Bisimilarity of Pushdown Automata is
Nonelementary

Michael Benedikt Stefan @ller Stefan Kiefer Andrzej S. MurawskKi
University of Oxford University of Bremen University of Oxford University of Warwick

Abstract—Given two pushdown automata, the bisimilarity Concerningdecidability this result can in some sense be
problem asks whether the infinite transition systems they induce considered as best possible since on the slightly more gener

are bisimilar. While this problem is known to be decidable our _ ; _
main result states that it is nonelementary, improvingEXPTIME- classhes Cifltygg .1 rlevv{ltebsystems [10C]i ar?g obrld er-two pushdo
hardness, which was the best previously known lower bound graphs [11] bisimilarity becomes undecidable.

for this problem. Our lower bound result holds for normed Senizergues’ algorithm for deciding bisimilarity of push-
pushdown automata as well. down systems consists of two semi-decision procedures and
in fact no complexity-theoretic upper bound is known foisthi
problem to date. On the other hand, the best known lower

A central problem in theoretical computer science is t9ound for this problem i€£XPTIME shown by Kigera and
decide whether two machines or systems behave equivalerthayr [12]. In [13] EXPTIME-hardness has been established
While being generally undecidable for Turing machines, @en for the subclass of basic process algebras, for which a
lot of research has been devoted to finding subclasses2e8XPTIME upper bound is known [14] (in [15] a simpler
machine devices for which this problem becomes decidabjgoof has recently been announced). Such complexity gaps
Equivalence checkings the problem of determining whetherare typical in the context of infinite-state systems.
two systems are semantically identical. In fact, in case decidability is known, the precisemputa-

It is well-known that even language equivalence of puskipnal complexitystatus of bisimilarity on infinite-state systems
down automata is UndeCidable, in fact already their Unw.ﬂys is known on|y for few classes, inc|uding basic para||e| pro-
is undecidable. On the positive side, a celebrated reseltalu cesses (communication-free Petri nets) [16] and one-eount

Sénizergues states that language equivalence of detetiminigystems (the transition systems induced by pushdown atéoma
pushdown automata is decidable [1]. The best known uppsfer a singleton stack alphabet) [17].

bound for the latter problem is a tower of exponentials [2
(see [3] for a more recent proof), while only hardness %
deterministic polynomial time is known to date.

Among the numerous notions of equivalence [4] in the rea

of formal verification and concurrency theory, the centr i< il d that all h and veri di
one ishisimulation equivalencéisimilarity for short), which game is implemented that allows to push and verify encodings

enjoys pleasant mathematical properties. It can be Seeno{(ﬁonelementarlly big countes la Stockmeyer [18]. As an

take the king role: There are important characterizatiohs

important technical tool we realize deterministic verifioa
the bisimulation-invariant fragments of first-order logiad phases in the bisimulation game by simulating non-erasing
of monadic second-order logic in terms of modal logic [5

leal-time transducers that are fed with the stack conteat. A
and of the modalu-calculus [6], respectively. In particular, uilding blocks, we use the well-established technique of
bisimilarity is a fundamental notion for process algebrai

Qefender’s forcing [10]. We are optimistic that our techreq
formalisms [7]. As a result, a great deal of research in tr%"‘?s_ new insights for potential fL_thher lower bounds for
analysis of infinite-state systems (such as pushdown amm@smnarlty O.f .PA. Processes, _regulanty for pushdown syss,
or Petri nets) has been devoted to deciding bisimilaritynaf t and weak bisimilarity of basic process algebras.
given processes, see e.g. [8] for a comprehensive overviewDrganisation. In Section Il we introduce preliminaries. Sec-

A milestone result in this context has been proven kjon Ill overviews the ideas in the proof. In Section IV we
Sénizergues: Bisimilarity on pushdown systems (i.e. ttéomsi recall basics on transductions, introduce useful abbtievia
systems induced by pushdown automata) is decidable [8}r pushdown rules. We also recall the “forcing” technique.
Since a pushdown system can be viewed as an abstractiorse€tion V explains the key construction that allows a check
the call-and-return behavior of a recursive program, ome c#or bisimilarity to model manipulations on counters fordar
read this decidability result as that one can decide equiie&l integers. Section VI consists of our nonelementary lower
of recursive programs in terms of their visible behavior. ~ bound proof for bisimilarity of pushdown automata, while

In [9] bisimilarity is proven to be decidable even for theSection VII extends this to PDAs that satisfy an additional
more general class of equational graphs of finite out-degreendition, normedness. Section VIII gives conclusions.

I. INTRODUCTION

ur contribution. The main result of this paper states that

isimilarity of (systems induced by) pushdown automata is
| nelementary, even in the normed case. We give small
ggscriptions of pushdown systems on which a bisimulation

Il. PRELIMINARIES
def

By N {0,1,...} we denote the set ofon-negative
integers Forn, m € N we write [n,m] for {n,n+1,...,m};
in particular note thafn, m] = 0 if n > m.

A labelled transition system (LTS a tuple S
(S, Act, {% | a € Act}), whereS is a set ofconfigurations
Act is a finite set ofaction labels and % C S x S is a
transition relationfor eacha € Act. We say thats € S is a
deadlockstate if it is not the case that there existe Act
andt € S such thats % ¢. A binary relationR C S x S is
a bisimulationif for each (s, s’) € R and eachu € Act, we
have: (1) ifs % t, then there is somg % ¢’ with (t,t') € R
and, conversely, (2) i’ < ¢/, then there is some = ¢ with
(t,t') € R. We write s ~ t if there is some bisimulatio?
with (s,t) € R.

A (real-time and non-erasindjansducer onx and Y is a
tuple T = (@, q0, %, Y,), where@ is a finite set ofstates
qo € Q is aninitial state, ¥ and Y are finitealphabets and

d:QxY — Qx Yt is a transition function with output. We

say thatT is letter-to-letterif §(¢q,a) € Q@ x T for eachq € Q
and eacha € X. We inductively extend) to the function
0 1 Q xX* —» Q x T* as follows: for eachw € ¥* and
a € X we setd*(q,e) def (g,¢) and §*(q, aw) def (¢", uv)

if 6(q,a) = (¢',u) and §*(¢',w) = (¢",v). We define the
transductionfr : ¥* — T* of T as fr(w) def v, whenever
0*(qo, w) = (q,v) for someq € Q. A transductionfp : ¥* —

T* is said to be letter-to-letter i’ is. We define thesize ofT’

def
as|T| = |Q| + [Z] + Y|+ X{lw| : g € Q.a € £,5(g,a) =

(¢, w)}.

A pushdown automaton (PDA)s a tuple P
(Q,T, Act,—), where@ is a finite set ofcontrol statesT
is a finite set ofstack symbolsAct is a finite set ofactions
and— C (@ x{e} xAct xQ x{e}HhU(Q x{e} x Act x Q x
NuUu(@xT x Act x Q x {e}) is a finite set ofinternal

rules push rules and pop rules respectively. Thesize of
P is defined asP| &' Q| + || + |Act| + |—|. We write
qu < ¢'w to mean(q, v, a, q',w) € —. Every PDAP induces
an LTS S(P) & (Q x I'*, Act. {% | a € Act}), where
a, def User-1(que, ¢'wz) | qu < ¢w} for eacha € Act.
We will abbreviate each configuratidig, w) in S(P) by quw;
in particular the configuratiofy, £) will be denoted by jusy.
Given a PDA P (Q,T, Act,—), ¢1,42 € @ and
wi,wy € I'* the PDA bisimilarity problemasks whether

grw1 ~ gows holds in S(P). In this paper we prove the

following theorem:

Theorem 1. PDA bisimilarity is nonelementary.

IIl. PROOFOVERVIEW

labelled transition from the other system. In the first rqund
the chosen transitions must lead from the states to be t&sted
bisimilarity, while, in each subsequent round, they muattst
at the states reached after the preceding round. Defensies lo
if she cannot find a matching transition. In this framework,
bisimilarity corresponds to the existence of a winningtetygt
for Defender.

The game-theoretic reading suggests an intuitive way of
reducing halting problems for Turing machines to bisimolat
problems, based on constructing bisimulation games that sa
isfy the following condition: a given Turing machine halts o
an input string if and only if Defender has a winning strategy
Such games can be viewed as a competition between the
players, in which Defender is given an opportunity to exhibi
an accepting run and Attacker is equipped with mechanisms to
challenge (and verify) the correctness of Defender’s canst
tion. The effect of constructing a run by Defender is achieve
by allowing Defender to make choices during the game. As
the process of playing a bisimulation game naturally fasour
Attacker as the decision maker, it is not actually clear that
game can be used to express Defender’s choice. Nevertheless
it turns out that thanks to the forcing technique of [10], it
is possible to construct transition systems in which Deéend
effectively ends up making choices.

When proving hardness of bisimilarity for classes of com-
putational models, such as pushdown automata, the pasition
of bisimulation games discussed above must correspond to
configurations of the machines. In particular, this meams th
during the game, players can be thought of as having access
to the associated computational resources. For example, in
our case, Defender will make moves that store his proposed
accepting run on the stack. Additionally, the game can also
store some information in the control state of the pushdown
system, but since we are interested in finding polynomiaéti
reductions, these have to be of polynomial size.

Next we give more intuition for our argument by dis-
cussing how PSPACE computations can be modelled through
bisimulation games, following the argument of ¢ara and
Mayr [12] (their argument is foOEXPTIME, which is equal
to alternating PSPACE, but we omit alternation from the
discussion, because alternating computation will not kedus
in our main argument). Let us considerP$PACE machine
M and an input word. We can code the tape configuration of
such a machine by a stack of polynomial size, and we will
thus naturally consider a reduction that produces a pair of
PDAs — in fact, they are the same PDA but with a different
initial state — whose stack configurations at any point regme
alleged sequences of configurations &4 with separators
(older configurations occur deeper in the stack). The PDA wil
have moves that can push new tape symbols of the machine

For a start, let us recall that bisimilarity has a very ndtura\t on the stacks of each configuration, and we can rely on

game-theoretic account. Given two labelled transitioriesys,
one can consider hisimulation gameénvolving two players,
traditionally calledAttackerand Defenderrespectively. They

Defender’s forcing to delegate the choice of such moves to
Defender. The control state can be used to make sure that
tapes are the correct size, because each configuration is of

play rounds, in which Attacker fires a transition from one gbolynomial size and we can afford to create polynomially
the systems and Defender has to follow with an identicalljany control states as part of a polynomial-time reduction.

In order to check that Defender’s choices amount to a coff-- - - , 2™ — 1 respectively, the sequenegoy - - - con _109n_1,
putation history, the PDA is able to move into a “verificationherecs;’s are bits, will be used to represent natural numbers
mode”: at this point, suppose the top of the stacks correspdinom the interval [0,22" — 1]. The indexing can be used
to a cell having position at timet+ 1; the top stack symbat to enforce that the stack consists of tape configurations of
is saved in the control state, the stack is popped until the tthe correct size. The verification that counting indices are
element corresponds to cell positiorat time¢, and then the incremented correctly as well as the verification that theeta
symbol appearing is compareddoif the symbol corresponds configurations obey the transition function, can be donagusi
to what the transition relation of the machine says it shbwgld the technique of going out of synch and reading distinct
the machines behave in a bisimilar manner, and otherwige ttsymbols.
do not. Note that in order to support popping from position Altogether, we getk-EXPSPACE-hardness for allk, and
at timet+ 1 to position: at timet, a counter will be required. thus a nonelementary lower bound.

Because in this case only polynomially many steps are needed
control state space of the PDA can be used for that purpose. IV. NOTATION AND TECHNIQUES
What breaks down in this argument when we try to move

to more powerful machines — e.gXPSPACE machines? bisimilaritv i hard f h fixed
Firstly, tape configurations are now of si2#, and hence PDA bisimilarity is k-EXPSPACE-hard for each fixed: > 1.

we can no longer use the control state to verify that th@ _that end_, given *_'EXPSPACE _Turlng maghln_e/\/l with

tape configurations are even of the right size. Secondly, {8 Input string, we will const_ruct (".1 polynomla_l time) a PDA

verification of a valid transition can no longer be achievgd e SL_‘Ch th_at_/\/l accepts t_h_e Input i an_d only if certain two

having the machines simply pop their stacks in synch with offi nflgurgtlons ofp are t_)|S|m|Iar. We W'” rgly on a number

another — they would not know when they have reached A technlques _and notational conventlpns mtroduged helow

corresponding cell position at the previous tape configumat ' this section and the next we will progressively reveal
We deal with the first difficulty by addingountersto every MOre and more technical details about the special struolfurg

cell in the stack content; thus the code of a tape configuratiy = (@ T»Act,). For a start, we shall assume a certain

will consist of a sequence of address bits followed by a tapePartitioning of Q.

content. We can use these address bits to know that the end of @ Supposes is a finite set. Let us make two disjoint copies

tape configuration has occurred, and thus restrict the mashi of B, called 5 and B, respectively. Givens € B, we

to have separators between configurations. The fact that the shall refer to the corresponding elements, 1 and 3,

addresses really do represent counters moving up sedlientia by «s ands, respectively. Let us Writ€) 4, for { Byi3,.

will need to be verified, but foEXPSPACE this can be done We will call Q.,,.in the set ofmain states

through popping and control states. o SUPPOSER iy is another finite set. Its elements will be
The solution to the second difficulty is to perform verifica- calledimplicit states

tion of transitions in a very different way from tHeSPACE \we are going to assume th@tis partitioned as follows:

case. Verification will be carried out only when the machines

reach the boundary of a tape configuration. At this point, the Q = Qmain Y Qimpl-

machines will firstgo out of synctby one tape configuration

— with one machine popping the stack down to the nethe role of the partition will become clear in a moment.

configuration marker while the other keeps its stack intact. In the interest of succinctness and readability we will defin

(Technically, this will be achieved as follows: first, both— Via macro rules which compactly represent collections of

machines push, in synch, a configuration; then, both mashirf2DA transition rules with a certain role. They take one of the

pop stack symbols, but one of them in half speed, so that oigowing five shapes:

machine obtains the previous stack, whereas the other one

In order to prove Theorem 1 we are going to show that

ai--a T
effectively pops a configuration.) After this the maching w po——q pL —q so=tloy---op
pop stack symbols, but with one machine emitting symbols; ;A% {tiwy, ..., towg} s 2%, {tiwy, ..., towe}.

corresponding exactly to what it sees, while the other nmechi

emits symbols corresponding to the configuration obtainedThe various indices on a macro role (such s, ...)

by applying the transition function to the symbols it seewvill be explained shortly. For the moment we mention that the

Thus, in the second phase, the machines will emit the sam@lementation of each macro rule will contribute a number

symbolsexactly when the two successive configurations obefimplicit states (that is, elements ;1) to the automaton.

the transition function Convention. We assume that no implicit state can be used
The above idea can be extended fré&it{PSPACE to k- Dby two different macros. Moreover, if a state occurs on the

EXPSPACE inductively. Indices that count up to a givenleft-hand-side of one of the rules, it cannot occur on the lef

tower of exponentials will now precede each tape symbdiand-side of any other rule except thapibccurs in the first

The indices used to capture smaller towers will be embetiHe then we allow other rules of the first kind with the same

ded into those for larger ones. For instance, assuming thaput differento.

co, -+ ,Con_1 are the binary strings representing the numbers We explain each of the macro formats next.

A. Single pop with fixed trace Givens € B andw € I'*, let us write~sw as a shorthand

FOr p,q € Qmain, 0 € T anday, -+ ,ay € Act, we write fOr es5w ~ sew. In presence of the mactoo— toy0y -+ 0y
a1y we have by our rules convention
po——q
forall z e : ~sx <= ~toios---opx. (1)
for the sequence of transitions displayed below

a as ar—1 a D. Forcing
bo P17 4, Recall that the PDAP to be constructed in our argument is
wherepy, -+, pr—1 € Qimpi- supposed to enable a bisimulation gamesgf?), which will
i , . correspond to a step-by-step construction of an accepting r
B. Transduction of stack content with matching The run will be represented as a sequence of configurations.

Our PDA construction will also require the automaton t®uring the game Defender will have the power to decide what
read certain sequences of action names depending on stackdd to the sequence, whereas Attacker will be able tataiti
content. This can be conveniently expressed using the éyggucorrectness checks that can detect mistakes in Defender’s
of transducers. In particular, emissions of signals dupgng choices. To construct parts ¢® that will allow for such
transitions will be important. The next macro will make isga choices at suitable stages, we are going to use two blueprint

to specify such activities flexibly. designs for labeled transition syster@:-widgets(Defender’s
For p,q € Qumain, @ regular languagd. C I'* and a forcing) andAnd-widgets(Attacker’s forcing), shown in Fig-
transducefl” on I and Act we write ure 1. They express respectively logical disjunction awmytcial
T conjunction with respect to bisimulation.
pL —q

Lemma 2 ([10]). Consider the states and transitions of a

to stipulate the sequence of transitions described belbwy T widget from Figure 1, viewed as part of a larger LTS in which

will make sure that, onc# reaches configuratiopy for y € = here are no other outgoing transitions from, s, than those

I, the shortest prefiw of y with w € L will be popped, ghown in the Figure and no other transitions involvimg(l <
#T(w)# will be read (wherejt € Act is a special action ; 3). Then we have:

symbol), and the control state will be changed;taf y does
not have a prefixv with w € L, theny will be popped, and
#T(y) will be read.

The transitions are the result of a product construction In terms of the Defender-Attacker game, if the players reach
between a deterministic finite automaton (DFA) acceptlng (.s, s.) in the game, the Or-widget allows Defender to decide
(e.g. the minimal one) and the transdu@érMore precisely, if the play should continue it1,t1,) Or (ot2, t2,), Whereas,
let A= (Qua,qi,T, Fa,64) be the minimal DFA that acceptsin the And-widget, it is Attacker who makes this choice.

L, whereQ 4 is the finite set of stategg' € Q4 is the initial The next macro is based on the Or-widget (Figure 1 (a)).
state,Fy C Q4 is the set of final stategy : Q4 xI' = Q4 Given,oy,00 € T'U{ec} ands, t1,ts € BB, we write
is the transition function. Assume = (Qr, ¢l , T, Act, 7).

ThenpL SN q comprises the following rules with the proviso
thatQa X Qr € Qimpi: to denote a sequence of transitions closely following the- wi
«p i (g, qF); get. It will allow Defender to choose between two (possibly)
pushing transitions. More specifically, we want to add the
following transitions on the understanding that, us, us €

(a) Or-widget: ,s ~ s, if and only if .t ~ t, Or ot/ ~ t's;
(b) And-widget:,s ~ s, if and only if .t ~ t, and .’ ~ .

D
S O—ef> {tlal, tgdg}

® (qA7qT) i) q for eaChqA (= FA and eaChIT c QT;
o for eacho €T, eachg” € Q.4 \ F4 and eachy” € Qr,

where 7 (¢7,0) = (rT,w), we have the (macro) rule Qimp
w
(@*,q")o = (6alg?,0),rT). o5 U 5 < Uy o5 < ug
a a
C. Synchronized pushing . Se T3 Uz Se T3 Us
Recall that@Q = (o8B W Ba) W Qimpr. The next macro U1 (_; ol101 U2 ‘_; ol101 U3 ‘_; tre01

will use elements o3 to construct simultaneously transitions Ul > ot202 Uy > L2409 U3 > ot2073.
involving both,3 and B.. Mqre p'reC|ser, givers, ¢ € B and Note that Lemma 2 concerns labeled transition systems,
01,...,00 €T (£ > 1), we will write

whereas the definitions above refer to PDAs. Consequently, i
s 03 toy0e -0y order to induce the Or-widget in the LTS(P) for s = 45z
and s, = sey, Wherez,y € I'*, we will assume that = y

. . R . .
to state that there anenplicit statesg;”, ¢;* (1 <@ <) With (6 {0 the need to reach the same configuration fremand

7

PPN qtoy qu+1 & quaj e &t sey iN a single transmon)_. Intuitively, when the state of the
4R R R, Defender-Attacker game i§ sz, sex) for « € I'*, Defender
Se ™y o 17799 D . can choose whether the game will procee@,tqo, z, t1,01)

wherel < j < /. Or (ot202x, ta4022). IN Other words, we have sz if and only

(a) Or-widget (b) And-widget

Fig. 1. Logical widgets

if ~tio1x or ~tao0x. We generalize this notation to finite Whenn is clear from the context, we may speak of &n

sets: fors,t1,...,tp € Q and {wy,...,w,} C I'* we shall counterto mean an¢,n)-counter. Observe that the length of
write each (¢, n)-counter is uniquely determined byandn. Note
Def .
s o— {tywy, ..., tewe} also that the set of values taken By n)-counters is equal to

0, Tower(¢+1,n)—1]. In the two extreme casesd(c) = 0 or

to denote that a sequence of Or-widgets is used to achiev al(¢) = Tower(£+1,n) — 1) we shall call the(¢, n)-counters

¢ zerosand ones(or, whenn is clear from context, “the ones
foralz el™: ~sz <= \/ ~tiwgr. (2) (-counter”), respectively.
i=1 In the following we writeQ<, for |J’_, €2,;. Thus, an(¢, n)-
Similarly we write counter matches the regular express{ori,_, - Q,)* for all
Att t>1. B
s o— {tiwy, ..., tywe} Binary strings of lengthTower(k,n) in which each bit
to denote that And-widgets (Attacker’s forcing, Figure })(biS Preceded by a number indicating its position are thus
are used to achieve naturally represented dscounters. Consequentli;counters

will be taken to represent configurations GfEXPSPACE
Turing machines. Because during our construction we will be
interested in storing configurations on the stack, from now o
we assume that our stack alphabeincludesQ<y,.

Note that the shape of the And-widget does not contam'\I «t we present nstruction that enabl ne t mpar
any state synchronizations. Consequently, it does notematt ext we present a construction that enables one fo compare

whether the stack content is the same aands.. However, “/© consecutive counters pushed on the stack via bisimula-
we will not need this level of generality in our argument. tion. Its key idea is the use of transducers to communicate

information about stack content as well as to desynchronize
V. COUNTERS the two stacks involved in playing the bisimulation game. It

To represent configurations ofl@aEXPSPACE Turing ma- will also illustrate thepL I g macro at work.
chine we shall use binary strings whose length is equal toGiven an alphabe® and a wordw € Act*, we write Q —
the tower of exponentials of height. For technical rea- w to refer to a transduceF,, that outputsw on reading each
sons discussed in Section Ill, rather than working with ralgtter of the input string fronf2*.
configurations we shall precede each binary symbol with a

number that indicates its position in the string. The follogy Le(rjnﬂa 4% LetTl’Tz b>e IetteSr—to-Ietter tr:anzd?cgrs Cmdéﬁ_l
definitions introduce the relevant technical notions. and Act for somef > 0. Suppose the definition df =

For each/,n > 0 we define Tower(¢,n) inductively as (Q,T, Act,—) involves, possibly among others, the following

macros.
Tower (0, n) def . and Tower(£ + 1,n) def 9 Tower(£,n)

¢
forallz eT™: ~sz < /\ ~EAW;T . 3)
i=1

L def . * * F'—a pop two/¢-counters
Definition 3. Let Q, = {0, 1,} be alphabets consisting ofeP {<¢ - Qo1 - Oy Qevr ——eq - WO, -symbols

letters with numerical valueval(0;) = 0 and val(1,) = 1.

. " . . _ I'—aa pop one/l-counter
+ A (0,n)-counteris %eYvord flromﬂo. Its valueis defined Pe Vg Qo ——de ones . 1-symbol
by val(og - 0p_1) = D1y 2° - val(0y). . . T
e An (¢ + 1,n)-counter is a worde = cyopc101 * + * CmOm, oq (ngq ‘ Qe) “Qpi1 o1 apply 71
such thatm = Tower(¢+1,n)—1 and, for alli € [0, m] O Q) .0 T2
3 y) ’ . 1 . —> Te apply Tt
¢i is an (¢,n)-counter withval(c;) = i, and o; € Q1. G (Vzemr- Q) - Qe PP =2
We defineval(c) d:efzzio 2t val(o;). Let 01,029,035 € Quy1, and let wy, we, w3 be ¢-counters.

0,/0 0,/0 macros.
1%1 1¢/0 1%1

L'
o(testDecy) Q%) - Qop1 - %y - Qogr <% ,(testDec})

r
(testDecy), ;- Qop1 — (testDecy),

T, | ey
« (testDec;) Q% - Qg)* Qi b T «(stop,)

0z+1/a

T[+1 H Q<@,1?—)a
1g+1/a —

(testDecy), (i, y Q)" - Qg ————— (stopy),

Assume that, for allx € T, ¢ € Q1 and all ¢-
countersw, we have,(stop,)z ~ (stop,),woz.l Let x €

Fig. 2. Transducerg,™® and T, I'*, 01,020,035 € Q1 and let wy, wy, w3 be f-counters.
Then~(testDecy) wyoswaoawiorz if and only if val(w,) =
val(ws) + 1.

Assumer € I'* such thatera ~ rewyo12. Then Proof: Thanks to, (stop,)= ~ (stop,),wox we can apply

Lemma 4 to conclude

~NPW303W202W101T
~(testDecy)wsoswaoowrorx
if and only if Ty (wi01) = Ta(w202). = (T} Q<ro1 = a)(wroy) = (T, | Q<i1 = a)(waoy)
Proof: < val(w1) = val(ws) + 1.
[
oPW303W202W101T ™~ PelW303W202W101T In the remainder of the paper we will assume a very
= $qW101T ~ GeW202W101T (first two rules) particular shape of the séf. Supposel is a finite set of

— Ti(wio1) = To(we0o2) (last two rules) instructions Then we insist that
- B={{(a) | acl*, 1<]of<k+2}.
Given two transductiong; : X% — YT* and f, : ¥5 — YT* It may be helpful to think of«) as a bounded sequence of in-
with 3;NX, = (), theirshuffleis the transductiotf; | f> : (XU structions that are manipulated separately from the untedin
¥5)* — T* defined inductively as followsf; | f2(¢) def _ and Ppushdown hstick. In \|Nh‘at follows we shall us¢o range over
def « a€l*suchthatl < |o| <k +1.
filfa(aw) = fi(a) - (fi] fa(w)) for a € Z;, w € (31 U Xs) == ,
andi € {1,2}. We note that from two given transducéfs 7> Our _next result shows how to define macro rules for
with transductionsfr, : % — T* and fr, : ©3 — Y*, one "Managing counters on the stack.
can compute a transducgr such thatfr = fr, | fr, intime |Lemma 6. Let I contain stop,, testDecy, ones;, decOky,
O(IT1] - | T2).- 3 zerosy, zeros}, decy, dec}, dec!!) for 1 < i < n and¢ € [0, k].
In what follows we rely on two sp_ecmc_ tra_nsducerSuppose the definition @ = (Q,T, Act,—) involves the
T, 0, T on Q,UQ iy and{0,1,a,b} depicted in Figure 2; macros given in Figure 3. Let € [0,%], andz € T'*, and
they are formally not transducers since some outgoingitrans, r € Q,, 1, and v, w be ¢-counters.

tions are missing — but the missing transitions will not bgg ~(onesy B)z iff ~(B)wz, wherew is the oneg/-counter.
relevant later and are therefore omitted. They interpret thy, ~(decOk, Byvowrz iff wval(v) + 1 = wval(w) and

input word over{), as a number in binary, with the least ~(Byvowra.

significant bit read first. Transducéf;® copies the number () _(yeros, B)owra iff val(w) = 1 and ~(8)vowra,
and outputs: upon reading ai,,,-symbol. Transduceﬂ”jl wherev is the ¢-counter withval(v) = 0.

attempts to increase the number byand outputse upon (d) ~(dec, B)owrz iff val(w) # 0 and ~(B)vowrz, where
reading an$2,.;-symbol, but it will outputb if the input v is the ¢-counter withval(v) + 1 = val(w).

number consisted only ofs. If w;,w, are ¢-counters and

01,02 € Q¢y1, then we have VI. REDUCTIONS

We prove Theorem 1 by showing that PDA bisimilarity is
(T, | Q<em1 = a)(wio1) = (T | Qo1+ a)(w200) k-EXPSPACE-hard for allk > 1.
To that end we introduce a somewhat abstract description
if and only if val(w;) = wal(wz) + 1. Using the two of accepting runs, based on transducers. It will be conménie

transducers one can verify through bisimilarity whetheo two rely on it when representing /aEXPSPACE computation
counters placed suitably on the stack have consecutivesalithrough PDA configurations.

1
Lemma 5. Suppose(stop,), (testDecy), (testDec;) € B and 1note that this is easily achieved by including no outgoingesufor
the definition ofP = (Q,I', Act,—) involves the following .(stop,) and (stop,),.

Rules for case¢ = 0.

(onesg B) o— (B)13 push a ones$-counter
(decOko B) At {(B), (testDecy) 020, } assume that values of top tviscounters differ byl

OR challenge that claim by invokingstDecq

n push a zero$-counter and check
(zerosg f3) o= (decOko) 1 if it is over a 0-counter with valuel

(decq B) 24 {(decél) B) 0o, (dec(()l) B)lo} push the first bit of the decrementéetounter

Vi<i<m: (dec(()i) B) L2, { (decé”” B) 0o, (dec(()iﬂ) B) 1o} push the(i + 1)* bit of the decremented-counter

(dec(()n) B) o— (decOkq B) verify if the 0-counter has been correctly decremented

Rules forl </ < k.

(ones;) o— (ones;_; ones; 3) 1, push1, and a oneg/ — 1)-counter

pushl, and a decremented — 1)-counter
OR pushl, and a zerog¢ — 1)-counter

Att assume that values of top twlecounters differ byl
(decOky) o— { (8), (onesy testDecy) 01 } OR challenge that claim by invokingstDec,

<ones}5> oﬁ {(decp—_1 ones} B) 1y, (zerosp_1 8) 14}

(zeros; 3) o— (onesy_; zeros; 3) 0y push0, and a oneg¢ — 1)-counter

push0, and decremented? — 1)-counter

Def
(zeros; B) o—= { (dec,_1 zeros; (3) Oy, (zeros,_1 decOk, 3) 0 } OR push0; and zeros(/ — 1)-counter

De
(decy B) 2, { (ones;_1 dec; B)o | o € Qp} push from$, and a oneg¢ — 1)-counter

1 Def, 1 ush from{2, and a decremente@ — 1)-counter
{decy) o= { {deci—1 dec;)0, (zeros;—, decOky §) o | o € Qy } pOR push frolng and a zerosée£ 1)-0())unter

Fig. 3. Macro rules from Lemma 6.

Supposez, . . ., z; are binary sequences representing con- Fix for the rest of the papér > 1. Given thath-terminating
figurations of an accepting run of a deterministic Turingairs of transducers were introduced as a generalization of
machine, i.ezg, z; correspond to initial and accepting configuaccepting computation histories, the following resultsloet
rations respectively and, for afly< i < ¢, z;11 represents the come as a surprise.
successor configuration with respect to that correspontding
z;. If we imagine thafl’ is a transducer capable of generatin
successor configurations arfh, is a copy-cat transducer,

Proposition 8. Consider the decision problem
q'RANSREACH(k) defined below.

then the relationship between, and z;,; boils down to Given (n, Ty, T3), wheren < N is presented in

the requirement thafy (z;) = Ta(z;+1). This motivates the unary and (T3, 73) is a Tower(k,n)-terminating
definition below, where we allow an arbitrafi,, not just pair of transducers o0, 1} and T, decide whether

a copy-cat. This will permitly to be a copy-cat but with last(Tower(k, n), T1, Tp) = 0Tovr(n).

some delay in outputting configurations — this is necessary fTRANSREACH(k) is k-EXPSPACE-complete with respect to
computing successor configurations. polynomial-time many-one reductions.

Definition 7. Let T1,T» be letter-to-letter transducers on The main result will now follow immediately from reducing
{0,1} and Y. Let h be in N. We say that the paifTy,7,) TRANSREACH(k) to bisimilarity:

is h-terminatingif there existt € N.and 2, ..., 2 € {0,1}" | emma 9. TRANSREACH(K) is polynomial-time reducible to
such that PDA bisimilarity.
e 2o —].h,
o forall i € [0,t — 1], 241 is the onlyz’ € {0,1}" with
Ti(z:) = To(%'),
« there is noz’ € {0,1}" such thatTy(z;) = Tx(z') or
T1 (Oh) = TQ(Z/).

Proof: Let us fix an instance (n,T7,7T5) of
TRANSREACH(k). Using notation introduced in Sections 1V
and V, we construcP = (Q, ", Act,—) next.

The PDA P will be able to push a code of a sequence
det of words onto the stack, where each wgrdis encoded as
If (T1,T%) is h-terminating we writdlast(h, T1,T5) = 2. a k-counter, sayw;, in the obvious wayyp; = n(w;) where

(start) o— (onesy fin) $ push$ and encoded
)

De
(fin) L9, {(testFin), (next)$} test equality witho """ (%)
OR go on to the next;
{1k p=b | (T\{1x})—a

o(testFin) (Q%,_1Q)"$ «(popAll) rule & la Lemma 4 to test equality with'™"* %™
(testFin), (%,_1 %) $ Lo {popAll), rule & la Lemma 4 to test equality with'™<" ")
o (popAll) w < « (popAll) erase stack content(c T')
(popAll), w <& (popAll), erase stack content(c I)
(next) 24, {(onesi_1next') o | o € QU } construct the next;

D
(next!) L9, {(deck_1 next') o, (zerosi_i tran) o | o € Q; }

(tran) A {(onesy, testTran) §, (fin)} test whether new; is correct OR continue
o(testTran) O, $QZ, $ RiniN o (testTran') rule & la Lemma 4 to go out of synch
(testTran), Q2 $ Lad (testTran'), rule & la Lemma 4 to go out of synch
o(testTran') (Q%,_ %) $ L (@)za) o (stop,,) rule & la Lemma 4 forT}
(testTran'), (0%, 1%)"$ L1, (stopy,), rule & la Lemma 4 forT,

Fig. 4. Macro rules used in Lemma 9.

n: QL. — {0,1}* denotes the homomorphism witf{c) = (b) ~(testTran) wsSwodw; Sz iff T1(n(w1)) = To(n(ws)).

val(o) for o € Qi andn(o) = ¢ otherwise. Thew;’s will be (c) ~(start) iff last(Tower(k,n), Ty, Ty) = 0Tower(k.n),
separated on the stack by the symBSE 0.1, i.e. we shall Applying the last item, we have-(start) if and only if

usefl<; U{0x+1} as the stack alphabet. last(Tower(k,n), Ty, Tp) = 0Tewer(s:m) which completes the
Formally, P is defined as follows. reduction.
I = {start,fin, testFin, next, next!, popAll, tran, Observe that the definition of involves polynomially
testTran,testTranl}UU0<(;<,€+2{0”€5£»0”€5%’ many macro rules and the size of each is polynomial in
decy, decl, zeros;, zeros} decOky. testDecy (n,T1,T>). Because macros can be expanded into ordinary

rules in polynomial time, the overall reduction can also be

1 (4)
testDecy, stop,} U Uy <i<{decy '} performed in polynomial time.

B = {{o)]aecl*,1<]a[<k+2} .
Q = (.B) Bo) W Qz’mpl - .
I = QcpU{0u1) Proposition 8 and Lemma 9 imply Theorem 1.

Act = {0,1,#,a,b} 07T

- . -) VIlI. NORMEDNESS
The rules defining— are those listed in Figure 4 along with

the rules from Lemma 5 and Figure 3. In Figure 4 we include We say that a configuration of a PDA irmedif each
brief intuitions for each of the new rules, referring to theeachable configuration can reach a deadlock configuration
sequencey, z1, . . . associated with the transducers. Note thathere the stack is empty. Note that if a configuration is narme
there are no outgoing rules involvirgop, SO as to satisfy the then every reachable configuration is normed too. Here we
technical condition in Lemma 5. strengthen Theorem 1 to show that our lower bound remains
Altogether, the rules amount to playing a game in whichalid even if we restrict ourselves to normed configurations
Defender is allowed to construct sequences while AttackerRecall that in our previous constructioR, contains control
can check whether these represenfower(k, n)-terminating states, (stop,) and (stop,), for which we did not provide
sequencey, z1, - - - ending ingTover(k.n), any outgoing transitions. Hence, on@e reaches either of
To prove that the reduction is correct, one first shows theife control states, it will not be possible to empty the stack
the three conditions below are satisfied, wheree I'* and Fortunately, the absence of outgoing transitions was neta n
wy,we,ws are k-counters. essary condition in our argument. Rather, we took advantage
(@) ~(testFin) w;$z iff n(w,) = oToverkn), of a property that holds vacuously in these configurations:

o(stopy)z ~ (stop,),wox for all z € T'*, o € Qp1 and (-
countersw. We shall show how to modiff? while preserving
this property for normed configurations.

Theorem 10. PDA bisimilarity is nonelementary, even when
the initial configurations are normed.

Proof: Observe that in the previous construction, all un-
normed configurations have control stagésop,) or (stop,), .
We amend the construction by adding rules that will allow
for popping at those control states. Unfortunately, we c&nn

Replace (dec, 3) L, {(ones;_4 dec; B)o | o € Qe}
with

(decy B) L, {(ones,_1 dec) B) o | o € Q}
(dec)) L, {(zOnesy_1dec; B)o | o € Q} .
Replace(zeros, 3) o— (ones;_; zeros; 3) 0, with

(zerosy3) o— (ones;_; zeros) 0y

(zeros) B) o— (zOnes;_ zeros} 3) 0, .

simply add the same rules as JjfpopAll) and (popAll), due
to the need to maintaig(stop,)z ~ (stop,), wox.

Note that,(stop,), (stop,), can be reached in two ways:
stop,, is introduced in the rule fotestTran and other oc- (
currences ofstop, are used in counter-related rules using (

(

« Finally we add the defining rules fatOnes, wherel <
L<k.

zOnesy 3) o () 0,101
zOnes; 3) o— (onesy_; zOnes; 3) 1,
zOnes! 3) o— (zOnes;_; zOnes; 3) 1,

(zOnes; B) 2, {(dec,_1 zOnes; 3)1,, (zerosy_1 B) 0¢} .

testDecy. Observe that whenever(stop,) and (stop,), are
reached by the players during the bisimulation game, tleksta
are out of synch by oné-counter. Thus, before allowing for
synchronous popping as popAll, we will rebalance the stacks
by using rules that are dual to those festDec} andtestTran.
Accordingly, we add the following rules:

By these modifications, whenever we requi&top,)z ~
(stopy), wox in our proofs, the word: will start with an ¢-

. s counter and a2, ;-symbol. []
o(stopy) L, Qpy1 ——— o (popAll)

. N I'a VIII. CONCLUSIONS
(stopy) e 222041005 Qg1 —— (popAll),. , _
It is not hard to see that our lower bound can be generalized

Now, if we assume that: = w'c’z’ holds, wherew’ is o a binary stack alphabet. One can see that the number
an (-counter,o’ € Qy; andz’ € I', then .(stop,)z ~ of control states in our construction depends exponentiall
(stopy),wox will be satisfied, and the reachable configurations, the heighti: of the tower of exponentials. This leads to
involving stop, will be normed. The only remaining problemthe natural question whether this exponential dependeaoy ¢
is to make sure that the assumption is legitimate. be lowered to a polynomial one or even a constant one. In
Recall thatstop, is introduced by rules related testTran particular, the question arises whether one can improve the
andtestDec,. If the players play optimally in the bisimulation ¢ rrently best knowrEXPTIME lower bound for bisimilarity
game and is not the oneg-counter, then the above assumpof pasic process algebras (which are single-state PDA) from
tion is satisfied, because all othéicounters are guaranteeq13) Because our reduction is not uniform/nit is not clear
to be followed by anothet-counter. To fix the problem with hoy to extend this technigue to get stronger lower boundgs (e.
the ones(-counter, fortestTran we shall add an extra onespgn-primitive-recursive).
k-counter at the very start of the simulation. RestDec,, |n current work, we are also looking at whether the tech-

we shall eliminate the need for decrement tests involvinggue can be applied to other analysis problems for PDA, such
ones counters by introducing a new instructiines, which 55 the regularity problem.
will correspond to the predecessor of the onesounter.
Consequently, the predecessors of ones counters will beator AcCknowledgments. Benedikt is supported in part by
by construction, and there will be no need for testing them f&P/G004021/1 and EP/HO017690/1 of the Engineering and
correctness. The following modifications achieve the goal. Physical Sciences Research Council UK. Kiefer is also sup-
» Replace(start) o— (onesy fin) § with ported by the EPSRC.))
The authors thank anonymous reviewers for their construc-
(start) o— (onesy, start®) $ tive comments.

(start®) o— (onesy, fin) $
REFERENCES
i.e., push one additional onégscounter and$ at the

beginning. [1] G. Senizergues, “L(A)=L(B)? Decidability results from compieormal

systems, Theoretical Computer Scienceol. 251, no. 1-2, pp. 1-166,

« Add control states,(zOnes;), (zOnesy), with the in- 2001.
tention to pUSh an/-counter w with val(w) — [2] C. stirling, “Deciding DPDA Equivalence Is Primitive Resive,” in
ICALP, 2002.

val(onesy) — 1 = Tower({ + 1,n) — 2. 3]

. P. Jartar, “Decidability of DPDA language equivalence via firstier
« Replace(ones, 3) o~ (ones;_; ones} 3) 1, with

grammars,” inLICS, 2012.

[4] R.J.van Glabbeek, “The linear time-branching time spenttextended
abstract),” inCONCUR 1990.

[5] J. van Benthem, “Modal correspondence theory,” Ph.Dsedfistion,
University of Amsterdam, 1976.

(ones; B) o— (ones;_; onesy 3) 1,
(onesf B) o— (zOnes;_1 ones; 3) 1.

(6]

(7]
(8]

El

[10]
[11]

(12]

(23]
[14]
[15]
[16]

[17]

(18]

D. Janin and I. Walukiewicz, “On the Expressive Completen of
the Propositional mu-Calculus with Respect to Monadic Sedorder
Logic,” in CONCUR 1996.

R. Milner, Communication and Concurrency Prentice Hall, 1989.

A. Kutera and P. J&ar, “Equivalence-checking on infinite-state sys-
tems: Techniques and result3heory and Practice of Logic Program-
ming vol. 6, no. 3, pp. 227-264, 2006.

G. Sénizergues, “The bisimulation problem for equational gsapfi
finite out-degree,SIAM Journal on Computingol. 34, no. 5, pp. 1025—
1106, 2005.

P. Jagar and J. Srba, “Undecidability of bisimilarity by defender
forcing,” J. ACM vol. 55, no. 1, 2008.

C. Broadbent and S. &ler, “On Bisimilarity on Higher-Order Push-
down Automata: Undecidability at Order Two,” RSTTCS 2012.

A. Kutera and R. Mayr, “On the complexity of checking semantic
equivalences between pushdown processes and finite-statespes,”
Information and Computatigrvol. 208, no. 7, pp. 772-796, 2010.

S. Kiefer, “BPA bisimilarity is EXPTIME-hard,Information Processing
Letters vol. 113, no. 4, pp. 101-106, 2013.

O. Burkart, D. Caucal, and B. Steffen, “An elementaryirbigation
decision procedure for arbitrary context-free proce$sedyIFCS 1995.
P. Jancar, “Bisimilarity on basic process algebra is iexgtime (an
explicit proof),” CoRR vol. abs/1207.2479, 2012.

P. Jagar, “Strong bisimilarity on basic parallel processes isagsp
complete,” inLICS, 2003.

S. Bdhm, S. @ller, and P. Jatar, “Bisimilarity of one-counter processes
is PSPACE-complete,” irProc. of CONCUR ser. Lecture Notes in
Computer Science, vol. 6269. Springer, 2010, pp. 177-191.

L. J. Stockmeyer, “The complexity of decision problems urtcemata
and logic,” Ph.D. dissertation, Massachusetts Institiftdechnology,
Cambridge, MA, 1974.

