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ABSTRACT
We prove that language equivalence of deterministic one-
counter automata is NL-complete. This improves the super-
polynomial time complexity upper bound shown by Valiant
and Paterson in 1975. Our main contribution is to prove
that two deterministic one-counter automata are inequiva-
lent if and only if they can be distinguished by a word of
length polynomial in the size of the two input automata.

Categories and Subject Descriptors
F.1.1. [Computation by Abstract Devices]: Models of
Computation; F.2.0 [Analysis of Algorithms and Prob-
lem Complexity]: General

Keywords
Language equivalence, Deterministic one-counter automata,
Computational complexity

1. INTRODUCTION
In theoretical computer science, one of the most fun-

damental decision problems is the equivalence problem
which asks whether two given machines behave equivalently.
Among the various models of computation – such as Turing
machines, random access machines and loop programs, just
to mention a few of them – the equivalence problem already
becomes undecidable when one imposes strong restrictions
on their time and space consumption.
Emerging from formal language theory, a classical model

of computation is that of pushdown automata. A folklore
result is that already universality (and hence equivalence) of
pushdown automata is undecidable. Concerning determin-
istic pushdown automata (dpda), it is fair to say that the
computer science community knows very little about the
complexity of the equivalence problem.
Oyamaguchi proved that the equivalence problem for real-

time dpda (dpda without ε-transitions) is decidable [12]. It
took significant further innovation to show the decidability
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for general dpda, which is the celebrated result by Séniz-
ergues [14], see also [15]. A couple of years later, Stirling
showed that dpda equivalence is in fact primitive recursive
[17], and his bound is still the best known upper bound for
this problem. (A recent simplification of the proof [9] brings
no improvement of the complexity bound.)

The upper bound by Stirling is far from the best known
lower bound, i.e. from P-hardness (which straightforwardly
follows from P-hardness of the emptiness problem). The
same complexity gap persists even for real-time dpda. Thus,
further subclasses of dpda have been studied. A coNP upper
bound is known [16] for finite-turn dpda which are dpda
where the number of switches between pushing and popping
phases is bounded. For simple dpda (real-time single-state
dpda), equivalence is even decidable in polynomial time [8]
(see [4] for the currently best known upper bound).

Deterministic one-counter automata (doca) are one of the
simplest infinite-state computational models, extending de-
terministic finite automata just with one nonnegative in-
teger counter; doca are thus dpda over a singleton stack
alphabet plus a bottom stack symbol. Doca were first stud-
ied by Valiant and Paterson in 1975 [18]; they showed that

equivalence is decidable in time 2O(
√
n logn), and a simple

analysis of their proof reveals that the equivalence prob-
lem is in PSPACE. The problem is easily shown to be NL-
hard, there is however an exponential gap between NL and
PSPACE. There were attempts to settle the complexity of
the doca equivalence problem (later we mention some) but
the problem proved intricate. Though doca are perhaps not
a notorious computational device, their close relation to fi-
nite automata and dpda has motivated us to tackle this re-
search problem. Establishing NL-completeness for real-time
doca [2] was a first step but it was far from clear if and how
the proof can be extended to the general case.

One reason of the intricacy seems to be that a doca can
exhibit a behaviour with exponential periodicity, demon-
strated by the following example (which slightly adapts the
version from [18]). We take a family (An)n≥1 where An is
a doca accepting the regular language Ln = {ambi | 1 ≤ i ≤
n,m ≡ 0 (mod pi)}, where pi denotes the i

th prime number.
The index of the Myhill-Nerode congruence of Ln is obvi-
ously 2Ω(n) but we can easily construct An with O(n2 log n)
states. The example also demonstrates that doca are expo-
nentially more succint than their real-time variant, since one
can prove that real-time doca accepting Ln have 2Ω(n) states.
Doca are also strictly more expressive than their real-time
variant. Analogous expressiveness and succinctness results
hold for dpda and real-time dpda, respectively.



Our contribution. The main result here is that lan-
guage equivalence of doca is NL-complete (while language
inclusion is well-known to be undecidable); this closes the ex-
ponential complexity gap that has existed since 1970s when
doca were introduced. Our approach helps to answer related
questions as well; e.g., regularity of the language accepted
by a given doca can be easily shown to be NL-complete.
Related work. Doca were introduced by Valiant and Pa-

terson in [18], where the above-mentioned 2O(
√
n logn) time

upper bound for language equivalence was proven. Polyno-
mial time algorithms for language equivalence and inclusion
for strict subclasses of doca were provided in [6, 7]. In [1,
5] polynomial time learning algorithms were presented for
doca. Simulation preorder and bisimulation equivalences on
one-counter automata were studied in [3, 10, 11].
Remark : In [1, 13] it is stated that equivalence of doca can
be decided in polynomial time. Unfortunately, the proofs
provided in [1, 13] were not exact enough to be verified, and
they raise several questions which are unanswered to date.
Overview of the proof. Instead of defining doca clasi-

cally as restricted dpda, we use a convenient equi-succinct
way where we partition the control states (and thus the con-
figurations) into stable states, in which the automaton waits
for a letter to be read, and into reset states, in which the
counter is reset to zero; in the latter case the residue class of
the current counter value modulo the number, called a pe-
riod, specified by the current reset state determines the suc-
cessor (stable) state. (The periods correspond to the lengths
of classical popping ε-cycles.) We explore trace equivalence,
i.e. the classical language equivalence where all states are
viewed as accepting. We use a natural notion of the equiva-
lence level, the eqlevel for short, of two configurations, corre-
sponding to the length of a shortest non-equivalence witness
word, and stipulated to be ω when the configurations are
equivalent. The formal definitions, and the ideas of a rou-
tine reduction from the classical setting to our setting, are
given in Section 2. In Section 3 we prove the main theorem,
saying that the eqlevels of two non-equivalent zero configu-
rations are small, by which we mean that they are bounded
by a polynomial (in the size of the given doca).
The only ingredient of our proof which we take directly

from the previous works is a cyclic form of shortest positive
paths in the transition system T (A) generated by a doca
A; this basic, but technical, fact was proven already in [18],
and we recall it in Section 3.1.
Our central notion is the extended deterministic transi-

tion system Text(A) that is attached to a doca A. Besides
the standard transition system T (A), the extended system
includes a special finite deterministic transition system that
might be exponentially large in the size of A and that cap-
tures the special mode behaviour of A. The special mode
mimics the normal mode and is switched to the normal mode
whenever a reset state is visited. The only difference is that
when the zero counter value is reached (without a reset)
then a multiple of all periods of the reset states is silently
added to the counter; thus the counter never becomes zero
in the special mode (until a reset state is visited and the
normal mode applies). The above mentioned special finite
system arises naturally once we note that the behaviour of
a special mode configuration depends on the residue classes
of the counter value modulo the periods of the reset states,
and not on the concrete counter value itself.
Each normal configuration p(m) (where p is the control

state and m is the counter value) thus has the special mode
counterpart p̄(m). A crucial novelty of our approach consists
in an explicit definition of the above Text(A) and in a detailed
analysis of the quadruple (b, ℓ, r, o) associated with a pair of
configurations (p(m), q(n)) as follows (here EqL stands for
eqlevel): b = EqL(p(m), q(n)) (Basic), ℓ = EqL(p(m), p̄(m))
(Left), r = EqL(q(n), q̄(n)) (Right), o = EqL(p̄(m), q̄(n))
(mOd). A simple fact that min{b, ℓ, r, o} must be equal to
at least two components of (b, ℓ, r, o) turns out to be very
useful.

For each non-equivalent pair (p0(m0), q0(n0)) with
a shortest non-equivalence witness word w we define
(pi(mi), qi(ni)) as the (stable) pair such that p0(m0) is
transformed to pi(mi), and q0(n0) is transformed to qi(ni),
by reading the prefix of w of length i. Each (pi(mi), qi(ni))
has the associated quadruple (bi, ℓi, ri, oi), and we note that
bi = b0 − i. Though we have in principle exponentially
many pairs (p̄(m), q̄(n)), it is easy to show that the set of
eqlevels {e | e = EqL(p̄(m), q̄(n))} is small (i.e., its cardi-
nality is bounded by a polynomial); in other words, there
are only few possible values oi. A straightforward analysis
also shows that for each natural number g there are only
few p(m) such that EqL(p(m), p̄(m)) = g. By using such
observations we derive that if m0 = n0 = 0 then there are
only few i such that ℓi 6= ri. Roughly speaking, ℓi = ri < ω

implies that the counter values mi and ni are in one of only
few linear relations. Hence if our sequence (p0(m0), q0(n0)),
(p1(m1), q1(n1)), (p2(m2), q2(n2)), . . . (with m0 = n0 = 0)
was long then it would have a long segment where ℓi = ri
and the values mi, ni are increasing on the whole. We con-
tradict the existence of such a long segment by another use
of cyclicity and the properties of the quadruples (b, ℓ, r, o).

Sections 3.2–3.7 introduce Text(A) and the related useful
notions; Sections 3.8 and 3.9 contain the main argument.

A complete version is at http://arxiv.org/abs/1301.2181.

2. DEFINITIONS AND RESULTS
By N we denote the set {0, 1, 2, . . .} of non-negative inte-

gers, and by Z the set of all integers. For a finite set X, by
|X| we denote its cardinality.

By Σ∗ we denote the set of finite sequences of elements of
Σ, i.e. of words over Σ. For w ∈ Σ∗, |w| denotes the length
of w. By ε we denote the empty word; hence |ε| = 0. If
w = uv then u is a prefix of w and v is a suffix of w.

By ÷ we denote integer division; for m,n ∈ N where n > 0
we have m = (m ÷ n) · n + (m mod n). We use “mod” in
two ways, clarified by the following example: 3 = 18 mod 5,
8 6= 18 mod 5, 3 ≡ 18 (mod 5), 8 ≡ 18 (mod 5). For m ∈ Z,
|m| denotes the absolute value of m.

We use ω to stand for infinity; we stipulate z < ω and
ω + z = z + ω = ω for all z ∈ Z.

A deterministic labelled transition system, a det-LTS for
short, is a tuple

T = (SSt, Sε,Σ, (
a
7→)a∈Σ,

ε
7→)

where SSt and Sε are disjoint sets of stable states and un-
stable states, respectively, Σ is a finite alphabet,

a
7→⊆ SSt ×

(SSt ∪ Sε) for a ∈ Σ, and
ε
7→⊆ Sε × SSt are sets of labelled

transitions; for each s ∈ Sε there is precisely one t ∈ SSt

such that s
ε
7→ t, whereas for any s ∈ SSt and a ∈ Σ there is

at most one t ∈ SSt ∪ Sε such that s
a
7→ t. For all w ∈ Σ∗,

we define relations
w
−→⊆ S × S, where S = SSt ∪ Sε, induc-

tively: s
ε
−→ s for each s ∈ S; if s

ε
7→ t then s

ε
−→ t; if s

a
7→ t



(a ∈ Σ) then s
a
−→ t; if s

u
−→ s′ and s′

v
−→ t (u, v ∈ Σ∗)

then s
uv
−→ t. By s

w
−→ we denote that w is enabled in s, i.e.

s
w
−→ t for some t.

Given T = (SSt, Sε,Σ, (
a
7→)a∈Σ,

ε
7→), trace equivalence ∼

on S = SSt ∪ Sε is defined as follows:

s ∼ t if ∀w ∈ Σ∗ : s
w
−→⇔ t

w
−→.

Hence two states are equivalent iff they enable the same set
of words (also called traces). A word w ∈ Σ∗ is a non-
equivalence witness for (s, t), a witness for (s, t) for short, if
w is enabled in precisely one of s, t.

Remark. By the above definitions, s
ε
7→ t implies s ∼ t.

This suggests merging the states s and t but we keep them
separate since this is convenient in the definitions of det-
LTSs generated by deterministic one-counter automata.

We put Σ≤i = {w ∈ Σ∗ : |w| ≤ i}, and we note that ∼
=

⋂

{∼i| i ∈ N} where the equivalences ∼0⊇∼1⊇∼2⊇ . . .

are defined as follows:

s ∼i t if ∀w ∈ Σ≤i : s
w
−→⇔ t

w
−→.

Each pair of states (s, t) has the equivalence level, the eqlevel
for short, EqL(s, t) ∈ N ∪ {ω}:

EqL(s, t) =

{

ω if s ∼ t,

max{j ∈ N | s ∼j t} otherwise.

We also write s
e
←→ t instead of EqL(s, t) = e (where e ∈

N ∪ {ω}). We note that the length of any shortest witness
for (s, t), where s 6∼ t, is EqL(s, t)+1. We also highlight the
next simple fact (valid since our LTSs are deterministic).

Observation 1. Suppose s
w
−→ s′ and t

w
−→ t′ in a given

det-LTS. Then we have:

1. EqL(s′, t′) ≥ EqL(s, t)− |w|. (Hence s′ ∼ t′ if s ∼ t.)

2. If w is a prefix of a shortest witness for (s, t) then
EqL(s′, t′) = EqL(s, t)− |w|.

Deterministic one-counter automata, doca for short, are de-
terministic pushdown automata in which the stack alphabet
is {0, 1} and the stack can only contain words of the form
1n0, n ≥ 0, where 0 is always at the bottom of the stack. For
convenience we use the following definition of doca, adding
a remark on its relation to the standard definition later.
A doca is a tuple

A = (QSt, QRes,Σ, δ, (pers)s∈QRes
, (gotos)s∈QRes

) (1)

where QSt and QRes are disjoint finite sets of stable control
states and reset control states, respectively, Σ is a finite al-
phabet, δ ⊆ QSt × Σ × {0, 1} × (QSt ∪ QRes) × {−1, 0, 1} is
a set of (transition) rules, pers ∈ N are periods satisfying
1 ≤ pers ≤ |QSt|, and gotos : {0, 1, 2, . . . , pers−1} → QSt are
reset mappings. For each p ∈ QSt, a ∈ Σ, c ∈ {0, 1} there is
at most one pair (q, j) (where q ∈ QSt ∪QRes, j ∈ {−1, 0, 1})
such that (p, a, c, q, j) ∈ δ; moreover, if c = 0 then j 6= −1.
The tuples (p, a, 0, q, j) ∈ δ are called the zero rules, the
tuples (p, a, 1, q, j) ∈ δ are the positive rules.

A doca A as in (1) defines the det-LTS

T (A) = (QSt × N, QRes × N,Σ, (
a
7→)a∈Σ,

ε
7→) (2)

where
a
7→ and

ε
7→ are defined by the following (deduction)

rules.

1. If (p, a, 1, q, j) ∈ δ and n > 0 then (p, n)
a
7→ (q, n+j).

2. If (p, a, 0, q, j) ∈ δ then (p, 0)
a
7→ (q, j). (Recall that

j ∈ {0, 1} in this case.)

3. If s ∈ QRes and n ≥ 0 then (s, n)
ε
7→ (q, 0) where q =

gotos(n mod pers).

An example of a doca with the respective det-LTS is
sketched in Fig. 1.

By a configuration C of the doca A we mean (p,m), usu-
ally written as p(m), where p is its control state and m ∈ N

is its counter value. If C = p(0) then it is a zero configura-
tion. If p ∈ QSt then C = p(m) is a stable configuration; if
p ∈ QRes then p(m) is a reset configuration.

The definition of (general) det-LTSs induces the relations
w
−→ (w ∈ Σ∗) on Q × N where Q = QSt ∪ QRes. We are
interested in the doca equivalence problem, denoted

Doca-Eq:

Instance: A doca A and two stable zero configu-
rations p(0), q(0).

Question: Is p(0) ∼ q(0) in T (A) ?

Our main aim is to show the following theorem.

Theorem 2. There is a polynomial poly : N → N

such that for any Doca-Eq instance A, p(0), q(0) where A
has k control states we have that p(0) 6∼ q(0) implies
EqL(p(0), q(0)) ≤ poly(k).

By Theorem 2 we easily get the upper bound in the next
theorem; the lower bound is implied by digraph reachability.

Theorem 3. Doca-Eq is NL-complete.

Remark. Classically a doca is a tuple A = (Q,Σ, δ, q0, F )
where q0 is the initial state and F ⊆ Q are the accepting
states. Here δ can contain (p, ε, c, q, j) (c ∈ {0, 1}) if it does
not contain (p, a, c, q′, j′) for any a ∈ Σ; moreover, for each
p ∈ Q, a ∈ Σ ∪ {ε} and c ∈ {0, 1} there is at most one pair
(q, j) such that (p, a, c, q, j) ∈ δ. The language accepted by

A is defined as L(A) = {w ∈ Σ∗ | q0(0)
w
−→ q(n) for some

q ∈ F , n ∈ N}. Such a doca A, with k control states, can be
routinely replaced by a language-equivalent doca ASC (with
the “Shrinked Counter”), where a configuration p(m) of A
is represented by the configuration pi(j) of ASC where i =
(m mod k) and j = (m÷k). A straightforward modification
then restricts the ε-rules to the form (p, ε, 1, q,−1), which
then easily leads to our above form with stable and reset
control states. A reduction from language equivalence to
trace equivalence is also simple: if a stable configuration
has no outgoing a-transition then we add it and lead to a
special “sink loop state”; we then arrange that accepting
control states are stable and add to them a loop-transition
with a special fresh action.

3. PROOF OF THEOREM 2
Convention. When considering a doca A, we will always

tacitly assume the notation (1) if not said otherwise. We
also reserve k for denoting the number of control states, i.e.

k = |QSt|+ |QRes|.



Figure 1: A doca A, presented by a graph, and a fragment of T (A)

To be more concise in the later reasoning concerning a given
doca A, we use the words “few”, “small”, or “short”when we
mean that the relevant quantity is bounded by a polynomial
in k; the polynomial is always independent of A. By a small
rational number we mean ρ = a

b
or ρ = −a

b
where a, b ∈ N

are small. We also say that

a set is small if its cardinality is a small number.

We note that if all elements of a set X of (integer or rational)
numbers are small then X is a small set; the opposite is not
true in general. We often tacitly use the fact that

a quantity arising as the sum or the product of two small
quantities is also small.

Though these expressions might look informal, they can be
always easily replaced by the formal statements which they
abridge. By this convention, Theorem 2 says that the eqlevel
of any pair of zero configurations is small when finite.
Remark. It will be always obvious that we could calcu-

late a concrete respective polynomial whenever we use“few”,
“small”, “short” in our claims. But such calculations would
add tedious technicalities, and they would be not particu-
larly rewarding w.r.t. the degree of the polynomials. We
thus prefer a transparent concise proof which avoids techni-
calities whenever possible.

3.1 Shortest positive paths inT (A)
We first define the notion of paths in general det-LTSs,

and then we look at special paths in T (A), for a doca A.

Definition 4. Let T = (SSt, Sε,Σ, (
a
7→)a∈Σ,

ε
7→) be a det-

LTS. A path in T is a sequence

s0
a1−→ s1

a2−→ . . .
az−→ sz (z ∈ N)

where si ∈ SSt and ai ∈ Σ (for all i, 0 ≤ i ≤ z); it is a path
from its start s0 to its end sz. For any i1, i2, where 0 ≤

i1 ≤ i2 ≤ z, the sequence si1
ai1+1

−→ si1+1

ai1+2

−→ · · ·
ai2−→ si2 is

a subpath of the above path. Slightly abusing notation, we
will also use s

w
−→ and s

w
−→ t (s, t ∈ SSt) to denote paths.

We also refer to s
a
−→ t where s, t ∈ SSt and a ∈ Σ as to

a step. If s
a
7→ t then it is a simple step; if s

a
7→ s′

ε
7→ t then

it is a combined step. The length of a path s0
a1−→ s1

a2−→

. . .
az−→ sz is z, i.e. the number of its steps.

When discussing the det-LTS T (A) for a doca A, we use
the term reset steps instead of combined steps. We now
concentrate on positive paths in T (A), defined as follows.

Definition 5. Given a doca A (in notation (1)), a path

p0(m0)
a1−→ p1(m1)

a2−→ · · ·
az−→ pz(mz) (3)

in T (A) is positive if each step pi(mi)
ai+1
−→ pi+1(mi+1)

(0 ≤ i < z) is simple and is induced by a positive rule
(pi, ai+1, 1, pi+1, j) ∈ δ (where j = mi+1−mi).

The effect (or the counter change) of the path (3) is
mz−m0; if the path is positive, its effect is an integer in
the interval [−z, z]. The path (3) is a control state cycle if
it is positive and we have z > 0 and pz = p0.

We note that if (3) is positive then there is no reset step in
the path and mi > 0 for all i, 0 ≤ i < z; but we can have
mz = 0.

The next lemma can be easily derived from Lemma 2
in [18]. The claim is illustrated in Fig. 2: if there is a posi-
tive path from C to C′ with a big difference of the counter



Figure 2: Shortest positive paths in T (A), one from
a configuration C1 to C2 and one from C2 to a zero
configuration C3. (Only the stable control states
q1, q2, . . . , qk1

are depicted.)

values then a shortest such path uses a short repeated cycle,
besides a short prefix and a short suffix.

Lemma 6. If there is a positive path from p(m) to q(n)
in T (A) then some of the shortest positive paths from p(m)
to q(n) is of the form

p(m)
u1−→ p′(m′)

vi

−→ p′(m′+id)
u2−→ q(n)

where u1 is a short word, called the pre-phase, p′(m′)
v
−→

p′(m′+d) is a short control state cycle with the effect d ∈ Z,
and u2 is a short word, called the post-phase. (The cycle v

is repeated i times, where i ≥ 0.)

We also note the following corollary:

Corollary 7. If |m− n| is small and there is a positive
path from p(m) to q(n) then there is a short positive path
from p(m) to q(n).

3.2 The extended det-LTSText(A)
We now introduce a central notion, the det-LTS Text(A),

which extends the det-LTS T (A) defined in (2), for a given
doca A = (QSt, QRes,Σ, δ, (pers)s∈QRes

, (gotos)s∈QRes
). We

formalize the intuition described in the introduction. The
det-LTS Text(A) arises from T (A) by adding the set QMod of
stable states, the set QFixRes of unstable states, and the tran-
sitions from QMod and QFixRes, all defined below. The tran-
sitions from QMod will only lead to QMod ∪ QFixRes, whereas
the ε-transitions from QFixRes lead to zero configurations in
T (A). There are no transitions leading from the configura-
tions in T (A) to QMod ∪QFixRes, and the subgraph of Text(A)
arising by the restriction to the configurations of T (A) is

T (A) itself. We thus also safely use the same symbols
a
7→,

ε
7→ in both T (A) and Text(A). An example is sketched in
Fig. 3.

Definition 8. Given a doca A as in (1), with the asso-
ciated det-LTS T (A) (recall (2)), we define the det-LTS

Text(A) =

((QSt × N) ∪QMod, (QRes × N) ∪QFixRes,Σ, (
a
7→)a∈Σ,

ε
7→)

Figure 3: A fragment of Text(A) where:
{p, q, r} ⊆ QSt, QRes = {s, s′, s′′, s′′′}, {a, b, c} ⊆ Σ,
{(p, a, 1, q,−1), (p, b, 1, s′, 0), (p, c, 1, p, 1)} ⊆ δ,
(pers, pers′ , pers′′ , pers′′′) = (7, 4, 6, 8), gotos′(1) = r,
∆ = lcm{7, 4, 6, 8} = 168.

as the extension of T (A) where

• QMod = {(p, (cs)s∈QRes
) | p ∈ QSt, 0 ≤ cs ≤ pers − 1},

• QFixRes = {s[c] | s ∈ QRes, 0 ≤ c ≤ pers − 1}, and

• the additional transitions are defined by the following
(deduction) rules:

1. If (p, a, 1, q, j) ∈ δ and q ∈ QSt then for each
(p, (cs)s∈QRes

) ∈ QMod we have

(p, (cs)s∈QRes
)

a
7→ (q, (c′s)s∈QRes

)

where c′s = (cs+j) mod pers for each s ∈ QRes.

2. If (p, a, 1, s′, j) ∈ δ and s′ ∈ QRes then for each
(p, (cs)s∈QRes

) ∈ QMod we have

(p, (cs)s∈QRes
)

a
7→ s′[c]

where c = (cs′+j) mod pers′ .

3. For each s[c] ∈ QFixRes we have s[c]
ε
7→ q(0) where

q = gotos(c).

A configuration C is a state in Text(A). If C ∈ QMod or
C = p(m) where p ∈ QSt then C is stable, otherwise C is
unstable.

Moreover, we define the mapping

Mod : ((QSt ∪QRes)× N)→ (QMod ∪QFixRes):

• if p ∈ QSt then Mod(p(m)) = (p, (cs)s∈QRes
) ∈ QMod

where cs = m mod pers for all s ∈ QRes;

• if s ∈ QRes then Mod(s(m)) = s[c] ∈ QFixRes where
c = m mod pers.



We note that the cardinality of QMod might be exponential
in k (i.e. in the number of control states of A); on the
other hand, QFixRes is small. The next propositions can be
easily derived from the definition of Text(A). We stipulate
min ∅ = ω, and recall that z + ω = ω for any z ∈ N.

Proposition 9.

1. If (p, (cs)s∈QRes
)

w
−→ (q, (c′s)s∈QRes

) then for each

(p, (ds)s∈QRes
) ∈ QMod we have (p, (ds)s∈QRes

)
w
−→

(q, (d′s)s∈QRes
) where d′s−c

′
s ≡ ds−cs (mod pers) for

all s ∈ QRes.

2. If (p, (cs)s∈QRes
)

w
−→ s′[c] then for each (p, (ds)s∈QRes

) ∈

QMod we have (p, (ds)s∈QRes
)

w
−→ s′[d] where d−c ≡

ds′−cs′ (mod pers′).

3. For any s ∈ QRes we have s(m) ∼ Mod(s(m)).

4. If p ∈ QSt then EqL(p(m),Mod(p(m))) =
= min{z + EqL(q(0),Mod(q(0))) | q ∈ QSt and z is the
length of a positive path from p(m) to q(0)}.

5. For any p ∈ QSt, m ∈ N, and w ∈ Σ∗ there is some
small positive d ∈ N such that

• either for each m′ such that m′ ≡ m (mod d) we
have that Mod(p(m′)) enables w,

• or for each m′ such that m′ ≡ m (mod d) we
have that Mod(p(m′)) does not enable w.

We recall that C
e
←→ C′ denotes that EqL(C,C′) = e.

Proposition 10.

1. For any p, q ∈ QSt and m,n ∈ N there are small pos-
itive d1, d2 ∈ N such that for any m′, n′ ∈ N we have:
if m′ ≡ m (mod d1) and n′ ≡ n (mod d2) then

EqL(Mod(p(m′)),Mod(q(n′))) ≤
EqL(Mod(p(m)),Mod(q(n))).

2. The set { e | there are C,C′ ∈ QMod s.t. C
e
←→ C′}

is small.

Proposition 11.

1. For any p, q ∈ QSt and m,n ∈ N there is some small
positive d ∈ N such that for any m′ ∈ N we have: if
m′ ≡ m (mod d) then

EqL(Mod(p(m′)), q(n)) ≤ EqL(Mod(p(m)), q(n)).

2. For any (fixed) q(n), the set

{ e | there is C ∈ QMod s.t. C
e
←→ q(n)} is small.

3.3 Eqlevels of pairs of zero configurations
Let us recall Text(A) defined in Def. 8. We could view

the elements of QMod ∪QFixRes as additional control states of
A; in these states the counter value would play no role and
could be formally viewed as zero. This observation justifies
the name “zero configurations” in the following definition.

Definition 12. Given a doca A as in (1), with the as-
sociated Text(A) by Def. 8, a state C in Text(A) is a zero
configuration if either C ∈ QMod ∪QFixRes or C = p(0) where
p ∈ QSt ∪QRes. We define the set ZE ⊆ N (Zero configura-
tions Eqlevels) as follows:

ZE = { e ∈ N | there are two stable zero configurations

C,C′ s.t. C
e
←→ C′}.

We thus have ZE = E1 ∪ E2 ∪ E3 where

E1 = { e ∈ N | p(0)
e
←→ q(0) for some p, q ∈ QSt},

E2 = { e ∈ N | p(0)
e
←→ C for some p ∈ QSt, C ∈ QMod},

E3 = { e ∈ N | C
e
←→ C′ for some C,C′ ∈ QMod}.

Since the set { p(0) | p ∈ QSt} is obviously small, by
Prop. 10(2) and 11(2) we easily derive the following claim.

Lemma 13. The set ZE is small.

The lemma does not claim that the elements of ZE are small
numbers. This will be shown in the following subsections;
we will thus prove the next strengthening of Theorem 2.

Theorem 14. There is a polynomial poly : N→ N such
that max { e | e ∈ ZE} ≤ poly(k) (for any doca A with k

control states).

Let e0 < e1 < e2 < · · · < ef be the ordered elements of
ZE. We have shown that f is small but we have not yet
shown that all ei are small numbers. W.l.o.g. we can assume
e0 = 0 (by adding two special control states, say). For
proving Theorem 14 it thus suffices to show that the “gaps”
between ei and ei+1, i.e. the differences ei+1−ei, are small.
We will later contradict the existence of a large gap between
ei = eD (Down) and ei+1 = eU (Up) depicted in Figure 4.

e0−−e1−· · ·−eD−−−−−−−−−−−−−−−−−eU−· · ·−ef

Figure 4: Assumption of a large gap in ZE (to be
contradicted later)

But we first explore some further notions related to a given
doca A and the det-LTS Text(A).

3.4 Independence level
We assume a doca A as in (1), and explore a notion which

we have already touched on.

Definition 15. For p ∈ QSt, m ∈ N we put

IL(p(m)) = EqL(p(m),Mod(p(m))).

IL(p(m)) can be understood as an “Independence Level” of
p(m) w.r.t. the concrete value m. The next proposition can
be derived easily from Prop. 9(4) and Lemma 6 (and Fig. 2).

Proposition 16. For each p(m) with IL(p(m)) < ω there
are small rational numbers ρ, σ (of the type a

b
, −a

b
where

a, b ∈ N are small) and some q ∈ QSt such that

IL(p(m)) = ρ ·m+ σ + IL(q(0)).

Moreover, we can require ρ ≥ 0, ρ ·m + σ ≥ 0, and if m is
larger than a small bound then ρ > 0.

Convention. We will further assume that each p(m) with
IL(p(m)) < ω has a fixed associated equality IL(p(m)) =
ρ ·m + σ + e where e = IL(q(0)) ∈ ZE and ρ, σ, q have the
claimed properties.

Figure 5 depicts IL(p(m)) for a fixed p ∈ QSt and for
a few values m, by using black circles •; e1, e2, e3 are ele-
ments of ZE corresponding to IL(q(0)) for several q. There



might be some “irregular” values IL(p(m)) = z + IL(q(0))
for small m and small z but for m larger than a small
bound the values IL(p(m)) lie on few lines, starting near
some ej and having small slopes. (In fact, we have 1 ≤

|v|
|effect(v)| ≤ k for the respective cycles v in w = u1v

iu2; the

unit-length for the vertical axis is thus smaller than for the
horizontal axis in Fig. 5.) The circles • and ◦ on one de-
picted line can correspond to the pairs (m0, z0 + IL(q(0))),
(m0 + d, z0 + d′ + IL(q(0))), (m0 + 2d, z0 + 2d′ + IL(q(0))),
. . . where d = |effect(v)| and d′ = |v| (and z0 = |u1u2|,
z0 + d′ = |u1vu2|, z0 + 2d′ = |u1v

2u2|, . . . ). A white circle
◦ depicts that the respective value, corresponding to a pos-

itive path p(m0+id)
u1v

iu2−→ q(0), is not IL(p(m0+id)) since
there is another, and shorter, witness in this case.

Figure 5: Illustrating IL(p(m)) as a function of m

We now observe some further facts for later use.

Proposition 17.

1. For each g ∈ N there are only few p(m) such that
IL(p(m)) = g.

2. For any p(m) where IL(p(m)) < ω there are some small
numbers base ≥ 0 and per > 0 such that the following
condition holds:
for any m′ such that base ≤ m′ < m and m′ ≡
m (mod per) we have IL(p(m′)) < IL(p(m)).

3.5 Eqlevel tuples
We introduce the eqlevel tuples illustrated in Fig. 6, as-

suming a given doca A as in (1), with the associated det-
LTSs T (A) and Text(A). A simple property of these tuples
considerably simplifies the later analysis.

Figure 6: Eqlevel tuple (b, ℓ, r, o, dL, dR) associated to
(p(m), q(n)), and to (p(m), C) where C ∈ QMod.

Definition 18. (See Fig. 6.) Each pair (p(m), q(n)) of
stable configurations in T (A) has the associated eqlevel tu-
ple (b, ℓ, r, o, dL, dR) (of elements from N ∪ {ω}) defined as

follows: b = EqL(p(m), q(n)) (Basic), ℓ = IL(p(m)) (Left),
r = IL(q(n)) (Right), o = EqL(Mod(p(m)),Mod(q(n))
(mOd), dL = EqL(p(m),Mod(q(n)) (Diagonal Left), dR =
EqL(q(n),Mod(p(m)) (Diagonal Right).

Each pair (p(m), C) where C ∈ QMod and p(m) is a sta-
ble configuration in T (A) has the associated eqlevel tuple
(b, ℓ, r, o, dL, dR) defined as follows: b = dL = EqL(p(m), C),
ℓ = IL(p(m)), r = ω, o = dR = EqL(Mod(p(m)), C).

The analogous tuple associated to (C, q(n)) is not needed
in later reasoning. The next proposition trivially follows
from the fact that ∼i are equivalences; it holds for general
LTSs but we confine ourselves to the introduced det-LTSs.

Proposition 19. Given states s1, s2, . . . , sm in a det-

LTS where m ≥ 2 and s1
e1←→ s2, s2

e2←→ s3, . . . ,

sm−1
em−1
←→ sm, sm

em←→ s1, the minimum of {e1, e2, . . . , em}
cannot be ei for just one i.

Corollary 20. In the “triangle” (b, ℓ, dR), we always
have b = ℓ or b = dR or ℓ = dR (or b = ℓ = dR) as the
minimum. Similarly for the “triangles” (dR, r, o), (b, dL, r),
and (ℓ, dL, o). In the “rectangle” (b, ℓ, r, o), the minimum is
also achieved by at least two elements (concretely by b = ℓ,
b = r, b = o, ℓ = r, ℓ = o, or r = o).

3.6 Paths inT (A)× T (A)
Since we are interested in comparing two states in a det-

LTS T , it is useful to define the product T × T ; the tran-
sitions in T × T are just the letter-synchronized pairs of
transitions in T . Eqlevel-decreasing paths in T × T will be
of particular interest. A formal definition follows.

Definition 21. Let T = (SSt, Sε,Σ, (
a
7→)a∈Σ,

ε
7→) be a

det-LTS. We define the det-LTS

T × T = (SSt × SSt, S
′
ε,Σ, (

a
7→)a∈Σ,

ε
7→)

where S′
ε = (SSt × Sε)∪ (Sε × SSt)∪ (Sε × Sε) and the tran-

sitions are defined as follows:

1. If s, t ∈ SSt and s
a
7→ s′ and t

a
7→ t′ (for a ∈ Σ) then

(s, t)
a
7→ (s′, t′).

2. If s ∈ SSt, t ∈ Sε, and t
ε
7→ t′ then (s, t)

ε
7→ (s, t′).

3. If s ∈ Sε, t ∈ SSt, and s
ε
7→ s′ then (s, t)

ε
7→ (s′, t).

4. If s
ε
7→ s′ and t

ε
7→ t′ then (s, t)

ε
7→ (s′, t′).

A path (s0, s
′
0)

a1−→ (s1, s
′
1)

a2−→ (s2, s
′
2) · · ·

az−→ (sz, s
′
z)

in T × T (where (si, s
′
i) ∈ SSt × SSt by Def. 4) is eqlevel-

decreasing if EqL(si, s
′
i) > EqL(si+1, s

′
i+1) for all i ∈

{0, 1, , . . . , z−1}.

We can easily verify that T × T is indeed a det-LTS.
We also note that in eqlevel-decreasing paths we must have
EqL(si+1, s

′
i+1) = EqL(si, s

′
i)− 1, by Observation 1.

Observation 22.

1. Any subpath of an eqlevel-decreasing path in T × T is
a shortest path from its start to its end.



2. Suppose the path (s, t)
w
−→ (s′, t′) is eqlevel-decreasing.

If (s, t)
v
−→ (s′′, t′′) where |v| < |w| then EqL(s′′, t′′) >

EqL(s′, t′).

We now look at T (A)× T (A) for a doca A.

Definition 23. We call (p(m), q(n))
a
−→ (p′(m′), q′(n′))

a reset step (in T (A)×T (A)) if at least one of component-

steps p(m)
a
−→ p′(m′), q(n)

a
−→ q′(n′) is a reset step

in T (A). If precisely one of component-steps is a re-

set step then (p(m), q(n))
a
−→ (p′(m′), q′(n′)) is a one-

side reset step, if both component-steps are reset steps then
(p(m), q(n))

a
−→ (p′(m′), q′(n′)) is a both-side reset step.

We note that one of m′, n′ is 0 when (p(m), q(n))
a
−→

(p′(m′), q′(n′)) is a one-side reset step, and m′ = n′ = 0
when it is a both-side reset step.

Figure 7: A path from (p(0), q(0)) in T (A)×T (A) (with
some one-side resets), projected to N× N.

Fig. 7 shows an example of a path T (A)×T (A), projected
to N×N (a pair (p(m), q(n)) is projected to (m,n)); the dot-
ted lines represent one-side reset steps. Theorem 2 claims,
in fact, that the eqlevel-decreasing paths in T (A) × T (A)
whose start is projected to (0, 0) are short.

3.7 IL-equality lines
We assume a fixed doca A, and consider the cases

IL(p(m)) = IL(q(n)) < ω (i.e., ℓ = r < ω in Fig. 6);
we explore what we can say about the respective points
(m,n) ∈ N × N. By Convention after Prop. 16, each such
case has the associated equalities IL(p(m)) = ρ ·m + σ + e

and IL(q(n)) = ρ′ ·n+ σ′ + e′, and IL(p(m)) = IL(q(n)) thus
implies ρ ·m+ σ + e = ρ′ · n+ σ′ + e′.
Only in few cases we have ρ = 0 or ρ′ = 0 (which is clear

by Prop. 16 and Prop. 17(1)); in the other (many) cases we

have n = ρ

ρ′
m+ (σ−σ′)+(e−e′)

ρ′
where ρ

ρ′
> 0. This naturally

leads to the following notions (illustrated in Fig. 8).

Definition 24. A pair (µ, τ) of rational numbers is a
valid slope-shift pair if there are some p(m), q(n) with
the associated equalities IL(p(m)) = ρ · m + σ + e and
IL(q(n)) = ρ′ ·n+σ′+e′ such that ρ·m+σ+e = ρ′ ·n+σ′+e′,

ρ > 0, ρ′ > 0, µ = ρ

ρ′
, τ = (σ−σ′)+(e−e′)

ρ′
.

Each valid slope-shift pair (µ, τ) defines an IL-equality
line, or just a line for short, namely the set {(x, y) ∈ N×N |
y = µ · x+ τ}.
Any maximal set of parallel lines (having the same slope

but various shifts) is a line-bunch. (Maximality is taken
w.r.t. set inclusion.) We say that (x, y) ∈ N × N is in a
line-bunch H if (x, y) is in a line in H.

Figure 8: A sketch of IL-equality lines (in reality, the
lines contain only points with integer coordinates)

Though each line contains at least one (m,n) such that
IL(p(m)) = IL(q(n)) < ω for some p, q, the definition does
not assume anything more specific about lines. The line-
bunches can have various “gaps”, and if a point (x, y) is not
in a line-bunch H then it can still lie between two lines from
H. The following proposition is easy to verify.

Proposition 25.

1. There are only few lines, and thus also few line-
bunches.
The set {(x, y) ∈ N × N | (x, y) ∈ L1 ∩ L2 for two
different lines L1, L2} is small.

2. There are only few pairs (p(m), q(n)) where IL(p(m)) =
IL(q(n)) < ω and (m,n) is not in a line.

3.8 Eqlevel-decreasing line-climbing paths
are short

We recall Fig. 4 which assumes a large gap eU−eD; to
finish a proof of Theorem 14, we aim to show that all gaps
in ZE are, in fact, small. In the next subsection (3.9) we
show that a large gap eU−eD would entail a long eqlevel-
decreasing line-climbing path in T (A) × T (A) (depicted in
Fig. 9). In this subsection we show that all such paths are,
in fact, short. Fig. 9 illustrates a line-climbing path from a
pair projected to P1 to a larger pair projected to P2. The
cyclicity and further structures in the figure will be discussed
later.

Figure 9: A line-climbing path (projections of all
visited configuration-pairs are in IL-equality lines in
one line-bunch)



Definition 26. A path in T (A) × T (A) is positive if
each pair (p(m), q(n)) in the path satisfies m > 0, n > 0;
this entails that there are no reset steps in the path.

A positive path (p0(m0), q0(n0))
a1−→ (p1(m1), q1(n1))

a2−→

· · ·
az−→ (pz(mz), qz(nz)) is line-climbing if m0 < mz and

all (mi, ni), for i = 0, 1, 2, . . . , z, are in one line-bunch.

We do not require that (m0, n0) and (mz, nz) are in the
same line, and we might have nz ≤ n0; hence “line-climbing”
might be understood as a shorthand for “(left-to-right) line-
bunch climbing”.
We now sketch the ideas of a proof of Prop. 29; a cru-

cial part of the proof is captured by Prop. 28. Let us con-
sider a line-climbing eqlevel-decreasing (sub)path with the
start projected to P1 and the end projected to P2, which
is followed by a simple step leading out of the respective
line-bunch, namely to the black-diamond point in Fig. 9.
Our path in T (A)×T (A) can be also naturally viewed as a
path in T (B) for a doca B which is only polynomially big-
ger than A: a pair (p(m), q(n)) in T (A) × T (A) is viewed
as the configuration ((p, q, L),m) in T (B) where L is the
line containing (m,n) and the triple (p, q, L) is viewed as
a control state of B. By Observation 22(1), and Lemma 6
(with Fig. 2) applied to B, our path from P1 to P2 is either
short by Corollary 7, or can be assumed in a cyclic form, as
depicted in Fig. 9.
Cutting off the copies of the cycle gives rise to the se-

quence of white-diamond points (i.e., to the respective paths
in T (A) × T (A) starting in P1 and finishing in white-
diamond points); if the pair projected to the black diamond
is (p′(m′), q′(n′)) then the pairs projected to the white dia-
monds are of the form (p′(m′′), q′(n′′)) where m′′ < m′ and
n′′ < n′. Each pair has its associated tuple (b, ℓ, r, o, dL, dR)
(recall Fig. 6). By Observation 22(2), the values b for the
pairs corresponding to white-diamond points are bigger than
b for the pair corresponding to the black-diamond point. On
the other hand, the white-diamond sequence has a periodic
subsequence, with a short period, such that each pair in the
subsequence has min{b, ℓ, r, o} not bigger than min{b, ℓ, r, o}
of the black diamond. (This follows from Cor. 20 and
Prop. 17(2), 10(1).) We note that we can have ℓ = r < ω

only few times (by Prop. 25(2) and the fact that the white
diamonds are not in an IL-equality line). There are few
possible values o (by Prop. 10(2)), and we can thus have
ℓ = o < ω only for few p′(m′′) (by Prop. 17(1)); similarly we
can have r = o < ω only for few q′(n′′). Hence Corollary 20
implies that our subsequence is short, which in turn implies
that the sequence of white diamonds is short, and thus our
line-climbing eqlevel-decreasing path is short.
Fig. 9 also illustrates a similar path from P1 to P ′

2 which is
followed by another type of leaving the line-bunch, namely
by a one-side reset step to the black-box point. Cutting off
the copies of the cycle in the path would now give rise to
the sequence of white-box points. In fact, we always cut off
a small multiple of the cycle, to achieve that the white-box
pairs are of the form (p′(m′′), q′(0)) when the black-box pair
is (p′(m′), q′(0)). We can show that the white-box sequence
is short by a similar reasoning as above.
If the path reaches the zero eqlevel inside the line-bunch

or is followed by a both-side reset step then it is short (again
by using Observation 22 and cutting off the cycles).
The sequence of white-diamond (or white-box) points, fin-

ished by the black-diamond (or black-box) point, inspires the
following definition.

Definition 27. For p, q ∈ QSt, a sequence of pairs

(p(m0), q(n0)), (p(m1), q(n1)), . . . , (p(mz), q(nz))

where z ≥ 1 is strange periodic if the following conditions
hold:

1. (mi, ni) = (m0 + i · c1, n0 + i · c2) for some c1, c2 ∈ N

and i = 0, 1, . . . , z;

2. EqL(p(mi), q(ni)) > EqL(p(mz), q(nz)) for all i ∈
{0, 1, . . . , z−1} (hence c1 > 0 or c2 > 0);

3. the pairs (m0, n0), (m1, n1), . . . , (mz, nz) are not all in
one IL-equality line.

Prop. 25 implies that in any strange periodic sequence there
are only few pairs (p(mi), q(ni)) such that IL(p(mi)) =
IL(q(ni)) < ω. We have already sketched the proofs of the
following propositions.

Proposition 28. Strange periodic sequences are short.

Proposition 29. Eqlevel-decreasing line-climbing paths
are short.

3.9 Gaps inZE are small
Assuming a doca A, with the associated det-LTS Text(A),

by Def. 12 we have

ZE = {e ∈ N | there are two stable zero configurations

C,C′ in Text(A) s.t. C
e
←→ C′}.

We assumed 0 ∈ ZE and we fixed an ordering e0 < e1 <

· · · < ef of ZE. We finally aim to contradict the existence
of a large gap between ei = eD and ei+1 = eU for some i, 0 ≤
i < f (recall Fig. 4); this will finish a proof of Theorem 14.

We sketch the ideas of a proof of Lemma 30, using Fig. 10.
Let us consider an eqlevel-decreasing path in Text(A) ×
Text(A), which starts from a pair (C0, C

′
0) of stable zero con-

figurations satisfying EqL(C0, C
′
0) = eU ; let (Cj , C

′
j) be the

pair visited by our path after j steps. If both C0, C
′
0 are in

QMod (recall that QMod = {Mod(p(m)) | p ∈ QSt,m ≥ 0})
then also C1, C

′
1 are stable zero configurations (maybe in

T (A)), and thus eD = eU−1; the gap is really small in this
case. We thus further assume C0 6∈ QMod (hence C0 = p(0) is
in T (A)); this also handles the case C′

0 6∈ QMod by symmetry.
We are now not primarily interested in studying how the

concrete pairs (Cj , C
′
j) can look like; we are interested in

the tuples (bj , ℓj , rj , oj , d
L
j , d

R
j ) associated with (Cj , C

′
j) by

Def. 18 (recall Fig. 6). The dependence of this tuple on j is
partly sketched in Fig. 10.

Since our path is eqlevel-decreasing (the eqlevel drops by
1 in each step), we know that bj = eU − j, which is depicted
by a line (in the standard sense, having nothing to do with
IL-equality lines) starting in point (0, eU ) and having the
slope −1. (For a better overall appearence, the vertical unit
length in Fig. 10 is smaller than the horizontal one.)

Each oj is either ω or an element of ZE (of E3 after
Def. 12); in particular, oj ≥ eU or oj ≤ eD, which is de-
picted as a constraint in Fig. 10, using the horizontal lines
at levels eU and eD.

We now recall Prop. 16 and the fact that each finite
IL(q(0)) is in ZE (in E2 after Def. 12). Hence for each ℓj



Figure 10: Constraints on bj , ℓj , rj , oj after j steps of
an eqlevel-decreasing path with b0 = eU

we have either ℓj ≥ eU or ℓj ≤ eD + ρm · j + σm where ρm is
the maximal number appearing as ρ in the fixed equalities
IL(p(m)) = ρ · m + σ + e, and σm is the maximal number
appearing there as σ. (We use the fact that the counter
value is at most j in Cj , as well as in C′

j when C′
j is also in

T (A), since we started from zero configurations.) We recall
that both ρm and σm are small rational numbers. The above
constraints on ℓj are also depicted in Fig. 10, using the hor-
izontal line at level eU and the line starting in (0, eD+σm)
and having the slope ρm. The same constraints hold for rj .
We note that if the horizontal coordinate of the intersec-

tion of the “b-line” and the “ℓ, r-line” is small then eU − eD
is small. This is clear by noting that bj = eU−j ≤
eD + ρm · j + σm implies eU−eD ≤ (1+ρm) · j + σm.
Using Cor. 20 and a case analysis resembling the above

analysis related to the white-diamond points in Fig. 9, we
can show even something stronger: the maximal prefix of our
path in which bj (for j > 0) is“solitary”, i.e. bj 6∈ {ℓj , rj , oj},
is short. The analysis shows that in a long b-solitary prefix
we would “usually” have ℓj = rj < ω, which would entail a
long line-climbing segment; this would contradict Prop. 29.

Lemma 30. All gaps eU−eD in ZE are small.

Lemma 13 and 30 prove Theorem 14 and thus Theorem 2.
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