
Bisimilarity of Pushdown Automata is
Nonelementary

Michael Benedikt
University of Oxford

Stefan G̈oller
University of Bremen

Stefan Kiefer
University of Oxford

Andrzej S. Murawski
University of Warwick

Abstract—Given two pushdown automata, the bisimilarity
problem asks whether the infinite transition systems they induce
are bisimilar. While this problem is known to be decidable our
main result states that it is nonelementary, improvingEXPTIME-
hardness, which was the best previously known lower bound
for this problem. Our lower bound result holds for normed
pushdown automata as well.

I. I NTRODUCTION

A central problem in theoretical computer science is to
decide whether two machines or systems behave equivalently.
While being generally undecidable for Turing machines, a
lot of research has been devoted to finding subclasses of
machine devices for which this problem becomes decidable.
Equivalence checkingis the problem of determining whether
two systems are semantically identical.

It is well-known that even language equivalence of push-
down automata is undecidable, in fact already their universality
is undecidable. On the positive side, a celebrated result due to
Sénizergues states that language equivalence of deterministic
pushdown automata is decidable [1]. The best known upper
bound for the latter problem is a tower of exponentials [2]
(see [3] for a more recent proof), while only hardness of
deterministic polynomial time is known to date.

Among the numerous notions of equivalence [4] in the realm
of formal verification and concurrency theory, the central
one isbisimulation equivalence(bisimilarity for short), which
enjoys pleasant mathematical properties. It can be seen to
take the king role: There are important characterizations of
the bisimulation-invariant fragments of first-order logicand
of monadic second-order logic in terms of modal logic [5]
and of the modalµ-calculus [6], respectively. In particular,
bisimilarity is a fundamental notion for process algebraic
formalisms [7]. As a result, a great deal of research in the
analysis of infinite-state systems (such as pushdown automata
or Petri nets) has been devoted to deciding bisimilarity of two
given processes, see e.g. [8] for a comprehensive overview.

A milestone result in this context has been proven by
Sénizergues: Bisimilarity on pushdown systems (i.e. transition
systems induced by pushdown automata) is decidable [9].
Since a pushdown system can be viewed as an abstraction of
the call-and-return behavior of a recursive program, one can
read this decidability result as that one can decide equivalence
of recursive programs in terms of their visible behavior.

In [9] bisimilarity is proven to be decidable even for the
more general class of equational graphs of finite out-degree.

Concerning decidability this result can in some sense be
considered as best possible since on the slightly more general
classes of type-1 rewrite systems [10] and order-two pushdown
graphs [11] bisimilarity becomes undecidable.

Sénizergues’ algorithm for deciding bisimilarity of push-
down systems consists of two semi-decision procedures and
in fact no complexity-theoretic upper bound is known for this
problem to date. On the other hand, the best known lower
bound for this problem isEXPTIME shown by Kǔcera and
Mayr [12]. In [13] EXPTIME-hardness has been established
even for the subclass of basic process algebras, for which a
2EXPTIME upper bound is known [14] (in [15] a simpler
proof has recently been announced). Such complexity gaps
are typical in the context of infinite-state systems.

In fact, in case decidability is known, the precisecomputa-
tional complexitystatus of bisimilarity on infinite-state systems
is known only for few classes, including basic parallel pro-
cesses (communication-free Petri nets) [16] and one-counter
systems (the transition systems induced by pushdown automata
over a singleton stack alphabet) [17].

Our contribution. The main result of this paper states that
bisimilarity of (systems induced by) pushdown automata is
nonelementary, even in the normed case. We give small
descriptions of pushdown systems on which a bisimulation
game is implemented that allows to push and verify encodings
of nonelementarily big counters̀a la Stockmeyer [18]. As an
important technical tool we realize deterministic verification
phases in the bisimulation game by simulating non-erasing
real-time transducers that are fed with the stack content. As
building blocks, we use the well-established technique of
Defender’s forcing [10]. We are optimistic that our technique
gives new insights for potential further lower bounds for
bisimilarity of PA processes, regularity for pushdown systems,
and weak bisimilarity of basic process algebras.

Organisation. In Section II we introduce preliminaries. Sec-
tion III overviews the ideas in the proof. In Section IV we
recall basics on transductions, introduce useful abbreviations
for pushdown rules. We also recall the “forcing” technique.
Section V explains the key construction that allows a check
for bisimilarity to model manipulations on counters for large
integers. Section VI consists of our nonelementary lower
bound proof for bisimilarity of pushdown automata, while
Section VII extends this to PDAs that satisfy an additional
condition, normedness. Section VIII gives conclusions.

II. PRELIMINARIES

By N
def
= {0, 1, . . .} we denote the set ofnon-negative

integers. Forn,m ∈ N we write [n,m] for {n, n+1, . . . ,m};
in particular note that[n,m] = ∅ if n > m.

A labelled transition system (LTS)is a tuple S =
(S,Act , {

a
−→ | a ∈ Act}), whereS is a set ofconfigurations,

Act is a finite set ofaction labels, and
a
−→ ⊆ S × S is a

transition relation for eacha ∈ Act . We say thats ∈ S is a
deadlockstate if it is not the case that there exista ∈ Act

and t ∈ S such thats
a
−→ t. A binary relationR ⊆ S × S is

a bisimulation if for each (s, s′) ∈ R and eacha ∈ Act , we
have: (1) ifs

a
−→ t, then there is somes′

a
−→ t′ with (t, t′) ∈ R

and, conversely, (2) ifs′
a
−→ t′, then there is somes

a
−→ t with

(t, t′) ∈ R. We write s ∼ t if there is some bisimulationR
with (s, t) ∈ R.

A (real-time and non-erasing)transducer onΣ andΥ is a
tuple T = (Q, q0,Σ,Υ, δ), whereQ is a finite set ofstates,
q0 ∈ Q is an initial state, Σ andΥ are finitealphabets, and
δ : Q×Σ → Q×Υ+ is a transition function with output. We
say thatT is letter-to-letterif δ(q, a) ∈ Q×Υ for eachq ∈ Q
and eacha ∈ Σ. We inductively extendδ to the function
δ∗ : Q × Σ∗ → Q × Υ∗ as follows: for eachw ∈ Σ∗ and
a ∈ Σ we setδ∗(q, ε)

def
= (q, ε) and δ∗(q, aw)

def
= (q′′, uv)

if δ(q, a) = (q′, u) and δ∗(q′, w) = (q′′, v). We define the
transductionfT : Σ∗ → Υ∗ of T as fT (w)

def
= v, whenever

δ∗(q0, w) = (q, v) for someq ∈ Q. A transductionfT : Σ∗ →
Υ∗ is said to be letter-to-letter ifT is. We define thesize ofT
as |T |

def
= |Q| + |Σ| + |Υ| +

∑

{|w| : q ∈ Q, a ∈ Σ, δ(q, a) =
(q′, w)}.

A pushdown automaton (PDA)is a tuple P =
(Q,Γ,Act , −֒→), whereQ is a finite set ofcontrol states, Γ
is a finite set ofstack symbols, Act is a finite set ofactions,
and −֒→ ⊆ (Q×{ε}×Act×Q×{ε})∪ (Q×{ε}×Act×Q×
Γ) ∪ (Q × Γ × Act × Q × {ε}) is a finite set ofinternal
rules, push rules, and pop rules, respectively. Thesize of
P is defined as|P|

def
= |Q| + |Γ| + |Act | + | −֒→|. We write

qv
a
−֒→ q′w to mean(q, v, a, q′, w) ∈ −֒→. Every PDAP induces

an LTS S(P)
def
= (Q × Γ∗,Act , {

a
−→ | a ∈ Act}), where

a
−→

def
=

⋃

x∈Γ∗{(qvx, q′wx) | qv
a
−֒→ q′w} for eacha ∈ Act .

We will abbreviate each configuration(q, w) in S(P) by qw;
in particular the configuration(q, ε) will be denoted by justq.

Given a PDA P = (Q,Γ,Act , −֒→), q1, q2 ∈ Q and
w1, w2 ∈ Γ∗ the PDA bisimilarity problemasks whether
q1w1 ∼ q2w2 holds in S(P). In this paper we prove the
following theorem:

Theorem 1. PDA bisimilarity is nonelementary.

III. PROOFOVERVIEW

For a start, let us recall that bisimilarity has a very natural
game-theoretic account. Given two labelled transition systems,
one can consider abisimulation gameinvolving two players,
traditionally calledAttackerand Defenderrespectively. They
play rounds, in which Attacker fires a transition from one of
the systems and Defender has to follow with an identically

labelled transition from the other system. In the first round,
the chosen transitions must lead from the states to be testedfor
bisimilarity, while, in each subsequent round, they must start
at the states reached after the preceding round. Defender loses
if she cannot find a matching transition. In this framework,
bisimilarity corresponds to the existence of a winning strategy
for Defender.

The game-theoretic reading suggests an intuitive way of
reducing halting problems for Turing machines to bisimulation
problems, based on constructing bisimulation games that sat-
isfy the following condition: a given Turing machine halts on
an input string if and only if Defender has a winning strategy.
Such games can be viewed as a competition between the
players, in which Defender is given an opportunity to exhibit
an accepting run and Attacker is equipped with mechanisms to
challenge (and verify) the correctness of Defender’s construc-
tion. The effect of constructing a run by Defender is achieved
by allowing Defender to make choices during the game. As
the process of playing a bisimulation game naturally favours
Attacker as the decision maker, it is not actually clear thatthe
game can be used to express Defender’s choice. Nevertheless,
it turns out that thanks to the forcing technique of [10], it
is possible to construct transition systems in which Defender
effectively ends up making choices.

When proving hardness of bisimilarity for classes of com-
putational models, such as pushdown automata, the positions
of bisimulation games discussed above must correspond to
configurations of the machines. In particular, this means that
during the game, players can be thought of as having access
to the associated computational resources. For example, in
our case, Defender will make moves that store his proposed
accepting run on the stack. Additionally, the game can also
store some information in the control state of the pushdown
system, but since we are interested in finding polynomial-time
reductions, these have to be of polynomial size.

Next we give more intuition for our argument by dis-
cussing how PSPACE computations can be modelled through
bisimulation games, following the argument of Kučera and
Mayr [12] (their argument is forEXPTIME, which is equal
to alternatingPSPACE, but we omit alternation from the
discussion, because alternating computation will not be used
in our main argument). Let us consider aPSPACE machine
M and an input word. We can code the tape configuration of
such a machine by a stack of polynomial size, and we will
thus naturally consider a reduction that produces a pair of
PDAs – in fact, they are the same PDA but with a different
initial state – whose stack configurations at any point represent
alleged sequences of configurations ofM with separators
(older configurations occur deeper in the stack). The PDA will
have moves that can push new tape symbols of the machine
M on the stacks of each configuration, and we can rely on
Defender’s forcing to delegate the choice of such moves to
Defender. The control state can be used to make sure that
tapes are the correct size, because each configuration is of
polynomial size and we can afford to create polynomially
many control states as part of a polynomial-time reduction.

In order to check that Defender’s choices amount to a com-
putation history, the PDA is able to move into a “verification
mode”: at this point, suppose the top of the stacks correspond
to a cell having positioni at timet+1; the top stack symbolσ
is saved in the control state, the stack is popped until the top
element corresponds to cell positioni at time t, and then the
symbol appearing is compared toσ: if the symbol corresponds
to what the transition relation of the machine says it shouldbe,
the machines behave in a bisimilar manner, and otherwise they
do not. Note that in order to support popping from positioni
at timet+1 to positioni at timet, a counter will be required.
Because in this case only polynomially many steps are needed,
control state space of the PDA can be used for that purpose.

What breaks down in this argument when we try to move
to more powerful machines – e.g.EXPSPACE machines?
Firstly, tape configurations are now of size2n, and hence
we can no longer use the control state to verify that the
tape configurations are even of the right size. Secondly, the
verification of a valid transition can no longer be achieved by
having the machines simply pop their stacks in synch with one
another – they would not know when they have reached the
corresponding cell position at the previous tape configuration.

We deal with the first difficulty by addingcountersto every
cell in the stack content; thus the code of a tape configuration
will consist of a sequence ofn address bits followed by a tape
content. We can use these address bits to know that the end of a
tape configuration has occurred, and thus restrict the machines
to have separators between configurations. The fact that the
addresses really do represent counters moving up sequentially
will need to be verified, but forEXPSPACE this can be done
through popping and control states.

The solution to the second difficulty is to perform verifica-
tion of transitions in a very different way from thePSPACE
case. Verification will be carried out only when the machines
reach the boundary of a tape configuration. At this point, the
machines will firstgo out of synchby one tape configuration
– with one machine popping the stack down to the next
configuration marker while the other keeps its stack intact.
(Technically, this will be achieved as follows: first, both
machines push, in synch, a configuration; then, both machines
pop stack symbols, but one of them in half speed, so that one
machine obtains the previous stack, whereas the other one
effectively pops a configuration.) After this the machines will
pop stack symbols, but with one machine emitting symbols
corresponding exactly to what it sees, while the other machine
emits symbols corresponding to the configuration obtained
by applying the transition function to the symbols it sees.
Thus, in the second phase, the machines will emit the same
symbolsexactly when the two successive configurations obey
the transition function.

The above idea can be extended fromEXPSPACE to k-
EXPSPACE inductively. Indices that count up to a given
tower of exponentials will now precede each tape symbol.
The indices used to capture smaller towers will be embed-
ded into those for larger ones. For instance, assuming that
c0, · · · , c2n−1 are the binary strings representing the numbers

0, · · · , 2n− 1 respectively, the sequencec0σ0 · · · c2n−1σ2n−1,
whereσi’s are bits, will be used to represent natural numbers
from the interval [0, 22

n

− 1]. The indexing can be used
to enforce that the stack consists of tape configurations of
the correct size. The verification that counting indices are
incremented correctly as well as the verification that the tape
configurations obey the transition function, can be done using
the technique of going out of synch and reading distinct
symbols.

Altogether, we getk-EXPSPACE-hardness for allk, and
thus a nonelementary lower bound.

IV. N OTATION AND TECHNIQUES

In order to prove Theorem 1 we are going to show that
PDA bisimilarity is k-EXPSPACE-hard for each fixedk ≥ 1.
To that end, given ak-EXPSPACE Turing machineM with
an input string, we will construct (in polynomial time) a PDA
P such thatM accepts the input if and only if certain two
configurations ofP are bisimilar. We will rely on a number
of techniques and notational conventions introduced below.

In this section and the next we will progressively reveal
more and more technical details about the special structureof
P = (Q,Γ,Act , −֒→). For a start, we shall assume a certain
partitioning ofQ.

• SupposeB is a finite set. Let us make two disjoint copies
of B, called •B and B• respectively. Givens ∈ B, we
shall refer to the corresponding elements in•B andB•

by •s ands• respectively. Let us writeQmain for •B⊎B•.
We will call Qmain the set ofmain states.

• SupposeQimpl is another finite set. Its elements will be
called implicit states.

We are going to assume thatQ is partitioned as follows:

Q = Qmain ⊎Qimpl .

The role of the partition will become clear in a moment.
In the interest of succinctness and readability we will define

−֒→ via macro rules, which compactly represent collections of
PDA transition rules with a certain role. They take one of the
following five shapes:

pσ
a1···aℓ

−֒−−−→ q pL
T
−֒→ q s ◦−→ tσ1 · · ·σℓ

s
Att
◦−→ {t1w1, . . . , tℓwℓ} s

Def
◦−−→ {t1w1, . . . , tℓwℓ} .

The various indices on a macro role (such asT, a1, . . .)
will be explained shortly. For the moment we mention that the
implementation of each macro rule will contribute a number
of implicit states (that is, elements ofQimpl) to the automaton.
Convention. We assume that no implicit state can be used
by two different macros. Moreover, if a state occurs on the
left-hand-side of one of the rules, it cannot occur on the left-
hand-side of any other rule except that ifp occurs in the first
rule then we allow other rules of the first kind with the same
p but differentσ.

We explain each of the macro formats next.

A. Single pop with fixed trace

For p, q ∈ Qmain , σ ∈ Γ anda1, · · · , aℓ ∈ Act , we write

pσ
a1···aℓ

−֒−−−→ q

for the sequence of transitions displayed below

pσ
a1

−֒→ p1
a2

−֒→ · · ·
aℓ−1

−֒−−→ pℓ−1
aℓ

−֒→ q,

wherep1, · · · , pℓ−1 ∈ Qimpl .

B. Transduction of stack content with matching

Our PDA construction will also require the automaton to
read certain sequences of action names depending on stack
content. This can be conveniently expressed using the language
of transducers. In particular, emissions of signals duringpop
transitions will be important. The next macro will make it easy
to specify such activities flexibly.

For p, q ∈ Qmain , a regular languageL ⊆ Γ∗ and a
transducerT on Γ andAct we write

pL
T
−֒→ q

to stipulate the sequence of transitions described below. They
will make sure that, onceP reaches configurationpy for y ∈
Γ∗, the shortest prefixw of y with w ∈ L will be popped,
#T (w)# will be read (where# ∈ Act is a special action
symbol), and the control state will be changed toq; if y does
not have a prefixw with w ∈ L, theny will be popped, and
#T (y) will be read.

The transitions are the result of a product construction
between a deterministic finite automaton (DFA) acceptingL
(e.g. the minimal one) and the transducerT . More precisely,
let A = (QA, q

A
0 ,Γ, FA, δA) be the minimal DFA that accepts

L, whereQA is the finite set of states,qA0 ∈ QA is the initial
state,FA ⊆ QA is the set of final states,δA : QA × Γ → QA

is the transition function. AssumeT = (QT , q
T
0 ,Γ,Act , δT).

ThenpL
T
−֒→ q comprises the following rules with the proviso

thatQA ×QT ⊆ Qimpl :

• p
#
−֒→ (qA0 , q

T
0);

• (qA, qT)
#
−֒→ q for eachqA ∈ FA and eachqT ∈ QT ;

• for eachσ ∈ Γ, eachqA ∈ QA \ FA and eachqT ∈ QT ,
where δT (q

T , σ) = (rT , w), we have the (macro) rule
(qA, qT)σ

w
−֒→ (δA(q

A, σ), rT).

C. Synchronized pushing

Recall thatQ = (•B ⊎ B•) ⊎ Qimpl . The next macro
will use elements ofB to construct simultaneously transitions
involving both•B andB•. More precisely, givens, t ∈ B and
σ1, . . . , σℓ ∈ Γ (ℓ ≥ 1), we will write

s ◦−→ tσ1σ2 · · ·σℓ

to state that there areimplicit statesqLi , q
R
i (1 ≤ i ≤ ℓ) with

•s
a
−֒→ qLℓ σℓ qLj+1

a
−֒→ qLj σj qL1

a
−֒→ •t

s•
a
−֒→ qRℓ σℓ qRj+1

a
−֒→ qRj σj qR1

a
−֒→ t•

where1 ≤ j < ℓ.

Given s ∈ B andw ∈ Γ∗, let us write∼sw as a shorthand
for •sw ∼ s•w. In presence of the macros ◦−→ tσ1σ2 · · ·σℓ

we have by our rules convention

for all x ∈ Γ∗ : ∼sx ⇐⇒ ∼tσ1σ2 · · ·σℓx . (1)

D. Forcing

Recall that the PDAP to be constructed in our argument is
supposed to enable a bisimulation game onS(P), which will
correspond to a step-by-step construction of an accepting run.
The run will be represented as a sequence of configurations.
During the game Defender will have the power to decide what
to add to the sequence, whereas Attacker will be able to initiate
correctness checks that can detect mistakes in Defender’s
choices. To construct parts ofP that will allow for such
choices at suitable stages, we are going to use two blueprint
designs for labeled transition systems:Or-widgets(Defender’s
forcing) andAnd-widgets(Attacker’s forcing), shown in Fig-
ure 1. They express respectively logical disjunction and logical
conjunction with respect to bisimulation.

Lemma 2 ([10]). Consider the states and transitions of a
widget from Figure 1, viewed as part of a larger LTS in which
there are no other outgoing transitions from◦s, s◦ than those
shown in the Figure and no other transitions involvingui (1 ≤
i ≤ 3). Then we have:

(a) Or-widget: ◦s ∼ s◦ if and only if ◦t ∼ t◦ or ◦t
′ ∼ t′◦;

(b) And-widget:◦s ∼ s◦ if and only if ◦t ∼ t◦ and ◦t
′ ∼ t′◦.

In terms of the Defender-Attacker game, if the players reach
(◦s, s◦) in the game, the Or-widget allows Defender to decide
if the play should continue in(◦t1, t1◦) or (◦t2, t2◦), whereas,
in the And-widget, it is Attacker who makes this choice.

The next macro is based on the Or-widget (Figure 1 (a)).
Given,σ1, σ2 ∈ Γ ∪ {ε} ands, t1, t2 ∈ B, we write

s
Def
◦−−→ {t1σ1, t2σ2}

to denote a sequence of transitions closely following the wid-
get. It will allow Defender to choose between two (possibly)
pushing transitions. More specifically, we want to add the
following transitions on the understanding thatu1, u2, u3 ∈
Qimpl :

•s
a
−֒→ u1 •s

a
−֒→ u2 •s

a
−֒→ u3

s•
a
−֒→ u2 s•

a
−֒→ u3

u1
a
−֒→ •t1σ1 u2

a
−֒→ •t1σ1 u3

a
−֒→ t1•σ1

u1
b
−֒→ •t2σ2 u2

b
−֒→ t2•σ2 u3

b
−֒→ •t2σ2.

Note that Lemma 2 concerns labeled transition systems,
whereas the definitions above refer to PDAs. Consequently, in
order to induce the Or-widget in the LTSS(P) for ◦s = •sx
and s◦ = s•y, wherex, y ∈ Γ∗, we will assume thatx = y
(due to the need to reach the same configuration from•sx and
s•y in a single transition). Intuitively, when the state of the
Defender-Attacker game is(•sx, s•x) for x ∈ Γ∗, Defender
can choose whether the game will proceed to(•t1σ1x, t1•σ1x)
or (•t2σ2x, t2•σ2x). In other words, we have∼sx if and only

◦s s◦

u1 u2 u3

◦t t◦ ◦t
′ t′◦

a a
a a a

a ba
b

a b

◦s s◦

◦t t◦ ◦t
′ t′◦

a b a b

(a) Or-widget (b) And-widget

Fig. 1. Logical widgets

if ∼t1σ1x or ∼t2σ2x. We generalize this notation to finite
sets: fors, t1, . . . , tℓ ∈ Q and {w1, . . . , wℓ} ⊆ Γ∗ we shall
write

s
Def
◦−−→ {t1w1, . . . , tℓwℓ}

to denote that a sequence of Or-widgets is used to achieve

for all x ∈ Γ∗ : ∼sx ⇐⇒
ℓ
∨

i=1

∼tiwix . (2)

Similarly we write

s
Att
◦−→ {t1w1, . . . , tℓwℓ}

to denote that And-widgets (Attacker’s forcing, Figure 1 (b))
are used to achieve

for all x ∈ Γ∗ : ∼sx ⇐⇒
ℓ
∧

i=1

∼tiwix . (3)

Note that the shape of the And-widget does not contain
any state synchronizations. Consequently, it does not matter
whether the stack content is the same at•s ands•. However,
we will not need this level of generality in our argument.

V. COUNTERS

To represent configurations of ak-EXPSPACE Turing ma-
chine we shall use binary strings whose length is equal to
the tower of exponentials of heightk. For technical rea-
sons discussed in Section III, rather than working with raw
configurations we shall precede each binary symbol with a
number that indicates its position in the string. The following
definitions introduce the relevant technical notions.

For eachℓ, n ≥ 0 we defineTower(ℓ, n) inductively as
Tower(0, n)

def
= n andTower(ℓ+ 1, n)

def
= 2Tower(ℓ,n).

Definition 3. Let Ωℓ
def
= {0ℓ, 1ℓ} be alphabets consisting of

letters with numerical value:val(0ℓ) = 0 and val(1ℓ) = 1.

• A (0, n)-counteris a word fromΩn
0 . Its value is defined

by val(σ0 · · ·σn−1)
def
=

∑n−1
i=0 2i · val(σi).

• An (ℓ + 1, n)-counter is a wordc = c0σ0c1σ1 · · · cmσm

such thatm = Tower(ℓ+1, n)−1 and, for all i ∈ [0,m],
ci is an (ℓ, n)-counter withval(ci) = i, andσi ∈ Ωℓ+1.

We defineval(c)
def
=

∑m

i=0 2
i · val(σi).

Whenn is clear from the context, we may speak of anℓ-
counter to mean an(ℓ, n)-counter. Observe that the length of
each(ℓ, n)-counter is uniquely determined byℓ andn. Note
also that the set of values taken by(ℓ, n)-counters is equal to
[0,Tower(ℓ+1, n)−1]. In the two extreme cases (val(c) = 0 or
val(c) = Tower(ℓ+1, n)−1) we shall call the(ℓ, n)-counters
zerosand ones(or, whenn is clear from context, “the ones
ℓ-counter”), respectively.

In the following we writeΩ≤ℓ for
⋃ℓ

i=0 Ωi. Thus, an(ℓ, n)-
counter matches the regular expression(Ω∗

≤ℓ−1 · Ωℓ)
∗ for all

ℓ ≥ 1.
Binary strings of lengthTower(k, n) in which each bit

is preceded by a number indicating its position are thus
naturally represented ask-counters. Consequently,k-counters
will be taken to represent configurations ofk-EXPSPACE
Turing machines. Because during our construction we will be
interested in storing configurations on the stack, from now on
we assume that our stack alphabetΓ includesΩ≤k.

Next we present a construction that enables one to compare
two consecutive counters pushed on the stack via bisimula-
tion. Its key idea is the use of transducers to communicate
information about stack content as well as to desynchronize
the two stacks involved in playing the bisimulation game. It

will also illustrate thepL
T
−֒→ q macro at work.

Given an alphabetΩ and a wordw ∈ Act
∗, we writeΩ 7→

w to refer to a transducerTw that outputsw on reading each
letter of the input string fromΩ∗.

Lemma 4. LetT1, T2 be letter-to-letter transducers onΩ≤ℓ+1

and Act for someℓ ≥ 0. Suppose the definition ofP =
(Q,Γ,Act , −֒→) involves, possibly among others, the following
macros.

•p Ω∗
≤ℓ · Ωℓ+1 · Ω

∗
≤ℓ · Ωℓ+1

Γ7→a
−֒−−→ •q

pop twoℓ-counters
and twoΩℓ+1-symbols

p• Ω∗
≤ℓ · Ωℓ+1

Γ7→aa
−֒−−−→ q•

pop oneℓ-counter
and oneΩℓ+1-symbol

•q
(

Ω∗
≤ℓ−1 · Ωℓ

)∗
· Ωℓ+1

T1

−֒→ •r apply T1

q•
(

Ω∗
≤ℓ−1 · Ωℓ

)∗
· Ωℓ+1

T2

−֒→ r• apply T2

Let σ1, σ2, σ3 ∈ Ωℓ+1, and let w1, w2, w3 be ℓ-counters.

1ℓ/1
0ℓ/0

0ℓ+1/a
1ℓ+1/a

1ℓ/0

0ℓ/1

0ℓ+1/b
1ℓ+1/b

1ℓ/1
0ℓ/0

0ℓ+1/a
1ℓ+1/a

Fig. 2. TransducersT+0
ℓ

andT+1
ℓ

Assumex ∈ Γ∗ such that•rx ∼ r•w1σ1x. Then

∼pw3σ3w2σ2w1σ1x

if and only if T1(w1σ1) = T2(w2σ2).

Proof:

•pw3σ3w2σ2w1σ1x ∼ p•w3σ3w2σ2w1σ1x

⇐⇒ •qw1σ1x ∼ q•w2σ2w1σ1x (first two rules)

⇐⇒ T1(w1σ1) = T2(w2σ2) (last two rules).

Given two transductionsf1 : Σ∗
1 → Υ∗ andf2 : Σ∗

2 → Υ∗

with Σ1∩Σ2 = ∅, theirshuffleis the transductionf1||f2 : (Σ1∪

Σ2)
∗ → Υ∗ defined inductively as follows:f1||f2(ε)

def
= ε and

f1||f2(aw)
def
= fi(a) · (f1||f2(w)) for a ∈ Σi, w ∈ (Σ1 ∪ Σ2)

∗

andi ∈ {1, 2}. We note that from two given transducersT1, T2

with transductionsfT1
: Σ∗

1 → Υ∗ and fT2
: Σ∗

2 → Υ∗, one
can compute a transducerT such thatfT = fT1

||fT2
in time

O(|T1| · |T2|).
In what follows we rely on two specific transducers

T+0
ℓ , T+1

ℓ on Ωℓ ∪Ωℓ+1 and{0, 1, a, b} depicted in Figure 2;
they are formally not transducers since some outgoing transi-
tions are missing – but the missing transitions will not be
relevant later and are therefore omitted. They interpret the
input word overΩℓ as a number in binary, with the least
significant bit read first. TransducerT+0

ℓ copies the number
and outputsa upon reading anΩℓ+1-symbol. TransducerT+1

ℓ

attempts to increase the number by1 and outputsa upon
reading anΩℓ+1-symbol, but it will output b if the input
number consisted only of1s. If w1, w2 are ℓ-counters and
σ1, σ2 ∈ Ωℓ+1, then we have

(T+0
ℓ ||Ω≤ℓ−1 7→ a)(w1σ1) = (T+1

ℓ ||Ω≤ℓ−1 7→ a)(w2σ2)

if and only if val(w1) = val(w2) + 1. Using the two
transducers one can verify through bisimilarity whether two
counters placed suitably on the stack have consecutive values.

Lemma 5. Suppose〈stopℓ〉, 〈testDecℓ〉, 〈testDec
1
ℓ〉 ∈ B and

the definition ofP = (Q,Γ,Act , −֒→) involves the following

macros.

•〈testDecℓ〉Ω
∗
≤ℓ · Ωℓ+1 · Ω

∗
≤ℓ · Ωℓ+1

Γ7→a
−֒−−→ •〈testDec

1
ℓ〉

〈testDecℓ〉• Ω
∗
≤ℓ · Ωℓ+1

Γ7→aa
−֒−−−→ 〈testDec1ℓ〉•

•〈testDec
1
ℓ〉

(

Ω∗
≤ℓ−1 · Ωℓ

)∗
· Ωℓ+1

T
+0

ℓ
||Ω≤ℓ−1 7→a

−֒−−−−−−−−−→ •〈stopℓ〉

〈testDec1ℓ〉•
(

Ω∗
≤ℓ−1 · Ωℓ

)∗
· Ωℓ+1

T
+1

ℓ
||Ω≤ℓ−1 7→a

−֒−−−−−−−−−→ 〈stopℓ〉•

Assume that, for allx ∈ Γ∗, σ ∈ Ωℓ+1 and all ℓ-
countersw, we have•〈stopℓ〉x ∼ 〈stopℓ〉•wσx.1 Let x ∈
Γ∗, σ1, σ2, σ3 ∈ Ωℓ+1 and let w1, w2, w3 be ℓ-counters.
Then∼〈testDecℓ〉w3σ3w2σ2w1σ1x if and only if val(w1) =
val(w2) + 1.

Proof: Thanks to•〈stopℓ〉x ∼ 〈stopℓ〉•wσx we can apply
Lemma 4 to conclude

∼〈testDecℓ〉w3σ3w2σ2w1σ1x

⇐⇒ (T+0
ℓ ||Ω≤ℓ−1 7→ a)(w1σ1) = (T+1

ℓ ||Ω≤ℓ−1 7→ a)(w2σ2)

⇐⇒ val(w1) = val(w2) + 1.

In the remainder of the paper we will assume a very
particular shape of the setB. SupposeI is a finite set of
instructions. Then we insist that

B = { 〈α〉 | α ∈ I
∗, 1 ≤ |α| ≤ k + 2}.

It may be helpful to think of〈α〉 as a bounded sequence of in-
structions that are manipulated separately from the unbounded
pushdown stack. In what follows we shall useβ to range over
α ∈ I

∗ such that1 ≤ |α| ≤ k + 1.
Our next result shows how to define macro rules for

managing counters on the stack.

Lemma 6. Let I contain stopℓ, testDecℓ, onesℓ, decOkℓ,
zerosℓ, zeros1ℓ , decℓ, dec

1
ℓ , dec(i)0 for 1 ≤ i < n and ℓ ∈ [0, k].

Suppose the definition ofP = (Q,Γ,Act , −֒→) involves the
macros given in Figure 3. Letℓ ∈ [0, k], and x ∈ Γ∗, and
σ, τ ∈ Ωℓ+1, and v, w be ℓ-counters.

(a) ∼〈onesℓ β〉x iff ∼〈β〉wx, wherew is the onesℓ-counter.
(b) ∼〈decOkℓ β〉vσwτx iff val(v) + 1 = val(w) and

∼〈β〉vσwτx.
(c) ∼〈zerosℓ β〉σwτx iff val(w) = 1 and ∼〈β〉vσwτx,

wherev is the ℓ-counter withval(v) = 0.
(d) ∼〈decℓ β〉σwτx iff val(w) 6= 0 and∼〈β〉vσwτx, where

v is the ℓ-counter withval(v) + 1 = val(w).

VI. REDUCTIONS

We prove Theorem 1 by showing that PDA bisimilarity is
k-EXPSPACE-hard for allk ≥ 1.

To that end we introduce a somewhat abstract description
of accepting runs, based on transducers. It will be convenient
to rely on it when representing ak-EXPSPACE computation
through PDA configurations.

1Note that this is easily achieved by including no outgoing rules for
•〈stopℓ〉 and 〈stopℓ〉•.

Rules for caseℓ = 0.

〈ones0 β〉 ◦−→ 〈β〉1n0 push a ones0-counter

〈decOk0 β〉
Att
◦−→ { 〈β〉, 〈testDec0〉 0

n
001 }

assume that values of top two0-counters differ by1
OR challenge that claim by invokingtestDec0

〈zeros0 β〉 ◦−→ 〈decOk0β〉 1
n
0

push a zeros0-counter and check
if it is over a 0-counter with value1

〈dec0 β〉
Def
◦−−→ {〈dec

(1)
0 β〉 00, 〈dec

(1)
0 β〉10} push the first bit of the decremented0-counter

∀1 ≤ i < n : 〈dec
(i)
0 β〉

Def
◦−−→ { 〈dec

(i+1)
0 β〉 00, 〈dec

(i+1)
0 β〉 10} push the(i+ 1)st bit of the decremented0-counter

〈dec
(n)
0 β〉 ◦−→ 〈decOk0 β〉 verify if the 0-counter has been correctly decremented

Rules for1 ≤ ℓ ≤ k.

〈onesℓ β〉 ◦−→ 〈onesℓ−1 ones
1
ℓ β〉 1ℓ push1ℓ and a ones(ℓ− 1)-counter

〈ones1ℓβ〉
Def
◦−−→ { 〈decℓ−1 ones

1
ℓ β〉 1ℓ, 〈zerosℓ−1 β〉 1ℓ }

push1ℓ and a decremented(ℓ− 1)-counter
OR push1ℓ and a zeros(ℓ− 1)-counter

〈decOkℓ β〉
Att
◦−→ { 〈β〉, 〈onesℓ testDecℓ〉 0ℓ+1 }

assume that values of top twoℓ-counters differ by1
OR challenge that claim by invokingtestDecℓ

〈zerosℓ β〉 ◦−→ 〈onesℓ−1 zeros
1
ℓ β〉 0ℓ push0ℓ and a ones(ℓ− 1)-counter

〈zeros1ℓ β〉
Def
◦−−→ { 〈decℓ−1 zeros

1
ℓ β〉 0ℓ, 〈zerosℓ−1 decOkℓ β〉 0ℓ }

push0ℓ and decremented(ℓ− 1)-counter
OR push0ℓ and zeros(ℓ− 1)-counter

〈decℓ β〉
Def
◦−−→ { 〈onesℓ−1 dec

1
ℓ β〉σ | σ ∈ Ωℓ} push fromΩℓ and a ones(ℓ− 1)-counter

〈dec1ℓ β〉
Def
◦−−→ { 〈decℓ−1 dec

1
ℓ β〉σ, 〈zerosℓ−1 decOkℓ β〉σ | σ ∈ Ωℓ }

push fromΩℓ and a decremented(ℓ− 1)-counter
OR push fromΩℓ and a zeros(ℓ− 1)-counter

Fig. 3. Macro rules from Lemma 6.

Supposez0, . . . , zt are binary sequences representing con-
figurations of an accepting run of a deterministic Turing
machine, i.e.z0, zt correspond to initial and accepting configu-
rations respectively and, for any0 ≤ i < t, zi+1 represents the
successor configuration with respect to that correspondingto
zi. If we imagine thatT1 is a transducer capable of generating
successor configurations andT2 is a copy-cat transducer,
then the relationship betweenzi and zi+1 boils down to
the requirement thatT1(zi) = T2(zi+1). This motivates the
definition below, where we allow an arbitraryT2, not just
a copy-cat. This will permitT2 to be a copy-cat but with
some delay in outputting configurations – this is necessary for
computing successor configurations.

Definition 7. Let T1, T2 be letter-to-letter transducers on
{0, 1} and Υ. Let h be in N. We say that the pair(T1, T2)
is h-terminatingif there existt ∈ N and z0, . . . , zt ∈ {0, 1}h

such that

• z0 = 1h,
• for all i ∈ [0, t − 1], zi+1 is the onlyz′ ∈ {0, 1}h with

T1(zi) = T2(z
′),

• there is noz′ ∈ {0, 1}h such thatT1(zt) = T2(z
′) or

T1(0
h) = T2(z

′).

If (T1, T2) is h-terminating we writelast(h, T1, T2)
def
= zt.

Fix for the rest of the paperk ≥ 1. Given thath-terminating
pairs of transducers were introduced as a generalization of
accepting computation histories, the following result does not
come as a surprise.

Proposition 8. Consider the decision problem
TRANSREACH(k) defined below.

Given (n, T1, T2), where n ∈ N is presented in
unary and (T1, T2) is a Tower(k, n)-terminating
pair of transducers on{0, 1} andΥ, decide whether
last(Tower(k, n), T1, T2) = 0Tower(k,n).

TRANSREACH(k) is k-EXPSPACE-complete with respect to
polynomial-time many-one reductions.

The main result will now follow immediately from reducing
TRANSREACH(k) to bisimilarity:

Lemma 9. TRANSREACH(k) is polynomial-time reducible to
PDA bisimilarity.

Proof: Let us fix an instance (n, T1, T2) of
TRANSREACH(k). Using notation introduced in Sections IV
and V, we constructP = (Q,Γ,Act , −֒→) next.

The PDA P will be able to push a code of a sequence
of words onto the stack, where each wordρi is encoded as
a k-counter, saywi, in the obvious way:ρi = η(wi) where

〈start〉 ◦−→ 〈onesk fin〉 $ push$ and encodedz0

〈fin〉
Def
◦−−→ {〈testFin〉, 〈next〉$} test equality with0Tower(k,n)

OR go on to the nextzi

•〈testFin〉
(

Ω∗
≤k−1Ωk

)∗
$

{1k}7→b || (Γ\{1k}) 7→a
−֒−−−−−−−−−−−−−→ •〈popAll〉 rule à la Lemma 4 to test equality with0Tower(k,n)

〈testFin〉•
(

Ω∗
≤k−1Ωk

)∗
$

Γ7→a
−֒−−→ 〈popAll〉• rule à la Lemma 4 to test equality with0Tower(k,n)

•〈popAll〉ω
a
−֒→ •〈popAll〉 erase stack content (ω ∈ Γ)

〈popAll〉• ω
a
−֒→ 〈popAll〉• erase stack content (ω ∈ Γ)

〈next〉
Def
◦−−→

{

〈onesk−1 next
1〉σ | σ ∈ Ωk

}

construct the nextzi

〈next1〉
Def
◦−−→

{

〈deck−1 next
1〉σ, 〈zerosk−1 tran〉σ | σ ∈ Ωk

}

〈tran〉
Att
◦−→ {〈onesk testTran〉 $, 〈fin〉} test whether newzi is correct OR continue

•〈testTran〉Ω
∗
≤k $Ω

∗
≤k $

Γ7→a
−֒−−→ •〈testTran

1〉 rule à la Lemma 4 to go out of synch

〈testTran〉• Ω
∗
≤k $

Γ7→aa
−֒−−−→ 〈testTran1〉• rule à la Lemma 4 to go out of synch

•〈testTran
1〉

(

Ω∗
≤k−1Ωk

)∗
$

T1 || ((Γ\Ωk) 7→a)
−֒−−−−−−−−−−→ •〈stopk〉 rule à la Lemma 4 forT1

〈testTran1〉•
(

Ω∗
≤k−1Ωk

)∗
$

T2 || ((Γ\Ωk) 7→a)
−֒−−−−−−−−−→ 〈stopk〉• rule à la Lemma 4 forT2

Fig. 4. Macro rules used in Lemma 9.

η : Ω∗
≤k → {0, 1}∗ denotes the homomorphism withη(σ) =

val(σ) for σ ∈ Ωk andη(σ) = ε otherwise. Thewi’s will be
separated on the stack by the symbol$

def
= 0k+1, i.e. we shall

useΩ≤k ∪ {0k+1} as the stack alphabet.
Formally,P is defined as follows.

I = {start, fin, testFin, next, next1, popAll, tran,
testTran, testTran1} ∪

⋃

0≤ℓ≤k+2{onesℓ, ones
1
ℓ ,

decℓ, dec
1
ℓ , zerosℓ, zeros

1
ℓ , decOkℓ, testDecℓ,

testDec1ℓ , stopℓ} ∪
⋃

1≤i≤n{dec
(i)
0 }

B = { 〈α〉 | α ∈ I
∗, 1 ≤ |α| ≤ k + 2}

Q = (•B ⊎ B•) ⊎Qimpl

Γ = Ω≤k ∪ {0k+1}
Act = {0, 1,#, a, b} ⊎Υ

The rules defining֒−→ are those listed in Figure 4 along with
the rules from Lemma 5 and Figure 3. In Figure 4 we include
brief intuitions for each of the new rules, referring to the
sequencez0, z1, . . . associated with the transducers. Note that
there are no outgoing rules involvingstopℓ so as to satisfy the
technical condition in Lemma 5.

Altogether, the rules amount to playing a game in which
Defender is allowed to construct sequences while Attacker
can check whether these represent aTower(k, n)-terminating
sequencez0, z1, · · · ending in0Tower(k,n).

To prove that the reduction is correct, one first shows that
the three conditions below are satisfied, wherex ∈ Γ∗ and
w1, w2, w3 arek-counters.

(a) ∼〈testFin〉w1$x iff η(w1) = 0Tower(k,n).

(b) ∼〈testTran〉w3$w2$w1$x iff T1(η(w1)) = T2(η(w2)).
(c) ∼〈start〉 iff last(Tower(k, n), T1, T2) = 0Tower(k,n).

Applying the last item, we have∼〈start〉 if and only if
last(Tower(k, n), T1, T2) = 0Tower(k,n), which completes the
reduction.

Observe that the definition ofP involves polynomially
many macro rules and the size of each is polynomial in
(n, T1, T2). Because macros can be expanded into ordinary
rules in polynomial time, the overall reduction can also be
performed in polynomial time.

Proposition 8 and Lemma 9 imply Theorem 1.

VII. N ORMEDNESS

We say that a configuration of a PDA isnormed if each
reachable configuration can reach a deadlock configuration
where the stack is empty. Note that if a configuration is normed
then every reachable configuration is normed too. Here we
strengthen Theorem 1 to show that our lower bound remains
valid even if we restrict ourselves to normed configurations.

Recall that in our previous construction,P contains control
states•〈stopℓ〉 and 〈stopℓ〉• for which we did not provide
any outgoing transitions. Hence, onceP reaches either of
the control states, it will not be possible to empty the stack.
Fortunately, the absence of outgoing transitions was not a nec-
essary condition in our argument. Rather, we took advantage
of a property that holds vacuously in these configurations:

•〈stopℓ〉x ∼ 〈stopℓ〉•wσx for all x ∈ Γ∗, σ ∈ Ωℓ+1 and ℓ-
countersw. We shall show how to modifyP while preserving
this property for normed configurations.

Theorem 10. PDA bisimilarity is nonelementary, even when
the initial configurations are normed.

Proof: Observe that in the previous construction, all un-
normed configurations have control states•〈stopℓ〉 or 〈stopℓ〉•.
We amend the construction by adding rules that will allow
for popping at those control states. Unfortunately, we cannot
simply add the same rules as in•〈popAll〉 and 〈popAll〉• due
to the need to maintain•〈stopℓ〉x ∼ 〈stopℓ〉•wσx.

Note that•〈stopℓ〉, 〈stopℓ〉• can be reached in two ways:
stopk is introduced in the rule fortestTran and other oc-
currences ofstopℓ are used in counter-related rules using
testDecℓ. Observe that whenever•〈stopℓ〉 and 〈stopℓ〉• are
reached by the players during the bisimulation game, the stacks
are out of synch by oneℓ-counter. Thus, before allowing for
synchronous popping as inpopAll, we will rebalance the stacks
by using rules that are dual to those fortestDec1ℓ andtestTran.
Accordingly, we add the following rules:

•〈stopℓ〉Ω
∗
≤ℓΩℓ+1

Γ7→aa
−֒−−−→ •〈popAll〉

〈stopℓ〉• Ω
∗
≤ℓΩℓ+1Ω

∗
≤ℓΩℓ+1

Γ7→a
−֒−−→ 〈popAll〉•.

Now, if we assume thatx = w′σ′x′ holds, wherew′ is
an ℓ-counter,σ′ ∈ Ωℓ+1 and x′ ∈ Γ∗, then •〈stopℓ〉x ∼
〈stopℓ〉•wσx will be satisfied, and the reachable configurations
involving stopℓ will be normed. The only remaining problem
is to make sure that the assumption is legitimate.

Recall thatstopℓ is introduced by rules related totestTran
andtestDecℓ. If the players play optimally in the bisimulation
game andw is not the onesℓ-counter, then the above assump-
tion is satisfied, because all otherℓ-counters are guaranteed
to be followed by anotherℓ-counter. To fix the problem with
the onesℓ-counter, fortestTran we shall add an extra ones
k-counter at the very start of the simulation. FortestDecℓ,
we shall eliminate the need for decrement tests involving
ones counters by introducing a new instructionzOnesℓ, which
will correspond to the predecessor of the onesℓ-counter.
Consequently, the predecessors of ones counters will be correct
by construction, and there will be no need for testing them for
correctness. The following modifications achieve the goal.

• Replace〈start〉 ◦−→ 〈onesk fin〉 $ with

〈start〉 ◦−→ 〈onesk start
0〉 $

〈start0〉 ◦−→ 〈onesk fin〉 $

i.e., push one additional onesk-counter and$ at the
beginning.

• Add control states•〈zOnesℓ〉, 〈zOnesℓ〉• with the in-
tention to push anℓ-counter w with val(w) =
val(onesℓ)− 1 = Tower(ℓ+ 1, n)− 2.

• Replace〈onesℓ β〉 ◦−→ 〈onesℓ−1 ones
1
ℓ β〉 1ℓ with

〈onesℓ β〉 ◦−→ 〈onesℓ−1 ones
0
ℓ β〉 1ℓ

〈ones0ℓ β〉 ◦−→ 〈zOnesℓ−1 ones
1
ℓ β〉 1ℓ .

Replace 〈decℓ β〉
Def
◦−−→

{

〈onesℓ−1 dec
1
ℓ β〉σ | σ ∈ Ωℓ

}

with

〈decℓ β〉
Def
◦−−→

{

〈onesℓ−1 dec
0
ℓ β〉σ | σ ∈ Ωℓ

}

〈dec0ℓ β〉
Def
◦−−→

{

〈zOnesℓ−1 dec
1
ℓ β〉σ | σ ∈ Ωℓ

}

.

Replace〈zerosℓ β〉 ◦−→ 〈onesℓ−1 zeros
1
ℓ β〉 0ℓ with

〈zerosℓβ〉 ◦−→ 〈onesℓ−1 zeros
0
ℓ β〉 0ℓ

〈zeros0ℓ β〉 ◦−→ 〈zOnesℓ−1 zeros
1
ℓ β〉 0ℓ .

• Finally we add the defining rules forzOnes, where1 ≤
ℓ ≤ k.

〈zOnes0 β〉 ◦−→ 〈β〉 001
n−1
0

〈zOnesℓ β〉 ◦−→ 〈onesℓ−1 zOnes
0
ℓ β〉 1ℓ

〈zOnes0ℓ β〉 ◦−→ 〈zOnesℓ−1 zOnes
1
ℓ β〉 1ℓ

〈zOnes1ℓ β〉
Def
◦−−→

{

〈decℓ−1 zOnes
1
ℓ β〉1ℓ, 〈zerosℓ−1 β〉 0ℓ

}

.

By these modifications, whenever we require•〈stopℓ〉x ∼
〈stopℓ〉• wσx in our proofs, the wordx will start with an ℓ-
counter and anΩℓ+1-symbol.

VIII. C ONCLUSIONS

It is not hard to see that our lower bound can be generalized
to a binary stack alphabet. One can see that the number
of control states in our construction depends exponentially
on the heightk of the tower of exponentials. This leads to
the natural question whether this exponential dependency can
be lowered to a polynomial one or even a constant one. In
particular, the question arises whether one can improve the
currently best knownEXPTIME lower bound for bisimilarity
of basic process algebras (which are single-state PDA) from
[13]. Because our reduction is not uniform ink, it is not clear
how to extend this technique to get stronger lower bounds (e.g.
non-primitive-recursive).

In current work, we are also looking at whether the tech-
nique can be applied to other analysis problems for PDA, such
as the regularity problem.

Acknowledgments. Benedikt is supported in part by
EP/G004021/1 and EP/H017690/1 of the Engineering and
Physical Sciences Research Council UK. Kiefer is also sup-
ported by the EPSRC.

The authors thank anonymous reviewers for their construc-
tive comments.

REFERENCES

[1] G. Sénizergues, “L(A)=L(B)? Decidability results from complete formal
systems,”Theoretical Computer Science, vol. 251, no. 1-2, pp. 1–166,
2001.

[2] C. Stirling, “Deciding DPDA Equivalence Is Primitive Recursive,” in
ICALP, 2002.

[3] P. Jaňcar, “Decidability of DPDA language equivalence via first-order
grammars,” inLICS, 2012.

[4] R. J. van Glabbeek, “The linear time-branching time spectrum (extended
abstract),” inCONCUR, 1990.

[5] J. van Benthem, “Modal correspondence theory,” Ph.D. dissertation,
University of Amsterdam, 1976.

[6] D. Janin and I. Walukiewicz, “On the Expressive Completeness of
the Propositional mu-Calculus with Respect to Monadic Second Order
Logic,” in CONCUR, 1996.

[7] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[8] A. Kučera and P. Jančar, “Equivalence-checking on infinite-state sys-

tems: Techniques and results,”Theory and Practice of Logic Program-
ming, vol. 6, no. 3, pp. 227–264, 2006.

[9] G. Sénizergues, “The bisimulation problem for equational graphs of
finite out-degree,”SIAM Journal on Computing, vol. 34, no. 5, pp. 1025–
1106, 2005.

[10] P. Jaňcar and J. Srba, “Undecidability of bisimilarity by defender’s
forcing,” J. ACM, vol. 55, no. 1, 2008.

[11] C. Broadbent and S. G̈oller, “On Bisimilarity on Higher-Order Push-
down Automata: Undecidability at Order Two,” inFSTTCS, 2012.

[12] A. Kučera and R. Mayr, “On the complexity of checking semantic
equivalences between pushdown processes and finite-state processes,”
Information and Computation, vol. 208, no. 7, pp. 772–796, 2010.

[13] S. Kiefer, “BPA bisimilarity is EXPTIME-hard,”Information Processing
Letters, vol. 113, no. 4, pp. 101–106, 2013.

[14] O. Burkart, D. Caucal, and B. Steffen, “An elementary bisimulation
decision procedure for arbitrary context-free processes,” in MFCS, 1995.

[15] P. Jancar, “Bisimilarity on basic process algebra is in 2-exptime (an
explicit proof),” CoRR, vol. abs/1207.2479, 2012.

[16] P. Jaňcar, “Strong bisimilarity on basic parallel processes is pspace-
complete,” inLICS, 2003.

[17] S. Böhm, S. G̈oller, and P. Jaňcar, “Bisimilarity of one-counter processes
is PSPACE-complete,” inProc. of CONCUR, ser. Lecture Notes in
Computer Science, vol. 6269. Springer, 2010, pp. 177–191.

[18] L. J. Stockmeyer, “The complexity of decision problems in automata
and logic,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 1974.

