
Generalized Satisfiability

for the Description Logic ALC

Arne Meier

Leibniz Universität Hannover, Institut für Theoretische Informatik,

Appelstr. 4, 30167 Hannover, Germany

Thomas Schneider∗

Universität Bremen, Fachbereich 3, Postfach 330440, 28334 Bremen, Germany

Abstract

The standard reasoning problem, concept satisfiability, in the basic description
logic ALC is PSpace-complete, and it is ExpTime-complete in the presence
of general concept inclusions. Several fragments of ALC, notably logics in the
FL, EL, and DL-Lite families, have an easier satisfiability problem; for some
of these logics, satisfiability can be decided in polynomial time. We classify
the complexity of the standard variants of the satisfiability problem for all
possible Boolean and quantifier fragments of ALC with and without general
concept inclusions.

Keywords: Satisfiability, Ontologies, ALC, Complexity, Post’s lattice,
Description logic

1. Introduction

Standard reasoning problems of description logics, such as satisfiability or
subsumption, have been studied extensively. Depending on the expressivity
of the logic, the complexity of reasoning for DLs between fragments of the
basic DL ALC and the OWL 2 standard SROIQ is between trivial and
N2ExpTime.

∗Corresponding author
Email addresses: meier@thi.uni-hannover.de (Arne Meier),

tschneider@informatik.uni-bremen.de (Thomas Schneider)

Preprint submitted to Theoretical Computer Science February 12, 2013

For ALC, concept satisfiability is PSpace-complete [37]. The complexity
is the same for concept satisfiability with respect to theories that are acyclic
terminologies [10; 16]. Such theories consist of concept inclusions (CIs) where
the left-hand side is atomic, representing partial definitions of that term, and
no term is allowed to be defined in the theory, directly or indirectly, in terms
of itself. In the presence of theories with general CIs, concept satisfiability
is ExpTime-complete: the upper bound is due to the correspondence with
propositional dynamic logic [22; 34; 39], and the lower bound was proven by
Schild [36]. Since the standard reasoning tasks are interreducible, subsumption
has the same complexity.

Several fragments of ALC, such as logics in the FL, EL or DL-Lite families,
are well-understood. They usually restrict the use of Boolean operators and of
quantifiers, and it is known that their reasoning problems are often easier than
for ALC. We now need to distinguish between satisfiability and subsumption
because they may be no longer interreducible if certain Boolean operators are
missing. Concept subsumption with respect to acyclic and cyclic terminologies,
and even with general CIs, is tractable in the logic EL, which allows only
conjunctions and existential restrictions [5; 14], and it remains tractable
under a variety of extensions such as nominals, concrete domains, role chain
inclusions, and domain and range restrictions [6; 8]. Satisfiability for EL, in
contrast, is trivial, i.e., every EL-ontology is satisfiable. However, the presence
of universal quantifiers usually breaks tractability: subsumption in FL0, which
allows only conjunction and universal restrictions, is coNP-complete [31] and
is PSpace-complete with respect to cyclic terminologies [4; 26] and up to
ExpTime-complete with general CIs [6; 25]. In [20; 21], concept satisfiability
and subsumption for several logics below and above ALC that extend FL0

with disjunction, negation and existential restrictions and other features, is
shown to be tractable, NP-complete, coNP-complete or PSpace-complete.
Subsumption in the presence of general CIs is ExpTime-hard already in
fragments of ALC containing both existential and universal restrictions plus
conjunction or disjunction [23], as well as in AL, where only conjunction,
universal restrictions and unqualified existential restrictions are allowed [19].
In the original logic DL-Lite, where unqualified existential restrictions, atomic
negation on the right-hand side of concept inclusions, as well as inverse
and functional roles are allowed, satisfiability of ontologies is tractable [17].
Several extensions of DL-Lite are shown to have tractable, NP-complete, or
ExpTime-complete satisfiability problems in [1–3]. The logics in the EL and
DL-Lite families are so important for (medical and database) applications

2

that OWL 2 has two profiles that correspond to logics in these families.
This article revisits restrictions to the Boolean operators in ALC. Instead

of looking at one particular subset of {u,t,¬}, we are considering all possible
sets of Boolean operators, and therefore our analysis includes less commonly
used operators such as the binary exclusive or ⊕. Our aim is to find for every
possible combination of Boolean operators whether it makes satisfiability
of the corresponding restriction of ALC hard or easy. Since each Boolean
operator corresponds to a Boolean function—i.e., an n-ary function whose
arguments and values are in {0, 1}—there are infinitely many sets of Boolean
operators that determine fragments of ALC. The complexity classification of
the corresponding concept satisfiability problems without theories is known:
satisfiability of the basic modal logic, of which ALC is a notational variant,
has been classified in [24] between being PSpace-complete, coNP-complete,
tractable and trivial for all combinations of Boolean operators and quantifiers.

In this article, we classify the concept satisfiability problems with respect
to theories for ALC fragments obtained by arbitrary sets of Boolean operators
and quantifiers. We separate these problems into ExpTime-complete, NP-
complete, P-complete and NL-complete. Although this complete classification
is a purely theoretical study, it will provide an insight into the use of sub-
Boolean ALC fragments for knowledge representation. This insight is rather
negative but partly confirms the use of current sub-Boolean DLs: our analysis
will yield that the only two ways of achieving a tractable but non-trivial
satisfiability problem with respect to theories are (a) to separate quantifiers
and conjunction and disjunction at the same time, or (b) to use only negation
and no quantifiers. More precisely, our results will imply that the sets
{>,⊥,u,∃}, {>,⊥,t,∀}, and {>,⊥,¬} are the maximal sets of operators
for which the satisfiability problem with respect to theories is tractable and
non-trivial. These sets represent (a well-studied extension of) the logic EL, its
dual, and a very restricted Boolean DL. Of these three, EL is well-established
in knowledge representation, and none of the other two operator sets can
reasonably be expected to be of real use to ontology modelling. Our study
can therefore be seen as a systematic underpinning of the folklore knowledge
that logics in the EL and DL-Lite families are the only reasonably useful
sub-Boolean ALC-fragments1 for which satisfiability in the presence of general

1Here, “sub-Boolean ALC-fragment” means “fragment obtained from ALC by restricting
the use of Boolean operators and/or quantifiers”. This does not include the limitation to

3

CIs is tractable. This is a more general statement than that obtained from
the results in [6] concerning intractable extensions of EL.

For subsumption, which is not interreducible with satisfiability under
restricted Boolean operators, the tractable cases are essentially the same [28].

The tool used in [24] for classifying the infinitely many satisfiability prob-
lems of modal logic was Post’s lattice [33], which consists of all sets of Boolean
functions closed under superposition. These sets directly correspond to all
sets of Boolean operators closed under composition. Similar classifications
exist for satisfiability for classical propositional logic [27], Linear Temporal
Logic [11], hybrid logic [29], and for constraint satisfaction problems [35; 38].

This study extends our previous work in [30] by matching upper and lower
bounds and considering restricted use of quantifiers.

2. Preliminaries

Complexity Theory. We assume familiarity with the standard notions of
complexity theory as, e.g., defined in [32]. In particular, we will make use of
the classes NL, P, NP, coNP, and ExpTime, as well as logspace reductions
≤log

m .

Description Logic. We use the standard syntax and semantics of ALC [9],
with the Boolean operators u, t, ¬, >, ⊥ replaced by arbitrary operators ◦f
that correspond to Boolean functions f : {0, 1}n → {0, 1} of arbitrary arity
n. Let NC, NR and NI be sets of atomic concepts, roles and individuals. Then
the set of concept descriptions, for short concepts, is defined by

C ::= A | ◦f (C, . . . , C) | ∃R.C | ∀R.C,

where A ∈ NC, R ∈ NR, and ◦f is a Boolean operator. For a given set B of
Boolean operators, a B-concept is a concept that uses only operators from B.
A general concept inclusion (GCI) is an axiom of the form C v D where C,D
are concepts. We use “C ≡ D” as the usual syntactic sugar for “C v D and
D v C”. A TBox is a finite set of GCIs. An ABox is a finite set of axioms
of the form C(a) or R(a, b), where C is a concept, R ∈ NR and a, b ∈ NI. An
ontology is the union of a TBox and an ABox. This simplified view suffices
for our purposes.

unqualified existential restriction.

4

An interpretation is a pair I = (∆I , ·I), where ∆I is a nonempty set and
·I is a mapping from NC to the power set of ∆I , from NR to the power set
of ∆I × ∆I and from NI to ∆I . The mapping ·I is extended to arbitrary
concepts as follows:

∃R.CI := {x ∈ ∆I | {y ∈ CI | (x, y) ∈ RI} 6= ∅},
∀R.CI := {x ∈ ∆I | {y ∈ CI | (x, y) /∈ RI} = ∅},

◦f (C1, . . . , Cn)I := {x ∈ ∆I | f(‖x ∈ CI1 ‖, . . . , ‖x ∈ CIn‖) = 1},

where ‖x ∈ CI‖ := 1 if x ∈ CI and ‖x ∈ CI‖ := 0 if x /∈ CI . Two concepts
C1 and C2 are equivalent if CI1 = CI2 for every interpretation I.

An interpretation I satisfies the GCI C v D, written I |= C v D, if
CI ⊆ DI . Furthermore, I satisfies C(a) or R(a, b) if aI ∈ CI or (aI , bI) ∈ RI .
An interpretation I satisfies a TBox (ABox, ontology) if it satisfies every
axiom therein. It is then called a model of this set of axioms.

Let B be a finite set of Boolean operators and Q ⊆ {∃, ∀}. We use
ConQ(B), TQ(B) and OQ(B) to denote the set of all concepts, TBoxes and
ontologies that use operators in B only and quantifiers from Q only. The
following decision problems are of interest for this article.

Concept satisfiability CSATQ(B):
Given a concept C ∈ ConQ(B), is there an interpretation I s.t. CI 6= ∅ ?

TBox satisfiability TSATQ(B):
Given a TBox T ∈ TQ(B), is there an interpretation I s.t. I |= T ?

TBox-concept satisfiability TCSATQ(B):
Given T ∈ TQ(B) and C ∈ ConQ(B), is there an I s.t. I |= T and
CI 6= ∅ ?

TBox subsumption TSUBSQ(B):
Given T ∈ TQ(B) and C,D ∈ ConQ(B), is there an I s.t. I |= T and
CI ⊆ DI ?

Ontology satisfiability OSATQ(B):
Given an ontology O ∈ OQ(B), is there an interpretation I s.t. I |= O ?

Ontology-concept satisfiability OCSATQ(B):
Given O ∈ OQ(B) and C ∈ ConQ(B), is there an I s.t. I |= O and
CI 6= ∅ ?

5

Function symbol Description DL operator

0, 1 constant 0, 1 ⊥, >
and, or binary conjunction/disjunction ∧, ∨ u, t
neg unary negation ¬ ¬
xor binary exclusive or ⊕ �
andor x ∧ (y ∨ z)
maj majority
equiv binary equivalence function

Table 1: Boolean functions with description and corresponding DL operator symbol.

We are interested in the complexity of the satisfiability problems. Subsumption
will only be considered for certain reductions. By abuse of notation, we will
omit set parentheses and commas when stating Q explicitly, as in TSat∃∀(B).
The satisfiability problems in the list above are interreducible independently
of B and Q in the following way:

CSatQ(B) ≤log
m TCSatQ(B) and

TSatQ(B) ≤log
m TCSatQ(B) ≤log

m OSatQ(B) ≡log
m OCSatQ(B)

as a concept C is satisfiable iff the concept C is satisfiable w.r.t. the empty
terminology; a terminology T (resp. ontology O) is satisfiable iff a fresh
atomic concept A is satisfiable w.r.t. T (resp. O); C is satisfiable w.r.t. T
(resp. O) iff T ∪{C(a)} (resp. O∪{C(a)}) is satisfiable, for a fresh individual
a.

Boolean operators. This study is complete with respect to Boolean operators,
which correspond to Boolean functions. Table 1 lists all Boolean functions that
we will mention, together with the associated DL operator where applicable.

An n-ary Boolean function is called a projection (also known as identity
function) if f(x1, . . . , xn) = xi for some i = 1, . . . n. A set of Boolean functions
is called a clone if it contains all projections and is closed under composition
(also known as superposition). The smallest clone I2 consists just of the
projections. The lattice of all clones has been established in [33], see [13] for
a more succinct but complete presentation.

Given a finite set B of functions, the smallest clone containing B is denoted
by [B]. The set B is called a base of [B], but [B] often has other bases as well.
For example, nesting of binary conjunction yields conjunctions of arbitrary

6

Clone Description Base

BF all Boolean functions {and, neg}
R0, R1 0-, 1-reproducing functions {and, xor}, {or, equiv}
M all monotone functions {and, or, 0, 1}
S1 1-separating functions {x and (neg(y))}
S11 1-separating, monotone functions {andor, 0}
D self-dual functions {maj(x, neg(y), neg(z))}
L affine functions {xor, 1}
L0 affine, 0-reproducing functions {xor}
L3 affine, 0- and 1-reproducing functions {x xor y xor z xor 1}
E0, E conjunctions and 0 (and 1) {and, 0}, {and, 0, 1}
V0, V disjunctions and 0 (and 1) {or, 0}, {or, 0, 1}
N2, N negation (and 1) {neg}, {neg, 1}
I0, I 0 (and 1) {0}, {0, 1}

Table 2: List of all clones relevant for this article with their standard bases. Where
a base consists of a function expressed by a composition of functions (Lines S1,D, L3),
observe that functions used in this composition are not necessarily available within the
corresponding clone: e.g., neg /∈ S1 although neg is used in the expression that defines the
base {x and (neg(y))} of S1 (however, and ∈ S1).

arity. Table 2 lists all clones that we will refer to, using the function names
from Table 1 and the following definitions. Let f be an n-ary Boolean function.
The dual of f , denoted dual(f), is the n-ary function g with g(x1, . . . , xn) =
¬f(¬x1, . . . ,¬xn). Further, f is called self-dual if f(x1, . . . , xn) = dual(f),
c-reproducing if f(c, . . . , c) = c for c ∈ {0, 1}, and 1-separating if there is an
1 ≤ i ≤ n such that bi = 1 for each (b1, . . . , bn) ∈ f−1(1).

From now on, we will equate sets of Boolean operators with their corre-
sponding sets of Boolean functions and use the same notation B and [B] for
finite sets B of operators. Closure of a clone under composition implies that
the corresponding set of operators is closed under nesting. Consequently, we
will denote operator sets with the above clone names. Furthermore, we call
a Boolean operator corresponding to a monotone (self-dual, 0-reproducing,
1-reproducing, 1-separating) function a monotone (self-dual, ⊥-reproducing,
>-reproducing, >-separating) operator.

For two sets B,B′ of Boolean functions, we say B′ efficiently implements
(every function in) B iff for every function f(x1, . . . , xn) ∈ B there exists
a composition φ(g1, . . . , gk) of functions gi ∈ B′ such that f ≡ φ and no xi

7

occurs more than once in the body of φ.
Via the inclusion structure of the lattice, lower and upper complexity

bounds of problems parameterized by a clone can be carried over to higher and
lower clones under certain succinctness conditions as mentioned in Lemma 1.
In particular, this means that, if B,B′ are finite sets of Boolean functions
with B ⊆ [B′], and if B′ efficiently implements B, then any decision problem
restricted to B can be efficiently reduced to the same problem restricted to B′:
for example, TSatQ(B) is reducible to TSatQ(B′) for any Q ⊆ {∃,∀}. We
will therefore state our results for minimal and maximal clones only, together
with those conditions.

The following lemma will help restrict the length of concepts in some of
our reductions. It shows that for certain operator sets B, there are always
short concepts representing the operators u, t, or ¬, respectively. Points (2)
and (3) follow directly from the proofs in [27], Point (1) is Lemma 1.4.5 from
[38].

Lemma 1. Let B be a finite set of Boolean operators.

1. If [B] contains conjunction (resp. disjunction) and only monotone op-
erators, i.e., V ⊆ [B] ⊆ M (E ⊆ [B] ⊆ M, resp.), then there exists a
B-concept C such that C is equivalent to A1 t A2 (A1 u A2, resp.) and
each of the atomic concepts A1, A2 occurs exactly once in C.

2. If all operators are present, i.e. [B] = BF, then there are B-concepts C
and D such that C is equivalent to A1 tA2, D is equivalent to A1 uA2,
and each of the atomic concepts A1, A2 occurs in C and D exactly once.

3. If [B] contains all unary operators and both constants, i.e. N ⊆ [B],
then there is a B-concept C such that C is equivalent to ¬A and the
atomic concept A occurs in C only once.

Auxiliary results. The following lemmata contain technical results that will be
useful to formulate our main results. We use ?SatQ(B) to speak about any
of the four satisfiability problems TSatQ(B), TCSatQ(B), OSatQ(B) and
OCSatQ(B) introduced above; the three problems TCSatQ(B), OSatQ(B)
and OCSatQ(B) having the power to speak about a single individual will be
conflated into ?Satind

Q (B).

Lemma 2 ([30]). Let B be a finite set of Boolean operators such that [B]
contains all unary operators (i.e., N2 ⊆ [B]) and Q ⊆ {∃,∀}. Then
?SatQ(B) ≡log

m ?SatQ(B ∪ {>,⊥}).

8

Lemma 3 ([30]). Let B be a finite set of Boolean operators and Q ⊆ {∃,∀}.
Then TCSatQ(B) ≤log

m TSatQ∪{∃}(B ∪ {>}).

Furthermore, we observe that, for each set B of Boolean operators with
>,⊥ ∈ [B], we can simulate the negation of an atomic concept A using
a fresh atomic concept A′ and role RA whenever we have access to both
quantifiers: if we add the axioms A ≡ ∃RA.> and A′ ≡ ∀RA.⊥ to any given
ontology O, then each model of O has to interpret A′ as the complement of
A.

In order to generalize complexity results from ?SatQ(B1) to ?SatQ(B2)
for arbitrary bases B2 of [B1], we need the following lemma.

Lemma 4 ([30]). Let B1, B2 be two sets of Boolean operators such that
[B1] ⊆ [B2], and let Q ⊆ {∃,∀}. Then ?SatQ(B1) ≤log

m ?SatQ(B2).

proof. The proof makes use of DL-circuits, the DL-variant of modal circuits
defined in [24]. A DL-circuit over the basis B1 and quantifier set Q is a tuple
X = (G, I, E, α, β, out), where

• (G,E) is a finite directed acyclic graph with G being the set of gates,

• I ⊆ G being the set of input gates

• α : E → N is an injective function which defines an ordering on the
edges and thereby on the children of a gate,

• β : G → B1 ∪ {∃R, ∀R | R ∈ NR} ∪ NC is a function assigning an
operator, quantified role, or atomic concept to every gate such that
β(g) ∈ NC iff g ∈ I, and

• out ∈ G, the output gate,

and the following conditions are satisfied.

• If g ∈ G has in-degree 0, then β(g) is an atomic concept or one of the
constants >,⊥ (if they are in [B]).

• If g ∈ G has in-degree 1, then β(g) is a unary operator from B1 or some
∃R (if ∃ ∈ Q) or ∀R (if ∀ ∈ Q).

• If g ∈ G has in-degree d > 1, then β(g) is a d-ary operator from B1.

9

The function α is needed to define the order of arguments of non-symmetric
functions. The size of a DL-circuit is the number of its gates.

Every concept expression C can straightforwardly be transformed into a
DL-circuit of linear size that resembles the ordered tree induced by C. For
the backward transformation, an exponential blowup may occur if the circuit
is not tree-shaped.

In order to establish the reduction ?SatQ(B1) ≤log
m ?SatQ(B2), we proceed

analogously to [24, Theorem 3.6] and translate, for any given instance of
?SatQ(B1), each concept (hence each side of an axiom) into a DL-circuit X1

over the basis B1 and quantifier set Q. This circuit can be easily transformed
into a circuit X2 over the basis B2 by replacing every ◦-gate, with ◦ ∈ B1, with
a sub-circuit over B2. This replacement is possible because of [B1] ⊆ [B2], and
it causes only linear blowup because the size of the sub-circuits is bounded
by a constant. However, since the sub-circuits may not be tree-shaped, we
cannot directly transform X2 back to a concept expression without exponential
blowup. Instead, we will express it using new axioms that are constructed in
the style of the formulae in [24]:

• For input gates g, we add the axiom g ≡ xi.

• If g is a gate computing the Boolean operator ◦ and h1, . . . , hn are
the respective predecessor gates in this circuit, we add the axiom
g ≡ ◦(h1, . . . , hn).

• For ∃R-gates g, we add the axiom g ≡ ∃R.h.

• For ∀R-gates g, we add the axiom g ≡ ∀R.h.

For each axiom C v D, let outC and outD be the output gates of the
appropriate circuits. Then we need to add one new axiom outC v outD to
express the axiom C v D. For a concept C in the input (relevant for the
problems TCSatQ,OCSatQ), its translation is mapped to the respective
output gate outC .

This reduction is computable in logarithmic space and its correctness can
be shown in the same way as in the proof of [24, Theorem 3.6]. 2

Note that this reduction does not generally hold for other logics, e.g., propo-
sitional logic or modal logic. In our case, the reduction is possible because
implication and conjunction are inherently available in terminologies. They
make it possible to describe the transformed circuit, which may be a more

10

succinct encoding of an exponentially large concept expression, with linearly
many axioms. This enables us to obtain the base independence statement of
Lemma 4, which is somewhat exceptional and relies on the expressive power
of TBoxes.

The idea for the following lemma goes back to Lewis [27].

Lemma 5 (Lewis Trick). Let B be a set of Boolean operators and Q ⊆
{∀,∃}. Then TSatQ(B ∪ {>}) ≤log

m TCSatQ(B).

proof. Let SC(T) be the set of all (sub-)concepts occurring in T . For every
C ∈ SC(T), we use CT to denote C with all occurrences of > replaced by T .
Now let

T ′ := {CT v DT | C v D ∈ T } ∪ {CT v T | C ∈ SC(T)} .

We claim:
T ∈ TSatQ(B) ⇐⇒ (T ′, T) ∈ TCSatQ(B)

For the direction “⇒” observe that for any interpretation I = (∆I , ·I)
with I |= T , we can set T I := ∆I and then have I |= T ′ and obviously
T I 6= ∅.

Now consider the opposite direction “⇐”. Let I = (∆I , ·I) be an in-
terpretation with I |= T ′ and T I 6= ∅. We construct J from I via restric-
tion to T I , i.e., ∆J := T I , AJ := AI ∩ T I for atomic concepts A, and
RJ := RI ∩ (T I × T I) for roles R. We claim the following:

Claim. For every individual x ∈ T I and every (sub-)concept C occurring in
T , it holds that x ∈ CIT if and only if x ∈ CJ .

The claim implies J |= T . Indeed, consider an axiom D v E ∈ T and any
x ∈ DJ . We clearly have x ∈ ∆J = T I and so, by the claim, x ∈ DIT . Then
I |= T ′ implies x ∈ EIT , whence, by the claim, x ∈ EJ .

Proof of Claim. We proceed by induction on the structure of C. The base
case includes atomic C as well as > and ⊥, and follows from the construction
of J .

For the induction step, we consider the following cases.

• In case C = ◦f(C1, . . . , Cn), where ◦f is an arbitrary n-ary boolean
operator corresponding to an n-ary Boolean function f , and the Ci are

11

smaller subconcepts of C, the following holds.

x ∈ CIT iff f(‖x ∈ (C1
T)I‖, . . . , ‖x ∈ (Cn

T)I‖) = 1 def. satisfaction

iff f(‖x ∈ (C1)J ‖, . . . , ‖x ∈ (Cn)J ‖) = 1 induction hyp.

iff x ∈ CJ def. satisfaction

• In case C = ∃R.D, the following holds.

x ∈ CIT iff for some y ∈ ∆I : (x, y) ∈ RI and y ∈ DIT
iff for some y ∈ T I : (x, y) ∈ RI and y ∈ DIT
iff for some y ∈ T I : (x, y) ∈ RJ and y ∈ DJ

iff x ∈ CJ

The first equivalence is due to the definition of satisfaction. The second’s
“⇒” direction is due to the additional axiom DT v T in T ′, while the
“⇐” direction is obvious. The third equivalence is again due to the
definition of satisfaction and the construction ∆J = T I .

• Case C = ∀R.D follows from the previous case.

2

Lemma 6 (Contraposition). Let B be a finite set of Boolean operators
and Q ⊆ {∃,∀}. Then

1. TSatQ(B) ≤log
m TSatdual(Q)(dual(B)), and

2. TCSatQ(B) ≤log
m TCSatdual(Q)(dual(B) ∪ {⊥,u}),

where dual(B) := {dual(f) | f ∈ B} and dual(Q) := {dual(Q) | Q ∈ Q} for
dual(∃) := ∀ and dual(∀) := ∃.

proof. 1. Let T be a terminology with operators from B and Q. For
every concept C in T , let C¬ be the concept obtained by transforming
¬C into negation normal form (all negations are moved inside until
they occur only in front of atomic concepts). Denote these changes by
T con := {D¬ v C¬ | (C v D) ∈ T } . This transformation has replaced
all Boolean operators and quantifiers with their duals.

12

Now we will distinguish two cases. At first assume ¬ /∈ [B]. Hence, after
negating and transforming into negation normal form, every atomic
concept appears negated in T con. Then replace every negated atomic
concept ¬A with a fresh atomic concept A′. Denote these substitutions
by T con′. Now T con′ is equisatisfiable with T : it holds that T ∈
TSatQ(B) iff T con′ ∈ TSatdual(Q)(dual(B)), based on the observation
that I |= C v D iff I |= ¬D v ¬C, for every interpretation I, together
with the fact that T does not use negation.

Now consider the case ¬ ∈ [B]. Then we do not need to substitute the
negated atomic concepts in T con as negation is self-dual and therefore
included in dual(B). Hence, T con is already in Tdual(Q)(dual(B)) and
equisatisfiable with T .

2. Here we need the operators ⊥ and u to ensure that the input concept
C is disjoint with C ′. Now observe that (C, T) ∈ TCSatQ(B) iff
(C, T con′ ∪ {C u C ′ v ⊥}) ∈ TCSatdual(Q)(dual(B)), where T con′ is as
in (1.).

2

Known complexity results for CSat. The following classification of concept
satisfiability has been obtained in [24].

Theorem 1 ([24]). Let B be a finite set of Boolean operators.

1. If [B] contains all operators that are monotone and 1-separating (i.e.,
S11 ⊆ [B]), then CSat(B) is PSpace-complete.

2. If [B] consists of all conjunctions, plus the constant ⊥ or both constants
(i.e., [B] ∈ {E,E0}), then CSat(B) is coNP-complete.

3. If [B] contains only 1-reproducing operators (i.e., [B] ⊆ R1), then
CSat(B) is trivial.

4. Otherwise CSat(B) ∈ P.

We briefly put these previous results in context with existing results
on sub-Boolean DLs, and we will later do the same for our own results.
Part (1) of Theorem 1 is in contrast with the coNP-completeness of ALU
satisfiability [37] because the operators in ALU can express the canonical base

13

of S11. The difference is caused by the fact that ALU allows only unqualified
existential restrictions. Part (2) generalises the coNP-completeness of ALE
satisfiability, where hardness is proven in [20] without using atomic negation.
It is in contrast with the tractability of AL satisfiability [21], again because of
the unqualified restrictions. Part (3) generalises the known fact that every EL,
FL0, and FL− concept is satisfiable, which is immediate from the observation
that the base {∨,≡} of R1 can express conjunction (as A1 u A2 is equivalent
to (A1 t A2) ≡ (A1 ≡ A2)), confirmed by the fact that ∧ is 1-reproducing.

3. Complexity Results for TSAT, TCSAT, OSAT, OCSAT

In this section we will completely classify the above mentioned satisfiability
problems for their complexity with respect to sub-Boolean fragments. The
first five subsections contain all technical lemmas necessary to prove upper
and lower complexity bounds, divided into the number of quantifiers and
the kind of satisfiability problem. Each of these subsections will begin with
an overview of the results to be proven. The last subsection puts all results
together into five main theorems, and comments on their relation with existing
results for fragments of ALC.

3.1. Both quantifiers

The results for fragments that contain both quantifiers ∀,∃ are summarized
in Theorem 2.

Theorem 2. Let B be a finite set of Boolean operators.

1. If [B] contains all identity operators and both constants, or all unary
operators (i.e., I ⊆ [B] or N2 ⊆ [B]), then TSat∃∀(B) is ExpTime-
complete.

2. If [B] contains all identity operators and the constant ⊥, or all unary
operators (i.e., I0 ⊆ [B] or N2 ⊆ [B]), then ?Satind

∃∀ (B) is ExpTime-
complete.

3. If [B] contains only 0-reproducing operators (i.e., [B] ⊆ R0), then
TSat∃∀(B) is trivial.

4. If [B] contains only 1-reproducing operators (i.e., [B] ⊆ R1), then
?Sat∃∀(B) is trivial.

14

proof. Parts 1.–4. are formulated as Lemmas 8 to 12. (Due to the interre-
ducibilities stated in Section 2, it suffices to show lower bounds for TSat
and upper bounds for OCSat. Moreover Lemma 4 enables us to restrict the
proofs to the standard basis of each clone for stating general results.) 2

Part (2) for I0 generalizes the ExpTime-hardness of subsumption for FL0

and AL with respect to GCIs [6; 19; 23; 25]. The contrast to the tractability
of subsumption with respect to GCIs in EL, which uses only existential
quantifiers, undermines the observation that, for negation-free fragments,
the choice of the quantifier affects tractability and not the choice between
conjunction and disjunction. DL-Lite and ALU cannot be put into this
context because they use unqualified restrictions.

Parts (1) and (2) show that satisfiability with respect to theories is already
intractable for even smaller sets of Boolean operators. One reason is that
sets of axioms already contain limited forms of implication and conjunction.
This also causes the results of this analysis to differ from similar analyses for
sub-Boolean modal logics in that hardness already holds for bases of clones
that are comparatively low in Post’s lattice.

Part (3) reflects the fact that TSat is less expressive than the other three
decision problems: it cannot speak about one single individual.

Lemma 7 ([22; 34; 39]). OCSat∃∀(BF) ∈ ExpTime.

Lemma 8 ([30]). Let B be a finite set of Boolean operators such that [B]
contains only 1-reproducing operators (i.e., [B] ⊆ R1). Then OCSat∃∀(B) is
trivial.

Lemma 9 ([30]). Let B be a finite set of Boolean operators such that [B]
contains only 0-reproducing operators (i.e., [B] ⊆ R0). Then TSat∃∀(B) is
trivial.

Lemma 10. Let B be a finite set of Boolean operators.

1. If [B] contains all conjunctions and the constant ⊥ (i.e., E0 ⊆ [B]),
then ?Satind

∃∀ (B) is ExpTime-complete.

2. If [B] contains all disjunctions and the constant ⊥ (i.e., V0 ⊆ [B]), then
?Satind

∃∀ (B) is ExpTime-complete.

15

3. If [B] contains only self-dual operators (i.e., [B] ⊆ D), then TSat∃∀(B)
is ExpTime-complete.

proof. Membership in ExpTime follows from Lemma 7 in combination
with Lemma 4. For ExpTime-hardness, we proceed as follows.

1. We reduce from the positive entailment problem for Tarskian set con-
straints for L(〈 〉, [],∩) in [23] which, adjusted to our notation, is defined
as follows. Given two sets Σ,Φ of pairs of concept expressions C1 v C2

over the operators ∃, ∀,u, does every interpretation satisfying all expres-
sions in Σ also satisfy all expressions in Φ? The proof in [23] showed
ExpTime-hardness of this problem already for the case |Φ| = 1. This
implies ExpTime-completeness of TSubs∃∀({u}).
We first reduce the complement of this problem to TSat∃∀({u,>,⊥})
by adding two axioms to T which express that there is an instance of
C which is not an instance of D, using a fresh atomic concept D′ and
role R: T ′ := T ∪ {> v ∃R.(C uD′), D′ uD v ⊥}. The reduction is
established by observing that T 6|= C v D if and only if T ′ is satisfiable.
If T 6|= C v D, then there is a model I of T with an instance x of C
which is not an instance of D. If we additionally interpret D′ as the
complement of DI and R as ∆I × {x}, we obtain a model of the two
additional axioms of T ′. Conversely, a model of T ′ is a model of T that
does not satisfy C v D.

Now for TCSat∃∀({⊥,u}), we introduce an additional fresh concept
name T that replaces the introduced occurrence of >, and consider
T ′′ := T ∪ {T v ∃R.(C u D′), D′ u D v ⊥}. Then, T 6|= C v D iff
(T ′′, T) ∈ TCSat∃∀({⊥,u}), with the same reasoning as above.

2. For TCSat∃∀({⊥,t}), we modify the above definition of T ′′ to dispose
of the two introduced conjunctions, using an additional fresh atomic
concept E and role S:

T ′′ := T ∪ {E v C, E v D′, T v ∃R.E, D ≡ ∃S.T, D′ ≡ ∀S.⊥}

The last two axioms imply the disjointness of D and D′. Then, T 6|=
C v D iff (T ′′, T) ∈ TCSat∃∀({⊥,t}). If T 6|= C v D, then there is a
model I of T with an instance x of C which is not an instance of D. If
we extend I to I ′ via (D′)I

′
:= ∆I \DI , EI′ := CI ∩ (D′)I , T I

′
:= ∆I ,

16

RI
′
:= ∆I × {x}, and SI

′
:= DI

′ × {x}, we obtain a model of the two
additional axioms of T ′′ where x is an instance of T . Conversely, any
model I of T ′′ with an instance x of T , must have an instance y of
E (third axiom), which is also an instance of C (first axiom) and D′

(second axiom), hence not an instance of D (last two axioms). Therefore,
I is a model of T that does not satisfy C v D.

3. The remaining case for the self-dual operators follows from Lemmas 1
and 2, as all self-dual operators in combination with the constants >,⊥
(to which we have access as ¬ is self-dual) can express any arbitrary
Boolean operator.

2

Lemma 11. Let B,B′ be finite sets of Boolean operators such that [B] con-
tains all identity operators and the constant ⊥ (i.e., I0 ⊆ [B]) and [B′] contains
all identity operators and both constants (i.e., I ⊆ [B′]). Then ?Satind

∃∀ (B)
and TSat∃∀(B′) are ExpTime-complete.

proof. For the upper bound apply Lemma 7 and Lemma 4. For hardness,
we reduce from TSat∃∀({u,⊥,>}) to TSat∃∀({⊥,>})—the former is shown
to be ExpTime-complete in the proof of Lemma 10. The main idea is
an extension of the normalization rules in [15] where also the following
normalization rules have been stated and proven to be correct:

(NF1) Ĉ uD v E {A ≡ Ĉ, A uD v E}
(NF2) C v D u Ê {C v D u A,A ≡ Ê}
(NF3) ∃R.Ĉ v D {A ≡ Ĉ,∃R.A v D}
(NF4) C v ∃R.D̂ {C v ∃R.A,A ≡ D̂}
(NF5) C v D u E {C v D,C v E}

where R is a role, C,D,E denote arbitrary concepts, Ĉ, D̂ denote concepts
that are not atomic, and A is a fresh atomic concept.

Now we want to extend these rules for conjunctions on the left side of
GCIs and for ∀-quantification:

(NF6) ∀R.Ĉ v D {A ≡ Ĉ,∀R.A v D}
(NF7) C v ∀R.D̂ {A ≡ D̂, C v ∀R.A}
(NF8) C uD v E {C v ∃RC .>, D v ∀RC .C

′,∃RC .C
′ v E}

17

where R is a role, C,D,E denote arbitrary concepts, Ĉ, D̂ denote concepts
that are not atomic, RC is a fresh role, and C ′ is a fresh atomic concept. For
(NF8) we will prove correctness.

Assume C u D v E holds in an interpretation I = (∆I , ·I). Thus
w ∈ EI for each w ∈ CI ∩DI . In the following we will construct a modified
interpretation I ′ from I that satisfies the axioms constructed by (NF8).
As w ∈ CI

′
, we add one RC-edge to the same individual w, and due to

D v ∀RC .C
′ we must add w to (C ′)I

′
. Finally the last GCI is satisfied as we

have w ∈ EI′ .
For the opposite direction assume C uD v E cannot be satisfied, i.e., in

every interpretation there is an individual which is an instance of C and D
but not of E. Hence we take an arbitrary interpretation I such that it satisfies
the first two axioms C v ∃RC .> and D v ∀RC .C

′. Due to our assumption
every individual w is an instance of C and D, and hence we have an RC-edge
to an individual where C ′ must hold. Therefore w is an instance of the left
side of the third axiom but not of its right side E. Hence this axiom is not
satisfied and we have the desired contradiction.

As this normalization procedure runs in polynomial time and eliminates
every conjunction of concepts, we have a reduction from TCSat∃∀({u,⊥})
to TCSat∃∀({⊥}), and also from TSat∃∀({u,⊥,>}) to TSat∃∀({>,⊥}).
Hence the Lemma applies. 2

Lemma 12. Let B be a finite set of Boolean operators such that [B] contains
all unary operators (i.e., N2 ⊆ [B]). Then ?Sat∃∀(B) is ExpTime-complete.

proof. The upper bound follows from Lemma 7 and Lemma 4. For the
lower bound use Lemma 2 to simulate > and ⊥ with fresh atomic concepts.
Then the argumentation follows similarly to Lemmas 10 and 11. 2

3.2. No quantifiers, TSat

In this subsection we investigate the complexity of the problems TSat∅.
The quantifier-free case is nontrivial: for example, TSat∅(B) does not reduce
to propositional satisfiability for B because restricted use of implication and
conjunction are implicit in sets of axioms.

Theorem 3. Let B be a finite set of Boolean operators.

1. If [B] contains all operators that are affine and self-dual, or all mono-
tone operators plus both constants (i.e., L3 ⊆ [B] or M ⊆ [B]), then
TSat∅(B) is NP-complete.

18

2. If [B] equals the set of all conjunctions (resp., disjunctions) plus both
constants (i.e., [B] = E or [B] = V), then TSat∅(B) is P-complete.

3. If [B] equals the set of all identities plus both constants, or all unary func-
tions with or without constants (i.e., [B] ∈ {I,N2,N}), then TSat∅(B)
is NL-complete.

4. Otherwise (if [B] contains only 1- or only 0-reproducing operators, i.e.
[B] ⊆ R1 or [B] ⊆ R0), then TSat∅(B) is trivial.

proof. NP-completeness for (1) is composed of on the one hand the upper
bound which results from OCSat∃({u,¬,>,⊥}) which is proven to be in
NP in Lemma 25 and on the other hand the lower bounds which are proven
in Lemmas 13 and 14. Both lower bounds of (2) will be proven through
Lemmas 15 and 16. The upper bound is due to OCSat∃({u,>,⊥}) which
is shown to be in P in Lemma 30. The membership in (3) results from
Lemmas 18 and 26. Hardness for I is proven in Lemma 17. Together with
Lemma 2, we obtain hardness for N2. Item (4) follows through Lemmas 8
and 9. 2

Lemma 13. Let B be a finite set of Boolean operators such that [B] contains
all monotone operators (i.e., M ⊆ [B]). Then TSat∅(B) is NP-hard.

proof. We reduce from the complements of the implication problems for
the self-dual and monotone fragments of propositional logic. Those problems
are shown to be coNP-complete in [12]. NP-hardness of TSat∅(M) follows
from the fact that, for propositional formulae ϕ, ψ with monotone operators
only, it holds that

ϕ 6|= ψ ⇐⇒ {Cψ v ⊥,> v Cϕ} ∈ TSat∅(M),

where Cϕ and Cψ are concepts corresponding to ϕ, ψ in the usual way. 2

Lemma 14. Let B be a finite set of Boolean operators such that [B] contains
all operators that are self-dual and affine (i.e., L3 ⊆ [B]). Then TSat∅(B) is
NP-hard.

proof. Here we will provide a reduction from the NP-complete problem
1-in-3-Sat which is defined as follows: given a formula ϕ =

∧n
i=1

∨3
j=1 `ij,

where `ij are literals (propositional variables or their negations), we ask for the

19

existence of a satisfying assignment which makes exactly one literal per clause
true [35]. In the following we are allowed to use the binary exclusive-or by
x� y�>�> ≡ x� y because the following holds: the connective “negation”
is available as x � x � z � > ≡ ¬z, and therefore we have access to both
constants > and ⊥ due to Lemma 2.

The main idea of the reduction is to use for each clause (`i1∨ `i2∨ `i3) ∈ ϕ
an axiom > v ˜̀

i1 � ˜̀
i2 � ˜̀

i3, where ˜̀ := Ax for a positive literal ` = x
and ˜̀ := ¬Ax for a negative literal ` = ¬x, to enforce that only one literal
is satisfied. Unfortunately for this axiom it is possible to have all literals
satisfied which is not a valid 1-in-3-Sat-assignment. But in the following
we show how the addition of some other axioms helps circumventing this
problem.

Let ϕ be defined as above, then the reduction is defined as ϕ 7→ T , where

T :=
{
> v (˜̀

i1 � ˜̀
i2)� ˜̀

i3 � s
i �>

∣∣∣ 1 ≤ i ≤ n
}
∪ (1)

∪
{
> v (˜̀

i1 � ˜̀
i2)� ˜̀

i3

∣∣∣ 1 ≤ i ≤ n
}
∪ (2)

∪
{
si1 v ˜̀

i1 � ˜̀
i2

∣∣∣ 1 ≤ i ≤ n
}
∪

∪
{
si2 v ˜̀

i1 � ˜̀
i3

∣∣∣ 1 ≤ i ≤ n
}
∪

∪
{
si3 v ˜̀

i2 � ˜̀
i3

∣∣∣ 1 ≤ i ≤ n
}
∪

∪
{
si v (si1 � s

i
2)� s

i
3

∣∣ 1 ≤ i ≤ n
}
.

Now we claim that ϕ ∈ 1-in-3-Sat iff T ∈ TSat∅(L0).
For the correctness consider an arbitrary clause `i1 ∨ `i2 ∨ `i3 from ϕ with

`ij its literals.
The following table shows each possible assignment for the `ij and suitable

assignments for the sik and si, and the validity of the axioms (1) and (2). A
bold truth value of an sik or si in the table denotes that this assignment is
enforced whereas a blank cell denotes arbitrary choices. If at least one of (1)
and (2) are contradicted then there exists no model for T .

20

`i1 `i2 `i3 si1 si2 si3 si (1) (2)
0 0 0
0 0 1 0 1 0 1 � �
0 1 0 1 0 0 1 � �
0 1 1
1 0 0 1 0 0 1 � �
1 0 1
1 1 0
1 1 1 0 0 0 0 �

At first we start with an interpretation and some individual w. Through
the mapping of the literals `ij to w we immediately observe whether axiom
(2) is contradicted or not. If (2) is not contradicted then we have to consider
the remaining axioms having sik on the left side in order to find an extension
of this interpretation which assigns the sik and si in a way that (2) is not
violated whenever we have an interpretation which corresponds to a valid
1-in-3-Sat assignment. For the opposite direction we have to show that
there exists no possible extension that satisfies axiom (2) whenever we have
an assignment which is not a valid for 1-in-3-Sat.

The table now proves that, if there exists a valid 1-in-3-Sat assignment,
we can always construct an interpretation which satisfies all axioms (the
checkmark cases), and for every non 1-in-3-Sat assignment it is not possible
to construct an interpretation which satisfies every axiom (the remaining
cases where either in column (1) or (2) there is a lightning symbol stating
that the axiom is violated). 2

Lemma 15. Let B be a finite set of Boolean operators such that [B] equals
the set of all conjunctions plus constants (i.e., [B] = E). Then TSat∅(B) is
P-hard.

proof. We reduce from HornSat, a problem that is known to be P-complete
[32, p. 176], and which is defined as follows. A Boolean formula is in
Horn-CNF if it is a conjunction of Horn clauses. A Horn clause is a disjunc-
tion of literals, of which at most one is positive. Hence, every Horn clause is
either a positive unit clause p, or has only negative literals ¬p1 ∨ · · · ∨¬pn, or
has some negative and one positive literal ¬p1∨· · ·∨¬pn∨pn+1, for n > 1. The
latter case can be equivalently rewritten as p1∧· · ·∧pn → pn+1. HornSat is

21

the problem of deciding, given a Boolean formula ϕ in Horn-CNF, whether
ϕ is satisfiable.

The reduction is as follows. Construct the following TBox, using concept
names Pi to represent the propositional variables pi.

Tϕ := {> v P | p is a positive unit clause of ϕ}
∪ {P1 u · · · u Pn v ⊥} | (¬p1 ∨ · · · ∨ ¬pn) ∈ ϕ}
∪ {P1 u · · · u Pn v Pn+1} | (¬p1 ∨ · · · ∨ ¬pn ∨ pn+1) ∈ ϕ}

It is straightforward to prove that ϕ is satisfiable if and only if Tϕ is. 2

Lemma 16. Let B be a finite set of Boolean operators such that [B] equals
the set of all disjunctions plus constants (i.e., [B] = V). Then TSat∅(B) is
P-hard.

proof. This is a consequence of Lemma 15 and the reduction TSat∅(E) ≤log
m

TSatdual(∅)(dual(E)) = TSat∅(V) from Lemma 6. 2

Lemma 17. Let B be a finite set of Boolean operators such that [B] equals
the set of all identities plus constants (i.e., [B] = I). Then TSat∅(B) is
NL-hard.

proof. The underlying intuition is that any TBox T over the base B is
a set of inclusions between atomic concepts that is isomorphic to a graph,
and a deduction chain is isomorphic to a path in that graph. It is therefore
straightforward to obtain NL-hardness via reduction from the complement
of the graph accessibility problem GAP. Consider a given directed graph
G = (V,E) and two nodes s, t ∈ V as the recent instance for GAP asking for
a path from s to t in G. We introduce a concept name Av per node v ∈ V
and define T := {Au v Av | (u, v) ∈ E} ∪ {> v As, At v ⊥}.

To prove that (G, s, t) /∈ GAP ⇐⇒ T ∈ TSat∅(B), observe that
T |= Av v Aw iff G has a path from v to w, for any nodes v, w. The last two
axioms of T then ensure that T contains a contradiction iff G has a path
from s to t. 2

Lemma 18. Let B be a finite set of Boolean operators such that [B] equals
the set of all identities plus constants (i.e., [B] = I). Then TSat∅(B) is in
NL.

22

proof. With the same intuition as in the proof of Lemma 17, we reduce to
the complement of GAP. Let T be a TBox, where the set of concept names
occurring in T plus >,⊥ is A0, . . . , An with A0 = ⊥ and A1 = >. Then T is
mapped to G = (V,E) with V := {v0, . . . , vn} and E := {(vi, vj) | Ai v Aj}.
Now it holds that T ∈ TSat∅(B) iff (G, v1, v0) /∈ GAP. As a corner case, if
> and ⊥ do not both occur in T , T is trivially satisfiable and there is no
path in G from v1 to v0. In general, T |= Ai v Aj iff there is a path from vi
to vj in G, for any 0 ≤ i, j ≤ n. Hence, T is satisfiable, which is equivalent
to T 6|= > v ⊥, iff there is no path from v1 to v0 in G. 2

3.3. One quantifier, TSat

In this subsection we investigate the complexity of the problems TSat∃
and TSat∀.

Theorem 4. Let B be a finite set of Boolean operators and Q ∈ {∀,∃}.
1. If [B] contains all monotone or all unary operators (i.e., M ⊆ [B] or

N2 ⊆ [B]), then TSatQ(B) is ExpTime-complete.

2. If [B] equals the set of all identities and constants (i.e., [B] = I), then
TSatQ(B) is P-complete.

3. If [B] equals the set of all conjunctions and constants (i.e., [B] = E),
then TSat∃(B) is P-complete, and TSat∀(B) is ExpTime-complete.

4. If [B] equals the set of all disjunctions and constants (i.e., [B] = V),
then TSat∀(B) is P-complete, and TSat∃(B) is ExpTime-complete.

5. Otherwise (if [B] contains only 1- or only 0-reproducing operators, i.e.,
[B] ⊆ R1 or [B] ⊆ R0), then TSatQ(B) is trivial.

proof. ExpTime-hardness for the monotone case in (1) follows from Lem-
mas 19 and 20. For N2, see Lemma 22. ExpTime-membership results from
Lemmas 7 and 4, and applies to Items 3 and 4, too.

P-hardness in (2) for TSat∃(I) is shown in Lemma 23, and the case ∀ is
due to Lemma 6. This applies to Items 3 and 4, too. P-membership follows
from Items 3 and 4.

In (3), P-membership of TSat∃(E) follows from Lemma 30 (P-membership
of OCSat∃(u,>,⊥)). For ExpTime-hardness of TSat∀(E), see Lemma 20.

In (4), P-membership of TSat∀(V) follows from Lemma 31 (P-membership
of OCSat∀(t,>,⊥)). For ExpTime-hardness of TSat∃(V), see Lemma 21.

(5) follows from Lemmas 8 and 9. 2

23

Item 5 generalizes the fact that every EL- and FL0-TBox is satisfiable, and
the whole theorem shows that separating either conjunction and disjunction,
or the constants is the only way to achieve tractability for TSat.

Lemma 19. Let B be a finite set of Boolean operators such that [B] equals
the set of all monotone operators plus constants (i.e., [B] = M). Then
TSat∃(B) is ExpTime-hard.

proof. We reduce from the complement of TSubs∃({>,u,t}). That prob-
lem coincides with ELU TBox subsumption, which is ExpTime-complete [6,
Thm. 7]. It holds that T 6|= C v D if and only if T ∪{> v ∃R.(C uD′), Du
D′ v ⊥} is satisfiable, with the same justification as in the first part of the
proof of Lemma 10, Item 1. 2

Lemma 20. Let B be a finite set of Boolean operators such that [B] equals
the set of all conjunctions plus constants (i.e., [B] = E). Then TSat∀(B) is
ExpTime-hard.

proof. We reduce from the complement of TSubs∀({u}). That problem
coincides with FL0 TBox subsumption, which is ExpTime-complete [6; 25].
We transform a given instance (T , C,D) into

T ′ := T ∪ {∀R.⊥ v ⊥, > v ∀R.C u ∀R.D′, D′ uD v ⊥},

where D is a fresh concept name and R a fresh role. It is straightforward to
show that T 6|= C v D if and only if T ′ is satisfiable:

For “⇒”, assume that T 6|= C v D and consider a model I of T that
does not satisfy C v D. Take an instance x ∈ CI \ DI and construct the
interpretation J from I by setting ∆J = ∆I , RJ = ∆J × {x}, (D′)J =
∆J \DJ , and XJ = XI for all other concept names and roles. Clearly, J
satisfies T ′.

For “⇐”, observe that every model of T ′ is also one of T , and the three
new axioms imply that C u ¬D has an instance: the first says that every
point has an outgoing R-edge; the second says that each such edge must lead
to an instance of C uD′, and the third says that D′ is subsumed by ¬D. 2

Lemma 21. Let B be a finite set of Boolean operators such that [B] equals
the set of all disjunctions plus constants (i.e., [B] = V). Then TSat∃(B) is
ExpTime-hard.

24

proof. This follows from Lemma 20 together with the contraposition argu-
ment of Lemma 6. 2

Lemma 22. Let B be a finite set of Boolean operators such that [B] equals the
set of all unary operators (i.e., [B] = N2) and Q ∈ {∀,∃}. Then TSatQ(B)
is ExpTime-hard.

proof. We reduce from TSat∃∀(I), whose ExpTime-completeness is proven
in Lemma 11. The reduction from TSat∃∀(I) to TSat∃(N) and TSat∀(N) is
obvious because one of the two quantifiers can be expressed using ¬ and the
other quantifier. Furthermore, we can reduce TSatQ(N) to TSatQ(N2) by
simulating the constants using new concept names and negation, as follows
from Lemma 2. 2

Lemma 23. Let B be a finite set of Boolean operators such that [B] equals
the set of all identities plus constants (i.e., [B] = I). Then TSat∃(B) is
P-hard.

proof. Cook [18] proved that the complexity class P can be represented
by nondeterministic Turing machines running in logarithmic space using a
stack.2 We will reduce the word problem for this machine model to TSubs∃(∅),
which in turn can be reduced to the complement of TSat∃(I): (T , C,D) ∈
TSubs∃(∅) iff (T ∪ {> v C,D v ⊥}) /∈ TSat∃(I). This will provide P-
hardness of TSat∃(I).

Let M be a nondeterministic Turing machine, which has access to a read-
only input tape, a read-write work tape and a stack. Let M be the 6-tuple
(Σ,Ψ,Γ, Q, f, q0), where

• Σ is the input alphabet;

• Ψ is the work alphabet containing the empty-cell symbol #;

• Γ is the stack alphabet containing the bottom-of-stack symbol 2;

• Q is the set of states;

2If the machine model is further restricted to polynomial runtime, then it characterises
the complexity class LogCFL, which consists of all problems reducible in logarithmic
space to deciding membership in a context-free language.

25

• f is the state transition function which maps Q × Σ × Ψ × Γ to the
power set of Q×Ψ× {−,+}2 × (Γ \ {2})? and describes a transition
where the machine is in a state, reads an input symbol, reads a work
symbol and takes a symbol from the stack, and goes into another state,
writes a symbol to the work tape, makes a step on each tape (left or
right) and possibly adds a sequence of symbols to the stack;

• q0 ∈ Q is the initial state.

We assume that each computation of M starts in q0 with the heads at the
left-most position of each tape and with exactly the symbol 2 on the stack.
W.l.o.g. the machine accepts whenever the stack is empty, regardless of its
current state.

We now fix a machine M and an input word ~w = w1 . . . wn of length n and
consider the configurations that can occur during any computation of M(~w).
Since M is logarithmically space-bounded, the size of these configurations
does not exceed some value ` ∈ O(log n) that only depends on n and not on
the wi.

A shallow configuration of M(~w) is a sequence (pδ1 . . . δk−1qδk . . . δ`), where

• p ∈ {1, . . . , n} is the current position on the input tape, represented in
binary;

• δ1, . . . , δ` is the current content of the work tape;

• k is the current position on the work tape;

• q is the current state of M .

The initial shallow configuration (0q0# . . .#) is denoted by S0. Let SC
be the set of all possible shallow configurations that can occur during any
computation of M(~w). The cardinality of this set is bounded by a polynomial
in n because the number of work-tape cells used is logarithmic in n and the
binary counter for the position on the input tape is logarithmic in n.

A deep configuration of M(~w) is a sequence

(R1 . . . Rmpδ1 . . . δk−1qδk . . . δ`),

where the Ri are the symbols currently on the stack and the remaining
components are as above. Let DC be the set of all possible deep configurations

26

that can occur during any computation of M(~w). The cardinality of this
set can be exponential as soon as Γ has more than two elements besides
2. This is not a problem for our reduction, which will only touch shallow
configurations.

We now construct an instance of TSubs∃(∅) from M and ~w. We use each
shallow configuration X ∈ SC as a concept name and each stack symbol as
a role name. The TBox T describes all possible computations of M(~w) by
containing an axiom for every two deep configurations that the machine can
take on before and after some computation step. A deep configuration D
is represented by the concept corresponding to D’s shallow part, preceded
by the sequence of existentially quantified stack symbols corresponding to
the stack content in D. The TBox T is constructed from a set of axioms per
entry in f . (We will omit the subscript from now on.) For the instruction

(q, σ, δ, R) 7→ (q′, δ′,−,−, R1 . . . Rk)

of f , we add the axioms

∃R.(bin(p)δ0 . . . δi−1qδδi+1 . . . δ`) v
∃R1 . . . ∃Rk.(bin(p−̇1)δ0 . . . δi−2q

′δi−1δ
′δi+1 . . . δ`) (3)

for every p with wp = σ, every i = 1, . . . , `, and all δ0, . . . , δi−1, δi+1, . . . , δ`.
The expression p −̇ 1 stands for p− 1 if p > 2 and for 1 otherwise, reflecting
the assumption that the machine does not move on the input tape on a “go
left” instruction if it is already on the left-most input symbol. This behaviour
can always be assumed w.l.o.g. In case k = 0, the quantifier prefix on the
right-hand side is empty. For instructions of f requiring “+” steps on any of
the tapes, the construction is analogous. The number of axioms generated by
each instruction is bounded by the number of shallow configurations; therefore
the overall number of axioms is bounded by a polynomial in n · |f |.

Furthermore, we use a fresh concept name A and add an axiom X v A
for each shallow configuration X. Also we add a single axiom S v ∃2.S0

to T . The instance of TSubs∃(∅) is constructed as (T , S, A). T can be
constructed in logarithmic space. The number of axioms in T is bounded
by n · |f |+ 2, which depends only on n and not on the contents of the input
word. It remains to prove the following claim.

Claim. M(~w) has an accepting computation if and only if S vT A.

Proof of Claim. For the “⇒” direction, we observe that, for each step
in the accepting computation, the (arbitrary) concept associated with the

27

predecessor configuration is subsumed by the concept associated with the
successor configuration. More precisely, if M(~w) makes a step

(q, σ, δ, R) 7→ (q′, δ′,−,−, R1 . . . Rk),

then its deep configuration before that step has to be

S1 . . . SjRpδ0 . . . δi−1qδδi+1 . . . δ`,

for some S1, . . . , Sj ∈ Γ, δ0, . . . , δi−1, δi+1, . . . , δ` ∈ Ψ and p ∈ N, and the deep
configuration after that step is

S1 . . . SjR1 . . . Rk(p−̇1)δ0 . . . δi−2q
′δi−1δ

′δi+1 . . . δ`.

The set of axioms in (3) ensures that there is an axiom that implies

∃S1 . . . ∃Sj.∃R.(bin(p)δ0 . . . δi−1qδδi+1 . . . δ`) vT
∃S1 . . . ∃Sj.∃R1 . . . Rk.(bin(p−̇1)δ0 . . . δi−2q

′δi−1δ
′δi+1 . . . δ`).

Since some computation of M(~w) reaches a configuration with an empty
stack, we can conclude that some atomic concept corresponding to a shallow
configuration S, and therefore also A, subsumes ∃2.S0 which subsumes S
(per definition).

For the “⇐” direction, we assume that M(~w) has no accepting computa-
tion. This means that, during every computation of M(~w), the stack does
never become empty. From the set of all computations of M(~w), we will show
that there exists an interpretation I that satisfies T , but not S v A; hereby
we can conclude (T , S, A) /∈ TSubs∃(∅).

Observe that any atomic concept besides S and A in T correspond to a
specific shallow configuration of M(~w). Let T = (V,E) denote the computa-
tion tree of M(~w). Thus every node v ∈ V represents a deep configuration
of M(~w) which will be denoted via Cv. Then for two nodes u, v ∈ V with
(u, v) ∈ E it holds that Cu `M Cv. In the following we will describe how to
construct an interpretation I from T which has a witness for SI 6⊆ AI . To
simplify notion, we will use µ to denote a shallow configuration µ ∈ SC as
well as the respecting concept in T .

The root of T is the initial configuration 20q0

`︷ ︸︸ ︷
. . .# . Now we will define

I(S) :=
⋃
i≥0 Ii(S) starting with ∆I0(S) := {x} and

28

• SI0(S) := {x}, and

• y ∈ (S0)
I0(S) with (x, y) ∈ 2I0(S) (i.e., (∃2.S0)

I0(S) = {x})

inductively as follows.
(1) For every node v ∈ V with deep configuration Cv = S1 . . . SjRµ, where
µ is a sequence of some bin(p) followed by a string in Ψh · Q · Ψk with
h+k = `−1, proceed as follows. Let x1, . . . , xj, xr, xµ ∈ ∆Ii(S) be individuals
such that (x1, x2) ∈ (S1)

Ii(S), (x2, x3) ∈ (S2)
Ii(S), . . . , (xj, xr) ∈ (Sj)

Ii(S),
(xr, xµ) ∈ RIi(S) and xµ ∈ µIi(S). For every u ∈ V with (v, u) ∈ E that
corresponds to a successor configuration Cu = S1 . . . SjR1 . . . Rkλ of Cv, i.e.,
Cv `M Cu:

• add xr to λIi+1(S) for k = 0, and otherwise

• if there are no y1, . . . , yk ∈ ∆Ii(S) with (xr, y1) ∈ (R1)
Ii(S), (y1, y2) ∈

(R2)
Ii(S), . . . , (yk−1, yk) ∈ (Rk)

Ii(S) and yk ∈ λIi(S), then introduce new
individuals y1, . . . , yk to ∆Ii+1(S) and add (xµ, y1) to (R1)

Ii+1(S), (y1, y2)
to (R2)

Ii+1(S), . . . , (yk−1, yk) to (Rk)
Ii+1(S) and include yk into λIi+1(S).

(2) For every individual x ∈ ∆Ii(S) and deep configuration χ that is also a
shallow configuration with x ∈ χIi(S) include x into BIi+1(S).

In the following we will show that I(S) is indeed a valid interpretation
for T but S 6vT A. As there is no axiom in T with S on the right side
it holds that |SI(S)| = 1. Assume there is some GCI G = AG v A′G ∈ T
which is violated in I(S), i.e., we have some individual x′ ∈ ∆I(S) such that
x′ ∈ (AG)I(S) but x′ /∈ (A′G)I(S). As in T there are two different kinds of
axioms we have to distinguish these cases (because the axiom with S on the
left side cannot be such a violated axiom):

1. If G = α v β ∈ T for α and β being atomic (this is the case for axioms
with concepts representing shallow configurations on the left side and
A on the right side), then x′ ∈ αI(S) but x′ /∈ αI(S). Now consider the
least index n such that x′ ∈ αIn(S). As α represents clearly a shallow
configuration and β = A then x′ is added to βIn+1(S) ⊆ βI(S) by (2),
which contradicts the assumption.

2. If G = ∃R.µ v ∃R1. . . .∃Rk.λ ∈ T wherefore exist some entry in f
from M such that (S1 . . . SjRµ) `M (S1 . . . SjR1 . . . Rkλ) for some stack
symbols S1, . . . , Sj, then x′ ∈ (∃R.µ)I(S) but x′ /∈ (∃R1. . . .∃Rk.λ)I(S).

29

Now let n denote the least index such that y is added to (µ)In(S) and
there must be some m < n such that (x′, y) is added to RIm(S). Then
in step (1) there are y1, . . . , yk added to ∆In+1(S), the corresponding
Ri-edges are added to their respective (Ri)

In+1(S)-set and yk is added
to λIn+1(S) obeying x ∈ (∃R1. . . .∃Rk.λ)In+1(S) ⊆ (∃R1. . . .∃Rk.λ)I(S).
This contradicts our assumption again.

Consequently I(S) is a model of T . Now assume that SI(S) ⊆ AI(S). Thus
for the starting point x which is added to SI(S) at the initial construction step
of I(S), it holds in particular that x ∈ AI(S). As x is added to AI(S) if and
only if x is added to µI(S) for some shallow configuration µ, we can conclude
that an accepting configuration must be reachable in T which contradicts
our assumption (of the absence of such a computation sequence). Thus an
inductive argument proves that µ ∈ xIn(S) for {x} = SI(S) implies that M
reaches an accepting configuration on ~w in T .

Claim. Let C = (R1 . . . Rkµ) be a configuration. It holds for all n ∈ N
that if x ∈ (∃R1. . . .∃Rk.µ)In(S) and {x} = SI(S) then M reaches C in the
computation on ~w in its computation tree T .

Induction basis. Let n = 1 and C = (R1 . . . Rk.µ) for µ ∈ SC be some
configuration with x ∈ (∃R1. . . .∃Rk.µ)I1(S) and {x} = SI(S). Thus the
individual x is added to (∃R1. . . .∃Rk.µ)I1(S) because we have some axiom
such that ∃2.(bin(0)# . . .#) v ∃R1. . . .∃Rk.µ ∈ T as we only have one
step in this case. Hence C can be reached from the initial configuration
20q0# . . .# in one step via the transition that corresponds to the before
mentioned axiom, i.e., 20q0# . . .# `M R1. . . . Rkµ.

Induction step. Let n > 1 and assume the claim holds for all m <
n. Now we have some configuration C = (S1 . . . SjR1 . . . Rkµ) for µ ∈ SC
with x ∈ (∃S1. . . .∃Sj.∃R1. . . .∃Rk.µ)In(S) and {x} = SI(S). By induction
hypothesis we have some other configuration C ′ = (S1 . . . SjRλ) with λ ∈ SC
from which C occurs in one step, i.e., C ′ `M C, and C is reachable on the
computation of M(~w) and x ∈ (∃S1. . . .∃Sj.∃R.λ)In−1(S). Thus we have also
some axiom that adds x to (∃S1. . . .∃Sj.∃R1. . . .∃Rk.µ)In(S) in (1). This
axiom is of the form ∃R.λ v ∃R1. . . .∃Rk.µ ∈ T . As M reaches C ′ by
induction hypothesis and C can be reached via one step from C ′ and x is
an instance of ∃S1. . . .∃Sj.∃R1. . . .∃Rk.µ, M can also reach C within the
computation on ~w.

Hence this contradicts our assumption that M does not accept ~w and
completes our proof. 2

30

3.4. No quantifiers, TCSat-, OSat-, OCSat-Results.

In this subsection we investigate the complexity of the problems TCSat∅,
OSat∅, and OCSat∅.

Theorem 5. Let B be a finite set of Boolean operators.

1. If [B] contains all operators that are monotone and 1-separating, or all
operators that are self-dual and affine, or all operators that are affine
and 0-reproducing (i.e., S11 ⊆ [B] or L3 ⊆ [B] or L0 ⊆ [B]), then
?Satind

∅ (B) is NP-complete.

2. If [B] consists of either all conjunctions or all disjunctions, plus the
constant ⊥ or both constants (i.e., [B] ∈ {E0,E,V0,V}), then ?Satind

∅ (B)
is P-complete.

3. If [B] contains only identities, unary operators, and constants (i.e.,
[B] ∈ {I0, I,N2,N}), then ?Satind

∅ (B) is NL-complete.

4. Otherwise (if [B] contains only 1-reproducing operators, i.e., [B] ⊆ R1),
then ?Satind

∅ (B) is trivial.

proof. NP-hardness for (1) follows from the respective TSat∅(B) results in
Lemmas 13 and 14 in combination with Lemma 5 for the lower bound. The
membership in NP is shown in Lemma 25.

The lower bounds for (2) result from TSat∅({u,>,⊥}) and from
TSat∅({t,>,⊥}) shown in Lemmas 15 and 16 in combination with Lemma 5
while the upper bound applies due to OCSat∃({u,>,⊥}) which is proven
to be in P in Lemma 30.

The lower bound of (3) is proven in Lemma 27. The upper bound follows
from Lemma 26.

(4) is due to Lemma 8. 2

Lemma 24. Let ((T ,A), C) be an instance of OCSat∅(B), for an arbitrary
finite set B of Boolean operators, and let a1, . . . , an be the individuals in
A. Denote by Ai the restriction of A to all axioms about ai. Then C is
satisfiable with respect to (T ,A) if and only if (T , {C(a0)}) and all (T ,Ai)
are satisfiable, where a0 is a fresh individual.

31

proof. In the absence of quantifiers, T only makes propositional statements.
The “⇒” direction is trivial and, for “⇐”, we can assume w.l.o.g. that (T ,Ai)
has a model with a singleton domain. The disjoint union of all these models
is a model for

(
(T ,A), C

)
. 2

Lemma 25. Let B be an arbitrary finite set of Boolean operators (i.e., [B] ⊆
BF). Then OCSat∅(B) is in NP.

proof. Due to Lemma 24, it suffices to check satisfiability of (a linear
number of) (T ,A) where A contains only one individual a. This problem
can be further reduced to Sat, the satisfiability problem for propositional
formulae. Due to Lemma 4, we can assume that B = {u,¬}. We can
now straightforwardly translate every axiom in (T ,A) into a propositional
formula by omitting a, replacing each atomic concept with a fresh atomic
proposition pA, and replacing ⊥,>,¬,u,v with 0, 1,¬,∧,→, respectively.
The conjunction of all these translations is equisatisfiable with (T ,A) due to
the singleton-domain observation made in the proof of Lemma 24. 2

Lemma 26. Let B be a finite set of Boolean operators such that [B] equals
the set of all unary operators plus both constants (i.e., [B] = N). Then
OCSat∅(B) is in NL.

proof. Due to Lemma 24, it suffices to check satisfiability of (a linear
number of) (T ,A) where A contains only one individual a. This problem
can be further reduced to 2Sat, the satisfiability problem for propositional
formulae in 2CNF, i.e., conjunctions of clauses with two literals (a literal is
an atomic proposition or its negation). Every 2CNF-clause can equivalently
be rewritten into implication normal form (INF), i.e., (`1 ∨ `2) is equivalent
to (∼`1 → `2), where ∼p := ¬p and ∼(¬p) := p, for any atomic proposition
p. It is now easy to observe that every axiom in (T ,A) directly corresponds
to a 2CNF clause in INF: for TBox axioms, remove double negation and
replace v with →; for ABox axioms, additionally remove the reference to a
and precede the remaining literal with “1→”. The conjunction of all these
clauses is equisatisfiable with (T ,A) due to the singleton-domain observation
made in the proof of Lemma 24. 2

Lemma 27. Let B be a finite set of Boolean operators such that [B] equals
the set of all identities plus the constant ⊥ (i.e., [B] = I0). Then TCSat∅(B)
is NL-hard.

32

proof. In Lemma 17 TSat∅(I) was shown to be NL-hard. This result
in combination with Lemma 5 proves the claim of this lemma by stating
TSat∅(I0 ∪ {>}) ≤log

m TCSat∅(I0) as [I0 ∪ {>}] = I. 2

3.5. One quantifier, TCSat-, OSat-, OCSat-Results.

In this subsection we investigate the complexity of the problems TCSat∃,
TCSat∀, OSat∃, OSat∀, OCSat∃, and OCSat∀.

Theorem 6. Let B be a finite set of Boolean operators, and Q ∈ {∀,∃}.

1. If [B] contains all operators that are monotone and 1-separating, or all
unary operators, or all operators that are affine and 0-reproducing (i.e.,
S11 ⊆ [B] or N2 ⊆ [B] or L0 ⊆ [B]), then ?Satind

Q (B) is ExpTime-
complete.

2. If [B] contains the constant ⊥ or both constants (i.e., B ∈ {I0, I}), then
?Satind

Q (B) is P-complete.

3. If [B] consists of all conjunctions plus the constant ⊥ or both con-
stants (i.e., [B] ∈ {E0,E}), then ?Satind

∀ (B) is ExpTime-complete,
and ?Satind

∃ (B) is P-complete.

4. If [B] consists of all disjunctions plus the constant ⊥ or both con-
stants (i.e., [B] ∈ {V0,V}), then ?Satind

∃ (B) is ExpTime-complete,
and ?Satind

∀ (B) is P-complete.

5. If [B] contains only 1-reproducing operators (that is, [B] ⊆ R1), then
?Satind

Q (B) is trivial.

proof. In (1), ExpTime-hardness of ?Satind
Q (S11) follows from Lemma 19

(ExpTime-completeness of TSatQ(M)) together with the Lewis Trick from
Lemma 5. ExpTime-hardness of ?Satind

Q (N2) is due to Lemma 22. ExpTime-
hardness of ?Satind

Q (L0) follows from Lemma 22, which implies ExpTime-
completeness of TSatQ(L), together with the Lewis Trick from Lemma 5.
ExpTime-membership follows from Lemmas 7 and 4, and applies to Items 3
and 4, too.

In (2), P-hardness follows from Theorem 4 (2) and applies to Items 3
and 4, too. P-membership follows from Items 3 and 4.

In (3), P-membership of ?Satind
∃ (E) follows from Lemma 30. ExpTime-

hardness of ?Satind
∀ (E0) is proven in Lemma 28.

33

In (4), P-membership of ?Satind
∀ (V) follows from Lemma 31. ExpTime-

hardness of ?Satind
∃ (V0) is proven in Lemma 29.

(5) is due to Lemma 8. 2

Theorem 6 shows one reason why the logics in the EL family have been much
more successful as “small” logics with efficient reasoning methods than the
FL family: the combination of the ∀ with conjunction is intractable, while
∃ and conjunction are still in polynomial time. Again, separating either
conjunction and disjunction, or the constants is crucial for tractability.

Lemma 28. Let B be a finite set of Boolean operators such that [B] equals the
set of all conjunctions plus the constant ⊥ (i.e., [B] = E0). Then TCSat∀(B)
is ExpTime-hard.

proof. As in the proof of Lemma 20, we reduce from the complement of
TSubs∀({u}), which is FL0 TBox subsumption. The following reduction,
given an instance (T , C,D) of TSubs∀({u}), is obvious: T 6|= C v D iff
C uD′ is satisfiable w.r.t. T ∪ {D uD′ v ⊥}. 2

Lemma 29. Let B be a finite set of Boolean operators such that [B] equals the
set of all disjunctions plus the constant ⊥ (i.e., [B] = V0). Then TCSat∃(B)
is ExpTime-hard.

proof. As in the proof of Lemma 20, we reduce from the complement of
TSubs∀({u}). Let (T , C,D) be an instance of TSubs∀({u}). As in the
proof of Lemma 6, we take an arbitrary concept E in T , including C,D,
and transform it into a concept E¬ by converting ¬E into negation normal
form and replacing every negated atomic concept ¬A with a fresh atomic
concept A′. This transformation replaces all Boolean operators and quantifiers
with their duals. Let T con := {F¬ v E¬ | (E v F) ∈ T } , and T con′ be the
substitutions of the negated concepts. We can argue as in the proof of
Lemma 6 that T |= C v D if and only if T con′ |= D¬ v C¬.

We now consider the TBox

T ′ := T con′ ∪ {∃R.C¬ v ⊥, E v ∃R.D¬},

for a fresh concept name E and role R. It remains to prove the following
claim.

Claim. T con′ 6|= D¬ v C¬ if and only if E is satisfiable w.r.t. T ′.

34

Proof of Claim. For the “⇒” direction, assume that T con′ 6|= D¬ v C¬. Then
there is a model I of T con′ with an instance x of D¬ that is not an instance of
C¬. Consider the interpretation J with ∆J = ∆I RJ = {(x, x)}, EJ = {x},
and XJ = XI for all other symbols. Clearly, J satisfies the additional axioms
in T and interprets E as nonempty; hence E is satisfiable w.r.t. T ′.

For the “⇐” direction, assume that E is satisfiable w.r.t. T ′. Then there
is a model I of T ′ with EI 6= ∅. Obviously, T is also a model of T con′. The
nonemptiness of EI together with the two additional axioms implies that
there is an instance of (D¬)I \ (C¬)I ; hence T con′ 6|= D¬ v C¬. 2

Lemma 30. Let B be a finite set of Boolean operators such that [B] equals the
set of all conjunctions plus both constants (i.e., [B] = E). Then OCSat∃(B)
is in P.

proof. To provide an algorithm running in polynomial time, we will reduce
the given problem to the complement of EL++ TBox subsumption, which is P-
complete [8]. The logic EL++ is ALC restricted to the operators ∃,u,>,⊥ and
extended with nominals and other features that lead beyond ALC. Nominals
are singleton concepts {a} with a ∈ NI, having the semantics {a}I = {aI};
the other features are not used in our reduction.

The reduction works as follows:

((T ,A), C) ∈ OCSat∃(B) ⇐⇒ T ∪ {> v CA} 6|= C v ⊥,

where T is a TBox, A is an ABox, and

CA :=
l

C(a)∈A
∃U.({a} u C) u

l

R(a,b)∈A
∃U.({a} u ∃R.{b})

is the concept constructed as in [7] from A, using a fresh role name U . 2

Lemma 31. Let B be a finite set of Boolean operators such that [B] equals the
set of all disjunctions plus both constants (i.e., [B] = V). Then OCSat∀(B)
is in P.

proof. Here we use the result from Lemma 30 and reduce to the dual problem
OCSat∃(E). Consider an ontology (T ,A) where T is a TBox and A an ABox,
and a concept C as the given instance of OCSat∀(B). W.l.o.g. assume C to be
atomic. Now first construct the new terminology T ′ similarly to Lemma 6(2).
Then add for each A ∈ NC and hence each A′ the GCIs AuA′ v ⊥ to ensure
they are disjoint. Denote this change by the terminology T ′′. Then it holds
((T ,A), C) ∈ OCSat∀(B) ⇐⇒ ((T ′′,A), C ′) ∈ OCSat∃(E). 2

35

TSatQ(B) I V E N/N2 M L3 to BF else

Q = ∅ NL17,18 P15,16,30 NL17,26 NP13,14,25 triv.8,9

Q = {∃} P23,30 Exp7,21 P23,30 Exp7,19,22 triv.8,9

Q = {∀} P4,31 Exp7,20,22 triv.8,9

Q = {∃,∀} Exp2 triv.8,9

?Satind
Q (B) I/I0 V/V0 E/E0 N/N2 S11 to M L3/L0 to BF else

Q = ∅ NL26,27 P15,16,30 NL26,27 NP13,14,25 triv.8

Q = {∃} P23,30 Exp7,29 P23,30 Exp7,19,22 triv.8

Q = {∀} P4,31 Exp7,22,28 triv.8

Q = {∃,∀} Exp2 triv.8

Table 3: Complexity overview for all Boolean function and quantifier fragments. All results
are completeness results for the given complexity class. The superscripts point to the
respective theorem or lemma. Exp is an abbreviation of ExpTime.

4. Conclusion

Table 3 gives an overview of our results. Figures 1 and 2 show how the results
arrange in Post’s lattice.

With Theorems 2 to 6, we have completely classified the satisfiability prob-
lems connected to arbitrary terminologies and concepts for ALC fragments
obtained by arbitrary sets of Boolean operators and quantifiers. In particular,
we improved and finished the study of [30]. In more detail, we achieved a
dichotomy for all problems using both quantifiers (ExpTime-complete vs.
trivial fragments), a trichotomy when only one quantifier is allowed (triv-
ial, ExpTime-, and P-complete fragments), and a quatrochotomy in the
absence of quantifiers, ranging over trivial, NL-complete, P-complete, and
NP-complete fragments. Figures 1 and 2 show how our results arrange in
Post’s lattice.

Furthermore the connection to established fragments of ALC, e.g., FL
and EL now enriches the complexity landscape by a generalization of the
known (in-)tractability results. Our complexity classification improves the
overall understanding of where the tractability border lies: the most important
lesson learnt is that (a) the separation of both quantifiers and conjunction

36

and disjunction, or (b) the sole use of negation or the constants, is the only
way to achieve tractability in our setting. More precisely, the maximal ALC
fragments for which satisfiability with respect to theories is tractable but
non-trivial are determined by the operator sets {>,⊥,u,∃}, {>,⊥,t,∀}, and
{>,⊥,¬}. These sets represent the logic EL extended by ⊥, its dual, and a
very restricted Boolean DL. We have already explained in the Introduction
that we consider this insight as a systematic underpinning of the folklore
knowledge that the EL and DL-Lite families are the only reasonably useful
tractable ALC-fragments. For subsumption, which is not interreducible
with satisfiability under restricted Boolean operators, the tractable cases are
essentially the same [28].

If we compare the results of our study with similar analyses using Post’s
lattice of propositional logic [27], Linear Temporal Logic [11], modal logic
[24] and hybrid logic [29], our study shows intractable fragments considerably
closer to the bottom of the lattice—down to the I-clones, which contain only
projections and constants. This contrast is particularly striking in the closely
related cases of modal logic and the more expressive hybrid logic, where [24; 29]
established that intractability “requires” at least conjunction. However, this
comparison is slightly distorted because the satisfiability problem considered
in the cited studies corresponds to the concept satisfiability problem for
description logics. The other four satisfiability problems in this study, denoted
by ?Sat, are those with the low tractability border. This is not surprising; it
confirms the expressive power implicit in terminologies and assertional boxes:
restricted to only the Boolean function false besides both quantifiers we are
still able to encode ExpTime-hard problems into the decision problems that
have a TBox and a concept as input. Thus perhaps the strongest source
of intractability can be found in the fact that theories with general concept
inclusions already express limited implication and conjunction, and not in
the set of allowed Boolean functions alone.

For future work, it would be interesting to see whether the picture changes
if the use of general concept inclusions is restricted, for example, to acyclic
terminologies—theories where axioms are cycle-free definitions A ≡ C with
A being atomic. Theories so restricted are sufficient for establishing tax-
onomies. Concept satisfiability for ALC w.r.t. acyclic terminologies is still
PSpace-complete [10; 16]. Is the tractability border the same under this
restriction? One could also look at fragments with unqualified quantifiers, e.g.,
ALU or the DL-Lite family, which are not covered by the current analysis.
Furthermore, since the standard reasoning tasks are not always interreducible

37

under restricted Boolean operators, a similar classification for other decision
problems such as concept subsumption is pending.

Acknowledgements

We thank Peter Lohmann, Carsten Lutz, and the anonymous referees for
very helpful comments and suggestions.

References

[1] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite
in the light of first-order logic. In Proc. AAAI, pages 361–366, 2007.

[2] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. Adding
weight to DL-Lite. In Proc. DL, CEUR-WS, 2009.

[3] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The
DL-Lite family and relations. JAIR, 36:1–69, 2009.

[4] F. Baader. Using automata theory for characterizing the semantics of
terminological cycles. Ann. Math. Artif. Intell., 18(2-4):175–219, 1996.

[5] F. Baader. Terminological cycles in a description logic with existential
restrictions. In Proc. IJCAI, pages 325–330, 2003.

[6] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc.
IJCAI, pages 364–369, 2005.

[7] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In
LTCS–Report, volume 05-01, 2005.

[8] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In
Proc. OWLED DC, 2008.

[9] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

[10] F. Baader and B. Hollunder. A terminological knowledge representation
system with complete inference algorithms. In Proc. PDK, volume 567
of LNCS, pages 67–86. Springer, 1991.

38

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

?Satind
98 (B):

trivial

ExpTime-c.

?Satind
9 (B):

trivial

ExpTime-complete

P-complete

?Satind
8 (B):

trivial

ExpTime-c.

P-complete

?Satind
; (B):

trivial

NP-complete

NL-complete

P-complete

1

Figure 1: Complexity of ?Satind
Q (B).

39

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

TSat98(B):

trivial

ExpTime-c.

TSat9(B):

trivial

ExpTime-complete

P-complete

TSat8(B):

trivial

ExpTime-c.

P-complete

TSat;(B):

trivial

NP-complete

NL-complete

P-complete

1

Figure 2: Complexity of TSatQ(B).

40

[11] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The
complexity of generalized satisfiability for Linear Temporal Logic. LMCS,
5(1), 2009.

[12] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The Complexity
of Propositional Implication. IPL, 109(18):1071–1077, 2009.

[13] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory.
ACM-SIGACT Newsletter, 34(4):38–52, 2003.

[14] S. Brandt. Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In Proc. ECAI, pages
298–302, 2004.

[15] S. Brandt. Reasoning in ELH w.r.t. general concept inclusion axioms.
LTCS-Report LTCS-04-03, Dresden University of Technology, Germany,
2004.

[16] D. Calvanese. Reasoning with inclusion axioms in description logics:
Algorithms and complexity. In Proc. ECAI, pages 303–307. Wiley, 1996.

[17] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies. In Proc. AAAI,
pages 602–607, 2005.

[18] S. Cook. Characterizations of pushdown machines in terms of time-
bounded computers. Journal of the ACM, 18(1):4–18, January 1971.

[19] F. M. Donini. Complexity of reasoning. In Description Logic Handbook
[9], pages 96–136.

[20] F. M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and
A. Marchetti-Spaccamela. The complexity of existential quantification
in concept languages. AI, 53(2-3):309–327, 1992.

[21] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of
concept languages. Inf. Comput., 134(1):1–58, 1997.

[22] F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. AI,
124(1):87–138, 2000.

41

[23] R. Givan, D. McAllester, C. Wittny, and D. Kozen. Tarskian set con-
straints. Information and Computation, 174:105–131, 2002.

[24] E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized modal
satisfiability. Journal of Computer and System Sciences, 76(7):561–578,
2010.

[25] M. Hofmann. Proof-theoretic approach to description-logic. In Proc.
LICS, pages 229–237, 2005.

[26] Y. Kazakov and H. de Nivelle. Subsumption of concepts in FL0 for (cyclic)
terminologies with respect to descriptive semantics is PSPACE-complete.
In Proc. DL, CEUR-WS, 2003.

[27] H. Lewis. Satisfiability problems for propositional calculi. Math. Sys.
Theory, 13:45–53, 1979.

[28] A. Meier. On the Complexity of Modal Logic Variants and their Fragments.
PhD thesis, Leibniz University of Hannover, 2011.

[29] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and
F. Weiss. The complexity of satisfiability for fragments of hybrid logic—
Part I. Journal of Applied Logic, 8(4):409–421, 2010.

[30] A. Meier and T. Schneider. The complexity of satisfiability for sub-
Boolean fragments of ALC. In Proc. of DL-2010. CEUR-WS, 2010.

[31] B. Nebel. Terminological reasoning is inherently intractable. AI,
43(2):235–249, 1990.

[32] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[33] E. Post. The two-valued iterative systems of mathematical logic. Ann.
Math. Studies, 5:1–122, 1941.

[34] V. R. Pratt. A practical decision method for propositional dynamic logic:
Preliminary report. In STOC, pages 326–337. ACM, 1978.

[35] T. J. Schaefer. The complexity of satisfiability problems. In Proc. STOC,
pages 216–226. ACM Press, 1978.

42

[36] K. Schild. Terminological cycles and the propositional µ-calculus. In
Proc. KR, pages 509–520, 1994.

[37] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements. AI, 48(1):1–26, 1991.

[38] H. Schnoor. Algebraic Techniques for Satisfiability Problems. PhD thesis,
Leibniz University of Hannover, 2007.

[39] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. JCSS, 32(2):183–221, 1986.

43

	Introduction
	Preliminaries
	Complexity Results for TSAT, TCSAT, OSAT, OCSAT
	Both quantifiers
	No quantifiers, TSAT
	One quantifier, TSAT
	No quantifiers, TCSAT-, OSAT-, OCSAT-Results.
	One quantifier, TCSAT-, OSAT-, OCSAT-Results.

	Conclusion

