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Abstract
When answering queries in the presence of on-
tologies, adopting the closed world assumption for
some predicates easily results in intractability. We
analyze this situation on the level of individual on-
tologies formulated in the description logics DL-
Lite and EL and show that in all cases where an-
swering conjunctive queries (CQs) with (open and)
closed predicates is tractable, it coincides with an-
swering CQs with all predicates assumed open. In
this sense, CQ answering with closed predicates is
inherently intractable. Our analysis also yields a di-
chotomy between AC0 and CONP for CQ answer-
ing w.r.t. ontologies formulated in DL-Lite and a
dichotomy between PTIME and CONP for EL. In-
terestingly, the situation is less dramatic in the more
expressive description logic ELI, where we find
ontologies for which CQ answering is in PTIME,
but does not coincide with CQ answering where all
predicates are open.

1 Introduction
Description logics (DLs) increasingly find application in
ontology-based data access (OBDA), where an ontology is
used to enrich instance data and a chief problem is to pro-
vide efficient query answering services. In this context, it
is common to make the open world assumption (OWA). In-
deed, there are applications where the data is inherently in-
complete and the OWA is semantically adequate, such as
when the data is extracted from the web. In other applica-
tions, however, it is more reasonable to make a closed world
assumption (CWA) for some predicates in the data. In par-
ticular, when the data is taken from a relational database,
then the CWA can be appropriate for some of the data pred-
icates. As a concrete example, consider a geographical
database such as OpenStreetMap which contains pure ge-
ographical data as well as rich annotations, stating for ex-
ample that a certain spatial area is the location of a ‘pop-
ular Thai restaurant’. As argued in [Hübner et al., 2004;
Codescu et al., 2011], it is useful to pursue an OBDA ap-
proach to take full advantage of the annotations, where one
would naturally interpret the geographical data as closed and
the annotations as open.

In the DL literature, there are a variety of approaches to
imposing a partial CWA, often based on epistemic opera-
tors or rules [Calvanese et al., 2007b; Donini et al., 2002;
Grimm and Motik, 2005; Motik and Rosati, 2010; Sengupta
et al., 2011]. In this paper, we adopt the standard semantics
from relational databases, which is both natural and straight-
forward: CWA predicates have to be interpreted exactly as
described in the data, making the standard names assumption
for data constants; for example, when A is a closed concept
name andA an ABox, then in any model I ofAwe must have
AI = {a | A(a) ∈ A}. Note that this semantics is also used
in the recently proposed DBoxes [Seylan et al., 2009]. In fact,
the setup considered in this paper generalizes both standard
OBDA (only open predicates permitted) and DBoxes (only
closed predicates permitted in data) by allowing to freely mix
open and closed predicates both in the ontology and in the
data.

A major problem in admitting closed predicates in OBDA
is that query answering easily becomes intractable regarding
data complexity, where the ontology and query are assumed
to be fixed and thus of constant size. In fact, answering
conjunctive queries (CQs) is CONP-hard already when on-
tologies are formulated in inexpressive DLs such as DL-Lite
and EL [Franconi et al., 2011]. While this is an interesting
first step, it was recently demonstrated in [Lutz and Wolter,
2012] in the context of OBDA with more expressive DLs that
a ‘non-uniform’ analysis of data complexity, which consid-
ers individual ontologies instead of entire logics, can reveal
a much more detailed and subtle picture. In our context, we
work with ontologies of the form (T ,Σ), where T is a DL
TBox and Σ a set of predicates (concept and role names) de-
clared to be closed. We say that CQ answering w.r.t. (T ,Σ) is
in PTIME if for every CQ q(~x), there exists a polytime algo-
rithm that computes for a given ABox A the certain answers
to q inA given (T ,Σ); CQ answering w.r.t. (T ,Σ) is CONP-
hard if there is a Boolean CQ q such that, given an ABox A,
it is CONP-hard to decide whether q is entailed byA given T .
Other complexity classes are defined analogously.

The aim of this paper is to carry out a non-uniform analysis
of the data complexity of query answering with closed predi-
cates, when TBoxes are formulated in the DLs DL-LiteR and
EL, underpinning the OWL 2 profiles OWL 2 QL and OWL 2
EL, respectively [Calvanese et al., 2007a; Artale et al., 2009;
Baader et al., 2005]. Our main results are (i) characterizations



that separate the tractable cases from the intractable ones and
map out the frontier of tractability in a transparent way; (ii) a
proof that, for every tractable case (T ,Σ), CQ answering
w.r.t. (T ,Σ) coincides with CQ answering w.r.t. the ontology
(T , ∅) that treats all predicates as open, for ABoxes that are
satisfiable w.r.t. (T ,Σ); (iii) a dichotomy for the data com-
plexity of CQ answering between AC0 and CONP for TBoxes
formulated in DL-LiteR, and between PTIME and CONP for
EL; and (iv) algorithms for deciding in PTIME whether a
given (T ,Σ) admits tractable CQ-answering or not.

Point (ii) can be interpreted as showing that OBDA
with closed predicates is inherently intractable since, in all
tractable cases, the declaration of closed predicates does not
have an impact on query answers (it only results in imposing
integrity constraints on the ABox). This rather negative re-
sult is relativized by the observation made at the end of the
paper that inherent intractability does not transfer to more ex-
pressive description logics such as ELI, which is essentially
the union of DL-Lite and EL: there are TBoxes with closed
predicates (T ,Σ) with T formulated in ELI such that CQ an-
swering w.r.t. (T ,Σ) is tractable, but does not coincide with
CQ answering w.r.t. (T , ∅). Further exploring this encourag-
ing observation is left as future work. We also note that, even
in cases where no additional answers to CQs are obtained,
there is a certain benefit of closed predicates: we can go be-
yond CQs and admit full first-order expressive power for the
‘closed part’ of queries without increasing the data complex-
ity. We propose a concrete query language that implements
this idea and show that AC0 data complexity is preserved for
DL-LiteR TBoxes and PTIME data complexity is preserved
for EL-TBoxes.

Point (iii) is interesting when contrasted with CQ answer-
ing w.r.t. TBoxes that are formulated in the expressive DLs
ALC and ALCI, without closed predicates. There, the data
complexity is also between AC0 and CONP, but the existence
of a dichotomy between PTIME and CONP is a deep open
question that is equivalent to the Feder-Vardi conjecture for
the existence of a dichotomy between PTIME and NP in con-
straint satisfaction problems [Lutz and Wolter, 2012]. In this
sense, the space of ontologies (T ,Σ) studied in this paper is
more well-behaved than the space of all ALC-ontologies.

Some proof details are deferred to the appendix of the long
version, http://cgi.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries
We use standard notation from description logic [Baader et
al., 2003]. Let NC and NR be countably infinite sets of con-
cept and role names. A DL-Lite concept is either a concept
name from NC or a concept of the form ∃r.> or ∃r−.>, where
r ∈ NR. We call r− an inverse role and set s− = r if
s = r− and r ∈ NR. A role is of the form r or r−, with
r ∈ NR. A DL-Lite concept inclusion is an expression of the
form B1 v B2 or B1 v ¬B2, where B1, B2 are DL-Lite
concepts. A role inclusion is an expression of the form r v s,
where r, s are roles. A DL-Litecore TBox is a finite set of DL-
Lite concept inclusions and a DL-LiteR TBox is a finite set
of DL-Lite concept inclusions and role inclusions.
EL concepts are constructed according to the rule C,D :=

> | A | C u D | ∃r.C, where A ∈ NC and r ∈ NR. An
EL concept inclusion is an expression of the form C v D,
where C,D are EL concepts. An EL TBox is a finite set
of EL concept inclusions. ELI is the extension of EL with
existential restrictions ∃r−.C, where r− is an inverse role.

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) with A ∈ NC, r ∈ NR, and a, b individual
names from a countably infinite set NI. We use Ind(A) to de-
note the set of individual names used in the ABoxA and take
the freedom to write r−(a, b) ∈ A instead of r(b, a) ∈ A.

An interpretation I is a pair (∆I , ·I) where ∆I is a non-
empty set called the domain of I and ·I maps each concept
name A to a subset AI ⊆ ∆I and each role name r to a bi-
nary relation rI ⊆ ∆I × ∆I . The function ·I is extended
to compound concepts in the usual way. An interpretation I
satisfies a concept inclusionC v D ifCI ⊆ DI , a role inclu-
sion r v s if rI ⊆ sI , a concept assertionA(a) if a ∈ AI and
a role assertion r(a, b) if (a, b) ∈ rI . Note that this interpre-
tation of ABox assertions corresponds to making the standard
names assumption (SNA), which stipulates that every ABox
individual is interpreted as itself; the SNA implies the unique
name assumption (UNA). An interpretation is a model of a
TBox T if it satisfies all inclusions in T and a model of an
ABoxA if it satisfies all assertions inA. A concept C (ABox
A) is satisfiable w.r.t. a TBox T if there exists a model I of
T with CI 6= ∅ (and of A).

A predicate is a concept or role name. A signature Σ is a
finite set of predicates. The signature sig(C) of a concept C,
sig(r) of a role r, and sig(T ) of a TBox T , is the set of pred-
icates that occur in C, r, and T , respectively.

For being able to declare predicates as closed, we add an
additional component to TBoxes. A pair (T ,Σ) with T a
TBox and Σ a signature is a TBox with closed predicates. For
any ABox A, a model I of (T ,Σ) and A is an interpreta-
tion I with Ind(A) ⊆ ∆I that satisfies T and A and such
that the extension of all closed predicates agrees with what is
explicitly stated in the ABox, that is,

AI = {a | A(a) ∈ A} for all A ∈ Σ ∩ NC

rI = {(a, b) | r(a, b) ∈ A} for all r ∈ Σ ∩ NR.

An ABox A is satisfiable w.r.t. (T ,Σ) if there is a model of
(T ,Σ) and A.
Example 2.1. In a geographical database, complete infor-
mation is typically available for predicates that are tied
closely to geographical location and do not change fre-
quently, such as the concept name ScandinavianCountry
used to identify regions that describe the spatial exten-
sion of a scandinavian country and the role name neighbor
used to relate regions that describe neighboring countries.
These predicates should therefore be treated as closed. For
other predicates, especially those that are less intimately
linked to geographical location, complete information is of-
ten not available. Examples include concept names such as
OilExportingCountry or roles such as tradingPartner.

Fix a countably infinite set of variables V. A first-order
query (FOQ) q(~x) is a first-order formula constructed from
atoms A(x), r(x, y), and x = y, where x, y range over V and
~x = x1, . . . , xk contains all free variables of q. We call ~x



the answer variables of q(~x) and say that q(~x) is Boolean if
it has no answer variables. A conjunctive query (CQ) q(~x) is
a FOQ using conjunction and existential quantification, only.
A tuple ~a = a1, . . . , ak ⊆ Ind(A) is a certain answer to
q(~x) in A given (T ,Σ), in symbols T ,A |=c(Σ) q(~a), if I |=
q[a1, . . . , ak] for all models I of (T ,Σ) and A. If Σ = ∅,
then we simply omit Σ, speak of certain answers to q(~x) in
A given T , and write T ,A |= q[~a]. A CQ q(x) with one
answer variable x is a directed tree CQ if it is tree-shaped
with root x when viewed as a directed graph and a tree CQ if
the same is true when q is viewed as an undirected graph.

The following example shows that closing predicates can
result in more complete query answers.

Example 2.2. The TBox T consists of the inclusion

ScandComp v ∃based in.ScandCountry

where ScandComp and ScandCountry are short for
ScandinavianCompany and ScandinavianCountry. The
ABox A consists of the assertions

ScandComp(cp),ScandCountry(denmark),

ScandCountry(norway),ScandCountry(sweden),

TimberExporter(denmark),TimberExporter(norway)

TimberExporter(sweden).

Note that there is no information in A about the concrete
scandinavian country in which the company cp is based. For

q = ∃y based in(x, y) ∧ TimberExporter(y),

cp is not a certain answer to q(x) in A given T . In
contrast, when closing ScandCountry by setting Σ =
{ScandCountry}, we have T ,A |=c(Σ) q[cp].

As illustrated by Example 2.2, we are interested in rea-
soning with a mix of closed predicates and open predicates.
Note that TBox statements which only involve closed pred-
icates act as integrity constraints in the standard database
sense [Abiteboul et al., 1995]. As an example, consider
T = {A v B} and Σ = {A,B}. Then (T ,Σ) im-
poses the integrity constraint that if A(a) is contained in an
ABox, then so must be B(a). In particular, an ABox A
is satisfiable w.r.t. (T ,Σ) iff A satisfies this integrity con-
straint. For ABoxes A that are satisfiable w.r.t. T , (T ,Σ)
has no further effect on query answers. In a DL context, in-
tegrity constraints are discussed in [Calvanese et al., 2007b;
Donini et al., 2002; Mehdi et al., 2011; Motik et al., 2009;
Motik and Rosati, 2010]. We now fix the relevant notions
of complexity, inspired by [Lutz and Wolter, 2012]. When
speaking of complexity, we always mean data complexity.

Definition 2.3. For (T ,Σ) a TBox with closed predicates,

• CQ answering w.r.t. (T ,Σ) is in PTIME if for every CQ
q(~x) there is a polytime algorithm that computes, for a
given ABox A, all ~a ⊆ Ind(A) with T ,A |=c(Σ) q(~a);

• CQ answering w.r.t. (T ,Σ) is CONP-hard if there is a
Boolean CQ q such that it is CONP-hard to decide, given
an ABox A, whether T ,A |=c(Σ) q.

For other classes of queries such as tree-shaped CQs, anal-
ogous notions can be defined. It is shown in [Franconi et al.,
2011] that there are DL-Litecore TBoxes with closed predi-
cates (T ,Σ) such that CQ answering w.r.t. (T ,Σ) is CONP-
hard. The proof is easily strengthened to directed tree CQs
and adapted to EL. CQ answering w.r.t. both DL-LiteR and
EL-TBoxes is known to be in CONP. Without closed pred-
icates (that is, when Σ = ∅), CQ answering is in PTIME
for EL TBoxes [Calvanese et al., 2007a; Lutz et al., 2009]
and in AC0 for DL-LiteR TBoxes [Calvanese et al., 2007a;
Artale et al., 2009].

The following property plays a central role in our com-
plexity analysis as it turns out to identify the borderline
between tractability and CONP-hardness of CQ answering. It
is also studied intensively in [Lutz and Wolter, 2012], where
convexity is called the ABox disjunction property.
Definition 2.4. A TBox with closed predicates (T ,Σ) is
convex if for all ABoxes A and tree CQs q1(x), q2(x),
T ,A |=c(Σ) q1 ∨ q2[a] implies T ,A |=c(Σ) qi[a] for some
i ∈ {1, 2}.

It is well-known that, without closed predicates, every
TBox formulated in DL-LiteR or EL is convex [Lutz and
Wolter, 2012]. On the other hand, it can be shown that the
TBox (T ,Σ) from Example 2.2 is not convex.
Example 2.5. Let A′ be the extension of the ABox A from
Example 2.2 with the assertions MilkExporter(sweden),
MilkExporter(denmark), and OilExporter(norway). Set
Σ = {ScandCountry} and take the tree CQs

q1(x) =∃y based in(x, y) ∧MilkExporter(y)

q2(x) =∃y based in(x, y) ∧ OilExporter(y).

Then T ,A′ |=c(Σ) q1∨q2[cp], but T ,A′ 6|=c(Σ) qi[cp] for any
i ∈ {1, 2}. The former is a consequence of the fact that, in
any model I of (T ,Σ) andA′, at least one of (cp, denmark),
(cp, sweden), (cp, norway) must be in based inI . To see
that T ,A′ 6|=c(Σ) q1[cp], note that it is possible to obtain a
model of (T ,Σ) and A′ by viewing A′ as an interpretation
and adding (cp, norway) to the extension of based in. For
T ,A′ 6|=c(Σ) q2[cp], add (cp, denmark).

We use tree CQs in Definition 2.4 as this allows us to
derive stronger lower bounds, which refer to this more re-
stricted class of queries. Note that tree CQs are also known
as ELI instance queries and directed tree CQs as EL instance
queries, both common in OBDA. All our results remain true
when tree CQs are replaced with CQs in Definition 2.4.

3 Results for DL-Lite
We start with an example of a DL-Litecore TBox that is not
convex, essentially by recasting Example 2.5, which is based
on an EL TBox, in this language.
Example 3.1. Let

T = {A v ∃r.>,∃r−.> v B} and Σ = {B}
A = {A(a), B(b1), A1(b1), B(b2), A2(b2)}
qi = ∃y r(x, y) ∧Ai(y) for i ∈ {1, 2}.

Then (T ,Σ) is not convex because T ,A |=c(Σ) q1 ∨ q2[a],
whereas T ,A 6|=c(Σ) qi[a] for any i ∈ {1, 2}.



The failure of convexity for the TBox (T ,Σ) in Exam-
ple 3.1 results in a choice which can be used to prove that
CQ answering w.r.t. (T ,Σ) is coNP-hard. Specifically, the
proof is by reduction of 2+2-SAT, a variant of propositional
satisfiability where each clause contains precisely two pos-
itive literals and two negative literals [Schaerf, 1993]. The
queries q1 and q2 from the example are used as subqueries of
the query constructed in the reduction, where they serve the
purpose of distinguishing truth values of propositional vari-
ables. The CQ used in the reduction is actually a tree CQ.

It turns out that this proof of CONP-hardness can be
adapted to any non-convex DL-LiteR TBox. Conversely, we
will show that convex DL-LiteR TBoxes admit CQ answering
in AC0, thus identifying convexity as the borderline between
tractability and intractability of CQ answering, and establish-
ing a dichotomy between AC0 and CONP for CQ answering
w.r.t. DL-LiteR TBoxes with closed predicates.

Since analyzing DL-LiteR TBoxes turns out to be some-
what more technical than analyzing DL-Litecore TBoxes, we
start with the latter as a warmup. The following definition in-
troduces a property of DL-Litecore TBoxes with closed predi-
cates that we will prove to coincide with convexity, but which
is much more concrete.

Definition 3.2 (Safe DL-Litecore TBox). A DL-Litecore TBox
with closed predicates (T ,Σ) is safe if there are no DL-Lite
conceptsB1, B2 and role r such that the following conditions
are satisfied:

1. B1 is satisfiable w.r.t. T ;

2. T |= B1 v ∃r.> and T |= ∃r−.> v B2;

3. B1 6= ∃r.>;

4. sig(B2) ⊆ Σ and sig(r) ∩ Σ = ∅.
Note that Definition 3.2 is essentially a slight generalization
of Example 3.1. In particular, the pattern in Point 2 of Defini-
tion 3.2 can be found in Example 3.1 (where it is crucial that
r /∈ Σ and B ∈ Σ). The following theorem summarizes our
results for DL-Litecore.

Theorem 3.3 (Results for DL-Litecore). Let (T ,Σ) be a DL-
Litecore TBox with closed predicates. Then

1. If (T ,Σ) is not safe, then (T ,Σ) is not convex and an-
swering tree CQs w.r.t. (T ,Σ) is CONP-hard.

2. If (T ,Σ) is safe, then

(a) CQ answering w.r.t. (T ,Σ) coincides with CQ an-
swering w.r.t. (T , ∅) for all ABoxes that are satisfi-
able w.r.t. (T ,Σ), and (T ,Σ) is convex;

(b) CQ answering w.r.t. (T ,Σ) is in AC0.

In a sense, Theorem 3.3 shows that CQ answering in DL-
Litecore with closed predicates is inherently intractable: in all
cases where closing predicates results in additional answers
to queries (on satisfiable ABoxes), CQ answering is CONP-
hard. In all tractable cases, the only effect that closing pred-
icates can thus have is to act as integrity constraints on the
ABox (but see Section 5 for another virtue of closing predi-
cates). Note that all TBoxes that refer only to closed predi-
cates (thus express only integrity constaints) are safe.

It is also interesting to note that Theorem 3.3 establishes a
dichotomy between AC0 and CONP for CQ answering w.r.t.
DL-Litecore TBoxes with closed predicates, that is, there is
no such TBox whose complexity is truely between AC0 and
CONP. As noted in the introduction, this is in stark contrast to
results recently established in [Lutz and Wolter, 2012] in the
context of more expressive DLs without closed predicates.

To prove Point 1 of Theorem 3.3, one shows that non-
safeness implies non-convexity by constructing an appropri-
ate ABox. CONP-hardness can then be proved by reduc-
tion from 2+2-SAT, generalizing the CONP-hardness proof
for Example 3.1. The proof of Point 2(a) relies on canonical
models for DL-Litecore TBoxes T without closed predicates.
Specifically, for every ABoxA that is satsfiable w.r.t. T , there
is a model I ofA and T such that for all CQs q and potential
answers ~a, we have T ,A |= q[~a] iff I |= q[~a]. To estab-
lish Point 2(a), it suffices to show that, when (T ,Σ) is safe,
then I is also a model of (T ,Σ) and A. Consequently and
since closing predicates can only result in additional answers,
but not in invalidating answers, CQ answering w.r.t. (T ,Σ)
coincides with CQ answering w.r.t. (T , ∅) and it remains to
recall that DL-Litecore TBoxes without closed predicates are
convex. For Point 2(b), it suffices to show that satisfiabil-
ity of ABoxes w.r.t. (T ,Σ) is in AC0 when (T ,Σ) is safe,
which is a consequence of the fact that ABox satisfiability
and CQ answering in DL-Litecore without closed predicates
are in AC0. Specifically, we observe that whenever an ABox
A is satisfiable w.r.t. T , then A is satisfiable w.r.t. (T ,Σ) iff
T ,A |= B(a) implies B(a) ∈ A for all DL-Lite concepts
B with sig(B) ⊆ Σ and T ,A |= r(a, b) implies r(a, b) ∈ A
for all role names r from Σ. Proof details for Theorem 3.3 are
skipped as we provide them for the strictly stronger DL-LiteR
version of this theorem, which is given below.

We now extend Definition 3.2 to DL-LiteR.
Definition 3.4 (Safe DL-LiteR TBox). A DL-LiteR TBox
with closed predicates (T ,Σ) is safe if there are no DL-Lite
conceptsB1, B2 and role r such that the following conditions
are satisfied:

1. B1 is satisfiable w.r.t. T ;
2. T |= B1 v ∃r.> and T |= ∃r−.> v B2;
3. B1 6= ∃r′.> for any role r′ such that T |= r′ v r;
4. sig(B2) ⊆ Σ and sig(r′) ∩ Σ = ∅ for any role r′ such

that T |= B1 v ∃r′.> and T |= r′ v r.
Note that the conditions in Definition 3.4 generalize the cor-
responding ones in Definition 3.2 and in this sense, the addi-
tion of role hierarchies does not introduce unexpected ways
to cause non-convexity and CONP-hardness.
Example 3.5. Let T = {A v ∃r.>, r v s} and
Σ = {s}. Then (T ,Σ) is not safe, which is witnessed
by the concepts B1 = A, B2 = ∃s−.>, and the role r.
Indeed, (T ,Σ) is not convex, witnessed for example by
the ABox {A(a), s(a, b1), A1(b1), s(a, b2), A2(b2)} and the
queries qi = ∃y.r(x, y) ∧Ai(y) for i ∈ {1, 2}.
Now, Theorem 3.3 generalizes to DL-LiteR.
Theorem 3.6 (Results for DL-LiteR). All statements in Theo-
rem 3.3 are still true if DL-Litecore is replaced with DL-LiteR.



The proof strategy for Theorem 3.3 is exactly the one de-
scribed above for DL-Litecore.

Note that it is easy to check in PTIME whether a given
DL-LiteR TBox with closed predicates (T ,Σ) is safe (conse-
quently: whether CQ answering w.r.t. (T ,Σ) is in AC0) since
it suffices to consider DL-Lite concepts B1, B2 and roles r
from the signature of T (of which there are only polynomi-
ally many) and subsumption in DL-Lite can be decided in
AC0 [Calvanese et al., 2007a].

4 Results for EL
As illustrated by Example 2.5, the effect that causes non-
convexity and thus CONP-hardness of DL-Lite TBoxes with
closed predicates can also be observed in EL. In the sim-
plest form, this is shown by the TBox with closed predicates
(T ,Σ) with T = {A v ∃r.B} and Σ = {B}, which is
not convex. However, in EL there is an additional (and more
subtle) cause for non-tractability. The simplest illustrating
example uses exactly the same TBox T , but swaps the Σ-
memberships of r and B.
Example 4.1. Let

T = {A v ∃r.B} and Σ = {r}
A = {A(a), r(a, b1), A1(b1), r(a, b2), A2(b2)}
qi = ∃y r(x, y) ∧Ai(y)

Then (T ,Σ) is not convex because T ,A |=c(Σ) q1 ∨ q2[a],
whereas T ,A 6|=c(Σ) qi[a] for any i ∈ {1, 2}.
We now give a definition of safeness of EL-TBoxes with
closed predicates that captures both causes of non-convexity
and, as in the DL-Lite case, coincides both with convexity
and with tractability of CQ-answering. We call a concept E
a top-level conjunct (tlc) of an EL concept C if C is of the
form D1 u · · · uDn and E = Di for some i.
Definition 4.2 (Safe EL TBox). An EL TBox with closed
predicates (T ,Σ) is safe if there exists no EL inclusion
C v ∃r.D such that

1. T |= C v ∃r.D;

2. there does not exist a tlc ∃r.C ′ of C with T |= C ′ v D;

3. one of the following is true:

(s1) r 6∈ Σ and sig(D) ∩ Σ 6= ∅;
(s2) r ∈ Σ, sig(D) 6⊆ Σ and there is no Σ-concept E

with T |= C v ∃r.E and T |= E v D.

Conditions 3(s1) and 3(s2) reflect the two causes of non-
convexity in EL with closed predicates. The following ex-
ample illustrates the requirement in Condition 3(s2) that no
“interpolating” Σ-concept E exists.
Example 4.3. Let T = {A v ∃r.E,E v B} and first as-
sume that Σ = {r}. Then the inclusion A v ∃r.B satisfies
Condition 3(s2) and thus (T ,Σ) is not safe. Now assume
Σ = {r, E}. Then, the inclusion A v ∃r.B does not violate
safeness because E can be used as a ‘Σ-interpolant’. Note
that the ABox A from Example 4.1, which we used to refute
convexity in a very similar situation, is simply unsatisfiable
w.r.t. (T ,Σ). Indeed, it can be shown that (T ,Σ) is safe.

The following theorem summarizes our main results for EL.

Theorem 4.4 (Main Results for EL). Let (T ,Σ) be an EL
TBox with closed predicates. Then

1. If (T ,Σ) is not safe, then (T ,Σ) is not convex and an-
swering directed tree CQs w.r.t. (T ,Σ) is CONP-hard.

2. If (T ,Σ) is safe, then

(a) CQ answering w.r.t. (T ,Σ) coincides with CQ an-
swering w.r.t. (T , ∅) for all ABoxes that are satisfi-
able w.r.t. (T ,Σ), and (T ,Σ) is convex;

(b) CQ answering w.r.t. (T ,Σ) is in PTIME.

As mentioned before, directed tree CQs are also called EL
instance queries in the literature. The mention of directed tree
CQs in Point 1 of Theorem 4.4 thus implies that our results
hold for CQs and EL instance queries alike.

Point 1 of Theorem 4.4 is proved by showing that non-
safeness implies non-convexity, which involves two separate
constructions that address Cases (s1) and (s2) from Defini-
tion 4.2. The proof of Point 2(a) of Theorem 4.4 is again via
canonical models, which have to be defined in a rather care-
ful way to make the proof go through. Establishing Point 2(b)
involves showing that satisfiability of ABoxes w.r.t. safe EL
TBoxes with closed predicates can be decided in PTIME.

Whereas it is obvious how to check the safeness of a DL-
Lite TBox with closed predicates, this is not the case for EL
TBoxes since Definition 4.2 quantifies over all concepts C,
D, and E, of which there are infinitely many. In the follow-
ing, we show that, nevertheless, safeness of an EL-TBox with
closed predicates (T ,Σ) can be decided in PTIME. The first
step is to convert T into a TBox T ∗ that is normalized in the
sense that it satisfies the following properties:

(t1) T ∗ contains no CI of the form C v D1 uD2;

(t2) if C v ∃r.D ∈ T ∗, then there is no tlc ∃r.C ′ of C with
T ∗ |= C ′ v D.

Specifically, T ∗ can be produced by exhaustively replacing
each CI C v D1 u D2 with the two CIs C v D1 and C v
D2, and each CI C u ∃r.C ′ v ∃r.D where the TBox entails
C ′ v D with the CI C ′ v D. It is easy to see that the
conversion takes only polynomial time (since subsumption in
EL can be decided in PTIME) and that T ∗ is equivalent to T ,
thus T ∗ is safe iff T is.

It thus suffices to consider EL TBoxes (T ,Σ) where T is
normalized. In this case, the following, stronger version of
safeness is equivalent to the original version.

Definition 4.5. An EL TBox with closed predicates (T ,Σ) is
strongly safe if there exists no EL inclusion C v ∃r.D ∈ T
such that one of the following is true:

(c1) r 6∈ Σ and there is some concept E such that T |= D v
E and sig(E) ∩ Σ 6= ∅;

(c2) r ∈ Σ, sig(D) 6⊆ Σ, and there is no Σ-concept E with
T |= C v ∃r.E and T |= E v D.

Note that, in Definition 4.5, the concepts C and D are now
restricted to subconcepts of T (whereas E can still be any
concept). The following is proved in the long version.



Lemma 4.6. If T satisfies Conditions (t1) and (t2), then
(T ,Σ) is safe iff it is strongly safe.

It thus remains to deal with the quantification over the con-
cept E in Conditions (c1) and (c2). In the long version, we
show that Condition (c1) can be checked in PTIME by carry-
ing out a reachability test in a suitable canonical model of T ,
and Condition (c2) can be checked in PTIME by executing
a polynomial number of subsumption tests (the correctness
of the latter relies on EL having a certain interpolation prop-
erty). In summary, we obtain the following result.
Theorem 4.7. Deciding safeness of EL TBox with closed
predicates is PTIME-complete.

5 First-Order Queries over Closed Predicates
As observed in [Reiter, 1992; Calvanese et al., 2007b], clos-
ing predicates allows to use more expressive query languages
without increasing the complexity of query answering. In-
deed, mixing open and closed predicates seems particularly
useful when large parts of the data stem from a relational
database, as in the geographical database application from
Section 2. In such a setup, one would typically like to use full
FOQs or, in other words, SQL queries. We consider a query
language that combines FOQs for closed predicates with CQs
for open predicates. For safe TBoxes with closed predicates,
such queries can be answered as efficiently as CQs both in the
case of DL-Lite and of EL.

As in the relational database setting, we allow only FOQs
that are domain-independent and thus correspond to expres-
sions of relational algebra (and SQL queries), see [Abiteboul
et al., 1995].
Definition 5.1 (CQFO(Σ) queries). Let Σ be a signature
that declares closed predicates. A conjunctive query
with FO(Σ) plugins (abbreviated CQFO(Σ)) is of the form
∃x1 · · · ∃xn(ϕ1∧. . .∧ϕm), where n ≥ 0,m ≥ 1, and eachϕi

is an atom or a domain-independent FOQ with sig(ϕi) ⊆ Σ.
The next theorem shows that, for safe TBoxes with closed

predicates, switching from CQs to CQFO(Σ)s does not in-
crease data complexity. Thus, in addition to enforcing in-
tegrity constraints, such TBoxes have the virtue of admitting
more expressive queries without an increase in complexity.
Theorem 5.2.

1. For safe DL-LiteR TBoxes with closed predicates
(T ,Σ), CQFO(Σ)-answering w.r.t. (T ,Σ) is in AC0.

2. For safe EL TBoxes with closed predicates (T ,Σ),
CQFO(Σ)-answering w.r.t. (T ,Σ) is in PTIME.

While the proof of Theorem 5.2 is not intricate, we believe
that CQFO(Σ) can be very useful for applications. Note that
the query language EQL-Lite(CQ) from [Calvanese et al.,
2007b] can be viewed as a fragment of CQFO(Σ) in which
only closed predicates are admitted.

6 The Case of ELI
We consider TBoxes formulated in ELI, the extension of EL
with inverse roles. ELI can be regarded as the logical core
of expressive Horn DLs such as Horn-SHIQ [Hustadt et al.,

2007; Eiter et al., 2008]. In contrast to the cases of DL-LiteR
and EL, CQ answering with closed predicates turns out to
not be inherently intractable in ELI: there are ELI TBoxes
with closed predicates (T ,Σ) such that CQ answering w.r.t.
(T ,Σ) is in PTIME, but does not coincide with CQ answering
w.r.t. (T , ∅) for all ABoxes that are satisfiable w.r.t. (T ,Σ).
We use the ELI-TBox
T = { > v ∃r.A ∃r−.A v B ∃r.(A uB) v A }

and the signature Σ = {r,B}. It is not hard to see that CQ
answering w.r.t. (T ,Σ) does not coincide with CQ answering
w.r.t. (T , ∅). In particular, for
A = {r(a, a), B(a)} and q() = ∃x r(x, x) ∧A(x)

one can verify that T ,A 6|= q(), but T ,A |=c(Σ) q(); more-
over, it is straightforward to construct a model which shows
that A is satisfiable w.r.t. (T ,Σ).

To prove our claim, it thus remains to show that CQ an-
swering w.r.t. (T ,Σ) is in PTIME. Let A be an ABox. The
interpretation I is defined as follows:
(a) start with A viewed as an interpretation;
(b) add a ∈ Ind(A) to AI if r(a, b) ∈ A implies B(b) ∈ A;
(c) add a ∈ Ind(A) to AI when a ∈ (∃r.(A uB))I , repeat

exhaustively.
Clearly, I can be constructed in polynomial time. The follow-
ing lemma thus shows that CQ-answering w.r.t. (T ,Σ) is in
PTIME, and so is satisfiability of ABoxes w.r.t. (T ,Σ). Note
that I can be viewed as a canonical model of (T ,Σ) and A.
Lemma 6.1.

1. A is satisfiable w.r.t. (T ,Σ) iff I is a model of (T ,Σ)
and A;

2. if A is satisfiable w.r.t. (T ,Σ), then for all CQs q and
~a ⊆ Ind(A), we have T ,A |=c(Σ) q[~a] iff I |= q[~a].

We have thus shown that ELI behaves differently from DL-
LiteR and EL. This raises a number of questions, dicussed in
the next section.

7 Future Work
We have observed that, for simple DLs such as DL-Litecore,
DL-LiteR, and EL, CQ answering with closed predicates is
inherently intractable, while this is not the case for more ex-
pressive DLs such as ELI. It would be interesting to conduct
a broader study to fully understand this phenomenon, includ-
ing additional TBox languages such as other extensions of
DL-Lite, versions of Horn-SHIQ, and possibly even mem-
bers of the Datalog± family of ontology languages [Calı̀ et
al., 2012].

Concerning the concrete case of ELI, the observation pre-
sented in Section 6 raises the question whether there is a di-
chotomy between PTIME and CONP for CQ answering w.r.t.
ELI-TBoxes with closed predicates, and how the PTIME
cases can be characterized. It also asks for a characteriza-
tion of those ELI-TBoxes with closed predicates (T ,Σ) for
which CQ answering w.r.t. (T ,Σ) coincides with CQ answer-
ing w.r.t. (T , ∅). We leave these questions as interesting fu-
ture work.
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A Additional Preliminaries
A CQ q(x) with one answer variable x is a directed tree CQ
if it satisfies the following conditions:

1. the directed graph Gq = (Vq, Eq) is a tree with root x,
where Vq is the set of terms used in q and Eq contains
an edge (t1, t2) whenever there is an atom r(t1, t2) in q;

2. if r(x, y), s(x, y) are conjuncts of q(x) then r = s

A CQ q(x) with one answer variable x is a tree CQ if it satis-
fies the following conditions:

1. Gq is a tree when viewed as an undirected graph;

2. if r(x, y), s(x, y) are conjuncts of q(x) then r = s;

3. there are no conjuncts r(x, y), s(y, x) in q(x).

Every ABox A corresponds to an interpretation IA whose
domain is Ind(A) and in which a ∈ AIA iff A(a) ∈ A, for
all A ∈ NC and a ∈ Ind(A), and similarly for role names.
Conversely, every interpretation I corresponds to a (possibly
infinite) ABox AI whose individual names are ∆I .

B Proofs for Section 3
We prove coNP-hardness for Example 3.1. Recall that T =
{A v ∃r.>,∃r−.> v B} and Σ = {r}. The coNP-hardness
proof is by reduction of 2+2-SAT, a variant of propositional
satisfiability that was first introduced by Schaerf as a tool for
establishing lower bounds for the data complexity of query
answering in a DL context [Schaerf, 1993]. In fact, our proof
is very similar to Schaerf’s original proof. A 2+2 clause is of
the form (p1 ∨ p2 ∨¬n1 ∨¬n2), where each of p1, p2, n1, n2

is a propositional letter or a truth constant 0, 1. A 2+2 for-
mula is a finite conjunction of 2+2 clauses. Now, 2+2-SAT
is the problem of deciding whether a given 2+2 formula is
satisfiable. It is shown in [Schaerf, 1993] that 2+2-SAT is
NP-complete.

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional
letters w0, . . . , wm, and let ci = pi,1∨pi,2∨¬ni,1∨¬ni,2 for
all i ≤ n. Our aim is to define an ABox Aϕ and an instance
query C(a) such that ϕ is unsatisfiable iff T ,Aϕ |=c(Σ) q. To
start, we represent the formula ϕ in the ABox Aϕ as follows:

• the individual name f represents the formula ϕ;

• the individual names c0, . . . , cn represent the clauses of
ϕ;

• the assertions c(f, c0), . . . , c(f, cn), associate f with its
clauses, where c is a role name that does not occur in T ;

• the individual names w0, . . . , wm represent variables,
and the individual names 0, 1 represent truth constants;

• the assertions⋃
i≤n

{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

associate each clause with the four variables/truth con-
stants that occur in it, where p1, p2, n1, n2 are role
names that do not occur in T .

We further extend Aϕ to enforce a truth value for each of the
variables wi and the truth-constants 0, 1. To this end, add to
Aϕ copies A0, . . . ,Am of the ABox A from Example 3.1
obtained by renaming individual names such that Ind(Ai) ∩
Ind(Aj) = ∅ whenever i 6= j. Moreover, assume that ai
coincides with the ith copy of a. Intuitively, the copy Ai

of A is used to generate a truth value for the variable wi,
where we want to interpret wi as true in an interpretation I if
I |= q1[wi] and as false if I |= q2[wi], where q1 and q2 are
the queries from Example 3.1.

To ensure that 0 and 1 have the expected truth values, add
the ABoxes

A(1) = {r(1, c1), A1(c1), B(c1)} and
A(0) = {r(0, c2), A2(c2), B(c2)}.

Let B be the resulting ABox. Consider the query

q0 = ∃y∃z1∃z2∃z3∃z4 c(x, y) ∧ p1(y, z1) ∧ ff(z1)

∧ p2(y, z2) ∧ ff(z2)

∧n1(y, z3) ∧ tt(z3)

∧n2(y, z4) ∧ tt(z4)

which describes the existence of a clause with only false liter-
als and thus captures falsity of ϕ, where tt(zi) is an abbrevi-
ation for q1(x) with the free variable x replaced by zi and ff
is an abbreviation for q2(x) with the free variable x replaced
by zi. It is straightforward to show that ϕ is unsatisfiable iff
T ,B |=c(Σ) q0.

We now establish Theorem 3.6, starting with Point 1. We
write tree CQs in the form C(x) with C an ELI concept.
Lemma B.1. Let (T ,Σ) be a DL-LiteR TBox with closed
predicates. If (T ,Σ) is not safe, then (T ,Σ) is not convex
and there exists a tree CQ C(x) such that answering C(x)
w.r.t. (T ,Σ) is coNP-hard.

Proof. Assume thatB1, B2 and role r show that (T ,Σ) is not
safe and satisfy Points 1 to 4 of Definition 3.4. By satisfia-
bility of B1 w.r.t. T , Point 4, and the finite model property of
DL-LiteR one can find a finite model I of T with a0 ∈ BI1
such that a0 6∈ (∃r′.>)I for any role r′ with sig(r′) ⊆ Σ and
T |= r′ v r. Let Ir be the interpretation obtained from I by
removing all pairs (a0, b) from any r′I with T |= r′ v r.
By Point 3, B1 6= ∃r′.> for any such r′. Thus we have
a0 ∈ BIr1 . Take the ABox Ar corresponding to Ir and let
A be the disjoint union of two copies of Ar. We denote the
individual names of the first copy by (b, 1), b ∈ ∆I , and the
elements of the second copy by (b, 2), b ∈ ∆I . Let A′ be

A ∪
{A1(b, 1) | b ∈ BI2 } ∪ {A2(b, 2) | b ∈ BI2 } ∪
{r′((a0, i), (b, j)) | (a0, b) ∈ r′I , T 6|= r′ v r, sig(r′) ⊆ Σ,

i, j ∈ {1, 2}}
where A1 and A2 are fresh concept names.

Now one can show that convexity fails, that is, for the tree
CQs

qi = ∃y r(x, y) ∧Ai(y) ∧B2(y),

and with A′ the ABox defined above, we have



(a) (T ,A′) |=c(Σ) q1 ∨ q2[a0, 1],

(b) (T ,A′) 6|=c(Σ) qi[a0, 1] for i = 1, 2.

The CONP-hardness proof is now similar to the proof for Ex-
ample 3.1 given above and omitted.

(a) Let J be a model of (T ,Σ) and A′. We have (a0, 1) ∈
BJ1 (since, by Point 3, B1 6= ∃r′.> for every r′ with T |=
r′ v r). Since J is a model of T , T |= B1 v ∃r.> and T |=
∃r−.> v B2, there exists e ∈ ∆J with ((a0, 1), e) ∈ rJ

and e ∈ BJ2 . Since sig(B2) ⊆ Σ, and by the definition ofA′,
e is of the form (e′, i) with e′ ∈ BI2 and i ∈ {1, 2}. If i = 1,
we have A1(e′, 1) ∈ A′ and so (a0, 1) ∈ ∃r.(A1 u B2)J , as
required. If i = 2, we have A2(e′, 2) ∈ A′ and so (a0, 1) ∈
∃r.(A2 uB2)J , as required.

(b) We construct a model J of (T ,Σ) and A′ with
(a0, 1) 6∈ (∃r.(A1uB2))J . J is defined as the interpretation
corresponding to the ABox A′ extended by

{r′((a0, 1), (e, 2)) | (a0, e) ∈ r′I} ∪
{r′((a0, 2)), (e, 1)) | (a0, e) ∈ r′I},

for all roles r′ such that sig(r′)∩Σ = ∅ and T |= r′ v r, and

{r′((a0, i), (e, j)) | (a0, e) ∈ r′I , i, j ∈ {1, 2}},

for all roles r′ with sig(r′) ∩ Σ = ∅ and T 6|= r′ v r.
Clearly (a0, 1) 6∈ (∃r.(A1 u B2))J . Thus it is remains to

show that J is a model of (T ,Σ) and A′. Since no symbol
from Σ has changed its interpretation, it is sufficient to show
that J satisfies all concept and role inclusions in T .

Let s v s′ be a role inclusion in T . Since I is a model
of T , the only pairs where s v s′ can possible be refuted
are of the form ((a0, i), (b, j)) with i, j ∈ {1, 2}. Assume
((a0, i), (b, j)) ∈ sJ . Then, by definition, (a0, b) ∈ sI and
so (a0, b) ∈ s′I because I is a model of T . We distinguish
the following cases:

• T 6|= s′ v r. Then, by definition of J , ((a0, i), (b, j)) ∈
s′J since ((a0, i

′), (b, j′)) ∈ s′J for all i′, j′ ∈ {1, 2}.
• T |= s′ v r. Then T |= s v r. Note that, by construc-

tion of I, sig(s) ∩ Σ = ∅ and sig(s′) ∩ Σ = ∅. Hence,
by construction of J , (i, j) = (1, 2) or (i, j) = (2, 1).
In both cases we have ((a0, i), (b, j)) ∈ s′J as well.

To prove that all concept inclusions of T are satisfied in J
observe that BJ = (BI × {1}) ∪ (BI × {2}) holds for all
DL-Lite concepts B. Thus, J satisfies all concept inclusions
satisfied in I and, therefore, is a model of any concept inclu-
sion in T , as required.

To construct a model J of (T ,Σ) and A′ with (a0, 1) 6∈
(∃r.(A2 uB2))J swap the roles of the two copies of Ir.

Since it is known that DL-LiteR is convex, the following
Lemma proves Point 2(a) of Theorem 3.6.

Lemma B.2. Let (T ,Σ) be a DL-LiteR TBox with closed
predicates. If (T ,Σ) is safe, then CQ answering w.r.t. (T ,Σ)
coincides with CQ answering w.r.t. (T , ∅) for ABoxes that are
satisfiable w.r.t. (T ,Σ).

Proof. Let (T ,Σ) be safe and assume that A is satisfiable
w.r.t. (T ,Σ). We remind the reader of the construction of a

canonical model I of T and A (without closed predicates!)
[Kontchakov et al., 2010]. I is the interpretation correspond-
ing to an ABox Ac that is the limit of a sequence of ABoxes
A0,A1, . . .. Let A0 = A and assume a0, . . . is an infinite
list of individual names such that Ind(A0) = {a0, . . . , ak}.
Assume Aj has been defined already. If there exist i, ` such
that there exists r, s with
• T |= r v s;
• Aj |= r(ai, a`); and
• Aj 6|= s(ai, a`);

then setAj+1 = Aj∪{s(ai, a`)}. Otherwise let i be minimal
such that there exist B1, B2 with
• T |= B1 v B2;
• Aj |= B1(ai); and
• Aj 6|= B2(ai);

(if no such i exists, then set Ac := Aj). Then
• if B2 is a concept name, let Aj+1 = Aj ∪ {B2(ai)};
• if B2 = ∃s.>, then take a fresh individual bai,s and set
Aj+1 = Aj ∪ {s(ai, bai,s)}.

Now let J be the interpretation corresponding to the ABox
Ac =

⋃
i≥0Ai. It is known that J is a model of (T ,A) with

the following properties:
(a) For all CQs q(~x) and ~a ⊆ Ind(A): T ,A |= q(~a) iff
J |= q[~a].

(b) For any individual bai,s ∈ Ind(Ac) \ Ind(A) introduced
as a witness for some B2 = ∃s.>, we have B(bai,s) ∈
Ac iff T |= ∃s−.> v B, for every DL-Lite concept B.

To show that J is a model of (T ,Σ) and A it is sufficient to
prove that every assertion using Σ-symbols inAc is contained
in A. This follows from Claim 1 and Claim 2 below:

Claim 1. For all a, b ∈ Ind(A0),
• if B(a) ∈ Ac and sig(B) ⊆ Σ, then B(a) ∈ A0; and
• if r(a, b) ∈ Ac and sig(r) ⊆ Σ, then r(a, b) ∈ A0.

Claim 1 follows from Point (a) above and the assumption that
A is satisfiable w.r.t. (T ,Σ). For assume that B(a) ∈ Ac

but B(a) 6∈ A0 = A. Then T ,A |= B(a) and, therefore,
T ,A |=c(Σ) B(a). But then satisfiability of A w.r.t. (T ,Σ)
implies sig(B) ∩ Σ = ∅. The argument for role assertions
r(a, b) is similar and omitted.

Claim 2. For any a ∈ Ind(Ac) \ Ind(A0) there does not exist
any DL-Lite concept B with sig(B) ⊆ Σ such that Ac |=
B(a).

For a proof by contradiction assume that there exist an a ∈
Ind(Ac) \ Ind(A0) and DL-Lite concept B with sig(B) ⊆
Σ such that Ac |= B(a). Let a be the first such individual
introduced in the construction of Ac. By Point (b) above and
the construction of Ac there exist B1, r, a′ and i ≥ 0 such
that
• T |= B1 v ∃r.>;
• Ai |= B1(a′);



• Ai 6|= ∃r.>(a′);

• r(a′, ba′,r) ∈ Ai+1 for a = ba′,r;

• T |= ∃r−.> v B2, where B2 := B.

We show that B1, B2, and r satisfy Conditions 1 to 4 from
Definition 3.4 and thus derive a contradiction to the assump-
tion that (T ,Σ) is safe. Points 1 and 2 are clear. For Point 3,
assume that B1 = ∃r′.> for some r′ such that T |= r′ v r.
Then r′(a′, e) ∈ Ai for some e. But then, since witnesses
for role inclusions are added to Ai before witnesses for con-
cept inclusions are added to Ai, we have r(a′, e) ∈ Ai

which contradicts Ai 6|= ∃r.>(a′). For Point 4 assume that
T |= B1 v ∃r′.> for some role r′ such that sig(r′) ⊆ Σ and
T |= r′ v r. Then Ac |= ∃r′.>(a′). Then a′ ∈ Ind(A)
because otherwise a′ is an individual introduced before a
such that Ac |= B′(a′) for some B′ with sig(B′) ⊆ Σ,
and we have derived a contradiction. Then by Claim 1 and
since sig(r′) ⊆ Σ, we have r′(a′, e) ∈ A for some e. But
then, again since witnesses for role inclusions are added to
Ai before witnesses for concept inclusions are added to Ai,
r(a′, e) ∈ Ai which contradicts Ai 6|= ∃r.>(a′).
It follows from Claims 1 and 2 that J is a model of (T ,Σ)
and A. Thus, we have for all CQs q(~x) and ~a ⊆ Ind(A): if
T ,A 6|= q(~a), then J 6|= q[~a], and so T ,A 6|=c(Σ) q(~a), as
required.

To obtain a proof of Point 2(b) of Theorem 3.6, it remains
to show the following.

Lemma B.3. Let (T ,Σ) be a safe DL-LiteR TBox with
closed predicates. Then given an ABox A, the satisfiability
of A w.r.t. (T ,Σ) is in AC0.

Proof (sketch). We claim that an ABoxA is satisfiable w.r.t. a
safe (T ,Σ) iff (i) A is satisfiable w.r.t. T , (ii) T ,A |= B(a)
implies A |= B(a) for all DL-Lite concepts B over Σ, and
(iii) T ,A |= r(a, b) implies A |= r(a, b) for all roles r over
Σ.

Now we show that the three conditions above are in AC0.
(i) is already known to be in AC0 [Calvanese et al., 2007a].
To see that the other two conditions are in AC0, let ϕB(x)
be a FOQ with T ,A |= B(a) iff IA |= ϕB(a), where
IA is the interpretation corresponding to A; and let ϕr =∨
T |=svr s(x, y). Note that such a ϕB(x), whose size de-

pends only on |T | and |B|, always exists in DL-LiteR [Cal-
vanese et al., 2007a]. Then (ii) or (iii) is not satisfied iff

IA |= ϕ1 ∨ ϕ2,

where
ϕ1 = ∃x

∨
B∈X

(ϕB(x) ∧ ¬B(x))

and X is the set of all DL-Lite concepts over Σ and

ϕ2 = ∃x∃y
∨
r∈Y

(ϕr(x, y) ∧ ¬r(x, y))

where Y denotes the set of all role names in Σ. It is not hard
to see that IA |= ϕ1 ∨ ϕ2 is in AC0.

C Some Preliminaries for EL
We present the canonical model construction for EL and
show an interpolation property.

C.1 Canonical Models for EL
We start by introducing canonical models of EL TBoxes and
concepts that were first introduced in [Lutz and Wolter, 2010].
Canonical models are finite and of polynomial size in the
size of the input TBox and concept. After presenting some
lemmas from [Lutz and Wolter, 2010], we define tree-shaped
canonical models. Intuitively, tree-shaped canonical models
correspond to tree unfoldings of standard, finite, canonical
models; however, for our purposes it is more useful to give a
syntactic construction.

The canonical model IT ,C = (∆IT ,C , ·IT ,C ) of T and C
is defined as follows:

• ∆IT ,C = {aC} ∪ {aC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T )};
• aD0 ∈ AIT ,C iff T |= D0 v A, for all A ∈ NC and
aD0 ∈ ∆IT ,C ;

• (aD0
, aD1

) ∈ rIT ,C iff T |= D0 v ∃r.D1 and ∃r.D1 ∈
sub(T ) or ∃r.D1 is a tlc of D0, for all aD0

, aD1
∈

∆IT ,C and r ∈ NR.

Since concept subsumption in EL is in PTIME, IT ,C can be
constructed in time polynomial in T and C. The following
result was shown in [Lutz and Wolter, 2010] (Lemma 13).

Lemma C.1. Let C be an EL concept and T an EL TBox.
Then

• IT ,C is a model of T ;

• for all D0 with aD0
∈ ∆IT ,C and all EL concepts D1:

T |= D0 v D1 iff aD0 ∈ D
IT ,C

1

The following result is shown in [Lutz and Wolter, 2010]
(Lemma 16). It follows from the definition of canonical mod-
els by Lemma C.1.

Lemma C.2. Suppose T |= C v ∃r.D, where C, D are EL
concepts and T is an EL TBox. Then one of the following
holds:

• there is a tlc ∃r.C ′ of C such that T |= C ′ v D;

• there is a ∃r.C ′ ∈ sub(T ) such that T |= C v ∃r.C ′
and T |= C ′ v D.

Let T be an EL TBox and A a (possibly infinite) ABox.
In the construction of the tree-shaped canonical model for
(T ,A), we use extended ABoxes, i.e., sets of assertions of
the form r(a, b) and C(a), where r is a role name and C
a possibly compound EL concept. We produce a sequence
of extended ABoxes A0,A1, . . . , starting with A0 = A. In
what follows, we use additional individual names of the form
a · r1 ·C1 · · · rk ·Ck with a ∈ Ind(A0), r1, . . . , rk role names
that occur in T , and C1, . . . , Ck ∈ sub(T ). Each extended
ABox Ai+1 is obtained from Ai by applying the following
rules:

R1 if C uD(a) ∈ Ai, then add C(a) and D(a) to Ai;

R2 if Ai |= C(a) and C v D ∈ T , then add D(a) to Ai;



R3 if ∃r.C(a) ∈ Ai and there exist b ∈ Ai with r(a, b) ∈
Ai and T ,Ai |= C(b), then add C(b) to Ai; otherwise
add r(a, a · r · C) and C(a · r · C) to Ai.

Let Ac =
⋃

i≥0Ai. Note that Ac may be infinite even if A is
finite, and that none of the above rules adds anything to Ac.
Denote by JT ,A the interpretation corresponding to Ac. The
following lemma is standard:
Lemma C.3. Let T be an EL TBox andA a possibly infinite
ABox. Then
• JT ,A is a model of T and A;

• for all p ∈ ∆JT ,A \ Ind(A) and all EL concepts D:
p ∈ DJT ,A iff T |= tail(p) v D;
• for all CQs q(~x) and ~a ⊆ Ind(A): T ,A |= q(~a) iff
JT ,A |= q[~a].

We now construct the tree-shaped canonical model of an
EL TBox T and a EL concept C. A path in a concept C
is a finite sequence C0 · r1 · C1 · · · rn · Cn, where C0 = C,
n ≥ 0, and ∃ri+1.Ci+1 is a tlc of Ci, for 0 ≤ i < n. We use
paths(C) to denote the set of paths in C. If p ∈ paths(C),
then tail(p) denotes the last element of p. The canonical
ABox AC associated with C is defined by setting

AC = {r(p, q) | p, q ∈ paths(C); q = p · r · C ′}
{A(p) | A a tlc of tail(p), p ∈ paths(C)}

Noe let the tree-shaped canonincal model JT ,C be defined as
JT ,C = JT ,AC

. The following can be proved in a straight-
forward way.
Lemma C.4. Let T be an EL TBox and C a concept. Then
• JT ,C is a model of T ;

• for all p ∈ ∆JT ,C and all EL concepts D: p ∈ DJT ,C

iff T |= tail(p) v D.

C.2 Interpolation for EL
We require a certain interpolation property. This interpolation
property has been studied before for ALC and several of its
extensions in the context of query rewriting for DBoxes and
Beth definability [Seylan et al., 2009; ten Cate et al., 2011].
Note that it is different from the interpolation property inves-
tigated in [Lutz and Wolter, 2010], which requires the inter-
polant to be a TBox instead of a concept.
Lemma C.5 (EL Interpolation). Let T1, T2 be EL TBoxes
and let D0, D1 be EL concepts. Assume T1 ∪ T2 |= D0 v
D1 with sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Then there exists
an EL concept F in Σ such that T1 ∪ T2 |= D0 v F and
T1 ∪ T2 |= F v D1.

To prove Lemma C.5, we require a lemma connecting con-
cepts and ABoxes. Let A be an ABox. For a ∈ Ind(A) we
define a concept Cm

a by “unfolding” A at a up to depth m:

C0
a = (

l

A(a)∈A

A), Cm+1
a = (

l

A(a)∈A

A)u(
l

r(a,b)∈A

∃r.Cm
b )

The following is shown in [Lutz and Wolter, 2010]
(Lemma 22).

Lemma C.6. For all EL TBoxes T , ABoxes A, and EL con-
cepts C:

T ,A |= C(a) ⇔ ∃m : T |= Cm
a v C

Proof of Lemma C.5. Let T1 ∪ T2 |= D0 v D1 with
sig(T1, D0) ∩ sig(T2, D1) ⊆ Σ. Assume that the required Σ-
concept F does not exist. Consider the tree-shaped canonical
model JT1∪T2,D0

. Denote by AΣ the ABox corresponding to
the Σ-reduct of JT1∪T2,D0

. For the sake of readability, denote
the individual names in AΣ by ap instread of by p.

Claim. T1 ∪ T2,AΣ 6|= D1(aD0
).

Proof of claim. To see this, assume that T1 ∪ T2,AΣ |=
D1(aD0). By Lemma C.6, there is a Σ-concept F such that
T1 ∪ T2,AΣ |= F (aD0) and T1 ∪ T2 |= F v D1; the for-
mer yields aD0 ∈ FJT1∪T2,D0 and thus by Lemma C.4 we
obtain T1 ∪ T2 |= D0 v F . This is in contradiction to our
assumption that no such concept F exists. a

Consider the canonical tree model JT1∪T2,AΣ and let J
be the union of the sig(T1, D0)-reduct of JT1∪T2,D0 and of
JT1∪T2,AΣ

. Note that ∆JT1∪T2,D0 ⊆ ∆JT1∪T2,AΣ and J can
be constructed by starting with the interpretation JT1∪T2,AΣ

and then expanding someXJT1∪T2,AΣ , forX ∈ sig(T1, D0)\
Σ. J satisfies T1 ∪ T2, but refutes D0 v D1.

D Proofs for Section 4
We now prove Theorem 4.4. We split Part 1 of Theorem 4.4
into two parts, and begin with the case in which condition
3(s1) for non-safeness is satisfied.

Lemma D.1. Let (T ,Σ) be a EL TBox with closed predicates
such that safeness is violated by the inclusion C v ∃r.D
because 3(s1) holds: r 6∈ Σ and sig(D) ∩ Σ 6= ∅. Then
convexity fails and there exists a directed tree CQ q(a) such
that answering q(a) w.r.t. (T ,Σ) is coNP-hard.

Proof. Assume C v ∃r.D with the properties of Lemma D.1
is given. Consider the canonical model IT ,C of T and C (see
Section C.1). Assume w.l.o.g. that C does not occur in T (if
it does, replace C by A u C for a fresh concept name A).
Note that by our assumptions there is no aE ∈ ∆IT ,C with
(aE , aC) ∈ sIT ,C for any role name s. Let

S = {aE ∈ ∆IT ,C | (aC , aE) ∈ rIT ,C ,∃r.E is not a tlc of C}

Let IS be the interpretation obtained from IT ,C by removing
all pairs (d, d′) with d′ ∈ S from rIT ,C . Observe that aC ∈
CIS . Let AS be the ABox corresponding to IS and let A
be the disjoint union of two copies of AS . We denote the
elements of the first copy by (d, 1) for d ∈ ∆IT ,C and the
elements of the second copy by (d, 2), for d ∈ ∆IT ,C . Let
A1 and A2 be fresh concept names and

A′ = A∪{A1(d, 1) | d ∈ ∆IT ,C}∪{A2(d, 2) | d ∈ ∆IT ,C}

If some concept name E ∈ Σ occurs in D, then fix one such
E and denote by Di the resulting concept after one occur-
rence of E is replaced by Ai u E. Similarly, if no concept
name from Σ occurs in D, then let s ∈ Σ be such that a



concept of the form ∃s.G occurs in D. Denote by Di the re-
sulting concept after one occurrence of ∃s.G is replaced by
Ai u ∃s.G.

Claim 1.
(1) (T ,A′) |=c(Σ) ∃r.D1(aC , 1) ∨ ∃r.D2(aC , 1)
(2) (T ,A′) 6|=c(Σ) ∃r.Di(aC , 1) for i = 1, 2.

(1) is straightforward using the condition that T |= C v
∃r.D. (2) We construct a model J of (T ,Σ) and A′ with
(aC , 1) 6∈ (∃r.D1)J . J is defined as the interpretation cor-
responding to the ABox A′ extended by

{r((aC , 1), (e, 2)) | e ∈ S} ∪ {r((aC , 2)), (e, 1)) | e ∈ S}

Since IT ,C is a model of T it is readily checked that J is
a model of (T ,Σ) and A′. Moreover, (aC , 1) 6∈ (∃r.D1)J .
To prove this assume (aC , 1) ∈ (∃r.D1)J . Then one of the
following two conditions holds:

• there exists a tlc ∃r.C ′ of C such that (aC′ , 1) ∈ DJ1 ;

• there exists aC′ with (aC , aC′) ∈ rIT ,C such that
(aC′ , 2) ∈ DJ1 .

The first condition leads to a contradiction since it implies, by
Lemma C.1, that T |= C ′ v D for a tlc ∃r.C ′ of C. Hence
C v ∃r.D does not violate safeness of (T ,Σ). The second
condition cannot hold since no point (aC′ , 2) can reach along
a role-path in J any point in the first copy of AS and A1

applies only to points in the first copy (here we need that aC
is not reachable).

The construction of a model J of (T ,Σ) and A′ with
(aC , 1) 6∈ (∃r.D2)J is similar and left to the reader.

The coNP-hardness proof is now exactly the same as in
Example 3.1.

Lemma D.2. Let (T ,Σ) be an EL TBox with closed pred-
icates such that safeness is violated by C v ∃r.D because
3(s2) holds. Then convexity fails and there exists a directed
tree CQ q(a) such that answering q(a) w.r.t. (T ,Σ) is coNP-
hard.

Proof. Consider the interpretation IS from the the proof of
Lemma D.1 and letAS be the corresponding ABox. Consider

K = {G | ∃r.G ∈ sub(T ), T |= C v ∃r.G}

Since there is no tlc ∃r.C ′ of C with T |= C ′ v D, by a
result of [Lutz and Wolter, 2010] (Lemma 16), there exists
G ∈ K with T |= G v D.

Claim 1. For all G ∈ K: T 0 ∪ T 1 6|= G0 v D1.

Assume Claim 1 does not hold. Let G ∈ K with T 0 ∪ T 1 |=
G0 v D1. By Lemma C.5, there exists a Σ-concept F such
that T 0 ∪ T 1 |= G0 v F and T 0 ∪ T 1 |= F v D1. Then
T |= G v F and T |= F v D. We have T |= C v ∃r.G.
Hence T |= C v ∃r.F and we have derived a contradiction
to Condition 3(s2).

By Claim 1 we can take the canonical models JG :=
IT 0∪T 1,G0 for any G ∈ K and obtain for aG := aG0 that

aG 6∈ (D1)JG . Let AG,Σ be the Σ-reduct of the ABox cor-
responding to JG. We assume that the Ind(AG,Σ) are mutu-
ally disjoint, for G ∈ K, and that aG ∈ Ind(AG,Σ), for all
G ∈ K.

Claim 2. For every G ∈ K, there exist
(1) a model I1

G of (T ,Σ) and AG,Σ whose domain coin-
cides with Ind(AG,Σ) and for which aG ∈ GI

1
G and aG ∈

HI
1
G implies T |= G v H , for all EL concepts H with

sig(H) ⊆ sig(T , C,D);
(2) a model I2

G of (T ,Σ) and AG,Σ whose domain coin-
cides with Ind(AG,Σ) such that aG 6∈ DI

2
G and aG ∈ HI

2
G

implies T |= G v H , for all EL concepts H with sig(H) ⊆
sig(T , C,D).

The interpretation I1
G is obtained from JG by interpreting

all non-Σ-symbols X ∈ sig(T , C,D) as XI
1
G := (X0)JG .

The interpretation I2
G is obtained from JG by interpreting all

non-Σ-symbols X ∈ sig(T , C,D) as XI
2
G := (X1)JG .

Introduce two copiesA1
G,Σ andA2

G,Σ ofAG,Σ, forG ∈ K.
We denote the elements of the first copy by (a, 1), for a ∈
Ind(AG,Σ) and the elements of the second copy by (a, 2), for
a ∈ Ind(AG,Σ). Now define the ABox A by taking two fresh
concept names A1 and A2 and the union

AS ∪
⋃

G∈K
A1

G,Σ ∪ A2
G,Σ

and the additional assertions
• r(aC , (aG, 1)), r(aC , (aG, 2)), for every G ∈ K;
• A1(aG, 1), for every G ∈ K;
• A1(aD′), for every tlc ∃r.D′ of C;
• A2(aG, 2), for every G ∈ K.

Claim 3.
(1) T ,A |=c(Σ) ∃r.(A1 uD)(aC) ∨ ∃r.(A2 uD)(aC).
(2) T ,A 6|=c(Σ) ∃r.(Ai uD)(aC), for i = 1, 2.

(1) is straightforward since T |= C v ∃r.D.
(2) We first show T ,A 6|=c(Σ) ∃r.(A2uD)(aC). The inter-

pretation J showing this is obtained by expanding all A2
G,Σ,

G ∈ K, to I2
G and allA1

G,Σ, G ∈ K, to I1
G. The ABoxAS is

transformed into the interpretation IS . Using the properties
of I1

G and I2
G from Claim 2, it is readily checked that J is a

model of (T ,Σ) and A. Moreover, aC 6∈ (∃r.(A2 u D))J

since (aG, 2) 6∈ DJ for any G ∈ K (by the properties of I2
G

from Claim 2).
We now show T ,A 6|=Σ ∃r.(A1 u D)(aC). The inter-

pretation J showing this is obtained by expanding all A2
G,Σ,

G ∈ K, to I1
G and all A1

G,Σ, G ∈ K, to I2
G. The ABox

AS is again transformed into IS . Using the properties of I1
G

and I2
G from Claim 2, it is readily checked that J is a model

of (T ,Σ) and A. Moreover, aC 6∈ (∃r.(A1 u D))J since
aC′ 6∈ DJ for any tlc ∃r.C ′ of C and since (aG, 1) 6∈ DJ

for any G ∈ K.
The coNP-hardness proof is exactly the same as in Exam-

ple 3.1.



We come to the proof of Part 2 of Theorem 4.4. We first
show (a):

Lemma D.3. Let (T ,Σ) be safe. Then CQ answering
w.r.t. (T ,Σ) coincides with CQ answering w.r.t. T without
closed predicates for ABoxes that are satisfiable w.r.t. (T ,Σ).

Proof. Let (T ,Σ) be safe. Consider an ABox A that is satis-
fiable w.r.t. (T ,Σ).

We show that JT ,A is a model of (T ,Σ) and A (from
which the lemma follows by Lemma C.3).

To show this, it is sufficient to observe

• if a ∈ AJT ,A for some a ∈ Ind(A) and A ∈ Σ, then
A(a) ∈ A.

• if a ∈ (∃r.>)JT ,A for some a ∈ Ind(A) and r ∈ Σ, then
there exists b ∈ Ind(A) with r(a, b) ∈ A.

• if p ∈ Ind(Ac) \ Ind(A), then there is no Σ-concept
F 6= > such that p ∈ FJT ,A .

Point 1 follows from Lemma C.3 since A is satisfiable
w.r.t. (T ,Σ). For Point 2, assume this is not the case. Then
T ,A |= ∃r.C(a) for some C such that there does not exist
b ∈ A with r(a, b) ∈ A and T ,A |= C(b). But then, by
Lemma C.6, there exists m such that T |= Cm

a v ∃r.C and
there is no tlc ∃r.Cm−1

b of Cm
a with T |= Cm−1

b v C. If
sig(∃r.C) ⊆ Σ we have a contradiction to the condition that
A is satisfiable w.r.t. (T ,Σ). Otherwise, sig(C) 6⊆ Σ and we
have a contradiction to the assumption that (T ,Σ) is safe.

To show Point 3, assume such p and F exist. Then p =
ar1C1 · · · rkCk for some a ∈ Ind(A). We assume that no
example shorter than p exists. Then r1 6∈ Σ. By Lemma C.3,
T ,A |= ∃r1.(C1 u · · · ∃r.k.(Ck u F )). By construction of
JT ,A, there is no b with r1(a, b) ∈ A such that T ,A |=
C1(b). From

T ,A |= ∃r1.(C1 u · · · ∃r.k.(Ck u F ))(a)

we obtain that there exists m with T |= Cm
a v ∃r1.(C1 u

· · · ∃r.k.(Ck u F )). Moreover, there exists no tlc C ′ of Cm
a

with T |= C ′ v (C1 u · · · ∃r.k.(Ck u F )). We thus have
derived a contradiction to (T ,Σ) being safe.

To show Condition (b) for Theorem 4.4 it now suffices to
show:

Lemma D.4. Let (T ,Σ) be safe. Then it can be decided in
polytime (data complexity) whether an ABox A is satisfiable
w.r.t a safe (T ,Σ).

Proof. We first the show the following

Claim 1. If (T ,Σ) is safe, then there exists an EL TBox
T ′ that is equivalent to T such that for any C v D ∈ T ′,
sig(D) ⊆ Σ or sig(D) ∩ Σ = ∅.

To prove Claim 1 we modify the TBox T as follows: first,
replace any C v D with D a proper conjunction of concepts
by the set of C v D′ with D′ a tlc of D. Second, replace
recursively,

• anyC v ∃r.D such that sig(∃r.D) 6⊆ Σ for which exists
a tlc ∃r.C ′ of C with T |= C ′ v D by the inclusions
C ′ v D′ with D′ a tlc of D;

• any C v ∃r.D with r ∈ Σ and sig(D) 6⊆ Σ by C v
∃r.F and F v D′ for every tlc D′ of D, where F is a
Σ-concept with T |= C v ∃r.F and T |= F v D. Such
a Σ-concept F exists by Condition 3(s2).

The resulting TBox T ′ is as required and Claim 1 is proved.
Now Lemma D.4 follows from the observation that A is

satisfiable w.r.t. a safe (T ,Σ) iff, for T ′ of the form above,
whenever T ,A |= F (a) for some C v F ∈ T ′ with
sig(F ) ⊆ Σ, then A |= F (a). This condition can be checked
in polytime (data complexity).

We now turn to the proof of Theorem 4.7.
Lemma 4.6. If T satisfies Conditions (t1) and (t2), then
(T ,Σ) is safe iff it is strongly safe.

Proof. Suppose that T satisfies Conditions (t1) and (t2).
(⇒) Suppose that (T ,Σ) is not strongly safe, that is, there
is some C v ∃r.D ∈ T satisfying (c1) or (c2). Then
sig(∃r.D) 6⊆ Σ and Condition (t2) yields

there is no tlc ∃r.C ′ of C with T |= C ′ v D. (∗)

If C v ∃r.D satisfies Condition (c1), then r 6∈ Σ and there
is some conceptE such that T |= D v E and sig(E)∩Σ 6= ∅.
Now, C v ∃r.(D u E) makes T unsafe via Condition 3(s1):

1. T |= C v ∃r.(D u E) since C v ∃r.D ∈ T and
T |= D v E.

2. there is no tlc ∃r.C ′ of C with T |= C ′ v D u E; this
follows from (∗).

3. r /∈ Σ and sig(D u E) ∩ Σ 6= ∅ since sig(E) ∩ Σ 6= ∅.
If C v ∃r.D satisfies Condition (c2), then it is easily shown
that C v ∃r.D makes T unsafe via Condition 3(s2).

(⇐) Suppose that T is not safe. Then there is some EL inclu-
sion C v ∃r.D such that T |= C v ∃r.D,

there is no tlc ∃r.C ′ of C with T |= C ′ v D, (∗∗)

and one of Conditions 3(s1) and 3(s2) is satisfied. In the fol-
lowing, we use the tree-shaped canonical modelJT ,C defined
in Section C.1. Note that C ∈ ∆JT ,C and Lemma C.4 yields
C ∈ (∃r.D)JT ,C . Thus there is some d ∈ ∆JT ,C such that
(C, d) ∈ rJT ,C and d ∈ DJT ,C . By definition of JT ,C ,
d = C · r · E for some EL concept E ∈ sub(C) ∪ sub(T ).
By Lemma C.4 and d ∈ DJT ,C , we have T |= E v D.

Let AC = A0,A1, . . . be the ABoxes used in the con-
struction of JT ,C . By definition of AC and by (∗∗), we have
C · r · E 6∈ paths(C), that is, d = C · r · E must have been
generated by R3. Consequently, there is an i ∈ N such that
∃r.E(C) ∈ Ai, andAi+1 = Ai∪{r(C,C·r·E), E(C ·r·E)}.
We aim at showing that the assertion ∃r.E(C) was generated
by an application of R2. This is essentially a consequence of
the following.

Claim. For all i ≥ 0: Ai does not contain assertions of the
form C1 u C2(C).

Proof of claim. The proof is by induction on i. The base case
is trivial by definition ofAC . For the inductive step, we make
a case distinction according to the rule applied:



• R1: By the inductive hypothesis, there is no concept as-
sertion of the form C1 u C2(C) ∈ Ai. This means that
R1 was applied to some C1 u C2(p), where p 6= C.
Hence the inductive hypothesis holds for Ai+1.
• R2: In this case, Ai+1 = Ai ∪ {D2(p)} for some D1 v
D2 ∈ T . By Condition (t1), we know that D2 is not of
the form C1 uC2. Hence the inductive hypothesis holds
for Ai+1.
• R3: Since C is the root of Ai, this rule never adds any

concept assertions of the form C ′(C). Hence the induc-
tive hypothesis holds for Ai+1.

a
Since A0 contains no concept assertions of the form
∃r.C ′(p), there is some j ∈ {0, . . . , i − 1} such that
∃r.E(C) ∈ Aj+1 \ Aj . By the claim, this addition is due to
R2. Thus there is some C ′ v ∃r.E ∈ T with Aj |= C ′(C).
From the latter, we obtain C ∈ (C ′)JT ,C and this implies by
Lemma C.4 that T |= C v C ′. Since C v ∃r.D makes T
unsafe, one of the following cases applies:
• C v ∃r.D satisfies Condition 3(s1).

Then r 6∈ Σ and sig(D)∩Σ 6= ∅. Since T |= E v D, we
thus have that C ′ v ∃r.E ∈ T satisfies Condition (c1),
therefore T is not strongly safe.
• C v ∃r.D satisfies Condition 3(s2).

Then r ∈ Σ, sig(D) 6⊆ Σ, and
(†) there is no Σ-concept F with T |= C v ∃r.F and
T |= F v D.

We aim at showing that C ′ v ∃r.E ∈ T satisfies
Condition (c2). We already know that r ∈ Σ. Since
T |= C v C ′ v ∃r.E and T |= E v D, (†) yields
sig(E) 6⊆ Σ. It thus remains to show that there is no
Σ-concept F with T |= C ′ v ∃r.F and T |= F v E.
This, however, is a consequence of (†) and the facts that
T |= C v C ′ and T |= E v D.

We now show how to check Conditions (c1) and (c2) for
strong safeness in PTIME, when the TBox T satisfies (t1)
and (t2). We start with the former. Consider the canonical
model IT ,>. We define the notion of a marked node in IT ,>
inductively as follows:
• Every aC ∈ ∆IT ,> with

– aC ∈ AIT ,> for some A ∈ Σ; or
– (aC , aD) ∈ rIT ,> for some aD ∈ ∆IT ,> and r ∈

Σ

is a marked node.
• If (aC , aD) ∈ rIT ,> and aD is a marked node then aC

is also a marked node.
Since the size of IT ,> is polynomial in the size of T , the
following lemma shows that Condition (c1) can be checked
in PTIME.
Lemma D.5. Let C v ∃r.D ∈ T . Then C v ∃r.D satisfies
(c1) if and only if r 6∈ Σ and aD is a marked node in IT ,>.

Proof. (⇒) Suppose C v ∃r.D ∈ T satisfies (c1), i.e., r 6∈
Σ and there is some concept E such that T |= D v E and
sig(E) ∩ Σ 6= ∅. We need to show that aD is a marked node.
By the definition of IT ,>, we have aD ∈ ∆IT ,> . Then by
T |= D v E and Lemma C.1, aD ∈ EIT ,> . It thus suffices
to show the following.

Claim. For all d ∈ ∆IT ,> and all EL concepts C with
sig(C) ∩ Σ 6= ∅, if d ∈ CIT ,> , then d is a marked node.

Proof of claim. Suppose d ∈ CIT ,> . The proof is by induc-
tion on the structure of C.

• C = A for some A ∈ NC. Then A ∈ Σ and thus d is a
marked node.

• C is a conjunction of concepts. Since sig(C) ∩ Σ 6= ∅,
there is some tlc C ′ of C with sig(C ′)∩Σ 6= ∅. Then by
the inductive hypothesis, d is a marked node.

• C = ∃s.C ′. Since d ∈ CIT ,> , there is some d′ ∈ ∆IT ,>

such that (d, d′) ∈ sIT ,> and d′ ∈ (C ′)IT ,> . Since
sig(C) ∩ Σ 6= ∅, we have s ∈ Σ or sig(C ′) ∩ Σ 6= ∅. If
s ∈ Σ, then by the base case in the definition of a marked
node, d is a marked node. If sig(C ′) ∈ Σ, then by the
inductive hypothesis, d′ is a marked node and thus d is
also a marked node.

a

(⇐) Let C v ∃r.D ∈ T with r 6∈ Σ and aD a marked
node. By the inductive definition of a marked node, we can
construct a concept

E = ∃r1. · · · ∃rn.C ′

with n ≥ 0 such that (aD, d1) ∈ r
IT ,>
1 , . . . , (dn−1, dn) ∈

r
IT ,>
n , di for i ∈ {1, . . . , n} is a marked node, dn ∈ (C ′)IT ,>

and

• C ′ = A for some A ∈ Σ; or

• C ′ = ∃s.D′, where (dn, dD′) ∈ sIT ,> and s ∈ Σ.

By construction, aD ∈ EIT ,> and sig(E) ∩ Σ 6= ∅. From
the former and Lemma C.1, we have T |= D v E. Thus
C v ∃r.D ∈ T satisfies (c1).

It is an immediate consequence of the following lemma
that Condition (c2) can also be checked in PTIME.

Lemma D.6. Let C v ∃r.D ∈ T . Then the following are
equivalent:

1. C v ∃r.D satisfies (c2)

2. r ∈ Σ, sig(D) 6⊆ Σ, and there is no ∃r.G ∈ sub(T )
such that

T |= C v ∃r.G and (T )0 ∪ (T )1 |= G0 v D1.

Proof. (2 ⇒ 1). Suppose C v ∃r.D ∈ T does not satisfy
(c2). Then one of the following holds:

1. r 6∈ Σ;

2. sig(D) ⊆ Σ; or



3. r ∈ Σ, sig(D) 6⊆ Σ, and there exists a Σ-conceptE with
T |= C v ∃r.E and T |= E v D.

If item 1 or item 2 holds then we are done. Otherwise, item 3
holds.

By T |= C v ∃r.E, C ∈ sub(T ), and Lemma C.2, there
is some ∃r.G ∈ sub(T ) such that T |= C v ∃r.G and T |=
G v E. It remains to show (T )0 ∪ (T )1 |= G0 v D1.

Claim. (T )0 |= G0 v E.

Proof of claim. Let I be a model of (T )0. We show that I |=
G0 v E, which implies the claim. Define the interpretation
J as follows:

• ∆J = ∆I ;
• for all P ∈ NC ∪ NR,

PJ =

 P I if P ∈ Σ
(P 0)I if P ∈ sig(G, T ) \ Σ
∅ otherwise

Now for all d ∈ ∆I = ∆J and EL conceptsC with sig(C) ⊆
sig(G, T ) ∪ Σ, we have

d ∈ (C0)I iff d ∈ CJ . (*)

This implies that J is a model of T . Then by T |= G v E,
we obtain J |= G v E. Then using (*) again, we obtain that
I |= G0 v E, which is what we wanted to show. a

Claim. (T )1 |= E v D1.

Proof of claim. Let I be a model of (T )1. We show that I |=
E v D1, which implies the claim. Define the interpretation
J as follows:

• ∆J = ∆I ;
• for all P ∈ NC ∪ NR,

PJ =

 P I if P ∈ Σ
(P 1)I if P ∈ sig(D, T ) \ Σ
∅ otherwise

Now for all d ∈ ∆I = ∆J and EL conceptsC with sig(C) ⊆
sig(D, T ) ∪ Σ, we have

d ∈ (C1)I iff d ∈ CJ . (†)

This implies that J is a model of T . Then by T |= E v D,
we obtain J |= E v D. Then using (†) again, we obtain that
I |= E v D1, which is what we wanted to show. a

Now by the last two claims, we have (T )0 |= G0 v E and
(T )1 |= E v D1. These immediately yield (T )0 ∪ (T )1 |=
G0 v D1, which is what we wanted to show.

(1 ⇒ 2) Suppose that item 2 in the lemma does not hold.
Then one of the following is true:

1. r 6∈ Σ;

2. sig(D) ⊆ Σ; or

3. r ∈ Σ, sig(D) 6⊆ Σ, and there is some ∃r.G ∈ sub(T )
such that T |= C v ∃r.G and (T )0∪(T )1 |= G0 v D1.

Each of the first two items above immediately implies that
C v ∃r.D does not satisfy (c2). Hence it remains to consider
item 3. Suppose that item 3 holds. It suffices to show that
there is some Σ-concept E with T |= C v ∃r.E and T |=
E v D.

By (T )0 ∪ (T )1 |= G0 v D1 and sig(G0, (T )0) ∩
sig(D1, (T )1) ⊆ Σ we obtain by Lemma C.5 that there is
some Σ-concept E such that (T )0 ∪ (T )1 |= G0 v E and
(T )0 ∪ (T )1 |= E v D1.

Claim. T |= C v ∃r.E.

Proof of claim. Since T |= C v ∃r.G, it is enough to show
that T |= G v E. Suppose for contradiction that T 6|= G v
E. Then there is some model I of T such that I 6|= G v E,
i.e., there is some d0 ∈ ∆I such that d0 ∈ GI and d0 6∈ EI .
Define the interpretation J as follows:

• ∆J = ∆I

• for all P ∈ NC ∪ NR,

PJ =

 XI if P = X0 for some X ∈ sig(T ) \ Σ
XI if P = X1 for some X ∈ sig(T ) \ Σ
P I otherwise

Now for all d ∈ ∆J = ∆I and all EL concepts C ∈ sub(T ),
we have that d ∈ CI iff d ∈ (C0)J iff d ∈ (C1)J . This
implies J |= (T )0 ∪ (T )1; and by G ∈ sub(T ), it implies
d0 ∈ (G0)J . Since the interpretation of the symbols in Σ did
not change, we still have d0 6∈ EJ . But then T 0 ∪ T 1 6|=
G0 v E, which is a contradiction. a

The missing fact that T |= E v D can be shown analogously
to the previous claim.

It remains to prove that checking safeness of EL-TBoxes
is PTIME-hard. This is done by reduction from subsumption
in EL, which is a known PTIME-hard problem. Thus, let T
be an EL-TBox and A, B concept names. We may assume
that T satisfies conditions (t1) and (t2). Let

T ′ = T ∪ {A′ v A,E v ∃r.B,E v ∃r.A′}

where E, A′, and r are fresh predicates, and set Σ = {A′, r}.
Lemma D.7. T |= A v B iff (T ′,Σ) is safe.

Proof. “if”. Assume that T ′ is not safe. Let C v ∃s.D ∈ T ′
be a witness satisfying Condition (c1) or (c2). Assume first
that Condition (c1) holds. Thus, s 6∈ Σ and sig(D) ∩ Σ 6= ∅.
We have r 6= s and soC v ∃s.D ∈ T . Either r orA′ occur in
D and so we have derived a contradiction since they are fresh
symbols not in T . Now assume Condition (c2) holds. Then
s = r and since r is fresh the inclusion C v ∃r.D coincides
with E v ∃r.B. But then T 6|= A v B since otherwise there
exists a Σ-concept (namely A′) such that T ′ |= E v ∃r.A′
and T ′ |= A′ v B.

“only if”. Assume T 6|= A v B. We have T ′ |= E v
∃r.B and there is no Σ-concept E′ with T ′ |= E v ∃r.E′
and T ′ |= E′ v B. Thus T ′ is not safe.



E Proof for Section 5
Formally, a FOQ q(~x) is domain-independent if for all inter-
pretations I and J such that P I = PJ for all P ∈ sig(q(~x)),
we have I |= q[~d] iff J |= q[~d] for all tuples ~d ⊆ ∆I ∪∆J .
Intuitively, the truth value of a domain-independent FOQ de-
pends only on the interpretation of the predicates, but not on
the actual domain of the interpretation. For example, ¬A(x),
is not domain-independent whereasB(x)∧¬A(x) is domain-
independent.

Let (T ,Σ) be a safe DL-LiteR TBox or a safe EL TBox
with closed predicates and let ϑ(~x) be a CQFO(Σ). In the
following, we will only consider satisfiable ABoxes w.r.t.
(T ,Σ). This is w.l.o.g. because unsatisfiable ABoxes do
not affect the results we want to show (cf. Lemma B.3 and
Lemma D.4).

Now the case where ϑ(~x) is a CQ and (T ,Σ) is a DL-LiteR
TBox is covered by Theorem 3.6; and the case where ϑ(~x) is
a CQ and (T ,Σ) is an EL TBox is covered by Theorem 4.4.
Thus, suppose that ϑ(~x) is a CQFO(Σ) that is not a CQ. This
means that there is some conjunct ϕ of ϑ(~x) that is a complex,
i.e., not of the formA(t) or r(t, t′), domain-independent first-
order formula over Σ. W.l.o.g. we assume that ϕ is the only
domain-independent first-order formula over Σ in ϑ(~x); be-
cause if this is not the case then we can reorder the conjuncts
of ϑ(~x) so that domain-independent first-order formula over
Σ come before other formulae meaning that the conjunction
of initial formulae over Σ is now a domain-independent first-
order formula over Σ itself.

Now if ϑ = ϕ then by the domain-independence of ϕ and
sig(ϕ) ⊆ Σ, it immediately follows that for every satisfiable
ABox A w.r.t. (T ,Σ) and every ~a ⊆ Ind(A), we have

T ,A |=c(Σ) ϑ(~a) iff IA |= ϕ(~a),

where IA is the interpretation corresponding toA. Thus, sup-
pose that ϑ(~x) = ∃y1 . . . ∃yn(ϕ ∧ ψ1 ∧ . . . ∧ ψm), where
n ≥ 0, m ≥ 1, and sig(ψi) ∩ Σ = ∅ for all i ∈ {1, . . . ,m}.
Note that

(i) some of the variables in y1, . . . , yn may not occur free
in ϕ, and

(ii) some others from the same sequence may not occur free
in any one of ψi.

W.l.o.g. let y1, . . . , yk be the sequence of variables of type
(i), yk+1, . . . , yj be the sequence of variables of type (ii), and
yj+1, . . . , yn be the remaining sequence of variables, where
k ≤ j ≤ n. We rewrite ϑ(~x) to obtain the formula

∃yj+1 . . . ∃yn[∃yk+1 . . . ∃yjϕ∧∃y1 . . . ∃yk(ψ1∧ . . .∧ψm)].

Obviously this formula is equivalent to ϑ(~x), and
∃y1 . . . ∃yk(ψ1 ∧ . . . ∧ ψm) is a CQ.

Thus, we can assume w.l.o.g. that

ϑ(~x) = ∃~y(ϕ(~x, ~y) ∧ ψ(~x, ~y))

where ϕ is a domain-independent first-order formula with
sig(ϕ) ⊆ Σ, and ψ is a CQ with sig(ψ) ∩ Σ = ∅.

Let A be a satisfiable ABox w.r.t. (T ,Σ) and let ~a be a
tuple of individual names from Ind(A) that is of the same

length as ~x. Using the domain-independence of ϕ, sig(ϕ) ⊆
Σ, and the fact that every model of (T ,Σ) and A agrees on
the extension of predicates in Σ with IA we conclude

T ,A |=c(Σ) ϑ(~a) iff

∃~b ⊆ Ind(A) such that T ,A |=c(Σ) ϕ(~a,~b) ∧ ψ(~a,~b),
(1)

where ~b is of the same length as ~y. Obviously, for all ~c ⊆
Ind(A),

T ,A |=c(Σ) ϕ(~a,~c) ∧ ψ(~a,~c) iff

T ,A |=c(Σ) ϕ(~a,~c) and T ,A |=c(Σ) ψ(~a,~c).
(2)

Now by the domain-independence of ϕ, sig(ϕ) ⊆ Σ, and the
fact that any model of (T ,Σ) and A agrees on the extension
of predicates in Σ with IA we obtain for all ~c ⊆ Ind(A)

T ,A |=c(Σ) ϕ(~a,~c) iff IA |= ϕ(~a,~c). (3)

So far we have assumed that T is either a DL-LiteR TBox
or an EL TBox. In the rest of the proof we will distinguish
between these two cases to show the desired results. In both
cases though, we make use of (1), (2), and (3).

DL-LiteR
We know by Lemma B.2 and [Calvanese et al., 2007a] that

there is some domain-independent FOQψ′ such that for every
satisfiable ABox A w.r.t. (T ,Σ) and every ~c ⊆ Ind(A), we
have

T ,A |=c(Σ) ψ(~a,~c) iff IA |= ψ′[~a,~c]. (4)

We have enough results to show the theorem for DL-LiteR.
The following are equivalent:

• T ,A |=c(Σ) ϑ(~a)

• ∃~b ⊆ Ind(A) such that IA |= ϕ(~a,~b) ∧ ψ′(~a,~b)
(by (1), (2), (3), and (4))

• IA |= ∃~y(ϕ(~a, ~y) ∧ ψ′(~a, ~y)).

Hence CQFO(Σ)-answering w.r.t. safe DL-LiteR TBoxes with
closed predicates is in AC0.

EL
By (1), (2), and (3), the following are equivalent

• T ,A |=c(Σ) ϑ(~a)

• ∃~b ⊆ Ind(A) such that IA |=c(Σ) ϕ(~a,~b) and
T ,A |=c(Σ) ψ(~a,~b).

This suggests an algorithm for CQFO(Σ)-answering in EL. In
detail, the algorithm goes through all tuples ~b ⊆ Ind(A) un-
til one that satisfies IA |= ϕ(~a,~b) and T ,A |=c(Σ) ψ(~a,~b)
can be found. There are polynomially many such tuples in
the size of the data since |~b| is fixed, IA |= ϕ(~a,~b) can be
checked in AC0, and T ,A |=c(Σ) ψ(~a,~b) is standard CQ an-
swering in EL, which can be done in PTIME. Hence for safe
EL TBoxes with closed predicates, CQFO(Σ)-answering is in
PTIME.



F Proof for Section 6
Lemma 6.1.

1. A is satisfiable w.r.t. (T ,Σ) iff I is a model of (T ,Σ)
and A;

2. if A is satisfiable w.r.t. (T ,Σ), then for all CQs q and
~a ⊆ Ind(A), we have T ,A |=c(Σ) q[~a] iff I |= q[~a].

Proof. As a preliminary, we note the following, which is im-
mediate in view of the construction of I (no matter whether
or not A is satisfiable w.r.t. (T ,Σ)).

Claim. If a ∈ AI , then T ,A |=c(Σ) A(a).

For Point 1, it suffices to prove the contrapositive of the “if”
direction. Thus assume that I is not a model of (T ,Σ) and
A. Since I is by definition a model of A and (∅,Σ), it must
violate one of the CIs in T . By Point (c) of the construction
of I, the last CI ∃r.(A u B) v A in T is not violated. This
leaves us with two cases:
• > v ∃r.A is violated.

By Point (b) of the construction of I, this means that
there is an a0 ∈ Ind(A) such that whenever r(a0, a) ∈
A, then there is an r(a, b) ∈ A with B(b) /∈ A. Then
A is unsatisfiable w.r.t. (T ,Σ) since any model J of A
and (T ,Σ) has to make A true at some a ∈ Ind(A) with
r(a0, a) ∈ T (by the first CI in T and since r ∈ Σ), but
this means (by the second CI in T and sinceB ∈ Σ) that
whenever r(a, b) ∈ A, then B(b) ∈ A.
• ∃r−.A v B is violated.

Then there are a, b ∈ Ind(A) such that (a, b) ∈ rI and
a ∈ AI and b /∈ BI . By the claim, any model J of A
and (T ,Σ) has to make A true at a. Moreover, b /∈ BI
implies B(b) /∈ A, and thus B ∈ Σ implies that J has
to make B false at b, thus also violates the second CI in
T . Consequently, A is not satisfiable w.r.t. (T ,Σ).

Now for Point 2. Let A be satisfiable w.r.t. (T ,Σ) and take
a CQ q and ~a ⊆ Ind(A). By Point 1, I is a model of (T ,Σ)
and A. Thus, the “only if” direction is immediate. For the
“if” direction, assume that I |= q[~a]. By the claim and by
construction of I, we can find I in any model J of (T ,Σ)
and A, that is, pI ⊆ pJ for all predicates p. Thus, J |= q[~a]
for all these J .


