
Towards More Useful Description
Logics of Time, Change and Context

Vı́ctor Didier Gutiérrez Basulto

D I S S E R T A T I O N
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr. -Ing.)

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)
der Universität Bremen

November 2013

Datum des Promotionskolloquiums:
15.11.13

Gutachter:
Prof. Dr. Carsten Lutz, Universität Bremen
Prof. Dr. Michael Zakharyaschev, Birkbeck, University of London

To my parents

Acknowledgments

First and foremost, I would like to thank my supervisor and teacher Carsten Lutz for several
reasons. I am grateful to him for giving me the opportunity to join his group; undoubtedly,
without his vision and expertise this thesis would not be what it is today. More importantly, I
am grateful to him for making of me a ‘special forces’ pupil for this research-battle. I feel very
lucky that I have seen him in action looking vehemently for nothing else but perfection in his
research.

I also want to thank Michael Zakharyaschev for accepting to review my thesis; I feel honored of
having him as a reviewer.

There is no doubt that the every day discussions and the small and big things I learned in daily
basis are what made this thesis possible. It is because of this that I am greatly indebted to my
colleague-friends Jean Christoph Jung and Szymon Klarman. Jean, thanks for never growing too
annoyed with my sloppiness and for helping me so many times to bring to life the ideas living
in my head. Szymon, thanks for that first paper together; it was my first one. More importantly,
thanks for always being willing to start new research adventures with me. Jean, Szymon, I feel
very lucky of having you as my co-authors and friends; without you my life as PhD student, and
this thesis would not have been the same.

I would like to thank all the TDKIers for being the best colleagues one could ask for. I par-
ticularly thank you for all that time after the working hours; you made of my time in Bremen
something special. I want to specially thank Thomas Schneider for several reasons. First, for
finding the time to read some parts of my thesis, and giving me very useful feedback. More
importantly, thanks for always being sincerely interested in my research, and for helping me
disinterestedly in so many ways.

I am incommensurably grateful with my parents for all their love and for being simply the best
parents of the world. With my brother, for being such an important part of my life; thanks for all
those frenetic life-adventures. Family, thanks for your unconditional love and for being there in
the difficult times.

Yazmı́n, I have no words to describe how thankful I am with you. I am grateful with you for so,
so, so many things. I can only say that my time in Germany with you is by far the best time of
my life. Thanks for being always so supportive and for believing in my work like nobody else
does.

Abstract

Description Logics (DLs) are a family of logic-based formalisms for the representation of and
reasoning about knowledge. Classical DLs are fragments of first-order logic and therefore aim
at capturing static knowledge. Alas, the lack of means of DLs to capture dynamic aspects of
knowledge has been often criticized because many important DL applications depend on this
kind of knowledge. As a reaction to this shortcoming of DLs, two-dimensional extensions of
DLs with capabilities to represent and reason about dynamic knowledge were introduced.

Two-dimesional DLs are constructed by combining DLs with well-known logic-based formalisms
(e.g., modal logics) in the style of multi-dimensional modal logics, that is, we apply modal-like
operators to different pieces of DL syntax. Clearly, two-dimensional DLs can model different
dynamic aspects of knowledge depending on whether the modal-like operators are temporal,
epistemic, etc. Notably, several two-dimensional DLs with different expressive power and dif-
ferent computational properties can be designed depending on the level of interaction between
the component logics, e.g., depending on which pieces of DL syntax are enriched with modal-
like operators.

In this thesis, we further the understanding and utility of two-dimensional DLs. We particularly
focus on identifying two-dimensional DLs providing the right expressive power to model more
accurately temporal and contextual aspects of knowledge required by certain DL applications,
or providing better computational properties than other possible alternatives. With this in mind,
we pursue three lines of research:

1. we study branching-time temporal DLs that emerge from the combination of classical DLs
with the classical temporal logics CTL∗ and CTL;

2. we study description logics of change that emerge from the combination of classical DLs
with the modal logic S5;

3. we study description logics of context that emerge from the combination of classical DLs
with multi-modal logics.

We particularly investigate temporal and contextual DLs based on the classical DL ALC and
on members of the EL-family of DLs. We moreover consider different levels of interaction
between the component logics. Our main technical contributions are algorithms for satisfiability
and subsumption, and (mostly) tight complexity bounds.

Zusammenfassung

Beschreibungslogiken (description logics, DLs) sind eine Familie logikbasierter Formalismen,
mit deren Hilfe man Wissen repräsentieren und Schlussfolgerungen daraus ziehen kann. Klassi-
sche DLs sind Fragmente von Prädikatenlogik und zielen vor allem darauf ab, statisches Wissen
zu modellieren. Die Tatsache, dass man mit DLs schlecht dynamische Aspekte von Wissen erfas-
sen kann, wurde oft kritisiert, weil viele wichtige Anwendungen von DLs auf diese Art von Wis-
sen angewiesen sind. Als eine Reaktion auf diesen Mangel von DLs wurden zweidimensionale
Erweiterungen von DLs eingeführt, mit deren Hilfe man dynamisches Wissen repräsentieren
und Schlussfolgerungen daraus ziehen kann.

Zweidimensionale DLs werden konstruiert, indem man DLs mit bekannten logikbasierten For-
malismen (z. B. Modallogik) im Stile von mehrdimensionalen Modallogiken kombiniert. Das
heißt, man wendet modale Operatoren auf verschiedene Teile der DL-Syntax an. Offenkun-
dig können zweidimensionale DLs diverse dynamische Aspekte von Wissen modellieren, in
Abhängigkeit davon, ob die modalen Operatoren temporal, epistemisch etc. aufgefasst wer-
den. Insbesondere kann man verschiedene zweidimensionale DLs mit unterschiedlicher Aus-
drucksstärke und unterschiedlichen Berechenbarkeitseigenschaften entwerfen, je nach angestreb-
tem Ausmaß der Interaktion zwischen den einzelnen Logikbestandteilen, z. B. indem man fest-
legt, welche Teile der DL-Syntax durch modale Operatoren erweitert werden.

Mit dieser Doktorarbeit bringen wir das Verständnis und die Benutzbarkeit zweidimensionaler
DLs voran. Wir richten unsere Aufmerksamkeit vor allem darauf, zweidimensionale DLs zu
identifizieren, die zum einen die richtige Ausdrucksstärke bieten um für bestimmte Anwendun-
gen relevante temporale und kontextuelle Aspekte von Wissen zu modellieren, oder die anderer-
seits bessere Berechenbarkeitseigenschaften haben als mögliche Alternativen. Um dieses Ziel
zu erreichen, verfolgen wir drei Forschungsstränge:

1. Wir untersuchen temporale DLs mit verzweigender Zeitfolge, die man durch Kombination
klassischer DLs mit den klassischen Temporallogiken CTL∗ und CTL erhält.

2. Wir untersuchen DLs zum Beschreiben von Veränderungen, die man durch Kombinatio-
nen klassischer DLs mit der Modallogik S5 erhält.

3. Wir untersuchen kontextuelle DLs, die man durch Kombination klassischer DLs mit mul-
timodalen Logiken erhält.

Wir untersuchen insbesondere temporale und kontextuelle DLs, die auf der klassischen DLALC
und den DLs in der EL-Familie beruhen. Dabei betrachten wir verschiedene Ausmaße von
Interaktion zwischen den Logikbestandteilen. Unsere fachlichen Hauptbeiträge sind Algorith-
men für die Erfüllbarkeits- und Subsumptionsprobleme sowie (überwiegend scharfe) Komple-
xitätsschranken.

Contents

1 Introduction 1
1.1 Objectives and Motivation . 4
1.2 Related Work . 6
1.3 Results . 8
1.4 Structure of the Thesis . 10
1.5 Summary of Publications . 11

2 Preliminaries 13
2.1 Description Logics . 13
2.2 Branching Temporal Logics . 17

3 Branching Temporal Description Logics 21
3.1 Introduction . 21
3.2 Introducing Branching Temporal Description Logics 24

3.2.1 Syntax and Semantics . 24
3.3 Reasoning in CTL∗ALC and CTLALC . 26

3.3.1 Algorithms for Concept Satisfiability w.r.t. TBoxes for CTL∗ALC and
CTLALC . 27

3.4 Reasoning in Fragments of CTLEL . 41
3.4.1 A tractable Fragment of CTLEL . 42
3.4.2 Intractable Fragments of CTLEL . 46

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes 53
3.5.1 Syntax and Semantics . 53
3.5.2 An Algorithm for Temporal TBox Satisfiability for CTL∗ALC and CTLALC 56
3.5.3 A 2EXPTIME Lower Bound for Temporal TBox Satisfiability for CTLALC 67

3.6 Conclusions . 74

4 Description Logics of Change 77
4.1 Introduction . 77
4.2 Introducing Description Logics of Change . 79

4.2.1 Syntax and Semantics . 79
4.3 Reasoning in S5ALCO without Temporal Roles 81
4.4 Reasoning in S5EL and S5ELI with Temporal Roles 85

4.4.1 An Algorithm for Concept Subsumption w.r.t. TBoxes for S5EL with
Temporal Roles . 86

vii

Contents

4.4.2 A 2EXPTIME Lower Bound for Concept Subsumption w.r.t. TBoxes for
S5ELI with Temporal Roles . 97

4.5 Conclusions . 102

5 Description Logics of Context 105
5.1 Introduction . 105
5.2 Towards the Design of Description Logics of Context 107
5.3 Introducing Simple Description Logics of Context 111

5.3.1 Syntax and Semantics . 111
5.4 Reasoning in Simple Description Logics of Context 113

5.4.1 An Algorithm for Concept Satisfiability w.r.t. TBoxes for (Kn)ALC . . 114
5.4.2 A 2EXPTIME Lower Bound for Concept Satisfiability w.r.t. TBoxes for

(DAltn)ALC . 118
5.5 Introducing Expressive Description Logics of Context 124

5.5.1 Syntax and semantics . 125
5.6 Simple vs Expressive Description Logics of Context 127
5.7 Reasoning in Expressive Description Logics of Context 128

5.7.1 An Algorithm for KB Satisfiability for CALCOALCO 129
5.8 Reasoning in Description Logics of Context with only F2 Operators 136
5.9 Application Scenarios . 145

5.9.1 Divide-and-conquer . 146
5.9.2 Compose-and-conquer . 147

5.10 Conclusions . 149

6 Conclusions 151

viii

1
Introduction

Since the 1960’s the area of knowledge representation and reasoning (KR) has played a key
role in the development of artificial-intelligence systems that provide methods to adequately
represent knowledge of a domain, and reasoning services to infer new knowledge from that
stored in the system. One of the main challenges faced in KR research is the identification
of adequate formalisms in the sense that they provide sufficient expressive power to faithfully
capture the main aspects of an application domain while still permitting to efficiently infer, by
means of automated reasoning services, new knowledge. Among the different approaches to KR,
logic-based ones are probably the most popular since they provide systems with a precise syntax
and semantics. In this thesis, we investigate description logics (DLs): a prominent logic-based
family of KR formalisms that offer enough expressive power for many application scenarios
and at the same time efficient reasoning services. Notably, most DLs are close relatives of
modal logics and therefore well-behaved fragments of first-order logic (FO); it is because of
this relation with FO that DLs are well-suited to represent and reason about static knowledge.
Alas, DLs are incapable to capture dynamic aspects of knowledge. The main objective of this
thesis is to deepen the study of extensions of DLs that emerge from the combination of DLs with
well-known logic-based formalisms in a multi-dimensional fashion allowing to capture various
dynamic aspects of knowledge, such as time- or context-dependence of knowledge.

Description Logics

Description Logics (DLs) are a well-known family of knowledge representation formalisms used
to structure and formally describe the terminology of an application domain [14]. Historically,
DLs evolved from KR formalisms emerged in cognitive science, such as sematic networks [69]
or frames [61]. These formalisms provide a well-defined way of representing knowledge by
means of directed graphs or structured objects. However, they lack a formal semantics. As a

1

1 Introduction

consequence, the meaning associated to these graphs or structures depends on the implementa-
tion of the reasoning system. In order to overcome this drawback DLs were introduced in the
1980’s as KR languages with a formal semantics.

The basic components of DLs are concepts (unary predicates) and roles (binary predicates).
Naturally, which type of concepts and roles we can build depends on the constructors allowed by
a particular DL language. For example, the classical DL ALC [71] offers the standard Boolean
operators‘t’ (or), ‘u’ (and) and ‘¬’ (not), and existential ‘∃’ and universal ‘∀’ restrictions. Using
these constructors we can build, for example, the following concept modeling the term father
from the family domain.

Human uMale u ∃hasChild.Human

As one would naturally expect, different applications of DLs require languages with differ-
ent expressive power and efficiency of the reasoning tasks. With this in mind, expressive DL
languages for which reasoning is hard but decidable and lightweight languages allowing for
efficient reasoning while still providing enough expressive power for several applications have
been introduced. In expressive languages, concepts and roles are built using not only ALC-
constructors but also using additional role and concept constructors such as inverse roles, tran-
sitive roles, number restrictions, etc. For example, for the role hasChild, we can use its inverse
role hasChild− to model the relation ‘is Child of ’. Among efficient DLs we find the tractable
EL, a sub-Boolean fragment of ALC allowing only for ‘(>)’ (top), ‘u’ and ‘∃’. Note that the
above concept modeling the term father is an EL-concept.

Description logics use a knowledge base (KB) or ontology to capture the background termino-
logical knowledge about the nomenclature of the domain, and the assertional knowledge about
concrete elements of the domain. The terminological knowledge of a KB is contained in a ter-
minological box (TBox) stating the relation between concepts. Formally, a TBox is a finite set of
axioms of the form C v D; for example, we can state that all professors have a PhD using the
axiom Professor v ∃hasDegree.PhD. The assertional knowledge is contained in an assertional
box (ABox) capturing information about the concepts and roles that concrete individuals belong
to. More precisely, an ABox is a finite set of axioms of the form C(a) and r(a, b); for example,
we can state that Mary is a Human using the axiom Human(Mary), or we can state that Mary
has a pet named Sparky using the axiom hasPet(Mary,Sparky).

A DL system not only allows to store information in a KB about a domain, but it further permits
to infer implicit consequences from the information stored in the KB. Description logics, dif-
ferently from their predecessors, have a formal semantics given in terms of interpretations over
a domain, which via an interpretation function ·I assigns subsets of individuals of the domain
to concepts and binary relations over the domain to roles. More precisely, an interpretation I
is a pair (∆I , ·I) where ∆I is a domain and an interpretation function. A wide range of infer-
ence problems have been considered, central to this thesis are the following classical reasoning
services:

– satisfiability of a concept w.r.t. a TBox: given a concept C and a TBox T , decide whether
C can have an instance in a model of T . Intuitively, an interpretation I is a model of a
TBox if it satisfies all axioms of the TBox.

2

– KB satisfiability: decide whether a KB can have a model, that is, whether there is an
interpretation satisfying all the axioms of the KB.

– subsumption of concepts w.r.t. a TBox: given conceptsC,D and a TBox T , decide whether
every instance of C is also an instance of D in every model of T .

These problems play a key role towards the process of ontology development and design. For
example, the subsumption problem can be used to induce from an ontology a concept-hierarchy
which can be used by an ontology developer to make the structure of knowledge explicit. On
the other hand, the concept satisfiability problem helps an ontology designer to check whether a
concept makes sense in terms of an ontology.

Description logics have been successfully used in various areas of computer science, such as the
semantic web [20] where DLs serve as the basis of the Web Ontology Language OWL, recom-
mended by the W3C (World Wide Web Consortium) [66, 50, 16]; or in bioinformatics where DL
languages are used to represent medical ontologies such as SNOMED CT [75] or the GeneOntol-
ogy [1]. Despite the successful application of DLs in these areas, it has been recognized that a
major limitation of DLs is that, as fragments of first-order logic, they are only well-suited for the
representation of and reasoning about static knowledge, that is, they lack any means to capture
dynamic aspects of knowledge like time- or action-dependence of knowledge. In particular, this
limitation has become an important drawback for many relevant applications depending on this
type of knowledge. For example, many terms in the medical domain are defined with reference
to time such as the term “concussion with no loss of consciousness” found in SNOMED CT,
which refers to a concussion after which the patient has remained conscious until the time of
examination (indicating that the concussion is only mild) [72].

To tackle this shortcoming in the 1990s two-dimensional extensions of DLs designed to cap-
ture various dynamic aspects of knowledge were proposed [38, Chapter 3.8]. Two-dimensional
DLs are constructed by combining DLs with modal logics [21] in the style of multi-dimensional
modal logics [38], that is, they are constructed by applying modal operators 3i,2i to different
pieces of DL syntax: roles, concepts or axioms. The semantics of two-dimensional DLs is given
in terms of two-dimensional interpretations I = (∆,W, {Iw}w∈W) composed by a set of possi-
ble worlds (states, time points) W , such that each world w ∈ W has associated a DL-model Iw
with domain ∆ representing the current state of knowledge. Naturally, the model associated to
each world might change from one world to another, representing the change through time, the
application of actions, etc. As an example, the concept 3iC describes the class of individuals
that are instances of C in some possible world accessible from the current one via the accessibil-
ity relation associated to 3i. Clearly, we can model different intensional aspects of knowledge
depending on whether the operators are temporal, dynamic, epistemic or some other modal-like
operators.

Due to the way two-dimensional DLs are constructed, they are also referred to as modal de-
scription logics. We refer to concepts of the form 3iC and 2iC as modalized concepts and
to roles of the form 3ir and 2ir as modalized roles. Besides the type of modal-like operators
used to construct modal DLs, there are some other degrees of freedom in the design of these
logics: for example, two-dimensional interpretations I introduced above make the so-called
constant domain assumption, that is, all Iw share the same domain ∆. One could also assume

3

1 Introduction

varying domains by associating with each Iw a domain ∆w, or expanding domains by requir-
ing that ∆w ⊆ ∆w′ if w′ is accessible from w through the accessibility relation associated to
some 3i. Throughout this thesis, we use constant domains since for most of the considered
two-dimensional DLs this is the most general option in the sense that varying and expanding
domains can be simulated [38]. Further design choices in the definition of the semantics of two-
dimensional DLs include the definition of different DL components, such as roles or concepts,
as rigid, meaning that they do not vary their interpretation across the possible worlds. A DL
symbol α is rigid in an interpretation I if αI,w = αI,w′ for all w,w′ ∈W ; otherwise, α is local.
Moreover, we can also assume a TBox to be global in the sense that it has to be satisfied in every
possible world.

For a general discussion on multi-dimensional DLs, please consult the following works by
Wolter and Zakharyaschev [83, 82], and the book Many-Dimensional Modal Logics: Theory
and Applications [38] by Gabbay et al.

1.1 Objectives and Motivation

Due to the crucial need of many applications to model various dynamic aspects of knowledge;
for example, to model temporal aspects present in medical ontologies [15] or to capture temporal
data models [8], many efforts have been devoted to the investigation of several multi-dimensional
DLs. In particular, the flexibility on the design of multi-dimensional DLs has led to the construc-
tion of several logics with different expressive power and different computational properties.
Naturally, the type of modal-like operators used in the construction of multi-dimensional DLs
varies depending on the dynamic aspect to be modeled. The objective of this thesis is further the
understanding and utility of several forms of dynamic DLs. We particularly focus on identifying
two-dimensional description logics providing the right expressive power to model more accu-
rately temporal and contextual aspects of knowledge required by certain ontology applications,
or offering better computational properties than other possible alternatives.
In philosophy and computer science different notions of time have been considered. Often a
distinction between a branching and a linear notion of time has been made: intuitively, under
the linear-time notion there exists a unique possible future while under the branching-time one
many possible futures are allowed. Not surprisingly, the research on temporal DLs (TDLs),
following this dichotomy, has considered linear-time and branching-time temporal description
logics [58]. However, in contrast to some other areas of computer science such as specification
and verification, the investigation of the computational properties of branching-time TDLs has
been nearly disregarded. This comes as a surprise since in many applications terms refer to the
existence of many possible futures: think, for example, that we are trying to model the term
European candidate, which refers to ‘a European country that in the future might join the EU’;
assuming a linear notion of time we can only express that a European candidate will eventually
become part of the EU, excluding thus the possibility of a European candidate never joining
the EU. On the other hand, under a branching notion of time a more accurate representation
is obtained by stating that there is a possible future in which a European candidate eventually
joins the EU, leaving open the possibility of other futures. Motivated then by the fact that
in some applications we indeed need to refer to a branching notion of time, we investigate

4

1.1 Objectives and Motivation

the computational complexity of various branching-time TDLs based on the branching-time
temporal logics CTL and CTL∗, introduced for specification and verification purposes by Clarke
and Emerson [32], and Emerson and Halpern [34], respectively.

Another important challenge towards the design of more useful TDLs is the identification of
TDLs with polytime reasoning. To this end, one can consider TDLs based on the tractable DL
EL. Notably, these TDLs can be used as a natural extension of EL for capturing temporal aspects
occurring in medical ontologies such as the EL-based SNOMED CT. Unfortunately, TDLs based
on the linear-time temporal logic LTL and EL seem to be unsuitable to attain polytime reasoning.
The reason is that to achieve polynomial time reasoning, the expressive power of the (T)DL
under consideration has to be restricted such that no (explicit or implicit) disjunction remains
in the language. Alas, disjunction is inherent in linear time as 3X u 3Y implies that one of
3(X u 3Y), 3(Y u 3X) and 3(X u Y) is true, where 3X reads as eventually in the future X
holds. A starting point to construct tractable branching-time TDLs is to consider TDLs based
on EL in which universal path quantification has been dropped, which in principle avoids the
implicit disjunctions above.
Continuing with the design of well-behaved TDLs, we consider TDLs with a weaker temporal
dimension based on the modal logic S5 instead of the branching-time temporal logics CTL and
CTL∗. These TDLs provide a weaker temporal dimension in the sense that they allow to reason
about the changes of knowledge over time without differentiating between the changes in the
past or future, that is, there is no ‘directionality’ in time . For example, we can express that ‘ev-
ery child evolves to an adult’, that is, all the instances of Child in the current world are instances
of Adult in some possible world. Interestingly, having a weaker temporal dimension allows to
design well-behaved TDLs with higher interaction between their component logics, that is, we
can apply temporal operators to more pieces of DL-syntax than in branching-time TDLs. In par-
ticular, in contrast to TDLs based on traditional linear-time and branching-time temporal logics,
one can construct effective TDLs based on S5 and expressive DLs in the presence of tempo-
ral roles. This will allow us to model, for example, the term accidental death which refers to ‘a
death that has as a possible cause an accident’ with the concept Death u ∃3hasCause.Accident
describing the class of individuals that are instances of Death in the current world and that in
some possible world are related via hasCause to an individual in the extension of Accident.

In 2009, Hendler and Berners-Lee [45] outlined some of the challenges towards the development
of a new generation of more useful Web applications; specially, they pointed out the key role of
the semantic web in the emergence of these technologies. Hendler and Berners-Lee particularly
argued that the design of logic-based mechanisms to specify contexts is vital to properly reuse
and integrate knowledge in an open and distributed environment like the Web. In other words,
these KR mechanisms must be able to represent and take into account while reasoning the meta-
information describing the situation under which a certain piece of knowledge is valid. With
this in mind, different semantic web formalisms to capture contexts have been proposed [17,
73, 26]. However, up to now, none of them provides the semantic web with a generic and
formal framework to treat contextualized knowledge. Motivated by this fact, we investigate the
adequacy of two-dimensional DLs to capture contextual aspects of knowledge. In particular,
we design two-dimensional DLs importing the well-known McCarthy’s theory of formalizing
contexts. We provide thus the semantic web with a formal and generic approach to specify

5

1 Introduction

contexts.

1.2 Related Work

Temporal Description Logics Since the appearance, in the early 90’s, of the first research
on temporal DLs, a lot of investigations have been conducted. One prominent approach to
TDLs is to combine classical DLs with the standard temporal logics LTL, CTL or CTL∗ in the
style of multi-dimensional modal logics. In particular, special efforts have been devoted to the
investigation of TDLs based on LTL, so that now a fairly clear landscape of the computational
complexity has emerged and several algorithmic approaches have been presented. Naturally,
depending on the chosen DL and on the level of interaction between LTL and the DL component,
these combinations have different expressive power and different computational properties. We
next highlight some relevant results; please see the survey by Lutz et al. [58] for a detailed
discussion. The research on linear-time TDLs began by considering combinations based on
the classical DL ALC. The two most basic results [58] are: first, an EXPTIME Pratt-style
type elimination algorithm for satisfiability in LTLALC in the case where temporal operators
are applied to concepts and a global TBox is considered. In particular, this result shows that
reasoning can be reduced to the component logics. Second, a reduction of the N×N-tiling
problem showing that if we also allow for rigid roles satisfiability becomes undecidable. The
case where temporal operators are applied not only to concepts but also to concept inclusions
(no rigid or temporal roles allowed) has been also considered: Wolter et al. [46, 38] presented a
tight EXPSPACE algorithm for satisfiability based on the notion of quasimodels [38].

An orthogonal way of constructing linear-time TDLs is to disallow temporal concepts while per-
mitting temporal axioms, more precisely, these logics are obtained by applying temporal opera-
tors to TBoxes and ABoxes, and additionally rigid roles or rigid concepts are allowed. Following
this direction, Baader et al. [15] proved that KB satisfiability in LTLALC is 2EXPTIME-complete
in the case where both rigid concepts and rigid roles are available. It is important to note that
without temporal concepts it becomes impossible to enforce the matching conditions of adjacent
tiles and then to properly encode a N×N-tiling. They further showed that if only rigid concepts
(but no rigid roles) are available then satisfiability becomes NEXPTIME-complete. This shows
that to some extent the reasoning can be reduced to the component logics by an adequate man-
agement of rigid concepts, that is, a set of rigid concepts satisfied in a temporal model needs to
be guessed. Finally, another prominent result is that if the only operators allowed are 3 and 2,
and both rigid concepts and rigid roles are available, KB satisfiability then becomes EXPTIME-
complete.

From the investigations previously discussed, one can observe that these combinations become
undecidable as soon as temporal concepts and rigid (or temporal) roles are allowed. In the view
of this, TDLs based on LTL and lightweight DLs of the EL- and DL-Lite-family [4] have been
investigated. Note that the rather weak expressiveness of the DL component could in principle
lead to the construction of effective TDLs allowing for rigid roles or temporal roles. Recall that
some members of these families allow for tractable reasoning. Alas, for combinations based
on EL the result is a negative one [7]: subsumption in LTLEL is undecidable in the case where
temporal operators (with only the 3 operator is enough) are applied to concepts, and rigid roles

6

1.2 Related Work

and a global TBox are considered. The main reason of this result is that this logic is non-convex,
that is, disjunctive knowledge is reintroduce through the temporal operators. In particular, it has
been shown that non-convex extensions of EL are as complex as the ALC variant. On the other
hand, if members of the DL-Lite family are considered this type of combination turns out to
be decidable [7]. Remarkably, KB satisfiability in LTL-DL-LiteNbool is EXPSPACE-complete in
the case where temporal operators are applied to concepts, TBoxes and ABoxes, and rigid roles
are available. After decidability was established, Artale el al. [8] made further efforts towards
the identification of well-behaved variants. In particular, they demonstrated that by considering
global TBoxes and a controlled version of temporal ABox axioms instead of temporal TBoxes
and ABoxes, satisfiability of LTL-DL-LiteNbool KBs goes down from EXPSPACE-complete to
PSPACE-complete.

For combinations based on the branching-time logics CTL and CTL∗ only few investigations
have been conducted, mainly establishing decidability boundaries. Remarkably, Hodkinson
et al. [48] showed in the context of monodic temporal first-order logic that TDLs based on
CTL are typically decidable whereas TDLs based on CTL∗ have to be appropriately restricted in
order to attain decidability. As a consequence of the investigation by Hodkinson et al. [48], we
have that TDLs based on CTL and CTL∗ allowing for rigid or temporal roles are most probably
undecidable. The work by Hodkinson et al. [48] provides only non-elementary upper complexity
bounds leaving open then the establishment of tight complexity bounds.

Description Logics of Change Description logics of change are well-behaved temporal DLs
characterized by admitting effective reasoning in the presence of temporal roles. DLs of change
are constructed by combining classical DLs with the modal logic S5 and support reasoning
about changes of knowledge without differentiating between changes in the past or the future.
The rather weak expressiveness of the temporal component (compared with that of traditional
temporal logics) allows to construct effective DLs of change based on expressive DLs that allow
the application of temporal operators to roles and concepts. In this direction, Artale et al. [10]
presented a 2EXPTIME type-based algorithm for satisfiability in S5ALCQI in the case where
temporal operators are applied to concepts and roles, and a global TBox is considered. More-
over, they show that 2EXPTIME hardness already holds when ALC is considered instead of
ALCQI. Notably, it has been shown [10, 11] that S5ALCQI captures a considerable fragment
of temporal entity-relationship models used to design temporal databases. In another research
effort, DLs of change based on the lightweight DL EL have been investigated. Remarkably, a
tractable DL of change has been identified and therefore shown to be easier than itsALC variant.
Specifically, Lutz et al. [57] provided a PTIME completion algorithm for concept subsumption
in S5EL in the case where temporal operators are applied only to concepts and a global TBox
is considered. Note that for the ALC variant an EXPTIME lower bound is inherited from ALC.
Another important result from this investigation by Lutz et al. is a PSPACE lower bound for con-
cept subsumption in S5EL in the case where temporal operators are applied not only to concepts
but also to roles.

One of the contributions of this thesis is the design of two-dimensional DLs enabling to model
contextual aspects of knowledge. To the best of our knowledge, this is the first attempt to use
multi-dimensional DLs to reason about contextualized knowledge. We next discuss some of the

7

1 Introduction

works on contexts in AI.

Contexts in Artificial Intelligence (AI) In AI many attempts have been made towards the
development of adequate mechanisms to reason about contextualized knowledge, that is, estab-
lishing the validity of certain knowledge taking into account the context in which this knowledge
was generated, see [2] for a survey. An inherent problem of contextualization is what to con-
sider as context, or how to define a context. Intuitively, a context has been understood as the
relevant (meta) information describing the situation in which certain knowledge is valid. As one
can note the intuitive notion of context is very vague, and it might vary from one application to
another. An important theory of formalizing contexts is that of McCarthy’s (discussed in length
in Section 5.2), characterized by providing a generic (application-free) definition of context: a
context is a formal object c use in assertions of the form ist(c, ϕ), stating that the formula ϕ is
true in the context c. This theory is therefore not interested in an exact definition of context but
rather in defining how to use it as a first-class citizen in knowledge-based systems.

McCarthy’s theory has been translated into a number of logic systems [30, 28, 64] based on
modal logics such as Kn,DAltn,Altn or Dn. For instance, in the propositional logic of con-
text [30] an assertion ist(c, ϕ) can be restated as a modal formula 2cϕ, where the behavior of 2c
is suitably axiomatized in order to capture possibly many context-based operations, e.g., enter-
ing and exiting contexts, lifting knowledge from one context to another, etc. Another dominant
tradition in the field originates from the paradigm of multi-context logics (MCLs), introduced by
Giunchiglia et al. [40, 39], where the main objective is to provide mechanisms of bridging mul-
tiple local representations. These two perspectives on operationalizing contexts in knowledge
systems can be further linked to two areas of research within the field of DLs: two-dimensional
DLs and logic-based ontology integration. Two-dimensional DLs can be thought as formalisms
capturing the dependency of knowledge in some ‘built-in’ context-states, such as time points.
The area of logic-based ontology integration focuses on the problem of integrating knowledge
contained in multiple, independent sources (DL-based ontologies). Among many existing so-
lutions there are Package-based DLs [18], Distributed DLs [24], E-Connections [55], semantic
imports [67], and others. Each offers a formal mechanism of relating the vocabularies belonging
to different sources by means of certain semantic relations for linking models of the respective
ontologies.

Finally, we acknowledge the substantial work by Homola and Serafini [73] in the DL paradigm,
proposing the framework of Contextualized Knowledge Repositories. In particular, their pro-
posal incorporates the following features: DL-based representation of object knowledge, con-
texts as formal objects, a mechanism of knowledge integration, meta-level descriptions of con-
texts.

1.3 Results

In this thesis, we focus on the study of two-dimensional DLs modeling branching-time temporal,
evolutionary and contextual aspects of knowledge. In particular, we study the impact of varying
the DL component and the degree of interaction between the component logics on the compu-
tational complexity. The prime contributions are algorithms for satisfiability and subsumption,

8

1.3 Results

and tight complexity bounds. Specifically, we identify the following as our prime technical
contributions.

TEMPORAL DESCRIPTION LOGICS:

– A uniform approach based on a combination of Pratt-style type elimination and methods
based on non-deterministic automata over infinite trees for satisfiability for CTLALC and
CTL∗ALC in the case where temporal operators are applied to concepts and a global TBox
is considered.

– A uniform approach based on a combination of nondeterministic automata and two-way
alternating over infinite trees for satisfiability for CTLALC and CTL∗ALC in the case where
temporal operators are applied to concepts and to concept inclusions.

– A fairly complete landscape of the computational complexity of fragments of CTLEL
in the case where temporal operators are applied only to concepts and a global TBox is
considered. Notably, a tractable fragment based on the temporal operator E3 is identified.

– Mostly tight elementary complexity bounds that range from PTIME to 2EXPTIME and
3EXPTIME.

DESCRIPTION LOGICS OF CHANGE

– A NEXPTIME lower bound for satisfiability in S5ALCO in the case where modalities are
applied to concepts and a global TBox is considered. We show this by a reduction of the
2n×2n-tiling problem.

– A PSPACE completion algorithm for subsumption in S5EL in the case where modalities
are applied to concepts and roles, and a global TBox is considered.

– A 2EXPTIME lower bound for subsumption in S5ELI in the case where modalities are
applied to concepts and roles, and a global TBox is considered. We demonstrate this by a
reduction of the word problem of exponentially space bounded Turing machines.

– Tight complexity bounds that range from PSPACE to NEXPTIME and 2EXPTIME.

DESCRIPTION LOGICS OF CONTEXT

– A stepwise integration of McCarthy’s theory of contexts into the DL paradigm through
two-dimensional DLs.

– First, we consider the modal DLs (Kn)ALC , (DAltn)ALC , (Altn)ALC , (Dn)ALC in the
case where modalities are applied to concepts and a global TBox is considered. For these
logics we demonstrate a 2EXPTIME lower bound for satisfiability by a reduction of the
word problem of exponentially space bounded Turing machines.

– A 2EXPTIME algorithm based on a variant of quasistate elimination techniques for satis-
fiability in (Kn)ALC , (DAltn)ALC , (Altn)ALC , (Dn)ALC .

9

1 Introduction

– Second, we introduce of a two-dimensional two-sorted family of DLs implementing full
McCarthy’s postulates into the DL paradigm.

– We provide tight complexity bounds for these expressive variants ranging from NEXP-
TIME to 2EXPTIME.

1.4 Structure of the Thesis

Apart from the preliminaries and the conclusions, this thesis contains three main chapters with
the results of our investigation on two-dimensional branching-time temporal description logics
(CHAPTER 3), description logics of change (CHAPTER 4), and description logics of context
(CHAPTER 5).

– CHAPTER 2. We introduce basic notions and results in DLs and branching-time temporal
logics. In particular, we present the syntax and semantics of these logics and further
discuss the complexity of their reasoning problems.

– CHAPTER 3. We investigate two-dimensional DLs for representing and reasoning about
temporal aspects of knowledge. Branching temporal DLs are constructed by combining
the temporal logics CTL and CTL∗ with classical DLs in the style of multi-dimensional
DLs. We concentrate on the study of the computational complexity of combinations,
based on the classical DLsALC and EL. First, we present algorithms for satisfiability for
CTLALC and CTL∗ALC in the case where temporal operators are applied only to concepts
and a global TBox is considered, yielding tight EXPTIME and 2EXPTIME upper bounds.
Later, we continue our research on temporal concepts by considering fragments of CTLEL:
we identify a tractable fragment based on the temporal operator E3, and further show that
most of the other fragments are hard for PSPACE and EXPTIME. Finally, we reconsider
CTLALC and CTL∗ALC , now in the case where temporal operators are applied to concepts
and concept inclusions. We obtain 2EXPTIME and 3EXPTIME upper bounds for CTLALC
temporal TBoxes and CTL∗ALC temporal TBoxes, respectively. For CTLALC temporal
TBoxes we prove a matching 2EXPTIME lower bound.

– CHAPTER 4. We investigate two-dimensional DLs for representing and reasoning about
changes of knowledge. DLs of change are constructed by combining the modal logic S5
with classical DLs in the style of multi-dimensional DLs. We concentrate on the study
of the computational complexity of combinations based on the classical DLs ALCO, EL
and ELI. First, we consider S5ALCO in the case where S5-modalities are applied only
to concepts and a global TBox is considered. We show that satisfiability for this logic
is NEXPTIME-complete. Later, we investigate S5EL in the case where S5-modalities
are applied not only to concepts but also to roles, and a global TBox is considered. We
develop a completion algorithm for subsumption, yielding a PSPACE tight upper bound.
Finally, we demonstrate that for S5ELI subsumption becomes 2EXPTIME-hard.

– CHAPTER 5. We investigate two-dimensional DLs for representing and reasoning about
contextualized knowledge. We begin by discussing the use of two-dimensional DLs to

10

1.5 Summary of Publications

faithfully import McCarthy’s theory of contexts into the DL paradigm. Our investigation
of DLs of context is two-fold: first, we investigate DLs of context constructed by combin-
ing the multi-modal logics Kn,DAltn,Altn,Dn with the classical DLALC in the style
multi-dimensional DLs. We concentrate on the study of the computational complexity of
combinations where modal operators are applied only to concepts and a global TBox is
considered. We demonstrate that satisfiability for these logics is 2EXPTIME-complete.
Second, we construct expressive DLs of context importing all McCarthy’s postulates into
the DL paradigm. In particular, these logics contain two interacting DL languages for
explicitly modeling both the (contextualized) object-level knowledge and the meta-level,
describing properties of contexts. Notably, we show that reasoning in these expressive lan-
guages is also 2EXPTIME-complete. We moreover show the relation between the modal
DLs discussed above and these expressive DLs of context. Finally, we discuss the applica-
bility of DLs of context to diverse problems, such as modeling inherently contextualized
knowledge and expressing interoperability constraints over DL ontologies.

1.5 Summary of Publications

Most of the content of this thesis (discussed in CHAPTERS 3-5) has been presented in the fol-
lowing journal, conference, and workshop publications.

CHAPTER 3

– Vı́ctor Gutiérrez Basulto, Jean Christoph Jung, Carsten Lutz. Complexity of Branch-
ing Temporal Description Logics. European Conference on Artificial Intelligence (ECAI
2012), 2012. (Best Student Paper Award)

CHAPTER 4

– Vı́ctor Gutiérrez Basulto, Jean Christoph Jung, Carsten Lutz and Lutz Schröder. A Closer
Look at the Probabilistic Description Logic Prob-EL. Conference on Artificial Intelli-
gence (AAAI 2011), 2011.

– Szymon Klarman and Vı́ctor Gutiérrez Basulto. Two-Dimensional Description Logics
for Context-Based Semantic Interoperability. Conference on Artificial Intelligence (AAAI
2011), 2011.

– Vı́ctor Gutiérrez Basulto, Jean Christoph Jung, Carsten Lutz and Lutz Schröder. The
Complexity of Probabilistic EL. International Workshop on Description Logics (DL
2011), 2011.

CHAPTER 5

– Szymon Klarman and Vı́ctor Gutiérrez Basulto. Description Logics of Context. Journal
of Logic and Computation. In press, 2013.

11

1 Introduction

– Szymon Klarman and Vı́ctor Gutiérrez Basulto. Two-Dimensional Description Logics
for Context-Based Semantic Interoperability. Conference on Artificial Intelligence (AAAI
2011), 2011.

– Szymon Klarman and Vı́ctor Gutiérrez Basulto. Two-Dimensional Description Logics of
Context. International Workshop on Description Logics (DL 2011), 2011. (Best Student
Paper Award)

– Szymon Klarman and Vı́ctor Gutiérrez Basulto. ALCALC : A Description Logic of Con-
text. European Conference on Logics in Artificial Intelligence (JELIA 2010), 2010

12

2
Preliminaries

This chapter is dedicated to the presentation of standard definitions and computational complex-
ity results in description logics and branching-time temporal logics.

2.1 Description Logics

Description logics [14], as introductorily discussed in Chapter 1, permit to represent termino-
logical knowledge by means of concepts, denoting classes of objects of the domain of discourse
(e.g., Scientist,Teacher), and roles (e.g., publishes, teaches), denoting binary relations between
instances of concepts. Concepts and roles are inductively built from atomic concepts and atomic
roles through the application of the concept and role constructors provided by a particular DL
language. Remarkably, most DLs are well-behaved fragments of first-order logic, hence these
DLs come with the standard Boolean constructors ‘t’ (or), ‘u’ (and) and ‘¬’ (not); moreover,
they allow for the concepts ‘>’ (top) and ‘⊥’ (bottom), representing everything and nothing,
respectively. Furthermore, standard DLs include the quantifiers ‘∀’ and ‘∃’ used in combination
with roles to restrict relations between individuals from two classes. We will begin, later on, our
discussion on DLs by introducing the DL ALC which allows for these constructors.

Recall that DLs model the terminological and assertional knowledge of the domain of discourse
via a knowledge base (or ontology). Intuitively, the terminological knowledge describes the
interrelation between concepts while the assertional one describes the current state of affairs
through the specification of the participation of particular individuals in a concept or in a role.
The terminological component of an ontology is given through the TBox formalism, and the
assertional one through the ABox formalism.

We start by defining the vocabulary over which a DL concept language is defined. A vocabulary
is a triple Σ = (NC,NR,NI), where NC,NR and NI are infinite countably disjoint sets of concept
names, role names and individual names, respectively.

13

2 Preliminaries

Recall that one of the main differences of DLs with respect to their predecessors is that they
come equipped with a formal model-theoretic semantics, providing the meaning of the symbols
of the vocabulary through interpretations, containing a domain and an interpretation function.
Such an interpretation function maps each concept name to a subset of the domain, each role
name to a binary relation over the domain, and each individual name to an object of the domain.

Definition 2.1. An interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set of in-
dividuals, called the domain, and ·I is an interpretation function mapping each a ∈ NI to an
element aI ∈ ∆I , each A ∈ NC to a subset AI ⊆ ∆I and each r ∈ NR to a binary relation
rI ⊆ ∆I ×∆I .

In this thesis, we adopt the unique name assumption, that is, aI 6= bI for all distinct individuals
a, b ∈ NI.

We now proceed to introduce different DL languages, which are characterized by the set of
constructors they allow for defining complex concepts and roles. We begin with the presenta-
tion of the basic Boolean complete DL ALC, introduced by Schmidt-Schauss and Smolka [71],
allowing for constructors ‘u’ (and), ‘¬’ (not) and ∃r.C.

Definition 2.2. ALC concepts C are formed according to the following grammar:

C ::= > | A | ¬C | C uD | ∃r.C
where A ranges over NC, r ranges over NR and C,D range over concepts.

Let I = (∆I , ·I) be an interpretation. We extend the interpretation function ·I toALC concepts
as follows:

>I = ∆I ; (¬C)I = ∆I\CI ; (C uD)I = CI ∩DI ;

(∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}.

We use the following standard abbreviations: ⊥ = ¬>, C tD = ¬(¬C u ¬D), and ∀r.C =
¬∃r.¬C.

Before introducing knowledge bases, we present the minor extension of ALC that allows for
nominals, which are concepts that represent a single individual. Nominals are used to express
concepts that have only one instance (e.g., modeling the term pope) or to provide individuals
with ‘names’ (e.g., modeling terms Bremen, Weser). Formally, the DL ALCO extends ALC
with concepts {a}, where a ranges over NI. Furthermore, given an interpretation I = (∆I , ·I),
we interpret ({a})I as {aI}.
Naturally, in order to be able to talk about computational complexity, we need to define the
size of the different components of a DL. We begin by defining the size of a concept, that
is, the number of symbols needed to write it down. We also introduce the standard notion of
subconcept.

Definition 2.3. The size of concepts over Σ = (NC,NR,NI) is inductively defined as follows:

|A| = |>| = |{a}| := 1, where A ranges over NC and a over NI,

14

2.1 Description Logics

|C uD| = |C|+|D|+1, |¬C| = |∃r.C| = |C|+1, where C,D range over concepts and r
over NR.

The set of subconcepts sub(C) of a concept C is inductively defined as follows:

sub(C) := {C}, if C is >, a concept name, or a nominal,

sub(C) := {C} ∪ sub(D1) ∪ sub(D2), if C is of the form D1 uD2,

sub(C) := {C} ∪ sub(D), if C is of the form ∃r.D.

In ALC and ALCO knowledge bases are composed of a TBox, representing the terminologi-
cal knowledge of a domain by means of concept inclusions, and of an ABox, representing the
assertional knowledge of a domain by means of concept and role assertions.

Definition 2.4. A concept inclusion (CI) is an axiom of the form C v D, a concept assertion is
an axiom of the form C(a), and a role assertion is an axiom of the form r(a, b), where C is a
concept, r is a role and a, b are individual names. An ABox assertion (or simply assertion) is a
concept or role assertion.

− A TBox is a finite set of concept inclusions, an ABox is a finite set of assertions, and a
knowledge base (KB) (or ontology) is a pair (T ,A), where T is a TBox and A is an ABox.

− An interpretation I satisfies a CI C v D iff CI ⊆ DI , a concept assertion C(a) iff aI ∈ CI ,
and a role assertion r(a, b) iff (aI , bI) ∈ rI . We respectively denote the satisfaction of a CI by
I |= C v D, of a concept assertion by I |= C(a) and of a role assertion by I |= r(a, b).

We proceed to introduce the classical reasoning problems in DLs: KB satisfiability, and concept
satisfiability and subsumption w.r.t. a TBox. We are particularly interested in these problems
since later on we study variants of them.

Definition 2.5. An interpretation I is a model of a concept C if CI 6= ∅; moreover, I is a model
of a TBox T if it satisfies all concept inclusions in T ; analogously, it is a model of an ABox A
if it satisfies all assertions in A. Finally, I is a model of a KB K = (T ,A) if it is a model of T
and A. We write I |= K to denote that I is a model of K, and I |= T and I |= A for a TBox T
and an ABox A.

We next define the size of TBoxes, ABoxes, and KBs. The size |A| of an ABox A is the sum of
the sizes of all assertions in A, where the size |C(a)| of concept assertions is |C| and the size
|r(a, b)| of role assertions is 2. The size |T | of a TBox T is

|T | :=
∑

CvD∈T

|C|+ |D|.

The size |K| of a KB K = (T ,A) is the sum of |T | and |A|.
We now have the necessary ingredients to introduce the reasoning tasks in DLs relevant for this
thesis, namely, KB satisfiability, concept satisfiability and subsumption w.r.t. a TBox.

15

2 Preliminaries

CONCEPTS

Name Syntax Semantics

(1) top concept > ∆

(2) disjunction C uD {x ∈ ∆ | x ∈ CI ∩DI}
(3) negation ¬C {x ∈ ∆ | x 6∈ CI}
(4) existential restriction ∃r.C {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
(5) nominal {a} {aI}
(6) inverse roles r− {(x, y) ∈ ∆×∆ | (y, x) ∈ rI}

AXIOMS

(8) concept assertion C(a) aI ∈ CI
(9) role assertion r(a, b) (aI , bI) ∈ rI
(10) concept inclusion C v D CI ⊆ DI

Figure 2.1: Semantics of concepts and roles

Definition 2.6. A KB K is satisfiable if it has a model. A concept C is satisfiable w.r.t. a TBox
T if there is a common model of T and C. A concept D subsumes a concept C w.r.t. a TBox T ,
written T |= C v D, if CI ⊆ DI for every model I of T .

For brevity, we sometimes write C vT D instead of T |= C v D. Now, we introduce the
reasoning problems of interest for this thesis.
Note that using conjunction and negation we can mutually reduce the concept satisfiability and
subsumption problems, that is, T |= C v D if C u ¬D is unsatisfiable w.r.t. T , and C is
satisfiable w.r.t. T if T 6|= C v ⊥.
The complexity of these reasoning tasks has been already established for ALC and ALCO.

Theorem 2.1. Concept satisfiability w.r.t. TBoxes and the KB satisfiability forALC andALCO
is EXPTIME-complete [14].

The research on description logics has considered not only expressive languages, but also lightweight
DLs with low computational complexity. A prominent lightweight family of DLs is the EL-
family [12], which is characterized by disallowing ¬ and therefore the abbreviations C tD and
∀r.C. Notably, many members of the EL-family admit polytime reasoning while still providing
sufficient expressiveness for many applications. For example, in bioinformatics they are used to
represent medical ontologies such as SNOMED CT, or in the semantic web, where they serve as
the underlying language of the OWL 2 EL profile of the OWL 2 ontology language [62].
Formally, EL concepts C are formed by the following grammar:

C ::= > | A | C uD | ∃r.C

16

2.2 Branching Temporal Logics

where A ranges over NC and r ranges over NR. Moreover, the extension ELI of EL further
allows for inverse roles.
For example, the following CI stating that ‘each professor is an academic with a PhD degree’ is
formulated in EL.

Professor v Academic u ∃hasDegree.PhD

Note that, due to the absence of negation in ELI and EL, the satisfiability problem is trivial for
them in the sense that every concept is satisfiable w.r.t. every TBox. However, the subsumption
problem w.r.t TBoxes is not trivial.

Theorem 2.2. Concept subsumption w.r.t. TBoxes is PTIME-complete for EL, and EXPTIME-
complete for ELI [12, 13].

2.2 Branching Temporal Logics

We study in this thesis, as previously discussed in Chapter 1, temporal description logics based
on the branching-time temporal logics CTL and CTL∗, introduced for specification and verifica-
tion purposes by Clarke and Emerson [32], and Emerson and Halpern [34], respectively. Later
on, in order to develop decision procedures for the proposed TDLs, we make use of known tech-
niques and results for CTL and CTL∗. Hence we devote this section to the presentation of the
syntax and semantics of these logics.

The syntax of CTL∗ extends the standard constructors from propositional logic with the tempo-
ral operators© (next), 2 (always) and U (until), and with the path quantifier E. Intuitively, a
formula©ψ states that ψ must be true in the next time point; 2ψ states that ψ must be true in
all future time points; and ψ1Uψ2 states that there is a time point in the future where ψ2 is true,
and ψ1 is true in all time points between the current one and that satisfying ψ2. Moreover, since
we have a branching-time structure, we can quantify over possible futures by means of the path
quantifier E: Eψ states that there exists a possible future, starting from the current time point,
in which ψ is true. In particular, CTL∗ formulas are defined in terms of state and path formulas
as follows. For the rest of the thesis, we fix a countably infinite set of atomic propositions AP.

Definition 2.7. CTL∗ state formulas ϕ and CTL∗ path formulas ψ are defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Eψ
ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | ©ψ | 2ψ | ψ1Uψ2

where p ranges over AP, ϕ,ϕ1, ϕ2 are state formulas, and ψ,ψ1, ψ2 are path formulas.

Without further quantification, a CTL∗ formula is a state formula. We use the following standard
Boolean abbreviations:

true = p ∨ ¬p, for some p ∈ AP; false = ¬true; ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2);

ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

17

2 Preliminaries

Moreover, we use the following temporal abbreviations: Aϕ = ¬E¬ϕ, 3ψ = ¬2¬ψ,
2<ψ =©2ψ and 3<ψ =©3ψ.

We say that 2< and 3< are strict in the sense that 2<ψ and 3<ψ require ψ to happen in the
strict future.

The precedence of the operators is the following: the unary operators bind stronger than the
binary operators. In particular, the unary operators bind equally strong. In the case of the binary
operators, the temporal operator U has precedence over the Boolean binary operators.

CTL is the fragment of CTL∗ in which temporal operators ©,2 and U must be immediately
preceded by the path quantifier E. Formally, CTL state formulas ϕ and CTL path formulas ψ
are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Eψ
ψ ::= ©ϕ | 2ϕ | ϕ1Uϕ2

where p ranges over AP, ϕ,ϕ1, ϕ2 are state formulas, and ψ is a path formula.

As in the case of CTL∗ we use the Boolean abbreviations, plus the following temporal ones:

A©ϕ=¬E©¬ϕ, E3ϕ=E(trueUϕ), A2ϕ=¬E3¬ϕ,
A3ϕ=¬E2¬ϕ, A(ϕ1 U ϕ2) = ¬E(¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2)) ∧ ¬E2¬ϕ2.

For example, the following is a correct CTL∗ formula, but it is not a correct CTL one:

A2(©3p ∧ ¬(pU q)).
In contrast, the following is a well-formed CTL formula: A2(A©E3p ∧ ¬E(pU q)). Note
that indeed every temporal operator is immediately preceded by a path quantifier.

Clearly, in order to be able to talk about the computational complexity of CTL∗, we need to
define the size of a formula.

Definition 2.8. The size of a CTL∗ state formula ϕ is inductively defined as follows:

|p| = 1, |¬ϕ| = |ϕ|+ 1, |ϕ1∧ϕ2| = |ϕ1|+ |ϕ2|+ 1, |Eψ| = |ψ|+ 1;

the size of a CTL∗ path formula ψ is inductively defined as follows:

|¬ψ| = |©ψ| = |2ψ| = |ψ|+ 1, |ψ1∧ψ2| = |ψ1Uψ2| = |ψ1|+ |ψ2|+ 1.

The semantics of CTL∗ is given in terms of 2AP-labeled trees. In the context of temporal logics,
we sometimes refer to nodes of a tree as time points or worlds. Particularly, as expected, the
satisfaction of a state formula is related to a specific time point, and that of a path formula to a
specific path. Before defining the semantics of CTL∗, we introduce the type of trees over which
it is defined.

18

2.2 Branching Temporal Logics

Definition 2.9. A tree is a directed graph T = (W,E) where W ⊆ (N\{0})∗ is a prefix-closed
non-empty set of nodes and E = {(w,wc) | wc ∈ W,w ∈ N∗, c ∈ N} a set of edges; we
generally assume that wc ∈ W and c′ < c implies wc′ ∈ W and that E ⊆ W×W is a total
relation. We say that wc is a successor of w, and that the node ε ∈W is the root of T .

For brevity and since E can be reconstructed from W , we will usually identify T with W .
Furthermore, we say that T is a k-ary tree, k≥1 if every node of T has exactly k successors.
We next introduce some auxiliary notions: a path in a tree T = (W,E) starting at a node w is
a minimal set π ⊆ W such that w ∈ π and for each w′ ∈ π, there is exactly one c ∈ N with
w′c ∈ π. We use Paths(w) to denote the set of all paths starting at the node w; and for a path
π = w0w1w1 · · · and i ≥ 0, we use π[i] to denote wi and π[i..] to denote the path wiwi+1 · · · .
We now have the necessary ingredients to define trees with nodes labeled with elements of an
alphabet. Let Σ be a finite alphabet. A Σ-labeled tree T is a pair (T, τ) where T is a tree and
τ : T → Σ assigns a letter from Σ to each node. We sometimes identify (T, τ) with τ .

Clearly, to define the semantics of CTL∗, we consider Σ-labeled trees with Σ = 2AP. Intuitively,
the label of a time point contains the propositional letters holding at this time point.

Definition 2.10. Let T = (T, τ) be a 2AP-labeled tree. For a time point w in T, the truth relation
|= for CTL∗ state formulas is defined as follows.

T, w |= p ∈ AP iff p ∈ τ(w);

T, w |= ¬ϕ iff T, w 6|= ϕ;

T, w |= ϕ1 ∧ ϕ2 iff T, w |= ϕ1 and T, w |= ϕ2;

T, w |= Eψ iff T, π |= ψ for some π ∈ Paths(w).

For a path π in T, the truth relation |= for path formulas is defined as follows:

T, π |= ϕ iff T, π[0] |= ϕ;

T, π |= ¬ψ iff T, π 6|= ψ;

T, π |= ψ1 ∧ ψ2 iff T, π |= ψ1 and T, π |= ψ2;

T, π |=©ψ iff T, π[1..] |= ψ;

T, π |= 2ψ iff ∀j ≥ 0.T, π[j..] |= ψ;

T, π |= ψ1 U ψ2 iff ∃j ≥ 0.(T, π[j..] |= ψ2 ∧ ∀0 ≤ k < j.(T, π[k..] |= ψ)).

In CTL∗, as in DLs, one of the classical reasoning problems is the satisfiability problem: a 2AP-
labeled tree T is a model of a CTL∗ formula ϕ if T, ε |= ϕ. A CTL∗ formula ϕ is satisfiable if
there exists a 2AP-labeled tree T such that T is a model of ϕ.

For CTL∗ and its fragment CTL the computational complexity of the satisfiability problem has
been established.

Theorem 2.3. Satisfiability for CTL∗ is 2EXPTIME-complete and for CTL is EXPTIME-complete [35,
33].

19

3
Branching Temporal Description Logics

We dedicate this chapter to the study of two-dimensional DLs for representing and reasoning
about (branching-time) temporal aspects of knowledge. Branching Temporal Description Logics
emerge from the combination of classical DLs with the branching-time temporal logics CTL
and CTL∗. We concentrate on the investigation of branching TDLs based on the DLs EL and
ALC. The main technical contributions are algorithms for satisfiability that are more direct than
existing approaches, and (mostly) tight elementary complexity bounds that range from PTIME

to 2EXPTIME and 3EXPTIME.

3.1 Introduction

Classical description logics, as fragments of first order logic, aim at the representation of and
reasoning about static knowledge. The inability to capture dynamic and temporal aspects has
often been criticized because many relevant applications depend on this type of knowledge, for
example:

(1) these capabilities are needed in medical ontologies such as SNOMED CT and FMA [22]
to accurately describe terms that refer to dynamic aspects. For example, think about the
disease malaria which refers to repeating patterns, or about the finding hyperplasia which
refers to a proliferation of cells that potentially develops into a tumor in the future.

(2) Classical DLs are used as a language for describing the conceptual database models, hence
considerable research has been devoted to extending this approach to capture also the
evolution of databases over time [3, 9].

To tackle this shortcoming of classical DLs, since the publication of Schild’s seminal work in
1993 [70], a vast amount of investigation on temporal description logics (TDLs) has been car-
ried out. These studies have resulted in several proposals for constructing TDLs; meticulously,

21

3 Branching Temporal Description Logics

surveyed by Artale et al. and Lutz et al. [5, 58]. A prominent approach to TDLs, following
Schild’s original proposal, is to combine static DLs with the standard temporal logics LTL, CTL
and CTL∗ in the style of multi-dimensional description logics. While a large body of literature
is available for linear-time TDLs based on combinations of DLs with the temporal logic LTL
[7, 15, 8, 37], only limited research was devoted to branching-time TDLs based on CTL and
CTL∗ [48, 19]. From the perspective of ontology applications such as those discussed under (1)
above, this is slightly surprising because using LTL operators often results in a modeling that is
unrealistically strict. As an example, consider the statement ‘each student will eventually be a
graduate’. In TDLs based on LTL, this is usually modeled using one of the following axioms.

Student v 3Graduate

Student v StudentUGraduate

Intuitively, the first axiom states that each student will be graduated at some point in the future,
while the second axiom further requires each student to remain a student until he graduates.
Alas, due to the linear structure of time, these axioms exclude the possibility that a student
leaves university without a degree. On the other hand, in TDLs based on the branching-time TL
CTL, it is possible to use the much more cautious following statement based on the existential
path quantifier E, stating that there is a possible future in which the student obtains a degree and
leaving open the possibility of other possible futures.

Student v E(StudentUGraduate)

Furthermore, based on the universal path quantifier A, strict statements such as ‘each human
will eventually die, and stay dead’ can be expressed as

Human v A3A2Dead

Decidability boundaries for TDLs have been obtained through the prominent research on first-
order temporal logics (QT L) by Hodkinson, Wolter and Zakharyaschev [47, 48]. The main
result of the research in [47] is the identification of a syntactic restriction, monodicity, allowing
to design decidable expressive fragments of QT Ls of linear-time. The rough idea to obtain
decidable first-order temporal languages is, on the one hand, restrict the non-temporal part of
the language to a decidable fragment of first-order logic. On the other hand, in the temporal
part only monodic formulas are allowed: formulas in which temporal operators are applied
only to first-order formulas with at most one free variable. Remarkably, later on, Hodkin-
son, Wolter and Zakharyaschev [48] showed that the monodicity condition is not enough to
design decidable fragments of QT Ls of branching-time based on CTL∗. In particular, they
showed that the one-variable fragment of first-order CTL∗ is undecidable. Since this fragment
is clearly monodic, the introduction of further restrictions to attain decidability in QT Ls of

22

3.1 Introduction

branching-time was necessary. They showed that decidable fragments of QT Ls of branching-
time can be designed as for linear-time by restricting the application of first-order quantifiers
to temporal state formulas, and the application of temporal operators and path quantifiers to
monodic formulas. Note that if CTL is considered the additional restrictions are fulfilled.

The results obtained by Hodkinson et al. on first-order temporal logics of branching-time [48]
have the following consequences on the decidability of branching-time TDLs. First, note that
∃3r.C is not a monodic formula since roles correspond to first-order formulas with two free
variables while 3∃r.C is indeed a monodic formula since concepts correspond to first-order
formulas with one free variable. As a consequence of this, the application of temporal operators
to roles, or permitting rigid roles most probably results in undecidability. Second, if temporal or
rigid roles are not present: TDLs based on CTL are decidable while TDLs based on CTL∗ have
to be appropriately restricted in order to attain decidability, namely, inside concept inclusions,
only state concepts should be allowed, but no path concepts (these correspond to state formulas
and path formulas in CTL∗ –cf. Section 2.2).

Since Hodkinson et al. [48] obtained decidability by translating into monadic second order logic
on trees, these results only come with a non-elementary upper complexity bound. The aim of
this chapter is then to reconsider branching-time TDLs based on CTL and CTL∗ (under the
mentioned restriction), to develop more direct algorithms for the satisfiability problem, and to
analyze the computational complexity. We concentrate on TDLs that are most natural from
the perspective of ontology applications: we consider the basic DLs ALC and EL, allow the
application of temporal operators to concepts and (sometimes) to TBox statements but never to
roles, and assume constant domains.

Contributions: Our investigation starts with the TDLs CTLALC and CTL∗ALC in the case
where temporal operators can only be applied to concepts and a global TBox is considered. We
use a uniform approach to both logics that consists of a combination of Pratt-style type elimina-
tion and methods based on nondeterministic tree automata. We obtain EXPTIME-completeness
for satisfiability in CTLALC and 2EXPTIME-completeness for satisfiability in CTL∗ALC , thus the
combined logics are computationally no more complex than their components. Moreover, we
consider combinations of the light DL EL with fragments of CTL. Recall that the crucial ad-
vantage of EL over ALC is that it admits efficient (polytime) reasoning and our main aim is
to understand how far this property transfers to a TDL based on EL. We are able to identify a
polytime TDL that could be viewed as an analog of non-temporal EL; it includes the temporal
operator E3. Most other versions of CTLEL turn out to be hard for PSPACE or EXPTIME. Fi-
nally, we reconsider CTLALC and CTL∗ALC , but now we additionally allow temporal operators to
be applied to TBoxes. To establish an elementary upper bound, we again use a uniform approach
that consists of a careful combination of alternating 2-way tree automata and nondeterministic
tree automata for CTL and CTL∗. We obtain a 2EXPTIME upper bound for CTLALC and a
3EXPTIME upper bound for CTL∗ALC . For CTLALC , we prove a matching lower bound using
a reduction of the word problem of exponentially space bounded alternating Turing machines,
which shows that, in the presence of temporal TBoxes, the combination ofALC and CTL results
in an increase of computational complexity by one exponential. For CTL∗ALC , the complexity
remains open between 2EXPTIME and 3EXPTIME.

23

3 Branching Temporal Description Logics

Organization: In the next section we formally introduce the syntax and semantics of branch-
ing temporal description logics. Section 3.3 is devoted to the study of CTLALC and CTL∗ALC
in the case where temporal operators are applied only to concepts and a global TBox is consid-
ered. Continuing with the study of temporal concepts, Section 3.4 is committed to investigate
combinations of EL with fragments of CTL. Section 3.6 revisits CTLALC and CTL∗ALC , now in
the case where temporal operators are applied not only to concepts but also to TBox formulas.
Section 3.6 presents some final conclusions.

3.2 Introducing Branching Temporal Description Logics

Branching Temporal Description Logics emerge from the combination of the branching-time
temporal logics CTL and CTL∗ with classical DLs in the style of multi-dimensional modal
logics. In contrast to linear-time TDLs, this family of TDLs is able to differentiate between
possible and necessary future developments of knowledge via the use of path quantifiers. In this
chapter, we concentrate on branching TDLs based on the traditional DL ALC and its fragment
EL.

3.2.1 Syntax and Semantics

Definition 3.1. Fix countably infinite disjoint sets NC and NR of concept names and role names,
respectively. CTL∗ALC-state concepts C and CTL∗ALC-path concepts C, D are defined by the
following grammar:

C ::= > | A | ¬C | C uD | ∃r.C | EC
C,D ::= C | C u D | ¬C | ©C | 2C | CUD

where A ranges over NC, r ranges over NR, C,D range over state concepts, and C, D range
over path concepts.

CTLALC is the fragment of CTL∗ALC where only CTL operators are allowed. Formally, CTLALC-
state concepts C and CTLALC-path concepts C are defined by the following grammar:

C ::= > | A | ¬C | C uD | ∃r.C | EC
C ::= ©C | 2C | CUD

Without further qualification, the term concept refers to a state concept. Moreover, we assume
the standard Boolean abbreviations used in classical DLs and the standard temporal abbrevia-
tions used in branching-time temporal logics (cf. Section 2.2).

Definition 3.2. A CTL∗ALC-TBox T is a finite set of concept inclusions (CIs) C v D with C,D
CTL∗ALC-state concepts. A CTLALC-TBox is defined analogously.

CTL∗ALC-TBoxes are thus constructed as for classical DLs but using CTL∗ALC-state concepts.
Note that inclusions between path concepts are not admitted as they result in undecidability
[48]. We next present an example of a CI based on CTLALC concepts, and an example of a CI
based on CTL∗ALC concepts, respectively.

24

3.2 Introducing Branching Temporal Description Logics

Student v E3(Graduated uA2∃worksFor.Company)

Prof v A(Prof URetired u (Retired→©Retired))

Intuitively, the first CI states that ‘it is possible that each student will eventually graduate, and
from there on lastingly will work in a company’. The second CI states that ‘a professor remains
a professor until he retires, and if he is retired today, he will remain retired tomorrow’.

The semantics of branching TDLs is given in terms of temporal interpretations, which are infinite
trees in which every node w is associated with a classical interpretation Iw.

Definition 3.3. A temporal interpretation is a structure I = (∆, T, {Iw}w∈W) where T =
(W,E) is an infinite tree, and for each w ∈ W , Iw is an interpretation with domain ∆. The
mapping ·I,w is extended from concept names to CTL∗ALC-state concepts as follows:

>I,w = ∆;

(¬C)I,w = ∆\CI,w;

(C uD)I,w = CI,w ∩DI,w;

(∃r.C)I,w = {d ∈ ∆ | ∃e : (d, e) ∈ rI,w ∧ e ∈ CI,w};
(E C)I,w = {d ∈ ∆ | d ∈ CI,π for some π ∈ Paths(w)};

where CI,π refers to the extension of CTL∗ALC-path concepts on a given path π, defined as:

CI,π = CI,π[0] for state concepts C;

(¬C)I,π = ∆ \ CI,π;

(C u D)I,π = CI,π ∩ DI,π;

(©C)I,π = {d ∈ ∆ | d ∈ CI,π[1..]};
(2C)I,π = {d ∈ ∆ | ∀j ≥ 0. d ∈ CI,π[j..]};

(CUD)I,π = {d ∈ ∆ | ∃ j ≥ 0. (d ∈ DI,π[j..] ∧ (∀ 0 ≤ k < j. d ∈ CI,π[k..]))}.

We usually write AI,w instead of AIw , and intuitively d ∈ AI,w means that in the interpretation
I, the object d is an instance of the concept name A at time point w. Moreover, note that in
the previous definition we make the constant domain assumption, that is, each time point shares
the same domain ∆. Intuitively that means that objects are not created or destroyed over time.
This is the most general assumption in the TDLs based on ALC since expanding, decreasing
and varying domains can be simulated [38].

In this investigation, we are interested in studying the complexity of the concept satisfiability
problem w.r.t. CTL∗ALC and CTLALC TBoxes.

25

3 Branching Temporal Description Logics

Definition 3.4. A temporal interpretation I is a model of a concept C if CI,ε 6= ∅; it is a model
of a TBox T if CI,w ⊆ DI,w for all w ∈ W and all C v D in T . A concept C is satisfiable
w.r.t. T if there is a common model of T and C.

3.3 Reasoning in CTL∗ALC and CTLALC

This section begins our investigation on the computational complexity of branching-time TDLs.
We present algorithms for satisfiability for CTLALC and CTL∗ALC , developed under a uniform
approach that consists of a combination of Pratt-style type elimination and techniques based on
nondeterministic automata on infinite trees. Before introducing our algorithms, we present the
basics on nondeterministic automata.

The automata-theoretic approach has been used to devise elementary decision procedures for
many logics. In particular, automata working on infinite trees are used to decide whether a
formula in a logic with the tree-model property is satisfiable [77]. Hence, these type of automata
are a crucial ingredient for the development of decision procedures for the satisfiability problem
for CTL and CTL∗. We next introduce nondeterministic tree automata and show their use in
temporal reasoning.

Definition 3.5. Let Σ be a finite alphabet. A nondeterministic tree automaton (NTA) on Σ-
labeled k-ary trees is a tuple A = (Q,Σ, Q0, δ, F) where Q is a finite set of states, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is a set of recurring states, and δ : Q×Σ→ 2Q

k
is the transition

function.

A run r of an NTA A on a Σ-labeled k-ary tree (T, τ) is a Q-labeled k-ary tree (T, r) such that
r(ε) ∈ Q0 and for each node w ∈ T , we have

〈r(w·1), . . . , r(w·k)〉 ∈ δ(r(w), τ(w)).

(T, r) is accepting if all its paths satisfy the acceptance condition.

Intuitively, the nondeterminism of an NTA results from the transition relation, that is, when the
automaton is at state q ∈ Q and reads a node w labeled by σ ∈ Σ, it proceeds to nondeter-
ministically choose a k-tuple 〈q1, . . . , qk〉 from δ(q, σ), and then sends copies of itself to each
successor node w·i in state qi.

In this thesis, we consider the so-called Büchi acceptance condition, defined as follows: given
a run (T, r), a path π = w0w1 · · · which starts at ε satisfies the Büchi acceptance condition if
r(wi) ∈ F for infinitely many i. Moreover, we say that a Σ-labeled tree (T, τ) is accepted by an
NTA A if there is an accepting run of A on (T, τ). We denote by L(A) the set of trees accepted
by A. From now on, we denote by NBTA, NTAs using the Büchi acceptance condition.

A fundamental automata-theoretic problem is to decide whether an automaton accepts some
input. Formally, the nonemptiness problem is to decide, given an automatonAwhetherL(A)6=∅.

Theorem 3.1 ([81]). The nonemptiness problem for NBTAs can be decided in quadratic time.

26

3.3 Reasoning in CTL∗ALC and CTLALC

Later on, we use the fact that the class of NBTA recognizable languages is closed under inter-
section [41], that is, given Büchi automata A and B, we can construct an NBTA A′ such that
L(A′) = L(A)∩L(B). Moreover, A′ can be constructed with only a polynomial blow up [41].

Automata-theoretic techniques on infinite words and trees have been successfully used to de-
velop decision procedures in linear-time and branching-time temporal logics, respectively [54,
79]. The core idea for deciding whether a (branching-time) temporal formula ϕ is satisfiable is
to construct an automaton Aϕ that accepts all the (tree) models of ϕ, and then check whether
L(Aϕ) is nonempty. In other words, we reduce the problem of satisfiability for temporal logics
to the automata-theoretic problem of nonemptiness.

We now assert the existence of NBTAs for CTL and CTL∗, as well as their constructability
within certain time bounds. For n>0, we use Modn(ϕ) to denote the set of all n-ary models of
ϕ. The following sufficient degree property shows that it is sufficient to only consider models of
certain arity.

Proposition 3.2 ([54]). A CTL∗ formula ϕ is satisfiable iff Mod#E(ϕ) 6= ∅, where #E(ϕ) is the
number of subformulas of ϕ that are of the form Eψ.

The following theorem shows the precise relation between the satisfiability problem for temporal
logics and the nonemptiness problem for NBTAs. We use ap(ϕ) to denote the set of atomic
propositions in a CTL∗ formula ϕ.

Theorem 3.3 ([53, 79]). For a CTL∗-formula ϕ and n ≥ 0, one can construct an NBTA
Aϕ = (Q,Σ, δ, Q0, F) in time poly(|Q|+n) such that L(Aϕ) = Modn(ϕ), Σ = 2ap(ϕ),
|Q| ∈ 22poly(|ϕ|) , and |Q| ∈ 2poly(|ϕ|) when ϕ is a CTL formula.

3.3.1 Algorithms for Concept Satisfiability w.r.t. TBoxes for CTL∗ALC and
CTLALC

We now are ready to present our algorithm for satisfiability for CTL∗ALC and CTLALC . This
uniform decision procedure yields a tight EXPTIME upper bound for the former case and a tight
2EXPTIME upper bound for the latter. The lower bounds are inherited from CTL and CTL∗

[36, 80]. Notably, the proposed approach is enabled by the fact that the interaction between the
DL dimension and the temporal dimension is limited, similar to the fusion of modal logics [38].
Note, however, that fusions correspond to expanding domains while we use constant domains
which impose additional technical difficulties. We emphasize that the careful combination of
types and existing tree automata for CTL and CTL∗ allows us to avoid many of the technical
intricacies of CTL∗, resulting in a rather transparent overall approach.

Let us fix a concept C and a TBox T , formulated in CTL∗ALC or its fragment CTLALC . We
assume w.l.o.g. that T is of the form {> v CT } and use cl(T) to denote the set of state concepts
that occur in T , closed under subconcepts and single negation.

Definition 3.6. A type for T is a set t ⊆ cl(T) such that CT ∈ t. A temporal type for T has the
form (t, i) with t a type for T and i ≥ 0 a distance that denotes how far a time point w of a tree
structure is from the root (i.e., the length |w| of the word w).

27

3 Branching Temporal Description Logics

Algorithm 1: CTL∗ALC and CTLALC SATISFIABILITY

Input: Concept C, TBox T formulated in CTL∗ALC or CTLALC
Initialize: i := 0; S0 := ttpn0

(T)

repeat
Si+1 := {(t, j) ∈ Si | (t, j) is realizable in Si}
until Si = Si+1

if exists (t, 0) ∈ Si such that C ∈ t, return satisfiable
otherwise, return unsatisfiable

For any n ≥ 0, we use ttpn(T) to denote the set of all temporal types (t, i) for T with i ≤ n.
Moreover, we introduce some notational conventions. For a type t, let t denote the result of
replacing every concept C ∈ t\NC with a fresh concept name XC , and let cn denote the set of
all resulting concept names, including those in T . For C ∈ cl(T), let C denote the result of
replacing in C every subconcept ∃r.D with X∃r.D, and u with ∧. Let]E(T) denote the number
of state concepts in cl(T) that are of the form EC.

We now formally describe the elimination condition in which n0 is an appropriate bound in the
sense that our type elimination algorithm is correct if it starts with ttpn0

(T).

Definition 3.7. Let S be a set of temporal types for T . A temporal type (t, i) is realizable in S
if the following conditions are satisfied:

(DL) if ∃r.C ∈ t, then there is a (t′, i) ∈ S such that {C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′;

(TL) (t, i) is temporal-realizable in S, that is, there is a 2cn-labeled]E(T)-ary tree (T, τ) that
satisfies the following conditions, where ρ(i) = min{n0, i}:

a) for some w ∈ T with |w| = i, we have τ(w) = t;

b) for each w ∈ T with |w| = j, there is a (t′, ρ(j)) ∈ S with τ(w) = t′;

c) ε satisfies ϕ = A2
∧

XC∈cn
XC ↔ C.

Intuitively, Condition DL takes care of the DL dimension of CTL∗ALC while Condition TL takes
care of the temporal dimension, that is, the tree (T, τ) describes the temporal evolution of a
single domain element. Note that, by definition of C, Condition TL(c) takes care of the Boolean
constructors. Hence we do not require types to ‘respect’ Booleans.

28

3.3 Reasoning in CTL∗ALC and CTLALC

Algorithm 1 above implements a type elimination algorithm for deciding satisfiability for CTL∗ALC
and CTLALC : it starts with the set of temporal types ttpn0

(T) for some appropriate bound
n0 to be determined later and then generates a decreasing sequence S0 ⊇ S1 ⊇ . . . where
S0 = ttpn0

(T) and Sj+1 is obtained from Sj by eliminating temporal types that, intuitively,
cannot occur in any model of T . The algorithm terminates when no further types are eliminated,
that is, when Sj = Sj+1. It returns satisfiable if there is a surviving (t, i) with C ∈ t and i = 0,
and unsatisfiable otherwise.

Now, it remains to determine the bound n0 for which Algorithm 1 is correct. The intuition
behind the number n0 and the use of ρ(·) in Condition TL is that time points which are close to
the root of the temporal structure behave in a special way. For example, if

T = {> v A©©¬A},

then time points w with distance |w| < 2 are special in the sense that they can satisfy A. Using
binary counting, one can construct similar examples where time points with exponential distance
are still special. The main objective is thus that, by means of an adequate n0, the final result S
of Algorithm 1 represents the infinite expansion Sω := S ∪ {(t,m) | (t, n0) ∈ S ∧m > n0},
such that all (t, i) ∈ Sω satisfy Conditions DL and TL when in Condition TL ρ(i) is replaced
with i. This means that we can actually extend the result of Algorithm 1 to construct a (infinite)
temporal model. This suggests the main property to attain by choosing an appropriate bound n0:

(∗) if (t, n0) is realizable in S, then (t, n0 + `) is realizable in S for any ` ≥ 0.

One might be tempted to choose n0 = |tp(T)|. While this is indeed sufficient for CTLALC ,
it does not work for CTL∗ALC , where types do not capture enough information about models
and time points of double exponential distance can still be special. To solve this problem, we
observe that NBTAs for CTL∗ALC and CTLALC can be used to verify Condition TL above, and
that this suggests a concrete bound n0. Specifically, let Aϕ be the corresponding NBTA from
Theorem 3.3 with set of states Q for the formula ϕ from Condition TL(c). The following shows
that n0 := |Q|·|tp(T)| can serve as the required bound.

Lemma 3.4. When choosing n0 := |Q|·|tp(T)| as a bound for Algorithm 1, then Property (∗)
is satisfied and satisfiable is returned iff C is satisfiable w.r.t. T .

We demonstrate Lemma 3.4 in two steps: first, we show the satisfaction of Property (∗). Second,
we show that Algorithm 1 is correct. The proof of the first part of Lemma 3.4 is rather subtle
and involves the use of automata techniques.

The proof of the satisfaction of Property (∗) requires several steps. Since we plan to use the
states Q of Aϕ for the formula ϕ from Condition TL(c) to establish the correct n0, we begin
by extending the temporal types from S with states occurring in accepting runs of Aϕ. Then

29

3 Branching Temporal Description Logics

we show that the obtained Ŝ fulfills the correspondent realizability conditions. Thereafter, we
analyze the behavior of the extended types through a monotonicity lemma. Finally, based on
this, we show that n0 := |Q|·|tp(T)| is the required bound.

We begin by proving the following auxiliary lemma, stating that for formulas of the form A2ψ
(as the one from Condition TL(c)) we can assume all states of Aψ to be initial.

Lemma 3.5. For every CTL∗-formula A2ψ with corresponding NBTAAA2ψ = (Q,Σ, δ, Q0, F),
we can construct in time poly(|Q×Σ|) an NBTA ÂA2ψ such that L(AA2ψ) = L(ÂA2ψ) and
every state in ÂA2ψ is an initial state.

Proof. The proof is given in two steps: first, we introduce a variant A′ of AA2ψ. In the second
step, we define ÂA2ψ based on A′.
We define A′ = (Q′,Σ, δ′, Q′0, F ′) by setting

Q′ = Q×Σ, Q′0 = Q0×Σ, F ′ = F×Σ.

Furthermore, we define the transition relation δ′((q, σ), σ′) as follows:

– if σ = σ′ and 〈q1, . . . , qk〉 ∈ δ(q, σ), then 〈(q1, σ1), . . . , (qk, σk)〉 ∈ δ′((q, σ), σ) for all
σ1, . . . , σk ∈ Σ.

– Otherwise, if σ 6= σ′, then δ((q, σ), σ′) = ∅.

The definition of the transition relation δ′ already provides some intuition about the behavior of
A′, that is, A′ in state (q, σ) when reading σ behaves as AA2ψ does in state q when reading σ.
Otherwise, A′ stops.

Following the previous intuition, it is not hard to see that AA2ψ and A′ accept the same lan-
guage. Moreover, if (T, r) is an accepting run of A′ on some Σ-labeled tree (T, τ), then for all
w ∈ T we have

τ(w) = σ ⇔ ∃qw ∈ Q′.r(w) = (qw, σ). (3.1)

We call a state q ∈ Q′ active if there is some model (T, τ) of A2ψ that admits an accepting run
(T, r) ofA′ such that r(w) = q for some w ∈ T . Since inactive states (states that are not active)
do not participate in the accepting runs on any model of A2ψ, dropping inactive states does not
change the language of A′.
Now, let ÂA2ψ = (Q̂,Σ, δ̂, Q̂0, F ′) be the variant of A′ where

– Q̂ is the set of active states in Q′,

– Q̂0 = Q̂, that is, all states in ÂA2ψ are initial states.

Furthermore, we define δ̂(q, σ) as follows:

– 〈q1, . . . qk〉 ∈ δ̂(q, σ) if 〈q1, . . . qk〉 ∈ δ′(q, σ) and qi is active for all i ∈ (1, k).

30

3.3 Reasoning in CTL∗ALC and CTLALC

Now, we are ready to show that A′ and ÂA2ψ recognize the same language.

Claim. L(A′) = L(ÂA2ψ).

Proof of the claim. The direction “⊆” is immediate.

“⊇.” Assume that T = (T, τ) ∈ L(ÂA2ψ). Hence, there is an accepting run (T, r) of ÂA2ψ on
T. Let r(ε) = (q, σ). Since, by construction, (q, σ) is active, there is an accepting run (T, r′)
of A′ on some Σ-labeled tree T′ = (T, τ ′) with r′(w) = (q, σ) for some w ∈ T . Moreover, by
Equation (3.1), τ ′(w) = σ.

Now, we construct the Σ-labeled tree T′′ = (T, τ ′′) from T′ by replacing the subtree rooted
at w by T. It is not hard to see that r′′ obtained from r′ by replacing the subtree rooted at w
by r is an accepting run of ÂA2ψ on T′′: clearly the critical points are w ∈ r′′ ∩ r′. Note
that for all w ∈ r′′ ∩ r′ and r′′(w) = (q, σ), (q, σ) is active, and moreover by Equation (3.1)
τ ′′(w) = σ. Thus, δ̂((q, σ), σ) behaves like δ′((q, σ), σ). Finally, note that all states are initial
states in ÂA2ψ; in particular, r′(ε).

Further, note that, by definition of ÂA2ψ, δ̂ ⊆ δ′, then, by this fact and Equation (3.1), it is not
hard to see that T′′ is accepted by A′ and, further T′′ is a model of A2ψ.

Finally, due to the semantics of A2ψ, the subtree of T′′ rooted at w is a model of A2ψ. Hence,
it is accepted by A′. By construction, the subtree of T′′ rooted at w is exactly T, thus, T is
accepted by A′.
This finishes the proof of the claim.

It remains to argue that we can check if a given state is active. To this aim we construct A′′ =
(Q′, Q′×Σ, δ′′, Q′0, F ′) on Q′×Σ labeled trees, which is a variant of A′ where

δ′′(q, (q′, σ)) =

{
δ′(q, σ) if q = q′

∅ otherwise.

Intuitively, when reading a symbol (q, σ), a state q behaves in A′′ just as in A′ when reading σ.
Otherwise, it stops when reading (q′, σ) for q′ 6= q.

This implies that (T, r) is an accepting run of A′ on some tree (T, τ) if and only if (T, r) is an
accepting run of A′′ on (T, τ ′) where τ ′(w) = (r(w), τ(w)) for all w ∈ T . Finally, we can
easily devise an NBTA Bq that checks whether in a Q′×Σ-tree there is some world labeled with
(q, σ) for some σ. Hence, a state q is active if and only if L(A′′) ∩ L(Bq) is not empty.

Since the intersection of a constant number of NBTAs can be constructed with only a polynomial
blowup and the emptiness check can be decided in quadratic time, this also yields that ÂA2ψ

can be computed in polynomial time. o

First, recall that S denotes the final result of Algorithm 1. We extend S to a set Ŝ that contains
temporal types annotated with states Q from the automaton Aϕ.

Definition 3.8. An extended type for T is a triple (t, q, i) with (t, i) a temporal type for T and
q ∈ Q. Moreover, we denote by Ŝ the set of all extended types (t, q, i) for T satisfying the
following conditions:

31

3 Branching Temporal Description Logics

– (t, i) ∈ S;

– there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ)
such that

– for some w ∈ T with |w| = i, we have τ(w) = t and r(w) = q;

– for each w ∈ T with |w| = j, there is a (t′, ρ(j)) ∈ S with τ(w) = t′.

Since the final result S of Algorithm 1 satisfies Condition TL from Definition 3.7, S is the
projection of Ŝ to the first and last component of triples. We observe the following.

Lemma 3.6. For all (t, q, i) ∈ Ŝ, we have

D̂L. if ∃r.C ∈ t, then there is a (t′, q′, i) ∈ Ŝ such that {C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′;

T̂L. there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ)
such that

a) for some w ∈ T with |w| = i, we have τ(w) = t and r(w) = q;

b) for each w ∈ T with |w| = j, there is a (t′, q′, ρ(j)) ∈ Ŝ with τ(w) = t′ and
r(w) = q′.

Proof. Condition D̂L is immediate. For Condition T̂L observe that (t, q, i) ∈ Ŝ because there
is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ such that there is some
w∗ ∈ T with |w∗| = i, τ(w∗) = t and r(w∗) = q and for all w ∈ T with |w| = j, there is
(t, ρ(j)) ∈ S with τ(w) = t. By definition of Ŝ, r and τ also witness that for all w ∈ T we have
(t′, r(w), ρ(|w|)) ∈ Ŝ where τ(w) = t

′. Thus, τ and r together with w∗ show that Condition
T̂L is satisfied. o

We use the following monotonicity property to establish the n0 for Algorithm 1 is correct. It is
worth noticing that a similar property was shown for LTLALC [58]; the steps we follow in our
proof are similar in spirit to those for the LTLALC case.

Let S0, . . . , Sm = S be the sets computed by Algorithm 1. Set n0 = |tp(T)|·|Q| and Ti =
{(t, q) | (t, q, i) ∈ Ŝ}, for all i ≤ n0.

Lemma 3.7 (monotonicity). For all i ≤ n0, we have

1. Ti+1 ⊆ Ti;

2. Ti = Ti+1 implies Ti = Ti+` for all i+ ` ≤ n0.

Proof. 1. Let
M = Ŝ ∪ {(t, q, j) | (t, q, `) ∈ Ŝ, for some ` ≥ j}.

We show that (1) holds in two steps: first, we show that M is consistent under Conditions D̂L
and T̂L. Second, based on the previous point, we show that (t, q, i) ∈ M and i ≤ n0 implies

32

3.3 Reasoning in CTL∗ALC and CTLALC

that (t, i) ∈ S, that is, (t, i) is not deleted in any of the iterations of Algorithm 1. By definition
of M and Ŝ, the latter implies (1).
We proceed to show the first point. Let (t, q, j) ∈ M , we show it satisfies Conditions D̂L and
T̂L. If (t, q, j) ∈ Ŝ, we are done. Otherwise, there is a (t, q, `) ∈ Ŝ, for some ` ≥ j.

– We proceed to show that (t, q, j) satisfies Condition D̂L. Note that Condition D̂L of
Lemma 3.6 implies that if ∃r.C ∈ t, then there is a (t′, q′, `) ∈ Ŝ witnessing Condi-
tion D̂L for (t, q, `), that is, {C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′. Moreover, by definition of
M , (t′, q′, j) ∈ M . We use for (t, q, j), (t′, q′, j) as a witness of ∃r.C ∈ t. Therefore,
(t, q, j) satisfies Condition D̂L.

– We proceed to show that (t, q, j) satisfies Condition T̂L. Note that Condition T̂L of
Lemma 3.6 implies that there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting
run (T, r) of Aϕ on (T, τ) such that the following hold:

a) for some world w ∈ T with |w| = `, we have τ(w) = t and r(w) = q,

b) for all v ∈ T with |v| = j, there is a (t′, q′, ρ(j)) ∈ Ŝ with τ(v) = t
′ and r(v) = q′.

Now, let w = uv be such that |v| = j and let (T, τ ′) be the subtree of (T, τ) rooted at
u and (T, r′) be the subtree of (T, r) rooted at u. Since all states of Aϕ are initial states,
(T, r′) is an accepting run of Aϕ on (T, τ ′). By construction, τ ′(v) = t and r′(v) = q,
hence Condition T̂L(a) is satisfied. Also Condition T̂L(b) is satisfied by definition of M .

This finishes the proof of the first point. Now, we proceed to show the second point:

Claim. Let SM = {(t, i) | (t, q, i) ∈M}. (t, i) ∈ SM implies (t, i) ∈ S.
Proof of the claim. To show that (t, i) ∈ S, that is, (t, i) is not deleted by Algorithm 1, we need
to show that (t, i) satisfies the DL and TL Conditions at each step of Algorithm 1.
We show this by induction on the number of iterations of Algorithm 1. For the induction base,
i = 0, it holds since S0 = ttpn0

(T).
We show (t, i) is not deleted at the step Si, i > 0.

– Condition DL. Assume that (t, i) is deleted at step Si because it violates Condition DL,
that is, ∃r.C ∈ t and there is no (t′, i) ∈ Si such that t′ is witnesses for ∃r.C.

On the other hand, we know, by definition of SM , that there is a (t, q, i) ∈ M for some q
and, by the previous point, we moreover know that (t, q, i) satisfies Condition D̂L, that is,
there is a (t̂, q′, i) such that t̂ witnesses ∃r.C ∈ t.
Finally, note that, by definition of SM , (t̂, i) is also in SM . This leads to a contradiction,
therefore (t, i) does satisfy the DL condition in Si.

– Condition TL. Assume that (t, i) is deleted at step Si because it violates Condition TL,
that is, it violates one of points (a)-(c) from Condition TL.

On the other hand, we know, by definition of SM , that there is a (t, q, i) ∈ M for some q
and, by the previous point, we moreover know that (t, q, i) satisfies Condition T̂L, that is,

33

3 Branching Temporal Description Logics

there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ)
such that

1. for some w ∈ T with |w| = i, we have τ(w) = t and r(w) = q;

2. for each w ∈ T with |w| = j, there is a (t′, q′, ρ(j)) ∈ M with τ(w) = t′ and
r(w) = q′.

Again, by definition of SM , for all (t, q′, ρ(k)) used to witness points 1 and 2 above
(t′, ρ(k)) ∈ SM . Clearly, points (a) and (b) of Condition TL are satisfied. Finally, note
that (T, r) is an accepting run of Aϕ on (T, τ), then point (c) is also satisfied. This leads
to a contradiction, therefore (t, i) does satisfy Condition TL in Si.

This finishes the proof of the claim.
Now, by definition of Ŝ and the previous claim, we have that M = Ŝ. Therefore, by definition
of M , the first point of this lemma holds.

2. Assume Ti = Ti+1, and let

M = Ŝ ∪ {(t, q, j) | (t, q, i) ∈ Ŝ and i ≤ j ≤ n0}.

As in the previous case, it is enough to check that all elements of M satisfy Conditions D̂L and
T̂L. Then, one can similarly proof that (t, q, i) ∈M implies that (t, i) is not deleted in any of the
iterations of Algorithm 1. As in the previous case, by definition of Ŝ and M , the latter implies
(2).
We proceed to prove that M satisfies Conditions D̂L and T̂L. For triples (t, q, j) ∈ Ŝ, we are
done. We next show the conditions hold for triples in M\Ŝ.

– We proceed to show Condition D̂L. Let (t, q, j) ∈ M\Ŝ. By definition of M , there is
a (t, q, i) ∈ Ŝ for some i ≤ j. Note that, by Lemma 3.6, Condition D̂L implies that if
∃r.C ∈ t, then there is some (t′, q′, i) ∈ Ŝ such that {C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′.
By definition of M , (t′, q′, j) ∈ M . Then, we use for (t, q, j), (t′, q, j) as a witness of
∃r.C ∈ t. Therefore, (t, q, j) satisfies Condition D̂L.

– We proceed to show that Condition T̂L holds. We show that: (†) for every (t, q, j) ∈M\Ŝ
there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ)
such that the following hold:

a) for some world w ∈ T with |w| = j, we have τ(w) = t and r(w) = q,

b) for all v ∈ T with |v| = `, there is a (t′, q′, ρ(`)) ∈ Ŝ with τ(v) = t
′ and r(v) = q′.

The proof is by induction on i ≤ j. The cases j = i and j = i + 1 are trivial. For
the induction step, assume that (†) holds for every (t, q, k) ∈ M for all k < j. Fix an
arbitrary (t, q, j) ∈ M . By definition of M , (t, q, j−1) ∈ M ; moreover, by I.H., there is
a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ) such that
the following hold:

34

3.3 Reasoning in CTL∗ALC and CTLALC

a) there is a world w ∈ T with |w| = j − 1 and τ(w) = t and r(w) = q,

b) for all v ∈ T with |v| = `, there is a (t′, q′, ρ(`)) ∈ Ŝ with τ(v) = t
′ and r(v) = q′.

Now, letw = u·c for some c ∈ N and τ(u) = t
′ and r(u) = q′. Note that since |u| = j−2,

by definition of M , we have (t′, q′, j − 2) ∈M and (t′, q′, j − 1) ∈M . Furthermore, by
I.H., there is a 2cn-labeled]E(T)-ary tree (T, τ ′) and an accepting run (T, r′) of Aϕ on
(T, τ ′) such that the following hold:

a) there is a world v ∈ T with |v| = j − 1 such that τ ′(v) = t
′ and r′(v) = q′,

b) for all v ∈ T with |v| = `, there is a (t′′, q′′, ρ(`)) ∈ Ŝ with τ(v) = t
′′ and

r(w) = q′′.

We define the 2cn-labeled]E(T)-ary tree (T, τ ′′) (and the run (T, r′′), respectively) to be
the tree that is obtained from (T, τ ′) (from (T, r′), respectively) by replacing the subtree
rooted at v by the subtree of (T, τ) (of (T, r), respectively) rooted at u. Since τ ′(v) =
τ(u) and r′(v) = r(u), (T, r′′) is an accepting run of Aϕ on (T, τ ′′). By construction,
τ ′′(v·c) = t, r′′(v·c) = q and |v·c| = j. Thus, (T, τ ′′) and (T, r′′) satisfy condition a).
By construction, they also satisfy condition b).

Clearly, since all the elements of M satisfy (†), then they also satisfy T̂L.
o

We define the infinite expansion Ŝω of Ŝ as {(t, q, i) | (t, q, ρ(i)) ∈ Ŝ}. Further, we derive the
Conditions D̂L′ and T̂L′ from D̂L and T̂L by replacing ρ(i) by i in T̂L.

Now, we are in the position of showing with the help of Lemma 3.7 that the expansion Ŝω of Ŝ
satisfies the required conditions.

Lemma 3.8. Every (t, q, i) ∈ Ŝω satisfies Conditions D̂L′ and T̂L′.

Proof. Since |T0| ≤ n0, Lemma 3.7 implies that Tn0 = ∅ or Tn0 = Tn0−1. In the first case
Ŝω = ∅ and we are done.

For the case Tn0 = Tn0−1, we show by induction on i ≥ 0 that all triples (t, q, n0 + i− 1) ∈ Ŝω
satisfy Conditions D̂L′ and T̂L′. The induction base for i = 0 and i = 1 is trivial. For the
induction step, let

M = {(t, q, i) | (t, q, `) ∈ Ŝω ∧ ` ≤ i}

and assume that Conditions D̂L′ and T̂L′ are satisfied by all (t, q, j) ∈M for j < i.

For the induction step, we next show that Conditions D̂L′ and T̂L′ are satisfied by all triples of
the form (t, q, i) ∈M .

– We proceed to show that Condition D̂L′ holds. Let (t, q, i) ∈ M . By definition of
M , there is a (t, q, `) ∈ M , for some ` ≤ i. Note that, by I.H., (t, q, `) satisfies

35

3 Branching Temporal Description Logics

the D̂L′ condition, that is, if ∃r.C ∈ t then there is some (t′, q′, `) ∈ M such that
{C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′. By definition of M , (t′, q′, i) ∈ M . Then, we use
for (t, q, i), (t′, q′, i) as a witness of ∃r.C ∈ t. Therefore, (t, q, i) satisfies Condition D̂L′.

– We proceed to show that Condition T̂L′ holds. We show that: (†) for every triple of the
form (t, q, i) ∈M there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r)
of Aϕ on (T, τ) such that the following hold:

a) for some world w ∈ T with |w| = i, we have τ(w) = t and r(w) = q,

b) for all v ∈ T with |v| = `, there is a (t′, q′, `) ∈ Ŝω with τ(v) = t
′ and r(v) = q′.

Fix an arbitrary (t, q, i) ∈ M . By definition of M , (t, q, i−1) ∈ M ; moreover, by I.H.,
there is a 2cn-labeled]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ)
such that the following hold:

a) there is a world w ∈ T with |w| = i− 1 and τ(w) = t and r(w) = q,

b) for all v ∈ T with |v| = `, there is a (t′, q′, `) ∈ Ŝω with τ(v) = t
′ and r(v) = q′.

Now, letw = u·c for some c ∈ N and τ(u) = t
′ and r(u) = q′. Note that since |u| = i−2,

by definition of M , we have (t′, q′, i − 2) ∈ M and (t′, q′, i − 1) ∈ M . Furthermore, by
I.H., there is a 2cn-labeled]E(T)-ary tree (T, τ ′) and an accepting run (T, r′) of Aϕ on
(T, τ ′) such that

a) there is a world v ∈ T with |v| = i− 1 such that τ ′(v) = t
′ and r′(v) = q′,

b) for all v ∈ T with |v| = `, there is a (t′′, q′′, `) ∈ Ŝ with τ(v) = t
′′ and r(w) = q′′.

We define the 2cn-labeled]E(T)-ary tree (T, τ ′′) (and the run (T, r′′), respectively) to be
the tree that is obtained from (T, τ ′) (from (T, r′), respectively) by replacing the subtree
rooted at v by the subtree of (T, τ) (of (T, r), respectively) rooted at u. Since τ ′(v) =
τ(u) and r′(v) = r(u), (T, r′′) is an accepting run of Aϕ on (T, τ ′′). By construction,
τ ′′(v·c) = t, r′′(v·c) = q and |v·c| = i. Thus, (T, τ ′′) and (T, r′′) satisfy condition a).
By construction, they also satisfy condition b).

o

Lemma 3.7 provides us with the right choice of n0. We show the first part of Lemma 3.4
asserting that Property (∗) holds for n0 = |Q| · |tp(T)|.

Lemma 3.9 (Property (∗)). Let n0 = |Q| · |tp(T)|. Then, if S is the result of Algorithm 1 and
(t, n0) ∈ S then (t, n0 + `) is realizable in S, for any ` ≥ 0.

Proof. We define Conditions DL′ and TL′, as variants of Conditions DL and TL from Defini-
tion 3.7, by replacing ρ(i) in TL with i. Recall that Sω is defined as follows:

36

3.3 Reasoning in CTL∗ALC and CTLALC

Sω = S ∪ {(t,m) | (t, n0) ∈ Ŝ ∧m>n0}.

Let (t, n0) ∈ S. Since (t, n0) satisfies Condition TL, by the second condition of Ŝ’s definition
(cf. Definition 3.8), there is some q such that (t, q, n0) ∈ Ŝ. Now, by Lemma 3.8, for every
` ≥ 0, (t, q, n0 + `) ∈ Ŝω satisfies Conditions D̂L′ and T̂L′. Based on this, we show the
following:

– (t, q, n0 + `) satisfies the D̂L′ condition. Note that there is some (t′, q′, n0 + `) ∈ Ŝω

witnessing the Condition D̂L
′

for (t, q, n0 + `), that is, if ∃r.C ∈ t, then {C} ∪ {¬D |
¬∃r.D ∈ t} ⊆ t′. Now, by definition of Ŝω, (t′, q′, n0) ∈ Ŝ this implies that (t′, n0) ∈ S.
Furthermore, by definition of Sω, (t′, n0 + `) ∈ Sω. We can use then for (t, n0 + `),
(t′, n0 + `) as a witness of ∃r.C ∈ t. Therefore, (t, n0 + `) satisfies Condition DL′.

– We also have that (t, q, n0 + `) satisfies the T̂L′ condition, that is, there is a 2cn-labeled
]E(T)-ary tree (T, τ) and an accepting run (T, r) of Aϕ on (T, τ) such that

1. for some w ∈ T with |w| = n0 + `, we have τ(w) = t and r(w) = q;

2. for each w ∈ T with |w| = j, there is a (t′, q′, j) ∈ Ŝω with τ(w) = t′ and
r(w) = q′.

Now, by definition of Ŝω, each (t′, q′, j) ∈ Ŝω witnessing condition 2 above for a world
w with |w| = j > n0 belongs to Ŝ (trivially, this is also the case for the witnesses of
condition 2 for a world w with |w| = j ≤ n0), implying that (t′, n0) ∈ S. Note that in
particular (t, n0) ∈ S. Hence, (T, τ) satisfies points (a)−(c) of Condition TL′. Therefore,
(t, n0 + `) satisfies Condition TL′.

o

Now, we can proceed to proof the second part of Lemma 3.4, that is, the correctness of Algo-
rithm 1.

Lemma 3.10. When choosing n0 = |Q| · |tp(T)|, Algorithm 1 returns satisfiable iff C is satisfi-
able w.r.t. T .

Proof. “⇒”: Let S be the result of the type elimination procedure. In the following fix k =
]E(T). Due to Lemma 3.9, for every (t, i) ∈ Sω there is a 2cn-labeled k-ary tree (T, τt,i)
that is a model of ϕ from condition 2(c) of Definition 3.7. We proceed to define the temporal
interpretation I = (∆, T, {Iw}w∈T) by taking ∆ = Sω and

AI,w = {(t, i) | A ∈ τt,i(w)};
rI,w = {((t, i), (t′, j)) | X¬∃r.C ∈ τt,i(w) implies X¬C ∈ τt′,j(w)}.

For a temporal type (t, i), we write C ∈ (t, i) if C ∈ t.
Claim. For every C ∈ cl(T), w ∈W and (t, i) ∈ ∆, we have that

37

3 Branching Temporal Description Logics

(t, i) ∈ CI,w iff XC ∈ τt,i(w),

for every π ∈ Paths(w) and path concept C, we have that

(t, i) ∈ CI,π iff (T, τt,i), π |= C

Proof of the claim. The proof is by a simultaneous induction on the structure of C and C. The
induction start, where C is a concept name is immediate by the definition of I. For the induction
step we distinguish the following cases.

– C = ¬D “if:” (t, i) ∈ ¬DI,w, that is, (t, i) 6∈ DI,w. Now, by I.H., XD 6∈ τt,i(w).
Furthermore, by Condition TL′(c), (T, τt,i), w |= ¬D. Finally, again by Condition TL′(c),
X¬D ∈ τt,i(w).

“only if:” X¬D ∈ τt,i(w), by Condition TL′(c), (T, τt,i), w 6|= D. Now, by Condition
TL′(c), XD 6∈ τt,i(w). By, I.H., (t, i) 6∈ DI,w. Therefore, (t, i) ∈ (¬D)I,w.

– C = D u E “if:” (t, i) ∈ (D u E)I,w, that is, (t, i) ∈ DI,w and (t, i) ∈ EI,w. By
I.H., XD ∈ τt,i(w) and XE ∈ τt,i(w). Now, by Condition TL′(c), (T, τt,i), w |= D
and (T, τt,i), w |= E. So, (T, τt,i), w |= D ∧ E. Once again, by Condition TL′(c),
(T, τt,i), w |= XDuE . Therefore, XDuE ∈ τt,i(w).

“only if:” XDuE ∈ τt,i(w), by Condition TL′(c), we have that (T, τt,i), w |= D ∧ E,
that is, (T, τt,i), w |= D and (T, τt,i), w |= E. Once again, by Condition TL′(c), we
have that XD, XE ∈ τt,i(w). Now, by I.H., (t, i) ∈ DI,w and (t, i) ∈ EI,w. Therefore,
(t, i) ∈ (D u E)I,w.

– C = ∃r.C. “if” Follows from the fact that τt,i(w) = t′ for some (t′, |w|) ∈ Sω. Therefore,
by definition of t′, X∃r.C ∈ τt,i(w).

“only if:” X∃r.C ∈ τt,i(w) = t′ then ∃r.C ∈ t′. Now, since (t′, |w|) ∈ Sω then it satisfies
Condition DL′, that is, there is a (t′′, |w|) such that {C} ∪ {¬E | ¬∃r.E ∈ t′} ⊆ t′′. Note
that, by definition of τt′′,j = t′′ for some j, {X¬E | X¬∃r.E ∈ t′} ⊆ τt′′,j(w). Then, by
definition of I, ((t, i)(t′′, |w|)) ∈ rI,w. Furthermore, by I.H., (t′′, |w|) ∈ CI,w. Therefore,
(t, i) ∈ (∃r.C)I,w.

– C = EC “if:” (t, i) ∈ (EC)I,w. This implies that, by semantics, (t, i) ∈ CI,π for some
π ∈ Paths(w). Now, by the second point of the claim, (T, τt,i), π |= C. Therefore, by
semantics, (T, τt,i), w |= EC. Since, (T, τt,i) |= ϕ from condition 2(c), then XEC ∈
τt,i(w).

“only if:” XEC ∈ τt,i(w) = t′. By Condition TL′(c) we have that (T, τt,i), w |= EC,
that is, (T, τt,i), π |= C for some π ∈ Paths(w). Now, by the second point of the claim,
(t, i) ∈ CI,π. Therefore, (t, i) ∈ (EC)I,w.

This finishes the proof of the first point of the claim.

We proceed to show the second point of the claim:

38

3.3 Reasoning in CTL∗ALC and CTLALC

– C = D with D a state concept. “if:” (t, i) ∈ DI,π[0]. Note that π[0] = w, then, by
the first point of the claim, (T, τt,i), w |= D.

“only if:” (T, τt,i), π[0] |= D. By Condition TL′(c), XD ∈ τt,i(π[0]). Note that
π[0] = w, then, by first point of the claim, (t, i) ∈ DI,w.

– C = ¬D. “if:”(t, i) ∈ ¬DI,π, that is, (t, i) 6∈ DI,π. By I.H. (T, τ(t,i)), π 6|= D.
Therefore, (T, τt,i), π |= ¬D.

“only if:” (T, τt,i), π 6|= D. By I.H., we have that (t, i) 6∈ (D)I,π. Therefore, (t, i) ∈
(¬D)I,π.

– C = C1 u C2, similar to the analogous case for state concepts.

– C =©D. “if:” (t, i) ∈ (©D)I,π, that is, (t, i) ∈ DI,π[1]. Now, by I.H., (T, τt,i), π[1] |=
D. Therefore, by semantics, (T, τt,i), π |=©D.

‘only if:” (T, τt,i), π |= ©D. Hence, (T, τt,i), π[1] |= D. Now, by I.H., (t, i) ∈
DI,π[1]. Therefore, by semantics, (t, i) ∈ (©D)I,π.

– C = 2D. “if:” (t, i) ∈ (2D)I,π, that is, for all j ≥ 0, (t, i) ∈ DI,π[j..]. Now, by
I.H., (T, τt,i), π[j..] |= D. Therefore, by semantics, (T, τt,i), π |= 2D.

“only if:” (T, τt,i), π |= 2D. This means that for all j ≥ 0, (T, τt,i), π[j..] |= D.
Now, by I.H., for all j ≥ 0, (t, i) ∈ DI,π[j..]. Therefore, by semantics, (t, i) ∈
2DI,π.

– C = C1UC2. “if” ∃j ≥ 0.((t, i) ∈ CI,π[j..]
2 ∧ ∀0 ≤ k < j.(t, i) ∈ CI,π[k..]

1). Now,
by I.H., (T, τt,i), π[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τt,i), π[k..] |= C1). Therefore,
(T, τt,i), π |= (C1UC2).

“only if:” ∃j ≥ 0.((T, τt,i), π[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τt,i), π[k..] |= C1).
Now, by I.H., (t, i) ∈ CI,π[j..]

2 ∧ ∀0 ≤ k < j.(t, i) ∈ CI,π[k..])
1 . Therefore, (t, i) ∈

(C1UC2)I,π.

This finishes the proof of the second point of the claim.

Now, by definition, CT ∈ (t, i) for all (t, i) ∈ Sω and XCT ∈ τt,i(w) for all w ∈ W . By
the previous claim, (t, i) ∈ CI,w

T for all w ∈ W . Hence, I is a model of T . Finally, there
is a (t, 0) such that C ∈ t. By definition of I and the claim, (t, 0) ∈ CI,ε.

“⇐”: Let I = (∆, T, {Iw}w∈W) a model ofC and T . Define for every d ∈ ∆ the 2cl(T)-labeled
tree (T, τd) by

τd(w) = {C ∈ cl(T) | d ∈ CI,w}
and the 2cn-labeled tree τd by τd(w) = τd(w) for all w ∈ T . Now define

S = {(τd(w), i) | w ∈ T, d ∈ ∆, i ≤ ρ(|w|)}.

Now, we check that every (t, i) ∈ S is realizable in S, that is, we need to verify that all elements
of S satisfy the DL and TL conditions from Definition 3.7.

39

3 Branching Temporal Description Logics

– Condition DL is immediately satisfied by definition of S.

– We proceed to show Condition TL. Let (t, i) ∈ S, then there is some w ∈ T , d ∈ ∆ such
that t = τd(w) and i ≤ ρ(|w|). Now, let w = uv with |v| = i (possible, since i ≤ ρ(|w|)
and thus i ≤ |w|). It can be easily seen that the subtree (T, τ ′d) of (T, τd) rooted at u
satifies precisely the requirements of Condition TL for (t, i).

– Condition (a) is satisfied by definition of (T, τ ′d).

– For condition (b) note that for all v ∈ T with |v| = j, by definition of S, (τd(v), ρ(j)) ∈
S. So, condition (b) is satisfied.

– For condition (c), note that, by definition of τd, C ∈ τd(w) iff XC ∈ τd(w) for all
w ∈ T . Moreover, by the following claim, we have that C ∈ τd(w) implies that
(T, τd), w |= C. Therefore, ϕ from TL(c) is satisfied.

Claim. For each C ∈ cl(T), w ∈W and d ∈ ∆, we have that

C ∈ τd(w) implies (T, τd), w |= C,

for every π ∈ Paths(w) and path concept C, we have that

d ∈ CI,π implies (T, τd), π |= C.

Proof of the claim. The proof is by a simultaneous induction on the structure of C
and C. For concept names it follows trivially.

– C = ¬C. Since ¬C ∈ τd(w), by definition of τd, d ∈ (¬C)I,w. Hence,
d 6∈ CI,w. Now, by I.H., (T, τd), w 6|= C. Hence, (T, τd), w |= ¬C.

– C = CuD. Since (CuD) ∈ τd(w), by definition of τd, d ∈ (CuD)I,w. Hence,
d ∈ CI,w and d ∈ DI,w. Now, by I.H., (T, τd), w |= C and (T, τd), w |= D.
Therefore, (T, τd), w |= C ∧D.

– C = EC. Since (C u D) ∈ τd(w), by definition of τd, d ∈ (EC)I,w. Hence,
there is a π ∈ Paths(w) such that d ∈ CI,π. Now, by the second point of the
claim, (T, τd), π |= C. Therefore, (T, τd), w |= EC.

This finishes the proof of the first point of the claim.

We proceed to prove the second point of the claim.

– C = D with D a state concept. We have that d ∈ DI,π[0]. Note that π[0] = w,
then by the first point of the claim (T, τd), w |= D.

– C = ¬D. We have that d ∈ ¬DI,π, that is, d 6∈ DI,π. By I.H. (T, τd), π 6|= D.
Therefore, (T, τd), π |= ¬D.

– C = C1 u C2, similar to the analogous case for state concepts.

– C = ©D. We have that d ∈ (©D)I,π, that is, d ∈ DI,π[1]. Now, by I.H.,
(T, τd), π[1] |= D. Therefore, by semantics, (T, τd), π |=©D.

40

3.4 Reasoning in Fragments of CTLEL

– C = 2D. We have that d ∈ (2D)I,π, that is, for all j ≥ 0, d ∈ DI,π[j..]. Now,
by I.H., (T, τd), π[j..] |= D. Therefore, by semantics, (T, τd), π |= 2D.

– C = C1UC2. We have that ∃j ≥ 0.(d ∈ CI,π[j..]
2 ∧ ∀0 ≤ k < j.(t, i) ∈

CI,π[k..]
1). Now, by I.H., (T, τd), π[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τd), π[k..] |=
C1). Therefore, (T, τd), π |= (C1UC2).

This finishes the proof of the claim.

Now, one can easily see by induction on i that S ⊆ Si for 0 ≤ i ≤ m, where S0, . . . , Sm is
the sequence computed by Algorithm 1, that is, none of the elements of S is deleted in any of
the iterations of Algorithm 1. Since I is a model of C, there is a (t, 0) ∈ S with C ∈ t. Thus,
Algorithm 1 returns satisfiable.

o

We have not yet said how NBTAs can be used to verify Condition TL from Definition 3.7. The
idea is to construct three NBTAs, one for each of the parts (a) to (c), build the intersection NBTA
which accepts precisely the 2cn-trees required for Condition 2, and then to perform an emptiness
test. For part (c), we can simply use Aϕ. Moreover, it is easy to define an NBTA At,i with
i ≤ n0 states that verifies the condition in part (a), and the same is true for part (b) and an NBTA
ASj with n0 states.

Now, it remains to show that the algorithm runs in double exponential time in the case of
CTL∗ALC and in exponential time for CTLALC . From Theorem 3.3 and Lemma 3.7, we have
that the bound n0 is in O(22poly(|T |)) for CTLALC and in O(2poly(|T |)) for CTL∗ALC . The number
of steps of the type elimination procedure is bounded by 2O(|T |)·n0. The number of states inAϕ
is n0 and thus it remains to recall that the intersection of a constant number of NBTAs can be
constructed with only a polynomial blowup and that emptiness can be decided in quadratic time.

Theorem 3.11. Concept satisfiability w.r.t. TBoxes for CTLALC is EXPTIME-complete and
2EXPTIME-complete for CTL∗ALC .

3.4 Reasoning in Fragments of CTLEL

We continue our investigation by studying the computational complexity of fragments of the
combination of CTL with the lightweight DL EL. Remarkably we identify a polytime fragment
of CTLEL. Note that linear-time TDLs based on EL and LTL are computationally not very
attractive as they turn out to be of the same complexity as the corresponding combination of
ALC and LTL [7]. Moreover, we show that most of the remaining candidate fragments turn
out to be hard for PSPACE or EXPTIME. The EXPTIME lower bounds are established using
well-known techniques for extensions of EL based on the notion of non-convexity of a logic.

Formally, CTLEL is the fragment of CTLALC that disallows the constructor ¬ (and thus also the
abbreviations C tD and ∀r.C). CTLEL concepts are formed by the following grammar:

C,D ::= > | A | C uD | ∃r.C | ∗C | PCUD | PCRD

41

3 Branching Temporal Description Logics

where A ranges over NC, r ranges over NR, P is either an existential path quantifier E or a
universal path quantifier A, and ∗ ∈ {E3,A3,E2,A2,E©,A©}. As an example, consider
the following CTLEL-TBox:

PhDStudent v E3(Phd uE3∃worksFor.Uni)
∃worksFor.Uni v E3E2Professor

Intuitively, the first CI states that each student has the possibility of eventually obtaining a PhD
degree and from that point possibly work in the future for a university. The second CI, states
that each worker of the university has the possibility of eventually and lastingly becoming a
professor.

Because of the absence of negation, satisfiability in CTLEL is trivial in the sense that every
concept is satisfiable w.r.t. every TBox. We therefore consider subsumption as the central rea-
soning problem for CTLEL: a concept D subsumes a concept C w.r.t. a CTLEL TBox T , if
CI ⊆ DI for every temporal interpretation I that is a model of T . For example, the above
TBox implies that every PhD student has the possible future of becoming a professor, formally
T |= PhDStudent v E3Professor.

Now, with the aim of identifying a computationally efficient branching-time TDL, we consider
various fragments of CTLEL obtained by admitting sets of temporal operators from the set

{P©,P3,P2,PU}.

For uniformity, we denote fragments of CTLEL by putting the available temporal operators in
superscript; for example, CTLE3,E2

EL is CTLEL with only the operators E3 and E2.

3.4.1 A tractable Fragment of CTLEL

We identify the tractable branching-time TDL CTLE3
EL . In particular, we show that subsumption

in CTLE3
EL is in PTIME by reducing it to subsumption in the extension EL++ of EL.

In what follows we assume that the input TBox is in the following normal form. A basic concept
is a concept of the form >, A,∃r.A,E3A where A is a concept name. Now, every CI in the
input TBox is required to be of the form

X1 u . . . uXn v X

with X1, . . . , Xn, X basic concepts. Every TBox in CTLE3
EL can be transformed into this nor-

mal form in polytime such that (non-)subsumption between the concept names that occur in
the original TBox is preserved, cf. [12]. We proceed to present a straightforward reduction of
CTLE3

EL to EL++.

First, note that EL++ allows to specify properties on roles, such as reflexivity and transitiv-
ity [13]. We introduce a fresh role name succ3 to represent the ‘going to the future’ relation,
and require that

42

3.4 Reasoning in Fragments of CTLEL

C1 Let d ∈ ∆i, w ∈ Wi such that πi(d,w) = e and (e, f) ∈ rI for some
r ∈ NR. Then, add a fresh element d′ to ∆i, and set πi(d′, w) := f .

C2 Let d ∈ ∆i, w ∈Wi such that πi(d,w) = e and (e, f) ∈ succI3. Then, add
a fresh world w·j to Wi, and set πi(d,w′) := f .

C3 Let d ∈ ∆i and w0 . . . wn ∈Wi such that for all 0≤ j <n, πi(d,wj) is not
defined and πi(d,wn) defined. Then, for all j <n set πi(d′, wj) :=πi(d

′, wk).

C4 Let d ∈ ∆i and πi(d,w·j) is not defined and πi(d,w) defined. Then, set
πi(d,w·j) :=πi(d,w).

Figure 3.1: Rules for the induction step of the construction of I

succ3 is transitive, reflexive and total.

Now, we obtain an EL++-TBox T ′ from a CTLE3
EL -TBox T by (1) replacing every subconcept

E3A with ∃succ3.A and (2) stating the transitivity, reflexivity and totality of succ3.

Lemma 3.12. Let A,B be two concept names occurring in T . Then, T |= A v B iff T ′ |=
A v B.

Proof. ⇒) We show the contrapositive, that is, T ′ 6|= A v B, then T 6|= A v B. T ′ 6|= A v B
if and only if there is a model I of T ′ such that there is a d ∈ AI , but d 6∈ BI . Then, we
construct a temporal model I = (∆, T, {Iw}w∈W) of T based on I such that d ∈ AI,w, but
d 6∈ BI,w for some w. From now on, w.l.o.g. we assume that I is tree shaped, and we use ·† to
denote the reduction introduced above.
We define sequences ∆0,∆1, . . ., W0,W1, . . . and partial mappings π0, π1, . . . with πi : ∆i ×
Wi → ∆I . We obtain our desired sets ∆,W in the limit.

To start the construction of I, set

− ∆0 := {d0},
− W0 := {ε},
− π0(d0, ε) := d, with d the root of I.

For the induction step, we start by setting ∆i = ∆i−1,Wi =Wi−1and πi =πi−1, and then pro-
ceed according to the rules in Figure 3.1.

Finally, set ∆ :=
⋃
i≥0 ∆i, W :=

⋃
i≥0Wi. The temporal interpretation I = (∆, T, {Iw}w∈W)

is then given by:

43

3 Branching Temporal Description Logics

AI,w = {d ∈ ∆ | π(d,w) ∈ AI};
rI,w = {(d, d′) ∈ ∆×∆ | (π(d,w), π(d′, w)) ∈ rI}.

Claim: For all d, e ∈ ∆I, w ∈W and basic concepts C we have:

– d ∈ CI,w iff π(d,w) ∈ (C†)I ;

– (d, e) ∈ rI,w iff (π(d,w), π(e, w)) ∈ rI .

Proof of the Claim. We prove the statement by structural induction.

– C =A ∈ CN follows from definition of I.

– C = CuD. “if” d ∈ (C u D)I,w, that is, d ∈ CI,w and d ∈ DI,w. Now, by I.H.,
π(d,w) ∈ CI and π(d,w) ∈ DI . Therefore, π(d,w) ∈ (C uD)I . The other direction is
analogous.

– C =∃r.A. “if:” d ∈ (∃r.A)I,w, that is, there exists a e ∈ ∆ such that (d, e) ∈ rI,w and
e ∈ AI,w. Now, by I.H, π(e, w) ∈ AI . Moreover, by the second point of the claim,
(π(d,w), π(e, w)) ∈ rI . Therefore, π(d,w) ∈ (∃r.A)I .

“only if”: π(d,w) ∈ (∃r.A)I , that is, there is e ∈ ∆I such that (π(d,w), e) ∈ rI and
e ∈ AI . Now, by rule C1, there exists a d′ ∈ ∆ such that π(d′, w) = e. By I.H., d′ ∈ AI,w

and, by the second point of the claim, (d, d′) ∈ rI,w. Therefore, d ∈ (∃r.A)I,w.

– C =E3A. “if:” Let π(d,w) ∈ C†. Hence, π(d,w) ∈ (∃succ3.A)I , that is, there is
e ∈ ∆I such that (π(d,w), e) ∈ succI3. By rule C2, there exists w·j ∈ Wi such that
π(d,w·j) = e. Now, by I.H., π(d,w·j) ∈ AI,w·j . Therefore, π(d,w) ∈ (E3A)I,w.

“only if:” Let d ∈ (E3A)I,w, that is, there exists a path π=w0 . . . wn . . . such that
w=w0 and d ∈ AI,wn . To show that (π(d,wi), π(d,wi+1)) ∈ succI3 for 0≤ i<n, and
then by transitivity (π(d,w0), π(d,wn)) ∈ rI . Let i be arbitrary from [0, . . . , n]. First
note that no both π(d,wi) and π(d,wi+1)) are defined by rule C1. Hence, we distinguish
the following cases:

– π(d,wi+1) was defined by rule C2, then by definition (π(d,wi), π(d,wi+1)) ∈
succI3.

– π(d,wi+1) was defined by rule C3, then π(d,wi) = π(d,wi+1). Since succ3 is
reflexive, (π(d,wi), π(d,wi+1)) ∈ succI3.

– π(d,wi+1) was defined by rule C4. Analogous to the previous case.

By I.H., π(d,wn) ∈ AI and, by transitivity of succ3, (π(d,w0), π(d,wn)) ∈ succI3.
Therefore, π(d,w) ∈ (∃succ3.A)I .

It remains to show that I |= T . Let X1 u . . . u Xn v X ∈ T . Assume d ∈ XI,w
i for

1≤ i≤n. By our claim, π(d,w) ∈ (X†i)
I . Since I |= T ′ and X†1 u . . . u X†n v X† ∈ T ,

we also have π(d,w) ∈ (X†)I . Applying again our claim, we have that d ∈ XI,w. Obviously,
d ∈ AI,w\BI,w. Therefore, T 6|= A v B.

44

3.4 Reasoning in Fragments of CTLEL

“⇐:” We show the contrapositive, that is, if T 6|= A v B then T ′ 6|= A v B. Let I =
(∆, T, {Iw}w∈W) be a model of T such that d ∈ AI,w\BI,w for some d ∈ ∆ and w ∈ W . We
construct a model J of T ′ such that d′ ∈ AJ \BJ for some d′ ∈ ∆J .

To construct J , we define ∆J =W×∆ and ·J as follows:

AJ = {(w, d) | d ∈ AI,w};
rJ = {((w, d), (w, d′)) | (d, d′) ∈ rI,w};

succJ3 = clrt({((w, d), (w·i, d)) | d ∈ ∆ ∧ w,w·i ∈W});

where clrt is the transitive and reflexive closure of E where T = (W,E).

Claim. For all (w, d) ∈ ∆J and basic concepts C we have that

(w, d) ∈ (C†)J iff d ∈ CI,w

Proof of the claim. The proof of the claim is by induction on the structure of C. The induction
start, where C is a concept name follows directly from the definition of J .

– C = CuD “if:” (w, d) ∈ (C u D)J , that is, (w, d) ∈ CJ and (w, d) ∈ DJ . Now, by
I.H., d ∈ CI,w and d ∈ DI,w. Therefore, d ∈ (C uD)I,w.

“only if:” d ∈ (C uD)I,w, that is, d ∈ CI,w and d ∈ DI,w. Now, by I.H., (w, d) ∈ CJ
and (w, d) ∈ DJ . Therefore, (w, d) ∈ (C uD)J .

– C = ∃r.A “if:” (w, d) ∈ (∃r.A)J , that is, there is a (w, d′) ∈ ∆J with ((w, d), (w, d′)) ∈
rJ and (w, d′) ∈ AJ . By construction, (d, d′) ∈ rI,w and, by I.H, d′ ∈ AI,w. Therefore,
d ∈ (∃r.A)I,w.

“only if:” d ∈ (∃r.A)I,w, that is, there is a d′ ∈ ∆ with (d, d′) ∈ rI,w and d′ ∈ AI,w.
By construction, ((w, d), (w, d′)) ∈ rJ and, by I.H., (w, d′) ∈ AJ . Therefore, (w, d) ∈
(∃r.A)J .

– C = E3A Hence C† = ∃succ3.A. “if:” (w, d) ∈ (∃succ3.A)J , that is, there is
(w′, d′) ∈ ∆J with ((w, d), (w′, d)) ∈ succJ and (w′, d) ∈ AJ . By construction, w′

is a successor of w, and by I.H., d′ ∈ AI,w′ . Therefore, d ∈ (E3A)I,w.

“only if:” d ∈ (E3A)I,w, that is, there is a path π = w0 . . . wn . . . such that w = w0

and d ∈ AI,wn . By construction, ((w, d), (wn, d)) ∈ succJ3 , and by I.H., (wn, d) ∈ AJ .
Therefore, (w, d) ∈ (∃succ3.A)J .

It remains to show that I |= T ′. Let X†1 u . . . u X†n v X† ∈ T ′. Assume (w, d) ∈ (X†i)
J

for 1≤ i≤n. By our claim, d ∈ (X†i)
I,w. Since I |= T and X1 u . . . u Xn v X ∈ T , we

also have d ∈ (X†)I,w. Applying again our claim, we have that (w, d) ∈ XJ . Obviously,
(w, d) ∈ AJ \BJ . Therefore, T ′ 6|= A v B. o

45

3 Branching Temporal Description Logics

Since concept subsumption w.r.t. TBoxes for EL++ can be decided in PTIME [12], we obtain
the desired result.

Theorem 3.13. Concept subsumption w.r.t. TBoxes for CTLE3
EL can be decided in PTIME.

We note that this is the first temporal description logic based on EL that turns out to admit PTIME

reasoning; see also [7]. While the expressive power of CTLE3
EL is clearly rather restricted, we

believe that it might still be sufficient for some applications.

3.4.2 Intractable Fragments of CTLEL

We show that CTLE3
EL is a maximal tractable fragment of CTLALC in the sense that adding further

temporal operators destroys tractability. We start with the extension CTLE3,A2
EL and prove that

subsumption becomes PSPACE-hard by a reduction of QBF validity.

Theorem 3.14. Concept subsumption w.r.t. TBoxes for CTLE3,A2
EL is PSPACE-hard.

Proof. The proof is by reduction of the validity problem for quantified Boolean formulas which
is PSPACE-complete [68]. A quantified Boolean formula (QBF) Ψ is of the form

Ψ = Q1x1 . . . Qnxn.ϕ

where Qi ∈ {∃,∀} for 1 ≤ i ≤ n and ϕ is a Boolean formula with only variables x1, . . . , xn.
The validity of QBFs is defined inductively:

∃x.Ψ is valid if Ψ[x/true] or Ψ[x/false] is valid.

∀x.Ψ is valid if Ψ[x/true] and Ψ[x/false] are valid.

Given a QBF Ψ, our aim is to construct in polynomial time a CTLE3,A2
EL TBox TΨ such that for

certain concept names A0, B0, we have TΨ |= A0 v B0 iff Ψ is valid. We use the following
signature:

– concepts names Xϕ for every subformula ϕ of Ψ, In particular, Xχ∧θ for all subformulas
χ ∧ θ and Xχ∨θ for all subformulas χ ∨ θ.

– concept names Xxi and X¬xi for each variable xi.

– concept names L1, . . . , Ln to distinguish the levels of a binary tree of depth n.

We begin by constructing a binary tree of depth n rooted at L0 representing all possible evalua-
tions of {x1, . . . , xn}.

Li v E3(Li+1 uXxi+1) uE3(Li+1 uX¬xi+1)

The truth value of a variable is kept through all descendants.

Xxi v A2Xxi for all 0 ≤ i ≤ n
X¬xi v A2X¬xi for all 0 ≤ i ≤ n

46

3.4 Reasoning in Fragments of CTLEL

We evaluate the subformulas in each leaf of the tree.

Ln uXχ uXθ v Xχ∧θ for all subformulas χ ∧ θ of Ψ

Ln uXχ and Ln uXθ v Xχ∨θ for all subformulas χ ∨ θ of Ψ

To evaluate the formula we proceed from the leafs to the root. We identify each level with a
quantifier ∃ or ∀ in Ψ.

For every 1 ≤ i ≤ n with Qi = ∃ we have

Li−1 uE3(Li uXxi uXϕ) v Xϕ

Li−1 uE3(Li uX¬xi uXϕ) v Xϕ

while for Qi = ∀ we have that

Li−1 uE3(Li uXxi uXϕ) uE3(Li uX¬xi uXϕ) v Xϕ

This finishes the construction of TΨ which contains the CIs introduced above. Following the
intuitions provided before, it is clear that Ψ is valid iff TΨ |= L0 v XΨ.

o

The remaining candidate operators for extending CTLE3
EL are E©, A©, A3, EU , AU . It turns

out that subsumption is EXPTIME-complete in any of the resulting extensions.

Theorem 3.15. Subsumption is EXPTIME-complete in

(a) CTLA3,E3
EL (b) CTLE3,E©

EL (c) CTLA3,A©
EL

(d) CTLEU
EL (e) CTLAU

EL (f) CTLA©
EL

(g) CTLE3,E2
EL (h) CTLE3<,E2<

EL (i) CTLEU<

EL

The upper bounds are obvious since all listed TDLs are fragments of CTLALC . To prove the
matching lower bound for a listed fragment, it suffices to show that it is non-convex, and then
use standard techniques introduced by Baader et al. [12] to reduce satisfiability w.r.t. TBoxes in
ALC to subsumption in the corresponding fragment.

Definition 3.9. A fragment CTL−EL of CTLEL is non-convex if there are a CTL−EL TBox T and
concepts C,D1, . . . Dn, n ≥ 2 such that T |= C v D1 t · · · tDn but T 6|= C v Di for all i.

Consider the fragment CTLA3,E3
EL , then set

T = ∅, C = A3A uA3B, D1 = E3(A uE3B), D2 = E3(B uE3A)

47

3 Branching Temporal Description Logics

Now, we show that the above indeed witnesses non-convexity.

Lemma 3.16. T |= C v tDi but T 6|= C v Di for 1 ≤ i ≤ 2.

Proof. For the former, let I a model of T , d ∈ CI,w for some w ∈ W . Since d ∈ (A3A u
A3B)I,w for each π ∈ Paths(w), there are j ≥ 0 and k ≥ 0 such that d ∈ AI,π[j] and
d ∈ BI,π[k]. Now, for a path π′ ∈ Paths(w), depending on whether k ≤ j or j ≤ k implies
d ∈ DI,w

1 or d ∈ DI,w
2 .

For the latter, we construct a temporal model I = (∆, T, {Iw}w∈W) with ∆ = {d} and T a
1-ary tree such that w1 = ε·1 and w2 = w1·1, such that d ∈ CI,ε and d 6∈ DI,ε

2 by setting

AI,w1 := {d}; AI,w := ∅, for w 6= w1;

BI,w2 := {d}; BI,w := ∅, for w 6= w2.

It is clear that d ∈ (A3A u A3B)I,ε but d 6∈ (E3(B u E3A))I,ε. Following the previous
ideas we can also construct a model I′ such that d ∈ CI′,ε but d 6∈ DI′,ε

1 . o

Now that we have established the non-convexity of CTLA3,E3
EL a standard proof technique

from [12, 7] can be used to show EXPTIME-hardness. More precisely, we show the lower
bound by a reduction of the satisfiability problem w.r.t. TBoxes in ALC which is known to be
EXPTIME-complete [14].

Lemma 3.17. Concept subsumption w.r.t. TBoxes for CTLA3,E3
EL is EXPTIME-hard.

Proof. The proof is by reduction of the satisfiability problem w.r.t. TBoxes in ALC. Suppose
that an ALC TBox T and a concept name A0 are given for which satisfiability is to be decided.
First, we manipulate the TBox T with some satisfiability preserving operations:

* Ensure that negation ¬ occurs only in front of concept names: for every subconcept ¬C
in T with C complex, introduce a fresh concept name A, replace ¬C with ¬A, and add
A v C and C v A to T .

* Eliminate negation: for every subconcept ¬A, introduce a fresh concept name A, replace
every occurrence of ¬A with A, and add > v A tA and A uA v ⊥ to T .

* Eliminate disjunction: modulo introduction of new concept names, we may assume that
t occurs in T only in the form

(i) A tB v C and (ii) C v A tB,

where A and B are concept names and C is disjunction free.

The former kind of inclusion is replaced with AuM v C and MuB v C. The latter one
is replaced with

48

3.4 Reasoning in Fragments of CTLEL

M u C v A3X uA3Y

M u C uE3(X uE3Y) v A
M u C uE3(Y uE3X) v B

where M,X,Y are fresh concept names.

Moreover, we apply the following replacement:

– for each CI C v D ∈ T , replace C in T with C uM and replace every subconcept
∃r.E of D with ∃r.(E uM).

Let T ′ be the CTLE3,A3
EL⊥ TBox obtained by these manipulations, that is, it is the extension

of CTLE3,A3
EL with bottom (⊥).

Claim. A0 is satisfiable w.r.t. T iff A0 uM is satisfiable w.r.t. T ′.

Proof of the claim. Clearly, if A0 uM is satisfiable w.r.t. T ’, A0 is satisfiable w.r.t. T .

For the other direction, we assume that A0 is satisfiable w.r.t. T . Let I be a model of
A0 and T , and consider a CI C v A t B. We construct a temporal interpretation I =
(∆, T, {Iw}w∈W) with ∆ = ∆I as follows:

(I) for all w ∈W ,
AI,w = AI for all A ∈ NC\{M,X,Y};
rI,w = rI for all r ∈ NR.

(II) MI,ε = ∆ and MI,w = ∅, for all w 6= ε.

(III) Assume d ∈ CI , then d ∈ (A tB)I , we distinguish the following cases:

1. if d ∈ BI , include d ∈ YI,ε and d ∈ XI,w for all w of the form ε·i;
2. if d ∈ AI\BI , include d ∈ XI,ε and d ∈ YI,w for all w of the form ε·i.

Claim. For all concepts C and d ∈ ∆

d ∈ ĈI,ε iff d ∈ CI

where Ĉ is obtained by the above replacement. This claim can be readily checked: note
that neither X nor Y occur in Ĉ and moreover MI,ε = ∆ = ∆I .

Claim. I is a model of T ′.
We show that I satisfies each CI of T ’. We focus on showing that I satisfies the CIs
introduced to replace CIs of the form AtB v C and C v AtB. First, we note that, for
all w 6= ε, because of the above replacement and MI,w = ∅, the CIs are trivially satisfied
in such worlds w. We take a look at the case for ε.

49

3 Branching Temporal Description Logics

– ‘A u M v C’. Assume d ∈ (A u M)I,ε, that is, d ∈ AI,ε. Now, by the previous
claim, d ∈ AI . Moreover, since T |= A t B v C, d ∈ CI . Again by the previous
claim, d ∈ ĈI,ε.

– ‘M u C v (A3XuA3Y)’. Assume d ∈ (M u C)I,ε, that is, d ∈ CI,ε. Now, by
the previous claim, d ∈ CI . Since T |= C v A t B, then d ∈ (A t B)I , that is,
d ∈ AI or d ∈ BI . We can distinguish two cases according to (III):

* if d ∈ BI , we have that d ∈ YI,ε and d ∈ XI,w for all w of the form ε·i.
Therefore, d ∈ (A3X)I,ε and d ∈ (A3Y)I,ε. Hence, d ∈ (A3X uA3Y)I,ε.

* Analogous to the previous one.

– ‘M u C v E3(X u E3Y)’. Assume d ∈ (M u C u E3(X u E3Y))I,ε, that is,
d ∈ CI,ε and d ∈ E3(X u E3Y)I,ε. Now, by the previous claim, d ∈ CI . Since
T |= C v A t B, we have that d ∈ AI or d ∈ BI , so either case 1 or 2 of (III) is
applied.

Note that case 1 cannot be applied, otherwise d 6∈ E3(X u E3Y)I,ε. By applying
2, we have that d ∈ XI,ε and d ∈ XI,w for all w of the form ε·i. Then, d ∈
E3(XuE3Y))I,ε. Therefore, by construction, d ∈ AI , and by the previous claim,
d ∈ AI,ε.

– ‘M u C v E3(Y uE3X)’. Analogous to the previous one.

For the remaining CIs, it readily follows, from the previous claim and the fact that MI,ε =
∆, that I satisfies them. Analogously, by the previous claim, d ∈ (A0 uM)I,ε.

This finishes the proof of the claim.

* The TBox T ′ contains only the operators u, ∃, >, ⊥, and E3,A3. We now reduce
satisfiability of A0 w.r.t. T ′ to (non-)subsumption in CTLE3,A3

EL . To this aim we use the
reduction proposed by Baader et al. [12] for the extension of EL with ⊥.

Introduce a fresh concept name L and replace every occurrence of⊥ with L and extend T ′
with

∃r.L v L, for every role r from T ′;
E3L v L.

It is not hard to see that A0 is satisfiable w.r.t. T ′ iff T ′′ 6|= A0 v L.
o

One would expect that CTLE3,E2
EL could remain tractable since both temporal operators are

existentially quantified and thus it could be seen in principle as a temporal analog of EL. Alas,
we show that this is not the case. Consider the following setting:

T = {C v E3(D uA), D v E3(C uA)}
D1 = E3(C uD), D2 = E2E3A.

50

3.4 Reasoning in Fragments of CTLEL

CTLE3,E©
EL T = ∅, C = E3A, D1 = A, D2 = E©E3A

CTLEU
EL T = ∅, C = E(AUB), D1 = B, D2 = A

CTLE3,E2
EL T = {C v E3D uA, D v E3C uA}

D1 = E3(C uD), D2 = E2A.

CTLE3<,E2<

EL T = {C v E3<B, B v D uE2<D}
D1 = E3<E3<B, D2 = E2<D.

CTLA3,A©
EL Analogous to the corresponding E-setting above.

CTLAU
EL Analogous to the corresponding E-setting above.

Figure 3.2: Non-convexity witness

We show that the above setting witnesses non-convexity

Lemma 3.18. T |= C v tDi but T 6|= C v Di for 1 ≤ i ≤ 2.

Proof. For the former, let I be a model of T and d ∈ CI,w for some w ∈W . Since

d ∈ (E3(D uA))I,w and D v E3(C uA)

there exists a j ≥ 0 such that d ∈ (D u A u E3(C u A))I,π[j] for some π ∈ Paths(w). Then,
by semantics, there exists a k ≥ j such that d ∈ (C u A)I,π

′[k] for some π′ ∈ Paths(π[j]). We
can distinguish two cases (1) k = j or (2) k > j:

1. if the first case holds, then d ∈ (C uD uA)I,π[j]. Therefore, d ∈ E3(C uD)I,π[ε];

2. if the second case holds, then d ∈ (C uE3(D uA))I,π
′[k].

Clearly, if we are in the second case, then the same two cases can be distinguish again. Hence,
if always the second case holds, then d ∈ (E2E3A)I,w. Therefore, T |= C v E3(C uD) t
E2E3A.

For the latter, we construct a temporal model I = (∆, T, {Iw}w∈W) of T with ∆ = {d} and T

51

3 Branching Temporal Description Logics

a 1-ary tree with w1 = ε·1 such that d ∈ CI,ε and d 6∈ DI,ε
2 by setting

CI,{ε,w1} := {d}; CI,w := ∅, for w 6∈ {ε, w1};
AI,{ε,w1} := {d}; AI,w := ∅; for w 6∈ {ε, w1};
DI,w1 := {d}; DI,w := ∅, for w 6= w1.

Clearly, I is a model of T . Now, since d ∈ (C uD)I,w1 , by semantics, d ∈ E3(C uD)I,ε. On
the other hand, since d 6∈ AI,w for all w 6= {ε, wi}, d 6∈ (E2E3A)I,ε.

o

Although the non-convexity of the previous case relies on the non-strict interpretation of the
temporal operators, we can also show that the fragment CTLE3<,E2<

EL (allowing for the strict
version of E3 and E2) is also non-convex. Consider the following setting:

T = {C v E3<B, B v D uE2<D}
D1 = E3<E3<B, D2 = E2<D.

Lemma 3.19. T |= C v tDi but T 6|= Di for 1 ≤ i ≤ 2.

Proof. For the former, let I be a model of T , and d ∈ CI,w for some w ∈ W . Hence,
d ∈ (E3<B)I,w, that is, there exists a j > 0 such that d ∈ BI,π[j] for some π ∈ Paths(w).
Then, we can distinguish two cases (1) j = 1 or (2) j > 1:

– if the first case holds, then d ∈ (DuE2<D)I,π[1]. Hence, by semantics, d ∈ (E2<D)I,w.

– if the second case holds, then d ∈ (E3<B)I,π[1]. Therefore, by semantics d ∈ (E3<E3<B)I,w.

From these cases, we can conclude T |= C v E2<D tE3<E3<B.

For the latter, we construct a model I = (∆, T, {Iw}w∈W) of T with ∆ = {d} and T a 1-ary
tree with w1 = ε·1 and w2 = w1·1, such that d ∈ CI,ε and d 6∈ DI,ε

2 by setting

CI,ε := {d}; CI,w := ∅, for w 66= ε;

BI,w2 := {d}; BI,w := ∅; for w 66= w2;

DI,{w2,w} := {d}, for all w of the form w2·u; DI,{ε,w1} = ∅.

Clearly, I is a model of T . Now, since d ∈ BI,w2 , by semantics, d ∈ (E3<E3<B)I,ε.
Therefore, by semantics, d ∈ (E3<B)I,ε. On the other hand since d 6∈ DI,w1 , d 6∈ (E2<B)I,ε.
Following these ideas we can also construct a model I′ of T such that d ∈ CI,ε but d 6∈ DI,ε

1 .

o

52

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

Now, a similar reduction to that of Lemma 3.17 can be done for these two fragments. Moreover,
for the remaining fragments of CTLEL listed in Theorem 3.15, non-convexity can be shown
using the settings shown in Figure 3.2 and then similar reductions to that of Lemma 3.17 can be
done.

The logic CTLA©
EL can be proved to be convex. However, it is nevertheless EXPTIME-hard,

which follows from the observation that, after dropping the contructor ∃r.C, CTLA©
EL is a nota-

tional variant of the description logic FL0 which is shown to be EXPTIME-complete in [12, 49].

The complexity of some fragments of CTLEL remains open. In particular, we conjecture that
the PSPACE lower bound for CTLE3,A2

EL is indeed tight. We also conjecture that, as in the
case of CTLE3

EL , we can reduce CTLE2
EL to EL++ by introducing a total role succ2 and then

replacing every temporal concept E2A with a fresh concept MA and adding the CI MA v
A u ∃succ2.MA.

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

We finalize our study on the computational complexity of branching-time TDLs by reconsid-
ering CTL∗ALC and CTLALC , studied in Section 3.3, but now allowing temporal operators to
be applied not only to concepts but to also to concept inclusions. We present a uniform deci-
sion procedure for satisfiability of CTL∗ALC and CTLALC-temporal TBoxes based on a careful
combination of alternating 2-way tree automata and nondeterministic tree automata over infinite
trees. We obtain a 2EXPTIME upper bound for CTLALC and a 3EXPTIME upper bound for
CTL∗ALC . Moreover, we show that the presence of temporal TBoxes leads to an increase in the
complexity. In particular, we provide a matching 2EXPTIME lower bound for CTLALC . We
begin by introducing the syntax and semantics of branching-time temporal TBoxes.

3.5.1 Syntax and Semantics

Branching temporal TBoxes are constructed using TBox formulas in which CIs are the atomic
formulas such that the concepts forming them are temporal concepts. Formally, temporal TBoxes
are defined as follows. CTL∗ALC-state TBoxes ϕ and CTL∗ALC-path TBoxes ψ, ϑ are formed ac-
cording to the following grammar:

ϕ ::= C v D | ¬ϕ | ϕ ∧ ϕ | Eψ
ψ, ϑ ::= ϕ | ¬ψ | ϑ ∧ ψ | ©ψ | 2ψ | ψUϑ

where C,D are CTL∗ALC concepts. A temporal CTL∗ALC-TBox is a CTL∗ALC-state TBox; tem-
poral CTLALC-TBoxes are defined in the expected way.

Definition 3.10. Let I be a temporal interpretation. For a time point w in I, the truth relation
|= for temporal CTL∗ALC-state TBoxes is defined as follows:

53

3 Branching Temporal Description Logics

I, w |= C v D iff CI,w ⊆ DI,w,

I, w |= ¬ϕ iff I, w 6|= ϕ,

I, w |= ϕ1 ∧ ϕ2 iff I, w |= ϕ1 and I, w |= ϕ2,

I, w |= Eψ iff I, π |= ψ for some π ∈ Paths(w).

For a path π in I, the truth relation |= for path TBox formulas is defined as follows:

I, π |= ϕ iff I, π[0] |= ϕ,

I, π |= ¬ψ iff I, π 6|= ψ,

I, π |= ψ1 ∧ ψ2 iff I, π |= ψ1 and I, π |= ψ2,

I, π |=©ψ iff I, π[1..] |= ψ,

I, π |= 2ψ iff ∀j ≥ 0.π[j..] |= ψ,

I, π |= ψ1 U ψ2 iff ∃j ≥ 0.(I, π[j..] |= ψ2 ∧ ∀0 ≤ k < j.(I, π[k..] |= ψ1)).

We say that a temporal interpretation I is a model of a temporal CTL∗ALC-TBox ϕ if I, ε |= ϕ.
Temporal TBoxes are useful for expressing the dynamics of policies. For example, the following
temporal CTLALC-TBox says that, in all possible futures, there will be eventually a policy such
that all students who fail a single major exam will immediately and lastingly be exmatriculated.

A3A2(Student u ∃fails.MajorExam v A2¬Student)

The central reasoning problem we consider is temporal TBox satisfiability. We say that a tem-
poral CTL∗ALC-TBox is satisfiable if it has a model. Note that it is not necessary to consider
satisfiability of a concept w.r.t. a temporal TBox, since a concept C is satisfiable w.r.t. a tempo-
ral TBox ϕ iff the temporal TBox ¬(> v ¬C) ∧ ϕ is satisfiable.
We present a uniform decision procedure for temporal TBox satisfiability for CTL∗ALC and
CTLALC based on a careful amalgamation of alternating 2-way tree automata and nondeter-
ministic tree automata running on quasi-models, that is, infinite trees in which each node is
associated with an abstraction of an ALC model. Before proceeding to present our algorithms,
we introduce some basic notions of alternating automata.

Alternating automata, introduced by Muller and Schupp [63], generalize standard nondetermin-
istic automata by allowing several successor states along a specific branch of the tree, that is, an
alternating automaton might send several copies of itself to a single branch. In this thesis, we
focus on two-way alternating automata, which extend alternating automata by allowing not only
successor states, but also a predecessor state.

For a set X , let B+(X) be the set of Boolean formulas built from elements in X using ∧, ∨,
true and false. Let Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X) if assigning true to
the members of Y and assigning false to the members of X \ Y makes θ true. For example, the
sets {q1, q2} and {q1, q4} both satisfy the formula (q1 ∨ q5) ∧ (q2 ∨ q4).

54

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

Definition 3.11. Let [k] = {−1, 0, . . . , k}. An alternating 2-way tree automaton (2ATA) on
Σ-labeled k-ary trees is a tuple A = (Q,Σ, Q0, δ, F) where all components except δ are as
for NTAs (cf. Definition 3.5). The transition function δ of a 2ABTA is a function δ : Q × Σ →
B+([k]×Q).

For example, the following transition δ of a 2ATA on a binary tree

δ(q, σ) = (1, q1) ∧ (1, q2) ∨ (2, q1) ∧ (2, q2) ∧ (1, q1)

means that the automaton can choose between two possibilities: in the first possibility two copies
proceed in direction 1, one in state q1 and the other in state q2. In the second possibility two
copies proceed in direction 2, one in state q1 and the other in state q2, and a third copy proceeds
in direction 1 in state q1. This example also shows that the transition function of a 2ATA allows
to send several copies of the automaton to the same direction and it is not forced to send copies
to all directions.
Now, consider an NTA A = (Q,Σ, Q0, δ, F). First, recall that the transition function δ of
an NTA maps each state q ∈ Q and input symbol σ ∈ Σ to a set of k-tuples. Thus we can
represent δ by the transition relation of a 2ATA. For example, the transition relation δ(q, σ) =
{〈q2, q3〉, 〈q1, q4〉} of an NTA on a 2-ary tree can be written as

δ(q, σ) = (1, q2) ∧ (2, q3) ∨ (1, q1) ∧ (2, q4).

A run of a 2ATA A on a Σ-labeled k-ary tree (T, τ) is a T×Q-labeled tree (Tr, r). Intuitively, a
node in Tr labeled with (w, q) describes a copy ofA that is at state q and reads the node w from
T . Moreover, the labels of a node and its successors must satisfy the transition function. We next
introduce the definition of a run. For any w ∈ (N\{0})∗ and m ∈ k, we put mov(w,m) = w if
m = 0, mov(w,m) = w·m if m > 0, and mov(w,m) = u if m = −1 and w = uc with c ∈ N.
A run of A on τ is a T×Q-labeled tree (Tr, r) such that the following hold:

– r(ε) = (ε, q0) for some q0 ∈ Q0 and

– for all x ∈ Tr, r(x) = (w, q) with δ(q, τ(w)) = θ, there is a set

S = {(m1, q1), . . . , (mn, qn)} ⊆ [k]×Q

such that the following hold:

1. S satisfies θ, and
2. for 1 ≤ i ≤ n, we have x·i ∈ Tr, mov(w,mi) is defined, and τr(x·i) = (mov(w,mi), qi).

Note that the automaton cannot go backwards from the root of the input tree since mov(w, x·i)
needs to be defined.
A run (Tr, r) is accepting if all its paths satisfy the acceptance condition. We consider the so-
called Büchi acceptance condition: given a run (Tr, r), a path π satisfies the Büchi acceptance
condition if inf(π) ∩ F 6= ∅, where inf(π) ⊆ Q is such that q ∈ inf(π) if and only if there are
infinitely many w ∈ π for which r(w) = N∗×{q}. Analogously to NBTAs, we use 2ABTA to
denote 2ATAs using this acceptance condition.

55

3 Branching Temporal Description Logics

Theorem 3.20 ([78]). The nonemptiness problem for 2ABTAs is EXPTIME-complete.

Notably, the possibility of using conjunctions in 2ATAs allows for a straightforward construction
for the closure under intersection [63], that is, take the disjoint union of two given 2ATAs and
then combine them by taking the conjunction of the initial states.

In order to define 2ATAs more compactly later on, we add a third component, serving as a root
flag, to the transition function: the transition function δ of a 2ATA is a function

δ : Q×Σ×{t, f} → B+([k]×Q).

Then, the definition of a run is extended accordingly, by putting forw ∈ T , root(w) = t ifw = ε
and root(w) = f otherwise. Note that this unorthodox assumption does not cause any problems
since for a 2ATAA = (Q,Σ, Q0, δ, F) we can construct a 2ATAA′ with alphabet Σ×{t, f} that
behaves like A and then define a 2ATA A′ which accepts Σ×{t, f}-labeled trees with the root
node labeled with alphabet letters of the form (σ, t), and the other nodes with alphabet letters of
the form (σ, f). Finally, we can simply intersect them.

3.5.2 An Algorithm for Temporal TBox Satisfiability for CTL∗ALC and
CTLALC

Now, we have the required ingredients to present our algorithms for temporal TBox satisfiability
for CTL∗ALC and CTLALC .

Let ϕ be a temporal TBox formulated in CTL∗ALC or CTLALC whose satisfiability is to be de-
cided. We use cl(ϕ) to denote the set of state concepts that occur in ϕ, closed under subconcepts
and single negation. A concept type for ϕ is a set t ⊆ cl(ϕ) and tp(ϕ) denotes the set of all
concept types for T . We use sub(ϕ) to denote the set of all state subformulas of ϕ. A formula
type for ϕ is a subset of sub(ϕ).

Definition 3.12. A quasi-world for ϕ is a pair (S1, S2) with S1 ⊆ tp(ϕ) a set of concept types
and S2 ⊆ sub(ϕ) a formula type for ϕ such that

1. if t ∈ S1 and ∃r.C ∈ t, then there is a t′ ∈ S1 with {C} ∪ {¬D | ¬∃r.D ∈ t} ⊆ t′;

2. for all C v D ∈ sub(ϕ), we have C v D ∈ S2 iff, for all t ∈ S1, C ∈ t implies D ∈ t.

Let qw(ϕ) denote the set of all quasi-worlds for ϕ. Furthermore, a quasi-model M of ϕ is a
qw(ϕ)-labeled tree, of any outdegree.

For t ∈ tp(ϕ), t is the result of replacing every C ∈ t\NC with a fresh concept name XC ,
and cnX denotes the set of all resulting concept names, including those in T . For C ∈ cl(T),
C denotes the result of replacing in C every subconcept ∃r.D with X∃r.D, and u with ∧. For
every ψ ∈ sub(ϕ), ψ denotes the result of replacing every subformula C v D of ψ with a fresh
concept YCvD (which plays the role of a propositional letter for CTL / CTL∗) and cnY is the
set of all concept names thus introduced. For S ⊆ sub(ϕ), we set S = {ψ | ψ ∈ S}. For M
a quasi-model, we use M2 to denote the 2cnY -labeled tree obtained by associating each node
w ∈M with the label S2(w).

56

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

Definition 3.13. A quasi-model M = (T, τ) of ϕ is proper if the following conditions are
satisfied:

1. M2, ε |= ϕ;

2. for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a 2cnX -labeled tree (T, τ ′)
such that

a) τ ′(w) = s;

b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such that τ ′(w′) = s′;

c) ε satisfies A2
∧

XC∈cnX

(XC ↔ C).

Intuitively, Condition 1 ensures that M satisfies the temporal TBoxϕ and Condition 2 guarantees
that, for each required domain element, we can consistently select a type from the quasi-world
at each node of M. The following result shows that to decide satisfiability of ϕ, it suffices to
check the existence of a proper quasi-model for ϕ.

Lemma 3.21. ϕ is satisfiable iff there is a proper quasi-model for ϕ.

Proof. “⇒:” Let I = (∆, T, {Iw}w∈W) be a temporal model of ϕ. We define a qw(ϕ)-labeled
tree structure M = (T, τ) such that for all w ∈ T , τ(w) is defined as follows:

S2(w) = {Ψ ∈ sub(ϕ) | I, w |= Ψ};
π(d,w) = {C ∈ cl(ϕ) | d ∈ CI,w};
S1(w) = {π(d,w) | d ∈ ∆}.

We argue that M is proper, that is, M satisfies condition (1) and (2) of Definition 3.13.

– For condition (1), we obtain the 2cnY -labeled tree M2 by associating each w ∈ M with
the label S2(w). Clearly, by definition of S2(w), M2, ε |= ϕ.

– For condition (2), for all w ∈ T with τ(w) = (S1, S2) and all π(d,w) ∈ S1 there is
a 2cnX -labeled tree (T, τ ′) satisfying 2(a)-(c), where τ ′d is defined as follows. For all
w′ ∈ T , set

τ ′d(w
′) = π(d,w′).

Observe that indeed conditions (a)-(c) are fulfilled:

– Condition (a) follows by definition of τ ′d, that is, τ ′(w) = π(d,w).

– Condition (b) follows by definition of M and τ ′d.

– Condition (c): note that, by definition of τ ′d(w), C ∈ π(d,w) iff XC ∈ τ ′d(w) for all
w ∈ W . Moreover, by the following claim, C ∈ π(d,w) implies (T, τ ′d), w |= C.
Therefore, condition 2(c) holds.

57

3 Branching Temporal Description Logics

Claim. For each C ∈ cl(T), w ∈W and d ∈ ∆, we have that

C ∈ π(d,w) implies (T, τ ′d), w |= C,

for every π ∈ Paths(w) and path concept C

d ∈ CI,π′ implies (T, τ ′d), π
′ |= C.

Proof of the claim. The proof is by a simultaneous induction on the structure of C
and C. For concept names it follows trivially.

– C = ¬C. Since (¬C) ∈ π(d,w), then d ∈ (¬C)I,w, that is, d 6∈ CI,w. By I.H.,
(T, τ ′d), w 6|= C. Hence, (T, τ ′d), w |= ¬C.

– C = C uD. Since (C uD) ∈ π(d,w), then d ∈ (C uD)I,w, that is, d ∈ CI,w

and d ∈ DI,w. By I.H., (T, τ ′d), w |= C and (T, τ ′d), w |= D. Therefore,
(T, τ ′d), w |= C ∧D.

– C = EC. Since EC ∈ π(d,w), then d ∈ (EC)I,w, that is, there is a π′ ∈
Paths(w) such that d ∈ CI,π′ . By the second point of the claim, (T, τ ′d), π |= C.
Therefore, (T, τ ′d), w |= EC.

This finishes the proof of the first point of the claim.

We proceed to prove the second point of the claim.

– C = D with D a state concept. We have that d ∈ DI,π[0] then, by definition of
M, D ∈ π(d, π[0]). Note that π[0] = w, then by the first point of the claim,
(T, τ ′d), w |= D.

– C = ¬D. We have that d ∈ ¬DI,π′ , that is, d 6∈ DI,π′ . By I.H. (T, τ ′d), π
′ 6|= D.

Therefore, (T, τ ′d), π
′ |= ¬D.

– C = C1 u C2, similar to the analogous case for state concepts.

– C = ©D. We have that d ∈ (©D)I,π
′
, that is, d ∈ DI,π′[1]. Now, by I.H.,

(T, τ ′d), π
′[1] |= D. Therefore, by semantics, (T, τ ′d), π

′ |=©D.

– C = 2D. We have that d ∈ (2D)I,π
′
, that is, for all j ≥ 0, d ∈ DI,π[j..]. Now,

by I.H., (T, τ ′d), π
′[j..] |= D. Therefore, by semantics, (T, τ ′d), π

′ |= 2D.

– C = C1UC2. We have that ∃j ≥ 0.(d ∈ CI,π
′[j..]

2 ∧ ∀0 ≤ k < j.d ∈ CI,π
′[k..]

1).
Now, by I.H., (T, τ ′d), π

′[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τ ′d), π
′[k..] |= C1).

Therefore, (T, τ ′d), π
′ |= (C1UC2).

This finishes the proof of the second point of the claim.

This finishes the proof of the claim.

We can conclude then that M is indeed a proper-quasimodel of ϕ.

58

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

“⇐:” Let M = (T, τ) be a proper-quasimodel of ϕ. We next define a model I of ϕ. First
note that according to Condition 2 of Definition 3.13, for all w ∈ T with τ(w) = (S1, S2)
and all s ∈ S1 there is a 2cnX -labeled tree (T, τw,s) satisfying 2(a)-(c). We define the temporal
interpretation I = (∆, T, {Iw}w∈W) with ∆ = {(w, s) | s ∈ S1(w)} given by:

AI,w = {(v, s) ∈ ∆ | A ∈ τv,s(w)};
rI,w = {((v, s), (v′, s′)) | X∃r.C ∈ τv,s(w) implies

{XC} ∪ {X¬E | X¬∃r.E ∈ τv,s(w)} ⊆ τv′,s′(w)}.

Claim. For all C ∈ cl(T), w ∈W and (v, s) ∈ ∆, we have

(v, s) ∈ CI,w iff XC ∈ τv,s(w),

for every π ∈ Paths(w), and path concept C

(v, s) ∈ CI,π iff (T, τv,s), π |= C.

Proof of the claim. The proof is by a simultaneous induction on the structure of C and C. The
induction start, where C is a concept name is immediate by the definition of I. For the induction
step we distinguish the following cases.

– C = ¬D “if:” (v, s) ∈ ¬DI,w, that is, (v, s) 6∈ DI,w. Now, by I.H., XD 6∈ τv,s(w).
Furthermore, by condition 2(c) of Definition 3.13, (T, τv,s), w |= ¬D. Finally, again by
condition 2(c), X¬D ∈ τv,s(w).

“only if:”X¬D ∈ τv,s(w), by condition 2(c) of Definition 3.13, implies that (T, τv,s), w 6|=
D. Now, by condition 2(c), XD 6∈ τv,s(w). By, I.H., (v, s) 6∈ DI,w. Therefore, (v, s) ∈
(¬D)I,w.

– C = D u E “if:” (v, s) ∈ (D u E)I,w, that is, (v, s) ∈ DI,w and (v, s) ∈ EI,w.
By I.H., XD ∈ τv,s(w) and XE ∈ τv,s(w). Now, condition 2(c) of Definition 3.13,
(T, τv,s), w |= D and (T, τv,s), w |= E. So, (T, τv,s), w |= D ∧ E. Once again, by
condition 2(c), (T, τv,s), w |= XDuE . Therefore, XDuE ∈ τv,s(w).

“only if:”XDuE ∈ τv,s(w), by condition 2(c) of Definition 3.13, we have that (T, τv,s), w |=
D∧E., that is, (T, τv,s), w |= D and (T, τv,s), w |= E. Once again, by condition 2(c), we
have that XD, XE ∈ τv,s(w). Now, by I.H., (v, s) ∈ DI,w and (v, s) ∈ EI,w. Therefore,
(v, s) ∈ (D u E)I,w.

– C = ∃r.C. “if” Follows from condition from the fact that τv,s(w) = s′ for some s′ ∈
S1(w), and s′ satisfies condition 1 of the definition of a quasi-world.

“only if:” X∃r.C ∈ τv,s(w) = s′ then ∃r.C ∈ s′. Now, since s′ ∈ S1(w), then it satisfies
condition 1 of the definition of quasi-world, that is, there is a s′′ ∈ S1(w) such that
{C} ∪ {¬E | ¬∃r.E ∈ s′} ⊆ s′′. Note that, by definition of τw,s′′ , {XC} ∪ {X¬E |
X¬∃r.E ∈ s′} ⊆ τw,s′′(w). Then, by definition of I, ((v, s)(w, s′′)) ∈ rI,w. Furthermore,
by I.H., (w, t′′) ∈ CI,w. Therefore, (v, s) ∈ (∃r.C)I,w.

59

3 Branching Temporal Description Logics

– C = EC “if:” (v, s) ∈ (EC)I,w. This implies that, by semantics, (v, s) ∈ CI,π for some
π ∈ Paths(w). Now, by the second point of the claim, (T, τv,s), π |= C. Therefore, by
semantics, (T, τv,s), w |= EC. Since, (T, τv,s) |= ϕ from condition 2(c), then XEC ∈
τv,s(w).

“only if:”XEC ∈ τv,s(w). By condition 2(c) of the Definition 3.13, we have that (T, τv,s), w |=
EC, that is, (T, τv,s), π |= C for some π ∈ Paths(w). Now, by the second point of the
claim, (v, s) ∈ CI,π. Therefore, (v, s) ∈ (EC)I,w.

This finishes the proof of the first point of the claim.
We proceed to show the second point of the claim.

– C = D with D a state concept. “if:” (v, s) ∈ DI,π[0]. Note that π[0] = w, then by the first
point of the claim, (T, τv,s), w |= D.

“only if:” (T, τv,s), π[0] |= D. By condition 2(c) of Definition 3.13, XD ∈ τt,i(π[0]).
Note that π[0] = w, then by the outer induction (v, s) ∈ DI,w.

– C = ¬D. “if:” (v, s) ∈ ¬DI,π, that is, (v, s) 6∈ DI,π. By I.H. (T, τ(v,s)), π 6|= D.
Therefore, (T, τv,s), π |= ¬D.

“only if:” (T, τv,s), π 6|= D. By I.H., we have that (v, s) 6∈ (D)I,π. Therefore, (v, s) ∈
(¬D)I,π.

– C = C1 u C2, similar to the analogous case for state concepts.

– C =©D. “if:” (v, s) ∈ (©D)I,π, that is, (v, s) ∈ DI,π[1]. Now, by I.H., (T, τv,s), π[1] |=
D. Therefore, by semantics, (T, τv,s), π |=©D.

“only if:” (T, τv,s), π |=©D. Hence, (T, τv,s), π[1] |= D. Now, by I.H., (v, s) ∈ DI,π[1].
Therefore, by semantics, (v, s) ∈ (©D)I,π.

– C = 2D. “if:” (v, s) ∈ (2D)I,π, that is, for all j ≥ 0, (v, s) ∈ DI,π[j..]. Now, by I.H.,
(T, τv,s), π[j..] |= D. Therefore, by semantics, (T, τv,s), π |= 2D.

“only if:” (T, τ), π |= 2D. This means that for all j ≥ 0, (T, τv,s), π[j..] |= D. Now, by
I.H., for all j ≥ 0, (v, s) ∈ DI,π[j..]. Therefore, by semantics, (v, s) ∈ 2DI,π.

– C = C1UC2. “if:” ∃j ≥ 0.((v, s) ∈ CI,π[j..]
2 ∧∀0 ≤ k < j.(v, s) ∈ CI,π[k..]

1). Now, by I.H.,
(T, τv,s), π[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τv,s), π[k..] |= C1). Therefore, (T, τv,s), π |=
(C1UC2).

“only if:” ∃j ≥ 0.((T, τv,s), π[j..] |= C2 ∧ ∀0 ≤ k < j.((T, τv,s), π[k..] |= C1). Now, by
I.H., (v, s) ∈ CI,π[j..]

2 ∧ ∀0 ≤ k < j.((t, i) ∈ CI,π[k..])
1 . Therefore, (v, s) ∈ (C1UC2)I,π.

This finishes the proof of second point of the claim.
This finishes the proof of the claim.

Now, recall that according to Definition 3.13 M2 |= ϕ. We show the following claim.

60

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

Claim. For all ϕ′ ∈ sub(ϕ) and w ∈W , we have

M2, w |= ϕ′ implies I, w |= ϕ′,

for every π ∈ Paths(w) and path TBox ψ, we have

M2, π |= ψ implies I, π |= ψ.

Proof of the claim. The proof is by simultaneous induction on the structure of ϕ′ and ψ.

– ϕ′ = C v D. M2, w |= XCvD. We have that XCvD ∈ τ2(w) = S2(w). Now, by
construction, C v D ∈ S2(w). Recall that, by definition of a quasi-world, C v D ∈
S2(w) iff for all t ∈ S1(w), C ∈ t implies D ∈ t. Fix an arbitrary t. Now, since
M is proper, satisfies condition 2(a)-(c) for some w′ ∈ W and t′ ∈ S1(w) such that
τw′,t′(w) = t. By construction, since C ∈ t impliesD ∈ t, XC , XD ∈ τw′,t′(w). Now, by
the previous claim (w′, t′) ∈ CI,w and (w′, t′) ∈ DI,w. Thus, CI,w ⊆ DI,w. Therefore,
I, w |= C v D.

– ϕ′ = ¬ϕ′. M2, w 6|= ϕ′. Then, by I.H., I, w 6|= ϕ′. Therefore, I, w |= ¬ϕ′.

– ϕ′ = ϕ′1 ∧ ϕ′2. M2, w |= ϕ′1 ∧ ϕ′2, that is, M2, w |= ϕ′1 and M2, w |= ϕ′2. Now, by I.H.,
I, w |= ϕ′1 and I, w |= ϕ′2 . Therefore, I, w |= ϕ′1 ∧ ϕ′2.

– ϕ′ = Eψ. M2, w |= Eψ, that is, there exists a path π ∈ Paths(w) such that M2, π |= ψ.
Now, by second point of the claim, I, π |= ψ. Therefore, I, π |= Eψ.

This finishes the proof of the first point of the claim

We proceed to show the second point of the claim

– ψ = ϕ1 with ϕ1 a state concept. M2, π |= ϕ1, that is, M2, π[0] |= ϕ1. Note that
π[0] = w, then by the first point of the claim I, w |= ϕ1.

– ¬ψ and ψ1 ∧ ψ2 similar to the analogous case for state concepts.

– ψ =©ψ. We have that M2, π |=©ψ. Hence, M2, π[1] |= ψ. Now, by I.H., I, π[1] |= ψ.
Therefore, by semantics, I, π |=©ψ.

– ψ = 2ψ. We have that M2, π |= 2ψ. This means that for all j ≥ 0, M2, π[j..] |= ψ.
Now, by I.H., for all j ≥ 0, I, π[j..] |= ψ. Therefore, by semantics, I, π |= 2ψ.

– ψ = ψ1Uψ2. We have that ∃j ≥ 0.(M2, π[j..] |= ψ2 ∧ ∀0 ≤ k < j.(M2, π[k..] |= ψ1).
Now, by I.H., I, π[j..] |= ψ2 ∧ ∀0 ≤ k < j.(I, π[k..] |= ψ1). Therefore, I, π |= ψ1Uψ2.

This finishes the claim

This finishes the proof of the claim.

From the previous claim we conclude therefore that I, ε |= ϕ.
o

61

3 Branching Temporal Description Logics

The following NBTAs will be used in our decision procedure. Let ϑ be the formula in Condi-
tion 2(c). By Theorem 3.3 (cf. Section 3.3), we find an NBTA Aϕ = (Q1,Σ1, δ1, Q

0
1, F1) that

accepts exactly the 2cnY -labeled #f
E(ϕ)-ary trees which satisfy ϕ, where #f

E(ϕ) denotes the set
of state formulas of the form Eψ in sub(ϕ); we also find an NBTA Aϑ = (Q2,Σ2, δ2, Q

0
2, F2)

that accepts exactly the 2cnX -labeled #c
E(ϕ)-ary trees which satisfy ϑ, where #c

E(ϕ) denotes
the set of state concepts of the form EC in sub(ϕ).
We aim at constructing a 2ABTA A on qw(ϕ)-labeled trees that accepts precisely the proper
quasi-models for ϕ. For doing this, we have to restrict the outdegree of quasi-models in an
appropriate way. Set k := |qw(ϕ)|·|tp(ϕ)|·|Q2|. The following is proved by replacing Condi-
tion 2(c) with a version based on the NBTA Aϑ and carefully analyzing its runs.

Lemma 3.22. There is a proper quasi-model for ϕ iff there is a proper quasi-model for ϕ that
is a k-ary tree.

Proof. The “if”-direction is trivial. For the other direction let M = (T, τ) be an arbitrary proper
quasi-model. We can assume that every w ∈ T has outdegree at least k, otherwise we can just
duplicate some successors of w. For this proof we replace condition 2(c) from Definition 3.13
with a version based on the NBTA Aϑ and then we analyze its runs.

We next introduce a modified Condition 2 by restating 2(c) in terms of the automatonAϑ. More-
over, we consider only]cE-ary trees (T ′, τ ′) such that T ′ ⊆ T and for all w ∈ T ′ τ ′(w) = τ(w).
This is enough by the sufficient degree property (cf. Proposition 3.2) stating that if there is a
model of ϑ then there is one with branching degree]cE . In particular, L(Aϑ) = Mod]cE (ϑ). We
define condition 2’ as follows:

2’. for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a 2cnX -labeled]cE-ary tree
(T ′, τ ′) as described above, such that

(a) τ ′(w) = s;

(b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such that τ ′(w′) = s′;

(c) there is an accepting run (T ′, r) of Aϑ on (T ′, τ ′).

We next fix all trees from satisfying condition 2’ together with a selection of types from a quasi-
world and states from the accepting runs of Aϑ. In the following we denote with “s ∈ τ(w)”
the fact that s ∈ S1 when τ(w) = (S1, S2).
For every w ∈ T , s ∈ τ(w), we fix

– the tree (Tw,s, τw,s) witnessing condition 2’,

– the corresponding accepting run rw,s from 2’(c), and

– the set of states Qw,s thatAϑ assigns to s in the accepting runs ofAϑ on all (Tw′,s′ , τw′,s′)
where s is used to witness condition 2’(b), that is, τw′,s′(w) = s. Formally,Qw,s is defined
as follows.

Qw,s = {rw′,s′(w) | w ∈ Tw′,s′ , τw′,s′(w) = s}.

62

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

Now, we duplicate quasi-worlds of M and modify the trees (Tw,s, τw,s) and the corresponding
runs rw,s such that in every quasi-world precisely one type is chosen by an accepting run of Aϑ.
After the modification we will have that∑

s∈τ(w)

|Qw,s| = 1

for every w ∈ T . More formally, we define the quasi-model M̂ = (T̂ , τ̂) with T̂ = (Ŵ , Ê) by
taking

Ŵ = {(w, s, q) | w 6= ε ∈ T, s ∈ τ(w), q ∈ Qw,s} ∪ {ε};
Ê = {((w, s, q), (w′, s′, q′)) | (w,w′) ∈ E} ∪ {(ε, (w, s, q)) | (ε, w) ∈ E};

τ̂(w, s, q) = τ(w);

τ̂(ε) = τ(ε).

Note that, by definition of τ̂ , Condition 1 is still satisfied for M̂. We make use of (Tw,s, τw,s),
and rw,s to show that M̂ satisfies also Condition 2’. For all (w, s, q) ∈ T̂ and t ∈ τ̂(w, s, q)
define

T(w,s,q),t = {(w′, τw,t(w′), rw,t(w′)) | w′ ∈ Tw,t \ {w}} ∪ {(w, s, q)};
τ(w,s,q),t((w

′, s′, q′)) = τw,t(w
′);

r(w,s,q),t((w
′, s′, q′)) = rw,t(w

′).

Since T(w,s,q),t is properly defined in terms of (Tw,t, τw,t) and rw,t, one can readily see that
indeed M̂ satisfies condition 2’. Take an arbitrary (w, s, q) ∈ Ŵ and t ∈ τ̂(w, s, q), the 2cnX -
labeled]cE-ary tree (T(w,s,q),t, τ(w,s,q),t) witnesses condition 2’.

– For condition (a), we have that τ(w,s,q),t((w, s, q)) = τw,t(w) = t.

– For condition (b), for all (w, s′, q′) ∈ T̂ , τ(w,s,q),t(w
′, s′, q′) = τw,t(w

′) = s ∈ τ(w′) =
τ̂(w′, s′, q).

– For condition (c), we have that for all (w′, s′, q′) ∈ T(w,s,q),t, r(w,s,q),t(w
′, s′, q′) = rw,t.

Moreover, τ(w,s,q),t((w
′, s′, q′)) = τw,t(w

′). Since rw,t is an accepting ofAϑ on Tw,t, thus
r(w,s,q),t is an accepting run of Aϑ on T(w,s,q),t.

Finally, we uniformize M̂ in the sense that for each w, (w1, s, q), (w2, s, q) ∈ T̂ ,

if (w, (w1, s, q)) ∈ E and (w, (w2, s, q)) ∈ E and τ̂(w1) = τ̂(w2)

then, we substitute the subtree (T̂ , τ̂ ′′) of M̂ rooted at (w2, s, q) with the subtree (T̂ , τ̂ ′) of M̂
rooted at (w1, s, q).

63

3 Branching Temporal Description Logics

Now, we argue that the resulting M̂′ = (T̂ ′, τ̂ ′) continues satisfying condition 2’. The idea is that
for every (Tw′,t, τw′,t) used to witness condition 2’ of M̂ that contains (w2, s, q) we construct
a (Tw′,t, τ

′
w′,t) witnessing condition 2’ of M̂′ by replacing the subtree of (Tw′,t, τw′,t) rooted in

(w2, s, q) with an appropriate tree (Tw′,t, τ
′′
w′,t) with root (w1, s, q).

First, note that since M̂ satisfies condition 2’, there is a 2cnX -labeled]cE-ary tree

(T(w1,s,q),s, τ(w1,s,q),s)

for (w1, s, q) with s ∈ τ̂(w, s, q) fulfilling 2’(a)-(c). Now, we obtain (Tw′,t, τ
′
w′,t) by using the

subtree (T(w1,s,q),s), τ
′
(w1,s,q),s

) of

(T(w1,s,q),s, τ(w1,s,q),s)

rooted in (w1, s, q) to replace the subtree of (Tw′,t, τw′,t) rooted in (w2, s, q). Formally, we
define τ ′w′,t and r′w′,t as follows:

τ ′w′,t(w) =

{
τ ′(w1,s,q),s

(w) if w ∈ (T(w1,s,q),s), τ
′
(w1,s,q),s

)

τw′,t(w) otherwise

r′w′,t(w) =

{
r(w1,s,q),s(w) if w ∈ (T(w1,s,q),s), τ

′
(w1,s,q),s

)

rw′,t(w) otherwise

Now, from the construction of M̂′, it is clear that it satisfies condition 2’. In particular, conditions
2’(a) and (b) are trivially satisfied.

Now, we can safely eliminate duplicated subtrees without violating condition 2’, and then get
a proper quasi-model that is k-ary tree: we eliminate from M̂′ duplicated subtrees rooted at
the direct successors of ε. Recall that k = |qw(ϕ)|·|tp(ϕ)|·|Q2|, so indeed the quasi-models
obtained after removing duplicated subtrees are k-ary trees.

o

The desired 2ABTA A will thus run on k-ary trees. For simplicity and because Theorem 3.3
admits any outdegree, we can actually assume both Aϕ and Aϑ to run on trees of outdegree k
(this does not result in a change to the state set Q2, thus does not impact k). Since 2ABTAs
are trivially closed under intersection, it suffices to construct separate 2ABTAs A1 and A2 to
deal with Conditions 1 and 2 of proper quasi-models. To obtain A1, manipulate Aϕ so that
it has input alphabet qw(ϕ) and each symbol (S1, S2) is treated as S2, and view the resulting
automaton as a 2ABTA. The 2ABTAA2 = (Q,Σ, δ, {q0}, F) verifies Condition 2 by simulating
a run of Aϑ for every w ∈ T with τ(w) = (S1, S2) and every s ∈ S1. Formally, set

Q∗2 = Q2 ∪ {∗} and Q = {q0} ∪ (Q2 ×Q∗2) ∪ (Q2 × 2cnX ×Q∗2) ∪ F2

64

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

and the transition relation δ is as follows, for ω = (S1, S2):

δ(q0, ω, ·) =
∧k
i=1(i, q0) ∧∧s∈S1

∨
q∈Q2

(0, (q, s, ∗))

δ((q, q′), ω, ·) =
∨
s∈S1

(0, (q, s, q′))

δ((q, s, q′), ω, t) =
∨

(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}
∧k
i=1(i, (qi, ∗))

δ((q, s, q′), ω, f) =
∨
p∈Q2

(−1, (p, q′))) ∧∨
(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}

∧k
i=1(i, (qi, ∗))

where · in the third component means that the transition exists both when the component is t
and f, and ‘∗’ behaves like a wildcard for all states of Q2 with the test ∗ ∈ {q1, . . . , qk} always
being successful. Finally, we set F = F2. Note that runs of the original NBTA Aϑ must start
at the root of the tree, but when simulating Aϑ in A, we have to start at an arbitrary tree node.
In fact, this is the reason why we need a 2-way automaton and states of the form (q, q′) and
(q, s, q′), which intuitively mean that we are currently simulating a run ofAϑ in state q and have
already decided to assign q′ to some successor of the current node (we do not need to memorize
which successor since the transitions of Aϑ are closed under permuting the successors). The
state (q, s, q′) additionally selects an s ∈ S1 for the current tree node, see Condition 2. This
finishes the definition of the components of A.

Lemma 3.23. For a temporal CTL∗ALC TBox ϕ and k ≥ 0, one can construct a 2ABTA A =
(Q,Σ, δ, {q0}, F) in time poly(|Q| + k) such that L(A) = Modk(ϕ), Σ = 2qw(ϕ), |Q| ∈
22poly(|ϕ|) and |Q| ∈ 2poly(|ϕ|) when ϕ is a temporal CTLALC TBox.

Proof. Due to Lemma 3.22, we can set k := |qw(ϕ)|·|tp(ϕ)|·|Q2|. Now, A is constructed
as presented in Section 3.6, that is, we construct separately 2ABTAs A1 and A2 to deal with
conditions 1 and 2 of proper quasimodels. A1 is a variant of an standard CTL∗ automaton, hence
its correctness is trivial (cf. Section 3.6). In the case of A2, first let us recall that A2 is devised
to check condition 2 of Definition 3.13, that is, to check whether a quasi-model M = (T, τ) of
ϕ satisfies the following:

for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a 2cnX -labeled tree (T, τ ′)
such that

a) τ ′(w) = s;

b) for all w′ ∈ T with τ(w′) = (S′1, S
′
2), there is an s′ ∈ S′1 such that τ ′(w′) = s′;

c) ε satisfies ϑ = A2
∧

XC∈cnX

(XC ↔ C).

Notably, A2 verifies Condition (c) by simulating a run of the NBTA Aϑ = (Q2,Σ2, δ2, Q
0
2, F2)

accepting the models of ϑ, for every w ∈ T with τ(w) = (S1, S2) and every s ∈ S1. Moreover,

65

3 Branching Temporal Description Logics

it takes care of conditions 2(a)-(b) by properly using alternation and the 2-way. From now on
we denote with “s ∈ τ(w)” the fact that s ∈ S1 when τ(w) = (S1, S2).

A2 is sound. To check: given an accepting run (Tr, r) on M = (T, τ), then M fulfills condition
2. Recall that a run ofA on M is a T×Q-labeled tree. From the definition ofA is not difficult to
see that M satisfies condition 2 for w = ε: by definition of a run, r(ε) = (ε, q0), and moreover,

δ(q0, τ(ε), t) =
k∧
i=1

(i, q0) ∧
∧
s∈S1

∨
q∈Q2

(0, (q, s, ∗)) (†).

First, we analyze the second conjunct of the transition relation defined above. We have then that
for all s ∈ τ(ε),

∨
q∈Q2

(0, (q, s, ∗)). Hence, for all s ∈ τ(ε) and q′ with the test ∗ ∈ {q1, . . . , qn}
successful, by definition of δ((q, s, q′), τ(ε), t), the following holds:

∨
(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}

k∧
i=1

(i, (qi, ∗)).

Intuitively, for all s ∈ τ(ε) we will begin to simulate a run of Aϑ. For all successors ε·i,
i ∈ (1, k) of ε we have that

δ((q, q′), τ(ε·i), ·) =
∨

s∈τ(ε·i)

(0, (q, s, q′))

and therefore

δ((q, s, q′), ω, f) =
∨
p∈Q2

(−1, (p, q′))) ∧∨(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}
∧k
i=1(i, (qi, ∗)).

Since we began from the root we have that the first conjunct of the transition above is trivially
satisfied. With the second conjunct we continue simulating the run of Aϑ in the successors of
the current node. In this way we proceed to simulate the runs of Aϑ towards M. Therefore, for
all s ∈ τ(ε) we identify a 2cnX -labeled tree satisfying 2(a)-(c). In particular, note that since we
assume that (Tr, r) is an accepting run of A on M, and the recurrent states F of A are given
in terms of the recurrent states F2 of ϑ, then we obtain an accepting run of Aϑ on all such
2cnX -labeled trees.

Moreover, it is clear that, by the first conjunct
∧k
i=1(i, q0) of δ(q0, ω, ·) of (†) above, we will

simulate a run ofAϑ for all w 6= ε ∈ T and s ∈ τ(w). The simulation will proceed as discussed
above. In particular, the first conjunct

∨
p∈Q2

(−1, (p, q′))) of δ((q, s, q′), τ(w), f) (f holds since
now we are initiating the simulation not at the root) takes care of starting the simulation of Aϑ
at the root as required by condition 2.

A2 is complete. To check: given a proper-quasimodel M = (T, τ), then M is accepted by A2,
that is, there is an accepting run (Tr, r) of A2 on M. Since M is proper, for each w ∈ T and
s ∈ τ(w), there is a 2cnX -labeled tree (Tw,s, τw,s) satisfying 2. Note that, by Lemma 3.22, we
can assume that (Tw,s, τw,s) is a k-ary tree. Due to 2(c) there is an accepting run (Tr, r) of Aϑ
on (Tw,s, τw,s). Since A simulates the runs of Aϑ, its clear that we can use r to define a run of
A2 on (Tw,s, τw,s). Therefore, by simulating the accepting runs of Aϑ on all such (Tw,s, τw,s)

66

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

we obtain (Tr, τr), an accepting run of A2 on M. Moreover, the recurrent states F are given in
terms of F2, and thus (Tr, τr) is an accepting run of A2 on M.

Finally, recall that the number of states |Q2| of Aϑ is in 22poly(ϑ)
for CTLALC∗-TBoxes, and in

2poly(ϑ) for CTLALC-TBoxes. Moreover, recall that the states Q of A2 are the following,

Q = {q0} ∪Q1 ∪ (Q1 × 2cnX) ∪ (Q1 ×Q1) ∪ (Q1 × 2cnX ×Q1)

Therefore, |Q| ∈ 22poly(ϕ)
for CTLALC∗-TBoxes, and |Q| ∈ 2poly(ϕ) if we consider CTLALC-

TBoxes.
The number of states Q1 ofA1 is in 22poly(ϑ)

for CTLALC∗-TBoxes, and in 2poly(ϑ) for CTLALC-
TBoxes. Therefore, the number of states of A, which is the intersection of A1 and A2, is in
22poly(ϑ)

, and 2poly(ϑ) if we consider CTLALC-TBoxes.
o

Now, it remains to recall that the emptiness problem for 2ABTAs can be decided in exponential
time in the number of states, we obtain then the following result.

Theorem 3.24. Satisfiability of temporal TBoxes is in 2EXPTIME for CTLALC and in 3EXPTIME

for CTL∗ALC .

3.5.3 A 2EXPTIME Lower Bound for Temporal TBox Satisfiability for
CTLALC

In this section, we prove a 2EXPTIME lower bound for temporal TBox satisfiability for CTLALC
by a reduction of the word problem of an exponentially space bounded alternating Turing ma-
chine. This result shows that the additional expressive power obtained by the introduction of
temporal TBoxes is reflected in an exponential increase in the computational complexity, com-
pared to the case when only temporal concepts are allowed. Before presenting the reduction, we
introduce the basic notions of alternating Turing machines.

Alternating Turing machines are a generalization of nondeterministic Turing machines in which
existential and universal quantification alternate in a computation. Formally, an alternating
Turing machine (ATM) is a tupleM = (Q,Σ,Γ, q0, δ), where:

– Q = Q∃] Q∀] {qa, qr} is a finite set of states containing pairwise disjoint sets of
existential states Q∃, universal states Q∀, an accepting state {qa} and a rejecting state
{qr};

– Σ is an input alphabet and Γ a working alphabet, containing the blank symbol , such that
Σ ⊆ Γ and 6∈ Σ;

– q0 ∈ Q∃ ∪Q∀ is the initial state;

– δ is a transition relation of the form δ ⊆ Q×Γ×Q×Γ×{`, r, n}.

We write (q′, b,m) ∈ δ(q, a) for (q, a, q′, b,m) ∈ δ. We assume that q ∈ Q∃] Q∀ implies
δ(q, b) 6= ∅ for all b ∈ Γ, and q ∈ {qa, qr} implies δ(q, b) = ∅ for all b ∈ Γ. Intuitively, the

67

3 Branching Temporal Description Logics

triple (q′, b,m) describes the transition to state q′, involving overwriting of symbol a with b and
a shift of the head to the left (m = l), to the right (m = r) or no shift (m = n).

A configuration ofM is a word wqw′ with w,w′ ∈ Γ∗ and q ∈ Q, stating that the tape contains
the wordww′ (with only blanks before and behind it), the machine is in state q, and the head is on
the leftmost symbol of w′. The successor configurations of a configuration wqw′ are defined in
terms of the transition relation δ. A halting configuration is of the form wqw′ with q ∈ {qa, qr}.
A computation path of an ATMM on a wordw is a (finite or infinite) sequence of configurations
c1, c2, . . . such that c1 = q0w and ci+1 is a successor configuration of ci for i ≥ 0.

We consider in this thesis ATMs that have only finite computation paths on any input. Since this
case is simpler than the general one, we define acceptance for ATMs with finite computation
paths only, and refer to [31] for the full definition. LetM be such an ATM, a halting configura-
tion is accepting iff it is of the form wqaw

′; a non-halting configuration c = wqw′ is accepting
if at least one (all) successor configuration is accepting for q ∈ Q∃ (q ∈ Q∀, respectively). An
ATM accepts an input w if the initial configuration q0w is accepting. We use L(M) to denote
the language accepted byM, that is,

L(M) = {w ∈ Σ∗ | M accepts w}.
The word problem for M is the following decision problem: given a word w ∈ Σ∗, does
w ∈ L(M) holds?

There exists an exponentially space bounded ATM M with only finite computations whose
word problem is 2EXPTIME-hard [31, Theorem 3.4]. Furthermore, by [31, Theorem 2.6], we
can assume that there exists a polynomial p, such that the length of every computation path of
M onw ∈ Σ∗ of length n is bounded by 22p(n)

, and all configurationswqw′ in such paths satisfy
that |ww′ |≤ 2p(n).

We sometimes see an accepting computation of an ATM M on a word w as an acceptance
computation tree. An acceptance tree of M on w is a finite tree whose nodes are labeled with
configurations, such that:

– the root node is labeled with the initial configuration q0w,

– if a node s in the tree is labeled with wqw′, q ∈ Q∃, then s has exactly one successor, and
this successor is labelled with a successor configuration of wqw′,

– if a node s in the tree is labeled with wqw′, q ∈ Q∀, then there is exactly one successor of
s for each successor configuration of wqw′,

– leaves are labeled with accepting halting configurations.

For a more detailed discussion on alternation and the relation of deterministic (space) time com-
plexity classes with their alternating analogs, please consult the paper Alternation [31], by Chan-
dra et al.

Theorem 3.25. Satisfiability of temporal CTLALC TBoxes is 2-EXPTIME-hard.

Proof. The proof is by reduction of the word problem for exponentially space bounded alternat-
ing Turing machines. LetM = (Q,Σ,Γ, q0, δ) be such an ATM with a 2EXPTIME-hard word

68

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

problem, and w ∈ Σ the input of length n. Our aim is to construct in polynomial time a temporal
CTLALC TBox ϕM,w such that ϕM,w is satisfiable iff M accepts w.

The basic idea is to construct ϕM,w such that its models correspond to accepting computation
trees of M on w. In particular, the computation tree is represented by the temporal develop-
ment of a single domain element d0 with each time point w corresponding to a tape cell and a
configuration ofM being represented by exponentially many consecutive time points (see Fig-
ure 3.3). To transport symbols in our ATM reduction, we use a suitable set of binary counters to
manage distances in the tree. The resulting TBox ϕM,w has the form A2ψ with ψ a Boolean
combination of the CIs C v D to be introduced below. We use the following signature:

– concept names Sa,Wa for each a ∈ Γ;

– concept names Qq for each q ∈ Q;

– concept names Nq,a,m,Mq,a,m for every (q, a,m) ∈ Θ,
where Θ = {(q, a,m) | (q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q};

– concept name H to mark the cells to the right of the head;

– concept names X0, . . . , Xn−1, C0, . . . , Cn−1, C
′
0, . . . , C

′
n−1, U0, . . . , Un−1 for encoding

exponential counters;

– auxiliary concept names ZeroTape, EndTape, ZeroHead, ZeroHead′, EndHead′.

Throughout the reduction we use several counters over the temporal tree structure which allow
to identify time points exponentially far away. Each counter consists of a number of inclusions
of polynomial size; constraints (3.2)-(3.3) implement an exemplary counter based on atomic
concepts Xi for 0 ≤ i < n, which simulate the bits of a number in binary.

For every 0 ≤ j < i < n,
¬Xi u ¬Xj v A©¬Xi,
Xi u ¬Xj v A©Xi,

(3.2)

For every 0 ≤ j < n,

¬Xj uXj−1 u . . . uX1 v A©Xj ,
Xj uXj−1 u . . . uX1 v A©¬Xj .

(3.3)

We use the abbreviations Zero and End to respectively denote:

n−1l

j=0

¬Xj

n−1l

j=0

Xj (3.4)

Later on, we instantiate the above pattern to encode different counters X .

Now, we can enforce the conditions that ensure that the model actually represents an accepting
configuration of M on w. We utilize counter X to define constraints over a configuration of
the ATM. We use ZeroTape and EndTape, instantiating the abbreviations introduced in (3.4).

69

3 Branching Temporal Description Logics

Ab

Aaa

b

a Aa

a Aa

∅

...

2n

tape cell containing "a"

temporal relation

world w ∈W

a

Figure 3.3: Embedding of ATM tapes in CTLALC models.

We begin by enforcing standard structural requirements of ATM; we don’t synchronize yet the

content of successor configurations. Recall that we use concepts Qq to denote the current state

and the position of the head. First, we ensure that exists always a time successor until we reach

the head in a halting configuration (3.5). Moreover, we require that in each configuration every

tape cell is labeled with at most one state variable Qq (3.6), and that in every configuration at

most one tape cell is indeed labeled with a state Qq (3.7). Finally, we enforce that each tape cell

is labeled with exactly one alphabet letter (3.8).

¬(Qa �Qr) � E©� (3.5)

� �
�

q,q′∈Q
¬(Qq �Qq′) (3.6)

(�
q∈Q

Qq � A©H) ∧ (H � ¬EndTape � A©H) ∧ (H � ¬ �
q∈Q

Qq) (3.7)

� �
�

a,a′∈Γ,a =a′
¬(Aa �Aa′) (3.8)

We introduce a counter C capturing the position of the head in the tape; we use ZeroHead as

defined in (3.4). Furthermore, we use concepts Mq,a,m for carrying the information generated by

70

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

the transition function, and use them later to determine the successor configuration. Information
about the transitions is generated depending on whether the state is universal (3.9) or existential
(3.10) and then carried to the end of the tape (3.11).

For every a ∈ Γ, q ∈ Q∀:

Aa uQq v
l

(q′b′m)∈δ(q,a)

Mq′,b,m u ZeroHead (3.9)

For every a ∈ Γ, q ∈ Q∃ :

Aa uQq v t
(q′b′m)∈δ(q,a)

Mq′,b,m u ZeroHead (3.10)

Mq,a,m u ¬EndTape v A©Mq,a,m (3.11)

When moving to a successor configuration in order to avoid clashes in the information we create
copies Nq,a,m for concepts Mq,a,m, carrying this information over the new configuration (3.12)-
(3.13). We make the standard requirement that at most one concept Nq,a,m is true in a tape
cell (3.14). To avoid further clashes while synchronizing adjacent configurations, we create
an auxiliary counter C ′, using the standard abbreviations ZeroHead′,EndHead′ (3.4), which
proceeds with counting exactly from where the previous head counter terminated (3.15).

For every (q, a,m) ∈ Θ :

Mq,a,m u EndTape v E©Nq,a,m (3.12)

Nq,a,m u ¬EndTape v A©Nq,a,m (3.13)

> v
l

(q,a,m)6=(q′,a′,m′)∈Θ

¬(Nq,a,m uNq′,a′,m′) (3.14)

(EndTape u Ci v C ′i) ∧ (EndTape u ¬Ci v ¬C ′i) (3.15)

The changes imposed by the transition relation are implemented: write the new tape symbol
(3.16), and place the state variable in the correct position (3.17) -(3.19). Moreover, we ensure
that the transition does not push the head beyond the tape (3.20) - (3.21).

For every (q, a,m) ∈ Θ
Nq,a,m u ZeroHead′ v Aa (3.16)

For every (q, a, n) ∈ Θ
Nq,a,m u ZeroHead′ v Qq (3.17)

For every (q, a, r) ∈ Θ
Nq,a,m u ZeroHead′ v A©Qq (3.18)

For every (q, a, l) ∈ Θ
Nq,a,m u EndHead′ v Qq (3.19)

71

3 Branching Temporal Description Logics

For every (q, a, l) ∈ Θ

ZeroHead′ u ZeroTape v ¬Nq,a,m (3.20)

For every (q, a, r) ∈ Θ
EndHead′ u EndTape v ¬Nq,a,m (3.21)

We propagate the information of each i-th tape cell that do not change during the transition. This
information is stored in fresh elements, i.e., new r-successors, and synchronized via the counter
U with the content of the i-th cell in the previous configuration; we use ZeroCell and EndCell for
the respective abbreviations in (3.4). Moreover, to store the label of a tape cell concept names
Wa, Sa for every a ∈ Γ are used. The information store by Wa and Sa is propagated to the
previous configuration (3.22), and aligned at the end of the configuration (3.23). We enforce
standard consistency constraints (3.24).

For every a ∈ Γ

(¬EndTape uE©Wa vWa) ∧ (¬EndTape uE©Sa v Sa) (3.22)

EndTape uE©Wa v Sa (3.23)

(> v
l

a,a′∈Γ,a6=a′
¬(Wa uWa′)) ∧ (> v

l

a,a′∈Γ,a6=a′
¬(Sa u Sa′)) (3.24)

We proceed to propagate the information of each i-th tape cell not meant to change. For imple-
menting successfully this (recall that roles change freely over time), we need to enforce all the
individuals of a world to share the same alphabet symbol (3.25). A representative of each not
changing cell is generated, and its label Aa is stored in Wa (3.26). Now, we synchronize the
content of i-th cell with that of the i-th cell in the previous configuration (3.27).∨

a∈Γ

(> v Aa ∨ > v ¬Aa) (3.25)

¬ZeroHead′ uAa v ∃r.Wa u ZeroCell (3.26)

For every b 6= a ∈ Γ
Aa u Sb u ZeroCell v ⊥ (3.27)

Recall that in our setting any computation is terminating, moreover halting configurations are the
only configurations without successor configurations. Then, the input w = a1 . . . an is accepted
if the rejecting state is not reached (3.28).

> v ¬Qqr (3.28)

The initial configuration q0w starting at A0 is encoded as follows

72

3.5 Reasoning about CTL∗ALC and CTLALC Temporal TBoxes

A0 = Aa1 uQq0 u ZeroTape uE©A1

Ai = Aai+1 uE©Ai+1

An = A((A u ¬EndTape)U(A u Endtape))

¬(> v ¬A0) (3.29)

We define ψ as the conjunction of the TBoxes introduced above, and ϕM,w as A2ψ. Now, it is
not hard to see that the size of ϕM,w is polynomial in n. Finally, following the intuitive meaning
of each conjunct given above, it is clear that the following holds.

Proposition 3.26. ϕM,w is satisfiable iffM accepts w.

Assume w ∈ L(M), and TM = (NM, EM, conf) is an acceptance tree of M on w, where
conf(n) assigns configurations to nodes n ∈ NM. Moreover, given conf(n) = wqw′, the
function]i(conf(n)) returns the i-th symbol of ww′, and h(conf(n)) the position of the head.
Our aim is to construct a model I = (∆, T, {Iw}w∈W) of ϕM,w. We begin by defining the set
W I,M ⊆W as follows:

W I,M = {wni | n ∈ NM ∧ i < 2|w|}

and the set EI,M ⊆ E as follows:

EI,M = {(wni , wni+1) | i < 2|w| ∧ n ∈ NM} ∪ {(wn
2|w|−1 , w

n′
0) | (n, n′) ∈ EM}.

Moreover, we define ∆ = {dM} ∪ {ewn
i
| wni ∈W I,M ∧ h(conf(n)) 6= i} and

– A
I,wn

i
a = {e ∈ ∆ |]i(conf(n)) = a};

– Q
I,wn

i
q = {dM ∈ ∆ | M is in state q ∧ h(conf(n)) = i};

– X
I,wn

i
j = {dM ∈ ∆ | the jth bit of the binary representation of i is 1};

– rI,w
n
i = {(dM, ewn

i
) ∈ ∆×∆}.

The interpretation can be standardly extended to the remaining auxiliary concepts in the con-
struction, e.g., Mq,a,m, H , etc. For example, the concepts Wa, Sa are interpreted as follows:

W
I,wn

i
a = {ewn

j
∈ ∆ |]j(conf(n)) = a ∧ j ≥ i},

S
I,wn

i
a = {e

wn′
j
∈ ∆ | (n, n′) ∈ EM ∧ e

wn′
j
∈W

I,wn′

2|w|−1
a }.

One can interpret analogously the other auxiliary concepts and its copies used to transfer and
synchronize information between adjacent configurations. We next discuss how the interpreta-
tion of auxiliary counters is defined. For example, consider the Head counter implemented with
concept names Cj , and its auxiliary copy Head′ implemented with concept names C ′j . We define
their interpretation as follows:

73

3 Branching Temporal Description Logics

C
I,wn

i
j = {dM ∈ ∆ | h(conf(n)) = m,m ≥ i∧

the jth bit of the binary representation of dist(wn
′
i , w

n
m) is 1 },

C ′j
I,wn′

i = {dM ∈ ∆ | h(conf(n)) = m, (n′, n) ∈ EM ∧
the jth bit of the binary representation of dist(wn

′
i , w

n
m) is 1 },

where dist(wn
′
i , w

n
m) is a function giving the distance modulo 2|w| between the nodes wn

′
i and

wnm. We can define analogously the interpretation for the other auxiliary counters.

Finally, note that up to this point we have defined the interpretation I′ = (∆, T I,M, {Iw}w∈WI,M)
where T I,M = (W I,M, EI,M). However, we can straightforwardly obtain I from I′ by extend-
ing each path of T I,M to an infinite path. Most of the concepts can be interpreted as the empty
set in the new added worlds, the only exception are the counter concepts: we can properly inter-
preted them by taking the distance from the root ε, that is, for w ∈W\W I,M

XI,w
j = {dM ∈ ∆ | the jth bit of the binary representation of dist(ε, w) is 1}.

Now, by simply inspecting the conjuncts forming ϕM,w one can easily see that I, ε |= ϕM,w.

The other direction follows directly from the construction. Let I = (∆, T, {Iw}w∈W) be a
model of ϕM,w, to retrieve an acceptance tree of M on w, we pick a d ∈ ∆ such that d ∈
AI,ε

0 , and follow its evolution through the paths of I, and collect the information of the entire
computation. Note that I is infinite but since the transitions of the ATM are properly simulated
in the encoding, then the ATM trees embedded in I are finite.

o

Theorem 3.27. Satisfiability of temporal CTLALC-TBoxes is 2EXPTIME-complete.

3.6 Conclusions

Towards the construction of more useful temporal DLs it is essential to consider different for-
malisms of time, providing TDLs with different capabilities for modeling specific temporal as-
pects of knowledge. For example, many ontology applications require to distinguish between
possible and necessary future developments of knowledge. With this in mind, we investigated
combinations of DLs with the branching-time temporal logics CTL and CTL∗. We focused
on the study of the computational complexity of branching-time TDLs based on the traditional
DLs EL and ALC. We began by considering the case where temporal operators can be applied
only to concepts: for CTLALC and CTL∗ALC , we devised a uniform algorithm for satisfiability
based on a combination of type-elimination and automata techniques. This provided us with
EXPTIME and 2EXPTIME tight upper bounds for CTLALC and CTL∗ALC , respectively. In the
case of EL, we concentrated on fragments of CTLEL. Notably, we identified the polytime
fragment CTLE3

EL . Moreover, we showed that most of the remaining candidate fragments of
CTLEL are hard for PSPACE and EXPTIME. Finally, we considered more expressive variants of
CTLALC and CTL∗ALC , allowing for the application of temporal operators not only to concepts
but also to TBoxes. Again, we used a uniform approach to satisfiability of temporal CTLALC and

74

3.6 Conclusions

CTL∗ALC TBoxes based on automata on infinite trees. We obtained 2EXPTIME and 3EXPTIME

upper bounds for CTLALC and CTL∗ALC , respectively. For CTLALC , we were able to prove
a 2EXPTIME matching lower bound. This shows that the presence of temporal concepts and
TBoxes indeed leads to an increase on the computational complexity.

This chapter provided us with a better understanding of the computational complexity of branching-
time TDLs, for which only non-elementary upper bounds were known. Remarkably, we identi-
fied the first fragment based on traditional TLs (LTL, CTL, CTL∗) for which reasoning is easier
than in the ALC variant. Some interesting problems remain open: for instance, to establish the
precise complexity of satisfiability of temporal CTL∗ALC-TBoxes, which is currently open be-
tween 2EXPTIME and 3EXPTIME. Another interesting research line is the study of branching-
time TDLs based on the DL-Lite family of DLs. Remarkably, linear-time TDLs based on DL-
Lite allow to effectively reason about the temporal evolution of of roles. It also seems natural to
increase the expressive power of the branching time component as demanded by applications.
This includes capturing statements such as ‘it is likely that an irregular mole develops into a
melanoma in the future’ and ‘all students will graduate within 8 semesters’. For the former, one
can look at TDLs based on probabilistic CTL [27], and for the latter, one can look at TDLs based
on metric temporal logics [65].

75

4
Description Logics of Change

In this chapter, we investigate two-dimensional DLs for representing and reasoning about changes
of knowledge over time. Description Logics of Change are constructed by combining the modal
logic S5 with classical DLs. We concentrate on the investigation of DLs of change based on
EL and its extension ELI, and on the expressive DL ALCO. The main technical contributions
are algorithms for subsumption and satisfiability, and tight complexity bounds that range from
PSPACE to NEXPTIME and 2EXPTIME.

4.1 Introduction

Temporal description logics, as discussed previously, appeared as a reaction to the inability
of classical description logics to represent and reason about dynamic and temporal aspects of
knowledge. Temporal description logics that emerge from combining DLs and TLs in the spirit
of multi-dimensional DLs [38] provide different expressive power and have different compu-
tational properties depending on whether temporal operators are applied to concepts, roles or
axioms. Notably, TDLs constructed by combining the temporal logics LTL or CTL with ALC
become undecidable in the presence of a global TBox as soon as temporal operators are applied
not only to concepts but also to roles, or rigid roles are allowed [58]. In other words, in the pres-
ence of temporal concepts we cannot effectively reason about the temporal evolution of binary
relations. Alas, this becomes an important drawback for many relevant applications. For exam-
ple, to accurately model the medical term ‘genetic disorder’ which refers to a genetic disease,
we require a rigid role hasGeneDisorder. Intuitively, this is the case since such a disorder will
remain with a person for a life-time. As another example, consider the term ‘PhD candidate’
which refers to a student that eventually submits a dissertation. We can properly model this term
with the concept Student u ∃3submits.Dissertation, which (via the temporal role 3submits)
states that there is a time point in the future when he will submit a dissertation.

77

4 Description Logics of Change

Two recent investigations showed that this limitation can be overcome by weakening either the
temporal or the DL component [10, 8]. In the prominent proposal by Artale et. al. [8], LTL
is maintained as the temporal component while the DL component is weakened to members
of the lightweight DL-Lite family [4]. A complementary approach was presented by Artale
et al. [10] where the DL component is given by the highly expressive DL ALCQI, and the
temporal one by the modal logic S5. The latter approach gave rise to Description Logics of
Change (DLCh) in which the application of S5 modalities to different pieces of DL syntax
allows to model the change of knowledge over time without differentiating between changes
in the past or the future. The main objective of the research carried out by Artale et al. [10]
was the design of a TDL capable to capture temporal entity-relationship models (TER) used
in the design of temporal databases. Hence the need of considering the highly expressive DL
ALCQI to faithfully capture constraints present in TER models, such as disjointness, covering
constraints and cardinality constraints [6]. Describing temporal conceptual database models is
indeed one prominent application of TDLs, but DLs of change are also well-suited for modeling
important dynamic aspects of knowledge such as versioning and evolution. As an example,
consider the term ‘java language’ which refers to a language which is a programing language in
the computer science field, and it is also a natural language spoken by the Javanese people. We
can model this using the following axioms:

JavaLanguage v ProgrammingLanguage u3NaturalLanguage

NaturalLanguage u ProgrammingLanguage v ⊥

Intuitively, when identifying each possible world with a possible version, the first axiom states
that a java language is a programming language, and that there is a version in which it is a
natural language. The second axiom ensures that a language cannot be a natural language and a
programming language in the same version. As another example, using the following axiom we
can express the term ‘Mortal’ which refers to a living being that eventually will be dead.

Mortal v ¬Dead u3Dead

Intuitively, this axiom states that each instance of mortal eventually will evolve to a dead entity.
In the light of the high 2EXPTIME-completeness for S5ALCQI [10], the design of well-behaved
DLs of change becomes crucial for applications requiring to capture change of knowledge over
time. The aim of this chapter is thus to investigate DLs of change based on lighter DLs than
ALCQI, which (in principle) could lead to the construction of computationally better-behaved
logics. We concentrate on developing algorithms for subsumption and the satisfiability, and on
providing tight complexity bounds. First, we study a DLCh based on the DL ALCO in the case
where S5-modalities are applied only to concepts and a global TBox is considered. Note that
in the presence of temporal roles already reasoning in S5ALC becomes 2EXPTIME-hard, hence
we look at S5ALCO allowing only for local roles. Later, we revisit the idea of designing TDLs
allowing to reason about the temporal evolution of roles. Notably, since the combination of LTL
and EL allowing for temporal concepts in the presence of a global TBox and rigid roles is as

78

4.2 Introducing Description Logics of Change

complex as the ALC variant [7] (which, as mentioned above, is undecidable), it is fundamental
to investigate whether it is possible to design DLChs based on EL in which we can reason about
the temporal evolution of concepts and roles, and reasoning is less complex.

Contributions: Our investigation starts with S5ALCO in the case where modalities can be
applied only to concepts, concentrating on global TBoxes. Notably, we provide a NEXPTIME

lower bound using a reduction of the 2n×2n-tiling problem, showing thus that the computational
complexity of S5ALCO is higher than in the component logics. This result comes as a surprise,
since the computational complexity of TDLs allowing only for temporal concepts normally does
not exceed that of their components. Later, we consider S5EL in the case where S5-modalities
can be applied to both concepts and roles, concentrating again on global TBoxes. For this logic,
it was known that subsumption is in 2EXPTIME and PSPACE-hard. It is interesting to note that,
until now, any two-dimensional extension of EL allowing for modalities to be applied to roles
has turned out to have the same complexity as the corresponding extension of the DL ALC,
see e.g. [7]. Since subsumption in the ALC-variant of S5EL is 2EXPTIME-complete [10], it
was thus tempting to conjecture that the same holds for S5EL. We show that this is not the
case by establishing a tight PSPACE upper bound for subsumption in S5EL. In particular, we
devise a two-dimensional variant of completion algorithms [12]. We further show that this result
does not hold anymore if inverse roles are allowed, that is, ELI is considered instead of EL.
Particularly, we establish a tight 2EXPTIME lower bound using a reduction of the word problem
of exponentially space bounded alternating Turing machines. Unfortunately, this implies that
subsumption in S5ELI is as hard as in the corresponding ALCQI-variant.

Organization: The next section formally introduces DLs of change. Further, Section, 4.3
investigates the computational complexity of S5ALCO in the case where temporal operators are
applied to concepts and a global TBox is considered. In Section 4.4, we investigate DLChs
based on EL and its extension ELI in the case where temporal operators are applied not only
to concepts but also to roles, and a global TBox is considered. This chapter ends with some
conclusions presented in Section 4.5.

4.2 Introducing Description Logics of Change

Description Logics of Change (DLCh) emerge from the combination of the modal logic S5
with classical DLs in the style of multi-dimensional DLs. DLs of change enable reasoning
about changes of knowledge over time. However, they do not permit to differentiate between
changes occurring in the past or in the future. In the investigation carried out in this chapter, we
concentrate on the study of DLChs based on the DLs EL, ELI and ALCO.

4.2.1 Syntax and Semantics

Definition 4.1. Fix countably infinite disjoint sets NC,NR,NI of concept names, role names and
individual names, respectively. S5ALCO concepts are formed by the following grammar:

C ::= > | A | ¬C | C uD | {a} | ∃r.C | 3D | ∃∗r.C

79

4 Description Logics of Change

where A ranges over NC, a ranges over NI, r ranges over NR, and ∗ ∈ {3,2}.
We say that a role is temporal if it is of the form 3r or 2r, where r ranges over NR. We use
standard Boolean abbreviations, plus 2C to abbreviate ¬3¬C.
We define S5ALCO TBoxes as for classical DLs but using concepts from S5ALCO.

Definition 4.2. An S5ALCO TBox is a finite set of CIs C v D, where C,D are S5ALCO
concepts.

For example, the following S5ALCO CI states that Pluton is an igneous rock and that it is a dwarf
planet in an astronomy version. Moreover, we ensure that Pluton cannot be an igneous rock and
a dwarf planet in the same version.

Pluton v IgneousRock u3(DwarfPlanet u ∃inVersion.{astronomy})
DwarfPlanet u IgneousRock v ⊥

The possible world semantics of DLs of change is given in terms of temporal interpretations,
which associate with each possible world w a classical DL interpretation Iw.

Definition 4.3. A temporal interpretation I is a structure (∆,W, {Iw}w∈W) where W is a non-
empty set of possible worlds and for each w ∈ W , Iw is a classical DL interpretation with
domain ∆, such that aIw = aIw′ for all a ∈ NI and w,w′ ∈ W . The mapping ·I,w is extended
to complex concepts and roles as follows:

>I,w = ∆;

(¬C)I,w = {d ∈ ∆ | d /∈ CI,w};

(C uD)I,w = {d ∈ ∆ | d ∈ CI,w ∧ d ∈ DI,w};

(∃r.C)I,w = {d ∈ ∆ | ∃e ∈ ∆ : e ∈ CI,w ∧ (d, e) ∈ rI,w};

({a})I,w = {aI,w};

(3C)I,w = {d ∈ ∆ | ∃v ∈W : d ∈ CI,v};

(3r)I,w = {(d, e) ∈ ∆×∆ | ∃v ∈W : (d, e) ∈ rI,v};

(2r)I,w = {(d, e) ∈ ∆×∆ | ∀v ∈W : (d, e) ∈ rI,v};

(∃∗r.C)I,w = {d ∈ ∆ | ∃e ∈ ∆ : e ∈ CI,w ∧ (d, e) ∈ (∗r)I,w}.

We usually write CI,w instead of CIw –analogously for rIw–. Intuitively, d ∈ CI,w means
that in the temporal interpretation I, d is an instance of C in the world w. Moreover, note that
in the previous definition we make the constant domain assumption, that is, each world shares
the same domain ∆. Intuitively, this means that objects are not created or destroyed from one
world to another. In this thesis, we are interested in the study of the complexity of the concept
satisfiability problem w.r.t. TBoxes.

80

4.3 Reasoning in S5ALCO without Temporal Roles

Definition 4.4. A temporal interpretation I is a model of a concept C if CI,w 6= ∅ for some
w ∈ W ; it is a model of a TBox T if CI,w ⊆ DI,w for all w ∈ W and C v D in T . A concept
C is satisfiable w.r.t. a TBox T if there exists a common model of C and T .

Note that in the previous definition TBoxes are globally interpreted in the sense that the axioms
should hold in each world.

4.3 Reasoning in S5ALCO without Temporal Roles

This section begins our investigation on the computational complexity of DLs of change. We
start by considering a restricted variant of S5ALCO in which concepts of the form ∃∗r.C are
disallowed, that is, we consider only temporal concepts 3C and local roles. More precisely, we
allow for the concepts defined by the following grammar:

C ::= > | A | ¬C | C uD | {a} | ∃r.C | 3D
where A ranges over NC, a ranges over NI, r ranges over NR. For example, the following CI is
formulated in this logic:

Turtle v Reptile u3(City u ∃located.(Canada t US) u ∃inVersion.{geography}).

Intuitively, this axiom states that a turtle is a reptile and that it is a city located in Canada or US
in a geography version.

Recall that we are trying to identify logics computationally less complex than S5ALCQI . Since
in the presence of temporal roles already the combination based on ALC becomes 2EXPTIME-
hard, we look at the case where only local roles are allowed. Note that reasoning in S5ALC with
only temporal concepts in the presence of a global TBox is EXPTIME-complete [38] and then
not harder than in ALC. In this chapter, we show that this is not the case for S5ALCO in which
reasoning becomes NEXPTIME-hard and then harder than in ALCO.

We next show that the presence of nominals indeed makes reasoning harder. In particular, the
interaction of nominals with S5-modalities enables a reduction of the NEXPTIME-complete
2n×2n-tiling problem. This shows thus that there is a jump in the complexity from EXPTIME-
complete for ALCO to NEXPTIME-hard for S5ALCO.

Before presenting the reduction, we proceed to introduce the 2n×2n-tiling problem which is a
bounded version of the undecidable N×N-tiling problem [23, 76].

A tile type t is a 4-tuple of colors (left(t), right(t), up(t), down(t)). An instance T is a tuple
(T, t0, n), where T is a finite set of type tiles, t0 ∈ T and n ∈ N is given in unary. We next
define the matching conditions under which a set of tile types tiles the 2n×2n grid. Given an
instance T = (T, t0, n), we say that T tiles the 2n×2n grid if there exists a function τ from the
set {(i, j) | i, j < 2n} to T such that the following hold:

– up(τ(i, j)) = down(τ(i, j + 1)), for all i < 2n, j < 2n−1.

81

4 Description Logics of Change

– right(τ(i, j)) = left(τ(i+ 1, j)), for all i < 2n − 1, j < 2n.

– τ(0, 0) = t0.

The following 2n×2n-tiling problem is NEXPTIME-complete [23, 76]: Given an instance T =
(T, t0, n), does T tile the 2n×2n grid?

Theorem 4.1. Concept satisfiability w.r.t. TBoxes for S5ALCO without temporal roles is NEXPTIME-
hard.

Proof. The proof is by a polynomial reduction of the 2n×2n-tiling problem. Let T = (T, t0, n)
be an instance. Our aim is to construct in polynomial time a TBox TT and a concept CT, such
that T tiles the 2n×2n grid iff CT is satisfiable w.r.t. TT. We use the following signature:

– concept names Aτi for each τi ∈ T ;

– concept names X0, . . . , X2n−1 and Y0, . . . Y2n−1 for encoding exponential counters;

– a single nominal {a};

– an auxiliary concepts Grid, StartGrid, EndGrid, RightEdge, DownNeighbor.

First, the inclusions (4.1)-(4.6) enforce a 22n-long chain of individuals (Grid), uniquely identifi-
able by counting concepts Xi and Yi, for i ∈ (0, 2n − 1). Notably, the Y -counter is shifted in
the phase w.r.t. the X-counter by exactly 2n, (i.e., X + 2n−1 = Y), which further on is used for
identifying the top-down neighbors in the tiling. Also, every 2n−1-th individual starting from
the beginning of the chain is made an instance of concept RightEdge, marking the right edge of
the tiling (4.2):

StartGrid ≡ Grid u
2n−1l

j=0

¬Xj u
n−1l

j=0

¬Yj u Yn u
2n−1l

j=n+1

¬Yj , (4.1)

EndGrid ≡
2n−1l

j=0

Xj Grid u ¬EndGrid v ∃s.Grid, RightEdge ≡
n−1l

j=0

Xj . (4.2)

For every 0 ≤ j < i < 2n:
¬Xi u ¬Xj v ∀s.¬Xi,

Xi u ¬Xj v ∀s.Xi.
(4.3)

For every 0 ≤ j < 2n:

¬Xj uXj−1 u . . . uX1 v ∀s.Xj ,

Xj uXj−1 u . . . uX1 v ∀s.¬Xj .
(4.4)

For every 0 ≤ j < i < 2n :
¬Yi u ¬Yj v ∀s.¬Yi,
Yi u ¬Yj v ∀s.Yi.

(4.5)

82

4.3 Reasoning in S5ALCO without Temporal Roles

∃

Figure 4.1: Encoding of a 2n×2n-tiling in an S5ALCO-model.

For every 0 ≤ j < 2n:
¬Yj � Yj−1 � . . . � Y1 � ∀s.Yj ,
Yj � Yj−1 � . . . � Y1 � ∀s.¬Yj .

(4.6)

Next, by means of CIs (4.7)-(4.8), the values of the counting concepts are propagated globally

across all S5-worlds.

For every 0 ≤ i < 2n:

Xi � �Xi, ¬Xi � �¬Xi, (4.7)

Yi � �Yi, ¬Yi � �¬Yi. (4.8)

Further, we impose the basic coloring constraints over all individuals (4.9). We adjust the color-

ing of all the left-right neighbors: (4.10). Finally, we propagate the tile types over all S5-worlds

(4.11):

For every τi, τj ∈ T ,

� � (�
τi
Aτi) �

�

τi =τj

¬(Aτi �Aτj), (4.9)

Aτi � ¬RightEdge � ∀s.(�
right(τi)=left(τj)

Aτj), (4.10)

Aτi � �Aτi . (4.11)

The key to the reduction is a suitable use of a single nominal {a} (see Figure 4.1). By (4.12)

every individual in the grid is linked to a via a role r in some S5-world. There, due to (4.13)-

(4.14), the value of the X-counter and the tile type assigned to the individual is forced upon a.

Consequently, by assuming rigid individual names, we generate 22n distinct S5-worlds:

83

4 Description Logics of Change

Grid v 3∃r.{a}, (4.12)

Xi v ∀r.Xi, ¬Xi v ∀r.¬Xi, (4.13)

Aτi v ∀r.Aτi . (4.14)

Finally, in every S5-world, all individuals are linked to a via p (4.15). Whenever the value of
the Y -counter on a grid-individual matches the value of the X-counter on a (4.16), the proper
top-down coloring constraints are imposed (4.17):

> v ∃p.{a}, (4.15)

DownNeighbor ≡
2n−1l

j=0

((Yi u ∃p.Xi) t (¬Yi u ∃p.¬Xi)), (4.16)

Aτi u DownNeighbor v ∀p. t
down(τi)=up(τj)

Aτj , for every τi, τj ∈ T. (4.17)

The TBox TT is defined as the union of the axioms (4.1)-(4.17). It is easy to see that the size of
TT is polynomial in the size of the instance T. Finally, we define the concept

CT = StartGrid uAτ0 .

Now, following the construction of TT it is not difficult to see that the following proposition
holds.

Proposition 4.2. T tiles the 2n×2n-grid iff CT is satisfiable w.r.t. TT.

Let τ be a tiling for T, that is, a mapping from 2n×2n to T . We define a model I = (∆,W, {Iw}w∈W)
of TT and CT as follows. First, transform τ into π : 22n → T , such that for every (x, y) ∈
2n×2n, τ(x, y) = π(y∗2n+x). Now, setW = {wi | i ∈ (0, 22n)} and ∆ = {di | i ∈ (0, 22n)}
and ensure that the following interpretation constraints are satisfied:

– aI,w = d0 for d0 ∈ ∆ and every w ∈W ,
– for w0 ∈W :

– GridI,w0 = ∆\{d0},
– StartGridI,w0 = {d1 ∈ ∆}, EndGridI,w0 = {d22n ∈ ∆},
– RightEdgeI,w0 = {d2n∗i ∈ ∆},
– sI,w0 = {(di, di+1) | di, di+1 ∈ ∆, i ≥ 1},

– {di | π(i) = τj} ⊆ AI,w
τj , for every w ∈W and τj ∈ T ,

– d0 ∈ AI,wi
τj iff π(i) = τj , for every i ≥ 1 and τj ∈ T ,

– rI,wi = {(di, d0) | di ∈ ∆} for i ≥ 1,

– pI,w = {(d, d0) | d ∈ ∆} for every w ∈W ,

– DownNeighborI,wi = {di−2n ∈ ∆}, for every wi ∈W and i ≥ 2n + 1.

84

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

The interpretation can be standardly extended to counting concepts Xi and Yi so that I is indeed
a model of TT with d1 ∈ (CT)I,w0 .
Conversely, let I be a model of TT and CT. A tiling for T can be retrieved from I by mapping
a chain of s-successors, which instantiate the concept Grid in the S5-world in which CT is
satisfied, on the 2n×2n grid, where the type of a tile in the grid is determined by the unique
concept Aτi satisfied by the individual in the chain. The coloring constraints have to be satisfied
by the construction of the encoding.

o

We obtain a matching upper bound in Chapter 5, Section 5.8.

Theorem 4.3. Concept satisfiability w.r.t. TBoxes for S5ALCO without temporal roles is NEXPTIME-
complete.

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

We continue our investigation by studying the computational complexity of DLs of change in
which S5-modalities are applied to both concepts and roles. With the aim of designing com-
putationally well-behaved logics, we consider DLChs based on the tractable DL EL and its
extension ELI. Notably, we show that by using EL instead of ALC reasoning becomes in-
deed easier: it goes down from 2EXPTIME-complete [10] for S5ALC to PSPACE-complete for
S5EL. It is worth noting that S5EL is the first two-dimensional extension of EL with temporal
roles presenting better computational complexity than the correspondingALC variant. Unfortu-
nately, later on, we show that this result does not hold anymore if we use ELI instead of EL. In
particular, we show that reasoning in S5ELI is as difficult as in S5ALC .
S5EL is the fragment of S5ALCO (with temporal roles) that disallows ¬, and thus C tD, ∀r.C,
and nominals. Formally, S5EL concepts are formed by the following grammar:

C ::= > | A | C uD | ∃r.C | ∗C | ∃∗r.C
where A ranges over NC, r ranges over NR, and ∗ ∈ {3,2}. S5ELI further allows for inverse
roles, that is, r ranges over {r, r− | r ∈ NR}.
For example, the following CI is formulated in S5EL :

ViralDisease v Disease u ∃3hasCause.Virus

Intuitively, this axiom states that a viral disease is a disease that has as a possible cause a virus.
As in the case of classical EL, due to the lack of negation the satisfiability problem becomes
trivial for S5EL in the sense that every concept is satisfiable w.r.t. every TBox. We concentrate
thus on the subsumption problem for S5EL: a concept D subsumes a concept C w.r.t. a S5EL
TBox T , if CI ⊆ DI for every temporal interpretation I that is a model of T .
We devote the rest of this section to the development of a completion algorithm for deciding
subsumption w.r.t. TBoxes for S5EL with temporal roles, yielding a tight PSPACE upper bound.
Our algorithm can be seen as a ‘two-dimensional’ variant of completion algorithms for Horn

85

4 Description Logics of Change

DLs [12, 52]. The lower bound was established in the context of the research on probabilistic
DLs with possible world semantics [57] [Theorem 14]. A discussion on the relation of proba-
bilistic DLs based on EL and S5EL can be found in [44].

4.4.1 An Algorithm for Concept Subsumption w.r.t. TBoxes for S5EL with
Temporal Roles

We concentrate w.l.o.g. on subsumption between concept names and assume that the input TBox
is in a certain normal form, defined as follows. A basic concept is a concept of the form >, A,
3A, 2A, or ∃α.A, where A is a concept name and, here and in what follows, α is a role, i.e.,
of the form r, 3r, or 2r with r a role name. Now, every concept inclusion in the input TBox is
required to be of the form

X1 u · · · uXn v X
with X1, . . . , Xn, X basic concepts. Every TBox in S5EL can be transformed into this normal
form in polynomial time such that (non-)subsumption between the concept names that occur in
the original TBox is preserved [57].

Let T be the input TBox in normal form, CN the set of concept names that occur in T , BC the
set of basic concepts in T , and ROL the set of roles in T . Our algorithm maintains the data
structures shown in Figure 4.2, which will be saturated according to a set of completion rules.
The definition of the data structures provides already some intuition about their meaning, e.g.,
X ∈ Q(A) means that T |= A v X . The key characteristic, however, of these structures is that
they provide an abstract representation of a model of T :

– Q(A) describes the concept memberships of a domain element d in a world w with d ∈
AI,w;

– R describes role memberships, that is, when (A,B) ∈ R(α), then d ∈ AI,w implies that
in some world v, d has an element described by Q(B) as an α-successor;

– Qcert(A) contains all concepts that must be true in all worlds for any domain element that
satisfies A in some world.

The data structures are initialized as follows, for all A ∈ CN and relevant roles α:

Q(A) = {>, A} Qcert(A) = {>} R(α) = ∅

The sets Q(·), Qcert(·), and R(·) are then repeatedly extended by the application of various rules.
First, a set of ‘local rules’ is presented in Figure 4.3, serving the purpose of saturating a set of
concepts Γ. These rules are close in spirit to those introduced by Baader el al. [12] for classical
EL; they saturate a set describing an element in a given world. We use cl(Γ) to denote the set
of concepts that results from exhaustively applying the rules in Figure 4.3 to Γ, where any rule
can only be applied if the added concept is in BC, but not yet in Γ. The rules will be applied to

86

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

Mapping Q that associates with each A ∈ CN a subset Q(A) ⊆ BC
such that T |= A v X for all X ∈ Q(A)

Mapping Qcert that associates with each A ∈ CN a subset Qcert(A) ⊆ BC
such that T |= A v 2X for all X ∈ Qcert(A)

Mapping R that associates with each probabilistic role α ∈ ROL a binary relation R(α) on CN
such that T |= A v 3(∃α.B) for all (A,B) ∈ R(α)

Figure 4.2: Data Structures Q, Qcert, R

the sets Q(A) and Qcert(A), but they will also serve other purposes as described below. It is not
hard to see that rule application terminates after polynomially many steps.

The rules that are used for completing the data structures Q(·), Qcert(·), and R(·) are more
complex rules that take into account the two-dimensional nature of S5EL. In particular, they
refer to ‘traces’ through these data structures, capturing the interpretation of the domain in a
possible world.

Definition 4.5. Let B ∈ CN. A trace to B is a finite sequence S,A1, α2, A2, . . . , αn, An where

– S = A for some 3A ∈ Q(A1) or S = (r,B1) for some (A1, B1) ∈ R(3r);

– each Ai ∈ CN and each αi ∈ ROL is a temporal role, such that An = B;

– (Ai, Ai−1) ∈ R(αi) for 1 < i ≤ n.

If t is a trace of length n, we use tk, k ≤ n, to denote the shorter trace S,A1, α2, . . . , αk, Ak.

Intuitively, the purpose of a trace is to deal with worlds that are generated by concepts 3A
and ∃3r.A. Note that there can be infinitely many such worlds as S5EL lacks the finite model
property [57]. The trace starts at some domain element represented by a set Q(A1) in the world
generated by the first element S of the trace, then repeatedly follows role edges represented by
R(·) backwards until it reaches the final domain element represented by Q(B). The importance
of traces stems from the fact that information can be propagated along them, as captured by the
following notion.

87

4 Description Logics of Change

R1 If X1 u . . . uXn v X ∈ T and X1, . . . , Xn ∈ Γ then add X to Γ

R2 If 2A ∈ Γ then add A to Γ

R3 If ∃2r.A ∈ Γ then add ∃r.A to Γ

R4 If A ∈ Γ then add 3A to Γ

R5 If ∃r.A ∈ Γ then add ∃3r.A to Γ

R6 If ∃α.A ∈ Γ and B ∈ Q(A) then add ∃α.B to Γ

Figure 4.3: Saturation rules for cl(Γ)

Definition 4.6. Let t = S,A1, α2, . . . , αn, An be a trace of length n. Then the type Γ(t) ⊆ BC
of t is defined as follows:

– cl({A} ∪ Qcert(A1)) if n = 1 and S = A;

– cl(Qcert(A1) ∪ {∃r.B′ ∈ BC | B′ ∈ Qcert(B1)}) if n = 1 and S = (r,B1);

– cl(Qcert(An) ∪ {∃αn.B′ ∈ BC | B′ ∈ Γ(tn−1)}) if n > 1.

The propagation of information along traces is now as follows: if there is a trace t toB, then any
domain element that satisfies B in some world must satisfy the concepts in Γ(t) in some other
world. So if for example 3A ∈ Γ(t), we need to add 3A also to Qcert(B) and to Q(B).

Figure 4.4 shows the rules used for completing the data structures Q(·), Qcert(·), and R(·),
where rules S6 and S7 implement, using traces, the propagation of information across both
dimensions.

Our algorithm for deciding subsumption starts with the initial data structures defined above and
then exhaustively applies the rules shown in Figure 4.4. To decide whether T |= A v B, it then
simply checks whether B ∈ Q(A).

Lemma 4.4. Let T be a S5EL-TBox in normal form and A,B be concept names. Then T |=
A v B iff, after exhaustive rule application, B ∈ Q(A).

Proof. For the “if” direction we show that the following invariants of the algorithm hold, i.e.,

C ∈ Q(A) implies A vT C (I1)

C ∈ Qcert(A) implies A vT 2C (I2)

(A,B) ∈ R(α) implies A vT 3(∃α.B) (I3)

88

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

S1 apply R1-R6 to Q(A) and Qcert(A)

S2 if ∗B ∈ Q(A) then add ∗B to Qcert(A)

S3 if C ∈ Qcert(A) then add 2C and C to Q(A)

S4 If ∃α.B ∈ Q(A) with α a temporal role then add (A,B) to R(α).

S5 If 3B1 ∈ Q(A), (B1, B2) ∈ R(α), B3 ∈ Qcert(B2) then add ∃α.B3 to Qcert(A)

S6 if t is a trace to B and ∗A ∈ Γ(t) then add ∗A to Qcert(B)

S7 if t is a trace to B and ∃α.A ∈ Γ(t) with α a temporal role then add (B,A) to R(α)

Figure 4.4: The rules for completing the data structures.

The proof is by induction on the number of applications of the rules in Figure 4.4. The induction
base is trivial since A vT A and A vT >. For the induction step we start with showing
soundness of the rules R1-R6, i.e., for every set of concepts Γ it holds

l
Γ vT

l
cl(Γ) (*)

For the rules R1-R5 it follows directly by the semantics. For R6 assume ∃α.A ∈ Γ and B ∈
Q(A). Invariant (I1) implies A vT B, which means that we can certainly add ∃α.B to Γ.
Next, we analyze traces a little closer and prove the following claim.

Claim. If t is a trace to B, then B vT 3(
d

Γ(t)).

Proof of the Claim. Let t = S,A1, α2, . . . , αn, An. The proof is by induction on the length n of
t. For the induction base, let n = 1 and consider first the case that the trace starts with S = A,
i.e., 3A ∈ Q(A1). From the invariants (I1) and (I2) follows that A1 vT 3(A ud

Qcert(A1)).
Since Γ(t) = cl({A} ∪ Qcert(A1)), by (*), we obtain A1 vT 3(

d
Γ(t)).

Assume now that the trace starts with S = (r,B), i.e., (A1, B) ∈ R(3r). From the invariant
(I2), we get that A1 vT 2(

d
Qcert(A1)) and B vT 2(

d
Qcert(B)). Further, (I3) implies that

A1 vT 3(∃3r.B). Thus, A1 vT 3(∃r.3B). Overall, we obtain that

A1 vT 3

(l
Qcert(A1) u ∃r.

l
Qcert(B)

)
Since Γ(t) = cl(Qcert(A1) ∪ {∃r.B′ | B′ ∈ Qcert(B)}) then, by (*), it follows

A1 vT 3(
l

Γ(t))

89

4 Description Logics of Change

this finishes the proof of the induction base.

For the induction step, let n > 1. By Definition 4.5, (An, An−1) ∈ R(αn). By (I3), we have
An vT 3(∃αn.An−1). Applying the induction hypothesis, we get

An vT 3

(
∃αn.3(

l
Γ(tn−1))

)
Since ∃αn.3C vT 3∃αn.C, then

An vT 3

(
∃αn.

l
Γ(tn−1)

)
On the other hand, (I2) implies An vT 2

d
Qcert(An). Hence, we obtain the following:

An vT 3

(l
Qcert(An) u ∃αn.

l
Γ(tn−1)

)
Since Γ(t) = cl(Qcert(An) ∪ {∃αn.B | B ∈ Γ(tn−1)}) then, by (*), we get:

An vT 3
l

C∈Γ(t)

C

This finishes the proof of the claim.
It remains to show that the rules in Figure 4.4 preserve the invariants:

S1 Direct consequence of (*).

S2 Direct by the semantics: 3B vT 2(3B) and 2B vT 2(2B).

S3 C ∈ Qcert(A) implies A vT 2C by invariant (I2), hence also A vT C.

S4 ∃α.B ∈ Q(A) implies A vT ∃α.B by invariant (I1), thus also A vT 3(∃α.B).

S5 By (I1), we getA v 3B1. Then, by invariant (I3),B1 vT 3∃α.B2 and, by invariant (I2),
B2 vT 2B3. Combining these inclusions yields A vT 3(∃α.2B3). The semantics then
implies A vT 2(∃α.B3).

S6 Let t be a trace to B and Γ = Γ(t) its type. By the above claim B vT 3C for every
C ∈ Γ. Thus in particular B vT ∗A, if ∗A ∈ Γ. Hence B vT 2(∗A), so ∗A can be
added to Qcert(B).

S7 Analogously to S6.

Assume now that B ∈ Q(A). Invariant (I1) implies A vT B which finishes the proof of the
“if”-direction.

For showing the “only if” direction, we provide a temporal model I = (∆,W, {Iw}w∈W) of T ,
such that there is a world w ∈W and a domain element d ∈ ∆ with d ∈ AI,w but d /∈ BI,w.

We define sequences ∆0,∆1, . . . ,W0,W1, . . . , and partial maps π1, π2, . . . with πi : ∆i×Wi →
2BC. Our desired sets ∆ and W are then obtained in the limit. The elements of the sets ∆i are

90

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

C1 If ∃α.A ∈ π(σ,w) for some σ ∈ ∆i and w ∈Wi, then
– add σ·(α,w,A) to ∆i (if it does not yet exist);
– set πi(σ·(α,w,A), w) = Q(A) and πi(σ·(α,w,A), v) = Qcert(A) for all v ∈
W \ {w}.

C2 If 3B ∈ π(σ,w) for some σ ∈ ∆i and w ∈Wi, then
– add (σ,B) to Wi (if it does not yet exist);
– set πi(σ|j , (σ,B)) = Γj(B, σ) for all j ≤ n;
– set πi(σ′·(α,w,A), (σ,B)) = Qcert(A), for all σ′·(α,w,A) ∈ ∆i that are not

a prefix of σ.

C3 If σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆i and (An, B) ∈ R(3r), then
– add (σ, r,B) to Wi (if it does not yet exist);
– set πi(σ|j , (σ, r,B)) = Γj((r,B), σ) for all j ≤ n;
– set πi(σ′·(α,w,A), (σ, r,B)) = Qcert(A), for all σ′·(α,w,A) ∈ ∆i that are

not a prefix of σ.

Figure 4.5: Rules for the induction step

sequences of triples (α,w,A) where α is a role, w ∈ Wi, and A is a concept name. For such a
sequence σ, we use σ|j to denote the prefix of σ that consists of the first j triples.

It is possible to view the sequences in ∆ as traces, in analogy to the traces from Definition 4.5.
Assume σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆i for some i ≥ 0 (this Ii is yet to be defined),
and that S is either A for some 3A ∈ Q(An) or (r,B) for some (An, B) ∈ R(3r). We have
then the following: for j ≤ n, the type Γj(S, σ) ∈ 2BC is defined as follows:

– cl({A} ∪ Qcert(An)) if j = n and S = A;

– cl(Qcert(An) ∪ {∃r.B′ ∈ BC | B′ ∈ Qcert(B)}) if j = n and S = (r,B);

– cl(Qcert(Aj) ∪ {∃α̂j+1.B
′ ∈ BC | B′ ∈ Γj+1(S, σ)}) if j < n, where α̂j+1 = αj+1 if

αj+1 is a temporal role and α̂j+1 = 3r if αj+1 is the role name r.

To start the construction of I, set

−∆0 = {(α, ε,A0)} where α is any role (not important) and A0 is the concept name
from the left-hand side of the subsumption;

−W0 = {ε};

−π((α, ε,A0), ε) = Q(A0).

91

4 Description Logics of Change

For the induction step, we start with setting ∆i = ∆i−1, Wi = Wi−1, and πi = πi−1, and then
inductively proceed according to the rules in Figure 4.5.

Finally, set ∆ =
⋃
i≥0 ∆i and W =

⋃
i≥0Wi. It remains to define the interpretation of concept

and role names:

AI,w = {σ ∈ ∆ | A ∈ π(σ,w)};

rI,w = {(σ, σ·(3r, v, A)) | σ·(3r, v, A) ∈ ∆, w= (σ, r, A)}∪
{(σ, σ·(r, w,A)) | σ·(r, w,A) ∈ ∆}∪
{(σ, σ·(2r, v, A)) | σ·(2r, v, A) ∈ ∆}.

First, we show a correspondence between types in the above construction and types of a trace.

Claim. For all σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆ and w ∈ W , we have that the following
hold.

(a) (Aj , Aj+1) ∈ R(α̂j+1) for 1 ≤ j < n, and

(b) π(σ,w) is either Q(An),Qcert(An) or Γ(t) for some trace t to An.

Proof of the Claim. First, note that due to the definition of I, each π(σ,w) is defined. The
proof is by induction on the number of applications of rules C1-C3. The induction base follows
directly from the definition of the initial step to define I; in particular of π0 and W0. For the
induction step, we distinguish different cases depending on which rule is applied.

– Rule C1: first note that (b) remains trivially satisfied.

Now, consider (a), that is, assume ∃α.A ∈ π(σ,w) for somew ∈W and σ′ = σ·(α,w,A)
is added to ∆. Because of the induction hypothesis it suffices to show that (An, A) ∈
R(α̂). First, since πi(σ,w) is closed under cl, by rule R5, ∃α̂.A ∈ πi(σ,w). Now, it
remains to note that, by I.H., πi(σ,w) is either Q(An), Qcert(An) or Γ(t) for some trace
t to An. In the first case, rule S4 yields (An, A) ∈ R(α̂); in the second case, by rule S3,
∃α̂.A ∈ Q(An), and then we argue as in the previous case. In the last case, by rule S7,
(An, A) ∈ R(α̂).

– Rule C2: the interesting point to show is (b), that is, assume there is some σ̂ ∈ ∆ and
w ∈W such that 3B ∈ π(σ̂, w), σ = σ̂|j and π(σ, (σ̂, B)) = Γ(B, σ̂). Let

σ̂ = σ·(αn+1, wn+1, An+1) · · · (αn+k, wn+k, An+k)

for some k ≥ 0. Moreover, define the following sequence:

t = B,An+k, α̂n+k, An+k−1, . . . α̂n+1, An.

We proceed to verify that t is a trace to An, that is, (1) 3B ∈ Q(An+k) and (2) for all
0 ≤ i ≤ k we have that (An+i, An+i+1) ∈ R(α̂n+i+1). Note that the later holds by I.H.
in point (a).

92

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

Now, we show the first point. Note that, by I.H. of point (b), π(σ,w) is defined as one
of the following Q(An+k), Qcert(An+k) or Γ(t′) for some trace t′ to An+k. We analyze
the different cases: in the first case, by assumption, 3B ∈ Q(An+k); in the second case,
3B ∈ Qcert(An+k) and S3 implies that 3B ∈ Q(An+k); in the last case, by rule S6,
3B ∈ Qcert(An+k), and then we argue as in the previous case.

Now, it remains to show that π(σ,w) = Γ(t). To this aim we show by induction that for
all 0 ≤ j ≤ k the following holds:

Γn+k−j(B, σ̂) = Γ(tj+1)

and observe that in the equation above for j = k we have that π(σ,w) = Γn(B, σ̂) =
Γ(tk+1) = Γ(t).

For the induction base, j = 0 we have that t1 = B,An+k, and then we obtain the follow-
ing:

Γn+k(B, σ̂) = cl({B} ∪ Qcert(An+k)) = Γ(t1).

The induction step follows by applying the I.H., that is, we have that

tj = B,An+k, α̂n+k, . . . , α̂n+k−j+1, An+k−j .

Now, we have that by I.H., Γn+k−j−1(B, σ̂) = Γ(tj), and then, by definition of the type
of a trace, Γn+k−j(B, σ̂) = Γ(tj+1).

– Rule C3 is analogous to the previous case.

This finishes the proof of the claim.

One consequence of this claim is that

∗A ∈ π(σ,w) if and only if ∗A ∈ π(σ, v) (A1)

for all σ = (α1, w1, A1) · · · (αn, wn, An) ∈ ∆ and w, v ∈W .
We can check by case distinction that this is the case: if ∗A ∈ Q(B), then by rule S2 it will be
in Qcert(B). Then, by definition, ∗A ∈ π(σ, v) for all v ∈ W . If ∗A ∈ Γ(t) for some trace t to
An, then by rule S6 ∗A ∈ Qcert(B), and then argue as in the previous case.

Another property that we will need later is that for all temporal roles α, it holds that

σ′ = σ·(α, v,B) ∧A ∈ π(σ′, w)⇒ ∃α.A ∈ π(σ,w) (A2)

This can be shown by a case distinction:

– π(σ′, w) = Q(B). Then rule C1 of the construction yields ∃α.B ∈ π(σ,w) and moreover
A ∈ π(σ′, w) = Q(B). Now by rule R6 we obtain ∃α.A ∈ π(σ,w).

– π(σ′, w) = Qcert(B). Thus A ∈ Qcert(B) ⊆ Q(B). Further, by rule C1 of the construc-
tion, σ′ ∈ ∆ implies that ∃α.B ∈ π(σ, v).

93

4 Description Logics of Change

We have that ∃α.B ∈ π(σ, v) implies that (An, B) ∈ R(α). To see this we distinguish the
following cases: because of S4 if π(σ, v) equals Q(An) or Qcert(An), or because of S7 if
π(σ, v) is the type of some trace.

Further note that, by definition and R4, 3An ∈ Q(An), then 3An ∈ Qcert(An). Now, we
can apply S5 in order to obtain ∃α.A ∈ Qcert(An).

– π(σ′, w) = Γ(t) for some trace t toB. Now we define the trace t′ = t, α,An which clearly
is a trace to An. By definition of a type ∃α.B ∈ Γ(t′) and by assumption A ∈ π(σ′, w) .
Moreover, π(σ,w) = Γ(t′). Therefore, ∃α.A ∈ π(σ,w).

We are now ready to show the central property of our model construction.

Claim. For all σ ∈ ∆, w ∈W , and C ∈ BC, we have

σ ∈ CI,w iff C ∈ π(σ,w).

Proof of the Claim. We prove the claim by a case distinction on the form of C. Throughout the
following we assume σ = (α1, w1, A1) · · · (αn, wn, An).

– C = >.

Then both σ ∈ >I,w and > ∈ π(σ,w) for all σ ∈ ∆ and w ∈W .

– C = A ∈ CN. For this case, the lemma holds trivially by definition of the interpretation
of concept names.

– C = 3A. “if”: Let σ ∈ (3A)I,w, that is, by the semantics, σ ∈ AI,v for some v ∈W . By
I.H., this implies A ∈ π(σ, v). Now, by R4, 3A ∈ π(σ, v), and by (A1) 3A ∈ π(σ,w).

“only if”: Let 3A ∈ π(σ,w). By rule C2 of the construction, A ∈ π(σ, (σ,A)) =
Γn(A, σ). Now, by I.H., σ ∈ AI,(σ,A). Thus, by semantics, σ ∈ (3A)I,w.

– C = 2A. “if”: Let σ ∈ (2A)I,w, that is, σ ∈ AI,v for all v ∈ W . Now, by I.H., A ∈
π(σ, v) for all v ∈ W . In particular, A ∈ π(σ, ε). By construction, π(σ, ε) is not the type
of a trace, since the newly added σ’s are realized in worlds different from ε. Furthermore,
by rule C1 the newly added domain elements σ will have π(σ,w) = Q(B) for some
B in exactly one world w′. Thus, π(σ, ε) will be Qcert(B), where σ = σ′·(α,w′, B).
Now, by S3 2A ∈ Q(B), and by S2 also 2A ∈ Qcert(B) = π(σ, ε). Then, by (A1),
2A ∈ π(σ,w).

“only if”: Let 2A ∈ π(σ,w). By (A1), 2A ∈ π(σ, v) for all v ∈W . Since all π(σ, v) are
closed under R2, A ∈ π(σ, v) for all v. Now, by I.H., σ ∈ AI,v for all v ∈W . Therefore,
by semantics, σ ∈ (2A)I,w.

– C = ∃r.A. “if”: σ ∈ (∃r.A)I,w, that is, there is a σ′ ∈ ∆ such that σ′ ∈ AI,w and
(σ, σ′) ∈ rI,w. Due to the model construction there are three possibilities for (σ, σ′) being
in rI,w:

94

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

* σ′ = σ·(3r, v,B) for some concept B and w = (σ, r,B): By construction, since
σ′ is not a prefix of σ, rule C3 implies π(σ′, w) = Qcert(B). Then, by I.H., A ∈
Qcert(B). Now, the definition of a type yields ∃r.A ∈ Γn((r,B), σ) = π(σ,w).

* σ′ = σ·(r, w,B): By rule C1 of the construction, π(σ′, w) = Q(B) Then, by I.H.,
A ∈ Q(B). Also by rule C1, ∃r.B ∈ π(σ,w). Hence by R6, ∃r.A ∈ π(σ,w).

* σ′ = σ·(2r, v,B): We can apply (A2) in order to obtain ∃2r.A ∈ π(σ,w). Now
rule R3 yields ∃r.A ∈ π(σ,w).

“only if”: Let ∃r.A ∈ π(σ,w). By rule C1 of the construction, there is a domain element
σ′ = σ·(r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w). Then, by I.H., σ′ ∈ AI,w.
By definition of the interpretation of role names, (σ, σ′) ∈ rI,w. Hence, σ ∈ (∃r.A)I,w.

– C = ∃2r.A. “if”: Let σ ∈ (∃2r.A)I,w, that is, there is a σ′ with σ′ ∈ AI,w and (σ, σ′) ∈
rI,v for all v ∈ W . Consider v = ε: from (σ, σ′) ∈ rI,ε follows that σ′ = σ·(2r, v,B)
for some world v ∈W and concept name B. Applying (A2) yields ∃2r.A ∈ π(σ,w).

“only if”: Let ∃2r.A ∈ π(σ,w). By rule C1 of the construction, there is a domain element
σ′ = σ·(2r, w,A) with π(σ′, w) = Q(A), thus A ∈ π(σ′, w). Then, by I.H., σ′ ∈ AI,w.
By definition of the interpretation of role names, (σ, σ′) ∈ rI,v for all v ∈ W . Hence,
σ ∈ (∃2r.A)I,w.

– C = ∃3r.A.“if”: Let σ ∈ (∃3r.A)I,w, that is, there is a σ′ with σ′ ∈ AI,w and (σ, σ′) ∈
rI,v for some v ∈ W . Again we distinguish the three cases of the interpretation of the
roles.

* σ′ = σ·(3r, v′, B) and w = (σ, r,B) for some concept B. By construction, since
σ′ is not a prefix of σ, rule C3 implies π(σ′, w) = Qcert(B), thus A ∈ Qcert(B).
Also by construction rule C3, π(σ,w) = Γn((r,B), σ), and by the definition of Γn
this yields ∃r.A ∈ Γn((r,B), σ). So by rule R5, ∃3r.A ∈ π(σ,w).

* σ′ = σ·(r, w,B). By rule C1, π(σ′, w) = Q(B) and ∃r.B ∈ π(σ,w). This implies
A ∈ Q(B), and since π(σ,w) is closed under R6, ∃r.A ∈ π(σ,w). Thus, by R5,
∃3r.A ∈ π(σ,w) .

* σ′ = σ·(2r, v,B). Applying (A2) yields ∃2r.A ∈ π(σ,w). Using rules R3 and R5
we obtain ∃3r.A ∈ π(σ,w).

“only if”. Let ∃3r.A ∈ π(σ,w). By rule C1 of the construction there is a domain element
σ′ = σ·(3r, w,A) with π(σ′, w) = Q(A). Then, by I.H., σ′ ∈ AI,w. By definition of the
interpretation of role names (σ, σ′) ∈ rI,v for v = (σ′, A, r). Hence σ ∈ (∃3r.A)I,w.

This finishes the proof of the claim.

It remains to show that for σ0 = (α, ε,A0) we have σ0 ∈ AI,ε
0 , but σ0 6∈ BI,ε

0 . However,
both are obviously true: first we note that, by construction, π(σ0, ε) = Q(A0). By definition,
A0 ∈ Q(A0), hence σ0 ∈ AI,ε

0 by the above claim. On the other hand, by assumption we have
B0 /∈ Q(A0), thus by the above claim σ0 /∈ BI,ε

0 .
o

95

4 Description Logics of Change

We now argue that the algorithm can be implemented using only polynomial space. First, note
that there can be only polynomially many rule applications: every rule application extends the
data structures Q(·), Qcert(·), and R(·), but these structures consist of polynomially many sets,
each with at most polynomially many elements. It thus remains to verify that each rule applica-
tion can be executed using only polyspace, which is obvious for all rules except those involving
traces, that is, S6 and S7. For these rules, we first note that it is not necessary to consider all
(infinitely many!) traces. In fact, we next show that it is enough to only consider non-repeating
traces.

Proposition 4.5. Let B ∈ CN. If there is a trace t to B, then there is a trace t′ to B with
|t′| ≤ |T |·2|T | such that Γ(t) = Γ(t′).

Proof. Let t = S,A1, α2, . . . , αn, An and |t| ≥ |T |·2|T |. We next denote by Γi the type of the
trace ti, that is, Γ(ti). We consider the sequence (A1,Γ1), . . . , (An,Γn) of concept names from
t with their types. First note that there are at most 2|T | types and at most |T | concept names.
Now, since we assume that |t| ≥ |T |·2|T |, then there are 1 ≤ i < j ≤ n such that Ai = Aj and
Γi = Γj . Now, we can straightforwardly construct a trace t′ such that Γ(t′) = Γ(t) as follows:

t′ = S,A1, α2, . . . , αi, Ai, αj+1, Aj+1, . . . , An.

Clearly, by construction, t′ is shorter than t. Now, we proceed as follows: if |t′| ≤ |T |·2|T |, we
are done. Otherwise, repeat the identification procedure above.

o

To get to polyspace, we use a nondeterministic approach, enabled by Savitch’s theorem: to
check whether there is a trace t to B with C ∈ Γ(t), we guess t step-by-step, at each time
keeping only a single Ai, αi and Γ(ti) in memory. When we reach a situation where Ai = B
and C ∈ Γ(ti), our guessing was successful and we apply the rule. We also maintain a binary
counter of the number of steps that have been guessed so far. As soon as this counter exceeds
|T |·2|T |, the maximum length of non-repeating traces, we stop the guessing and do not apply
the rule. Clearly, this yields a polyspace algorithm.

Theorem 4.6. Concept subsumption w.r.t. TBoxes for S5EL with temporal roles is PSPACE-
complete.

We finalize our study by investigating the computational complexity of S5ELI . We show, as
previously discussed, that the presence of inverse roles in S5ELI makes subsumption harder than
for S5EL. In particular, it increases from PSPACE-complete for S5EL to 2EXPTIME-complete
for S5ELI . This shows that the computational complexity of S5ELI coincides with that of
S5ALCQI [10]. Note that S5ALCQI provides a 2EXPTIME upper bound for S5ELI . We next
commit ourselves to the development of a matching lower bound.

96

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

4.4.2 A 2EXPTIME Lower Bound for Concept Subsumption w.r.t. TBoxes
for S5ELI with Temporal Roles

We demonstrate a 2EXPTIME lower bound for concept subsumption w.r.t. TBoxes for S5ELI by
a reduction of the word problem of an exponentially space bounded alternating Turing machine
(cf. Section 3.5.3). The core idea of the reduction is to combine the techniques: first, for showing
EXPTIME-hardness for concept subsumption w.r.t. TBoxes for ELI [13]. Second, for showing
2EXPTIME-hardness for concept subsumption w.r.t. TBoxes for S5ALC [10]. In particular, we
use the possibility of introducing exponentially many worlds associated with each node of the
ELI-tree implementing the ATM computation. Notably, due to the weak expressiveness of ELI,
a careful synchronization of the information propagated across the temporal and DL dimension
is needed to correctly amalgamate these techniques.

Theorem 4.7. Concept subsumption w.r.t. TBoxes for S5ELI with temporal roles is 2EXPTIME-
hard.

Proof. The proof is by a reduction of the word problem of an exponentially spaced bounded
alternating Turing machine (cf. Section 3.5.3). LetM = (Q,Σ,Γ, q0, δ) be such an ATM with a
2EXPTIME-hard word problem, and let w ∈ Σ∗ be the input of length n. Our aim is to construct
in polynomial time a TBox TM,w and concepts A,B such that TM,w |= A v B iffM accepts
w.

The basic idea of our reduction is to capture the configurations of an ATM by means of S5 mod-
els, where each S5-world will be identified with a tape cell. As proposed by Artale et al. [10],
an acceptance tree for an ATM is then encoded as an ELI tree with an S5 model attached to
each node. We use the following signature:

– concept names Aa, Aa for every a ∈ Γ;

– concept names Qq for every q ∈ Q;

– concept names C0, C0, . . . , Cn−1, Cn−1 and C ′0, C
′
0, . . . , C

′
n−1, C

′
n−1 for encoding expo-

nential counters;

– concept names C ′=i for i ∈ [0, n− 1] (polynomially many i′s) to represent that the value
of the counter C ′ is i;

– concept names Level0, . . . , Leveln for identifying the levels of a binary tree;

– concept names Head0,Head0 . . .Headn−1,Headn−1 for encoding a counter representing
the position of the head of an ATM;

– concept name Fail indicating any kind of failure;

– additional (auxiliary) concept names Correct,Correct,CorrectH,CorrectH,MCell.

97

4 Description Logics of Change

We begin by constructing a ELI binary tree of depth n rooted in CM,w for identifying expo-
nentially many tape cells. Note that this is only an auxiliary tree, it does not encode the ATM
computation. For 1 ≤ i < n, TM,w contains the following CIs:

CM,w v Level0 u ∃2r.C0 u ∃2r.C0, (4.18)

Ci v Leveli u ∃2r.Ci+1 u ∃2r.Ci+1, (4.19)

Ci v Leveli u ∃2r.Ci+1 u ∃2r.Ci+1, (4.20)

∃r−.(Leveli u Ci) v Ci, ∃r−.(Leveli u Ci) v Ci, (4.21)

∃r−.Leveli v Leveli+1. (4.22)

We create copies of each leave (nodes at Leveln) of the ELI-tree across the S5 dimension via an
auxiliary marker M (4.23). This forces the introduction of exponentially many S5-worlds. The
main objective of these copies is to store the content of i-tape cells from different configurations.
We also ensure that the values Ci of the counter and the levels Leveli are globally propagated
across the S5-worlds (4.24)-(4.25).

Leveln v M u3M, (4.23)

Ci v 2Ci, Ci v 2Ci, (4.24)

Leveli v 2Leveli. (4.25)

We introduce an auxiliary counter C ′, which is coordinated with the main counter C through
the marker M (4.26). We moreover ensure that all the elements of the ELI-tree share the same
counter value C ′ (4.27)-(4.28), –role s is used later in the implementation of the ATM.

M u Ci v C ′i, M u Ci v C ′i, (4.26)

∃{r, s}.C ′i v C ′i, ∃{r, s}.C ′i v C ′i, (4.27)

∃{r−, s−}.C ′i v C ′i, ∃{r−, s−}.C ′i v C ′i. (4.28)

Now that we have the desired structure for representing an ATM (see Figure 4.6), we can proceed
to encode an ATM computation. We represent, as discussed above, each q ∈ Q with the concept
name Qq and each a ∈ Σ with the concept name Aa.

We enforce the initial configuration: M is in the initial state q0, the head is in the left-most
tape cell, and the input word is w = a0, . . . , an−1 followed by blanks (). One can standardly
write concepts C ′=i –polynomially many– for representing that the value of the counter C ′ is i.
Analogously, one can write a concept C ′>n−1.

Level0 u (C ′=i) v Aai , (4.29)

Level0 u (C ′=0) v Qq0 , (4.30)

Level0 u (C ′>n−1) v A . (4.31)

98

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

rr

rrrr

CM,w

n

C = 0 C = 2n�1

. . .

r

C = 0

C 0 = 0

C 0 = 0
C 0 = 0. . .

r

. . .

C 0 = 2n�1

C 0 = 2n�1C 0 = 2n�1

C = 2n�1

.
M.

r

r r r r

r

r r r r

M

. . .

Figure 4.6: Exponentially many worlds: each representing the content of a tape cell in a possible
configuration.

We use a counter Head to set the position of the head (in the initial configuration is at po-
sition 0) (4.32). We moreover ensure that the value of the counter is propagated across the
S5-dimension (4.33).

Level0 v Head=0 u Initial, (4.32)

Headi v 2Headi, Headi v 2Headi. (4.33)

For each q ∈ Q, a ∈ Σ and m ∈ {l, r, n}, we use marker concepts Mq,a,m to represent the
moves ofM. At this point, we begin using the role s to encode the computation of an ATM.

Qq uAa v ∃2s.Mq′,b,m for all (q′, b,m) ∈ δ(q, a). (4.34)

We proceed to ensure that the head is set for one tape cell. In particular, we compare the value
of the head counter of the s-predecessor with the position of a cell (4.35)-(4.38). This allows us
to verify what is the position of the head in the previous configuration

C ′0 u ∃s−.Head0 v Correct0, C ′0 u ∃s−.Head0 v Correct0, (4.35)

Correcti−1 uC ′i u∃s−.Headi v Correcti, Correcti−1 uC ′i u∃s−.Headi v Correcti, (4.36)

Correctn−1 v Correct, (4.37)

C ′i u ∃s−.Headi v Correct, C ′i u ∃s−.Headi v Correct. (4.38)

Now, if we are at the cell in which the head was positioned in the previous configuration
(Correct) and encounter the Mq,a,r marker, then we increment the head-counter Head (4.39)-
(4.40). This captures the fact that the head should move to the right.:

For every 0 ≤ j < i < n

Correct uMq,a,r u ∃s−.(Headi u Headj) v Headi,

Correct uMq,a,r u ∃s−.(Headi u Headj) v Headi.
(4.39)

99

4 Description Logics of Change

a bc a c bb a

s s

s s

s

Ab, Mq0,b,r, Head = 2

s s

s s

s

s s

s s

s

Ab, Head = 1

Ab, Head = 2

s s

s s

s

Aa, Head = 1

Aa, Head = 2

C 0 = 0 C 0 = 1 C 0 = 2 C 0 = 3

Aa, Head = 1

Ac, Head = 2

Ac, Head = 1

Figure 4.7: A transition between succeeding configurations for n = 2 and (q′, b, r) ∈ δ(q, a).

For every 0 ≤ j < n

Correct uMq,a,r u ∃s−.(Headj u Headj−1 u . . .Head0) v Headj ,

Correct uMq,a,r u ∃s−.(Headj u Headj−1 u . . .Head0) v Headj .
(4.40)

(*) Analogously we can decrease the head-counter to capture the movement of the head to the
left, when we encounter the marker Mq,a,l.

We again use an auxiliary marker (CorrectH) to check whether the value of the head counter and
that of a tape cell coincide. This allows us to check the current position of the head.

C ′0 u Head0 v CorrectH0 , C ′0 u Head0 v CorrectH0 , (4.41)

CorrectHi−1 u C ′i u Headi v CorrectHi , CorrectHi−1 u C ′i u Headi v CorrectHi , (4.42)

CorrectHn−1 v CorrectH, (4.43)

C ′i u Headi v CorrectH, C ′i u Headi v CorrectH. (4.44)

Now, we have the necessary ingredients to implement the transitions: for q ∈ Q, and a ∈ Σ, set

Correct uMq,a,n v Aa uQq, (4.45)

Correct uMq,a,{l,r} v Aa, (4.46)

CorrectH u3(Mq,a,{l,r} u Correct) v Qq. (4.47)

We establish standard structural requirements for ATMs by identifying potential defects via the
‘failure’ concept Fail. For example, if we have an inconsistency in the information of a tape cell,
if we have inconsistent counters, etc. Some of these defects are the following:

Aa uAb v Fail, Aa uAa v Fail,
l

a∈Γ

Aa v Fail, (4.48)

100

4.4 Reasoning in S5EL and S5ELI with Temporal Roles

Qq uQq′ v Fail, (4.49)

Ci uCi v Fail, C ′i uC ′i v Fail, Headi uHeadi v Fail, MCelli uMCelli v Fail, (4.50)

Correct u Correct v Fail, CorrectHi u CorrectHi . (4.51)

The concept Fail is propagated to the initial configuration (4.52).

∃s.Fail v Fail. (4.52)

We capture the fact that tape cells that are not in the head position do not change their content.

∃s−.(Correct uAa) v Aa. (4.53)

We identify accepting configurations (4.54) (4.56). In particular, we verify that they whether the
states are universal or existential. For all q ∈ Q∀, q′ ∈ Q∃ and a ∈ Σ set:

Qqa v A, (4.54)

Qq u CorrectH uAa u
l

(q′′,b,m)∈δ(q,a)

∃s.(Mq′′,b,m u3A) v A, (4.55)

Qq′ u ∃s.(Mq′′,b,m u3A) v A for all (q′′, b,m) ∈ δ(q, a). (4.56)

The initial configuration is Good if it is either accepting or a defect has been detected:

CM,w u3A v Good, (4.57)

CM,w u3Fail v Good. (4.58)

This finishes the construction of the TBox, now following the construction is not difficult to see
that the following proposition holds

Proposition 4.8. M accepts w iff TM,w |= CM,w v Good.

First assume w 6∈ L(M). We construct a model I = (W,∆, {Iw}w∈W) of TM,w such that
TM,w 6|= CM,w v Good as follows. Let W = {0, . . . , 2n} be the set of worlds and ∆ =
conf(M) ∪ {n1, . . . , n2n+1}, where conf(M) is the set of all configurations of M. For i ∈
W, i < 2n we define:

– C ′j
I,i = {n ∈ conf(M) | the jth bit of the binary representation of i is 1};

– AI,i
a = {n ∈ conf(M) | a is the ith symbol on the tape in n};

– QI,i
q = {n ∈ conf(M) | M is in state q and the head is at position i in n};

– Headi = {n ∈ conf(M) | M is in state q and the head is at position i in n};
– sI,i = {(n, n′) ∈ ∆×∆ | n′ is a successor configuration of n}.

101

4 Description Logics of Change

This interpretation can be immediately extended to the remaining auxiliary concepts used in the
construction, e.g., the markers Mq,a,m, Correct, CorrectH, etc.

The additional world 2n ∈ W is used as the initial world from which the original construction
starts: we simply set CI,2n

M,w = {q0w}. In addition, we need to attach the auxiliary ELI tree
formed by the role r and the nodes {n1, . . . , n2n+1} to the root of this interpretation. Moreover,
we interpret the counter C appropriately:

– Cj
I,i = {n ∈ {n1, . . . , n2n+1} | the jth bit of the binary representation of i is 1}.

Finally, we interpret AI,i as the set of accepting configurations, and FailI,i and GoodI,i as the
empty set. By inspection of the axioms in TM,w one can see that I |= TM. Moreover, {q0w} ∈
CI,2n

M,w but {q0w} 6∈ GoodI,2
n

.

Conversely, assume that TM,w 6|= CM,w v Good, that is, there is a model I = (W,∆, {Iw}w∈W)

of TM,w such that there is a n ∈ CI,v
M,w but n 6∈ GoodI,v for some v ∈W . From the construction

of TM,w it is clear that there are v0, . . . , v2n−1 such that n ∈ (C ′=i)
I,vi for 0 ≤ i < 2n. If there

are more than one world for a i we just simply pick one. Now we define

conf(m) = a0a1 . . . aj−1qaj . . . a2n−1

for m a s` successor of n for ` ≥ 0 such that m ∈ AI,vi
ai for all 0 ≤ i < 2n, and m ∈ QI,vj

q .
Moreover, note that TM guarantees that there is exactly one head per configuration and exactly
one symbol per tape cell. Thus the conf(.) function is well defined. Now we map the pair (n, v)
to the root of the tree and use the s role to inductively construct the complete tree. Now, since
n 6∈ GoodI,v, then n 6∈ 3AI,v, and also n 6∈ 3FailI,v. This means that q0w is not accepting,
and thus w 6∈ L(M).

o

Theorem 4.9. Concept subsumption w.r.t. TBoxes for S5ELI with temporal roles is 2EXPTIME-
complete.

4.5 Conclusions

Finding the right trade-off between expressiveness and complexity is one of the main challenges
towards the design of useful TDLs. In particular, the construction of effective TDLs allowing
for temporal or rigid roles is crucial for many applications; for example, in medical ontologies
such as SNOMED CT [15] or for temporal data modeling [8]. Alas, combinations of standard
TLs and the lightweight DL EL allowing for temporal concepts and temporal (or rigid) roles
turned out undecidable. A possibility to attain decidability is to use weaker logics for the DL or
temporal component. In this chapter, we focused on the study of TDLs with a weaker temporal
dimension given by the modal logic S5. Notably, these TDLs allow to reason about the change
of knowledge without differentiating between changes in the past or future. We investigated
the impact of having members of the EL family instead of ALC as the DL component on the
computational complexity of DLChs. We showed that reasoning in the TDL S5EL with temporal

102

4.5 Conclusions

roles is indeed easier than in the ALC variant (in contrast to TDLs based on LTL and CTL): the
complexity goes down from 2EXPTIME-complete to PSPACE-complete. We moreover showed
that pushing further this result to S5ELI is not possible. Reasoning in S5ELI becomes hard
for 2EXPTIME and then as hard as in the ALC variant. We also investigated the DLCh based
on the extension of ALC with nominals –ALCO–, allowing for S5-modalities to be applied
only to concepts. We showed that the computational complexity increases from EXPTIME for
ALCO to NEXPTIME for S5ALCO. Interestingly, this jump in the complexity is not present in
the ALC-variant for which the complexity remains in EXPTIME. This shows that the presence
of nominals is responsible for the increase in the complexity of S5ALCO.

The work presented in this chapter broadened the understanding of the computational complexity
of DLs of change. We showed that in DLs of change the computational complexity indeed varies
depending on whether they are based on eitherALCO,ALC or EL. Some interesting theoretical
and practical problems, however, remain open. One important research line is to investigate
the adequacy of temporal TBoxes –allowing for the application S5-modalities to TBoxes– for
modeling the change of policies over time, and their impact on the computational complexity.
Another possibility is to investigate DLs of change based on the lightweight members of the
DL-Lite-family.

103

5
Description Logics of Context

In this chapter, we investigate two-dimensional DLs for representing and reasoning about con-
textualized knowledge. We introduce a novel family of two-dimensional, two-sorted description
logics implementing McCarthy’s theory of formalizing contexts. The main technical contribu-
tion are algorithms for KB satisfiability, and tight complexity bounds that range from NEXP-
TIME to 2EXPTIME. We also show the relation of the proposed formalism with well-known
modal description logics (which we consider as simple DLs of context), and its applicability to
diverse problems such as modeling inherently contextualized knowledge or expressing interop-
erability constraints over DL ontologies.

5.1 Introduction

One of the consequences of the inability of classical description logics to capture dynamic as-
pects of knowledge is the impossibility of representing heterogeneous viewpoints on an appli-
cation domain or to represent context-sensitive knowledge. Alas, this becomes a drawback for
many practical applications. For example, in ontology applications related with reasoning over
distributed knowledge sources on the semantic web [43, 17]. In particular, the way classical DLs
are designed, and their semantics is defined force an ontology to impose a unique, global and
uniform view on the represented domain. The axioms of an ontology O are thus interpreted as
unconditionally and universally true in all models of O. For example,

Heart v HumanOrgan ∈ O

enforces all domain individuals of type Heart to be of type HumanOrgan in all possible models
of O. These capabilities offered by classical DLs are well-suited for applications where every-
one shares the same conceptual perspective on the domain or if there is no need for considering
alternative viewpoints. However, in many important applications the domain should be in fact

105

5 Description Logics of Context

modeled differently depending on the context –viewpoint– in which it is considered, where the
context might depend on a spatio-temporal coordinate, the thematic focus, a subjective perspec-
tive of the modeler, the adopted level of granularity of the representation, an intended application
of the ontology, etc. For instance, the axiom Heart v HumanOrgan is valid in the domain of hu-
man anatomy, but this might not be necessarily the case once a broader perspective of mammal
anatomy is considered. Moreover, the intrinsic inability of accounting for contexts or possible
viewpoints in DLs seems to hinder the usability of DLs in two very basic application scenarios:
(I). It is impossible to create ontologies that would be at the same time general enough as
to cover all relevant knowledge about the domain and yet sufficiently detailed as to capture all
context-related peculiarities occurring in this knowledge. This challenge is commonly faced by
the creators of huge knowledge bases, aiming at maximum coverage of the representation, such
as SNOMED CT [74] or CYC [56], and typically leads to the development of ad hoc, application-
driven mechanisms of contextualization.
(II). The second problem concerns the reuse of knowledge from multiple existing sources
–such as the numerous DL-based ontologies already published on the Web– in new applications.
Naturally, portions of such knowledge retrieved from different ontologies are likely to pertain
to different, heterogenous contexts, which are implicitly assumed during the creation of the
sources. Consequently, a faithful reuse of such data cannot be achieved without special semantic
mechanisms which acknowledge and respect its local, context-specific character [43, 17].
The research on description logics, as noticed in Section 1.2, has considered variants of these
two types of problems. On the one hand, DLs have been commonly extended with constructors
facilitating direct modeling of contextualized ontologies. Prominently, multi-dimensional DLs
can be seen as convenient formalisms for capturing the dependency of knowledge on some
contextual states built-in in the semantics, such as time points, epistemic states, computation
states, etc. On the other hand, well-known frameworks for supporting context-aware ontology
integration that allow to link knowledge from a set of classical DL ontologies without violating
their local character have been developed, e.g., E-Connections [55], Package-based DLs [18] or
Distributed DLs [24]
The solutions proposed so far for management of contextualized knowledge are notoriously spe-
cialized in their scope, leaving open then the problem of formulating a broad and well-grounded
theory of contexts within the DL paradigm. The aim of this chapter is to systematically develop
a framework of two-dimensional Description Logics of Context (DLC). Our proposal is inspired
by J. McCarthy’s theory of formalizing contexts [59], whose gist is to replace logical formulas
ϕ, as the basic knowledge carriers, with assertions of the form ist(c, ϕ). Such assertions state
that ϕ is true in c, where c denotes an abstract first-order entity called a context. Further, contexts
can be on their own described in a first-order language. For example, the formula:

ist(c,Heart(a)) ∧HumanAnatomy(c)

states that the object a is a heart in a certain context c of type human anatomy. Formally,
we interpret McCarthy’s theory in terms of two-dimensional possible world semantics, where
one dimension represents a usual object domain, while the other a (possibly infinite) domain
of contexts. Thus, the notion of context is identified with that of possible world, which pro-
vides the former with a philosophically neutral, yet technically substantial reading, presup-

106

5.2 Towards the Design of Description Logics of Context

posed at the core of McCarthy’s theory. Our investigation is two-fold: first, we investigate
well-known modal DLs, which we see as Simple Description Logics of Context, as a natural
and basic way of defining DLCs. Particularly, we concentrate on the traditional modal DLs
(Kn)ALC , (DAltn)ALC , (Altn)ALC and (Dn)ALC in the case where modal operators are ap-
plied only to concepts and a global TBox is considered. Second, we extend simple DLCs with
two interacting DL languages – the object and the context language – interpreted over the re-
spective domains. These languages allow for explicit modeling of both: the (contextualized)
object-level knowledge and the meta-level knowledge, i.e., descriptions of contexts as first-class
citizens. Consequently, we define a whole family of two-sorted, two-dimensional DLs, compris-
ing the most expressive DLC framework: Expressive Description Logics of Context, which are
characterized by importing McCarthy’s theory of formalizing contexts to its full extend.

Contributions: We introduce description logics of context, a family of two-dimensional
DLs for representing and reasoning about contextualized knowledge. The proposed DLs are the
result of a careful amalgamation of the principles of McCarthy’s theory of formalizing contexts
and the capabilities of two-dimensional DLs for capturing dynamic aspects of knowledge. Our
main technical contribution is the study of the computational complexity of the satisfiability
problem in DLCs. For simple DLCs, we provide a 2EXPTIME quasistate elimination algorithm
deciding satisfiability, and a matching lower bound using a reduction of the word problem of
an exponentially space bounded alternating Turing machine. Interestingly, we show that in
some cases the transition from simple to expressive DLCs comes without an increment in the
complexity. Particularly, we provide tight complexity bounds for expressive DLCs that range
from NEXPTIME (for a restricted logic) to 2EXPTIME. Finally, we show several application
scenarios of DLs of context.

Organization: The next section provides a comprehensive analysis of McCarthy’s theory
of contexts, and the relation of its principles with the modeling capabilities offered by two-
dimensional DLs. In Section 5.3, we investigate the use of two-dimensional DLs as simple
DLCs. In particular, we develop algorithms for satisfiability, and provide tight complexity
bounds. Section 5.5 introduces expressive DLCs, extending simple DLCs with means to ex-
plicitly describe contexts and therefore fully complying with McCarthy’s principles. Further,
Section 5.6 presents a formal comparison between simple and expressive DLCs. In Section 5.7,
we present algorithms for KB satisfiability based on type-like techniques for multi-dimensional
modal logics, such as quasistate elimination. We moreover prove tight complexity bounds. Fi-
nally, Section 5.9 discusses the application of the DLC framework to a diversity of problems.

5.2 Towards the Design of Description Logics of Context

We begin our investigation on two-dimensional DLs of context by analyzing and motivating the
use of two-dimensional DLs with product-like semantics to capture contextual aspects of knowl-
edge. Particularly, we argue how these logics properly implement the principles of McCarthy’s
theory of formalizing contexts within the DL framework. Our first step towards this analysis is
to introduce the principles of McCarthy’s theory.

Over two decades ago John McCarthy introduced the AI community to a new paradigm of for-

107

5 Description Logics of Context

malizing contexts in logic-based knowledge systems. This idea, presented in his Turing Award
Lecture [59], was quickly picked up by others and by now has led to a significant body of work
studying different implementations of the approach in a variety of formal frameworks and ap-
plications [30, 29, 28, 60, 42, 64]. The great appeal of McCarthy’s paradigm stems from the
simplicity and intuitiveness of the three major postulates it is based on:

1. Contexts are formal objects. More precisely, a context is anything that can be denoted by
a first-order formula and used meaningfully in a statement of the form ist(c, ϕ), saying that
formula ϕ is true (ist) in context c, e.g., ist(Hamlet , ‘Hamlet is a prince.’) [59, 60, 42, 30].
By adopting a strictly formal view on contexts, one can bypass unproductive debates on what
they really are and instead take them as primitives underlying practical models of contextual
reasoning.

2. Contexts have properties and can be described. As first-order objects, contexts can be in
a natural way described in a first-order language [28, 42]. This allows for addressing them
generically through quantified formulas such as ∀x(C(x)→ ist(x, ϕ)), expressing that ϕ is true
in every context of type C, e.g., ∀x(barbershop(x)→ ist(x, ‘Main service is a haircut.’)).

3. Contexts are organized in relational structures. In the commonsense reasoning, contextual
assumptions are dynamically and directionally altered [64, 30]. Contexts are entered and then
exited, accessed from other contexts or transcended to broader ones. A simple way of handling
their complex organization in formal systems is therefore by means of relational structures,
which naturally support representation of diverse relationships and dynamic aspects in first-
order domains. On the syntactic level, the use of such structures can be further reflected by
permitting nested formulas of type ist(c, ist(d, ϕ)). For instance, ist(France, ist(capital , ‘The
city river is Seine.’)) implies that there exists certain relationship between France and capital
such that ‘The city river is Seine’ is true in the latter context if accessed from (or seen from) the
former, but not necessarily when accessed from any other arbitrary context.

Now that we have introduced McCarthy’s principles, we argue about the convenience of two-
dimensional DLs to design DLs of context that import McCarthy’s theory of contexts into the
DL framework. We start from the basic semantic considerations on contexts and further trace
their impact on the selection of specific logical languages capturing them.
The first key step to importing McCarthy’s theory into the DL framework is to faithfully rein-
terpret his three postulates on the model-theoretic grounds of DLs. Our main objective is then
to find a form of extending classical DLs, such that contexts are treated as first-class citizens
and therefore being able to reason with knowledge according to its contextual scope. Figure 5.1
shows a formal model, based on McCarthy’s postulates, of an application domain supporting
multiple contexts of representation, that is, each context supports the representation of a partic-
ular viewpoint on the domain.
We observe that the dynamic aspect that context-dependency adds to knowledge translates Mc-
Carthy’s postulates in a two-dimensional model. Essentially, the context-level consists of context
entities (postulate 1), which are possibly interlinked with certain relations (postulate 3) and de-
scribed in a language containing individual names, concepts and relation names (postulate 2).
For instance, in Figure 5.1, context c is of type D and is related to d through a relation of type t.
Instead of a unique one-dimensional global model of the object domain, we associate therefore

108

5.2 Towards the Design of Description Logics of Context

Figure 5.1: A formal domain model complying to McCarthy’s postulates.

a local model of the object-domain with every context, giving rise then to a two-dimensional

model. Intuitively, these local models reflect a specific viewpoint on the object domain, and

they might then not necessarily cover the same fragment or aspect of the application domain and

not necessarily use the same fragment of the object language for describing it. For instance, in

Figure 5.1, objects a and b occur at the same time in contexts c, d, e, but in each of them they are

described differently and remain in different relations to other objects. From this analysis, one

can straightforwardly realize that the context-level structures can be seen as Kripke frames, with

possible worlds representing context entities and accessibility relations capturing relations be-

tween contexts. Consequently, we obtain a very clear-cut formal reading of the notion of context
that coincides with the philosophically neutral and application-free notion of context-as-formal-
object lying at the heart of McCarthy’s theory.

CONTEXT = POSSIBLE WORLD

This view of contexts as possible worlds justifies the use of modal description logics with

product-like semantics for capturing contextual aspects of knowledge. In particular, various

contextualization and lifting operations, that is, context-sensitive transfers of knowledge be-

tween different contexts [59], can be naturally modeled by means of modal operators �i,�i.

It is worth noting that the convenience of (one-dimensional) modal logics has already been

109

5 Description Logics of Context

D

t

u

 D, E

a

b
r

r s
... ...

d

...

a

b
r s
... ...

c

a

b
s s

B

... ...

B

e

t

s

...

E, F

C

A, B

B, C

A

t

u

 D, E

d

c e

t

...

E, F

D

...

context language modelobject language models

D

a
brr
s

... ...

a
br
s

... ...

a
bs s

B

... ...

B s

C
A, B

B, C
A

Figure 5.2: Combining models of two DLs.

exploited in the design of other context logics in the literature, such as [30, 28, 64]. There,
however, contexts are usually identified with syntactic modalities rather than possible worlds
in the semantics. As a consequence, these logics are restricted to the modeling of contextual-
ized knowledge, lacking of support for the integration of independent knowledge sources. On
the other hand, the interpretation of contexts as possible worlds allows for both: ‘postulating’
contexts implicitly in the representation, thus accounting for the inherently contextual charac-
ter of the modeled knowledge, as well as accommodating standard DL ontologies in broader
context-based systems, simply by seeing them as separate possible worlds.

From this analysis it is clear that modal DLs can appropriately serve as the underlying formalism
for designing DLs of context. More precisely, as argued above, one can easily augment a DL
language with modal ‘contextualization’ operators for traversing the context dimension of the
models and quantifying over the context entities. Note that, however, two-dimensional DLs do
not conform with all of McCarthy’s postulates. In particular, modal DLs do not offer a direct
methodology for describing contexts per se. In other words, it is not possible to explicitly assert
properties of the accessed contexts. For instance, to express global contextual dependencies,
such as ‘In every context of type human anatomy, a heart is a human organ’. Intuitively, such
functionality seems essential for obtaining a fine-grained contextualization machinery. The so-
lution we propose is to extend modal DLs with a second DL language for describing the context
dimension. In this way, we obtain expressive DLCs, which are two-sorted, two-dimensional
DLs, where each sort of the language is interpreted over the respective dimension in the se-
mantics. The two languages are suitably integrated on the syntactic and semantic level, so that

110

5.3 Introducing Simple Description Logics of Context

their models can be eventually combined as presented in Figure 5.2. This style of combination
is naturally fully compatible with the underlying modal DLs. In principle, the two-dimensional
models of the object language are embedded in the models of the context language, where possi-
ble worlds are mapped on context individuals and accessibility relations are mapped on context
roles.

5.3 Introducing Simple Description Logics of Context

We initiate our investigation on Description Logics of Context (DLCs) by studying modal de-
scription logics. In particular, as argued before, by identifying the notion of context with that of
possible world, modal DLs prove well-suited for reasoning about contextual aspects of knowl-
edge. In fact, the adequacy of modal DLs to capture contextual aspects of knowledge is sup-
ported by their faithful implementation within the DL framework of postulates 1 and 3 of Mc-
Carthy’s theory of contexts (cf. Section 5.2). It is due to this partial implementation of Mc-
Carthy’s theory that we see modal DLs as simple DLs of context.

In this chapter we focus on the investigation of the modal DLs (DAltn)ALC , (Dn)ALC , (Altn)ALC
and (Kn)ALC in the case where modal operators are applied only to concepts, and a global TBox
is considered. The choice of the modal components is based on previous research considering
classical modal logics as context logics [30, 28, 64].

5.3.1 Syntax and Semantics

Definition 5.1. Fix countably infinite disjoint sets NC and NR of concept names and role names,
respectively. Multi-modalMLALC-concepts are formed by the following grammar:

C ::= > | A | ¬C | C uD | ∃r.C | 3iC

where A ranges over NC and r ranges over NR, and i ∈ (1, n) for some n ∈ N.

Standard Boolean abbreviations are used, plus 2iC to abbreviate ¬3i¬C.

We defineMLALC TBoxes as for classical DLs but usingMLALC concepts.

Definition 5.2. AnMLALC TBox is a finite set of CIs C v D with C,DMLALC concepts.

As an example consider the followingMLALC CI about the wine domain contextualized w.r.t.
to geographic locations:

RedWine v 2euPopDrink u3amer (¬PopDrink).

Intuitively, this axiom states that in all contexts accessible through the accessibility relation eu
(Europe) red wine is a popular drink, and there is a possible context accessible through the
accessibility relation amer (America) in which is not a popular drink.

In what follows we sometimes refer to the DL dimension as the object dimension, and to the
modal dimension as the context dimension (e.g., Figure 5.3).

111

5 Description Logics of Context

The possible world semantics of MLALC is given in terms of modal interpretations, which
associate with each possible world w a classical DL interpretation Iw.

Definition 5.3. A modal interpretation I is a structure (∆,W, {Ri}i∈(1,n), {Iw}w∈W) whereW
is a non-empty set of possible worlds, Ri is an accessibility relation over W associated with the
operator 3i, and for each w ∈ W , Iw is a classical DL-interpretation with domain ∆. The
mapping ·I,w is extended to complex concepts as follows:

>I,w = ∆;

(¬C)I,w = {d ∈ ∆ | d /∈ CI,w};

(C uD)I,w = {d ∈ ∆ | d ∈ CI,w ∧ d ∈ DI,w};

(∃r.C)I,w = {d ∈ ∆ | ∃e ∈ ∆ : e ∈ CI,w ∧ (d, e) ∈ rI,w};

(3iC)I,w = {d ∈ ∆ | ∃v ∈W : wRiv ∧ d ∈ CI,v}.

We usually write CI,w instead of CIw ; intuitively d ∈ CI,w means that in the modal interpre-
tation I, d is an instance of C in the world w. In the previous definition we make the constant
domain assumption, i.e., each world shares the same domain ∆. Intuitively, this means that ob-
jects are not created or destroyed while making a transition from one world to another. This is
the most general choice since expanding, decreasing and varying domains can all be simulated.

In this thesis, we are interested in studying the computational complexity of the concept satisfi-
ability problem w.r.t.MLALC TBoxes.

Definition 5.4. A modal interpretation I is a model of a conceptC ifCI,w 6= ∅ for somew ∈W ;
it is a model of a TBox T if CI,w ⊆ DI,w for all w ∈ W and C v D in T . A concept C is
satisfiable w.r.t. a TBox T if there exists a common model of C and T .

Note that in the previous definition a TBox is regarded global in the sense that it must hold at
each world.
Note that without further restrictions on the accessibility relations MLALC corresponds to
(Kn)ALC , the combination of the modal logic Kn with ALC. We also consider the modal
DL (DAltn)ALC which extends ALC with a set of functional modalities©i, that is, operators
associated with accessibility relations Ri satisfying the properties of seriality (D) and quasi-
functionality (Alt):

seriality : ∀w ∈W ∃v ∈W.(wRiv)

quasi-functionality : ∀w, v, u ∈ V (wRiv ∧ wRiu→ v = u)

A natural question that emerges is whether we can allow for rigid roles in our logics. Alas, the
answer is a negative one since the presence of rigid roles leads to undecidability.

112

5.4 Reasoning in Simple Description Logics of Context

left righta

b
r

a a : ¬A

: A

: A, right¬A

: B b b: left A, right B

object
dimension
context
dimension

,

,

Figure 5.3: A context structure modeling concept A u2right¬A u ∃r.(3leftA u3rightB).

Theorem 5.1 ([58]). Concept satisfiability w.r.t. TBoxes DAltALC with a single rigid role is
undecidable.

Intuitively, the reason is that DAltALC corresponds to the fragment of LTLALC with the next-
time operator, which is enough to construct a usual encoding of the undecidable N×N-tiling
problem [58]. Now, it is not hard to see that the variation of the modal component in our logics
has no impact on the previous result.

Proposition 5.2. Concept satisfiability w.r.t. TBoxes is polynomially reducible between the fol-
lowing logics (where 7→ means reduces to):

(DAltn)ALC 7→ {(Dn)ALC , (Altn)ALC} 7→ (Kn)ALC .

Proof. If (C, T) is an instance of the concept satisfiability problem w.r.t. TBoxes in some
lefthandside logic, then one can decide it in the righthandside logic by applying simple transfor-
mations of C and T , encoding the missing conditions:

– Quasi-functionality: Assume, w.l.o.g., that C = nnf(C), where nnf stands for negation
normal form, and T = {> v nnf(CT)}. Let C ′ and C ′T be the result of replacing every
subconcept 3iB occurring in C and CT , respectively, with (3i>)u (2iB). Then, (C, T)
is satisfiable on a quasi-functional frame iff (C ′, {> v C ′T }) is satisfiable.

– Seriality: Let T ′ = T ∪ {> v 3i> | 1 ≤ i ≤ n}, where n is the number of all
modalities occurring in T and C. Then, (C, T) is satisfiable on a serial frame iff (C, T ′)
is satisfiable.

o

Theorem 5.1 together with Proposition 5.2 immediately entails the following:

Lemma 5.3. For anyML ∈ {DAltn,Dn,Altn,Kn}, concept satisfiability inMLALC w.r.t.
TBoxes with a single rigid role is undecidable.

5.4 Reasoning in Simple Description Logics of Context

This section begins our investigation on the computational complexity of the simple DLs of
context: MLALC for ML ∈ {DAltn,Dn,Altn,Kn}. We present algorithms for concept
satisfiability w.r.t. TBoxes based on quasistate elimination techniques commonly used to de-
vise decision procedures for multi-dimensional modal logics. This decision procedure yields

113

5 Description Logics of Context

a 2EXPTIME upper bound. Surprisingly, we demonstrate a matching lower bound; note that
the computational complexity of two-dimensional DLs allowing for such limited interaction of
the component logics usually is not higher than for the component logics. We prove the lower
bound by a reduction of the word problem of exponentially space bounded alternating Turing
machines.

5.4.1 An Algorithm for Concept Satisfiability w.r.t. TBoxes for (Kn)ALC

We next present a 2EXPTIME algorithm for satisfiability in (Kn)ALC
1. Our algorithm imple-

ments a variant of the quasistate elimination technique [38]. The main idea is to abstract from
the domains W and ∆ and consider only a finite (double exponential) number of quasistates
representing possible worlds inhabited by a finite number of possible types. We then iteratively
eliminate all quasistates that do not satisfy necessary conditions.

Let us fix a concept C and a TBox T formulated in (Kn)ALC . We assume w.l.o.g. that T is of
the form {> v CT }, and use cl(T) to denote the set of concepts that occur in T , closed under
negation and subconcepts.

Definition 5.5. A type for T is a set t ⊆ cl(T) satisfying the following conditions:

– C ∈ t iff ¬C 6∈ t, for all C ∈ cl(T),

– C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ cl(T),

– CT ∈ t.

We denote by tp(T) be the set of all types for T .

The next notion establishes when two types are compatible according to a transition k: we say
that two types t, t′ ∈ tp(T) are k-compatible for k ∈ (1, n) if {¬C | ¬3kC ∈ t} ⊆ t′.

Definition 5.6. A quasistate for T is a set q ⊆ tp(T), such that for every t ∈ q and every
∃r.D ∈ cl(T) the following holds:

(QS) if ∃r.D ∈ t then there is a type t′ ∈ q such that {D} ∪ {¬C | ¬∃r.C ∈ t} ⊆ t′.

We denote by qs(T) the set of all quasistates for T .

We extend the notion of k-compatibility to quasistates by ensuring that all their types are k-
compatible: we say that two quasistates q, q′ ∈ qs(T) are k-compatible if there exists a pair of
functions f : q → q′ and g : q′ → q such that, for every t ∈ q and t′ ∈ q′, t and f(t) are
k-compatible and g(t′) and t′ are k-compatible.

The following definition allows us to identify those quasistates that, intuitively, can occur in a
model of T .

1Mind that the NEXPTIME-completeness result for concept satisfiability in KALC [38, Theorem 15.15] applies to
ALC with a single pair of K operators, full booleans on modalized formulas and no global TBoxes.

114

5.4 Reasoning in Simple Description Logics of Context

Algorithm 2: (Kn)ALC SATISFIABILITY

Input: Concept C, TBox T formulated in (Kn)ALC

Initialize: i := 0; S0 := qs(T)

repeat
Si+1 := {q ∈ Si | q is realizable in Si}
until Si = Si+1

if exists q ∈ Si and a t ∈ q such that C ∈ t, return satisfiable
otherwise, return unsatisfiable

Definition 5.7. Let q be a quasistate for T , such that 3kC ∈ t for some t ∈ q. A quasistate q′

is a witness for the triple (3kC, t, q) if q and q′ are k-compatible and there is t′ ∈ q′ such that
C ∈ t′.

Now, we can define the elimination condition of our algorithm, that is, we will eliminate those
quasistates that cannot occur in any model of T .

Definition 5.8. Let S ⊆ qs(T) be a set of quasistates for T . A quasistate q for T is realizable
in S if the following condition is satisfied: for every t ∈ q and every 3kD ∈ cl(T),

if 3kD ∈ t then there is a witness for (3kD, t, q) in S.

Algorithm 2 above implements a quasistate elimination procedure for deciding satisfiability for
(Kn)ALC .

Lemma 5.4. Algorithm 2 returns ‘satisfiable’ iff C is satisfiable w.r.t. T .

Proof. (⇒) Let Sj be the final set computed by Algorithm 2. We construct a model I =
(∆,W, {Ri}i∈(1,n), {Iw}w∈W) ofC and T as follows. First, define the Kn-frame (W, {Ri}i∈(1,n)).

In particular, we define sequences W0,W1 . . ., R0
i , R

1
i , . . . and partial mappings π : Wi → Sj .

Our desired sets W and Ri are obtained in the limit. To start the construction of the Kn-frame,
set

– W0 = {w0}, π0(w0) = q such that there exists a t in q with C ∈ t, R0
i = ∅, for all

i ∈ (1, n).

For the inductive step, we start by setting Wi = Wi−1, R
i
j = Ri−1

j and πi−1 = πi, and then
proceed as follows:

(I) For every 1 ≤ k ≤ n, every w ∈Wi, if 3kC ∈ t for some t ∈ πi(w), then

115

5 Description Logics of Context

– add w′ to Wi, (w,w′) to Rik, and set πi(w′) = q′ such that q′ is a witness for
(3kC, t, q).

Finally, set W =
⋃
i≥0Wi and Rk =

⋃
i≥0R

i
k.

We continue our definition of I by defining a run throughW . A run ρ is a choice function which
for every w ∈ W selects a type ρ(w) ∈ π(w). A set of runs R is coherent if the following
conditions are satisfied:

(a) for every w ∈W and every t ∈ π(w), there is a run ρ ∈ R such that ρ(w) = t;

(b) for every ρ ∈ R, 1 ≤ k ≤ n and (w,w′) ∈ Rk, it holds that ρ(w) and ρ(w′) are k-
compatible;

(c) for every ρ ∈ R, 3kD ∈ cl(T) and w ∈ W , if 3kD ∈ ρ(w) then there exists w′ ∈ W
such that (w,w′) ∈ Rk and D ∈ ρ(w′).

Finally, set ∆ = R with R a coherent set of runs through W . It remains to define the interpre-
tation function for concept and role names:

AI,w = {ρ ∈ ∆ | A ∈ ρ(w)};

rI,w = {(ρ, ρ′) ∈ ∆×∆ | ∃r.D ∈ ρ(w) implies {D}∪{¬C | ¬∃r.C ∈ ρ(w)} ⊆ ρ′(w)}.

Claim For each C ∈ cl(T), ρ ∈ ∆, w ∈W

ρ ∈ CI,w iff C ∈ ρ(w)

Proof of the claim: The proof is by induction on the structure of C. The induction start, where
C is a concept name is immediate by definition of I. For the induction step, we distinguish the
following cases:

– C = ¬D “if:” ρ ∈ ¬DI,w, that is, ρ 6∈ DI,w. Now, by I.H.,D 6∈ ρ(w). Then, by definition
of type, ¬D ∈ ρ(w). “only if” ¬D ∈ ρ(w). By definition of type, D 6∈ ρ(w). Now, by
I.H., ρ 6∈ DI,w. Therefore, by semantics, ρ ∈ (¬D)I,w.

– C = D1 u D2 “if:” ρ ∈ (D1 u D2)I,w, that is, ρ ∈ DI,w
1 and ρ ∈ DI,w

2 . Now, by I.H.,
D1 ∈ ρ(w) and D2 ∈ ρ(w). Therefore, by definition of type, D1 uD2 ∈ ρ(w). “only if:”
D1 uD2 ∈ ρ(w), then by definition of type, D1 ∈ ρ(w) and D2 ∈ ρ(w), Now, by I.H.,
ρ ∈ DI,w and ρ ∈ DI,w

2 . Therefore, by semantics, ρ ∈ (D1 uD2)I,w.

– C=∃r.D “if:” ρ ∈ (∃r.D)I,w, that is, there exists a ρ′ such that (ρ, ρ′) ∈ rI,w and
ρ′ ∈ DI,w. Now, by I.H., we know that D ∈ ρ′(w). Therefore, by definition of rI,w

and I.H., ∃r.D ∈ ρ(w).

“only if:” ∃r.D ∈ ρ(w). By construction, ρ(w) = t ∈ π(w). Now, by condition (QS) of
definition of quasistate, there exists a t′ ∈ π(w) such that {D} ∪ {¬C | ¬∃r.C ∈ t} ⊆ t′.
Furthermore, by (c), there is a ρ′ such that ρ′(w) = t′. Then, by I.H., ρ′ ∈ DI,w′ , and
moreover, by definition of rI,w, (ρ, ρ′) ∈ rI,w. Therefore, by semantics, ρ ∈ (∃r.D)I,w.

116

5.4 Reasoning in Simple Description Logics of Context

– C = 3kD. “if:” ρ ∈ (3kD)I,w, that is, there exists a w′ ∈ W such that wRkw′ and
ρ ∈ DI,w′ . By construction (b), ρ(w) and ρ(w′) are k-compatible and, by (I), π(w) and
π(w′) are k-compatible. Moreover, by I.H., D ∈ ρ(w′). Hence, by definition of witness,
π(w′) is a witness of (3kD, ρ(w), π(w)). Therefore, 3kD ∈ ρ(w).

“only if:” 3kD ∈ ρ(w). Note that ρ(w) = t ∈ π(w). Now, by construction (I), there is a
w′ ∈ W such that π(w′) ∈ qs(T) is a witness of (3kD, t, π(w)). Hence, wRkw′. Now,
by condition (c), ρ(w) and ρ(w′) are k-compatible, and moreover by I.H., ρ ∈ DI,w′ .
Therefore, by semantics, ρ ∈ (3kD)I,w.

Note that by definition of type, CT ∈ ρ(w) for all ρ ∈ ∆ and w ∈ W . Now, by the previous
claim ρ ∈ (CT)I,w for all ρ ∈ ∆ and w ∈ W . Hence, I is a model of T . Moreover, by
assumption, there is a ρ(w) ∈ π(w) for some ρ ∈ R and w ∈ W such that C ∈ ρ(w). Thus, by
the previous claim, ρ ∈ CI,w. Therefore, I is a model of C and T .

(⇐) Let I = (∆,W, {Ri}i∈(1,n), {Iw}w∈W) be a model of T and C. We next define S such
that there is a subset S of S0 such that none of its elements can be eliminated by Algorithm 2
and for some q ∈ S there is a t ∈ q such that C ∈ t.
For every d ∈ ∆ and w ∈W we set:

tp(d,w) := {C ∈ cl(T) | d ∈ CI,w}.

Further, we associate with every w ∈W the set of types

qw = {tp(d,w) | d ∈ ∆}.

It is clear that each such qw is a quasistate since all existential restrictions are witnessed. Finally,
we fix

S = {qw | w ∈W}.
It is clear from the definition of S that each element of S is realizable: assume 3kC ∈ t for
some arbitrary t in qw ∈ S. By construction, we know that t = tp(d,w) for some d ∈ ∆,
and moreover we know that d ∈ (3kC)I,w. Now, by semantics, d ∈ CI,w′ for some w′ ∈
W. (w,w′) ∈ Rk. Now by definition of S, there is a qw′ such that there is a t′ = tp(d,w′).
Then, by definition of tp(d,w′), C ∈ t′. One can argue analogously to see that qw and qw′ are
k-compatible. Therefore, S is realizable.

Now one can directly see by induction on i that S ⊆ Si for 0 ≤ i ≤ m, where S0, . . . , Sm is the
sequence computed by Algorithm 2, that is, none of the elements of S is deleted in any of the
iterations of Algorithm 2.

Since I is a model of C, one of the elements of S contains a type t, such that C ∈ t, and all
types in all quasistates contain the TBox concept CT . Thus, the Algorithm 2 returns satisfiable.

o

Now, it remains to show that Algorithm 2 runs in double exponential time. First, note that the
number of types is in O(2poly(|T |)) and the number of quasistates is in O(22poly(|T |)). In the worst
case, in order to verify whether the elimination criterion applies to a quasistate at a given stage

117

5 Description Logics of Context

of the run of the Algorithm 2, it is necessary to compare each of its types against all types from
the remaining quasistates, where each comparison can be performed in the polynomial time.
Thus the whole algorithm cannot take more than ((22poly(|T |) ·2poly(|T)|)·2poly(|T |))·22poly(|T |) steps
in total to terminate, and thus remains clearly in O(22poly(|T |)).

Theorem 5.5. Concept satisfiability w.r.t. TBoxes for (Kn)ALC is in 2EXPTIME.

5.4.2 A 2EXPTIME Lower Bound for Concept Satisfiability w.r.t. TBoxes
for (DAltn)ALC

In the light of the results on two-dimensional DLs found in the literature, one could expect the
2EXPTIME upper bound presented above not to be optimal. This is the case, since (Kn)ALC
with modalities applied only to concepts is very similar to the fusion of Kn and ALC, which
in principle should make possible to devise an EXPTIME algorithm. However, the following
example shows that there are important differences between (Kn)ALC and the fusion of its
component logics. Consider the (Kn)ALC concept in the l.h.s. and its reduction to a fusion
language in the r.h.s.

(†) 3iC u ∃r.2i⊥ (‡) ∃succi.C u ∃r.∀succi.⊥

Note that although (†) clearly does not have a model, its reduction (‡) to a fusion language,
where modal operators are translated to restrictions on freshALC roles succi, is satisfiable. The
reason is that while in the former case the information about the structure of the Kn-frame is
global for all individuals, in the latter it becomes local. The r-successor in (‡) is simply not
‘aware’ that it should actually have a succi-successor.2 This effect, amplified by the presence of
global TBoxes (which can enforce infinite K-trees), makes the reasoning harder.
We next prove a 2EXPTIME lower bound for concept satisfiability w.r.t. TBoxes in (DAltn)ALC
by a reduction of the word problem of an exponentially space bounded alternating Turing ma-
chine.

Theorem 5.6. Concept satisfiability w.r.t. TBoxes for (DAltn)ALC is 2EXPTIME-hard.

Proof. This proof is by a reduction of the word problem of an exponentially space bounded
alternating Turing machine (cf. Section 3.5.3). LetM = (Q,Σ,Γ, q0, δ) be such an ATM, with
a 2EXPTIME-hard word problem, and w ∈ Σ∗ be the input of length n. Our aim is to construct
in polynomial time a TBox TM,w and a concept CM,w such that CM,w is satisfiable w.r.t. TM,w

iff M accepts w.
The core idea of the reduction is to use separate DAltn modalities for representing symbols
of the alphabet. By isolating then specific fragments of (DAltn)ALC tree models we can thus
embed the syntactic structure of an ATM computation tree (see Figure 5.4) within (DAltn)ALC

2Demonstrating the corresponding phenomenon in (DAltn)ALC is not that straightforward due to the seriality
condition, as then the global information concerns only the existence of succi-predecessors. Thus, one needs role
inverses in the fusion language to observe the loss of such information. This is in general explained by the fact
that fusions correspond to expanding domains instead of constant ones.

118

5.4 Reasoning in Simple Description Logics of Context

models. At the same time, using special counting concepts over the modal dimension, we align
the succeeding configurations, ensuring then the satisfaction of the constraints of the respective
ATM transitions (see Figure 5.5). We use the following signature:

– concept names Wa, Sa, for every a ∈ Γ;

– concept names Qq, for every q ∈ Q;

– concept names X0 . . . Xn−1, U0 . . . Un−1, C0 . . . Cn−1, C ′0 . . . C
′
n−1 for encoding expo-

nential counters;

– concept names Mq,a,m, Nq,a,m for every (q, a,m) ∈ Θ, where

Θ = {(q, a,m) | (q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q};

– auxiliary concept names ZeroTape,EndTape,ZeroHead,ZeroHead′,ZeroCell related with
the value zero and 2n−1 of an associated counter, and a marker concept name Tape.

We moreover use for every a ∈ Γ modal operators©a, and the following abbreviations (for any
concept B):

2B =
d

a∈Γ

©aB,

3B = t
a∈Γ
©aB,

Throughout the reduction we use several counters, consisting of a number of inclusions of a
total polynomial size, which allow to identify worlds on the branches at a fixed distance 2n.
Constraints (5.1)-(5.2) implement an exemplary counter, based on atomic concepts Xi, which
simulate the bits of a number in binary.

For every 0 ≤ j < i < n,
¬Xi u ¬Xj v 2¬Xi,

Xi u ¬Xj v 2Xi,
(5.1)

For every 0 ≤ j < n
¬Xj uXj−1 u . . . uX1 v 2Xj ,

Xj uXj−1 u . . . uX1 v 2¬Xj .
(5.2)

We use the abbreviations Zero and End to denote, respectively:

X =

n−1l

j=0

¬Xj X =

n−1l

j=0

Xj (5.3)

We use the counter X to define constraints which encode a single tape on a branch of a model.
We use ZeroTape and EndTape to refer to the abbreviations introduce above in (5.3). In (5.4)
we define the beginning and the end of such a tape, while with (5.5)-(5.6) we ensure that there is
a unique path connecting the two. We will consider such a tape path as determining the content
of the tape, as presented in Figure 5.4. In fact, in our models we will need only one individual

119

5 Description Logics of Context

∅

∈

∉

∅

∅

∅

∅

∅

∅

∅

Figure 5.4: Embedding of ATM computation trees (left) and ATM tapes (right) in (DAltn)ALC-

tree-models.

which will single out the whole structure of the ATM tree. Constraint (5.7) ensures that the blank

symbol is followed only by blank symbols on the tape.

BeginTape ≡ Tape � ZeroTape FinishTape ≡ Tape � EndTape, (5.4)

Tape � �Tape �Tape � Tape, (5.5)

¬FinishTape �©aTape �©bTape � ⊥, for every a �= b ∈ Γ, (5.6)

© (Tape �©aTape) � ⊥, for every a �= ∈ Γ. (5.7)

We introduce a counter C capturing the position of the head in the tape. We use ZeroHead,

as defined in (5.3). We further use Qq concepts to denote the current state and the position of

the head, and concepts Mq,a,m ∈ Θ to carry this information about the following transitions.

Information about the transitions is generated depending on whether the state is universal (5.8)

or existential (5.9) and then carried to the end of the tape (5.10).

For every a ∈ Γ, q ∈ Q∀:

©a(Qq � Tape) � ©a(
�

(q′b′m)∈δ(q,a)
Mq′,b,m � ZeroHead) (5.8)

120

5.4 Reasoning in Simple Description Logics of Context

a “fresh”
representative2n

r

r

r

q',c,l

head, state q

r role r

transition infromation

cell content information

translation of information-
carrying concepts

Information flow:

2n

right

left

a

c

a

a

b

a

b

b

c

a

b

b

a

b

a

a

“transition”

a accessibility relation of a

d Tape d Q
q

d Q
q'

head, state q'

a tape cell containing “a”

transition

“cell”-world

ALC:

ATM:

DAlt:

Figure 5.5: A transition between succeeding configurations in (DAltn)ALC-tree-models for
n = 2 and (q′, c, l) ∈ δ(q, b).

For every a ∈ Γ, q ∈ Q∃:

©a(Qq u Tape) v ©a(t
(q′b′m)∈δ(q,a)

Mq′,b,m u ZeroHead) (5.9)

¬FinishTape uMq,a,m v 2Mq,a,m (5.10)

To avoid potential clashes with the information generated on the succeeding configurations, we
create copies Nq,a,m for all concepts Mq,a,m, which continue to carry their information over the
new configuration (5.11)-(5.12). Further, we introduce an auxiliary counter C ′, which proceeds
with the counting exactly from the point where the previous head counter (C) terminated (5.13).

For every (q, a,m) ∈ Θ:

Mq,a,m u FinishTape v 3(Nq,a,m u BeginTape) (5.11)

FinishTape uNq,a,m v 2Nq,a,m, (5.12)

FinishTape u Ci v C ′i FinishTape u ¬Ci v ¬C ′i (5.13)

The necessary changes in the configuration are imposed through constraints (5.14)-(5.17), which
place the head in the appropriate position, marking it with the new state concept, and force the

121

5 Description Logics of Context

old position to be overwritten with the new symbol. The inclusions (5.18)-(5.19) ensure that the
transition does not push the head beyond the tape.

©b(Nq,a,m u Tape u ZeroHead) v ⊥ (5.14)

For every (q, a, n) ∈ Θ:
Nq,a,n u Tape u ZeroHead′ v Qq (5.15)

For every (q, a, r) ∈ Θ:
Nq,a,r u Tape u ZeroHead′ v 2Qq (5.16)

For every (q, a, l) ∈ Θ:
Nq,a,r u Tape u EndHead′ v Qq (5.17)

ZeroHead u BeginTape v ¬Nq,a,l, for every q ∈ Q, a ∈ Γ, (5.18)

ZeroHead u FinishTape v ¬Nq,a,r, for every q ∈ Q, a ∈ Γ. (5.19)

Now we transfer the information about the content of the cells which are not meant to change
during the transition. This information is carried by newly generated ‘representatives’, i.e., new
r-successors of the individual instantiating Tape. Observe that since our models are tree-shaped,
it follows that whenever a representative at a i-th position reaches the 2n − 1 ancestor world, it
is exactly the world representing the i-th cell at the previous configuration. This enables to align
the content of the two versions.

For each a ∈ Γ we introduce two concept names Wa, Sa storing the content of a tape cell,
whose interpretation is propagated to the previous configuration and aligned at the end of the
configuration (5.20). We further use a counter U representing the position of a cell; we use
accordingly ZeroCell. Constraint (5.21) generates a representative of each cell, and equips it
with the corresponding concept W describing the cell’s content. Once this information arrives
to the previous version of that cell we prevent the cells from having different content (5.22). We
standardly ensure that the representative of the cell is uniquely associated with an alphabet letter
(5.23).

For every a ∈ Γ

¬FinishTapeu3Wa vWa ¬FinishTapeu3Sa v Sa FinishTapeu3Wa v Sa (5.20)

©a(Tape u ¬ZeroHead) v ©a∃r.(ZeroCell uWa), (5.21)

For every b 6= a ∈ Γ
©a(Sb u ZeroCell) v ⊥, (5.22)

Wa uWb v ⊥ Sa u Sb v ⊥ (5.23)

Finally, it suffices to ensure that nowhere in the model is the rejecting state satisfied.

> v ¬Qqr (5.24)

122

5.4 Reasoning in Simple Description Logics of Context

This completes the construction of the TBox TM,w. The initial configuration q0w is encoded as
concept CM,w. Let w = a1 . . . an. For 2 ≤ i ≤ n define recursively:

Ai =©ai(Tape uAi+1)

An+1 =© Tape

and set CM,w =©a1(BeginTape uQq0 uA2).

Following the construction is not hard to see that the following holds.

Proposition 5.7. CM,w is satisfiable w.r.t. TM,w iffM accepts w.

First assume w ∈ L(M) and TM = (NM, EM, conf(·)) is an accepting tree of M on w,
where conf(n) assigns configurations to nodes n ∈ NM. Moreover, given conf(n) = wqw′, the
function]i(conf(n)) returns the i-th symbol of ww′, and h(conf(n)) the position of the head.
We describe the construction of a model I = (∆,W, {Rx}x∈Γ, {Iw}w∈W) of TM,w and CM,w.
Let m = |w|, we begin by defining

W = {win | n ∈ NM ∧ 0 ≤ i ≤ 2m} ∪ {ε}

and set

Rx = {(win, wi+1
n) |]i+1(conf(n)) = x}∪{(w2m−1

n , w0
n′) |]0(conf(n′)) = x∧ (n, n′) ∈ EM}

∪{(ε, w0
n) | n the root of TM ∧]0(conf(n)) = x}.

Moreover, set ∆ = {dM} ∪ {ew | w ∈W} and

– TapeI,w = {dM};

– BeginTapeI,w
0
n = {dM}; EndTapeI,w

2m−1
n = {dM};

– Q
I,wi

n
q = {dM | M is in state q ∧ h(conf(n)) = i};

– X
I,wi

n
j = {dM | the jth bit of the binary representation of i is 1};

– rI,w
i
n = {(dM, ewi

n
)}.

The interpretation can be straightforwardly extended to the remaining auxiliary concepts in the
construction, e.g., Mq,a.m, Nq,a,r, etc. For example, the concepts Wa, Sa are interpreted as
follows:

W I,wi
n

a = {e
wj

n
∈ ∆ |]j(conf(n)) = a ∧ j ≥ i},

SI,wi
n

a = {e
wj

n′
∈ ∆ | (n, n′) ∈ EM ∧ e

wj

n′
∈W I,w2|w|−1

n′
a }.

123

5 Description Logics of Context

Note that up to this point we have defined the interpretation of a finite subtree of I. However, we
can straightforwardly extend it by introducing new worlds and extending each path to an infinite
path. Most of the concepts can be interpreted as the empty set in the new added worlds, the only
exception are the counter concepts: we can properly interpreted them by taking the distance
from the root ε, that is, for each added w

XI,w
j = {dM ∈ ∆ | the jth bit of the binary representation of dist(ε, w) is 1},

where dist(ε, w) is a function giving the distance modulo 2m between the ε and w. Finally, set
CI,ε
M,w = {dM}. Now by simply inspecting the axioms of TM,w one can see that I |= TM,w.

The other direction of the claim follows straightforwardly from the reduction. In order to retrieve
an ATM tree accepting w from a (DAltn)ALC-tree-model we only need to pick an individual
d, such that d ∈ CI,w0

M,ω and follow the paths of worlds w ∈ W for which d ∈ TapeI,w, just as
presented in Figure 5.4. On the way we collect information about the entire configuration. Two
important comments are in order. First, note that the reduction is somewhat underconstrained
in the sense that the models might represent also some surplus states or transitions. However,
the proper computation tree, i.e., the one directly enforced by the encoding, has to appear within
this structure. Secondly, we recall that the ATM trees we consider are all finite. Since the transi-
tions in the reduction properly simulate those of an ATM, therefore the ATM trees embedded in
(DAltn)ALC-tree-models have to be also finite, even though the models themselves are always
infinite.

o

The two complexity bounds from Theorem 5.5 and 5.6 together with the reductions established
in Proposition 5.2 provide us with the following.

Theorem 5.8. For anyML ∈ {DAltn,Dn,Altn,Kn}, concept satisfiability w.r.t. TBoxes for
MLALC is 2EXPTIME-complete.

What follows then from this analysis is that by sacrificing the generality of Kn-frames one
does not immediately obtain a better computational behavior as long as multi-modal operators
are permitted. For this reason, later on, we adopt (Kn)ALC as the baseline for constructing
expressive DLCs.

5.5 Introducing Expressive Description Logics of Context

In this section we introduce expressive extensions of simple DLs of context: an Expressive De-
scription Logic of Context CLCLO consists of the DL context language LC , supporting context
descriptions, and of the object language LO equipped with context operators for representing
object knowledge relative to contexts. Expressive DLCs extend simple DLCs with the possibil-
ity of explicitly asserting properties of the contexts and therefore conforming with the second
postulate of McCarthy’s theory. From here on, when convenient, we drop the expressive qualifi-
cation and simply refer to them as description logics of context.

124

5.5 Introducing Expressive Description Logics of Context

5.5.1 Syntax and semantics

Definition 5.9. The context language of CLCLO is a DL language LC over the vocabulary Γ =
(MC,MR,MI), where MC is a set of context concepts, MR a set of context roles and MI a set of
context names.3

The object language extends standard DLs with special contextualization operators applicable
to concepts.

Definition 5.10. Let LO be a DL language over the vocabulary Σ = (NC,NR,NI). The object
language of CLCLO is the smallest language containing LO and closed under the constructors of
LO and at least one of the two types — F1 resp. F2 — of concept-forming operators:

〈r.C〉D | [r.C]D (F1)

〈C〉D | [C]D (F2)

where C and r are a concept and a role of the context language and D is a concept of the object
language.

We use standard Boolean abbreviations, plus [r.C]D to abbreviate ¬〈r.C〉¬D, and [C]D to ab-
breviate ¬〈C〉¬D.

Intuitively, the concept 〈r.C〉D denotes all objects which are D in some context of type C ac-
cessible from the current one through r. Analogically, [r.C]D denotes all objects which are D
in every such context. In the case of F2 operators, the concept 〈C〉D denotes all objects which
are D in some context of type C, whereas [C]D all objects which are D in every such con-
text. For example, 〈neighbor.Country〉Citizen , refers to the concept Citizen in some context
of type Country accessible through the neighbor relation from the current context. Analogically,
〈HumanAnatomy〉Heart refers to the concept Heart in some context of HumanAnatomy.

Definition 5.11. A CLCLO -knowledge base (CKB) is a pairK = (C,O), where C is a set of axioms
over the context language (in the syntax allowed by LC), and O is a set of formulas of the form:

c : ϕ | C : ϕ

where ϕ is an axiom over the object language (in the syntax allowed by LO), c ∈ MI and C is
a concept of the context language.

A formula c : ϕ states that axiom ϕ holds in the context denoted by the context name c. Note,
that this corresponds directly to McCarthy’s ist(c, ϕ). Axioms of the form C : ϕ assert the truth
of ϕ in all contexts of type C. For example, the following formula states that in every country,
the citizens of its neighbor countries do not require visas.

3In certain scenarios it might be useful to consider only a subset of MI as proper contexts, while the remaining
individuals serving merely for context descriptions in LC . For instance in provenance applications, a context c,
associated with a single knowledge source, might be described with an axiom hasAuthor(c, henry), where henry
is an individual related to c, but not a context itself [17].

125

5 Description Logics of Context

Country : 〈neighbor.Country〉Citizen v NoVisaRequirement

The possible world semantics of DLCs is given through CLCLO -interpretations and CLCLO -models,
which combine the interpretations of LC with those of LO.

Definition 5.12. A CLCLO -interpretation is a tuple I = (C, ·J ,∆, {Ii}i∈C), such that:

1. (C, ·J) is a classical DL interpretation of LC , where C is a non-empty domain of contexts
and ·J an interpretation function defined for LC as usual,

2. Ii is a classical DL interpretation ofLO with domain ∆ such that aIi = aIj for all a ∈ MI

and i, j ∈ C. The mapping ·I,i is extended to complex concepts as follows:

(F1) for every 〈r.C〉D and [r.C]D:

– (〈r.C 〉D)I,i = {d ∈ ∆ | ∃j ∈ C : (i, j) ∈ rJ ∧ j ∈ CJ ∧ d ∈ DI,j},
– ([r.C]D)I,i = {d ∈ ∆ | ∀j ∈ C : (i, j) ∈ rJ ∧ j ∈ CJ → d ∈ DI,j}.

(F2) for every 〈C〉D and [C]D:

– (〈C 〉D)I,i = {d ∈ ∆ | ∃j ∈ C : j ∈ CJ ∧ d ∈ DI,j},
– ([C]D)I,i = {d ∈ ∆ | ∀j ∈ C : j ∈ CJ → d ∈ DI,j}.

We usually write CI,i instead of CIi ; intuitively d ∈ CI,i means that in the interpretation I,
d is an instance of C in the context i. In the previous definition we make the constant domain
assumption, i.e., each context shares the same domain ∆. Intuitively, this means that objects are
not created or destroyed while making a transition from one context to another. This is the most
general choice since expanding, decreasing and varying domains can all be simulated.

Clearly, the difference between the context operators of type F1 and F2 lies in the choice of
the relational structures observed when quantifying over the context domain. F1-operators bind
contexts only along the roles of the context language (as K-modalities), while F2-operators
follow the universal relation over C (as S5-modalities). This leads to some clear consequences
in the scope and the character of the distribution of the object knowledge over contexts in CLCLO -
models. For instance, in Figure 5.1, the concept 〈t.F〉B is satisfied by object a only in context
c, while 〈F〉B is satisfied by a in all contexts in the model. From the perspective of McCarthy’s
theory, employing operators F2, rather than F1, is equivalent to sacrificing postulate (3). This
means that every two contexts in the model become in principle accessible to each other. The
focus on K-like and S5-like modalities is quite arbitrary here and driven merely by the formal
simplicity of the two types of operators and easiness of their integration with the DL semantics.
In principle, however, nothing prevents from constructing logics containing contextualization
operators which mimic other common modalities.

126

5.6 Simple vs Expressive Description Logics of Context

Definition 5.13. A CLCLO -interpretation I = (C, ·J ,∆, {Ii}i∈C) is a model of a CKBK = (C,O)
if the following hold:

– for every ϕ ∈ C, (C, ·J) satisfies ϕ,

– for every c : ϕ ∈ O, IcJ satisfies ϕ,

– for every C : ϕ ∈ O and i ∈ C, if i ∈ CJ then Ii satisfies ϕ.

The central reasoning problem we study is KB satisfiability: a CLCLO KB K is satisfiable if K has
a model.

5.6 Simple vs Expressive Description Logics of Context

We next present a rough analysis of the expressive limits of DLCs by direct comparisons to
simple DLCs and therefore to standard two-dimensional DLs. The results which we deliver
here are not exhaustive, but nevertheless, they offer a good limiting characterization of the pro-
posed logics. We show that the expressive power of the DLC framework properly subsumes the
expressiveness of (Kn)L and S5L.

The following result shows that concept satisfiability w.r.t. TBoxes for (Kn)L can be immedi-
ately restated as the problem of KB satisfiability for CLCLO with only F1 operators.

Theorem 5.9 ((Kn)L vs. CLCLO). Deciding concept satisfiability w.r.t. TBoxes for (Kn)L is lin-

early reducible to KB satisfiability in CLCLO , for LO = L, with only context operators of type
F1.

Proof. Let (C, T) be a problem instance in (Kn)L. Define the corresponding KB K = (C,O)
in CLCLO as follows. First, set C = ∅ and O = {> : B v D | B v D ∈ T } ∪ {> :
(〈s.>〉C)(a)}, for a context role s and some fresh individual object name a. Then, with every
pair of K-modalities 3i, 2i in (Kn)L associate a distinct context role name ri and replace
every occurrence of 3i in O with 〈ri.>〉 and every occurrence of 2i with [ri.>]. Then, C is
satisfiable w.r.t. T in (Kn)L iff the resulting KBK is satisfiable in CLCLO . This conclusion follows
immediately by observing the direct correspondence between the semantics of both languages;
in particular the semantics of the K-modalities and global TBox axioms in (Kn)L and of the
corresponding F1 operators and formulas > :ϕ in CLCLO . Based on this observation, it is easy to
see that (∆, {Ri}i∈(1,n),W, {Iw}w∈W) is a model of T iff (W, ·J ,∆, {Iw}w∈W) is a model of
K, where Ri = (ri)J , for every i ∈ (1, n), and the concept C is satisfied in some w ∈W by the
individual aI,w ∈ ∆.

o

In the same manner, we devise a reduction from S5L to CLCLO with only F2 operators.

Theorem 5.10 (S5L vs. CLCLO). Deciding concept satisfiability w.r.t. TBoxes for S5L is linearly

reducible to KB satisfiability in CLCLO , for LO = L, with only context operators of type F2.

127

5 Description Logics of Context

Proof. Let (C, T) be a problem instance in S5L. Again, define the KB K = (C,O) in CLCLO by
setting C = ∅ and O = {> : B v D | B v D ∈ T } ∪ {> : (〈>〉C)(a)}, for some fresh
individual name a. Then, replace every occurrence of 3 in O with 〈>〉 and every occurrence of
2 with [>]. Consequently, C is satisfiable w.r.t. T in S5L iff the resulting KB K is satisfiable in
CLCLO . Analogically to the previous case, observe that the semantics of S5-modalities coincides
with that of F2 operators and so (∆,W, {Iw}w∈W) is a model of T iff (W, ·J ,∆, {Iw}w∈W) is
a model of K, where the concept C is satisfied in some w ∈W by the individual aI,w ∈ ∆.

o

Observe that for the reductions we use only a residual context language. In the former case
we merely require the top concept and a set of context role names, while in the latter only the
top concept. Clearly, there is also no need for employing axioms of the context language. This
suggests that the expressive power of DLCs might be in general even greater and strictly subsume
that of the union of (Kn)L and S5L. Indeed, it is not difficult to instantiate this intuition with
concrete examples of properties which are expressible in CLCLO but cannot be captured by any
of the underlying two-dimensional languages. For instance, in formulas of the form c : ϕ the
context name c uniquely identifies a world in which the formula ϕ must be satisfied. Moreover,
we can express complex modalities, e.g.,

〈A〉C t [A u ¬B]C,

describing the set of objects which are C in any context of type A or in all contexts of type
A and ¬B. Obviously neither (Kn)L or S5L allows for expressing such properties, as they re-
quire a more fine-grained mechanism of quantifying over possible worlds, offered by the context
language in CLCLO .
Although we do not have a precise characterization result for the expressiveness of CLCLO , it seems
that at least to some extent its behavior can be simulated in two-dimensional DLs extended with
global concepts, that is, concepts C such that for every w ∈ W one of the following holds:
CI,w = ∆ or CI,w = ∅. Technically, global concepts can be used to simulate the context
language by associating with every context concept C its global counterpart CC and requiring
that for every w ∈ W the following holds: w ∈ CJ iff CI,w

C = ∆. Given this restriction, for
example, we can translate concepts of the form 〈r.C〉D into a (Kn)ALC concept 3r(CC uD).
However, even if a complete reduction to two-dimensional DLs with global vocabulary was
possible, this approach would be still conceptually inadequate to our motivation, as the semantics
of global expressions would be defined purely in terms of the object domain and not the domain
of contexts. Moreover, the interaction between the two levels of representation would be highly
obscured, making it hard to define fragments of CLCLO in a modular fashion –simply by selecting
DLs of desired expressiveness for LC and LO.

5.7 Reasoning in Expressive Description Logics of Context

This section is dedicated to the study of the computational complexity of DLCs based on the
DLALCO. We provide a 2EXPTIME upper bound for the KB satisfiability problem for CALCOALCO.
Remarkably, in the light of the analysis carried out in Section 5.6, this result shows that we can

128

5.7 Reasoning in Expressive Description Logics of Context

equip (Kn)ALC with means for describing contexts and comply therefore with all McCarthy’s
postulates without an increase in the complexity.

5.7.1 An Algorithm for KB Satisfiability for CALCOALCO

In order to prove decidability of the KB satisfiability problem for CALCOALCO, we devise a quasistate
elimination algorithm. Particularly, this algorithm can be seen as an extension of the algorithm
for concept satisfiability w.r.t. TBoxes for (Kn)ALC presented in Section 5.4. Again, instead of
looking directly for a model of a KB, we abstract from the possibly infinite domains C and ∆,
and consider only a finite number of quasistates which represent possible context types inhabited
by a finite number of possible object types. Further all quasistates which do not satisfy certain
criteria are iteratively eliminated.

Let K = (C,O) be a KB formulated in CALCOALCO with context operators F1 and F2 whose sat-
isfiability is to be decided. Further, we apply the following replacements of all respective
(sub)formulas with their equivalents:

C(a) ⇒ {a} v C, r(a, b) ⇒ {a} v ∃r.{b},
C(a) ⇒ {a} v C, r(a, b) ⇒ {a} v ∃r.{b}.

The following notation is used to denote particular sets of object symbols occurring in K:

− clo(K): set of object concepts that occur in K, closed under subconcepts
and negation;

− rolo(K): set of object roles that occur in K;
− indo(K): set of object individual names that occur in K;
− subo(K): set of axioms from {ϕ | C : ϕ ∈ O for any C}.

Moreover, we use clc(K), rolc(K), indc(K) to denote the analogous sets over context concepts
and roles occurring inK∪{∃r.C,¬∃r.C | 〈r.C〉D,¬〈r.C〉D occurs in K}. We proceed to define
a context and object type.

Definition 5.14. A context type for K is a subset tc ⊆ clc(K), where:

– C ∈ tc iff ¬C 6∈ tc, for all C ∈ clc(K);

– C u D ∈ tc iff {C,D} ⊆ tc, for all C u D ∈ clc(K).

Furthermore, an object type for K is a subset to ⊆ clo(K), where:

– C ∈ to iff ¬C 6∈ to, for all C ∈ clo(K);

– C uD ∈ to iff {C,D} ⊆ to, for all C uD ∈ clo(K).

We can now define the notion of quasistate: intuitively, a quasistate captures a ‘slice’ of a model
representing one possible context inhabited by a set of possible objects.

129

5 Description Logics of Context

Definition 5.15. A quasistate for K is a tuple q = 〈tcq , fq, Oq〉 with tcq a context type for K,
fq ⊆ subo(K) and Oq a non-empty set of object types for K, such that for every to ∈ Oq the
following holds:

(QS) if ∃r.D ∈ to then there is a type t′o ∈ Oq such that {D} ∪ {¬E | ¬∃r.E ∈ to} ⊆ t′o.

Furthermore, we say that q is coherent if the following conditions hold:

(QC1) for every a ∈ indo(K) there exists a unique to ∈ Oq such that {a} ∈ to;

(QC2) for every C : ϕ ∈ O, if C ∈ tcq then ϕ ∈ fq;

(QC3) for every C v D ∈ fq and to ∈ Oq, if C ∈ to then D ∈ to;

(QC4) for every to ∈ Oq and ¬〈C〉D ∈ to, if C ∈ tcq then ¬D ∈ to.

We denote by qs(K) the set of all quasistates forK. Moreover, a linkage between two quasistates
q = 〈tcq , fq, Oq〉 and q′ = 〈tcq′ , fq′ , Oq′〉 for K is a mapping λ = g ∪ h, where g : Oq → Oq′

and h : Oq′ → Oq, such that for every a ∈ indo(K) and to ∈ Oq∪Oq′ , {a} ∈ to iff {a} ∈ λ(to).

The following definition will be used to reconstruct the accessibility relations between individ-
uals of the object dimension.

Definition 5.16. Let q = 〈tcq , fq, Oq〉 and q′ = 〈tcq′ , fq′ , Oq′〉 be two quasistates for K. Then
q′ is a matching F2-successor for q via a linkage λ if for every to ∈ Oq ∪Oq′ , {〈C〉D,¬〈C〉D ∈
to} = {〈C〉D,¬〈C〉D ∈ λ(to)}.
Furthermore, for any r ∈ rolc(K), we say that q′ is a matching r- successor for q via a linkage λ
if q′ is a matching F2-successor for q via λ and the following conditions are satisfied:

– {¬C | ¬∃r.C ∈ tcq} ⊆ tcq′ ;

– for every to ∈ Oq and t′o ∈ Oq′ , {¬D | ¬〈r.C〉D ∈ to,C ∈ tcq′} ⊆ λ(to) and {¬D |
¬〈r.C〉D ∈ λ(t′o),C ∈ tcq′} ⊆ t′o.

Moreover, we say that a set of quasistates Q is saturated if for every quasistate q ∈ Q with
q = 〈tcq , fq, Oq〉 the following hold:

(QS1) for every ∃r.C ∈ tcq there is a matching r-successor q′ for q in Q via some linkage λ,
such that C ∈ tcq′ ;

(QS2) for every to ∈ Oq and 〈C〉D ∈ to there is a matching F2-successor q′ = 〈tcq′ , fq′ , Oq′〉
for q in Q via some linkage λ, such that C ∈ tcq′ and D ∈ λ(to);

(QS3) for every to ∈ Oq and 〈r.C〉D ∈ to, there is a matching r-successor q′ = 〈tcq′ , fq′ , Oq′〉
for q in Q via some linkage λ, such that C ∈ tcq′ and D ∈ λ(to), and ∃r.C ∈ tcq .

130

5.7 Reasoning in Expressive Description Logics of Context

Now, we have the necessary ingredients to define a finite abstraction of a CALCOALCO model where
the DL-model associated to a context is represented by elements in a quasitate and the corre-
spondence between the elements of different quasistates is defined via the matching conditions
introduced above.

Definition 5.17. A quasimodel M for K is a non-empty, saturated set of coherent quasistates
for K satisfying the following conditions:

(M1) For every c ∈ indc(K) there is a unique q = 〈tcq , fq, Oq〉 in M, such that {c} ∈ tcq .

(M2) For every C v D ∈ C and q = 〈tcq , fq, Oq〉 in M, if C ∈ tcq then D ∈ tcq .

The next lemma shows that to decide satisfiability of K, it suffices to check the existence of a
quasimodel.

Lemma 5.11. There is a quasimodel for K iff there is an CLCLO -model of K.

Proof. The key observation which we exploit in this proof is that the constraints (QS1)-(QS3)
imposed on quasimodels ensure existence of certain specific quasistates, which represent suc-
cessors in the context dimension, and existence of special linkage relations allowing for a proper
choice of types for the same object in different contexts. To ease reference to these elements we
amend the corresponding conditions with the following naming conventions:

(QS1*) In such case call q′ a witness for (∃r.C, q) and a linkage λ, enforced by the condition,
a witnessing linkage.

(QS2*) In such case call q′ a witness for (〈C〉D, t, q) and a linkage λ, enforced by the condition,
a witnessing linkage

(QS3*) In such case call q′ a witness for (〈r.C〉D, t, q) and a linkage λ, enforced by the condi-
tion, a witnessing linkage.

(⇒) Let M be a quasimodel for K = (C,O). We present the construction of an CLCLO -model
I = (C, ·J ,∆, {Ii}i∈C) of K. We start by inductively defining the interpretation J = (C, ·J)
of the context dimension. We define sequences C0,C1, . . ., R0(r),R1(r) . . ., for all r ∈ rolc(K),
and the partial mappings πi : Ci → M. We obtain the desired sets C and Rr in the limit. From
now on, for q = 〈tcq , fq, Oq〉 we denote by ‘C ∈ q’ the fact that C ∈ tcq .

– To start the construction of J , set

– for every a ∈ indc(K) and q ∈M such that {a} ∈ q, add c to C0, set π0(c) = q, and
R0(r) = ∅, for all r ∈ rolc(K);

– if indc(K) = ∅, set C = {c}, π(c) = q for some q ∈ M, and R0(r) = ∅, for all
r ∈ rolc(K).

– For the induction step, we start by setting Ci = Ci−1, Ri(r) = Ri−1(r) and πi = πi−1,
and then proceed as follows: if c ∈ Ci with π(c) = 〈tcq , fq, Oq〉, then

131

5 Description Logics of Context

C1 if ∃r.C ∈ πi(c), then add c′ to Ci and (c, c′) to Ri(r), and set π(c′) = q′ such that q′

is a witness for (∃r.C, q);

C2 if t ∈ Oq and 〈C〉D ∈ t, then add c′ to Ci and set π(c′) = q′ such that q′ is a witness
for (〈C〉D, t, q);

C3 if t ∈ Oq and 〈r.C〉D ∈ t, then add c′ to Ci and (c, c’) to Ri(r), and set π(c′) = q′

such that q′ is a witness for (〈r.C〉D, t, q).

Finally, set C =
⋃
i≥0 Ci and R(r) =

⋃
i≥0 Ri(r). We define the interpretation function ·J as

follows:

– aJ = c if {a} ∈ π(c), for all a ∈ indc(K);

– AJ = {c ∈ C | A ∈ π(c)};

– rJ = {(c, c′) ∈ C× C | (c, c′) ∈ R(r)}.

This is a standard one-dimensional construction. In particular, by structural induction it follows
that all complex context concepts are satisfied by J in the expected contexts.

Claim. For all C ∈ clc(K) and c ∈ C, we have that

c ∈ CJ iff C ∈ π(c)

Proof of the claim: The proof is by induction on the structure of C. The induction start, where
C is a concept name is immediate by the definition of J . For the induction step, we distinguish
the following cases:

– C = ¬C and C = C1 u C2 are standard.

– C = {a}. By semantics, {a}J = {aJ }. By definition of J , aJ = c such that {a} ∈ π(c).
Finally, by (M1), such π(c) exists and it is unique. Therefore, {a} ∈ π(c) iff c ∈ {a}J .

– C = ∃r.C “if:” c ∈ (∃r.C)J , that is, there exists a c′ such that (c, c′) ∈ rJ and c′ ∈ CJ .
By definition of rJ , we have that (c, c′) ∈ R(r). Now, by construction, (c, c′) were added
to R(r) either by rule C1 or C3. First note that by I.H., C ∈ π(c′). But then, conditions
(QS1) and (QS3), respectively, imply that ∃r.C ∈ π(c).

“only if:” ∃r.C ∈ π(c). Now, by (QS1), there is a q = 〈tcq , fq, Oq〉 such that q′ is
matching r successor for q via some linkage λ with C ∈ q. By rule C1, there is a c′ with
π(c′) = q, and then, by I.H., c ∈ CJ . Moreover, also by rule C1, (c, c′) ∈ rJ . Therefore,
by semantics, c ∈ (∃r.C)J .

This finishes the proof of the claim.

Now, by condition (M2), we have that for all C v D and q = 〈tcq , fq, Oq〉, if C ∈ tcq , then
D ∈ tcq . We have thus, by the previous claim, that for all c ∈ C, if c ∈ CJ , then c ∈ DJ .
Therefore, all axioms from the context KB C must be satisfied.

132

5.7 Reasoning in Expressive Description Logics of Context

Next we turn to the object dimension; note that this part of the construction is similar to that for
(Kn)ALC .

A run ρ through C is a choice function which for every c ∈ C selects an object type ρ(c) ∈ Oq,
such that π(c) = 〈tcq , fq, Oq〉.
Intuitively, runs are used for representing the behavior of object individuals across contexts. The
easiest way to properly constrain this behavior is by employing the witnessing linkages intro-
duced in conditions (QS1)-(QS3). Note that the way the interpretation (C, ·J) is constructed
ensures that for every two contexts there exists a witnessing linkage we can refer to in order to
align the interpretations of object individuals inhabiting these contexts.

A set of runs R is coherent if for every c, c′ ∈ C, with π(c) = 〈tcq , fq, Oq〉 and π(c′) =
〈tcq′ , fq′ , Oq′〉 and λ being the witnessing linkage between q and q′, the following conditions are
satisfied:

– for every a ∈ indo(K), there is exactly one run ρa ∈ R such that {a} ∈ ρa(c);

– for every ρ ∈ R, λ(ρ(c)) = ρ(c′);

– for every t ∈ Oq and t′ ∈ Oq′ , if λ(t) = t′ then there exists ρ ∈ R, such that ρ(c) = t and
ρ(c′) = t′.

Let ∆ = R, with R a set of coherent runs through C. It remains to define the interpretation
function ·I,c:

– aI,c = ρ if {a} ∈ ρ(c), for all a ∈ indo(K);

– AI,c = {ρ ∈ R | A ∈ ρ(c)};

– rI,c = {(ρ, ρ′) | ∃r.D ∈ ρ(c) implies {D} ∪ {¬E | ¬∃r.E ∈ ρ(c)} ⊆ ρ(c′)}.

Note that by aligning runs with the witnessing linkages we automatically ensure that each object
obtains compatible interpretations in every two related contexts. In particular, whenever d ∈
(〈r.C〉D)I,c for some d ∈ ∆ and c ∈ C, there has to exist a context c′ ∈ CJ accessible from
c through r in which d ∈ DI,c′ . By the same token, whenever d ∈ (〈C〉D)I,c, there must be a
context c′ ∈ CJ such that d ∈ DI,c′ .

Claim. For each C ∈ clo(K), ρ ∈ ∆ and c ∈ C, we have that

ρ ∈ CI,c iff C ∈ ρ(c).

Proof of the claim: The proof is by induction on the structure of C. The induction start, where
C is a concept name is immediate by the definition of I. For the induction step, we distinguish
the following cases:

– C = ¬D “if:” ρ ∈ (¬D)I,c, that is, ρ 6∈ DI,c. Now, by I.H., D ∈ ρ(c). Then, by
definition of a type, ¬D ∈ ρ(c). “only if:” ¬D ∈ ρ(c). By definition of a type D 6∈ ρ(c).
Now, by I.H., ρ 6∈ DI,c. Therefore, by semantics, ρ 6∈ (¬D)I,c.

133

5 Description Logics of Context

– C = D1 u D2 “if:” ρ ∈ (D1 u D2)I,c, that is, ρ ∈ DI,c and DI,c
2 . Now, by I.H.,

D1 ∈ ρ(c) and D2 ∈ ρ(c). Therefore, by definition of type, D1 uD2 ∈ ρ(c). “only if:”
D1 u D2 ∈ ρ(c), then by definition of a type, D1 ∈ ρ(c) and D2 ∈ ρ(c). Moreover, by
I.H., ρ ∈ DI,c

1 and ρ ∈ DI,c
2 . Therefore, by semantics, ρ ∈ (D1 uD2)I,c.

– C = ∃r.D “if” ρ ∈ (∃r.D)I,c, that is, there exists a ρ′ such that (ρ, ρ′) ∈ rI,c and
ρ′ ∈ DI,c. Now, by I.H., {D}. Therefore, by definition of rI,c and I.H., ∃r.D ∈ ρ(c).

“only if:” ∃r.D ∈ ρ(c) = t. Now, by definition of (QS), there is a t′ ∈ Oq ∈ π(c) such
that D ∈ ρ′(c). Now, by definition of R, there exists a ρ′ such that ρ′(c) = t′. Then,
by I.H., ρ′ ∈ DI,c, and moreover, by definition of rI,c, (ρ, ρ′) ∈ rI,c. Therefore, by
semantics, ρ ∈ (∃r.D)I,c.

– C = {a}. {a}I,c, that is, {aI,c}. Now, by definition of I, aI,c = ρ such that {a} ∈ ρ(c).
Now, by (QC1), such ρ(c) exists and it is unique. Therefore, ρ ∈ {a}I,c iff {a} ∈ ρ(c).

Note that the first condition of coherent runs ensures that aI,c = aI,c
′

for all c 6= c′.

– C = 〈r.C〉D. “if:” ρ ∈ (〈r.C〉D)I,c, that is, there exists a c′ such that (c, c′) ∈ rJ and
c′ ∈ CJ , and ρ ∈ DI,c′ . By construction π(c′) is a matching r-successor of π(c) via some
linkage λ between π(c) and π(c′). Moreover, by construction of runs, λ(ρ(c)) = ρ(c′).
Finally, by I.H., D ∈ ρ(c′) and C ∈ π(c′). Furthermore, by semantics, c ∈ (∃r.C)J , and
then by the former claim ∃r.C ∈ π(c). Therefore, by (QS3), 〈r.C〉D ∈ ρ(c).

“only if:” 〈r.C〉D ∈ ρ(c). Recall that ρ(c) = t, for some object type t ∈ Oq ∈ π(c).
Now, by construction there is c′ such that π(c′) = 〈tcq′ , fq′ , Oq′〉 such that π(c′) is a
matching r successor via λ for π(c) such that C ∈ π(c′) and D ∈ λ(t). Note that, by
(QS3), such c exists. Now, by definition of the runs, λ(ρ(t)) is defined. Moreover, by
I.H., c′ ∈ CJ , (c, c′) ∈ rJ and ρ ∈ DI,c′ . Therefore, by semantics, ρ ∈ (〈r.C〉D)I,c.

– C = 〈C〉D. “if:” ρ ∈ (〈C〉D)I,c, that is, there exists a a c′ such that c′ ∈ CJ and
ρ ∈ DI,c′ . By construction, π(c′) is an F2-succesor of π(c) via some link λ between
π(c) and π(c′). Now, by (QC4), 〈C〉D ∈ π(c′). Moreover, by construction of runs,
λ(ρ(c)) = ρ(c′). Finally, by I.H., D ∈ ρ(c′) and C ∈ π(c). Therefore, by (QS2),
〈C〉D ∈ ρ(c).

“only if:” 〈C〉D ∈ ρ(c). Recall that ρ(c) = t, for some object type t ∈ Oq ∈ π(c).
Now, by construction there is a c′ ∈ C such that π(c′) = 〈tc′q , fq′ , Oq′〉 such that π(c′) is
a matching F2 successor via λ for π(c) such that C ∈ π(c)′ and D ∈ λ(t). Note that, by
definition c′ exists. Now, by definition of the runs, ρ(λ(t)) is defined. Moreover, by I.H.,
c′ ∈ CJ and ρ ∈ DI,c′ Therefore, by semantics, ρ ∈ (〈C〉D)I,q.

This finishes the proof of the claim.

Now, since M satisfies conditions (QC2) and (QC3), all axioms from the object knowledge base
O must be also satisfied. More precisely, by (QC2), for every C : ϕ ∈ O and q = 〈tcq , fq, Oq〉,
if C ∈ tcq then C v D ∈ fq. Moreover, by (QC3), for every to ∈ Oq if C ∈ to then D ∈ to.
Now, from the previous claims and the construction, we have that there is a c ∈ C with π(c) = q

134

5.7 Reasoning in Expressive Description Logics of Context

Algorithm 3: CALCOALCO KB SATISFIABILITY

Input: A KB K formulated in CALCOALCO
Initialize: i := 0; S0 := qs(T); γ ∈ Γ

Eliminate(S0, γ) {
delete γ from Γ
repeat
Si+1 := {q ∈ Si | q is realizable in Si w.r.t γ}
until Si = Si+1 }

if exists q ∈ Si , return satisfiable
otherwise, if Γ 6= ∅, then choose a γ from Γ and perform Eliminate(S0, γ)

otherwise, return unsatisfiable

such that c ∈ CJ and ρ ∈ CI,c implies ρ ∈ DI,c, where ρ(c) = to. Therefore, I is a model of
O. Since (C, ·J) is a model of C and I is a model of O. Therefore, I is a model of K.

(⇐) This direction follows straightforwardly from the construction. Let I = (C, ·J ,∆, {Ii}i∈C)
be a CLCLO -model of K. We construct a quasimodel M for K as follows. We define context types
determined by the interpretation I.

For every c ∈ C, we set
tp(c) := {C ∈ clc(K) | c ∈ CJ };
f(c) := {ϕ ∈ subo(K) | Ic |= ϕ}.

In the same way we use tp to denote object types for objects. For every d ∈ ∆ and c ∈ C, we
define tp(d, c) as:

tp(d, c) = {C ∈ clo(K) | d ∈ CI,c}
Further, for every c ∈ C, let Oc = {tp(d, c) | d ∈ ∆} be the set of object types represented in
the context c. We can then define a quasistate for every c ∈ C as qc = 〈tp(c), f(c), Oc〉.
Finally, let

M = {qc | c ∈ C}.
Clearly M is a quasimodel for K. In particular, it is guaranteed that for all existential restric-
tions and context operators occurring in the context and object types from the quasistates, there
must exist suitable witnesses and witnessing linkages, and thus that all conditions constituting
quasimodels have to be satisfied.

o

135

5 Description Logics of Context

We now describe the elimination condition used in our algorithm. Intuitively, we eliminate
quasistates that cannot occur in any quasimodel for K.

Definition 5.18. Let S ⊆ qs(K) be a set of quasistates for K and γ a mapping from indc(K) to
qs(K). A quasistate q is realizable in S w.r.t. γ if the following conditions are satisfied:

1. for all c ∈ indc(K), if {c} ∈ tcq ∈ q then γ(c) = q.

2. q satisfies (QC1)-(QC4), (QS1)-(QS3), (M1)-(M2) in S.

We denote by Γ the set of all mappings from indc(K)→ qs(K). Algorithm 3 decides whether a
quasimodel for K exists by implementing a straightforward extension of the quasistate elimina-
tion method [38].

Intuitively, Algorithm 3 succeeds if not all the quasistates get eliminated for some γ ∈ Γ. In
such case the result of the elimination is clearly a quasimodel and the search is finished with
the answer satisfiable. Otherwise, if all quasistates get eliminated, the algorithm selects another
mapping γ and repeats the elimination procedure. If none of the mappings allow for a successful
termination then clearly no quasimodel exists and the algorithm returns unsatisfiable.

The whole algorithm runs in double exponential time in the size of K. To show this, we observe
that the following inequalities hold.

|clc(K) ∪ clo(K)| ≤ 2 |K |,
|indc(K)| ≤|K|, | subo(K) |≤|K|,

SIZE OF A QUASISTATE

|q |≤|K| ·(|clc(K)|+ |subo(K)|+ 2|clo(K)|) ≤|K| ·(2 |K | + |K | +22|K|),

NUMBER OF QUASISTATES IN A QUASIMODEL

|qs(K)| = 2|clc(K)|·2|subo(K)|·22|clo(K)|
= 22|K|·2|K|·222|K|.

Since deciding whether a quasistate can be eliminated at a given stage of Algorithm 3; in par-
ticular, checking if there exist appropriate witnesses for it, (QS1)-(QS3), cannot take more
than |q|2·|qs(K)| steps. Thus, a single run of the elimination procedure takes no more than
(|q|·|qs(K)|)2 steps. Finally, note that there can be at most |M||indc(K)| different mappings γ.
Therefore, the whole procedure must terminate in time belonging to O(22poly|K|).

Theorem 5.12. KB satisfiability for CALCOALCO for any combination of context operators F1/F2 is
in 2EXPTIME.

5.8 Reasoning in Description Logics of Context with only F2

Operators

We finalize our study on the computational complexity of DLs of context by considering DLCs
allowing only for F2 operators. The increase in the computational complexity of DLCs by
one exponential, in comparison with that of ALC, can be observed already in the simple DLC

136

5.8 Reasoning in Description Logics of Context with only F2 Operators

(Kn)ALC (cf. Theorem 5.6). A possible way of obtaining better-behaved DLCs is to reduce
the expressiveness of the underlying formalisms. In particular, we can constraint the allowed
type of context operators. It turns out that when only operators of type F2 are allowed, the
complexity of the KB satisfiability problem for CALCOALCO goes down from 2EXPTIME-complete to
NEXPTIME-complete. Moreover, we show that NEXPTIME-hardness holds already for CALCALC .

We next demonstrate a NEXPTIME lower bound for KB satisfiability for CALCALC by a reduc-
tion of 2n×2n-tiling problem. This result shows that the presence of the context language
makes indeed the reasoning harder, if compared with that of S5ALC for which satisfiability
is EXPTIME-complete when modal operators are applied only to concepts and a global TBox is
considered [38]. This jump in the complexity is intuitively explained by the need of guessing
the interpretation of the context language before finding a model of the object component. We
concentrate w.l.o.g. on concept satisfiability w.r.t. global TBoxes.

Theorem 5.13. Concept satisfiability w.r.t. TBoxes for CALCALC is NEXPTIME-hard.

Proof. The proof is by a reduction of the 2n×2n-tiling problem. Let T = (n, T) be an instance.
Our aim is to construct in polynomial time a TBox TT and a concept CT, such T tiles the 2n×2n

grid iff CT is satisfiable w.r.t. TT.

The encoding utilizes the possibility of constructing and constraining a “diagonal” in the CALCALC-
models, as depicted in Figure 5.6, representing then the whole tiling in a linear projection. We
use the following signature:

– concept names Aτi , A
′
τi for each τi ∈ T ;

– concept names (from the context language) Ui for each τi ∈ T ;

– concept names X0 . . . X2n−1, Y0 . . . Y2n−1 for encoding an exponential counter;

– concept names (from the context language) Z0 . . .Z2n−1;

– auxiliary concept names RightEdge,BottomEdge,DownNeighbor,StartGrid,EndGrid.

The inclusions (5.25)-(5.28) enforce a 22n-long chain of individuals, uniquely identifiable by
counting concepts Xi, for i ∈ (0, 2n − 1). Moreover, every 2n-th individual, starting from the
beginning of the chain, is an instance of concept RightEdge, marking the right edge of the tiling,
while the last 2n individuals are instances of BottomEdge, marking the bottom of the tiling.

StartGrid ≡
2n−1l

j=0

¬Xj , EndGrid ≡
2n−1l

j=0

Xj , ¬EndGrid v 〈>〉∃r.>, (5.25)

For every 0 ≤ j < i < 2n:

¬Xi u ¬Xj v [>]∀r.¬Xi,

Xi u ¬Xj v [>]∀r.Xi

(5.26)

137

5 Description Logics of Context

∃

Figure 5.6: Encoding of a 2n × 2n tiling in an CALC
ALC-model.

For every 0 ≤ j < 2n:

¬Xj �Xj−1 � . . . �X1 � [�]∀r.Xj ,

Xj �Xj−1 � . . . �X1 � [�]∀r.¬Xj ,
(5.27)

RightEdge ≡
n−1�

j=0

Xj , BottomEdge ≡
2n−1�

j=n

Xj . (5.28)

The values of these counting concepts are then propagated over all the objects in the given

context, by involving an interaction with concepts of the metalanguage Zi, for i ∈ (0, 2n − 1)
(5.29).

For every 0 ≤ i < 2n:

� � [Zi]Xi, � � [¬Zi]¬Xi (5.29)

Each individual is required to satisfy exactly one concept Aτi , representing a tile type τi ∈ T
(5.30). This type is then propagated to all individuals in a given world (5.31) and used to adjust

the coloring of the left-right neighbors (5.32).

For every τi, τj ∈ T :

� � (�
τi
Aτi) �

�

τi =τj

¬(Aτi �Aτj), (5.30)

� � [Ui]Aτi , � � [¬Ui]¬Aτi , (5.31)

Aτi � ¬RightEdge � [�]∀r.(�
right(τi)=left(τj)

Aτj). (5.32)

138

5.8 Reasoning in Description Logics of Context with only F2 Operators

For each individual we identify the counter of its down neighbor and encode this value rigidly
across the context dimension, by means of concepts Yi (5.33)-(5.35). In the same manner, the
tile type is propagated (5.36).

For every n ≤ j < i < 2n,

¬Xi u ¬Xj v ∀r.[>]¬Yi,
Xi u ¬Xj v ∀r.[>]Yi,

(5.33)

For every n ≤ j < 2n

¬Xj uXj−1 u . . . uXn v ∀r.[>]Yj ,

Xj uXj−1 u . . . uXn v ∀r.[>]¬Yj ,
(5.34)

For every 1 ≤ i ≤ n :
Xi v ∀r.[>]Yi,

¬Xi v ∀r.[>]¬Yi,
(5.35)

¬BottomEdge uAτi v ∀r.[>]A′τi , for every τi ∈ T. (5.36)

Finally, the up-down coloring constraints are enforced whenever the value of Yi’s agrees with
the Xi-counter. (5.37-5.38).

DownNeighbor ≡
l

0≤i<2n

((Xi u Yi) t (¬Xi u ¬Yi)), (5.37)

For every τi ∈ T :

DownNeighbor uA′τi v
l

down(τi)6=up(τj)

¬Aτj . (5.38)

The TBox TT is defined as the union of the axioms (5.25)-(5.38), moreover we define

CT = ∃r.(StartGrid uAτ0).

It is easy to see that the size of TT is polynomial in the size of the instance T, and it is not hard
to see from the construction that the following holds.

Proposition 5.14. T tiles the 2n×2n iff CT is satisfiable w.r.t. TT.

Let τ be a tiling for T, that is, a mapping from 2n×2n to T . Define a model I = (C, ·J ,∆, {Ic}c∈C)
of TT and CT as follows. First, transform τ into π : 22n−1 7→ T , such that for every (x, y) ∈
2n × 2n, τ(x, y) = π(y ∗ 2n−1 + x), and then fix C = {ci | i ∈ (0, 22n−1)} and ∆ = {di | i ∈
(0, 22n)} and ensure that the following interpretation constraints are satisfied:

– rI,ci = {(di−1, di) | di−1, di ∈ ∆},

– StartGridI,c0 = {d1 ∈ ∆}, EndGridI,c22n−1) = {d22n ∈ ∆},

139

5 Description Logics of Context

– for every ci ∈ C, DownNeighborI,ci = {di−2n−1 ∈ ∆},

– for every τj ∈ T and i ∈ (0, 22n−1), AI,ci
τj = ∆, if π(i) = τj , and else AI,ci

τj = ∅.

The interpretations can be straightforwardly extended over the remaining concepts so that I is
indeed a model of TT where CI,c0

T = {d0}.
For the other direction, let I be model of TT and CT. Then, a tiling for T can be retrieved from
I by mapping the diagonal of the model on the 2n×2n grid, where the type of a tile in the grid
is determined by the unique concept Aτi satisfied by the individual in the chain. The coloring
constraints have to be satisfied by the construction of the encoding.

o

Now, we present an algorithm for KB satisfiability for CALCOALCO with only F2 context operators,
yielding a NEXPTIME matching upper bound. As in the case of the decision procedure for KB
satisfiability in CALCOALCO allowing for F1 and F2 operators (cf. Section 5.7), the proposed decision
procedure is essentially a variant of type-based techniques.

Let K = (C,O) be a KB formulated in CALCOALCO with only F2 context operators whose satisfiabil-
ity is to be decided. Further, we apply the following replacements of all respective (sub)formulas
with their equivalents:

C(a) ⇒ {a} v C, r(a, b) ⇒ {a} v ∃r.{b},
C(a) ⇒ {a} v C, r(a, b) ⇒ {a} v ∃r.{b}.

The following notation is used to denote particular sets of object symbols occurring in K:

− clo(K): set of object concepts that occur in K, closed under subconcepts
and negation;

− indo(K): set of object individual names that occur in K;
− subo(K): set of axioms from {ϕ | C : ϕ ∈ O for any C}.

Moreover, we use clc(K), indc(K) to denote the analogous sets over context concepts and roles
occurring in K. We proceed to define a context and an object type.

Definition 5.19. A context type for K is a subset tc ⊆ clc(K) such that the following hold:

– C ∈ tc iff ¬C 6∈ tc, for all C ∈ clc(K),

– C u D ∈ tc iff {C,D} ⊆ tc, for all C u D ∈ clc(K).

Furthermore, an object type for K is a subset to ⊆ clo(K) such that the following hold:

– C ∈ to iff ¬C 6∈ to, for all C ∈ clo(K),

– C uD ∈ to iff {C,D} ⊆ to, for all C uD ∈ clo(K).

140

5.8 Reasoning in Description Logics of Context with only F2 Operators

We denote the set of all context types for K by tpc(K) and the set of all object types for K is
denoted by tpo(K). Furthermore, we denote by m(to) the set of all object concepts containing
context operators in to ∈ tpo(K), that is, m(to) = {〈C〉D, ¬〈C〉D ∈ to | C ∈ clc(K), D ∈
clo(K)}. We say that two object types to, t′o ∈ tpo(K) are matching F2-successors iff m(to) =
m(t′o).

We next establish the conditions of a set of context types representing a model of the context
language. We say that S ⊆ tpc(K) is C-admissible if the following conditions are satisfied:

(A1) for every C v D ∈ C and tc ∈ S, if C ∈ tc then D ∈ tc;

(A2) for every a ∈ indc(K) there exists a unique tc ∈ S such that {a} ∈ tc;

(A3) for every ∃s.C ∈ clc(K) and tc ∈ S, if ∃s.C ∈ tc then there exists tc′ ∈ S, such that
{C} ∪ {¬E | ¬∃s.E ∈ tc} ⊆ tc′ .

We are now in the position to define a context structure containing all the pieces necessary for
reconstructing a single CALCOALCO-interpretation.

Definition 5.20. A context structure 〈S,S〉 for K is a pair consisting of a set S ⊆ tpc(K)
of context types for K and a non-empty set S of tuples of the form 〈tc, f, ν〉, where tc ∈ S,
f ⊆ subo(K) , ν : indo(K) → tpo(K) assigns unique object types to individual object names
such that the following conditions are satisfied:

(CS1) for every tc ∈ S, there exists at least one 〈tc, f, ν〉 in S;

(CS2) for every a ∈ indc(K) there is at most one 〈tc, f, ν〉 ∈ S;

(CS3) S is C-admissible;

(CS4) for every 〈tc, f, ν〉 ∈ S and C : ϕ ∈ O, if C ∈ tc then ϕ ∈ f .

However, not all such interpretations might correspond to a genuine CALCOALCO-model. To filter out
the proper ones some additional conditions need to be imposed. These are, later on, introduced
in the notion of quasimodel candidate, and further, in the notion of quasimodel.

Definition 5.21. A quasimodel candidate QS
S for K, where 〈S,S〉 is a context structure for K,

is a set of pairs 〈k, to〉 such that k ∈ S and to ∈ tpo(K) satisfying the following conditions:

(QC1) for every k ∈ S with k = 〈tc, f, ν〉 and a ∈ indo(K), it holds that 〈k, ν(a)〉 ∈ QS
S;

for every 〈k, to〉 ∈ QS
S, with k = 〈tc, f, ν〉, the following hold:

(QC2) if C ∈ tc and D ∈ to then 〈C〉D ∈ to, for all 〈C〉D ∈ clo(K);

(QC3) for every k′ ∈ S, there is some 〈k′, t′o〉 ∈ QS
S such that to, t′o are matching F2-

successors;

(QC4) if 〈C〉D ∈ to then there is 〈k′, t′o〉 ∈ QS
S, such that k′ = 〈t′c, f ′, ν ′〉, C ∈ t′c, D ∈ t′o and

to, t′o are matching F2-successors. Moreover, if to 6= t′o then k′ 6= k;

141

5 Description Logics of Context

(QC5) for every ∃r.C ∈ to there is 〈k, t′o〉 ∈ QS
S, such that {C} ∪ {¬E | ¬∃r.E ∈ to} ⊆ t′o.

Now, we have the main building blocks to define the quasimodel structure. Intuitively, this
structure codifyfies an abstraction of a CALCOALCO model.

Definition 5.22. A quasimodel candidate QS
S forK is called a quasimodel forK if the following

conditions are satisfied:

(QM1) for every 〈k, to〉 ∈ QS
S with k = 〈tc, f, ν〉 and a ∈ indo(K), if to = ν(a), then

{a} ∈ to;

(QM2) for every k ∈ S with k = 〈tc, f, ν〉, C v D ∈ f if for every 〈k, to〉 ∈ QS
S if C ∈ to

then D ∈ to, for every C v D ∈ subo(K).

The next lemma shows that to decide satisfiability of K, it suffices to check the existence of a
quasimodel.

Lemma 5.15. There is a quasimodel for K iff K has a model .

Proof. (⇒) Let QS
S be a quasimodel for K. In the following steps we define a model I =

(C, ·J ,∆, {Ii}i∈C) of K. The interpretation of the context dimension follows immediately from
the definition of the context structure. In particular, note that, since 〈S,S〉 is a context struc-
ture, then S must be a C-admissible set of context types. We use the mapping π from C to S.
Moreover, for k = 〈tc, f, ν〉, we denote by ‘C ∈ k’ the fact that C ∈ tc. Now, we define C as
follows:

– for each a ∈ indc, add c to C and set π(c) = k such that {a} ∈ k;

– for each k ∈ 〈S,S〉\{k′ | {c} ∈ k′ for some c ∈ indc(K)}, add a fresh c to C, and set
π(c) = k.

Finally, we set the interpretation for concept and role names as follows:

– aJ = c if {a} ∈ π(c), for all a ∈ indc(K);

– AJ = {c ∈ C | A ∈ π(c)};

– rJ = {(c, c′) ∈ C×C | ∃r.C ∈ π(c) implies {C} ∪ {¬E | ¬∃r.E ∈ π(c)} ⊆ π(c′)}.

We can now straightforwardly prove the following claim.
Claim. For all c ∈ C and C ∈ clc(K), we have that

c ∈ CJ iff C ∈ π(c).

Proof of the claim: The proof is by induction on the structure of C. The induction start, where
C is a concept name is immediate by the definition of J . For the induction step, we distinguish
the following cases:

– C = ¬D, C = C1 u C2 standard from the definition of type.

142

5.8 Reasoning in Description Logics of Context with only F2 Operators

– C = {a}. By semantics, {a}J = {aJ }. By definition of J , aJ = c such that {a} ∈ π(c).
Finally, by (A2) and (CS2), such π(c) exists and it is unique. Therefore, {a} ∈ π(c) iff
c ∈ {a}J .

– C = ∃r.C “if:” c ∈ (∃r.C)J , that is, there exists a c′ such that (c, c′) ∈ rJ and c′ ∈ CJ .
Now by I.H., {C}. Therefore, by I.H., and definition of rJ , ∃r.C ∈ π(c).

“only if:” ∃r.C ∈ π(c). Now, since S is C-admissible (CS3), then there is a t′c ∈ S such
that {C} ∪ {¬E | ¬∃r.E ∈ π(c)} ⊆ t′c (A3). Furthermore, by (CS2), there exists a
k = 〈t′c, f, ν〉 ∈ S. Now, by construction of J , there exists a c′ ∈ C with π(c′) = k.
By I.H., c′ ∈ ({C} ∪ {¬E | ¬∃r.E ∈ π(c)})J , and, by definition of rJ , (c, c′) ∈ rJ .
Therefore, by semantics, c ∈ (∃r.C)J

This finishes the proof of the claim.

Since S is C-admissible for all C v D, and tc ∈ S, if C ∈ tc, then D ∈ tc. Thus, by the previous
claim, for all c ∈ C, c ∈ CJ implies c ∈ DJ . Therefore, J is a model of C.

Now, consider the object dimension. For every c ∈ C with π(c) = k, we fix the set of object
types Tk = {to | 〈k, to〉 ∈ QS

S} realized in this context.
A run ρ through QS

S is a choice function which to every c ∈ C with π(c) = k assigns a single
type from Tk such that the following hold:

(C1) for every c, c′ ∈ C it is the case that ρ(c), ρ(c′) are matching F2-successors;

(C2) for every c ∈ C, if 〈C〉D ∈ ρ(c) then there is c′ ∈ C, such that C ∈ π(c′) and D ∈ ρ(c′).

A set R of runs through QS
S is called coherent if the following conditions are satisfied:

– for every c ∈ C with π(c) = k and to ∈ Tk, there is a ρ ∈ R such that ρ(c) = to;

– for every a ∈ indo(K) and c ∈ C with π(c) = 〈tc, f, ν〉 there is a unique ρ ∈ R, such that
ρ(c) = ν(a).

Next, we define the interpretation of the object dimension as follows. First, fix the object domain
as ∆ := R, with R a set of coherent runs through QS

S. Then, set the interpretation function ·I,c
as follows:

– aI,c = ρ if ν(a) = ρ(c), for every a ∈ indo(K);

– AI,c = {ρ ∈ ∆ | A ∈ ρ(c)};

– rI,c = {(ρ, ρ′) ∈ ∆×∆ | ∃r.C ∈ ρ(c) implies {C} ∪ {¬E | ¬∃r.E ∈ ρ(c)} ⊆ ρ′(c)}.

Claim For all ρ ∈ ∆, c ∈ C and C ∈ clo(K), we have that

ρ ∈ CI,c iff C ∈ ρ(c).

Proof of the claim: The proof is by induction on the structure of C. The induction start, where
C is a concept name is immediate by the definition of I. For the induction step, we distinguish
the following

143

5 Description Logics of Context

– C = ¬D and C = D1 uD2 standard from the definition of type.

– C = {a}. {a}I,c, that is, {aI,c}. Now, by definition of I, aI,c = ρ such that ν(a) = ρ(c).
Moreover, by (QM1), {a} ∈ ρ(c). Finally, by (QC1), such ν(a) exists and it is unique.
Therefore, ρ ∈ {a}I,c iff {a} ∈ ρ(c).

Note that the second condition of coherent runs ensures that aI,c = aI,c
′
, for all c 6= c′.

– C = ∃r.D “if” ρ ∈ (∃r.D)I,c, that is, there exists a ρ′ such that (ρ, ρ′) ∈ rI,c and
ρ′ ∈ DI,c. Now, by I.H., {D} ∪ {¬E | ¬∃r.E ∈ ρ(c)} ⊆ ρ′(c′). Therefore, by definition
of rI,c, ∃r.D ∈ ρ(c).

“only if:” ∃r.D ∈ ρ(c) = to ∈ Tk, where π(c) = k. Now, by (QC5), there is a t′o ∈ Tk
such that {D} ∪ {¬E | ¬∃r.E ∈ to} ⊆ t′o. Then, by I.H., ρ′ ∈ DI,c, and moreover by
definition of rI,c, (ρ, ρ′) ∈ rI,c. Therefore, by semantics, ρ ∈ (∃r.D)I,c.

– C = 〈C〉D. “if” ρ ∈ (〈C〉D)I,c, that is, there is a c′ ∈ C such that c′ ∈ CJ and ρ ∈ DI,c′ .
By I.H., D ∈ ρ(c′), and by the former claim C ∈ π(c′). Hence, by (QC2), 〈C〉D ∈ ρ(c′).
Now, by (QC3) and definition of R (C1), ρ(c) and ρ(c′) are matching F2-successors.
Therefore, by (QC4), 〈C〉D ∈ ρ(c).

“only if:” (〈C〉D) ∈ ρ(c) = to ∈ Tk, where π(c) = k. Then, by (QC4), there exists
a 〈k′, t′o〉 such that C ∈ k′, and D ∈ t′o, and to, t

′
o are matching F2-successors. By

construction, there is a c′ ∈ C such that π(c′) = k′, and by I.H., c′ ∈ CJ . Moreover, by
(C2) from R, ρ(c′) = t′o, and by I.H., ρ ∈ DI,c′ . Therefore, by semantics, ρ ∈ (〈C〉D)I,c.

This finishes the proof of the claim.

Now, by (CS4), for every C : ϕ ∈ O and k = 〈tc, f, ν〉 ∈ S, if C ∈ tc, then ϕ ∈ f . Moreover,
by (QM2), for every 〈k, to〉, and C v D ∈ f , if C ∈ to, then D ∈ to. Now, from the
construction we have that for every k we have a c ∈ C, such that π(c) = k. Furthermore, by
the previous claims, we have that c ∈ CJ , and ρ ∈ CI,c implies ρ ∈ DI,c, where ρ(c) = to.
Therefore, J is a model of K.

(⇐) This direction follows straightforwardly from the construction. Let I = (C, ·J ,∆, {Ii}i∈C)
be a model of K. We define context and object types determined by the model I.
For every c ∈ C, we set

tp(c) := {C ∈ clc(K) | c ∈ CJ };
f(c) := {ϕ ∈ subo(K) | Ic |= ϕ}.

In the same way we use tp to denote the object types. For every d ∈ ∆ and c ∈ C

tp(d, c) := {D ∈ clo(K) | d ∈ DI,c}

and for every a ∈ indo(K), set the mapping νc(a) := tp(aI,c, c). Fix

S = {t | t = tp(c), c ∈ C} and S = {〈tp(c), f(c), νc〉 | c ∈ C}.

144

5.9 Application Scenarios

Finally, we can define the quasimodel:

QS
S = {〈tp(c), tp(d, c))〉 | c ∈ C, d ∈ ∆}.

Clearly, all conditions (QC1)-(QC5) and (QM1)-(QM3) have to be satisfied. Therefore, QS
S is

a quasimodel for K.
o

Note that the size of a quasimodel candidate is exponentially bounded in the size of K:

|tpo(K)| ≤ 2|clo(K)| ≤ 22|K|, |tpc(K)| ≤ 2|clc(K)| ≤ 22|K|

|S| ≤ |tpc(K)|·|tpo(K)|indo(K)|| ≤ 22|K|2 + 4|K|
|QS

S| ≤ |S|·|tpo(K)| ≤ 22|K|2+6|K|

Since the maximum size of a single tuple in a quasimodel candidate is polynomial in |K| there-
fore the maximum size of a quasimodel is never greater than 2p(|K|), where p is a fixed polyno-
mial.
The simplest brute-force NEXPTIME algorithm for checking satisfiability of K first guesses
a quasimodel and then checks whether all conditions (CSx), (QCx) and (QMx) are satisfied.
Clearly, such a check can be accomplished in a polynomial time in the size of the quasimodel,
and thus in at most an exponential time in the size of K. This combined with Theorem 5.13
provides us with the following.

Theorem 5.16. KB satisfiability for CALCOALCO with only context operators F2 is NEXPTIME-
complete.

In the light of the relation between S5ALCO and CALCOALCO with only context operators F2 (cf. The-
orem 5.10) and Theorem 4.1, we obtain the following:

Theorem 5.17. Concept satisfiability w.r.t. TBoxes for S5ALCO without temporal roles is NEXPTIME-
complete.

5.9 Application Scenarios

In this section, we commit ourselves to show the applicability of DLCs to diverse problems.
The typical uses of contexts in knowledge systems, as argued by Bouquet et al.[25], can be
classified into two categories, reflecting two generic knowledge representation scenarios: divide-
and-conquer and compose-and-conquer. The first one concerns the problem of representing
inherently contextualized knowledge, while the latter, the problem of integrating multiple, non-
contextualized knowledge models in a context-sensitive manner. In what follows, we make
these two scenarios more concrete by grounding them in the practice of knowledge engineering,
explain how they translate into the DL setting, and outline how they can be supported using
DLCs.

145

5 Description Logics of Context

C : Country(germany) (1)
neighbor(france, germany) (2)

O : germany : ∃hasParent .Citizen(john) (3)
Country : ∃hasParent .Citizen v Citizen (4)
france : 〈neighbor.Country〉Citizen v NoVisaRequirement (5)

Table 5.1: A sample knowledge base in CLCLO with F1-operators.

neighborj j
NoVisaRequirement

Country

NoVisaRequirement

 Citizen

Citizenfrance germany

 hasParent

(*) j = john

Figure 5.7: A possible model of the CKB in Table 5.1.

5.9.1 Divide-and-conquer

Picture a complex application domain and a modeler intending to formally represent knowledge
about this domain in a possibly generic, application-agnostic manner. His task is to construct
a representation model that can be reused for different purposes and in different situations, al-
ways providing adequate information under the specified conditions. The divide-and-conquer
philosophy builds on the observation that in most such cases knowledge is likely to be in-
herently contextualized, i.e., implicitly partitioned over a collection of interrelated contextual
states, which must be taken into account when reasoning about the domain, as they determine
which information applies in a given situation. The challenge for the modeler is then to elicit
this underlying context structure and explicitly represent it in the model, so that the context-
dependency of knowledge is faithfully reflected and operationalized in the system. From the
perspective of the DL paradigm, such scenarios require expressive extensions of the standard
DL languages, capable of representing contexts. Below we present two examples of applying
DLCs to divide-and-conquer scenarios.

A contextualized knowledge base with F1-operators. Consider a simple representa-
tion of knowledge about the legal status of people, contextualized with respect to geographic
locations. In Table 5.1, we define a CKB K = (C,O) with F1-operators, consisting of the con-
text (geographic) ontology C and the object (people) ontology O. Visibly, france and germany
play here the role of contexts, described in the context language by axioms (1) and (2). In the
context of germany, it is known that john has a parent who is a citizen (3). Since in every
Country context — thus including germany — the concept ∃hasParent .Citizen is subsumed
by Citizen (4), therefore it must be true that john is an instance of Citizen in germany. Finally,
since germany is related to france via the role neighbor, it follows that john (assuming rigid
interpretation of this name across contexts) has to be an instance of NoVisaRequirement in the
context of france (5). A sample CLCLO -model of K is depicted in Figure 5.7.

146

5.9 Application Scenarios

C : Geometry v Math (1)
O : disambiguation : Ring v 〈Math〉Ring t 〈People〉Ring (2)

Math : Ring v AlgebStruct t 〈Geometry〉Annulus (3)
People : Ring v {nickRing} (4)

Table 5.2: A sample knowledge base in CLCLO with F2-operators.

Math

Ring

disambiguation

Ring,
AlgebStruct

I.

Math

Ring

disambiguation

Ring,
AlgebStruct

Math

Ring

disambiguation

Ring,
Annulus

II.

Math,
Geometry

Ring

disambiguation

Ring,

Ring

disambiguation

III.

People

Ring

disambiguation

Ring,
{nickRing}

Figure 5.8: Possible models of the CKB in Table 5.2.

A contextualized knowledge base with F2-operators. In Table 5.2, we model a piece
of information presented on the disambiguation website of Wikipe-dia on querying for the term
Ring . In particular, Ring is contextualized according to whether it is defined as a mathematical
object or as person.4 Observe, that the named context disambiguation provides basic distinction
on Ring in some Math context and in some People context (2). This is further enhanced, by the
distinction defined on the level of all Math contexts. There, Ring denotes either AlgebStruct or
Annulus in some further Geometry context (3), where Geometry contexts are known to be a sub-
set of Math contexts. In case of People context, Ring actually denotes an individual nickRing
(4). Some possible CLCLO -models of this representation are depicted in Figure 5.8.

5.9.2 Compose-and-conquer

Unlike considered in the divide-and-conquer scenario, we might observe that many existing
knowledge models very often adopt unique, purpose-driven viewpoints on the domain, deter-
mined by the particular applications at hand. In certain situations, one might need to reuse a
number of such models in one system. To this end, the models must be composed into a rea-
sonably coordinated, single representation. According to the compose-and-conquer philosophy
this can be achieved by acknowledging the presence of the implicit-contexts (assumed during
the creation of each individual model) and reflecting then on how these contexts interrelate. The
contextualization process is thus considered here as an a posteriori effort of integrating context-
specific knowledge models. In the DL paradigm, this problem corresponds to a variety of tasks
involving ontology alignment (coordination). Arguably, DLCs can naturally support such sce-

4See http://en.wikipedia.org/wiki/Ring.

147

5 Description Logics of Context

Oc: Staff v ∃isEmployed .Company (1)
Staff (J .Smith) (2)

Od: Employee v ∃employedIn.> (3)
Employee(JohnSmith) (4)
> : 〈{c}〉Staff ≡ 〈{d}〉Employee (5)
> : 〈{c}〉{J .Smith} ≡ 〈{d}〉{JohnSmith} (6)

Table 5.3: Integration of ontologies Oc, Od via DLC formulas in Oe.

narios. Observe, that a collection of DL ontologies O1, . . . ,On in some language LO can be
seen as a set of formulas O = {ci : ϕ | ϕ ∈ Oi, i ∈ (1, n)} in CLCLO , where every ontology
is associated with a unique context name. Using DLC formulas one can then impose a number
of interesting interoperability constraints over the contents of the ontologies, as presented in the
following examples.

Simple vocabulary mappings. Consider two ontologies Oc and Od describing overlap-
ping domains, as shown in Figure 5.3. Using context operators 〈{c}〉, 〈{d}〉 we can easily
define vocabulary mappings, such as (5)-(6). Given the semantics of DLCs, it follows that Staff
must have the same meaning in the context c as Employee in d (5). Similarly, the denotation
of individual names J .Smith and JohnSmith is the same across c and d (6). Note, that in this
case the context language is restricted to context names only. In this form, the DLCs provide
similar functionality to other known logic-based ontology integration formalisms such as DDLs
and Package DLs.

Interoperability constraints for ontology alignment and reuse. Consider an archi-
tecture such as the NCBO BioPortal project5, which gathers diverse biohealth ontologies, and
categorizes them via thematic tags, e.g.: Cell, Health, Anatomy, etc., organized in a meta-
ontology. The intention of the project is to facilitate the reuse of the collected resources in
new applications. Note, that the division between the context and the object language is al-
ready present in the architecture of the BioPortal, this is naturally reflected in the example of
Table 5.4 where (2) maps the concept Heart from any HumanAnatomy ontology to the concept
HumanHeart in every Anatomy ontology; (3) imposes the axiom Heart v Organ of an up-
per anatomy ontology over all Anatomy ontologies, which due to axiom (1) carries over to all
HumanAnatomy ontologies.

In general, CLCLO provides logic-based explications of some interesting notions, relevant to the
problem of semantic interoperability of ontologies, such as:

concept alignment: > : 〈A〉C v [B]D
every instance of C in any ontology of type A is D in every ontology of type B
semantic importing: c : 〈A〉C v D
every instance of C in any ontology of type A is D in ontology c

5See http://bioportal.bioontology.org/.

148

5.10 Conclusions

C : HumanAnatomy v Anatomy (1)
O : > : 〈HumanAnatomy〉Heart v [Anatomy]HumanHeart (2)

Anatomy : Heart v Organ (3)

Table 5.4: A set of interoperability constraints expressed as a knowledge base in CLCLO with F2-
operators.

upper ontology axiom: A : C v D
axiom C v D holds in every ontology of type A

Interoperability constraints for ontology evolving. The context operators can be also
interpreted as change operators, in the style of DL of change (cf. Chapter 4) for instance, for rep-
resenting and studying dynamic aspects of ontology versioning, especially when evolutionary
constraints apply to a whole collection of semantically interoperable ontologies. Some central
issues arising in this setup are integrity (constraining the scope of changes allowed due to ver-
sioning), evolvability (ability of coordinating the evolution of ontologies) and formal analysis
of differences between the versions [51]. In the examples below, we assume that each ontol-
ogy version is associated with a unique context, each context concept denotes all versions of a
particular ontology and updatedBy denotes the relation of being an immediate updated version.

version-invariant concepts: > : 〈A〉C ≡ [A]C
C is a version-invariant concept within the scope of versions of type A.

evolvability constraints: A : C v 〈updatedBy.B〉D
in any version of type A, every instance of C has to evolve into D in some immediate updated
version of type B.

5.10 Conclusions

Representing inherently contextualized knowledge as well as reasoning with multiple, hetero-
geneous, but semantically interoperating knowledge sources are both interesting and practically
vital problems within the area of the DL-based knowledge representation. It is our strong be-
lief that these two challenges are in fact two sides of the same coin. Consequently, they should
be approached within a unifying formal framework. In this chapter, we have proposed such
a framework founded on a novel family of two-dimensional, two-sorted Description Logics of
Context. The pivotal premise of this theory is that contexts should be interpreted as possible
worlds in the second modal dimension added to the standard semantics of DLs. In this way the
instrumental, application-agnostic spirit of McCarthy’s theory of contexts can be successfully
combined with the formal machinery of modal logics.

The work presented in this chapter establishes the generic foundations for the DLC framework
and opens up a number of theoretical and practical problems which should be addressed in future
research. One important direction is to investigate how different notions common to traditional
context-based systems (e.g., managing local inconsistencies or modeling generality hierarchy

149

5 Description Logics of Context

of contexts, etc.) can be effectively restated within DLCs. Another course of research should
be dedicated to identification and formal analysis of specific fragments of the framework that
could be especially useful in practice, particularly considering semantic web applications. For
instance, a scenario of integrating a finite number of ontologies does not in principle require the
full expressiveness of DLCs. Similarly, an efficient support for reasoning with contextually an-
notated semantic web data could be likely provided via a more lightweight fragment. Finally, on
a more abstract level, it could be interesting to investigate whether a similar methodology of con-
structing two-dimensional, two-sorted formalisms could be applicable to combinations of DLs
with other modal logics, e.g. spatial or temporal, in order to support fine-grained descriptions of
the second semantic dimension by means of a dedicated vocabulary.

150

6
Conclusions

In this thesis, we investigated several two-dimensional extensions of classical description log-
ics allowing to represent and reason about temporal and contextual knowledge. We particularly
focused on the development of algorithms for satisfiability and subsumption, and on the estab-
lishment of tight complexity bounds. For the former, we explored various kinds of techniques
based on automata over infinite trees, type-elimination, completion-algorithms and quasistate
elimination.

The main objective of this thesis was to make further steps towards the design of more useful
two-dimensional DLs. With this in mind, we focused on identifying logics providing the right
expressive power to model more accurately temporal or contextual aspects of knowledge re-
quired by certain ontology applications, or offering better computational properties than other
possible alternatives. More precisely, we pursued the following research lines:

Branching-time TDLs. We investigated TDLs providing capabilities to differentiate between
possible and necessary future developments of knowledge. We particularly looked at TDLs that
are obtained from the combination of the standard TL CTL∗ and its fragment CTL with classical
DLs.

We presented, in Chapter 3, algorithms to reason about the temporal evolution of concepts. We
obtained a tight EXPTIME upper bound for CTLALC and a tight 2EXPTIME upper bound for
CTL∗ALC . These results show that they are no more complex than their components. Intuitively,
these results are explained by the fact that the interaction of the component logics is rather
weak, similar to the fusion of modal logics. Later on, we studied fragments of CTLEL with
the objective of identifying a computationally efficient branching-time TDL. We successfully
identified the polytime fragment CTLE3

EL . Notably, this is the first TDL based on standard TLs
and EL for which reasoning is easier than in the ALC variant. As discussed above, this upper
bound is rather fragile in the sense that if we allow further temporal operators then tractability is
destroyed.

151

6 Conclusions

We further presented algorithms to reason about the temporal evolution of TBoxes, that is, we
also apply temporal operators to CIs. In this case, we obtained a 2EXPTIME upper bound for
temporal CTLALC-TBoxes and a 3EXPTIME upper bound for temporal CTL∗ALC-TBoxes, re-
spectively. We also showed that for temporal CTLALC-TBoxes the 2EXPTIME upper bound is
indeed tight. The latter shows that the increase in the expressivity is reflected in an increase in
the computational complexity.

Description Logics of Change. We investigated TDLs based on a weaker temporal component
given by the modal logic S5. These TDLs allow to reason about the changes of knowledge over
time without differentiating between changes in the past and in the future. A key characteristic
of DLs of change based on expressive DLs is that they allow to effectively reason about the
temporal evolution of roles and concepts. We particularly took a look at DLs of change based on
EL and its extension ELI with the objective of designing lightweight temporal logics allowing
to reason about the temporal evolution of concepts and roles.
We presented, in Chapter 4, an algorithm to reason about the temporal evolution of concepts
and roles in S5EL, yielding a PSPACE tight upper bound. We have thus identified the first two-
dimensional DL based on EL allowing for modalities to be applied to roles and concepts for
which reasoning is easier than in the ALC variant. Alas, we showed that this result does not
hold anymore if ELI is considered instead of EL. In particular, we showed that reasoning in
S5ELI is 2EXPTIME-complete and then as complex as the ALC variant.
Furthermore, we showed that reasoning about the temporal evolution of concepts in S5ALCO is
NEXPTIME-complete. Since reasoning about the temporal evolution of concepts in S5ALC is
EXPTIME-complete, and moreover reasoning inALCO is EXPTIME-complete, the former result
shows that interaction of nominals with S5-modalities makes the reasoning harder in S5ALCO.

Description Logics of Context. We investigated the adequacy of two-dimensional DLs to rep-
resent and reason about contextualized knowledge. Notably, by interpreting contexts as possible
worlds, we have successfully imported McCarthy’s theory of contexts into the DL paradigm. We
did a stepwise integration of McCarthy’s theory into the DL paradigm through two-dimensional
DLs.
In Chapter 5, we considered classical two-dimensional DLs. In particular, we took a look at
the prominent (Kn)ALC . As discussed above, by importing two of the three postulates of Mc-
Carthy’s theory, (Kn)ALC is capable to capture contextual aspects of knowledge. Surprisingly,
we showed that reasoning in (Kn)ALC in the case where modalities are applied only to concepts
and a global TBox is present is 2EXPTIME-complete. This indeed comes as surprise since nor-
mally reasoning in combinations allowing for such limited interaction of the component logics
is no harder than in the components.
Furthermore, we extended (Kn)L with two-interacting DL languages: the object-level language
and the meta-level language. In particular, the latter allows descriptions of contexts as first-class
citizens. These extensions, as discussed above, fully implement McCarthy’s theory into the DL
paradigm. We moreover showed that reasoning in these extensions based on ALCO is also
2EXPTIME-complete and thus no more difficult than in (Kn)ALCO.

This investigation leaves open some important problems as future work. Many of the directions
to follow have already been discussed in the conclusions of each chapter. Besides these, ap-

152

plications to medical ontologies suggest that a more light approach to temporal DLs or context
DLs may be more appropriate than combinations of classical DLs with standard TLs, or modal
logics. This naturally is a big challenge since currently is rather unclear how such an approach
could look like. Another important challenge is the development of mechanisms to extend the
ontology-based access approach towards accessing temporal or spatio-temporal data.

153

Bibliography

[1] Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature
genetics, 25(1):25–29, 2000.

[2] V. Akman and M. Surav. Steps toward formalizing context. AI Magazine, 17:55–72, 1996.

[3] A. Artale. Reasoning on temporal conceptual schemas with dynamic constraints. In Pro-
ceedings of TIME, pages 79–86. IEEE Computer Society, 2004.

[4] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.

[5] A. Artale and E. Franconi. Temporal description logics. In Handbook of Time and Tempo-
ral Reasoning in Artificial Intelligence, pages 375–388, 2005.

[6] A. Artale, E. Franconi, and F. Mandreoli. Description logics for modeling dynamic infor-
mation. In Logics for Emerging Applications of Databases, pages 239–275, 2003.

[7] A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising
tractable description logics. In TIME, pages 11–22, 2007.

[8] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Past and future of DL-Lite.
In AAAI, 2010.

[9] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Tailoring temporal de-
scription logics for reasoning over temporal conceptual models. In FroCos, volume 6989
of Lecture Notes in Computer Science, pages 1–11. Springer, 2011.

[10] A. Artale, C. Lutz, and D. Toman. A description logic of change. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07), 2007.

[11] A. Artale and D. Toman. Decidable reasoning over timestamped conceptual models. In
Description Logics, 2008.

[12] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI, pages 364–369,
2005.

[13] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark and
P.F. Patel-Schneider, editors, Proc. of the Workshop on OWL: Experiences and Directions
(OWLED-08 DC), 2008.

155

Bibliography

[14] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

[15] F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. In KR, pages
684–694, 2008.

[16] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for the
semantic web. In Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H.
Siekmann on the Occasion of His 60th Birthday, volume 2605 of LNAI, pages 228–248.
Springer-Verlag, 2005.

[17] J. Bao, J. Tao, D. L. McGuinness, and P. Smart. Context representation for the semantic
web. Proc. of Web Science Conference, 2010.

[18] J. Bao, G. Voutsadakis, G. Slutzki, and V. Honavar. Package-based description logics.
In Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors, Modular
Ontologies, pages 349–371. 2009.

[19] S. Bauer, I. M. Hodkinson, F. Wolter, and M Zakharyaschev. On non-local propositional
and weak monodic quantified ctl. J. Log. Comput., 14(1):3–22, 2004.

[20] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

[21] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2001.

[22] O. Bodenreider and S. Zhang. Comparing the representation of anatomy in the FMA and
SNOMED CT. In Proceedings of the AMIA Annual Symposium, pages 46–50, 2006.

[23] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in
Mathematical Logic. Springer, 1997.

[24] A. Borgida and L. Serafini. Distributed description logics: Assimilating information from
peer sources. Journal of Data Semantics, 1, 2003.

[25] P. Bouquet, C. Ghidini, F. Giunchiglia, and E. Blanzieri. Theories and uses of context in
knowledge representation and reasoning. Journal of Pragmatics, 2003.

[26] L. Bozzato, M. Homola, , and L. Serafini. Context on the semantic web: Why and how.
In Proc. of the 4th International Workshop on Acquisition, Representation and Reasoning
with Contextualized Knowledge (ARCOE-12), 2012.

[27] T. Brázdil, V. Forejt, J. Kretı́nský, and A. Kucera. The satisfiability problem for probabilis-
tic CTL. In LICS, pages 391–402. IEEE Computer Society, 2008.

[28] S. Buvač. Quantificational logic of context. In Proc. of the Conference on Artificial Intel-
ligence (AAAI-96), 1996.

156

Bibliography

[29] S. Buvač, V Buvac, and I. A. Mason. Metamathematics of contexts. Fundamenta Infor-
maticae, 23:412–419, 1995.

[30] S. Buvač and I. A. Mason. Propositional logic of context. In Proc. of the Conference on
Artificial Intelligence (AAAI-93), 1993.

[31] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,
1981.

[32] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, pages 52–71, 1981.

[33] E. A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier Science,
1990.

[34] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM, 33(1), 1986.

[35] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs.
SIAM Journal on Computing, 29(1):132–158, September 1999.

[36] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci., 18(2):194–211, 1979.

[37] E. Franconi and D. Toman. Fixpoints in temporal description logics. In Proceedings of
IJCAI, pages 875–880. AAAI, 2011.

[38] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Log-
ics: Theory and Applications. Studies in Logic, 148. Elsevier Science, 2003.

[39] C. Ghidini and F. Giunchiglia. Local models semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence, 127(2):221 – 259, 2001.

[40] F. Giunchiglia. Contextual reasoning. Epistemologia, XVI:345–364, 1993.

[41] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research, volume 2500 of Lecture Notes in Computer Science. Springer,
2002.

[42] R. Guha. Contexts: a formalization and some applications. PhD thesis, Stanford Univer-
sity, 1991.

[43] R. Guha, R. McCool, and R. Fikes. Contexts for the semantic web. In Proc. of the Inter-
national Semantic Web Conference (ISWC-04), 2004.

[44] V. Gutiérrez-Basulto, C. Jung, J, C. Lutz, and L. Schröder. A closer look at the proba-
bilistic description logic prob-EL. In Proceedings of Twenty-Fifth Conference on Artificial
Intelligence (AAAI-11), 2011.

157

Bibliography

[45] J. Hendler and T. Berners-Lee. From the semantic web to social machines: A research
challenge for ai on the world wide web. Artif. Intell., 174(2):156–161, 2010.

[46] I. M. Hodkinson, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. On the
computational complexity of decidable fragments of first-order linear temporal logics. In
TIME, pages 91–98, 2003.

[47] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragment of first-order
temporal logics. Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.

[48] I. M. Hodkinson, F Wolter, and M Zakharyaschev. Decidable and undecidable fragments
of first-order branching temporal logics. In LICS, pages 393–402, 2002.

[49] M. Hofmann. Proof-theoretic approach to description-logic. In LICS, pages 229–237,
2005.

[50] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
the making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

[51] Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontologies: A temporal
logic approach. In Proc. of the Intenational Semantic Web Conference (ISWC-05). 2005.

[52] Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In IJCAI, pages
2040–2045, 2009.

[53] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In FOCS, pages 531–542,
2005.

[54] O. Kupferman, M. Y. Vardi, and P Wolper. An automata-theoretic approach to branching-
time model checking. J. ACM, 47(2):312–360, 2000.

[55] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract description
systems. Artificial Intelligence, 156:1–73, June 2004.

[56] D. Lenat. The dimensions of context space. Technical report, CYCORP, 1998.

[57] C. Lutz and L. Schröder. Probabilistic description logics for subjective uncertainty. In KR,
2010.

[58] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In
TIME, pages 3–14, 2008.

[59] J. McCarthy. Generality in artificial intelligence. Communications of the ACM, 30:1030–
1035, 1987.

[60] J. McCarthy. Notes on formalizing context. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI-93), 1993.

[61] M. Minsky. A framework for representing knowledge. In P. Winston, editor, The psychol-
ogy of computer vision, pages 211–277. McGraw-Hill, 1975.

158

Bibliography

[62] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language: Profiles. W3C Recommendation, W3C, http://www.w3.org/
TR/owl2-profiles/, October 2009.

[63] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theor. Comput. Sci.,
54:267–276, 1987.

[64] R. Nossum. A decidable multi-modal logic of context. Journal of Applied Logic, 1(1-
2):119 – 133, 2003.

[65] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In F. Cassez and
C. Jard, editors, FORMATS, volume 5215 of LNCS, pages 1–13, 2008.

[66] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[67] J. Z. Pan, L. Serafini, and Y. Zhao. Semantic import: an approach for partial ontology
reuse. In Proc. of the Workshop on Modular Ontologies (WoMO-06), 2006.

[68] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[69] M. R. Quillian. Word Concepts: A Theory and Simulation of Some Basic Semantic Capa-
bilities. Behavioral Science, 12(5), 1967.

[70] K. Schild. Combining terminological logics with tense logic. In Proceedings of EPIA,
volume 727 of Lecture Notes in Computer Science, pages 105–120. Springer, 1993.

[71] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1–26, 1991.

[72] S. Schulz, K. Markó, and B. Suntisrivaraporn. Complex occurrents in clinical terminolo-
gies and their representation in a formal language. In Proc. of the First European Confer-
ence on SNOMED CT (SMCS 06), 2006.

[73] L. Serafini and M. Homola. Contextualized knowledge repositories for the semantic web.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 12, 2012.

[74] K. Spackman. SNOMED CT style guide: Situations with explicit context. Technical
report, SNOMED CT, 2008.

[75] K. A. Spackman. Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with SNOMED-RT. Journal of the American Medical
Association, 2000.

[76] P. van Emde Boas. The convenience of tiling. In A. Sorbi, editor, Complexity, Logic and
Recursion Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics, pages
331–363. Marcel Dekker Inc., February 1997.

159

Bibliography

[77] M. Y. Vardi. Why is modal logic so robustly decidable? In Descriptive Complexity and
Finite Models, pages 149–184, 1996.

[78] M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP, pages 628–641,
1998.

[79] M. Y. Vardi. Automata-theoretic techniques for temporal reasoning. In In Handbook of
Modal Logic, pages 971–989. Elsevier, 2006.

[80] M. Y. Vardi and L. J. Stockmeyer. Improved upper and lower bounds for modal logics of
programs: Preliminary report. In STOC, pages 240–251, 1985.

[81] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.
J. Comput. Syst. Sci., 32(2):183–221, 1986.

[82] F. Wolter and M. Zakharyaschev. Modal description logics: modalizing roles. Fundamenta
Informaticae, 39(4):411–438, 1999.

[83] F. Wolter and M. Zakharyaschev. Multi-dimensional description logics. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI-99), 1999.

160

