,A). Assume
first that J has finite outdegree. For a ∈ Ind(A), let Ia
and J a denote the interpretations obtained from I and J
by setting Ind(Ia) = {a} and Ind(J a) = {a}, respectively.
Thus, the only difference is that only the individual name a is
interpreted. Using the condition that J has finite outdegree,
one can readily show (1)⇒ (2), where

1. for all ELI-concepts C: if I |= C(a), then J |= C(a);

2. there is an i-simulation Sa between Ia and J a.

Now, condition (1) holds for all a ∈ Ind(I) since I is an
ELIQ materialization of T and A. Thus

⋃
a∈Ind(A) Sa is an

i-simulation between I and J , as required.
Now assume that J does not have finite outdegree. Con-

struct the i-unfolding J ∗ of J . From J ∗ we obtain an in-
terpretation J b of bounded outdegree by selective filtration
as follows: let S0 = Ind(A) and assume Sn has been de-
fined. Then define Sn+1 as the union of Sn and, for every
d ∈ Sn and ∃r.D ∈ sub(T ) with d ∈ (∃r.D)J

∗
, some

witness d′ ∈ ∆J
∗

with (d, d′) ∈ rJ ∗ and d′ ∈ DJ ∗ if no
such d′ exists already in Sn. Let S =

⋃
i≥0 Sn. Let J b be

the restriction of J ∗ to S. The outdegree of J b is bounded
by |sub(T )| + |A|, and, therefore, finite. By construction,
J b ∈ Mod(T ,A). Since there is a homomorphism from
J ∗ to J , its restriction f to the domain of ∆J

b

is a homo-
morphism from J b to J . Since J b has finite outdegree, we
find an i-simulation D between I and J b. The composition
of D and f is the required i-simulation between I and J .

(2) Let I be countable and generated. It is straightfor-
ward to check that if I is hom-initial, then it is a PEQ-
materialization; obviously, if I is a PEQ-materialization,
then it is a CQ-materialization. Thus, it remains to show that
if I is a CQ-materialization, then it is hom-initial. Assume
that I is a CQ-materialization and J ∈ Mod(T ,A). We as-
sume J has finite outdegree (the infinite outdegree case can
be reduced to the finite outdegree case as in (1)). First, for
every finite subset X of I we obtain from the condition that
I is a CQ-materialization that there is a homomorphism hX
from the subinterpretation I�X of I induced by X into J .
Since I is countable, we can take an enumeration d1, . . . of
∆I \ Ind(A). Let X0, X1, . . . be a sequence of finite subsets
of ∆I such that

• X0 = {aI | a ∈ Ind(A)}
• Xn ⊆ Xn+1 for n ≥ 0;

• Xn ⊇ Ind(A) ∪ {d1, . . . , dn}, for n ≥ 0;

• for all d ∈ Xn there exists a path in Xn from some a ∈
Ind(A) to d.

Condition 4 can be satisfied since I is generated. Let hXn
be a homomorphism from IXn to J , for n ≥ 0. We define
the required homomorphism as the limit of a sequence of
homomorphisms f0, f1, . . .. Let f0 = hX0

and assume fn
has been defined. We assume that there is an infinite set
X ⊆ N such that for all m ∈ X : if d ∈ dom(fn), then
fn(d) = hXm(d) for all m ∈ X . Let i be minimal such
that di is not in the domain of fn (if no such i exists, we
are done). Let Xm be the minimal m such that di ∈ Xm

and Xm ∈ X . Let k be the length of the shortest path from
some aI with a ∈ Ind(A) to di in Xm. This is a path in any
Xn with n ≥ m. Thus, for all Xn, n ≥ m, there exists a
path of length ≤ k from hX(di) to some aI in J . Since J
has finite outdegree, there exists an infinite subset X ′ of X
such that hX(di) = hY (di) for all X,Y ∈ X ′. We now set
fn+1 = fn ∪ {(di, e), where hX(d) = e for all X ∈ X ′.
This finishes the construction of fn+1.



We set f =
⋃
n≥0 fn. By definition, f is a homomor-

phism, as required.
The claim for ALCF-TBoxes is proved in the same way

as (1). o

We show that the generatedness condition cannot be
dropped: consider the TBox

T = {A v ∃r.A,B v A}

It is readily seen that T is PEQ-materializable. Let A =
{B(a)}. The interpretation I with

• ∆I = {a} ∪ {1, 2 . . .};
• AI = ∆I ;

• BI = {a};
• rI = {(a, 1)} ∪ {(n, n+ 1) | n ≥ 1}
is hom-initial in Mod(T ,A). However, the interpretation I ′
defined as the disjoint union of I and the interpretation J
with

• ∆J = {. . . ,−2,−1, 0, 1, 2, . . .};
• rJ = {(n, n+ 1) | n ∈ ∆J };
• AJ = ∆J ;

• BJ = ∅
is a PEQ-materialization of T andA, but it is not hom-initial
as there is no homomorphism from J to I.

Proof of Theorem 9 We apply Lemmas 8 and 30. For
Points 1 and 2, assume that I is i-sim initial in Mod(T ,A).
We have to show that there exists a model I ′ of T and A
that is hom-initial in Mod(T ,A). To construct I ′, let I0

be an at most countable and generated subinterpretation of
I in Mod(T ,A). For example, one can take an elemen-
tary subinterpretation of I and then restrict its domain to the
points reachable from {aI | a ∈ Ind(A)} in I. Clearly, I0 is
still i-sim initial in Mod(T ,A). Now, the unfolding I∗0 of I0

is hom-initial in Mod(T ,A). The final Point of Theorem 9
is proved similarly.

Proof of Theorem 11
The proof is by reduction of 2+2-SAT, a variant of propo-
sitional satisfiability that was first introduced by Schaerf as
a tool for establishing lower bounds for the data complexity
of query answering in a DL context (Schaerf 1993). A 2+2
clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each
of p1, p2, n1, n2 is a propositional letter or a truth constant
0, 1. A 2+2 formula is a finite conjunction of 2+2 clauses.
Now, 2+2-SAT is the problem of deciding whether a given
2+2 formula is satisfiable. It is shown in (Schaerf 1993) that
2+2-SAT is NP-complete.

Theorem 11. If an ALCFI-TBox T (ALCF-TBox T ) is
not materializable, then ELIQ-answering (ELQ-answering)
is CONP-hard w.r.t. T .

Proof. We first show that if an ALCFI-T is not material-
izable, then Boolean UELIQ-answering w.r.t. T is CONP-
hard, where a Boolean UELIQ is a disjunction q1 ∨ · · · ∨ qk,

with each qi a Boolean ELIQ. We then sketch the modifica-
tions necessary to lift the result to Boolean ELIQ-answering
w.r.t. T .

Since T is not materializable, by Theorem 9 it does not
have the disjunction property. Thus, there is an ABox
A∨ and ELIQs C0(a0), . . . , Ck(ak) such that T ,A∨ |=
C0(a0) ∨ · · · ∨ Ck(ak), but T ,A∨ 6|= Ci(ai) for all i ≤ k.
Assume w.l.o.g. that this sequence is minimal, i.e., T ,A∨ 6|=
C0(a0)∨ · · · ∨Ci−1(ai−1)∨Ci+1(ai+1)∨ · · · ∨Ck(ak) for
all i ≤ k. By minimality, we clearly have that

(∗) for all i ≤ k, there is a model Ii of T and A∨ with I |=
Ci(ai) and I 6|= Cj(aj) for all j 6= i.

We will use A∨ and the sequence C0(a0), . . . , Ck(ak) to
generate truth values for variables in the input 2+2 formula.

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional
letters q0, . . . , qm, and let ci = pi,1∨pi,2∨¬ni,1∨¬ni,2 for
all i ≤ n. Our aim is to define an ABox Aϕ and a Boolean
UELIQ q such that ϕ is unsatisfiable iff T ,Aϕ |= q. To start,
we represent the formula ϕ in the ABox Aϕ as follows:
• the individual name f represents the formula ϕ;
• the individual names c0, . . . , cn represent the clauses of
ϕ;

• the assertions c(f, c0), . . . , c(f, cn), associate f with its
clauses, where c is a role name that does not occur in T ;

• the individual names q0, . . . , qm represent variables, and
the individual names 0, 1 represent truth constants;

• the assertions⋃
i≤n

{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

associate each clause with the four variables/truth con-
stants that occur in it, where p1, p2, n1, n2 are role names
that do not occur in T .

We further extend Aϕ to enforce a truth value for each of
the variables qi. To this end, add to Aϕ copies A0, . . . ,Am
of A∨ obtained by renaming individual names such that
Ind(Ai) ∩ Ind(Aj) = ∅ whenever i 6= j. As a notational
convention, let aij be the name used for the individual name
aj ∈ Ind(A∨) in Ai for all i ≤ m and j ≤ k (note that aj
comes from the ELIQ Cj(aj) in the sequence fixed above).
Intuitively, the copyAi ofA is used to generate a truth value
for the variable qi, where we want to interpret qi as true if
the ELIQ C0(ai0) is satisfied and as false if any of the ELIQs
Cj(a

i
j), 0 < j ≤ k, is satisfied. To actually relate each

individual name qi to the associated ABox Ai, we use role
names r0, . . . , rk that do not occur in T . More specifically,
we extend Aϕ as follows:
• link variables qi to the ABoxes Ai by adding assertions
rj(qi, a

i
j) for all i ≤ m and j ≤ k; thus, truth of qi

means that ∃r0.C0(qi) is satisfied and falsity means that
∃rj .Cj(qi) is satisfied for some j with 0 < j ≤ k;

• to ensure that 0 and 1 have the expected truth values, add
a copy of C0 viewed as an ABox with root 1′ and a copy
of C2 viewed as an ABox with root 0′; add r0(1, 1′) and
r1(0, 0′).



Consider the query

q0 = ∃c.(∃p1.ff u ∃p2.ff u ∃n1.tt u ∃n2.tt)

which describes the existence of a clause with only false lit-
erals and thus captures falsity of ϕ, where tt is an abbrevia-
tion for ∃r0.C0 and ff an abbreviation for the ELU-concept
∃r1.C1t· · ·t∃rk.Ck. It is straightforward to show that ϕ is
unsatisfiable iff A, T |= q0. To obtain the desired UELIQ q,
it remains to take q and distribute disjunction to the outside.

We now show how to improve the result from UELIQ-
answering to ELIQ-answering. Our aim is to change the
encoding of falsity of a variable qi from satisfaction of
∃r1.C1 t · · · t ∃rk.Ck(qi) to satisfaction of ∃h.(∃r1.C1 u
· · ·u∃rk.Ck)(qi),where h is an additional role that does not
occur in T . We can then replace the concept ff in the query
q0 with ∃h.(∃r1.C1u· · ·u∃rk.Ck)(qi), which directly gives
us the desired ELIQ q.

It remains to modify Aϕ to support the new encoding
of falsity. The basic idea is that each qi has k successors
bi1, . . . , b

i
k reachable via h such that for 1 ≤ j ≤ k,

• ∃r`.C`(bij) is satisfied for all ` = 1, . . . , j−1, j+1, . . . , k
and

• the assertion rj(bij , a
i
j) is in Aϕ.

Thus, (∃r1.C1 u · · · u ∃rk.Ck)(bij) is satisfied iff Cj(aij) is
satisfied, for all j with 1 ≤ j ≤ k. In detail, the modification
of Aϕ is as follows:
• for 1 ≤ j ≤ k, add to Aϕ a copy of Cj viewed as an

ABox, where the root individual name is dj ;

• for all i ≤ m, replace the assertions rj(qi, aij), 1 ≤ j ≤ k,
with the following:
– h(qi, b

i
1), . . . , h(qi, b

i
k) for all i ≤ m;

– rj(b
i
j , a

i
j), r1(bij , d1), . . . , rj−1(bij , dj−1),

rj+1(bij , dj+1), . . . , rk(bij , dk) for all i ≤ m and 1 ≤
j ≤ k.

This finishes the modified construction. Again, it is not hard
to prove correctness.

It remains to note that, when T is an ALCF-TBox, then
the above construction of q yields an ELQ instead of an
ELIQ. o

C Proofs for Section 4
Lemma 14.
Every Horn-ALCFI-TBox is unraveling tolerant.

Proof. We give a characterization of the entailment of
ELIQs in the presence of Horn-ALCFI-TBoxes which
is in the spirit of the rule-based (sometimes also called
consequence-driven) algorithms commonly used for Horn
description logics such as EL++ and Horn-SHIQ, see e.g.
(Baader, Brandt, and Lutz 2005; Kazakov 2009; Krötzsch
2010).

In the characterization, we use extended ABoxes, i.e., fi-
nite sets of assertions C(a) with C a potentially compound
concept and r(a, b). An ELIU⊥-concept is a concept that is

formed according to the second syntax rule in the definition
of Horn-ALCFI. For an extended ABox A′ and an asser-
tion C(a), C an ELIU⊥-concept, we writeA′ ` C(a) ifA′
syntactically entails C(a), formally:

• A′ ` >(a) is unconditionally true;

• A′ ` ⊥(a) if ⊥(b) ∈ A′ for some b ∈ Ind(A);

• A′ ` A(a) if A(a) ∈ A′;
• A′ ` C uD(a) if A′ ` C(a) and A′ ` D(a);

• A′ ` C tD(a) if A′ ` C(a) or A′ ` D(a);

• A′ ` ∃r.C(a) if there is an r(a, b) ∈ A′ such that A′ `
C(b).

Now for the characterization. Let T = {> v CT } be
a Horn-ALCFI-TBox and A a potentially infinite ABox
(so that we can also apply the construction to unravelings
of ABoxes). We produce a sequence of extended ABoxes
A0,A1, . . . , starting withA0 = A∪{>(a>)}, where a> is a
fresh individual which, intuitively, is a representative for all
individual names that do not occur inA. In what follows, we
use additional individual names of the form ar1C1 · · · rkCk
with a ∈ Ind(A0), r1, . . . , rk roles that occur in T , and
C1, . . . , Ck ∈ sub(T ). We assume that NI contains such
names as needed and use the symbol a also to refer to indi-
vidual names of this compound form. Each extended ABox
Ai+1 is obtained from Ai by applying the following rules:

R1 if a ∈ Ind(Ai), then add CT (a).

R2 if C uD(a) ∈ Ai, then add C(a) and D(a);

R3 if C → D(a) ∈ Ai and Ai ` C(a), then add D(a);

R4 if ∃r.C(a) ∈ Ai and func(r) /∈ T , then add r(a, arC)
and C(arC);

R5 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and r(a, b) ∈ Ai, then
add C(b);

R6 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and there is no r(a, b) ∈
Ai, then add r(a, arC) and C(arC);

R7 if ∀r.C(a) ∈ Ai and r(a, b) ∈ Ai, then add C(b).

We call Ac =
⋃
i≥0Ai the completion of the original ABox

A. Note that Ac may be infinite even if A is finite, and that
none of the above rules is applicable inAc. In the following,
we write ‘Ac ` ⊥’ instead of ‘Ac ` ⊥(a) for some a ∈ NC’.

Claim 1. For all ELIQs C(a), we have

1. (T ,A) |= C(a) iff Ac ` C(a) or Ac ` ⊥;

2. (T ,A) |= C(a) iff Ac ` C(a>) or Ac ` ⊥ whenever
a ∈ NI \ Ind(A).

We only sketch the proof. For the “if” directions, the central
observation is that for any model I of T and A, we can
construct a homomorphism h from Ac to I, i.e., h is a map
from Ind(Ac) to ∆I such that the following conditions are
satisfied:

(a) h(a) = a for all a ∈ Ind(A);

(b) if C(a) ∈ Ac, then hi(a) ∈ CI ;

(c) if r(a, b) ∈ Ac, then (hi(a), hi(b)) ∈ rI .



More specifically, we inductively construct homomorphisms
hi fromAi to I, that satisfy Conditions (a) to (c) above with
Ac replaced by Ai and such that h0 ⊆ h1 ⊆ · · · . Then
h =

⋃
i≥0 hi is the required homomorphism from Ac to I.

Let C(a) be an ELIQ. If Ac ` ⊥, the existence of a ho-
momorphism h from Ac into any model I of T and A im-
plies thatA is inconsistent w.r.t. T , whence (T ,A) |= C(a).
If Ac ` C(a), then preservation of ELIQs under homo-
morphisms also yields (T ,A) |= C(a). For Point 2, as-
sume Ac ` C(a>). We can construct the above homo-
morphisms h such that h(a>) = a. Thus, we again obtain
(T ,A) |= C(a).

For the “only if” direction of Point 1, we have to show
that if Ac 6` C(a), where C(a) is an ELIQ, and Ac 6` ⊥,
then (T ,A) 6|= C(a) (and similarly for Point 2). Define an
interpretation I as follows:

∆I = Ind(Ac)
AI = {a | A(a) ∈ Ac} for all A ∈ NC

rI = {r(a, b) | r(a, b) ∈ Ac} for all r ∈ NR

aI = a for all a ∈ Ind(A)

aI = a> for all a ∈ NI \ Ind(A)

It can be shown that I is a model of Ac (thus A) and T and
that Ac 6` C(a) implies I 6|= C(a). Thus (T ,A) 6|= C(a)
as required.

We now consider the application of the above comple-
tion construction to both the original ABox A and its un-
raveling Au. Recall that individuals in Au are of the form
a0r0a1 · · · rn−1an, thus individuals in Auc are of the form
a0r0a1 · · · rn−1ans1C1 · · · skCk. For α ∈ Ind(Ac) and
β ∈ Ind(Auc ), we write α ∼ β if

α = ans1C1 · · · skCk and
β = a0r0a1 · · · rn−1ans1C1 · · · skCk

for some a0, . . . , an, r0, . . . , rn−1, s1, . . . , sk, C1, . . . , Ck.
This includes the case where k = 0, i.e., the s1C1 · · · skCk
component is empty in both α and β. The following claim
can be shown by induction on i.

Claim 2. For all α ∈ Ind(Ai) and β ∈ Ind(Aui ) with α ∼ β,
we have
1. Ai ` C(α) iff Aui ` C(β) for all ELI-concepts C;
2. C(α) ∈ Ai iff C(β) ∈ Aui for all C ∈ sub(T ).
From Claims 1 and 2, we obtain thatA andAu entail exactly
the same ELIQs. It follows that T is unraveling tolerant.

o

Lemma 17. Every unraveling tolerant ALCFI-TBox is
materializable.

Proof. We show the contrapositive using a proof strat-
egy that is very similar to the second step in the proof of
Theorem 11. Thus, take an ALCFI-TBox T that is not
materializable. By Theorem 9, T does not have the dis-
junction property. Thus, there is an ABox A∨ and ELIQs
C0(a0), . . . , Ck(ak) such that (T ,A∨) |= C0(a0) ∨ · · · ∨

Ck(ak), but (T ,A∨) 6|= Ci(ai) for all i ≤ k. Let Ai be Ci
viewed as a tree-shaped ABox with root bi, for all i ≤ k.
Assume w.l.o.g. that none of the ABoxes A∨,A0, . . . ,Ak
share any individual names. Consider the ABox

A = A∨ ∪ A0 ∪ · · · ∪ Ak ∪ {r(b, b0), . . . , r(b, bk)}
∪ {r0(bj , b0), . . . , rj−1(bj , bj−1),

rj+1(bj , bj+1), . . . , rk(bj , bk)}
∪ {r0(b0, a0), . . . , rk(bk, ak)}

where b is a fresh individual name and r, r0, . . . , rk do not
occur in T , and the ELIQ

q = ∃r.(∃r0.C0 u · · · u ∃rk.Ck)(b).

Then we have

Claim. (T ,A) |= q, but (T ,Au) 6|= q.

Proof. “(T ,A) |= q”. Take a model I of T and T . By con-
struction of A, we have bIi ∈ (∃rj .Cj)I whenever i 6= j.
Due to the inclusion of A∨ and since (T ,A∨) |= C0(a0) ∨
· · ·∨Ck(ak), we find one bi such that bIi ∈ (∃ri.Ci)I . Con-
sequently, I |= q.

“(T ,Au) 6|= q” (sketch). Consider the elements brbiriai
in Au. Each such element is the root of a copy of the unrav-
eling Au∨ of A∨, restricted to those individuals in A∨ that
are reachable from ai. Since (T ,A∨) 6|= Ci(ai), we find a
model Ii of T and A∨ with aIii /∈ CIii . By unraveling I,
we obtain a model Iui of T and Au∨ with aI

u
i
i /∈ C

Iui
i . By

combining the models Iu0 , . . . , Iuk , one can craft a model I
of T and Au∨ such that brbiriaIi /∈ CIi for all i ≤ k. Conse-
quently, I 6|= q.

It follows that T is not unraveling tolerant. o

Theorem 16. If an ALCFI-TBox T is unraveling tolerant,
then PEQ-answering w.r.t. T is in PTIME.

To prove Theorem 16, let T = {> v CT } be an unrav-
eling tolerant TBox, where we assume w.l.o.g. that CT is
built from the constructors ¬, u, and ∃r.C, only. By Theo-
rem 4, it suffices to show that ELIQ-answering w.r.t. T is in
PTIME. Thus, let q = C0(a0) be an ELIQ. We use cl(T , q)
to denote the set of subconcepts of T and q, closed under
single negation. For an interpretation I and d ∈ ∆I , we use
tIT ,q(d) to denote the set of concepts C ∈ cl(T , q) such that
C ∈ dI . A T , q-type is a subset t ⊆ cl(T , q) such that for
some model I of T , we have t = tIT ,q(d). We use tp(T , q)
to denote the set of all T ,q-types. For t, t′ ∈ tp(T , q) and
r a role, we write t  r t

′ if the following conditions are
satisfied:

• if C ∈ t′ then ∃r.C ∈ t, for all ∃r.C ∈ cl(T , q);

• if C ∈ t then ∃r−.C ∈ t′, for all ∃r−.C ∈ cl(T , q);

• ∃r.C ∈ t iff C ∈ t′, for all ∃r.C ∈ cl(T , q) with
func(r) ∈ T ;

• ∃r−.C ∈ t′ iff C ∈ t, for all ∃r−.C ∈ cl(T , q) with
func(r−) ∈ T .



A type assignment is a map Ind(A) → 2tp(T ,q). The
PTIME algorithm for checking, given an ABox A, whether
(T ,A) |= q is based on the computation of a sequence
of type assigments π0, π1, . . . as follows. For every a ∈
Ind(A), π0(a) is the set of all types t ∈ tp(T , q) such that
A(a) ∈ A implies A ∈ t. Then, πi+1(a) is defined as the
set of all types ta ∈ πi(a) such that for all r(a, b) ∈ A, r a
role name or the inverse thereof, there is a type tb ∈ πi(b)
such that ta  r tb.

Clearly, the sequence π0, π1, . . . will stabilize after at
most O(|A)| steps and can be computed in time polynomial
in |A| (since |T | and thus |tp(T , q)| is a constant). Let π
be the final type assignment in the sequence. The following
yields Theorem 16.

Lemma 31. (T ,A) |= q iff C0 ∈ t for all t ∈ π(a0).

Proof. By unraveling tolerance, we have (T ,A) |= q
iff (T ,Au) |= q. It thus suffices to show that for all
t ∈ tp(T , q), we have t ∈ π(a0) iff there is a model I
of T and Au with tpIT ,q(a

I
0 ) = t.

“⇐”. Let I be a model of T and Au with tpIT ,q(a
I
0 ) = t.

It is not hard to show by induction on i that for all i ≥ 0
and all a0 · · · ak ∈ Ind(Au), we have tIT ,q(a

I
k ) ∈ πi(ak). In

particular, this implies that tIT ,q(a0) ∈ π(a0).

“⇒”. Let t ∈ π(a0). We build a model I of T and Au such
that tIT ,q(a

I
0 ) = t, as follows. First, construct a map λ :

Ind(Au) → tp(T , q) such that for all a0 · · · ak ∈ Ind(Au),
we have λ(a0 · · · ak) ∈ π(ak). Start with setting λ(a0) = t.
Then exhaustively apply the following steps, where r is a
role name:

• if λ(a0 · · · ak) is defined, r(ak, ak+1) ∈ A, and
λ(a0 · · · akrak+1) is undefined, then by the definition of
the sequence π0, π1, . . . and since λ(a0 · · · ak) ∈ π(ak),
there is a type t′ ∈ π(ak+1) such that λ(a0 · · · ak) r t

′.
Set λ(a0 · · · rak+1) = t′.

• if λ(a0 · · · ak) is defined, r(ak+1, ak) ∈ A, and
λ(a0 · · · akr−ak+1) is undefined, then by the definition of
the sequence π0, π1, . . . and since λ(a0 · · · ak) ∈ π(ak),
there is a type t′ ∈ π(ak+1) such that λ(a0 · · · ak)  r−

t′. Set λ(a0 · · · akr−ak+1) = t′.

By definition of types, for each α ∈ Ind(Au) we find a tree-
shaped model Iα of T and A and a dα ∈ ∆Iα such that
tIαT ,q(dα) = λ(α). Assume w.l.o.g. that the domains of all
these models ∆Iα are disjoint. Define a new interpretation
I as follows:

(i) take the disjoint union of the models Iα, α ∈ Ind(Au);

(ii) whenever (dα, e) ∈ rI , func(r) ∈ T , and there is an
assertion r(α, β) ∈ Au, remove the subtree rooted at e;

(iii) for all r(α, β) ∈ Au, add (dα, dβ) to rI ;

(iv) set αI = dα, for all α ∈ Ind(Au).

We need to show that that I is a model of T andAu, and that
tI(da0) = t. By definition of π0 in the sequence π0, π1, . . .
and Point (iii) in the definition of I, it is clear that I is a
model of A. All functionality statements func(r) ∈ T are

satisfied:

Claim 1. If func(r) ∈ T , then rI is a partial function.

Proof of claim. Since A is a model of T and by the UNA,
for each a ∈ Ind(A) there is at most one b ∈ Ind(A) with
r(a, b) ∈ A. By definition of the unraveled ABox Au, it
follows that for each α ∈ Ind(Au) there is at most one β ∈
Ind(Au) with r(α, β) ∈ A. By Points (ii) and (iii) of the
definition of I and since each Iα is a model of T , rI is a
partial function.

It thus remains to show that I satisfies all concept inclu-
sions in T and that tI(da0) = t. Both is a consequence of
the following.

Claim 2. For all C ∈ cl(T , q) and α ∈ Ind(Au), we have

1. dα ∈ CI iff C ∈ λ(α)

2. d ∈ CI iff d ∈ CIα , for all d ∈ ∆Iα \ {dα}.
The proof is by induction on the structure of C. Details are
left to the reader. o

A finite interpretation I is a tree interpretation iff

(∆I ,
⋃

r∈NR,(d,d′)∈rI
{d, d′})

is an undirected tree with rI ∩ sI = ∅ for any two distinct
r, s ∈ NR. A non-uniform constraint satisfaction problem
CSP(I) in Σ has tree obstructions iff there exists a set ΞI of
Σ tree interpretations such that for all finite Σ-interpretations
J :

not Hom(J , I) ⇔ ∃J ′ ∈ ΞI : Hom(J ′,J )

Theorem 32. Let T be a ALCI-TBox. Then T is unravel-
ing tolerant iff all IT ,q , q an ELIQ, have tree obstructions.

Proof. We use the notation from Theorem 24. The main
observation is that if there is a homomorphism from a tree
interpretation I to an ABox (regarded as an interpretation),
then there is a homomorphism from I to the unraveling of
the ABox (regarded as an interpretation). We now give the
details.

Assume T is unraveling tolerant. Let q = C(a) be an
ELIQ. Let Σ = sig(T ) ∪ sig(C) ∪ {P}. For every ABox
A, we have (T ,A) |= C(a) iff (T ,Au) |= C(a). By com-
pactness, for every A with (T ,A) |= C(a) there exists a
finite Af ⊆ Au such that (T ,Af ) |= C(a). From Af we
obtain Af,P by adding P (a) to Af and removing all other
occurrences of P . Now let Ξq denote the set of all IΣ

Af,P .
We show that Ξq satisfies the conditions for tree obstructions
for the template IT ,q:

Assume not Hom(J , IT ,q). Let A be an ABox with
J = IΣ

A. Then (T ,A) |= ∃x.(P (x) ∧ C(x)). By ma-
terializability, there exists a ∈ Ind(A) with P (a) ∈ A
and (T ,A) |= C(a). Hence IΣ

Af,P ∈ Ξq and clearly
Hom(IΣ

Af,P ,J ), as required.
Conversely, assume Hom(IΣ

Af,P ,J ) for some IΣ
Af,P ∈

Ξq . We have (T ,Af ) |= C(a). Hence not
Hom(IΣ

Af,P , IT ,q). But then Hom(J , IT ,q), as required.



Now assume that all IT ,q , q an ELIQ, have tree ob-
structions. Fix an ELIQ C(a) and let A be an ABox
with (T ,A) |= C(a). We have to show that (T ,Au) |=
C(a). We do not have Hom(IΣ

A′ , IT ,q). By the exis-
tence of tree obstructions, there is a Σ tree interpretation
J with Hom(J , IΣ

A′) and not Hom(J , IT ,q). But then
Hom(J , IΣ

A′u), by the observation above. Hence there is
a finite subset Af of A′u with Hom(J , IΣ

Af ). But then
not Hom(IΣ

Af , IT ,q) from which we obtain (T ,Af ) |=
∃x.(P (x) ∧ C(x)), and then (T ,Af ) |= C(a), by mate-
rializability. o

D Proofs for Section 5
Theorem 18. Every materializable ALCFI-TBox of depth
one is unraveling tolerant.

For the proof of Theorem 18, we need a preliminary. An
ALCFI-TBox T is infinitely materializable if for every fi-
nite and infinite ABox A that is consistent w.r.t. T , there
is an ELIQ-materialization of T and A. As in the case of
plain materializability, it would be equivalent to define infi-
nite materializability based on CQs or PEQs.

Lemma 33. An ALCFI-TBox is materializable iff it is in-
finitely materializable.

This lemma follows from the observation that the proof of
the “if” direction of Theorem 10 goes through without mod-
ification also for infinite ABoxes.

Proof. (of Theorem 18) Let T be a materializable TBox
of depth one, A an ABox, and q = C0(a0) an ELIQ with
(T ,Au) 6|= q. We have to show that (T ,A) 6|= q. It follows
from (T ,Au) 6|= q that Au is consistent w.r.t. T and by
Lemma 33 there is a materialization Iu for T and Au. We
have Iu 6|= q and our aim is to convert Iu into a model I
of T and A such that I 6|= q. Before we do this, we first
uniformize Iu in a suitable way, as detailed below.

We assume w.l.o.g. that Iu has forest-shape, i.e., that Iu
can be constructed by selecting a tree-shaped interpretation
Iα with root α for each α ∈ Ind(Au), then taking the dis-
joint union of all these interpretations, and finally adding
role edges (α, β) to rI

u

whenever r(α, β) ∈ Au. In fact, to
achieve the desired shape we can simply unravel Iu starting
from the elements Ind(Au) ⊆ ∆I

u

and then use Point 1 of
Lemma 8 and the fact that there is an i-simulation from the
unraveling of Iu to Iu to show that the obtained model is
still a materialization of T and A, thus still Iu 6|= q. To
ease notation, we generally assume that Ind(Au) ⊆ ∆I

u

and αI
u

= α for all α ∈ Ind(Au).
We start with exhibiting a self-similarity inside the unrav-

eled ABox Au.

Claim 1. For all α, β ∈ Ind(Au) with tail(α) = tail(β)
and all ALCFI-concepts C, we have Au |= C(α) iff
Au |= C(β).

Assume to the contrary that there are α, β ∈ Ind(Au) with
tail(α) = tail(β), Au |= C(α), and Au 6|= C(β). Then
there is a model I of Au and T such that I 6|= C(β). We

exhibit a model J of Au and T such that J 6|= C(α), in
contradiction to Au |= C(α).

Define a map ι : Ind(Au)→ Ind(Au) such that tail(γ) =
tail(ι(γ)) for all γ ∈ Ind(Au) as follows:

1. Start with setting ι(α) = β;
2. if ι(γ) is defined, γ = a0r0a1 · · · an−1rn−1an,
ι(a0 · · · an−1) is undefined, and ι(γ) is of the form
b0s0b1 · · · bm−1sm−1bm with sm−1 = rn−1 and bm−1 =
an−1, then set ι(a0 · · · an−1) = b0 · · · bm−1;

3. if ι(γ) is defined, γ = a0r0a1 · · · an−1rn−1an,
ι(a0 · · · an−1) is undefined, and ι(γ) is not of the form
b0s0b1 · · · bm−1sm−1bm with sm−1 = rn−1 and bm−1 =
an−1, then ι(γ)r−n−1an−1 ∈ Ind(Au) and we use it as the
value of ι(a0 · · · an−1);

4. if ι(γ) is defined, γra ∈ Ind(Au), ι(γra) is undefined,
and ι(γ) is of the form a0 · · · an−1rn−1an with rn−1 =
r− and an−1 = a, then set ι(γra) = a0 · · · an−1;

5. if ι(γ) is defined, γra ∈ Ind(Au), ι(γra) is undefined,
and ι(γ) is of the form a0 · · · an−1rn−1an with rn−1 =
r− and an−1 = a, then ι(γ)ra ∈ Ind(Au) and we use it
as the value of ι(γra);

6. if the value of ι(γ) is undefined after exhaustive applica-
tion of the above rules, set ι(γ) = γ.

It can be verified that ι is an ABox automorphism, i.e. for all
γ ∈ Ind(Au), A ∈ NC, and r ∈ NR, we have
• A(γ) ∈ Au iff A(ι(γ)) ∈ Au;
• r(γ, γ′) ∈ Au iff r(ι(γ), ι(γ′)) ∈ Au.
Let the interpretation J be defined as I, but put γJ = ι(γ)I

for all γ ∈ Ind(Au). J is a model of A since ι is an
ABox automorphism and a model of T since I is. More-
over, I 6|= C(β) implies βI /∈ CI , which implies βI /∈ CJ
by definition of J . Since αJ = βI , we have J 6|= C(α) as
required. This finishes the proof of Claim 1.

Using Claim 1, we exhibit some self-similarity also inside
Iu. However, we cannot use ALCFI-concepts here since
entailment by Au agrees with truth in Iu only for ELIQs,
but not for ALCFI-instance queries. We thus concentrate
on ELI-concepts andBL-concepts, where the latter are con-
structed only from concept names and the Boolean opera-
tors.

Claim 2. For all α, β ∈ Ind(Au) with tail(α) = tail(β), we
have
1. α ∈ CIu iff β ∈ CIu for all ELI-concepts C and
2. α ∈ CIu iff β ∈ CIu for all BL-concepts C.
Point 1 is an immediate consequence of Claim 1 and the fact
that Iu is an ELIQ-materialization of Au. For Point 2, note
that Point 1 yields α ∈ AIu iff β ∈ AIu for all concept
names A. Point 2 then follows by a straightforward induc-
tion on the structure of C.

Now for the announced uniformization of Iu. What we
want to achieve is that for all α, β ∈ Ind(Au), tail(α) =
tail(β) implies Iα = Iβ (recall that Iα is the tree compo-
nent of Iu rooted at α, and likewise for Iβ). Construct the
interpretation J u as follows:



• for each α ∈ Ind(Au) with tail(α) = a, take a copy Jα
of Ia with root α;

• then J u is the disjoint union of all interpretations Jα,
α ∈ Ind(Au), extended with a role edge (α, β) ∈ rJ

u

whenever r(α, β) ∈ Au.
It is straightforward to verfiy that J u is a model of Au: all
role assertions are satisfied by construction of J u; more-
over, A(α) ∈ Au implies A(a) ∈ Au where a = tail(α) ,
thus a ∈ AIu ; by construction of J u, this yields α ∈ AJu
as required.

Next, we show that J u is a model of T . Let f : ∆J
u →

∆I
u

be a mapping that assigns to each domain element of
J u the original element in Iu of which it is a copy.

Claim 3. For every d ∈ ∆J
u

and ALCFI-concept C of
depth one, we have d ∈ CJ u iff f(d) ∈ CIu .

The proof of claim 3 is by induction on the structure of C.
We assume w.l.o.g. that C is built only from the constructors
¬, u, and ∃r.C. The base case, where C is a concept name,
is an immediate consequence of the definition of I. The
case where C = ¬D and C = D1 u D2 is routine. Thus
we concentrate on the case where C = ∃r.D, where r ∈
NR ∪ N−R .

First let d ∈ CJ
u

. Then there is a (d, e) ∈ rJ
u

with
e ∈ DJ

u

. First assume that the edge (d, e) was added to
rJ

u

because d = α and e = β for some α, β ∈ Ind(Au)
with r(α, β) ∈ Au. Let tail(α) = a and tail(β) = b.
Then we have f(α) = a and f(β) = b. By construction
of Au, r(α, β) ∈ Au implies that β = αrb or α = βr−a.
In both cases we have r(a, b) ∈ A, thus r(a, arb) ∈ Au,
thus (a, arb) ∈ rI

u

. Since β = e ∈ DJ
u

, IH yields that
b ∈ DIu . Since C is of depth one, D is a BL-concept. By
Point 2 of Claim 2, arb ∈ DIu and we are done. Now as-
sume that there is an α ∈ Ind(Au) such that (d, e) ∈ Jα.
By construction of J u, we then have (f(d), f(e)) ∈ rI

u

and IH yields f(e) ∈ DIu .
Now let f(d) ∈ CI

u

. Then there is a (f(d), e) ∈ rI
u

with e ∈ DIu . First assume that f(d) = α and e = β for
some α, β ∈ Ind(Au) with r(α, β) ∈ Au. Since f(d) ∈
Ind(Au), we must have d = γ ∈ Ind(Au) and f(d) = a ∈
Ind(A) with tail(γ) = a. By construction of Au, r(a, β) ∈
Au implies that β = arb, thus r(a, b) ∈ A, thus r(γ, δ) ∈
Au with (i) δ = γrb or (ii) γ = δr−a and tail(δ) = b. Since
arb = e ∈ DIu , Point 2 of Claim 2 yields b ∈ DIu . Since
tail(δ) = b implies f(δ) = b, IH yields δ ∈ DJ

u

and we
are done. Now assume that there is an α ∈ Ind(Au) such
that (f(d), e) ∈ Iα. By construction of J u, f(d) being in
Iα implies that α = a for some a ∈ Ind(A) and that there
is an α′ ∈ Ind(Au) such that d is in Jα′ and tail(α′) = a.
Again by construction of J u, we thus find an e′ in Jα′ with
f(e′) = e and (d, e′) ∈ rJα′ ⊆ rJ u . IH yields e′ ∈ DJ u .

This finishes the proof of Claim 3. We can now show that
J u is a model of T . First, J u satisfies all CIs in T since
Iu does and by Claim 3. It remains to show that I satisfies
all functionality assertions in T . Thus, let func(r) ∈ T . We
show that each d ∈ ∆J

u

has at most one r-successor in J u.
Distinguish two cases:

• d /∈ Ind(Au). Then d has at most one r-successor since
Iu satisfies func(r) and by construction of J u.

• d = α ∈ Ind(Au). Let tail(α) = a. By construction of
J u and Au, α has the same number of r-successors in
J u as a in Iu. Since Iu satisfies func(r), α can have at
most one r-successor in J u.

The final condition that J u should satisfy is that J u 6|= q =
C0(a0). Assume to the contrary that J u |= q. We view
q as a tree-shaped CQ whose root is the individual name
a0 and whose non-root nodes are variables, thus J u |= q
means that there is a match π of q in J u, i.e., a mapping π :
term(q) → ∆J

u

such that π(a0) = a0, A(t) ∈ q implies
π(t) ∈ AJ u , and r(t, t′) ∈ q implies (π(t), π(t′)) ∈ rJ u .
We prove that this implies the existence of a match τ for q
in Iu, which yields a contradiction to Iu 6|= q.

We start the construction of τ by setting τ(t) = π(t) for
all t ∈ term(q) with π(t) ∈ Ind(Au). It remains to define
τ(x) for all variables x ∈ term(q) such that π(x) 6= α for
all α ∈ Ind(Au). This is done by applying the following
construction, for each t ∈ term(q) such that π(t) = α ∈
Ind(Au).

Recall that Jα is the tree interpretation rooted at α in J u.
Let V be the set of all variables x ∈ term(q) such that
there is a sequence r1(t1, t2), . . . , rn−1(tn−1, tn) ∈ q, ri ∈
NR ∪ N−R , such that t1 = t, tn = x, and π(ti) ∈ ∆Jα \ {α}
for 2 ≤ i ≤ n. We define τ(x) for all x ∈ V simultane-
ously. To this end, let J Vα be the restriction of Jα to those
elements that are in V . It is not hard to verify that J Vα is a
finite tree and an initial piece of the potentially infinite tree
Jα. Let CV be an ELI-concept that describes J Vα up to ho-
momorphisms, i.e., for any interpretation I and d ∈ ∆I

we have d ∈ CIV iff J Vα can be embedded into I with
a sig(q)-homomorphism (a homomorphism that ignores all
symbols which do not occur in q) h such that h(α) = d. Let
tail(α) = a. By construction of J u, the tree component Ia
of Iu is identical to Jα and thus has J Vα as an initial piece,
which implies a ∈ CIuV . Point 1 of Claim 2 yields α ∈ CIuV
and consequently there is a homomorphism h that embeds
J vα into Iu such that h(α) = α. To define the match τ for
the variables in V , compose π with h.

It can be verified that the overall mapping τ obtain in this
way is a match for q in I.

This finishes the construction and analysis of the uniform
model J u. It remains to convert J u into a model I of T
and the original ABox A such that I 6|= q.
• take the disjoint union of the components Ja of J u, for

each a ∈ Ind(A);
• set aI = a for all a ∈ Ind(A);
• add the edge (a, b) to rI whenever r(a, b) ∈ A.
It is straightforward to verfiy that I is a model of A: all
role assertions are satisfied by construction of I; moreover,
A(a) ∈ A implies A(a) ∈ Au, whence a ∈ AJ u which in
turn implies a ∈ AI by construction of I. To show that I is
a model of T , we first note that J u is self-similar in a way
that parallels Claim 1.

Claim 4. For all α, β ∈ Ind(Au) with tail(α) = tail(β) and



all ALCFI-concepts C, we have α ∈ CJ u iff β ∈ CJ u ,

Proof sketch, The proof parallels the one of Claim 1. This
time, we define an automorphism ι on the model J u instead
of on the ABox Au. For the elements Ind(Au) ⊆ ∆J

u

, the
construction of ι is exactly as in the proof of Claim 1. We
can then extend the initial ι to all non-ABox-elements of J u
exploiting the uniformity of this interpretation. Details are
left to the reader.

Next, we show the following.

Claim 5. For every d ∈ ∆I and ALCFI-concept C, we
have d ∈ CJ u iff d ∈ CI .

The proof of Claim 5 is by induction on the structure of C.
Again, the only interesting case is C = ∃r.D, where r ∈
NR ∪ N−R .

First assume d ∈ CJ u . Then there is a (d, e) ∈ rJ u with
e ∈ DJ

u

. First assume that the edge (d, e) was added to
rJ

u

because d = α and e = β for some α, β ∈ Ind(Au) and
r(α, β) ∈ Au. Since d ∈ ∆I , we must have d = α = a ∈
Ind(A). Let tail(β) = b. By construction of Au, r(a, β) ∈
Au thus yields r(a, b) ∈ A and hence (a, b) ∈ rI . We are
done since Claim 4 and β ∈ DJ u yields b ∈ DJ u , which
implies b ∈ DI by IH.

Now let d ∈ CI . Then there is a (d, e) ∈ rI with e ∈ DI .
First assume that d = a and e = b with a, b ∈ Ind(A)
and r(a, b) ∈ A. By construction of Au, this implies that
r(a, arb) ∈ Au. Thus (a, arb) ∈ rJ u and we are done since
IH yields b ∈ DJ u abd thus arb ∈ DJ u by Claim 4. Now
assume that there is an a ∈ Ind(A) such that (d, e) ∈ rJa .
Then the construction of I yields (d, e) ∈ rJ u and we are
done since IH yields e ∈ DI .

By Claim 4, I satisfies all CIs in T . To show that I is a
model of T , it remains to show that I satisfies all function-
ality assertions in T . Thus, let func(r) ∈ T . We show that
each d ∈ ∆J

u

has at most one r-successor in J u. Distin-
guish two cases:
• d /∈ Ind(A). Then d has at most one r-successor since
J u satisfies func(r) and by construction of I.

• d = a ∈ Ind(A). By construction of I and Au, a has the
same number of r-successors in I as in J u. Since J u
satisfies func(r), a can have at most one r-successor in I.

It remains to show that I 6|= q. Assume to the contrary of
what is to be shown that I |= q. Let S ⊆ ∆I × ∆J

u

be the of pairs (d, e) such that for some a ∈ Ind(A) and
α ∈ Ind(Au) with tail(α) = a, d ∈ ∆Ja is the element in
the tree interpretation Ja that corresponds to e ∈ ∆Jα in
the isomorphoc tree interpretation Jα. Using the definition
ofAu and I, it can be verified that S is an i-simulation from
I to J u. We only prove that when (a, b) ∈ rI with a, b ∈
Ind(A) and (a, α) ∈ S, then there is a β with (α, β) ∈ rJu
and (b, β) ∈ S. To start, note that, by definition of S, we
have α ∈ Ind(Au) and tail(α) = a. From (a, b) ∈ rI , we
obtain r(a, b) ∈ A and thus by construction of Au there is
a β ∈ Ind(Au) with r(α, β) ∈ Au and tail(β) = b. From
r(α, β) ∈ Au, we obtain (α, β) ∈ rJ u . From tail(β) = b,
it follows that (b, β) ∈ S as required.

Since matches of ELIQs are preserved under i-simulations
and (a0, a0) ∈ S, I |= q implies J u |= q, which is a con-
tradiction. o

E Proofs for Section 6
Proof of Lemma 21
We show Lemma 21 for singleton sets ∆I . The extension to
arbitrary interpretations is straightforward. Thus, let Z be a
concept name and z0, z1 role names. Let

T = {> v ∃z0.>,> v ∃z1.Z}, H = ∀z0.∃z1.¬Z.

Lemma 34. For any ABox A and set I ⊆ Ind(A), one can
construct a model I of (T ,A) such that HI = I and I is
hom-initial in Mod(T ,A).

Proof. Assume A and I ⊆ Ind(A) are given. Denote by Ib
the interpretation based on a binary tree in which every node
has one z0-son and one z1-son, and every node reachable
with z1 satisfies Z. More precisely, the domain ∆Ib of Ib is
the set of words over {0, 1}, (σ, σ0) ∈ zIb0 for all σ ∈ ∆Ib ,
(σ, σ1) ∈ zIb1 for all σ ∈ ∆Ib , and ZIb = {σ1 | σ ∈
∆Ib}. Now, hook mutually disjoint copies of Ib to each
a ∈ Ind(A) (i.e., we identify the root of the copy of Ib with
aI). The resulting interpretation, call it I0, satisfies T and
HJ0 = ∅. To satisfy the condition HI = I , we add for all
a ∈ I and dwith (aI0 , d) ∈ zI00 a new d′ to I0 with (d, d′) ∈
zI1 and d′ 6∈ ZI . Also, hook a copy of Ib to d′. The resulting
interpretation, I, satisfies T and we have HI = I . Now let
J be a model of (T ,A). To construct a homomorphism f ,
we set f(aI) = aJ for all a ∈ Ind(A). Suppose d 6= aI for
any a ∈ Ind(A) and f(d′) has been defined for the unique
z0 or z1-predecessor of d. If (d′, d) ∈ zI0 , by > v ∃z0.>,
we find e with (f(d′), e) ∈ zJ0 . Set f(d) = e. (Observe that
d 6∈ ZI!). If (d′, d) ∈ zI1 , by > v ∃z1.Z, we find e ∈ ZJ
with (f(d′), e) ∈ zJ1 . Set f(d) = e. One can show that the
resulting function f is a homomorphism. o

Proof of Theorem 24
Assume T andC(a) are given. Similarly to Theorem 22, the
interpretation IT ,q can be obtained using a standard type-
based construction. We use the sets cl(T , C), tp(T , C), and
the relation  r between types as defined in the proof of
Theorem 16. We define ∆IT ,q as the set of all t ∈ tp(T , C)
that are satisfiable w.r.t. T and let t ∈ AIT ,q iff A ∈ t, for
all A ∈ Σ, and (t, t′) ∈ rIT ,q iff t  r t

′, for all r ∈ Σ.
Finally, P IT ,q = {t ∈ ∆IT ,q | C 6∈ t}. We now show:

1. (T ,A) |= C(a) iff not Hom(IΣ
A′ , IT ,q), whereA′ results

from A by adding P (a) to A and removing all other as-
sertions using P from A;

2. not Hom(IΣ
A, IT ,q) iff (T ,A) |= ∃v.(P (v) ∧ C(v)).

We start by proving (1).

“⇒”. Assume Hom(IΣ
A′ , IT ,q). Let h : IΣ

A′ → I be a
witness homomorphism. For each b ∈ Ind(A), let Ib be a
copy of IT ,q (with isomophism hb : Ib → I). Hook each



Ib to A′ by identifying b with h(b). The resulting interpre-
tation,H, is the disjoint union of all Ib, b ∈ Ind(A) together
with (a, b) ∈ rH whenever r(a, b) ∈ A and r ∈ Σ. It is
readily checked that

•
⋃
b∈Ind(A) hb is a Σ \ {P}-bisimulation (two-way!) be-

tweenH and I.

Thus, for all subconcepts D of T and C and all b ∈ Ind(A):
b ∈ CH iff h(b) ∈ CIT ,q . We obtain thatH is a model of T
andA. Moreover, a 6∈ CH since h(a) 6∈ CIT ,q and the latter
follows because otherwise h(a) 6∈ P IT ,q and P (a) ∈ A′
which would contradict that h is a homomorphism. Thus,
(T ,A) 6|= C(a).

“⇐”. Assume (T ,A) 6|= C(a). Take a witness interpre-
tation J . The type t(d) of d ∈ ∆I is the set of (negated)
subconcepts D of C and T such that d ∈ DJ . The map-
ping h : a 7→ t(aJ ), for a ∈ Ind(A) is a homomorphism
from IΣ

A′ to I. We only consider preservation of P . As-
sume P (b) ∈ A′. Then a = b. We have C 6∈ t(aJ ). Thus
C 6∈ h(a). Hence h(a) ∈ P IT ,q .

Consider (2). The proof is similar.

“⇐”. Assume (T ,A) 6|= ∃v.(P (v) ∧ C(v)). Take a wit-
ness interpretation J . The type t(d) of d ∈ ∆I is the set
of (negated) subconcepts D of C and T such that d ∈ DJ .
The mapping h : a 7→ t(aJ ), for a ∈ Ind(A) is a ho-
momorphism from IΣ

A to I. We only consider preserva-
tion of P . Assume P (b) ∈ A. Then, since (T ,A) 6|=
∃v.(P (v) ∧ C(v)), C 6∈ t(bJ ). Then C 6∈ h(b). Hence
h(a) ∈ P IT ,q .

“⇒”. Assume Hom(IΣ
A, IT ,q). Let h : IΣ

A → I be a
witness homomorphism. For each b ∈ Ind(A), let Ib be a
copy of I (with isomophism hb : Ib → I). Hook each Ib to
A by identifying b with h(b). The resulting interpretation,
H, is the disjoint union of all Ib, b ∈ Ind(A) together with
(a, b) ∈ rH whenever r(a, b) ∈ A and r ∈ Σ. For all con-
ceptsX that do not occur in T or C (including, in particular,
P ), we set XH = {b ∈ Ind(A) | X(b) ∈ A}. It is readily
checked that

•
⋃
b∈Ind(A) hb is a Σ \ {P}-bisimulation (two-way!) be-

tweenH and I.

Thus, for all subconcepts D of T and C and all b ∈ Ind(A):
b ∈ CH iff h(b) ∈ CIT ,q . Thus, H is a model of T and A.
Moreover, PH∩CH = ∅: if d ∈ PH, then d = bJ for some
b ∈ Ind(A) with P (b) ∈ A. Thus, h(b) ∈ P IT ,q . But then
h(b) 6∈ CIT ,q . Therefore b 6∈ CH, as required.

It follows that (T ,A) 6|= ∃v.(P (v) ∧ C(v)), as required.

F Proofs for Section 7
To formulate the result for FO-rewritability, we introduce
a slightly modified version of FO-rewritability that takes
into account only those ABoxes that are consistent w.r.t. the
TBox.

Definition 35. Let T be a ALCFI-TBox. Let Q ∈
{CQ,PEQ,ELIQ,ELQ}. We say that T is FO-rewritable
for Q for consistent ABoxes iff for every q(~x) ∈ Q one can

effectively construct a FOQ q′(~x) such that for every ABox
A that is consistent w.r.t. T , certT (q,A) = {~a | IA |=
q′(~a)}.
Using similar modifications of Definition 2, one can de-
fine the obvious notions of Q-answering w.r.t. T being in
PTIME for consistent ABoxes and Q-answering w.r.t. T
being CONP-hard for consistent ABoxes. Theorem 4 still
holds for these modified notions. For simplicity, we state
the following result for CQs only.

We first prove an extended version of the undecidabil-
ity result (Theorem 28) and then modify the TBoxes con-
structed in its proof to show the non-dichomy result (Theo-
rem 27). The modified version of Theorem 28 is as follows:
Theorem 36. For ALCF-TBoxes T , the following prob-
lems are undecidable (Points 1 and 2 are subject to the side
condition that PTIME 6= NP):

1. CQ-answering w.r.t. T is in PTIME (with and w/o restric-
tion to consistent ABoxes);

2. CQ answering w.r.t. T is CONP-hard; (with and w/o re-
striction to consistent ABoxes);

3. T is materializable;
4. T is FO-rewritable for CQ for consistent ABoxes;
The proofs employ TBoxes that have been introduced in
(Baader et al. 2010) to prove the undecidability of the fol-
lowing emptiness problem: given an ALCF-TBox T , a sig-
nature Σ with Σ ⊆ sig(T ) and a concept name A, does
there exist a Σ-ABox A such that A is consistent w.r.t. T
and (T ,A) |= ∃v.A(v)? Note that this problem is of inter-
est only for A 6∈ Σ because otherwise one could clearly take
the ABox {A(a)}.

We start by defining the TBoxes TP constructed in
(Baader et al. 2010). An instance of the finite rectangle tiling
problem (FRTP) is given by a triple P = (T, H, V ) with T
a non-empty, finite set of tile types including an initial tile
Tinit to be placed on the lower left corner and a final tile
Tfinal to be placed on the upper right corner, H ⊆ T × T
a horizontal matching relation, and V ⊆ T × T a ver-
tical matching relation. A tiling for (T, H, V ) is a map
f : {0, . . . , n} × {0, . . . ,m} → T such that n,m ≥ 0,
f(0, 0) = Tinit, f(n,m) = Tfinal, (f(i, j), f(i + 1, j)) ∈ H
for all i < n, and (f(i, j), f(i, j + 1)) ∈ v for all i <
m. It is undecidable whether an instance P of the FRTP
has a tiling. For simplicity, in the following we fix a set
T = {T1, . . . , Tp} of tile types and consider instances of the
FRTP over T only. It is easy to see that the tiling problem is
still undecidable if T is sufficiently large.

Now let Σ = {T1, . . . , Tp, x, y, x
−, y−} be a signature

consisting of a set T1, . . . , Tp of concept names (identical to
the tile types) and role names x, y, x−, and y− (we are not
assuming that x− and y− are interpreted as the inverse of
xand y, respectively). In (Baader et al. 2010), with any P =
(T, H, V ) one associates the ALCF-TBox TP containing

F = {func(x), func(y), func(x−), func(y−)}

and CIs using additional concept names
U,R,L,D,A, Y, Ix, Iy, C, Zc,1, Zc,2, Zx,1, Zx,2, Zy,1.
x and y are used to build the rectangle. U and R mark



the upper and right border of the rectangle. L and D (for
“down”) mark the left and lower border of the rectangle.
In the following, for e ∈ {c, x, y}, we let Be range over
all Boolean combinations of the concept names Ze,1 and
Ze,2, i.e., over all concepts L1 u L2 where Li is a literal
over Ze,i, for i ∈ {1, 2}. The TBox TP is defined as the
union of F and the following CIs, where (Ti, Tj) ∈ H and
(Ti, T`) ∈ V :

Tfinal v Y u U uR
∃x.(U u Y u Tj) u Ix u Ti v U u Y
∃y.(R u Y u T`) u Iy u Ti v R u Y

∃x.(Tj u Y u ∃y.Y )
u∃y.(T` u Y u ∃x.Y )

uIx u Iy u C u Ti v Y
Y u Tinit v A

Bx u ∃x.∃x−.Bx v Ix
By u ∃y.∃y−.By v Iy

∃x.∃y.Bc u ∃y.∃x.Bc v C

U v ∀y.⊥
R v ∀x.⊥
U v ∀x.U
R v ∀y.R

t
1≤s<t≤p

Ts u Tt v ⊥

D v ∀y−.⊥
L v ∀x−.⊥
D v ∀x.D u ∀x−.D
L v ∀y.L u ∀y−.L

Y u Tinit v D u L
We note that the final five inclusions (and the concept names
L and D) are not used in (Baader et al. 2010). We use them
here to fix the left and lower border of the rectangle. Those
inclusions are not required in the present proof, but are used
in the non-dichotomy proof below.

Call an ABox A a P-ABox (with initial node a) iff there
is a tiling f for P with domain {0, . . . , n}×{0, . . . ,m} and
a bijection fP : {0, . . . , n} × {0, . . . ,m} → Ind(A) with
fP(0, 0) = a such that

• Tinit(fP(0, 0)) ∈ A;

• Tfinal(fP(n,m)) ∈ A;

• Ti(fP(k, j)) ∈ A iff Ti = f(k, j);

• x(b1, b2) ∈ A iff x−(b2, b1) ∈ A iff (b1, b2) =
(fP(k, j), fP(k + 1, j))

• y(b1, b2) ∈ A iff y−(b2, b1) ∈ A iff (b1, b2) =
(fP(k, j), fP(k, j + 1))

The following is shown in (Baader et al. 2010) (the proof
is easily extended to cover the additional concepts for the
lower and left border):

Lemma 37. For every Σ-ABoxA that is consistent w.r.t. TP,
the following conditions are equivalent:

• (TP,A) |= ∃v.A(v);
• A = A0 ∪ A1 for a P-ABox A0 and a, possibly empty,

ABox A1 with Ind(A0) ∩ Ind(A1) = ∅.

Observe that the concept name A used in the CQ occurs
only once in the TBox, on the right-hand side of a CI. The
CI for C enforces confluence, i.e., C is entailed at an in-
dividual name a if there is an individual b that is both an
x-y-successor and a y-x-successor of a. This is so because,
intuitively, Bc is universally quantified: if confluence fails,
we can interpret Zc,1 and Zc,2 in a way such that neither of
the two conjuncts in the precondition of the CI for C is sat-
isfied. In a similar manner, the CI for Ix (resp. Iy) is used
to ensure that x− (resp. y−) acts as the inverse of x (resp.
y) at all points in the rectangle, which means that x (resp.
y) is inverse functional within the rectangle. The following
characterization of tilings follows directly from Lemma 37.

Lemma 38. P admits a tiling iff there is a Σ-ABox A that
is consistent with TP and such that TP,A |= ∃v.A(v).

Set Σ = sig(TP) \ Σ. To construct the TBoxes we use for
the reduction, replace within the TBoxes TP all B ∈ Σ by
the concepts HB = ∀rB .∃sB .¬ZB and add

TZ = {> v ∃rB .>,> v ∃sB .ZB | B ∈ Σ}

to TP. Also, add the inclusionHA v B1tB2, whereB1, B2

are fresh concept names, to TP. Denote the resulting TBox
by T ∨P .

For any ABox A, we denote by AΣ the subset of A con-
sisting of all assertions in A that use only symbols from Σ.

Lemma 39. For any ABox A, T ∨P ,A |= ∃v.HA(v) iff
TP,AΣ |= ∃v.A(v).

Proof. The direction from right to left is trivial. Con-
versely, suppose (TP,AΣP) 6|= ∃v.A(v). Take a model I
of (TP,AΣ) such that AI = ∅. Since there are no existen-
tial restrictions on the right hand side of CIs, we can assume
that ∆I = {aI | a ∈ Ind(A)}. Now set, for B ∈ Σ,
IB = {a ∈ Ind(A) | aI ∈ BI}. Using Lemma 21, we can
find a model I of (T ′P,A) refuting ∃v.HA(v). o

Lemma 40. Assume P does not admit a tiling. Then T ∨P is
FO-rewritable for consistent ABoxes. Hence T ∨P is materi-
alizable and CQ-answering w.r.t. T ∨P is in PTIME.

Proof. If P does not admit a tiling, then (TP,AΣ) 6|=
∃v.A(v), for any ABoxA such thatA is consistent w.r.t. TP,
by Lemma 38. Thus, (T ∨P ,A) 6|= ∃v.HA(v) for any
ABox A such that A is consistent w.r.t. T ∨P , by Lemma 39.
But now one can show for any ABox A that is consistent
w.r.t. T ∨P and any CQ q,

(T ∨P ,A) |= q ⇔ (TZ ,A) |= q

TZ is FO-rewritable. Thus, T ∨P is FO-rewritable for consis-
tent ABoxes. o

Lemma 41. Assume P admits a tiling. Then T ∨P is not ma-
terializable. Thus, T ∨P is not FO-rewritable for consistent
ABoxes and CQ-answering w.r.t. T is CONP-hard.



Proof. Let A be a Σ-ABox such that (TP,A) |= ∃v.A(v)
andA is consistent w.r.t. TP. Then (T ∨P ,A) |= ∃v.(B1(v)∨
B2(v)) and A is consistent w.r.t. T ∨P . It is readily checked
that (T ∨P ,A) 6|= ∃v.B1(v) and (T ∨P ,A) 6|= ∃v.B2(v). Thus,
T ∨P is not materializable. o

From Lemmas 40 and 41, we obtain Points 3 and 4 of The-
orem 36 as well as Points 1 and 2 for consistent ABoxes.
Thus, to prove Theorem 36 it remains to show the following
lemma.

Lemma 42. Consistency of ABoxes w.r.t. T ∨P can be decided
in polynomial time (in the size of the ABox).

Proof. Assume A is given. Form AΣ and apply the follow-
ing rules exhaustively:

• add Ix(a) to AΣ if there exists b with x(a, b), x−(b, a) ∈
A;

• add Iy(a) to AΣ if there exists b with y(a, b), y−(b, a) ∈
A;

• add C(a) to AΣ if there exist a1, a2, b with x(a, a1),
y(a, a2), y(a1, b), x(a2, b) ∈ A.

Denote the resulting ABox by A′. Now remove the three
inclusion schemata involving the Boolean combinations B
from TP and denote by T the resulting TBox. One can
show that (T ∨P ,A) is consistent iff (T ,A′) is consistent.
The consistency of the latter can be checked in polynomial
time since T is a Horn-ALCF-TBox. o

We now come to the proof of Theorem 27.

Theorem 27 For every language L ∈ CONP there exists a
ALCF-TBox T and query rej(a), rej a concept name, such
that the following holds:

• there is a polynomial reduction of L to answering rej(a)
w.r.t. T ;

• for every Boolean ELIQ q, answering q w.r.t. T is poly-
nomially reducible to L.

Consider a non-deterministic TMM = (Q,Σ,∆, q0, qa, qr)
with Q a finite set of states, Σ a finite alphabet, q0 ∈ Q a
starting state, ∆ ⊆ Q×Σ×Q×Σ×{L,R} the a transition
relation, and qa, qr ∈ Q the accepting and rejecting states.
We assume that for any input v ∈ Σ∗, M halts after exactly
|v|k steps in the accepting or rejecting state and that it uses
exactly nk cells for the computation. Denote by L(M) the
language accepted by M and assume that L = Σ∗ \ L(M).

The ABoxes we use to simulate input words v ∈ Σ∗ are
m1 × m2 grids in which Tinit is written in the lower left
corner followed by the the word v, Tfinal is written in the
upper right corner, and B (for blank) is written everywhere
else. In our construction of T we first build a TBox that
“checks” whether the input ABox is of this form.

To define this part of the TBox, we re-use the above TBox
TP, where P = (T, H, V ) with T = {B, Tfinal, Tinit} ∪ Σ
and H consisting of all pairs in T× T except

• (B, σ) for σ ∈ Σ,

• (σ, Tfinal) for σ ∈ Σ,

• (Tfinal, T ), (T, Tinit), for T ∈ T,

and V consisting of all pairs in T× T except

• (B, σ) for σ ∈ Σ,

• (σ1, σ2) for σ1, σ2 ∈ Σ,

• (σ, Tfinal) for σ ∈ Σ,

• (Tfinal, T ), (T, Tinit), for T ∈ T.

For any n,m ≥ 2, and any word v ∈ L∗ there is exactly one
tiling f for P. That tiling places Tinit in the lower left corner
followed by the the word v, Tfinal in the upper right corner,
and B is written everywhere else. Thus, every P-ABox A
(with initial node a) is isomorphic to some n×m-grid with
a word Tinitv (v ∈ L∗) written in the lower left corner. We
call this ABox the grid-ABox for the n ×m-rectangle with
word v. Set

Tgrid := TP, T SO
grid := T ∨P \ {HA v B1 tB2}.

Recall that T SO
grid contains the inclusions TZ for “second-

order variables”.
To encode the computation of the TM M we use the fol-

lowing set ZM of inclusions. Intuitively, assume that a grid-
ABox with initial node a for the n×m-rectangle with word
v is given. Then (T SO

grid,A) |= HA(a). We introduce a con-
cept name Hgrid denoting all individual names in A:

HA v Hgrid, Hgrid v ∀r.Hgrid

for all r ∈ {x, y, x−, y−}. The remaining inclusions are all
relativized to Hgrid. The remaining inclusions use

• concept names q ∈ Q that indicate the state of the TM in
the computation;

• concept names σ ∈ Σ for the input word;

• concept namesAσ , σ ∈ Σ, for symbols written during the
computation (and as copies of the symbols of the input
word);

• a concept name H for the head of the TM.

We simulate the instructions of M by taking for (q, σ, q′) ∈
Q× Σ×Q:

Hgrid uH u q uAσ v

t
(q,σ,q′,σ′,L)∈∆

∃y.(Aσ′ u q′ u ¬H u ∀x.¬H u ∃x−.H) t

t
(q,σ,q′,σ′,R)∈∆

∃y.(Aσ′ u q′ u ¬H u ∀x−.¬H u ∃x.H)

We state that cells can only change where H is:

Hgridu¬HuAσ v ∀y.Aσ, Hgridu¬Hu¬Aσ v ∀y.¬Aσ
We state that H cannot be introduced without a correspond-
ing computation step:

Hgrid u ¬H u ∀x−.¬H u ∀x.¬H v ∀y.¬H.

We state that, when M starts, it is in state q0 and that the
head is at the first cell:

Tinit uHgrid v q0, Tinit uHgrid ≡ ∃x.H u∀y−.⊥uHgrid.



We state that every state q is uniform over each step of the
computation:

q uHgrid v ∀x.q u ∀x−.q.
We state that Aσ is true where σ from the input word is true:

Hgrid u σ ≡ Hgrid u ∀y−.⊥ uAσ,
for σ ∈ Σ. We close with

Hgrid uAσ uAσ′ v ⊥, Hgrid u q u q′ v ⊥,
for σ 6= σ′ and q 6= q′, and the assertion that rej is true
everywhere in the ABox if the machine reaches the rejecting
state:

Hgrid u qr v rej, Hgrid u rej v ∀r.rej

for r ∈ {x, y, x−, y−}. This finishes the definition of ZM .
As before, we replace every concept name

B ∈ X := Q ∪ {Aσ | σ ∈ Σ} ∪ {Hgrid, H}
by HB = ∀rB .∃sB .¬ZB , add

TZ,1 = {> v ∃rB .>,> v ∃sB .ZB | B ∈ X}
to ZM and denote the resulting TBox by ZSO

M . We set
T SO
M = T SO

grid∪ZSO
M . Note that the only “real” concept names

in T SO
M are T and rej. The following lemma is straightfor-

ward now and proves Part 1 of Theorem 27.
Lemma 43. If A is the grid-ABox for the m1 × m2-
rectangle with word v and m1,m2 ≥ nk for n = |v|, then
(T SO
M ,A) |= rej(a) iff v 6∈ L(M).

By Lemma 43, to check v 6∈ L(M), it sufficient to construct
the grid-ABox for the nk × nk-rectangle with word v and
then decide (T SO

M ,A) |= rej(a). Thus, we have shown that
there exists a polynomial reduction of deciding v ∈ L to
answering rej(a) w.r.t. T SO

M .
We now show that for every ELIQ C(f), answering C(f)

w.r.t. T SO
M can be polynomially reduced to deciding v ∈ L.

Assume C(f) is given. Consider an ABox A.

Claim 1. It can be checked in polytime (in the size of A)
whether A is consistent w.r.t. T SO

M .

Observe that A is not consistent w.r.t. T SO
M iff

• A contains a grid-ABox for a m1 × m2-rectangle with
word v and m1 < nk or m2 < nk for n = |v|; or

• A is not consistent w.r.t. T SO
grid .

The first condition can clearly be checked in polytime and
the latter is in PTIME by Lemma 42.

Now, ifA is consistent w.r.t. T SO
M , then one of the follow-

ing two cases applies:
• f is in a grid-ABox for the m1×m2-rectangle with word
v and m1,m2 ≥ nk for n = |v| (there can be other dis-
joint components). In that case (T SO

M ,A) |= C(f) iff
(TV ,A′) |= C(f), where
– A′ is defined by settingA′ = A∪{rej(b) | b ∈ Ind(A)}

if v 6∈ L(M); and A′ := A otherwise.
– TV = TZ ∪ TZ,1.
Both conditions can be checked in polytime.

• f is not in a grid-ABox for the m1 ×m2-rectangle with
word v. In that case (T SO

M ,A) |= C(f) iff (TZ ,A) |=
C(f). The latter condition can be checked in polytime.


