
The Combined Approach to OBDA: Taming
Role Hierarchies using Filters

Carsten Lutz1, İnanç Seylan1, David Toman2, and Frank Wolter3

1Universität Bremen, Germany
{clu,seylan}@informatik.uni-bremen.de

2Cheriton School of CS, University of Waterloo, Canada
david@cs.uwaterloo.ca

3University of Liverpool, United Kingdom
wolter@liverpool.ac.uk

Abstract. The basic idea of the combined approach to query answering
in the presence of ontologies is to materialize the consequences of the
ontology in the data and then use a limited form of query rewriting to
deal with infinite materializations. While this approach is efficient and
scalable for ontologies that are formulated in the basic version of the
description logic DL-Lite, it incurs an exponential blowup during query
rewriting when DL-Lite is extended with the popular role hierarchies. In
this paper, we show how to replace the query rewriting with a filtering
technique. This is natural from an implementation perspective and allows
us to handle role hierarchies without an exponential blowup. We also
carry out an experimental evaluation that demonstrates the scalability
of this approach.

1 Introduction

In recent years, ontology-based data access (OBDA) has emerged as a promising
and challenging application of ontologies. The idea is to enrich data with a
‘semantic layer’ in the form of an ontology, used as an interface for querying
and to derive additional answers. A central research problem in this area is to
design query answering engines that can deal with sufficiently expressive ontology
languages yet scale to very large data sets. The most popular ontology languages
that have been considered for OBDA include the three OWL profiles OWL2 RL,
OWL2 QL, and OWL2 EL, as well as various description logics and Datalog
variants related to these profiles [2, 3, 5, 14, 17].

Currently, there are two major methodologies for answering queries in an
OBDA setting: rewriting-based approaches (also called backward chaining) and
materialization-based approaches (also called forward chaining). In the former,
one compiles the ontology T and the query q into a new query qT that contains
the relevant knowledge from the ontology, i.e., the answers to q over A and T
coincide with the answers to qT over A. One can thus store A in a relational
database management system (RDBMS) and execute qT over A. In material-
ization approaches, the data A is completed with the relevant knowledge from

2 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

the ontology T , i.e., for any query q, the answers given to q over A and T coin-
cide with the answers given to q over the completed data AT ⊇ A without any
ontology. Thus, one can store AT in a RDBMS and execute q over AT .

A technical problem that arises in materialization approaches is that the
completed data AT easily becomes infinite; in particular, this may happen when
the ontology expresses cyclic dependencies and has existential quantifiers in the
heads of its concept inclusions, which is allowed in most ontology languages
including the ones mentioned above. To overcome this problem, an economic way
of reusing individuals introduced for existential quantifiers has been proposed in
[9, 11] for the case where ontologies are formulated in description logics from the
EL and DL-Lite families, which are the logical cores of the OWL2 EL and OWL2
QL ontology languages. While the resulting completed data sets are finite, they
can give spurious answers to conjunctive queries (CQs) that involve a cycle. To
recover soundness, it is thus necessary to include an additional step, resulting
in the combined approach to query answering: the original query is rewritten
in a way that eliminates spurious answers. In contrast to pure rewriting, the
auxiliary query rewriting required in the combined approach turns out to be
rather simple—an additional selection condition applied to the results of the
original CQ over the completed data—and often of polynomial size. Indeed,
experiments indicate that the combined approach admits very efficient query
execution for expressive variants of EL and DL-Lite [9, 11].

Unfortunately, there are certain combinations of logical operators that are
important from an application perspective, but for which an exponential blowup
of the query seems to be unavoidable both in the query rewriting approach and
in the combined approach. In particular, this is the case for the combination
of inverse roles and role hierarchies as found in DL-LiteR [3], the extension of
basic DL-Lite with role hierarchies that underpins OWL2 QL. It has been shown
that, in the query rewriting approach, an exponential blowup of the query size is
unavoidable when the ontology is formulated in DL-LiteR [8]. For the combined
approach, an auxiliary query rewriting strategy for DL-LiteR ontologies and CQs
is presented in [9], but it incurs an exponential blowup and it seems unlikely that
the rewriting can be improved to a poly-sized one (although this question is yet
to be resolved).

In this paper, we present a new variation on the combined approach that can
handle CQs and DL-LiteR ontologies and eliminates the need for auxiliary query
rewriting altogether, thus also eliminating the need to deal with exponentially
sized queries. Specifically, we replace auxiliary query rewriting with a filtering
component : spurious answers are eliminated by a polynomial-time filtering pro-
cedure (called a filter in the rest of the paper) that is installed as a user-defined
function in the underlying RDBMS. Our main contributions are as follows.

(1) We develop a polynomial time procedure for filtering out spurious answers to
CQs for ontologies formulated in DL-LiteR. Interestingly, the existence of such
a filtering procedure appears to be quite sensitive to how exactly the data is
completed. Compared to the data completion for the original combined approach

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 3

[9], the filtering technique requires subtle modifications to the data completion
in order to obtain a polytime filter.

(2) To analyze the performance of our approach and to compare it with the query
rewriting approach, we modify the Lehigh University Benchmark (LUBM) [7] by
introducing additional concepts into the ontology, modifying the data generator
so that the produced data is incomplete, and replacing the original, very simple
queries by more challenging ones.

(3) We have implemented our approach in a system called Combo and carry out
an experimental evaluation based on the modified LUBM benchmark, both to
evaluate the feasibility of our approach and to compare it with the query rewrit-
ing approach. Our experiments show that the combined approach is significantly
more robust than the rewriting approach when the number of (sub)classes in the
ontology or the size of the data increases.

Some technical proofs and details of our experimental evaluation are presented
in the appendix of the full version of this paper, available at http://www.

informatik.uni-bremen.de/~clu/combined/. This paper is an extended ver-
sion of the workshop paper [10]. In particular, the experimental evaluation car-
ried out in this paper is much more comprehensive than the one in [10].

2 Preliminaries

We introduce DL-LiteR-TBoxes, ABoxes, and conjunctive queries. Let NI, NC,
and NR be countably infinite sets of individual names, concept names and role
names. Roles R, simple concepts C, and concepts D are built according to the
following syntax rules, where P ranges over NR and A over NC:

R ::= P | P−, C ::= A | ∃R, D ::= C | ¬C | ∃R.A.
As usual, we use N−R to denote the set of all roles and identify (P−)− with P .
In DL-LiteR, a TBox is a finite set T of concept inclusions (CIs) C v D with
C a simple concept and D a concept, and role inclusions (RIs) R1 v R2 with
R1, R2 roles.

An ABox is a finite set of concept assertions A(a) and role assertions P (a, b),
where A ∈ NC, P ∈ NR and a, b ∈ NI. We denote by Ind(A) the set of individual
names used in A, and write P−(a, b) ∈ A instead of P (b, a) ∈ A if convenient.
A knowledge base (KB) is a pair (T ,A) with T a TBox and A an ABox.

The semantics of TBoxes and ABoxes is defined in the standard way based
on interpretations I = (∆I , ·I), where ∆I is a non-empty domain and ·I an
interpretation function that maps each A ∈ NC to a subset AI ⊆ ∆I , each
P ∈ NR to a relation P I ⊆ ∆I×∆I , and each a ∈ NI to an element aI ∈ ∆I ; for
details consult [1, 3]. An interpretation is a model of a TBox T if it satisfies all
inclusions in T ; models of ABoxes and knowledge bases are defined analogously.
A knowledge base is consistent if it has a model. For a CI or RI α, we write
T |= α when α is a consequence of T (satisfied in all models of T). Instead of
T |= R v S, we usually write R v∗T S to clearly distinguish consequences of

4 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

this form (which are RIs) from consequences of the form T |= ∃R v ∃S (which
are CIs). Note that, in DL-LiteR, deciding consistency and logical consequence
amounts to computing a form of transitive closure [3].

Let NV be a countably infinite set of variables. Taken together, the sets NV

and NI form the set NT of terms. A conjunctive query (CQ) takes the form
q = ∃y ψ(y,x), where ψ is a conjunction of concept atoms A(t) and role atoms
P (t, t′) where t, t′ ∈ NT. As in the case of ABox assertions, we do not distinguish
between P−(t, t′) and P (t′, t). The free variables x of ϕ are called the answer
variables; we say that q is k-ary if x comprises k variables. If k = 0, then q is a
Boolean query. A union of conjunctive queries (UCQ) is a disjunction of CQs.
We denote by term(q) the set of terms in q.

Let q = ∃y ψ(y,x) be a k-ary CQ with x = x1, . . . , xk, and I an interpreta-
tion. A mapping π : term(q) → ∆I with π(a) = aI for all a ∈ term(q) ∩ NI is a
match for q in I if I satisfies ψ under the variable assignment that maps each
t ∈ term(q) to π(t); in this case, we write I |=π q. For a k-tuple of individual
names a = a1, . . . , ak, a match π for q in I is an a-match if π(xi) = aIi for
i ≤ k. We say that a is an answer to q in an interpretation I if there is an
a-match for q in I and use ans(q, I) to denote the set of all answers to q in I.
Finally, a is a certain answer to q over a KB K = (T ,A) if a ⊆ Ind(A) and
I |= q[a] for all models I of K. The set of all certain answers to q over K is
denoted by cert(q,K). The query answering problem considered in this paper is:
given a DL-LiteR knowledge base K and a CQ q, compute cert(q,K).

To simplify notation, throughout the paper we adopt the unique name as-
sumption (UNA), i.e., require that aI 6= bI for distinct a, b ∈ NI. This assumption
has no impact on the query answering problem.

3 ABox Completion

As explained in the introduction, the central idea of the combined approach is
to materialize consequences of the TBox in the ABox as a preprocessing step,
and then to execute queries over the completed data stored in an RDBMS as a
plain table. We illustrate this using two examples from the university domain,
similar in spirit to the LUBM ontology used in the experimental evaluation.

Example 1. For any ABox A, the concept inclusions

Student v Person (1)

Student v ∃takesCourse (2)

lead to the following additions: (1) for every assertion Student(a) ∈ A, add
(1) Person(a) and (2) takesCourse(a, b) for some fresh individual b (unless such
assertions are already present). After this completion, a CQ such as

q1(x) = ∃y Person(x) ∧ takesCourse(x, y)

correctly returns each a with Student(a) ∈ A as a certain answer.

The following example shows that naive completion can result in infinite ABoxes.

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 5

Faculty

deptOf

c

degreeFrom

degreeFrom

b Univ

a

Dept
d

teachesAtFaculty

Fig. 1. Completed ABox for Example 3.

Example 2. Completed naively, the ABox {Faculty(a)} and LUBM inclusions

Faculty v ∃degreeFrom ∃degreeFrom− v Univ (3)

Univ v ∃deptOf− ∃deptOf v Dept (4)

Dept v ∃teachesAt− ∃teachesAt v Faculty (5)

result in an infinite role chain that indefinitely repeats the roles degreeFrom,
deptOf−, and teachesAt−.

The problem can be overcome by reusing fresh individuals in an economic way.

Example 3. Consider again the TBox (3)-(5). By reusing individuals, the ABox
{Faculty(a)} can be completed as shown in Figure 1, replacing the infinite role
chain with a cycle. Individual reuse compromises soundness of query answering
as some queries now have spurious answers; for example, the CQ

q2(x) = ∃y, z Faculty(x) ∧ degreeFrom(x, y) ∧ Univ(y) ∧
deptOf(z, y) ∧ Dept(z) ∧ teachesAt(x, z)

returns c as an answer when executed over the completed ABox shown in Fig-
ure 1. This answer is spurious for two reasons: first, the cycle in Figure 1 is
present only due to individual reuse and thus should be disregarded for answer-
ing queries; and second, the freshly introduced individuals b, c, d are ‘labeled nulls’
and thus can never be returned as answers.

To recover soundness, it is necessary to eliminate the spurious answers. In the
original combined approach, this was achieved by query rewriting [9, 11]. In
this paper, the spurious answers are eliminated by a filtering procedure that
is installed as a user-defined function in the RDBMS. In the remainder of this
section, we introduce ABox completion in full detail. In the subsequent section,
we describe the filtering procedure.

From a conceptual perspective, the ABox completion step can be viewed
as replacing the original ABox with the canonical model IK of the knowledge
base K [9]. To define IK, we need a few preliminaries. From now on, we will
generally disallow concepts of the form ∃R.C. This can be done without loss of
generality since each CI D v ∃R.C can be replaced with D v ∃RC , RC v R,
and ∃R−C v C, where RC is a fresh role name.

6 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

Let K = (T ,A) be a DL-LiteR KB. We use rol(T) to denote the set of all
role names in T plus their inverses. The canonical model comprises at most two
fresh individuals for every role in rol(T). However, we only want to introduce
the fresh individuals for a given role when necessary. Formally, we call a role
R ∈ rol(T) generating in K if there exist an a ∈ Ind(A) and R0, . . . , Rn ∈ rol(T)
such that Rn = R and the following conditions hold:

(agen) K |= ∃R0(a) and R0(a, b) /∈ A for all b ∈ Ind(A) (written a ∃R0),

(rgen) for i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1 (written ∃R−i ∃Ri+1).

To facilitate the implementation of efficient filters, we refine the definition of
canonical models as given in [9]: in some cases, we introduce two fresh individuals
for a given role instead of only a single one. This helps to avoid choices in the
elimination of spurious answers (see Example 8), which are related to particular
role configurations in the TBox called a loop: a set {R,S} ⊆ rol(T) (where
potentially R = S) is a loop in T if R 6= S−, T |= ∃R− v ∃S, T |= ∃S− v ∃R,
and there is some T ∈ rol(T) such that S− v∗T T and R v∗T T . Let LT denote
the set of all roles that occur in a loop in T . The canonical model IK is then
based on the domain

∆IK = Ind(A) ∪ {cR,0 | R ∈ rol(T) \ LT is generating in K}
∪ {cR,0, cR,1 | R ∈ LT is generating in K}.

To define the extension of roles in IK, we need some additional preparation. Let
“≺” be an arbitrary, but fixed total ordering on rol(T). For all d, d′ ∈ ∆IK and
each role R, we write d R d′ whenever there is an S such that S v∗T R and
one of the following cases applies:

– d = a ∈ Ind(A), a ∃S, and d′ = cS,0;
– d = cT,i, ∃T− ∃S, d′ = cS,j , and one of the following holds

• i = j and {S, T} is not a loop in T ;
• i = j, {S, T} is a loop in T , and S ≺ T ;
• i = j, {S, T} is a loop in T , and T = S or T ≺ S (for 0 = 1 and 1 = 0).

The canonical model IK for K is now defined as follows, based on the domain
∆IK introduced above:

AIK = {a ∈ Ind(A) | K |= A(a)} ∪ {cR,i ∈ ∆IK | T |= ∃R− v A},
RIK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S v∗T R} ∪

{(d, d′) ∈ ∆IK | d R d
′ or d′ R− d},

aIK = a.

Note that the slightly more straightforward version of canonical models defined
in [9] can be obtained from our canonical models by identifying all elements cR,0
and cR,1.

The ABox completion consists of replacing the ABox A originally stored in
the RDBMS with its canonical model IK. This can be achieved by executing a
set of FO/SQL-queries whose size is polynomial in the size of T [9].

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 7

i

a

cp,0cw,0

cw,1
p

i

i

p

cp,1

i
w

w
i

i
w

a

...

acw,0

acw,0cp,0cw,1

acw,0cp,0

w

p

w

i

i

Fig. 2. Canonical model IK and unraveled canonical model UK for Example 5.

It can be shown that IK is a model of K whenever K is consistent. Note that
one can find a Boolean CQ qT of size polynomial in the size of T such that for
any ABox A stored in the RDBMS, qT gives a positive answer iff K = (T ,A)
is consistent [9]. We can thus safely assume that the knowledge base has been
tested for consistency before query answering.

Example 4. Reconsider Examples 2 and 3. The canonical model for the ABox
{Faculty(a)} and TBox (3)-(5) is the structure displayed in Figure 1. Follow-
ing our construction above, the fresh individuals b, c, d are named cdegreeFrom,0,
cteachesAt−,0, and cdeptOf−,0. Note that the TBox (3)-(5) does not give rise to any
loops, and thus all cR,i have index i = 0.

Example 5. The following TBox gives rise to the loop {worksFor, paysSalaryOf}:

Employee v ∃worksFor ∃worksFor− v Employer (6)

Employer v ∃paysSalaryOf ∃paysSalaryOf− v Employee (7)

worksFor− v isAffiliatedWith paysSalaryOf v isAffiliatedWith. (8)

A part of the canonical model for the ABox {Employee(a)} and the TBox (6)-(8)
with paysSalaryOf ≺ worksFor is shown on the left-hand side of Figure 2, where
concept names are omitted and role names are abbreviated by their first letter.

To characterize the spurious answers that have to be filtered out, it is useful
to introduce an unraveled (infinite) version of canonical models. Let K be a
knowledge base. A path is a finite sequence ad1 · · · dn, n ≥ 0, such that a ∈
Ind(A), d1, . . . , dn ∈ ∆IK \ Ind(A), a R d1 for some R ∈ N−R , and di R di+1

for some R ∈ N−R , 1 ≤ i < n. We denote by tail(σ) the last element of the path σ.
The unraveled canonical model UK is then defined by taking:

∆UK is the set of all paths in IK,
aUK = a, for all a ∈ Ind(A),
AUK = {σ ∈ ∆UK | tail(σ) ∈ AIK},

RUK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S v∗T R} ∪
{(σ, σd) | σd ∈ ∆UK and tail(σ) R d} ∪
{(σd, σ) | σd ∈ ∆UK and tail(σ) R− d}.

8 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

As an example, the canonical model UK for the KB from Example 5 is shown on
the right-hand side of Figure 2. The following result shows that, as one would
expect, UK does not suffer from spurious answers.

Theorem 1. For every consistent DL-LiteR-KB K and every CQ q, we have
cert(q,K) = ans(q,UK).

The proof of Theorem 1 is standard and omitted, see [9] for a similar proof.

4 Filtering

To remove spurious answers, we install a filtering procedure as a user-defined
function in the RDBMS. In this approach, calls to the filtering procedure are
delegated to the RDBMS in hopes that the query optimizer will eliminate spu-
rious answers as early as possible in the execution plan. The procedure takes as
input a match of the query in the canonical model IK stored in the RDBMS and
returns “false” if this match is spurious and “true” otherwise. We assume that
the filtering procedure has access to the query and the TBox, but not to the
data. To define its behavior more precisely, we formally define spurious matches
based on unraveled canonical models UK and Theorem 1.

Let K be a KB and q(x) a CQ. A match π of q in IK is reproduced by a
match τ of q in UK if for all t ∈ term(q), we have π(t) = tail(τ(t)). We say that
π is spurious if it is not reproduced by any match τ of q in UK. The following
lemma, which is an immediate consequence of Theorem 1, shows that IK can be
used for query answering when spurious matches are filtered out.

Lemma 1. a ∈ cert(q,K) iff there is a non-spurious a-match π of q in IK.

We want to show that it can be decided in time polynomial in the size of q and T
(and without accessingA at all) whether a given match in IK is spurious. Clearly,
it is enough to test for each maximally connected component of q whether the
match is spurious on that component. We thus assume that q is connected.

We need a few preliminaries. An anonymous path is a path without the
leading individual name, i.e., it is a finite sequence d1 · · · dn, n ≥ 1, such that
d1, . . . , dn ∈ ∆IK \ Ind(A) and di R di+1 for some R ∈ N−R , 1 ≤ i < n. We use
Paths to denote the set of all paths, both anonymous and non-anonymous. A root
configuration for q given π is a set ρ ⊆ term(q) such that one of the following
conditions is true:

– ρ is the set of those t ∈ term(q) such that π(t) ∈ NI and this set is non-empty;
– the above set is empty and ρ contains exactly one term (actually a variable).

The filtering procedure immediately returns “false” if some answer variable is
mapped to an element of ∆IK that is not from Ind(A) (based on the name of
the element, i.e., whether it is of the form cR,i). Then the procedure iterates
through all root configurations ρ. For each ρ, it constructs a sequence S0

ρ , S
1
ρ , . . .

of relations Siρ ⊆ term(q)× Paths as follows:

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 9

Student Student
a1 an

ctakesCourse,0

takesCourse takesCourse

a2 · · ·
Student

Fig. 3. Canonical model IK for Example 6.

– S0
ρ contains all pairs (t, π(t)) with t ∈ ρ;

– Si+1
ρ is Siρ extended with the following pairs:

(a) (t, σπ(t)) for all R(s, t) ∈ q with (s, σ) ∈ Siρ and π(s) R π(t);

(b) (t, σπ(t)) for all R(s, t) ∈ q with (s, σπ(t)π(s)) ∈ Siρ and π(t) R− π(s).

The computation stops as soon as the sequence stabilizes or Siρ becomes non-
functional which happens after at most |term(q)| iterations. The procedure re-
turns “true” if the final Siρ is a function with domain term(q) for some root
configuration ρ, and “false” otherwise.

Example 6. Consider the TBox (1)-(2) from Example 1, the query

q3(x, y) = ∃z Student(x)∧Student(y)∧takesCourse(x, z)∧takesCourse(y, z), (9)

and the ABox
{Student(a1), . . . ,Student(an)}. (10)

The canonical model IK is shown in Figure 3. Suppose the filter gets as input
the match π = {x 7→ a1, y 7→ a2, z 7→ ctakesCourse,0}. There is only one possible
root configuration for π, which is ρ = {x, y}. The procedure computes

Sρ = {(x, a1), (y, a2), (z, a1ctakesCourse,0), (z, a2ctakesCourse,0)}
which is not a function; thus, the match is spurious and “false” is returned.

Example 7. Consider the ABox {Faculty(a)}, TBox (3)-(5), and query q2 from
Example 3. To make things a bit more interesting, assume that x is a quantified
variable in q2 rather than an answer variable. Recall that the canonical model IK
is shown in Figure 1, modulo the names of fresh individuals. Given the match
π = {x 7→ c, y 7→ b, z 7→ d} and considering the root configuration ρ = {x}, the
procedure computes

Sρ = {(x, c), (y, cb), (z, cbd), (x, cbdc)}
and stops because of non-functionality. For the other root configurations ρ = {y}
and ρ = {z}, the procedure fails in a similar way and thus returns “false”.

Similar to the “tree witnesses” from [9], the filtering procedure follows a simple
idea for reproducing the input match π in IK as a match τ in UK: when we have
already decided that τ(x) = σ /∈ Ind(A) and R(x, y) ∈ q, then there is a uniquely
determined individual σ′ to which y can be matched. This follows from requiring
π(y) = tail(τ(y)) and the following property of UK:

if (σ, σ′) ∈ RUK and (σ, σ′′) ∈ RUK with σ′ 6= σ′′, then tail(σ′) 6= tail(σ′′).

10 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

In fact, it is this determinism of matches that is made explicit by Conditions (a)
and (b) of the filtering procedure. Note that, without introducing two individual
names cR,0 and cR,1 whenever R is involved in a loop, the above crucial property
of UK fails. In fact, we do not know whether polytime filtering is possible based
on the variation of the canonical model where all individuals cR,0 and cR,1 are
identified. The problem is illustrated by the following example.

Example 8. Consider the ABox {Employee(a)} and TBox (6)-(8) from Exam-
ple 5 and the CQ

q4(x) = ∃y, z, u w(x, y) ∧ p(y, z) ∧ i(u, z).

Let π = {x 7→ a, y 7→ cw,0, z 7→ cp,0, u 7→ cw,1}. The only root configuration is
ρ = {x}. During the first two iterations, the filtering procedure produces

S2
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0)}.

S2
ρ says that z has to be mapped to acw,0cp,0. Due to the atom i(u, z) ∈ q4 and

the two i-edges incoming to acw,0cp,0 in UK, the possible targets for u are acw,0
and acw,0cp,0cw,1. However, to produce a match in UK that is compatible with π,
we can only choose a target that ends with π(u) = cw,1 and obtain

S3
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0), (u, acw,0cp,0cw,1)}

which is functional, showing that the match π is not spurious. In a canonical
model IK where cw,0 and cw,1 are identified, there are indeed two choices for
mapping of u. This makes it non-obvious how to find a polytime filtering proce-
dure in this case, if one exists at all.

We now analyze the runtime and correctness of the filtering procedure. First
note that, in Conditions (a) and (b), the filtering procedure has to check whether
π(s) R π(t) and π(t) R− π(s), respectively. As required, both conditions can
be tested without access to the ABox A. For example, in Condition (a) we have:

– if π(t) ∈ Ind(A), then π(s) R π(t) does not hold and checking whether
π(t) ∈ Ind(A) requires only to check whether or not π(t) is of the form cR,i;

– if π(s) ∈ Ind(A) and π(t) /∈ Ind(A), then π(s) R π(t) holds by the con-
struction of IK since π is a match of q in IK, and;

– if π(s) /∈ Ind(A) and π(t) /∈ Ind(A), then π(s) R π(t) can be checked by
using only π and T based on the definition of “ R”.

It is not hard to see that the algorithm runs in polynomial time. The runtime
is quadratic in the size of q because we first have to iterate over all root con-
figurations ρ and then need to compute Sρ, essentially a breadth-first search
of (the graph of) q. We conjecture that iterating over all root configurations
is avoidable at the cost of a less transparent filtering procedure, improving the
runtime to linear in the size of q. The runtime also depends on T as checking
the applicability of Conditions (a) and (b) involves testing consequences of the
forms T |= ∃R v ∃S and S v∗T R. Since it is efficient to pre-compute all these
consequences in practical cases, this amounts to a simple lookup.

The following lemma asserts correctness of the filtering procedure. It is proved
in the appendix of the full version.

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 11

Lemma 2. Given a match π of q in IK, the filtering procedure returns “true”
iff π is not spurious.

5 Implementation and Experiments

We have implemented our approach in the Combo system, a collection of tools
that support the user in setting up the tables of a relational database system to
store ABoxes and their completion, implements the actual data completion via
querying, and allows to compile an ontology into a filter that takes the form of
a user defined function. The preferred relational database system for use with
Combo is IBM DB2.

We use this combination to carry out an experimental evaluation of our
approach, and to compare it to the query rewriting approach. The experi-
ments are based on a modified version of the ontology from the Lehigh Uni-
versity Benchmark (LUBM) [7] and on ABoxes produced by a modified ver-
sion of the LUBM data generator. We use six queries that were hand-crafted
specifically for our experiments. The mentioned modifications aim at making
the LUBM suite more realistic for OBDA evaluation. We believe that this
setup might be interesting also for future experiments and provide it online
at http://www.informatik.uni-bremen.de/~clu/combined/.

Regarding the query rewriting approach, we use Rapid (v0.3) [4] and Presto
(version March 25th 2013) [15] as typical examples of state-of-the-art rewriting
tools. Both Rapid and Presto are able to generate rewritings into UCQs and into
non-recursive Datalog (DLog), and they use various optimizations to generate
as small rewritings as possible.

5.1 Ontology, Data, and Queries

The LUBM ontology comprises 42 concept names and 25 role names and is
formulated in the description logic ELI extended with transitive roles, role hier-
archies, and datatypes. The TBox contains concept inclusions of the form A v C,
concept definitions A ≡ C as abbreviations for A v C, C v A, and domain and
range restrictions of the form ∃R v A and ∃R− v A. We converted this on-
tology to DL-LiteR by dropping all datatypes, treating the only transitive role
subOrganizationOf as a standard role, replacing concept equations A ≡ C with
A v C, and breaking up conjunctions A v C1 u C2 into A v C1, A v C2.

While the resulting TBox is formulated in DL-LiteR as required, it is only
moderately interesting for evaluating query answering techniques: first, there is
a lack of existential restrictions ∃R and ∃R.C on the right-hand side of con-
cept inclusions, which leads to extremely few fresh anonymous individuals being
generated during the ABox completion, and consequently to very few role edges
between those individuals (from now on, we call this part of the canonical model
IK the anonymous part); second, the overall size of the TBox is too small to be
representative for real-world ontologies. To attenuate these deficiencies while still

12 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

being able to use the LUBM data generator, we extended the DL-LiteR-version
of LUBM in two directions:

(1) We added 26 carefully chosen concept inclusions, many of which have exis-
tential restrictions on the right-hand side, to generate a more interesting anony-
mous part of canonical models. A complete list of these CIs can be found in the
appendix of the full version of this paper.

(2) With reasonable effort, it does not seem possible to significantly increase
the size of LUBM (to hundreds or thousands of concepts) while retaining a
careful modeling. One particularly unrealistic aspect of LUBM and a striking
difference to many real-world ontologies is its limited concept hierarchy, where
each concept has only very few subconcepts. To alleviate this shortcoming, we
added subconcepts to each of the LUBM concepts Course, Department, Professor,
and Student by introducing subject areas, such as MathCourse, BioCourse, and
CSCourse for courses, MathProfessor, BioProfessor for professors, etc.

We call the resulting TBox LUBM∃n with n indicating the number of sub-
concepts introduced in Point 2 above (20 by default). For example, LUBM∃20
contains 106 concept names and 27 role names.

To generate ABoxes, we use the LUBM Data Generator (UBA) version 1.7,
modified so as to complement our modifications to the TBox. Specifically, the
original UBA generates data that is complete w.r.t. existential restrictions in the
LUBM ontology: it produces ABoxes A such that for every assertion A(a) ∈ A
and CI A v ∃R (and A v ∃R.B) in LUBM∃n, there is already an R-successor of
a in A. Our modifications introduce a controlled amount of incompleteness: the
modified data generator takes a probability p as a parameter and, in selected
parts of the data, drops generated role assertions with probability p. More infor-
mation can be found in the appendix of the full version. The second modification
of the data generator is linked to the subconcepts introduced in Point 2 above.
Whenever the original generator produces an instance a of Student, the new
generator randomly chooses a value between 1 and n and generates an asser-
tion for the i-th subject, SubjiStudent(a); similarly for Course, Department, and
Professor.

We use the six queries in Figure 4 that we have hand-crafted specifically
for our experiments. Note that cq3 is designed to stress-test the filtering ap-
proach: based on the data generation scheme, it is expected to produce a very
large number of spurious answers. Requiem test queries are commonly used for
benchmarking query rewriting systems [12]. We did not include those queries
since they are too simple for our purposes. In fact, they are answered effortlessly
both by our approach and by the query rewriting approach.

5.2 Results

We report on two experiments: in the first experiment we vary the complexity
of the ontology by increasing the number of subclasses (the parameter n of
the ontology LUBM∃n) and in the second experiment we vary the data size by

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 13

cq1(x,z)<-Student(x), takesCourse(x,y), Subj1Course(y), teacherOf(z,y),

Professor(z), headOf(z,w), Department(w), memberOf(x,w)

cq2(x) <-Faculty(x), degreeFrom(x,y), University(y),

subOrganizationOf(z,y), Department(z), memberOf(x,z)

cq3(x,y)<-Professor(z), memberOf(z,x), Subj3Department(x),

publicationAuthor(w,z), Professor(v), memberOf(v,y),

Subj4Department(y), publicationAuthor(w,v)

cq4(x,y)<-Department(x), memberOf(z,x), Student(z), takesCourse(z,v),

teacherOf(w,v), Professor(w), memberOf(w,y), Department(y)

cq5(x) <-Person(x), worksFor(x,y), Department(y), takesCourse(x,z),

Course(z)

cq6(x) <-Student(x), publicationAuthor(y,x), Publication(y),

teachingAssistantOf(x,z), Course(z)

Fig. 4. Queries cq1 to cq6.

Original ABox Data Completion
#Univ. individuals concepts roles time concepts roles time

200 4M 7M 12M 7m30s 12M 22M 16m55s
500 10M 17M 31M 39m06s 31M 55M 70m48s

1000 21M 35M 63M 43m17s 63M 111M 146m39s

Fig. 5. Size original and completed ABox (in million) and load and completion time.

increasing the number of universities that are generated by the modified LUBM
data generator. It turned out that, in general, the degree of incompleteness had
only very limited effect on the execution time of queries. We therefore do not
vary the degree of incompleteness but use 5% incompleteness in the data for
both experiments. All experiments were carried out on a Linux (3.2.0) machine
with a 3.5Ghz quad-core processor and 8GB of RAM, using IBM DB2 Express-C
version 9.7.5.

The size of the test data for the experiments is detailed in Figure 5, where we
give (for 20 subclasses) the number of individuals in the original ABox (there are
only about 200 additional individuals in the completion), the number of concept
and role assertions (in the original ABox and in its completion), and the load
time for the original and the completed ABox (including the completion time).

For our experiments, summarized in Figures 6 and 7, we report the execution
time (in seconds; TO stands for 600s timeout, TC for the DB2 output “The
statement is too long or too complex”, and UM for the DB2 output “Unexpect
maxNumBrunch”) for the Datalog rewritings generated by Rapid and Presto
(transformed into SQL by unfolding them into positive existential queries) and
for the Combo filtering approach. We do not report execution times for any
UCQ rewritings because they are excessively large and DB2 fails to execute
them in all of our experiments, see Figure 8.1

1 We are not aware of any experimental evaluation of the query execution time of
rewritings into non-recursive Datalog. Our experiments show that Datalog rewritings
can be significantly more efficient than UCQ rewritings.

14 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

Test System cq1 cq2 cq3 cq4 cq5 cq6
1000.10 Rap-DLog 23.54 TO 40.88 TO TO 50.41

Pre-DLog 23.61 TO 43.66 75.33 TO 15.69
Combo 24.42 393.97 TO 267.55 23.67 38.93

1000.20 Rap-DLog TO TO 33.80 TO TO 54.12
Pre-DLog 22.86 TO 32.48 TO TO 17.24
Combo 18.13 460.16 587.76 266.97 28.30 38.72

1000.40 Rap-DLog TO TO 76.69 TO TC 65.45
Pre-DLog 23.21 TO 75.71 TO TO 18.27
Combo 13.56 456.84 279.09 270.12 28.31 37.43

1000.80 Rap-DLog TO TO UM TC TC TC
Pre-DLog TO TO UM TC TC 17.81
Combo 7.10 448.69 152.55 268.86 28.07 39.26

Fig. 6. Run time for varying number of subclasses.

Test System cq1 cq2 cq3 cq4 cq5 cq6
200.20 Rap-DLog 6.72 4.68 3.35 13.37 14.36 9.22

Pre-DLog 5.84 55.55 5.79 146,26 11.76 2.78
Combo 4.75 22.65 25.58 51.17 6.50 4.07

500.20 Rap-DLog 14.32 343.47 15.04 TO TO 25.58
Pre-DLog 11.32 344.36 14.96 TO TO 8.18
Combo 14.14 116.34 161.16 135.36 11.59 19.46

1000.20 Rap-DLog TO TO 33.80 TO TO 54.12
Pre-DLog 22.86 TO 32.48 TO TO 17.24
Combo 18.13 460.16 587.76 266.97 28.30 38.72

Fig. 7. Run time for varying number of universities.

cq1 cq2 cq3 cq4 cq5 cq6
Rap-UCQ 57984 15120 14880 162288 1950 1702
Rap-DLog 85 68 39 81 118 105
Pre-UCQ TO 15120 14880 TO 1950 1702
Pre-DLog 85 68 39 81 86 63

Fig. 8. Number of disjuncts in UCQ and rules in Datalog program.

The main outcomes of our experiments are as follows:

1. the Combo filtering approach is significantly more robust than the rewriting
approaches when both the complexity of the ontology and the size of the data
increase. We observe only one timeout for the filtering approach (cq3 for 1000
universities and 10 subclasses) but the rewriting approach eventually fails
for all queries with the exception of cq6.

2. For smaller data sets or for simple class hierarchies (e.g., 200 universities
and 20 subclasses), the filtering and rewriting approaches are comparable.

3. In contrast to the rewriting approach, the performance of the filtering ap-
proach does not depend significantly on the number of subclasses.2

2 The increase of performance for cq1 and cq3 when the number of subclasses grows
is due to each subclass becoming less populated as the data size is fixed.

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 15

cq1 cq2 cq3 cq4 cq5 cq6
spurious answers 0 2 600K 35K 0 0
valid answers 32K 2K 0 20K 0 465K

Fig. 9. Number of answers for 1000 universities, 20 subclasses.

The poor performance of the rewriting approach for complex ontologies and
large data is due to the fact that for complex queries (the SQL queries corre-
sponding to the datalog rewriting) the DB2 query optimizer realizes that the
use of data structures, such as B-tree indices, becomes imperative and attempts
to distribute (index) joins into unions to take advantage of these indices. Such
an attempt, however, commonly leads to exhausting the resources available for
query optimization (DB2 then aborts by outputting TC or UM).

The poor performance of the filtering approach for query cq3 is due to the
large number of spurious answers, see Table 9 for an overview of the number of
valid and spurious answers for all queries. It is possible to avoid this behavior at
the cost of slight increase of the size of the canonical model: by duplicating the
anonymous parts of the canonical model so that no two (or few) individuals in
the original ABox ‘share’ an anonymous part of the canonical model.

We close by commenting on the data loading and completion times reported
in Figure 5. Here the completion time is spent almost exclusively on loading the
data into the DBMS: indeed, loading large amounts of data into a relational
DBMS can be time consuming since the system needs to build up indexes and
other auxiliary data structures. Note, however, that bulk-loading data is rare in
most applications: standard workloads typically add and remove few tuples at a
time. In our case adding (removing), e.g., 100 concept/role assertions into (from)
the original ABox results in adding and removing less than 500 tuples from the
completed data (for the LUBM ontology), yielding an essentially instant update.
Moreover, the changes to the completed data can be efficiently computed given
the original ABox and the update request using incremental view maintenance
technology [6].

6 Conclusion

We have modified the combined approach to OBDA by replacing the query
rewriting part with a filtering technique. This is natural from an implementation
perspective and allows to avoid an exponential blowup of the query. We have
implemented our approach in the Combo system and generated an improved
version of the LUBM benchmark that aims at evaluating OBDA approaches.
Our experiments demonstrate the scalability and robustness of our approach.

In the future we plan to extend the combined approach with filtering to other
description logics for which, until now, it is unknown how to avoid an exponential
blowup of the query. For example, we believe that polytime filtering is possible
for the extension of EL with transitive roles, as found in the OWL2 EL profile.
Note that, based on the workshop predecessor [10] of this paper, the combined
approach with filtering has already been picked up to implement OBDA for an
extension of EL (but without transitive roles) [16].

16 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

From an applied perspective, it would be interesting to compare our approach
also with the promising new optimization techniques that have recently been
developed in [13, 14]. While some of them (such as the exploitation of ABox
integrity constraints) aim specifically at the query rewriting approach, others
(such as semantic indexing) can easily be used also for the combined approach.
We did not include those optimizations and systems in our evaluation because
all available implementations seem to require prerequisites that are not satisfied
in our tests (such as the availability of mappings from a relational database to
the ontology or the storage of the ABox in an in-memory database).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook. Cambridge University Press (2003)

2. Cal̀ı, A., Gottlob, G., Pieris, A.: New expressive languages for ontological query
answering. In: AAAI. pp. 1541–1546 (2011)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

4. Chortaras, A., Trivela, D., Stamou, G.B.: Optimized query rewriting for OWL 2
QL. In: CADE. pp. 192–206 (2011)

5. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Towards practical query
answering for Horn-SHIQ. In: DL. pp. 158–168 (2012)

6. Griffin, T., Libkin, L.: Incremental maintenance of views with duplicates. In:
ICMD. pp. 328–339 (1995)

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005)

8. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: ICALP (2). pp. 263–274 (2012)

9. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: KR. pp. 247–257 (2010)

10. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
Taming role hierarchies using filters. In: SSWS+HPCSW. pp. 16–31 (2012)

11. Lutz, C., Wolter, F., Toman, D.: Conjunctive query answering in the description
logic EL using a relational database systems. In: IJCAI. pp. 2070–2075 (2009)

12. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: ISWC. pp. 489–504 (2009)

13. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In:
EDBT. pp. 561–572 (2013)

14. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: KR. pp. 308–318 (2012)

15. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR. pp. 290–300 (2010)

16. Stefanoni, G., Motik, B., Horrocks, I.: Introducing nominals to the combined query
answering approaches for EL. In: DL. pp. 962–974 (2013)

17. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying algo-
rithm for greedy sets of existential rules. In: KR. pp. 96–106 (2012)

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 17

A Proofs for Section 4

To prove Lemma 2 we remind the reader of the following property of UK:

(∗) if (σ, σ′) ∈ RUK and (σ, σ′′) ∈ RUK with σ′ 6= σ′′, then tail(σ′) 6= tail(σ′′).

Lemma 2. Given a match π of q in IK, the filtering procedure returns “true”
iff π is not spurious.

Proof. (⇐) Assume that π is not spurious. Then π is reproduced by a match τ of
q in UK. If there is a t ∈ term(q) with π(t) ∈ NI, then define a root configuration
ρ for q given π by setting ρ = {t ∈ term(q) | π(t) ∈ NI}. Let σ0 = ε. Otherwise,
the fact that π is reproduced by τ implies that tail(τ(t)) /∈ NI for all t ∈ term(q).
Due to the forest-structure of UK in which all roots are from NI and due to the
connectedness of q, there must thus exist a variable x ∈ term(q) such that τ(x)
is a prefix of τ(t) for all t ∈ term(q). Set ρ = {x} and choose σ0 such that
τ(x) = σ0π(x). Again ρ is a root configuration for q given π.

Let S0
ρ , S

1
ρ , . . . be the sequence of relations computed by the algorithm. We

have to show that all Siρ are functional and that, eventually, the domain of Siρ
coincides with term(q). Since τ is a function, the first property follows directly
from:

(†) for each i ≥ 0 and (t, σ) ∈ Siρ, we have τ(t) = σ0σ.

The proof of (†) is by induction on i:

– The induction start for i = 0 follows directly from the definition of ρ and
S0
ρ .

– For the induction step, assume that (†) holds for i. Assume first that (t, σπ(t))
is added to Siρ in the definition of Si+1

ρ because of condition (a). We have

to show that τ(t) = σ0σπ(t). There exists R(s, t) ∈ q with (s, σ) ∈ Siρ such

that π(s) R π(t). By IH, τ(s) = σ0σ, and we obtain (σ0σ, σ0σπ(t)) ∈ RUK ,
by the construction of UK and since tail(τ(s)) = π(s). Since τ is a match
of q, (τ(s), τ(t)) ∈ RUK . Therefore (σ0σ, τ(t)) ∈ RUK since τ(s) = σ0σ. By
(∗), τ(t) = σ0σπ(t) follows if tail(σ0σπ(t)) = tail(τ(t)). But tail(σ0σπ(t)) =
π(t) = tail(τ(t)) since τ reproduces π.
Now assume that (t, σπ(t)) is added to Siρ in the definition of Si+1

ρ because
of condition (b). Again we have to show that τ(t) = σ0σπ(t). There exists
R(s, t) ∈ q with (s, σπ(t)π(s)) ∈ Siρ such that π(t) R− π(s). By IH, τ(s) =

σ0σπ(t)π(s). Hence, (σ0σπ(t), τ(s)) ∈ R−UK (equivalently, (τ(s), σ0σπ(t)) ∈
RUK). Since τ is a match of q, (τ(s), τ(t)) ∈ RUK . By (∗), τ(t) = σ0σπ(t)
follows if tail(σ0σπ(t)) = tail(τ(t)). But tail(σ0σπ(t)) = π(t) = tail(τ(t))
since τ reproduces π.

It remains to show that for every t ∈ term(q) there exists an i ≥ 0 such that t
is in the domain of Siρ. Assume to the contrary that this is not the case and let

t ∈ term(q) be such that t is not in the domain of any Siρ and the length of τ(t)
is minimal. Since q is connected and by definition of ρ and the choice of t, there

18 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

must be an atom R(s, t) ∈ q with (s, σ) ∈ Siρ for some σ and some i > 0. It
remains to show that one of the cases (a) and (b) applies in such a way that t is
in the domain of Si+1

ρ . Since τ is a match of q in UK, we have (τ(s), τ(t)) ∈ RUK .
Since t /∈ ρ, we have π(t) /∈ NI and thus τ(t) /∈ NI. By definition of UK, we are
thus in one of the following cases:

– τ(t) = τ(s)d for some d and tail(τ(s)) R d.
Since τ reproduces π, this yields π(s) R π(t) and thus (a) applies and
(t, σπ(t)) ∈ Si+1

ρ . Contradiction.
– τ(s) = τ(t)d for some d and tail(τ(t)) R− d. We show that σ is of the

form σ′′π(t)π(s) for some σ′′. Thus case (b) applies and (t, σ′′π(t)) ∈ Si+1
ρ .

Contradiction.
Since τ reproduces π, we have π(t) R− π(s). Also, since τ reproduces π and
τ(s) = τ(t)d, τ(s) = σ′π(t)π(s) for some σ′ and τ(t) = σ′π(t). By (†) and
since (s, σ) ∈ Siρ, τ(s) = σ0σ. Thus, σ′π(t)π(s) = σ0σ and it follows from the
definition of σ0 and the fact that τ(t) = σ′π(t) that σ = σ′′π(t)π(s) for some
(possible empty) σ′′. Hence (s, σ′′π(t), π(s)) ∈ Siρ and we have obtained a
contradiction.

(⇒) Assume that the filtering procedure returns “true”. Then there exists a root
configuration ρ such that Si0ρ is a function with domain term(q), for some i0 > 0.
If ρ consists of terms t with π(t) ∈ NI, then let σ0 = ε and define τ by setting
τ(t) = σ0σ if (t, σ) ∈ Si0ρ . Otherwise, we have ρ = {x} and π(x) = cR,j for some

role R that is generating in K and can thus choose a σ0 such that σ0cR,j ∈ ∆UK .
In this case define τ by setting τ(t) = σ0σ if (t, σ) ∈ Si0ρ . We show that τ is a
match of q in UK that reproduces π.

First note that by definition of Si0ρ , we have π(t) = tail(σ0σ) for all t ∈
term(q) with (t, σ) ∈ Si0ρ . As an immediate consequence, π(t) = tail(τ(t)) for all
t ∈ term(q). We now show by induction on i that for all t ∈ term(q) and i ≥ 0
with (t, σ) ∈ Siρ, we have τ(t) ∈ ∆UK :

– For the induction start, there are two cases:
• if ρ consists of terms t with π(t) ∈ NI, then τ(t) = π(t) ∈ Ind(A) ⊆ ∆UK ;
• otherwise, we have ρ = {x} and τ(x) ∈ ∆UK by definition of τ .

– For the induction step, assume that (t, σπ(t)) ∈ Si+1
ρ because the atom

R(s, t) ∈ q was chosen.
First assume that we are in case (a), i.e., π(s) R π(t) and (s, σ) ∈ Siρ. By

IH, τ(s) = σ0σ ∈ ∆UK . Thus, by definition of ∆UK , we have σ0σπ(t) ∈ ∆UK .
Hence τ(t) ∈ ∆UK since (t, σπ(t)) ∈ Si+1

ρ and so τ(t) = σ0σπ(t).
Now assume that we are in case (b), i.e., π(t) R− π(s) and (s, σπ(t)π(s)) ∈
Siρ. By IH, τ(s) = σ0σπ(t)π(s) ∈ ∆UK . By definition of τ , we have that

τ(t) = σ0σπ(t) which is a prefix of τ(s) and thus τ(t) ∈ ∆UK .

Consequently, τ(t) ∈ ∆UK for all t ∈ term(q). To show that τ is a match of q in
UK, it thus remains to prove the following:

– A(t) ∈ q implies τ(t) ∈ AUK .
We have π(t) ∈ AIK since π is a match of q in IK. We also know that
tail(τ(t)) = π(t). By definition of UK, it follows that τ(t) ∈ AUK .

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 19

– R(s, t) ∈ q implies (τ(s), τ(t)) ∈ RUK .
Assume R(s, t) ∈ q. Then (π(s), π(t)) ∈ RIK . If π(s), π(t) ∈ NI, then
τ(s) = π(s) and τ(t) = π(t). Hence (τ(s), τ(t)) ∈ RUK , as required. Assume
π(s) 6∈ NI or π(t) 6∈ NI. From (π(s), π(t)) ∈ RIK we obtain π(s) R π(t) or
π(t) R− π(s). We make a case distinction:

Case 1. π(s) R π(t). Since term(q) is the domain of Si0ρ , we have (s, σ) ∈
Si0ρ for some σ. By condition (a), (t, σπ(t)) ∈ Si0+1

ρ = Si0ρ . Hence τ(t) =
σ0σπ(t) and τ(s) = σ0σ with tail(τ(s)) = π(s). By definition of UK, we have
(τ(s), τ(t)) = (σ0σ, σ0σπ(t)) ∈ RUK , as required.

Case 2. π(t) R− π(s). Since term(q) is the domain of Si0ρ , we have (t, σ) ∈
Si0ρ for some σ. By condition (a), (s, σπ(s)) ∈ Si0+1

ρ = Si0ρ . Hence τ(t) = σ0σ
and τ(s) = σ0σπ(s) with tail(τ(t)) = π(t). By definition of UK, we have

(τ(t), τ(s)) = (σ0σ, σ0σπ(s)) ∈ R−UK . Hence (τ(s), τ(t)) ∈ RUK , as required.

B LUBM∃
n

The LUBM∃n ontology was obtained by enriching the original LUBM ontology
with the following concept inclusions. Not listed are the subconcepts of Course,
Department, Professor, and Student discussed in Section 5.

Course v ∃takesCourse−

Course v ∃teachingAssistantOf−

Course v ∃teacherOf−

Department v ∃memberOf−.Student

Department v ∃worksFor−.Faculty

Faculty v ∃publicationAuthor

Faculty v ∃worksFor.Department

GraduateStudent v ∃advisor

GraduateStudent v ∃takesCourse.GraduateCourse

Lecturer v ∃teacherOf

Professor v ∃advisor−

Professor v ∃teacherOf

Publication v ∃publicationResearch

Publication v ∃orgPublication−

Publication v ∃publicationAuthor

Research v ∃publicationResearch−

ResearchGroup v ∃researchProject

Student v ∃memberOf

University v ∃subOrganizationOf−.Department

∃takesCourse− v Course

20 The Combined Approach to OBDA: Taming Role Hierarchies using Filters

To ensure compatibility with the Requiem test queries from [12], we have added
some additional concept inclusions. Specifically, the experiments in [12] use a
modified version of LUBM in which some CIs are dropped and some additional
ones are added. We included the additional CIs also in LUBM∃n, which are as
follows:

BachelorExam v Exam

Exam v Work

ExamRecord v Work

ExDean v Professor

∃hasExamRecord v Student

∃hasExamRecord− v ExamRecord

∃isPartOfUniversity v Faculty

∃isPartOfUniversity− v University

C Data Profile

The data generation plan of the original LUBM data generator is described in full
detail at http://swat.cse.lehigh.edu/projects/lubm/profile.htm. In the following,
we give an adaptation of that description which reflects our modifications as
described on a higher level in Section 5. Apart from the number of universities
to generate, the modified data generator gets two parameters as input:

– n: a percentage between 0 and 100 that describes the degree of incomplete-
ness of the data, as detailed below.

– m: a non-negative integer for the number of subconcepts of Course, Department,
Professor, and Student, as discussed in Section 5.

The data generation plan is then as follows. In each University,

– 15 to 25 Departments are subOrganization of the University.

In each Department,

– Randomly pick a value i from {1, . . . ,m}. The Department is a Subj-i-Department.3

– 7 to 10 FullProfessors are generated. (100 − n)% are asserted to worksFor the
Department.

– 10 to 14 AssociateProfessors are generated. (100−n)% are asserted to worksFor the
Department.

– 8 to 11 AssistantProfessors are generated. (100− n)% are asserted to worksFor the
Department.

– Every Full-, Associate-, AssistantProfessor is an instance of Subj-i-Professor.
– 5 to 7 Lecturers are generated. (100−n)% are asserted to worksFor the Department.
– one of the FullProfessors is headOf the Department.

3 In Section 5, we used more descriptive names such as CSDepartment and
MathDepartment. In the actual data, for simplicity we identify subject areas with
numbers, which leads to Subj-i-Departments.

Carsten Lutz, İnanç Seylan, David Toman, and Frank Wolter 21

– (100− n)% of Faculty are asserted to be teacherOf 1 to 2 Courses.
– (100− n)% of Faculty are asserted to be teacherOf 1 to 2 GraduateCourses.
– Courses taught by Facultys are pairwise disjoint.
– Every Course and GraduateCourse is an instance of Subj-i-Course.
– 10 to 20 ResearchGroups are subOrganization of the Department.
– UndergraduateStudent : Faculty = 8 ∼ 14 : 1
– GraduateStudent : Faculty = 3 ∼ 4 : 1
– Every UndergraduateStudent and GraduateStudent is an instance of Subj-i-Student.
– (100− n)% of Students are asserted to be memberOf the Department.
– 1/5 to 1/4 of the GraduateStudents are chosen as TeachingAssistant for one Course.
– The Courses the GraduateStudents are TeachingAssistant of are pairwise different.
– 1/4 to 1/3 of the GraduateStudents are chosen as ResearchAssistant.
– 1/5 of the UndergraduateStudents are asserted to have a Professor as their advisor.
– (100− n)% of GraduateStudents are asserted to have a Professor as their advisors.
– (100− n)% of UndergraduateStudents are asserted to takesCourse 2 to 4 Courses.
– (100− n)% of GraduateStudents are asserted to takesCourse 1 to 3 Courses.
– (100−n)% of FullProfessors are asserted to be publicationAuthor of 15 to 20 Publications.
– (100 − n)% of AssistantProfessors are asserted to be publicationAuthor of 10 to 18

Publications.
– (100 − n)% of AssociateProfessors are asserted to be publicationAuthor of 5 to 10

Publications.
– Every Lecturer has 0 to 5 Publications.
– Every GraduateStudent co-authors 0 to 5 Publications with some Professors
– (100−n)% of Faculty are asserted to have an undergraduateDegreeFrom a University.
– (100− n)% of Faculty are asserted to have a mastersDegreeFrom a University.
– (100− n)% of Faculty are asserted to have a doctoralDegreeFrom a University.
– (100 − n)% of GraduateStudent are asserted to have an undergraduateDegreeFrom

a University.

