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Abstract

A one-counter automatde a pushdown automaton with a singleton stack alphabet,ergiack
emptiness can be tested; it iseml-timeautomaton if it contains ne-transitions. We study the
computational complexity of the problems of equivalence eegularity (i.e. semantic finite-
ness) on real-time one-counter automata. The first mairit igsuvsPSPACE-completeness of
bisimulation equivalence; this closes the complexity gaetwieen decidability (Jancar, 2000) and
PSPACE-hardness (Srba, 2006). The second main result sihtwsompleteness of language
equivalence ofleterministiaeal-time one-counter automata; this improves the knB&RACE
upper bound (indirectly shown by Valiant and Paterson, J9%ally we proveP-completeness
of the problem if a given one-counter automaton is bisimateequivalent to a finite system,
andNL-completeness of the problem if the language accepted byea deterministic real-time
one-counter automaton is regular.
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1. Introduction

Among the various notions of behavioural equivalencedncurrency theory1], bisimula-
tion equivalencéor bisimilarity for short) is undoubtedly a central one in formal verificat{of,
e.g., [2]). We note that elegant characterizations of tearhilation-invariant fragments of well-
known logics like first-order logic, monadic second-oragjit or monadic path logic have been
obtained in terms of modal logic [3], the modatalculus [4], andCTL" [5], respectively. Hence
it is natural to formulate théisimilarity problem asking if two given states of a given system
are bisimilar. Orfinite transition systenthis problem isP-complete [6] and well understood.
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In the setting ofinfinite-state systemé&ee, e.g., [7] for Mayr’s classification of some of
them) the situation is less clear, though a lot of researshblean devoted to this area (see [8]
for an up-to-date record). On the positive side we mentioerg general and involved result
by Sénizergues who shows that bisimilarity on equatiomapls of finite out-degree (closely
related to pushdown graphs) is decidable [9]. Unfortuyatieére are various classes of infinite-
state systems for which the decidability status of bisirititas not clarified so far. As examples
we mention bisimilarity of PA (Process Algebra) processabsaf ground tree rewrite systems.

When focussing on theomputational complexitgf bisimilarity checking of infinite-state
systems for which this problem is decidable, the situatiecomes even worse. E.g., the above-
mentioned decidability result by Sénizergues only shavestemi-decision procedures, whereas
a nonelementary lower bound has been established onlythefE0]. To the best of the authors’
knowledge, there has been essentially only one establislasd of infinite-state systems for
which bisimilarity is decidable and the “exact” complexityknown, namely the basic parallel
processes, where bisimilarity BSSPACE-complete [11].

Language equivalen@ssentially asks whether the sets of executable sequeiteasgven
systems (often presented by automata) are equal; this isteatédecision problem in formal
languages and automata theory. It is folklore that alreasbtyding whether a given pushdown
automaton is universal is undecidable. We note that bianityl is finer than language equiva-
lence, and the two equivalences coincidedaterministicsystems. Language equivalence for
deterministic devices has turned out to have several atgimstances, in particular for various
subclasses of context-free languages. The most promieguit in this area is the decidability of
equivalence ofleterministic pushdown automata (DPDA)is long-standing open decidability
guestion has been answered positively by Sénizergue¢dé@Jalso [13]), to which Stirling [14]
established a primitive recursive upper bound. The proktdhdoes not seem completely under-
stood, which was one motivating factor for the recent sifigaliproof via first-order grammars,
given in [15]. Regarding the lower bound for DPDA, languageiealence is only know®-hard
(by theP-hardness of emptiness), hence the known complexity gagrislarge.

Hence, a lot of research has been devoted to studying bigiionl(resp. language) equiv-
alence of subclasses of (resp. deterministic) pushdowonzta. AcoNP upper bound for
language equivalence was shown for finite-turn DPDA [16]r $imple grammars (real-time
DPDA with a single control state), a polynomial algorithmsagiven in [17] (see [18] for a
recent upper bound); the inclusion problem is undecidabdm dere [19]. For bisimilarity of
the subclass BPA (real-time pushdown automata with a sicghérol state) a EXPTIME up-
per bound has been stated by Burkart, Caucal andiedt¢0] (see [21] for an explicit proof),
whereas the lower bound has recently been lifted fRBRACE to EXPTIME by Kiefer [22].

Another natural subclass of pushdown automata, the oneichw¥e are interested here, are
one-counter automatd.e., pushdown automata with a singleton stack alphable¢revstack-
emptiness can be tested. For bisimilarity of one-countéoraata, decidability was shown
in [23]. An unpublished article [24] analyses the decisiongedure of [23] and derives a
3EXPSPACE upper bound. APSPACE lower bound for bisimilarity is proven by Srba [25],
even for a weaker model of visibly one-counter nets (thahoatest for zero). Srba [25] also
shows aPSPACE upper bound for bisimilarity of visibly one-counter autamavia a reduction
to the model checking problem of the mogatalculus over one-counter automata [26]. In the
general case of (non-visibly) one-counter automata, tii@tson is surely more involved.

Deterministic one-counter automata (DOGMAheree-transitions may occur in a determin-
istic fashion, were introduced by Valiant and Paterson.[2W] the same paper it was shown
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that language equivalence is decidable in tiffl&V219". A simple analysis of the proof in [27]
would yield aPSPACE upper bound for the problem. An announcement has been matle th
DOCA equivalence can be solved in polynomial time [28]; uhfoately, the full proof [29] has

to be considered as incomplete. Hence the established egitypdf the equivalence of DOCA
has remained unsolved betweldh and PSPACE. Polynomial time algorithms for language
equivalence and inclusion for strict subclasses of rea& tDOCA were given in [30, 31].

1.1. Our contribution

We study the computational complexity of deciding bisimtlaover transition systems gen-
erated by real-time one-counter automata (withertoansitions), denoteBOCAfor short? In
general ROCA are nondeterministic; we also consider therdwistic version, det-ROCA,
where bisimilarity essentially coincides with languageigglence.

The first main resultof this paper closes the complexity gap for bisimilarity o®O®A:
the known decidability (or the previously mentioned unjmhed EXPSPACE upper bound)
is improved by establishingSPACE-completeness. Owecond main resultloses the com-
plexity gap for det-ROCA: the knowRSPACE upper bound is improved by establishiNg-
completeness.

Another natural problem we consider is decidiegularity (semantic finiteness); the prob-
lem asks, given a state, if it is equivalent to a state of aefipjtstem. For (nondeterministic)
ROCA, the decidability of this problem with respect to bigarity was proven in [23]; accord-
ing to [25], it follows from [6] and [32] that the problem issa P-hard. We show here that this
problem is, in factP-complete. Besides giving a new upper bound, we also pravisienple
direct proof of the lower bound.

We also showNL-completeness of the question if the language of a givenmuéiestic real-
time one-counter automaton is regular. The previously kestvn upper bound for this problem
(similarly as for the more general model witiransitions) is a time bound ofPpvnlogn [27]
(from where one can also deriveP&PACE upper bound).

The next table summarizes our complexity results. The ldvends (including the folklore
undecidability) were already known; here we show the uppenbs.

Bis-EQUIV Bis-REG Lang-EQUIV | Lang-REG
ROCA PSPACE-complete| P-complete || Undecidable | Undecidable
det-ROCA NL-complete NL-complete|| NL-complete | NL-complete

As already mentioned, bisimilarity essentially coincidgth language equivalence in the
deterministic case; the bottom row thus contains only tvaollts, in fact.

For proving these results, we employ an approach that caaltez¢he ‘belt techniqué it
was used already in [23] for decidability. Here we refine andaamce the technique, to yield
a PSPACE upper bound. The main ideas can be sketched as follows. GNRACA A, by
Fa we denote the finite automaton corresponding to the contrivlafi A in which we ignore
the zero tests. For “large” counter valug® behaves likef  for “long time”; the only chance
for A to show a diference with7 4 is to reach one of specific configurations with zero in the
counter, called “incompatible configurations”. If two canfrationsp(m) andq(n), wherep, q
are control states angh, n are counter values, are equivalent, then they must haveatine s
distance to incompatible configurations; this implies tiha roughly linearly related ton, and

2preliminary versions of the presented research resulisaapg at conferences Concur 2010 and MFCS 2011.
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thus the pairsr, n) of equivalent configurations lie inside “linear belts” whelewed as points
in a 2-dimensional space.

To show that bisimilarity of ROCA belongs BSPACE, we describe a nondeterministic pro-
cedure that is implementable in polynomial space; it coessr(guesses) a bisimulation relation
on-the-flywhile checking thdocal consistencyf the guesses. In fact, the guesses are performed
only for the pairs in (polynomially many) belts, since foetpairs outside the belts the correct
answer can be computed in polynomial time by using the abbsersation about the distances
to incompatible configurations. It is ficient to perform only exponentially many steps; as if
no inconsistency has been found then we are sure that thentigke principle guarantees a
repetition in each belt, and this guarantees the corresfdbe positive answer.

The ideas in the proof also show that the set of all pgi(s, g(n)) that are equivalent has a
regular structure, with exponential periods, whose natiescription can be computed by using
polynomial workspace.

FordeterministicROCA, our analysis shows that if we follow a shortest diatisging word
for two configurations with small counter values, then wenmdrmove in a belt for long; and
once we leave the belt(s), the rest is short. This showswatonfigurations with small counter
values are not equivalent if and only if they can be distisgad by a word whose length can
be bounded by a polynomial in the size of the inputNanupper bound is thus immediate. For
configurations with large counter values (written in binatye shortest distinguishing words
might be exponential but we can verify in nondeterminigtigdrithmic space that we can reach
a nonequivalent pair outside the belts shortly or that wereaoh a nonequivalent pair with small
counter values (by moving down in a belt).

Finally the results on regularity follow easily, once welisathat a configuration is not
equivalent to any finite state system if and only if its redulitg set contains configurations with
arbitrarily large distances to incompatible configurasion

1.2. Further related work

Further simulation and bisimulation problems on one-ceuatitomata (with or without the
zero tests) were studied in other papers; some of them aébths “belt technique”. We can
refer to the recent paper [33] and the references therelrer@troblems studied for one-counter
automata in the verification community can be exemplified &yygss [34, 35, 36, 37, 38, 39].

Our NL-completeness result for deterministic real-time onenteuautomata has not clari-
fied the complexity of equivalence checking for generalaeiristic one-counter automata (with
e-transitions), left open in [27]. By using further (nonigl) notions and ideas, we have shown
NL-completeness also for the mentioned general case in [40].

1.3. Organisation of the paper

Section 2 provides general definitions and the statementiseofesults. Section 3 shows
some simple facts, and clarifies the notion of “incompattdefigurations”. Section 4 contains
a description of the main algorithm, deciding bisimilariti/real-time one-counter automata; a
“geometrical presentation” of the algorithm is given in &t 5. In Section 6 we show the
polynomial-space complexity of the algorithm, its correxgs, and we sketch the description of
the whole bisimulation equivalence relation for a given-teae one-counter automaton. Sec-
tion 7 shows that the equivalence problem idNin for deterministic ROCA. Finally, Section 8
presents the results for regularity problems.



2. Basic definitions and results

By N andZ we denote the set of nonnegative integers and the set otedjérs, respectively.
Fori, j € Z, by [i, j] we denote the sdfi,i+1,..., j}. For a finite setX, by |X| we denote its
cardinality. By~* we denote the set of finite sequences of elemenk; 0é. of wordsoverX.

If w e ¥* then|w| denotes itdength By & we denote thempty word thus|e| = 0. We put
=2\ {eh

Labelled transition systems (LTSs); deterministic LTSs

A labelled transition systepanLTSfor short, is a tuple™ = (S, Z, (—a>)a€z), whereS is a
set ofstatesX is a set ofactions and-5C S x S is a set oftransitionslabelled with actiora.
If S andX are finite sets thefi” is afinite LTS (In fact, we will only deal with LTSs where the
action sett is finite while the state s& can be countably infinite.)

. a . a . a w

We write s — t instead of §t) e—, and we extend the relatiors» to — for words
w e T* inductively: s — s if s— § ands — s’ thens — ’. By s — we denote thatv
. . . w . a
is enabled in si.e.,s — t for somet. We write— for | J,.x —, and by—"* we denote the
reflexive and transitive closure ef>. We say that is reachable from & s —* t (i.e., s Tt
for somew € ¥*).

AnLTST = (S,%, (—a>)a€z) is adeterministid-TS, adet-LTSfor short, if for each pais € S,
a e X there is at most onesuch thas — t.

Bisimulation equivalence on LTSs and det-LTSs

Let7 = (S, %, (i>)a€2) be an LTS. We say thd&8 € S x S covergs,t) € S x S if for any
s -5 ¢ there ist — t’ such that §,t') € B, and for anyt 2, t there iss — & such that
(s,t') € B. ForB, B’ € SxS we say thaB covers Bif Bcovers eachqt) € B'. AsetBC SxS
is abisimulationif B coversB. Statess,t € S arebisimilar, which is denoted by ~ t, if there is
a bisimulation containing the pais, ).

The union of bisimulations is obviously a bisimulation. Tieéation~ is the greatest bisim-
ulation, i.e., the union of all bisimulations @ it is obviously an equivalence relatioBisim-
ulation equivalencealso calledbisimilarity, is defined also between states offelient LTSs,
referring implicitly to their disjoint union.

We also note that fodeterministic LTSbisimulation equivalence coincides with the variant
of language equivalence callé@ce equivalences ~ t iff for all wordsw € X* we haves BN
et— (i.e.,sandt enable the same words, also called traces).

One-counter automata, and the generated LTSs

A real-time one-counter automatpaROCAfor short, is a tupleA = (Q, X, §) whereQ is a
nonempty finite set ofontrol statesZ is afinite alphabetwhose elements are calladtionsin
our context, and € QxXEx{0, 1}xQx{-1, 0, 1} is atransition relationfor which (g, a, ¢, q, -1) €
¢ impliesc = 1. The tuplesd, a, c,q, j) € 6 are also calledules thezero ruleshavec = 0, and
thepositive ruleshavec = 1.

Remark.The word “real-time” refers to the fact that there aresnles @, ¢, ¢, ', j).

A configurationof A is a pair ¢, n) € Q x N wheren is thevalue of the counterwe often
write q(n) instead of ¢, n). AROCA A = (Q, %, §) defines the LTT (A) = (Qx N, X, (—a>)a€z),
whereq(n) 2 g (n+ j)iff (q,a sgnf),q, j) € §; we put sgnf) = 1 if n > 0 and sgnf) = 0
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if n = 0. The configurationp(0) are called theero configurations(We note that no counter
decrement is allowed in the zero configurations.)

A ROCAA = (Q, %, 6) is deterministic adet-ROCAfor short, if for each triplege Q,a € X,
c € {0, 1} there is at most one rule of the form, &, ¢, ¢, j). We note that (A) is deterministic
iff A is deterministic.

In Fig. 1 we can see a fragmentB{A), whereA contains the rulegy a, 0, g, 0), (p, & 1, g, 0),
(p7 a, 17 p» O), (p7 b» 07 r, 0)1 (p7 b» 1’ r, 0)1 (q» a, 0» q7 +1)1 (q7 a, 17 p» _1)1 (r» b7 0» r, O), (rv b» 07 q» +1)1
(r,b,1,q,+1).

Figure 1: A fragment of the LTS (A) generated by a ROC&

Decision problems, and the results

We recall two standard propositions and then state ourtseasltheorems. We use the no-
tation L (logarithmic space)\L, P (polynomial time),PSPACE, NPSPACE for the respective
standard complexity classes.

Thebisimilarity problem for finite LTSasks, given a finite LTS (in a natural graph presenta-
tion) and two states, t, whethers ~ t.

Proposition 1. The bisimilarity problem iP-complete for finite LTSs, andL-complete for
deterministic finite LTSs.

We refer to [6] forP-completeness. For a finiteterministicLTS ¥ and two stateSo, tg, we
note thatsy ~ to iff in the LTSF x # (where we put$ t) 2 (s,t)if s—5 ¢ andt - t') we
have &, to) —* (s, t) for some §, t) such that some actiamis enabled precisely in one &ft in

¥ . Hence bisimilarity in finite deterministic LTSs can be meted as digraph reachability, i.e.,
as a well-knowrNL-complete problem.

The bisimilarity problem for ROCAasks, given a ROCAA and two configurationg(m)
andq(n), whetherp(m) ~ q(n) in 7(A). In our complexity results (stated below) we assume
a standard input encodingshere thecounter values tm are givenin binary; in fact, the given
complexity bounds are also valid in the case of unary engsdin

We first observe that the bisimilarity problem and the largru@guivalence problem are log-
space reducible to each other in the caseeterministicROCA. The latter problem assumes



a given det-ROCAA = (Q, X, ) with a set ofaccepting states F€ Q, and two configura-
tions p(m) andq(n); it asks whethet(p(m)) = L(q(n)) whereL(r(k)) = {w € = | r(k) -
r’(K’) for somer’ € F andk’ € N}.

Proposition 2. When restricted to det-ROCA, the bisimilarity problem amel language equiv-
alence problem are log-space reducible to each other.

Proof. Given a det-ROCAA = (Q, Z, ), for F = Q we havep(m) ~ g(n) iff L(p(m)) = L(g(n)).
Hence bisimilarity reduces to language equivalence.

Now we assume a det-ROCA = (Q,%,6) andF C Q; we construct the det-ROCH’ =
(Qu{s},Xufh}, sU¢") arising fromA as follows. We exten® with a fresh “sink” control state
and we add the rules(a, ¢, s,0) for alla € £ andc € {0, 1}; moreover, if for some tripleq, a, ¢)
there is no rule of the forng(a, ¢, ¢, j) then we add the ruleg(a, ¢, s, 0). Finally we extend&
with a fresh letteh and add the rulegy(h, c, g, 0) for all g € F andc € {0, 1.

We can easily check tha(m) - q(n) in 7 (A’), for p,q € Q, if and only if there is a word
w € X* such thatwhis enabled precisely in one g{m), q(n); it is easy to check that the latter
condition holds if and only ilL(p(m)) # L(q(n)) (for A andF). Hence language equivalence
reduces to bisimilarity. O

We will get the following results; recall the previous rean the encodings of numbers.
Theorem 3. The bisimilarity problem for ROCA BSPACE-complete.

Theorem 4. For a ROCAA = (Q,Z,0), the relation~ on the state set of (A), i.e. the set
{(p(m), q(n)) | p(m) ~ q(n)}, is gfectively semilinear, with the description size exponeirithe
size ofA.

Theorem 5.

1. There is a polynomiatory with the following property. For any det-ROCA with
control states, if (0) ~ q(0) then there is a word w that is enabled in precisely one of
p(0), g(0) and that satisfiefv < pory(n).

2. The bisimilarity problem and the language equivalena®dfam areNL-complete for det-
ROCA.

Recall that the semilinearity of (in Theorem 4) means that the $ét, n) | p(m) ~ q(n)} is the
union of finitely many linear subsets df x N, for each paiip, q; a setA ¢ NK is linear if there
is a base vectds € N and perioda, po, ..., pr € N¥ such thatA = (b + c1py + Copo + -+ +
Cepr | C1,Co,...,C0 € N} Another view is that- can be described by a formula in Presburger
arithmetic [41]. In fact, our semilinear sets will be rattsgrecial, filling the “belts” and the
“background” sketched in Fig. 5 periodically, with expotiahperiods. Polynomial workspace
is suficient for an algorithm generating a corresponding (exptiaulescription of~.
PSPACE-hardness in Theorem 3 follows from [25], aNd-hardness in Theorem 5 follows
from Proposition 1; hence our contribution consists in sihgwhe upper bounds.

We also consider the regularity problem. We say thedrfiguration gm) of a ROCAA is
regularif p(m) ~ f for some statd in a finite LTS; in other wordsp(m) is regular ff the set of
states reachable frop(m) is finite up to bisimilarity.
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Theorem 6. The problem asking if a given configuratioinf) of a ROCAA is regular isP-
complete. The restriction of the problem to det-ROCKliscomplete.

For det-ROCA we have an analogue of Proposition 2, i.e., egularity problem and the
language regularity problem are log-space reducible th e#lwer in this case. In contrast, we
recall that both language equivalence and language réyudse undecidable for general, i.e.
nondeterministic, ROCA.

3. Prerequisites for the main algorithm

In Section 3.1 we observe some useful facts; Section 3.2rdeails some important notions
that already appeared in [23].

3.1. Simple facts about bisimilarity
We assume a fixed LT$ = (S, Z, (i>)a€2).

Proposition 7. IfRC S x S is covered by R R where R ¢~ then RC~.

Proof. If Ris covered byRU ~ thenRU ~ is a bisimulation, and thuRU ~ C ~. O

ForU ¢ S, bys 5 U we denote thas — t for somet € U; similarly s —* U means that
s —* t for somet € U. By thedistanceof se StoU C S we mean

distance(s U) =min{£fe N |Iw e X* : |w| =(AS— U}, where we put mird = w.

We vieww as the first limit ordinal; hence < w for all n € N.

We say that) C S is bisim-closedf {s€ S| s~ s forsomes € U} = U.

Proposition 8. If s ~ t and U is bisim-closed thedistance(s, U) = distance(t, U).

Proof. If s~ tands — S then there must be sortiesuch that — t’ ands’ ~ t’; if, moreover,
s € U andU is bisim-closed theif € U. O

We now define the equivalences2 ~; 2 ~2 2 - - - by the following inductive definition. We
put~o= Sx S. Fork > 1, ~¢C S x S is the set of all pairs covered by_;. Note thats »~ tiff s
andt enable diferent sets of actions (in which case there iBn0 S x S that covers§ t)). We
obviously have2, ~i 2 ~.

Remark. An LTS 7 = (S, %, (i>)a€2) is image-finiteif {s' | s 4 s’} is finite for each pair
se S, a € X; in this case we havg), ~i = ~. We note tha? (A) generated by a ROCA is
image-finite.

The next proposition is also standard.

Proposition 9. Forany LTST = (S, X, (—a>)aE;) where|S| = ne Nwe havevn_ 1 =~,=~.

Proof. By a standard partition refinement: when constructigg~1, ~2, ..., we must reach a
fixpoint within n iterations. O



3.2. The underlying finite LTE# and the setNC of incompatible configurations

Let us consider a ROC&. We recall that the counter value can change by at most one in
one step and that the transitions do not depend on the ceraenter value when this value is
positive. Hence ifnis “large” thenp(m) behaves “for a long time” likg in the following finite
LTS F4 controlled by theositiverules ofA (Fig. 2 shows an example):

Definition 10. For a ROCAA = (Q, %, §), we define theinderlying finite LTS 4 as

Fo = (QT, (—)acs)
whereq — ¢ iff there isj such that@, a, 1, ¢, j) € 6.

b
00 ="0u0
a
Figure 2:F4 arising from7 (A) in Fig. 1

We obviously haves(m) ~n, p (for anyp € Q and anym € N).

Convention.We will usually leave implicit if a concrete occurrence p{with no counter
value) refers to a control state or to a stateFip. E.g., in the expressiop(m) ~m p we view
p(m) as a state ifm (A) andp as a state ifF 4.

We now define the séNC as the set of configurations gt which are “INCompatible” with
Fa in the following sense:

Definition 11. Assuming a ROCAA = (Q, %, ), where|Q| = n, we definelNC € Q x N and
dist: Q x N — N U {w} as follows:

* INC = {p(m) | Vg€ Q: p(m) = g},
e dist(p(m)) = distance(p(m), INC).

We note thatp(m) € INC impliesm < ~ (sincem > ~ implies p(m) ~; p). SinceINC
is bisim-closed (ifp(m) ~, r and p(m) ~ q(n) thenqg(n) ~ r), the next fact follows from
Proposition 8:

Proposition 12. If dist(p(m)) # dist(q(n)) then gm) ~ q(n).

Comparing the distances of configurationsXt& is an important ingredient of our algo-
rithms. Regardindhe INC-membership problejrasking if p(m) € INC when given a ROCA
A andp(m), it is suficient to observe &SPACE-upper bound for the analysis of.é-Bisiv in
Section 4. The more precise complexity bounds captureddgébit proposition are useful later.

Proposition 13. TheINC-membership problem B-complete; it isNL-complete when restricted
to deterministic ROCA.



Proof. We assume a ROC& = (Q, %, §), wherelQ| = ~, and show a polynomial-time algorithm
constructingNC. To the underlying finite LTS 4 we (disjointly) add the restriction of (A) to
the state setp(m) | p € Q,m € [0,~—1]}; each original transitiomp(x—1) N q(n) is replaced
with p(n—1) 2 q (recall thatq(x) ~y ). In the resulting finite LTS withv + N> states we
construct the state-set partition correspondingtdy standard partition-refinement techniques
(constructing~g, ~1, ..., ~y). Now p(m) belongs tolNC iff it has noq in its partition class.
Hence theNC-membership problemis iR.

We now show that théNC-membership problem is iNL for det-ROCA. The respective
nondeterministic algorithm, given a det-ROCA= (Q, X, §) and po(my), first comparesny and
N = |Q|; if mp > N, then it returns NO (sinceo(mo) ~y Po and thuspe(mp) ¢ INC). If my < N
then the algorithm tries to shopy(my) ~ Q, successively for eact) € F4. Since the LTSs
T (A) andF 4 are deterministic, we havg(m) =, qiff p(m) <71 q or there isa € X such that
p(m) N p'(m), q N q,andp’(m’) =¢_1 . Itis thus stficient that the workspace of the
algorithm can store a paip(m), q) and a numbek < N, wherem < 2n; since the numbens, k
can be stored in binary, a logarithmic bound for the workssze is obvious.

We show the hardness results by a (log-space) reductiontitemon-bisimilarity problem
for finite LTSs (recall Proposition 1, and the fact that bBtAndNL are closed under comple-

ment). Assume a finite LTS = (S,Z, (—a>)a€z) and two statego, o € S. We construct the
ROCAA = (SU{pp, gyl X U (&'}, 6) wherepg, d ¢ S, py # 0y, anda’ ¢ X; the rules ins are
defined inductively as follows: for any,q € Sandac %, if p 4 g(in7)then (p,a 1,q,0)is
in 6, we also put fy, &', 0, po, 1) and €1, &, 1, do, 0) in 6. We note thatA is a det-ROCA if7” is
a det-LTS. We observe thafl) ~ r for all states of F.4; moreover, ifr # qf thenpj(0) =1 r.
Itis also clear thapy ~k do in 7~ iff py(0) ~ks1 gy Hence ifpp ~ qo in 7~ then py(0) ~ qp, in
which casgy(0) ¢ INC. If po ~ doin 7, hencepo ~k qo for k = [S| - 1 (by Proposition 9), then
P(0) =ki1 0, and thuspg(0) € INC. O

The distance op(m) to INC is given by a shortest appropriate path7ifA) (if it exists).
A possible shortest path fro(m) to INC is depicted in Fig. 3. Since the counter can drop by
at most one in one step, amfk) € INC impliesk < ~, we havedist(p(m)) > m— ~; hence
dist(p(m)) < w implies that the sefg(n) | dist(gq(n)) = dist(p(m)} is finite. We can also anticipate
that the constraindist(p(m)) = dist(q(n)) < w yields a certain linear relation betweemnand
n, as made more precise later. The complexity questions opating dist(p(m)) will be also
addressed later.

Now we note an important property of the configurations frohmicl INC is unreachable:

Lemma 14. Assume a ROCHA. If dist(p(m)) = w then gm) ~ r for some state r of 4.
Proof. Let us assume a ROCA = (Q, %, §), where|Q| = n. We verify that the set

R = {(p(m),q) | p(m) /=" INC, p(m) ~ q}

is a bisimulation; the proof will be finished, sinpém) /—* INC implies p(m) ¢ INC, and thus
p(m) ~, qfor someq.

Let (p(m),q) € R. Sincep(m) ~, g, for any p(m) 2 p’ () there isq 2 g such that
p'(m) ~x-1 d’; similarly for anyq =2 g there isp(m) = p’ (M) such thatp’ (M) ~y-1 q'.
Since p(m) /" INC, we havep’(m') +—* INC, and thus alsq@’'(m’) ¢ INC; let r satisfy
r ~¢ p'(NY). Since~,_1 coincides with~, in ¥4 (by Proposition 9), we have ~, ¢, and thus
p’(nY) ~¢ g'; this implies @’'(m'), ") € R. O

10



m
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Figure 3: A path fronp(m) to INC

Corollary 15. Assume a ROC& = (Q, %, ), where|Q| = ~. If dist(p(m)) = dist(q(n)) = w
then gm) ~ q(n) iff p(m) ~y g(n).

Proof. Assumedist(p(m)) = dist(q(n)) = w. The “only-if"-direction of the claim is trivial. For
proving the “if"-direction, we recall thap(m) ~ r; andqg(n) ~ r, for somery, ro in ¥4 (by
Lemma 14); ifr; ~ rp thenry ~ rp (by Proposition 9). O

4. Algorithm A Le-Bisim deciding bisimilarity for ROCA

After introducing some further notation we will present anain algorithm, deciding the
bisimilarity problem for ROCA in polynomial space.

Definition 16. Assume a ROCAA = (Q, X, §) with |Q| = . We partition Q x N) x (Q x N) into
three parts: Q@ x N) x (Q x N) = ClearYes U ClearNo U Unclear where

e ClearYes = {(p(m), q(n)) | dist(p(m)) = dist(q(n)) = w andp(m) ~, q(n)},
e ClearNo = {(p(m), q(n)) | dist(p(m)) # dist(q(n)) or p(m) =y q(n)},
e Unclear = {(p(m), q(n)) | dist(p(m)) = dist(q(n)) < w andp(m) ~y q(n)}.
We also put
Unclear = EFDg U EFD; UEFD, U - - -

whereEFD; = Unclear N {(p(i),q(n)) | p.g € Q,n € N}. (EFD can be read as “Equal Finite
Distances”.)

We note thaClearYes C~ andClearNo C~ (by the previously established facts). We have
already observed thaist(p(m)) < w implies that the sefg(n) | dist(q(n)) = dist(p(m)} is finite;
henceEFD; is finite for each € N.

The nondeterministic algorithmi&-Bism:

Input a ROCAA = (Q, X, 6), and two configurationpo(mo), go(No)-
11



1. If (po(mo), go(no)) is in ClearYes then return YES; if irClearNo then return NO.
2. (This point applies whemg(mg), go(No)) € EFDm,.)

(a) Compute a boundxeB (to be clarified later), exponential in the size4f
(b) PutR.,=R; =0.
(c) Fori=0,1,2,...,my, mo+1, mp+2, ..., Mp+ExrB do

i. ChooseR; € EFD;; if i = mg thenR; must contain o(Mo)), (do(No)).
ii. If R_1isnotcoveredbyr_»,UR_; UR U ClearYes then FAIL.

(d) Return YES.

It will turn out that this algorithm can be implemented to rimpolynomial space, and
that there is a computation returning YES if and onlyp§{my) ~ go(no). SincePSPACE =
NPSPACE, the upper bound in Theorem 3 will be thus established.

We perform the respective analysis ofABisiv in Section 6, after we “visualize” some
related notions in Section 5.

Now we just remark thapo(mg) ~ go(ng) implies that the computation that always chooses
R = EFD; n ~in 2(c)ireturns YES. On the other hand, if the for-loop in)2{ad no upper bound
then for any infinite (i.e., non-failing) computation we wathave RQUR  UR, U ---) C~, by
Proposition 7; this would implyo(mo) ~ go(ng). The bound ErB in 2(a) will be chosen so
that a successful run up toy + ExpB guarantees a certain periodicity that in turn guarantees t
existence of some infinite successful run if the for-loop hadipper bound.

5. Geometrical presentation of A.c-Bistm computations

Let us assume a ROCA = (Q,Z,6). For any fixedp,q € Q, a subseX of {(p(m), q(n)) |
m,n € N} can be naturally represented by black points in the 2-dimeasgrid N x N: point
(m, n) is black if (p(m), g(n)) € X, and white if (m), g(n)) ¢ X. This is depicted in Fig. 4.

(TYYY YY)
(oY YoX Yol Y
LY Yo Yol
‘leCec000
eeeO000
ee0e000
[ JeleY X YT
012 ...

—= N

o

Figure 4: A black-white colouring representing a subsd{pfm), g(n)) | m, n € N}, for fixed p, g.

For representing subsexsof {(p(m), q(n)) | p,g € Q,m,n € N}, we can put the respective
|QI? 2-dimensional grids together, creating the 3-dimensigridiN x N x (Qx Q); we have only
|QJ? values in the third dimension. (Figures 5 and 7 should maikectbar.) Here the point with
coordinatesrt, n, (p, q)) is black if (p(m), g(n)) € X.

Fig. 5 indicates an over-approximationdhclear, as the later analysis will establish. The
setUnclear resides in the “belt space”, consisting of polynomially mdimear belts with a
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polynomial (vertical) thickness. There is a polynomiallyumded “initial space” covering all
intersections of dferent belts; moreoveglearYes will turn out to be periodic outside the initial
space, with an exponentially bounded period.

S
intitial spac¢e .

(v )

G

Figure 5: Partition of our 3-dimensional grid

A computation of Ac-Bismm can be viewed as moving a width-3 vertical window, depicted
in Fig. 6. Each chosen sBt is contained in thé-th “vertical cut” of the belts.

(4, ax)

((Ifwlz)

q1,q1) m

Figure 6: Vertical window of width 3, moved byiA-Bisim

Fig. 7 illustrates a “repeat” of the cut in a belt, at posisdandi’; here each depicted black
point corresponds to an element of eitligr(j € {i,i’}) or ClearYes. The exponential bound
ExpB in 2(a) of ALg-Bisim (and the pigeonhole principle) will guarantee a repeat iictvithe
difference of positions is a multiple of the (exponentially baesh) period ofClearYes; this
will provide the announced guarantee of the existence ohfinite computation when no fail
is encountered in 2(c)ii tilmy + ExeB. To be more precise, we will need a repeat of a width-2
belt-cut, not just of a width-1 belt-cut depicted in Fig. 7.

13
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Figure 7: Repeat of a belt-cut

6. Analysis of ALg-Bisim, and the dfective semilinearity of ~

In Section 6.1 we note some facts about the shortest path§J), in particular a normal
form based on a lemma given already in [27]. In Section 6.2 wte sSome consequences of
these facts for computing distances7ir{A), and for the membership problems fOlearYes,
ClearNo, andUnclear. We then look at the shortest pathdNi, yielding the functiordist(p(m))
(the distance t¢NC), in Section 6.3. In Section 6.4 we make precise the perigydif ClearYes,
and we show the linear belts in whithnclear resides. In Section 6.5 we confirm thatcABismm
works in polynomial space, and in Section 6.6 we demonsthatei -Bisiv indeed decides the
bisimilarity problem for ROCA. In Section 6.7 we derive thenslinear description of stated
in Theorem 4.

6.1. Normal forms of shortest pathsif(A)

If we havep(m) —* q(n) in the LTS7 (A) for a ROCAA, then a shortest path frop{m) to
g(n) might be long even ifm— n| is small; in this case(n) is not reachable frorp(m) by using
positive rules only. We now want to show a normal form of sestrpaths; it is sketched in Fig. 8
for the case when using zero rules is necessary.

The paths induced solely by positive rules are callesitive pathswe formalize the positive
reachability relation as follows:

Definition 17. Fora ROCAA = (Q, %, 6), we define the relationsW—>+ forallw € ¥ inductively:
p(m) =5, p(m); if m> 0, p(m) 2 p’(nY) fora € X, andp’(nY) —u>+ g(n) thenp(m) i+ q(n).
By p(m) —Z q(n) we denote thap(m) =, g(n) for somew € x*.

We note that only the last node of a positive path might be a eenfiguration.

The following proposition, illustrated in Fig. 9, captuestandard simple fact: if a path from
p(m) to g(n) makes a “high hill” then there is a shorter path frgam) to q(n). The bounds in
the proposition are not the best possible, but they are eastyow.

14
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prefix cycle down zero touching cycle up suffix

counter height

p(m)

q."(.n'+2d')
q'(n'+d")
q'(n")

r0) r'o) .. steps

Figure 8: A shortest path fromp(m) to g(n)

Proposition 18. Assume a ROCA = (Q, X, 6), where|Q| = N, and a path

Po(Mo) — pa(my) =5 -+ =5 py(my) (1)

where a€ X and w= aa,...a, is a shortest word such thapfmg) N p,(my). Then for each
j €10, {] we have m< N2 in the case m= m, = 0, and m < maxmg, My} + N2 otherwise.

Moreover, if (1) is a shortegtositivepath from p(mg) to p,(m,) then for each g [0, £] we
havemin{my, m;} — N < mj < maxmo, My} + ~2.

Proof. If there is a counterexample (1) withy = m, = 0 then for the smallestsuch thatn, > O,
i.e.my = 1, we have thap;(m) 2 Pi+1(Mit1) S LN p.(my) is also a counterexample.

Suppose now that (1) is a counterexample whmage= maxmy, m;} > 1. Let us fix some
j € [1,¢ - 1] such tham; = my + ~°. For eacth € [0, N%] we now define

f(hy=maxi€[0,j] Im=mc+h} and  g(h) = min{i € [}, ] | m = my +h}.

We note thatf (h), g(h) are well defined, andi(0) < f(1) < --- < f(z?) = j = g(n?) < g(n*-1) <
- < g(0); moreovermy > my + h for all i € [f(h),g(h)]. This also implies that the path

af(o)+1 ar(o)+2 39(0) . .. . L ,
Pio) — Pro+1 — -+ — Pyo) iS positive. By the pigeonhole principle we get somé&’,

where 0< h < i < ~? andpry = Pr), Pty = Pycrv) (We haven? + 1 valuesh in [0,~?], and
only x? pairs of control states). But then we could rem@yg).1 . . . ) andag)1 - - - agn)

. u .
sincepr(r)(Mrn) = Prr) My + ) —>+ Py (M + h) = Py(ry(My(ry) fOr U = @s(r)+a .. . Bge); this

contradicts the assumption thais a shortest word such thpg(my) - pe(my).
The final claim for positive paths is derived analogously. O

Given a shortest path frop(m) to g(n), it is trivial that any subpath is a shortest path from its
start to its end. Proposition 18 thus bounds the maximumteowalue in the “zero-touching”
part in Fig. 8, as well as the maxima of the “going-down” partl @f the “going-up” part. We
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e, Py
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Figure 9: “Cutting a hill”

also have a lower bound for the overall minimum when therecizero touching. Now we
clarify the cycles; we concentrate just on the “going-dowygaft, since the “going-up” part is
almost analogous when we reverse the positive ROCA-rules (eplace each rulea, 1, q, j)
with (g, , 1, p, -))-

Definition 19. Let A = (Q,%,6) be a ROCA. By acycle we mean a nonempty sequence
of positive rules @1, a1, 1, g, j1), (02, @2, 1, 03, j2), (d3. @3, 1, Qa, J3), - - -, (k- &, 1, Ok+1, Jk) Where
Ok+1 = O1; the numbek > 1 is thelength of the cycleThe aboveycleis simpleif 1 <i < j <Kk
impliesq; # g;. The numbee = 2!‘:1 ji is called thegffectof the cycle; ife < 0, thend = —eis
called thedrop of the cycle.

We note that theféect of a cycle is the change of the counter value that the cgelses when
performed. If the length of a cycle ks then its éfect is in [k, K]. If |Q| = n, then the length of
any simple cycle is in [IN] (and its d@fect is in [-n, N]).

We refer to [27] for a proof of the next proposition; intuitly, if [/m— n| > ~> and p(m) —*
g(n), then there is a shortest positive path frefm) to q(n) in a certain normal form: the path
starts with a “short” prefix, then uses repeatedly a simpttecfat least once), and finishes with
a “short” suffix (where the sum of lengths of the prefix and théisus less tham?).

In fact, only deterministicone-counter automata are considered in [27]. Neverthelleas
actions labelling the transitions are irrelevant for thacteability questions. In the proposition
we can thus conveniently assume a bijection betweands: each actiora has a corresponding

rule (,a ¢, q, j). We then say that € " is a cycle if the corresponding sequence of (positive)
rules is a cycle.

Proposition 20. (Lemma 2 in [27].) Let A = (Q,%, ) be a ROCA wherfQ| = N. Assume
p(m) —* q(n) and m> n + n2. Then there are words,wi, V2, v3 such that w is a shortest word
satisfying gm) l>+ q(n), and

e W = vi(V)'v3 for some i> 0,
e |v1v3| < N?, and v is a cycle withv,| < x and with a drop de [1,x],
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o p(m) =5, P(M) =5, P —d) =, P —2d) <5, -, P - id) =, ()
for some pe Q and m € N (where v is repeated i times).

In later applications of Proposition 20 we will also imptigiuse the fact that in the described
case we can cutfband pump the cycle in the following sense:
1 Zi . . .
p(m+ (j — )d) “22%, q(n) for all j > 0 such tham+ (j —i)d > n+ 2, and
vi(V2) va

p(m ———, q(n+ (i — j)d) forall j € [0,i].

There is an analogous claim f@(m) —* q(n) wherem + N> < n; herev, is a cycle
with a positive &ect. The claim follows from Proposition 20 by reversing thasitive rules
(i.e. replacing p,a 1, q, j) with (g,a, 1, p, —j)) and considering|(n) —% p(m). We can also
analogously cut f and pump the cycle.

In the next section we use Propositions 18 and 20 for notingcadbout the complexity
of computing distances. This fact will help us later to diathe membership problems for
ClearYes, ClearNo andUnclear. In fact, just polynomial-space algorithms wouldfsee for
our analysis of Ac-Bisiv; the better complexity bounds in Section 6.2 are substdfotighe
deterministic case.

6.2. Computing (representations of) distances for ROCA

We first recall a standard simple fact regarding spdfieient implementations of (integer)
arithmetic operations:

Proposition 21. There is a procedure that, given € {+, —, -, =+, mod}and mn, j € Nin binary,
returns the j-th bit ofmor n), while using workspace (@g log maxm, n}) whenor € {+, -} and
O(maxlog log maxm, n}, log min{m, n}}) whenor € {-, +, mod}.

Informally speaking, in the case € {+, —} just two pointers moving in the binary presenta-
tions ofmandn are stfficient (when performing the standard algorithm)sife {-, ~, mod} then
we also use a piece of workspace that can store the smaliarmofwhile realizing a standard
textbook algorithm).

Given a ROCAA and two configurationg(m), q(n), the valuedistance(p(m), {q(n)}) can
be obviously written in linear space (in binary); this felle easily from Propositions 18 and 20
(recall also Fig. 8). The next proposition shows that ea@tifip bit of distance(p(m), {q(n)})
can be computed in nondeterministic logarithmic space flanslalso in polynomial time).

Remark. We thus also gelL-completeness of the reachability problem for ROCA, when
the initial and final counter values are given in binary. Theposition is derived from Prop. 20
(i.e. Lemma 2 in [27]) by using standard means (like Prop; @&) provide a proof to be self-
contained.

Proposition 22. The following decision problem NL-complete.
Input: A ROCAA, two configurations @m), g(n), j € N, c € {0, 1} (m, n, j written in binary).
Questions distance(p(m), {g(n)}) finite and is the j-th bit of its binary presentation c ?

Proof. NL-hardness follows from digraph reachability; we will shdvat the problem is imL.
Assume a given ROC# = (Q, %, 6), where|Q| = ~, and two configurationp(m), q(n). We
first show a nondeterministic procedure deciding(i) — q(n).
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1. If I/m - n| < ~?, then we just stepwise guess a respective positive path famnto g(n);
we always remember just the current configurapaimy), wherent is represented by the
differenced = m’ — min the workspace. By Proposition 18 we can restrict ourseloe
d € [-(m-min{m, n}+~°—1), maxm, n}—m+~>—1]; this guarantees € [-2x°+2, 28°-2],
and thugd can be written in 4 log bits. At the same time we can count the lengtf the
guessed path (presentitign binary).

2. IfiIm-n| > N? then we base the procedure on the normal-form path guachinyeerop. 20;
w.l.o.g. we assumen > n since otherwise we could just reverse the positive rules. We
guess a tupledq, {1, do, £2, d3, £3, p’) Where 0< {1 + £ < N, |d1| +|da| < N?, d3, £3 € [1,N],
andp’ € Q. We verify that

e from p(m) we can reachp’(nm+d;) in £; moves,

e from p'(n+d;) we can reaclg(n) in £, moves,

e from p'(n+dy+dsz) we can reaclp’(n+d,) in £3 moves, and
e ds divides (n+ d;) — (n+ dy).

Each configuratiorr(k) stored in the workspace during this process is represdmed
(r, k—=m) or by (r,k—n) (i.e., we put only small dferences in the workspace, as i) 1

The above nondeterministic procedure obviously runs iafitigmic space; moreover, any suc-
cessful run also yields a (small) presentation of the lenggome path fromp(m) to g(n) (i.e.

of an upper bound fadistance(p(m), {q(n)})): either¢ in 1., or the tuple {1, {2, {3, d1, d2, d3) in
2.;in the latter case, the represented (big) number is

£1+€2+€3-((m+ d]_)—(n+d2))+d3.

For deciding ifp(m) —" g(n) (when the zero rules are allowed), we add the possibiliutess
somer, r’ € Q and to verify thatp(m) —7 r(0), r(0) —* r’(0), and thag(n) — r’(0) when
the (positive) rules are reversed. It is clear that thisargralso runs in logarithmic space, and
any successful run provides a (small) presentation of thgtleof a path fronp(m) to g(n).

For a concrete presentation of an upper boundifstance(p(m), {q(n)}), we can decide in
nondeterministic logarithmic space if the bound can bengtteened,; this follows from the fact
that we can compare two (small) presentations by using theepiures captured by Proposi-
tion 21.

SinceNL is closed under complement, we can thus construct a nomceistic proce-
dure working in logarithmic space where each successfuffinishes with a presentation of
distance(p(m), {q(n)}). Extracting thej-th bit of distance(p(m), {q(n)}) from the presentation
can be done in logarithmic space (by invoking Propositioagain). O

Proposition 22 will be particularly helpful later, for cifing the complexity of the mem-
bership problems foClearYes, ClearNo, andUnclear. We can now note that it implies that
dist(p(m)) = distance(p(m), INC) can be computed in polynomial time (once we recall tfie e
cient constructability ofNC, shown in Proposition 13 and its proof).
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6.3. Distance tdNC, and the period\,

Our previous reasoning allows us to derive further usefulseguences for the function
dist(p(m)), including the exponentially bounded periodicity of thet{m | dist(p(m)) = w}
(for any fixedp).

Convention. In the rest of the paper we will derive the existence of sdveoédynomials
roryj : N — N, in particular

poLyo(n) € O(n%), oLy (n) € O(n?) in Proposition 23,
roLy1(n) € O(n*) in Proposition 26,

poLy2(n) € O(n®) in Proposition 31,

poLy3 in Proposition 38.

Their concrete form will be left implicit (as well as the degrofrorys) but we will assume that
such polynomials are fixed, and whenever we refer to one ofi tiaee mean the respective fixed
polynomial. We will later relateory;(n) androry,(n) to the belt-thickness and to the initial
space in Fig. 5.

We now show a set of linear equations= o-1m + o> (Whereo, o, are rational constants)
such that any finiteist(p(m)) must satisfy one of them. (Recall the shortest patN@sketched
in Fig. 3.)

Proposition 23. There are polynomialsoryg(n) € O(n%) and poLYg(N) € O(n?) such that the
following holds. Given a ROC& = (Q, %, 6), with |Q| = N, if p(m) —* INC then

dist(p(m)) = ¢y + ch T2

2)
where d € [0,N], dz € [1,N], ¢ € [0, PoLyo(N)], Cz € [—PoLyy(N), PoLYg(N)].

Proof. Suppose thapy(mg) A, p1(My) B, 2 p:(my) is a shortest path fromg(mp) to
INC; hencep,(my) € INC and thusm, < ~. The path obviously never visits a configuration twice,
and each subpath of this path is a shortest path from itstetdastend. By using Proposition 18
we derive that; < maxmo, N} + ~? for all j € [0, £].

If my < N +N? thenpi(my) € Q x [0, n+2v2—1] for all i € [0, £], and thusf < ~ - (N + 2v%). We
can putc; = ¢ andd; = 0in (2); hered,, ¢, are irrelevant, and we can considgr= 1, c, = 0.

Assume nowmy > N + N2, and letip be the smallest such that, = ~n — 1; we note that
pi(m) € Q x [0 N+N2— 1] for al | € [io, €], and thust — ig < N - (N + N%). The (positive)

path po(mp) A, p1(my) SN N pi,(M;,) can be assumed to be in the form guaranteed by
Proposition 20, whereya,...a, = vi(v2)'vs for the appropriates, vo, v andi > 0. Hence

ip = [Vava| + |vp| - Tt (” 1) whered is the drop of the cyclevz andc is the counter change
caused by, vs. Slnce|v1v3| < ~?, and thusc € [-(~?-1),8°-1], and|v2| < N, d € [1,N], we

are done: in (2) we put; = |v1v3| + (€ —ip), d1 = |vo|, d2 = d, c; = ¢ — (v — 1). We thus have

C1 € [0,N?=1+N-(N+N?) —1],dg € [1,N], d2 € [L,N], € € [-(N°~1) - (N—1), (N°~1) - (n—1)]. O

The reasoning in the proof of Proposition 23 has further equnences. Informally speaking,
the next proposition shows that the et | p(m) —* INC} is “dense” if it is not a small finite
set. The setm| p(m) /—~* INC} might be not “dense”, but it is “periodic”. Any number that is
a multiple of drops of simple cycles of the relevant RO@can serve as a period but we use

Ay defined ad\y =N =~ - (N—-1)- (N—2) - - - - 2-1
19



at our level of analysis. (See also Remark after Proposiibh

Proposition 24. Assume a ROC& = (Q, X, 6) with |Q| = N, and a configuration ¢m) such that
m> N + N2,

1. If dist(p(m)) < w then there is de [1,n] such thatdist(p(m+jd)) < w for all j € Z
satisfying m+ jd > N + ~N2.

2. We havalist(p(m)) = w iff dist(p(m+A,)) = w (for m > ~ + N?).

Proof. Point 1. A shortest path fromp(m) to INC, wherem > ~ + ~?, starts with a positive path
pT) 5, (M) >, P/ —d) =5, (I = 2d) <5, - 5, (7 —id) . r(v-1) (for
somep’,r € Qandn e N), as discussed in the proof of Proposition 23; heeigthe drop of the

i+]
cyclevy. Itis clear thatp(m+jd) R A r(n—1) whenever + j > 0. Sincer(n—1) —* INC,

we are done.
Point 2. Ifm > ~ + ~? then Point 1 implies thap(m) —* INC iff p(m+A,) —* INC; this
follows from the fact thain = (m + A) — %d andA is divisible by anyd € [1,n]. O

Remark We have chosen, = n! < N¥ = 2¥199%: thoughA, is exponential irx, it can be written
in O(~xlogn) bits. In more detail, we could specifys as the least common multiple of simple
cycle drops inA. But this number is also exponential in the worst case (aw/shy creating
separate cycles whose drops are pairwiskedint primes); therefore we use simgly = w!

at our level of complexity analysis. We note that an uppemiddiiner thanv! is recalled from
number theory in Lemma 1 in [27].

6.4. ClearYes is periodic andUnclear is inside belts

We aim to make precise the periodicity ©fearYes; recall that for a ROCA withy control
states we hav€learYes = {(p(m), q(n)) | dist(p(m)) = dist(g(n)) = w and p(m)) ~y q(n)}.

Proposition 25. Assume a ROC& = (Q, X, 6) with |Q| = ~. If m,n > x +~? then(p(m), g(n)) €
ClearYes iff (p(M+iAy), d(n+]jAy)) € ClearYes for all i, j € N.

Proof. If m,n > ~nthenp(m) ~, q(n) iff p ~, q(sincep(m) ~, pandg(n) ~y g). Form,n > N+n?
we havedist(p(m)) = dist(q(n)) = w iff dist(p(m+iA)) = dist(q(n+jA)) = w (for all i, j € N), by
Proposition 24(2). O

When discussing Fig. 3, we mentioned informally that a aamstdist(p(m)) = dist(q(n)) <
w imposes a linear relation betwesnandn. This is formalized in the next proposition, which
implies thatUnclear resides in polynomially belts with polynomial (verticali¢kness.

Proposition 26. There is a polynomiatory;(n) € O(n*) such that the following holds. If, for
a ROCAA = (Q,%,6) with |Q] = ~, we havedist(p(m)) = dist(q(n)) < w then for some
a, 8 € [1,8%] we have

In— %m| < poLy(N).

M+Cp
[

dist(q(n)) = ¢} + d’ln;—,dz as in (2) in Proposition 23, we get + di7g* = C; + din;—,dz. If dy >0
2 2

Proof. Assumedist(p(m)) = dist(q(n)) < w. When expressindist(p(m)) = ¢; + d; and

andd; > 0 then we (multiply both sides bgl and) derive
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N=3g,

dsc dsdic dsc;
me (% + S - B - gp) = gmep
wherea, 8 € [1,8%] and|p| < N-PoLYg(N) +N2-POLY6(N) +poLyy(N), and thugp| = [n— ;—;m| e O(n%)
(sinceporyp(n) € O(N®) andpoLyj(n) € O(N?)); we note thap is a rational number such thap
is an integer.
If dy = 0 ord] = 0 thendist(p(m) = dist(q(n)) < poLyp(n), and thusm < N + poLyp(N) and
n < N + poryg(N) (sincedist(r(k)) = distance(r(k), INC) > r —n). We can putr = 8 = 1 and note

that|n — %m| < N + PoLYg(N). O

Definition 27. Assume a ROCAA = (Q, X, 6) where|Q| = n. By abelt Bgiven by its slope%

wherea, 8 € [1,~?] we mean the sd(p(m),q(n)) | p,g€ Q. mne N, |n- %m| < pory1(N)}. By
BeLrSeace we mean the union of all belts.

Hence Proposition 26 implies that the skiclear = [ J;2, EFD; is a subset of BurSeace. We
can now also note that the vertical thickness of the beltsgn3-is 2- rory;(n).

The next fact is not needed for the analysis atiisim but we note it for later use; as
expected, the BrSeace-membership problerasks if (p(m), q(n)) € BerrSeace when given a
ROCA A andp(m), q(n) (wherem, n are presented in binary).

Proposition 28. TheBerLrSpace-membership problemis in

Proof. The membership is determined by n (the control states are irrelevant). We have to
check if there are, 8 € [1,~?] such thatn - %m| < poLy1(N), i.e., eithesn > amandpn — am <
B - pory1(N), or Bn < amandam — Bn < B - pory1(N). It is a routine to show that this can be done
in logarithmic space (recalling Proposition 21). O

6.5. ALc-Bisim works in polynomial space

As the first step of our complexity analysis, we explicitlgaél thelocality of checking the
bisimulation conditions iy (A), whereA = (Q, %, ¢) is a ROCA, the locality follows from the
fact that the counter value can change by at most one in opeBtep,q € Q andm,n € N we
define theneighbourhood

Neigh(p(m), q(n)) = {(p’(M),q'(n)) | p’.q" € Q,IM-m[ < 1, |n"—n| < 1}.

Proposition 29. Fora ROCAA = (Q, %, 6), a pair (p(m), q(n)) is covered by R (QxN)x(QxN)
in 7 (A) iff it is covered by R Neigh(p(m), g(n)).

It is this locality which allows us to restrict g _, U Ri_1 U R in 2(c)ii in ALG-Bisim.

We now recall that Ac-Bisiv also uses procedures for solving the membership problems fo
ClearYes, ClearNo, andUnclear = | J;2, EFD;; though polynomial-space upper bounds would
sufice here, we show better bounds in the next proposition; weiatdude the deterministic
case for later use. An instance of the membership proble@léarYes is a ROCA and two con-
figurationsp(m), q(n) (wherem, n are presented in binary); similarly f@earNo andUnclear.

Proposition 30.
1. The membership problems folearYes, ClearNo, andUnclear are in P. When restricted

to det-ROCA, the problems akt-complete.
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2. Given a ROCAA = (Q,%,6) and i € N (in binary), the seEFD; can be computed in
polynomial time.

Proof. We consider a ROCAA = (Q,X,6) where|Q| = ~. First we note that deciding if
p(m) ~k1 q(n) is straightforward once we construct the sitigh(p(m), q(n)) N ~k (due to
the locality). This makes clear that decidingpifm) ~, q(n) can be done in time bounded by a
polynomial (in the size ofA). In the deterministic case, decidipgm) -, q(n) is obviously in
NL (we just stepwise guess a word no longer thdimat is enabled in precisely one jafim), q(n)),
and we recall thallL =co-NL.

Since we can construtiC in polynomial time (recall the proof of Proposition 18)st(p(m))
is computable in polynomial time (as follows from Propasiti22). It is thus clear that there is
a polynomial-time procedure deciding to which of the sglsarYes, ClearNo, andUnclear a
given pair fp(m), q(n)) belongs. Propositions 13 and 22 also show that the meimipgreoblems
for ClearYes, ClearNo, andUnclear areNL-complete in the deterministic case.

Since all elements dEFD;, for any fixedi, are in B:iurSeace, their number is bounded by a
polynomial inn, andEFD; can be constructed in polynomial time, w.r.t. the sizerbénd the
length of the binary presentation iofrecall Proposition 26). O

To finish the description of A&:-Bisim, we need to specify the exponential bounaB& (com-
puted in 2(a)). To this end we introduce a polynoneialy,; the valuerory,(~) will bound the
initial space in Fig. 5. It is chosen so that it guaranteesttiea neighbourhood of any “point”
in a belt to the right of the initial space does not intersegt @her belt, and the background in
the neighbourhood guarantees the periodicitZlefarYes as captured by Proposition 25. Tech-
nically, we recall Proposition 26, yielding the polynomialy(n) € O(n*), and we fixeory, by
the next proposition:

Proposition 31. There is a polynomialory,(n) € O(n®) satisfying the following conditions for
any ne N anda, 8, o', € [1,n?], where we write X instead @bLy,(n):

1. %X —pory1(N) — 1> n+n?;

2. if 77 % then%X —pory1(n) — 2 > %X + pory1(N).

Proof. We can rewrite 1. aX > £ (poLy;(n) + 1+n+n?), and 2. ax > ‘ff;,ﬁ -(2-pory1(n) +2).

[e7

Since £ < n* androwv:(n) € O(n*), the claim is clear. O

Corollary 32. Assume a ROC& = (Q, X, 5) where|Q| = n. If m > pory,(v), @, 8 € [1,~%], and
n— %m| < pory1(N) then for any(p’(nY), g'(n")) € Neigh(p(m), q(n)) we have

1. m>~n+n2andr >N+nN2

2. i I — 2| < porvs(n) for o/ ' € [1.\°] then? = 2,

For each ROCAA = (Q, X, 6) where|Q| = N we put
ExpB = poLya(N) + 1+ (Ay)3 - 2 rou(N), 3)

Remark.It would sufice to replaceoryz(n) in (3) with max0, poLy2(N) — mg}. We simply want
to guarantee that the “window” in Fig. 6 moves far enough ®ilght of the initial space to
ensure a convenient repeat in each belt (whose simplifiesioreis sketched in Fig. 7).
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We note that it sfiices for A.g-Bisim to always have just currei®_,, Ri_1, R in memory (a
subset of the vertical belt-cuts of the “window” in Fig. 6, @k the numbers are presented in
binary). Hence the next lemma is now clear.

Lemma 33. ALG-Bisim can be implemented to run in polynomial space.

6.6. Correctness oALG-Bisim

We now show that Ac-Bisim indeed decides the bisimilarity problem for ROCA. One direc
tion is easy:

Proposition 34. If the input satisfies ¢gfmy) ~ do(no) then there is a computation éfiLc-Bisim
that returns YES.

Proof. If po(mo) ~ qo(no) then either Po(mo), go(ng)) € ClearYes or (po(Mo), Jo(No)) € EFDy,.
The former case is clear, so we assume the latter. If we alalagsseR = EFD; N ~ in 2(c)i
then we cannot fail in 2(c)ii: itis ticient to consider jus®_,, R_1, R since any p(m), g(n)) e~
is covered byNeigh(p(m), g(n)) N ~ (due to the locality captured by Proposition 29). O

For the other direction we also use another aspect of théitpgdallowing from the fact
that transitiongo(m) N p’(m+j) are independent of the concrete valaevhen the value is
positive. Informally, if (p(m), g(n)) is covered byR and the “shift” (', n’) ~ (M+2z, N +2)
(by a “shift-vector” @, z)) maps each element &fin Neigh(p(m), g(n)) to an element oR (in
Neigh(p(m+z1), q(n+z))) then the assumption th& covers p(m), q(n)) implies thatR covers
(p(M+2z1), q(N+22)).

Proposition 35. Assume a ROC&A = (Q, X, 6) and aset RZ (QxN)x (QxN). Letallmn, m+
z1, N+ 2, be positive, where mm € N and z, z € Z, and assume that for ea¢p’(n7), g'(n")) €
Neigh(p(m), g(n)) we have tha{p’(n),q'(n’)) € R implies(p’(m + z), (" + )) € R. If R
covers(p(m), q(n)) then R also cover§(m+ z1), q(n + z)).

Proof. Let the assumptions hold and Rtover (p(m), g(n)). Consider a transitiop(m-+ z;) N

. . . . a . a .
p’(m+2z.+j). Since there is also the transitipm) — p’(m+ j) we must have(n) — q'(n+j’)
such thatp’(m+ j),q'(n+ j’)) € R Since ’'(m+ j),d (n+ j’)) € Neigh(p(m), g(n))), we have
(P(m+z+ j),d(n+ 2+ j)) € R andp(m+ z) 2 p’'(m+ z + j) can be thus “matched” by
qin+2z) N q(n+z+ j"). For any transitiom(n + z») 4, g (n+2z+ j’) we deduce a matching
transitionp(m+ z) 2 p’(m+ z + j) analogously. O

Lemma 36. Given a ROCAA and two configurationsdfmo), go(no), there is a computation of
Arc-Bisiv returning YES (for the inpuf, po(mo), do(no)) if and only if p(mg) ~ go(no).

Proof. The “if” part was shown by Proposition 34. To show the “only ffart, let us con-
sider a computation returning YES, for the inp@t po(mo), qo(no). If (po(Mo), qo(no)) €
ClearYes then we are done, sin@earYes C~; we thus assumepf(imp), do(No)) € EFDpy,. Let
Ro, R1, . .., Rny+exes De the sets chosen by the computation in 2(c)i; hepg@t), do(No)) € Ri,-

We now show that there is a bisimulation containing the Bgt&y, . . ., Ry, (While it might
not contain alRy,. for j > 0); the proof will be thus finished.

We assume thafl = (Q, X, §) where|Q| = ~, and consider the periodic sequenge: i <
.-~ < i whereip = 1+maxmo, pory2(N)}, ij:1 = ij+(Ay)3 forall j € [0, £~1], andf = 24 romi(),
The definition (3) guarantees that< mp + ExeB, and thusR, is defined for ali < i,.
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Let us now consider a concrete bBltgiven by its slop% wherea, 8 € [1,~°]. Recall Fig. 7
for the idea of a “width-1 cut” repeat; we now derive a “wid2heut” repeat (which is needed
for a consistent periodic filling dB described later). We say thatpair (i,i"), wherei = i;, and
i =1ij, for1 < ji < jo < ¢, is arepeat(of a width-2B-cut) if the following holds:

foranyp,q € Q, anym € {i,i + 1}, and anyn such thafn — %m| < pory1(N), if we
putm’ = m+ (I = i)(A\)° andn’ = n+ §(i’ — i)(Ay)° then ((m), q(n)) € Ry iff
(p(m), a(n)) € R

We note thatZ(A,)® is a multiple ofA, sinceg € [1,~x°] and A, = n!. Thus also p(m), q(n)) €
ClearYes iff (p(m'), g(n’)) € ClearYes (for m,n,nY, n" as above); here we use Proposition 25 and
Corollary 32(1).

For eachi > ig, the setd(p,g,mn) | p,g € Q,m € {i,i + 1},|n - %ml < poryy(nN)} and
{(p.amn)|p,ge Qme {i+(A)°%i+(Ay)°+1),In-gm < rov1(n)} have the same number of

elements that is bounded b¥-2-2-poLy; (n). We thus easily deduce that our chofce 24 -rorva(¥)
and the pigeonhole principle guarantee that there is a t€p&, wherei = i;, < ij, = i’ for
somejy, j2 € [0, ]; let us fix such a repeat,(’).

Informally speaking, we now “fill the belB afteri’” periodically, with the period’ — i =
(j2 = i1) - (A)°. Formally we define the sel’ for j = poLva(v) + 1, pory2(N) +2,.... inductively
as follows:

1. If j € [porv2(N)+1,i’], and n satisfies|n — %j| < pory1(N), and @(j),q(n)) € R; then
(p(j), a() € R®. (HereR? is the intersection oR; with the beltB.)

2. If j > 1", andn satisfiegn — %j| < pory1(N), and @(j — (i = 1)),q(n— %(i’ —i)) € RjB_(i,_i)

then ((j).a(n) € R’. (HereR® can be viewed as the “shift” &R? by the vector

(" =i, 53" =1)).) (=)

We now show inductively thaR? is covered byRo,n U R UR®, U ClearYes whenj =

poLv2(N) +1, and thaR® is covered byR? ; URPUR?, , U ClearYes for eachj > porv,(v) +1. For
eachj € [poryz(N) +1, 1" — 1] the claim is true since the considered run o6MBisv is successful:
by Corollary 32(2) the neighbourhoods of the “points” in thedt B outside the initial space do
not intersect other belts, hence coverinﬁfby Rj-1 UR; U Rj;1 U ClearYes implies covering
of R? by R].E{l U R? UR? , U ClearYes (using the locality captured in Proposition 29).

For eachj > i’ the claim follows from the validity of the claim foy = j — (i’ —i): by
Corollary 32(1) we can use the periodicity@tearYes captured in Proposition 25¢(m), q(n)) €
ClearYes implies (p(m+ (i’ —1)),q(n + ‘E’(i’ —1))) € ClearYes since bothi{ — i) and%(i' —1)
are multiples ofA,), and we also use the periodicity of our belt filling, and tehifted” locality
captured by Proposition 35.

We putRyeip = U?ipowz(w)u R]B, and note thaRpeir-g is covered bYRoowv,n) YU Roei-g U
ClearYes.

We proceed similarly for all belts (i.e., for all slopgyvherea,ﬁ € [1,~?]), and defineRyerts
as the union of the seRe_g for all beltsB.

Now we deduce thaR = Ry U Ry U -+ U Rugy,(v) U Rpelts is covered byRU ~, and we
invoke Proposition 7. SincBpeirs N {(P(j). a(n) | p.q € Q,n € N} coincides withR; for all
j € [porLyz(N) + 1, mg] (whenmy > poryz(N)), there is a bisimulation containirigy, Ry, . . ., Ry,
and thuspo(mo) ~ go(No). O
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Lemmas 33 and 36 prove the upper bound in Theorem 3 (stateztiios 2).

6.7. Hfective semilinearity of (Theorem 4)

Theorem 4 can be now verified in a straightforward way. We daive all tedious technical
details but we give the main ideas, based on the previouysisalf ALc-Bisim. First we note
that we can now assume that@Bisiv is adjusted so that it always choodRs= EFD; N ~;
we have shown that the membership«itan be decided in polynomial space. In this case, for
R = RyUR{U: - ‘URo1y,(v) URbeits (defined as in the proof of Lemma 36) we h&eClearYes =~,
as we now show. Suppose it is not the case. Then for aBedfiven by its slope%, and
for the (first) respective repeait (') we would havep’(nm') ~ q'(n’) for somen' > i’ where
(p'(n), g'(n")) € EFDyy NBthough @'(m), g'(n")) ¢ Reeir-; SUppose is the smallest possible.
We now derive a contradiction by using a “shift ©f by the vector ¢(i” — 1)), —g(i’ —1)) (that
is opposite to the vector used for the inductive constractd Ryeig). Let us defineR =
R, UR,,UR 3U--- c Bsuchthat f(j),q(n)) € B belongs taR; (for j € {i+1,i+2,i+3,...})
iff p(j+(@"=i)) ~ q(n+2—§(i’—i)). We can now easily check thitis covered byRPUR UClearYes;
henceR' c~. Butp’'(nY — (i" = 1)), q'(n" — %(i' —i))isin Rov—(r-i) thoughi it is not ir’RfET‘Yf(i_i); we
must surely havar — (i’ — i) > i’, and we have thus contradicted thaitwas the smallest.

There is surely a procedure producing a formula describhiegathole seClearYes (based
on Proposition 24(2)). We have thus shown that/isim can be enhanced to produce a (Pres-
burger) formula describing the whole seif it can remember all constructd®, Ry, R, ..., and
thus works in exponential space.

It is now a routine to note that the resulting exponentiafrfola can be produced by using
only polynomial workspace. The main trick is that the belt-cepeatsi(i’) do not need to
be looked for in fully rememberely, Ry, Ry, . .. but they can be nondeterministically guessed
and then verified: when processind\Lc-Bisim guesses that there will be the appropriatater
(within an exponentially bounded number of steps to be namtexd), remembers just the width-
2 cut ati, continues with producing the description of the belt#ijiuntili’ where it verifies that
(i,i") is indeed a repeat.

7. Bisimilarity is in NL for deterministic ROCA

We recall thatClearNo = {(p(m), q(n)) | dist(p(m)) # dist(q(n)) or p(m)) =, g(n)}, for a
(general) ROCAA = (Q, %, 5) where|Q| = n. The factClearNo C~ can be made more precise:

Proposition 37. If dist(p(m)) < dist(q(n)), then gm) ~ q(n) for k = dist(p(m)) + .

Proof. If dist(p(m)) < dist(q(n)) thenp(m) - p’(nY) wherelw| = dist(p(m)) andp’(m’) € INC.
If p(m) ~ g(n) for k = dist(p(M)) + N then there must be/ (") such thaig(n) — ¢ (") and
p'(m) ~y g (). Sinceq'(n’) ¢ INC, there isr € Q (a state inf4) such thaty (n') ~y r <y
p’(n); this contradicts withp’ (m’) ~, g’ (1). O
Let us now consider deterministicROCA A = (Q, X, §) generating the deterministic LTS
T(A) = (QxN,Z, (—a>)a€z). We note that the LTS (A) x 7 (A), where p(m), g(n)) A,
(p’ (), g (n')) iff p(m) 2 p’(m’) andq(n) =2 g'(r’), is also deterministic. We observe that
p(Mm) ~k1 q(n) iff there isw € X* of length at mosk such that p(m), q(n)) BN (p’ (M), g’ (n"))
where p’(m’) ~; ' (n"). Hence the question of equivalencednA) reduces to a (specific)
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2 - POLY(N)

POLY2(N)

Figure 10: Projection of a path if(A) x 7 (A); the start-node is projected By and the end-node t8;

reachability question in the deterministic LV A) x7 (A). Figure 10 sketches the projection of
a path in7 (A) x 7 (A) to Nx N; here the start-node{(m), q(n.)) of the path is projected to the
point P, = (my, ny), while the end-nodep,(my), g2(Nny)) is projected to the poir, = (M, ny).
(The figure does not show the third dimension, i.e., the r&@gepairs of control states are not
depicted.)

Remark.We note that the reachability problem in the determinisiSIz (A) x 7 (A) is
undecidable in general. This follows from the standard fhat the trace inclusion problem,
asking ifYw e X* : (p(m) l>) = (q(n) l>) for a given det-ROCAA = (Q, X, 6) andp(m), q(n),
is undecidable; hence the questioni(m). do(No)) —* {(p(M),q(n) | Fa € T : p(m) —>
A=(q(n) i>)} is undecidable. In contrast, our questiongh(imo), do(No)) —* {(p(M), q(n)) |
JaeX: (p(m) 2, A=(q(n) —a>)) v (=(p(m) —a>) A g(n) —a>)} is decidable, and even ML.

The next lemma proves Point 1. in Theorem 5. It shows thpg(ifng) ~ go(np) for a det-

ROCA, wheremy, ng are “small” (i.e., bounded by a polynomial) then the “eqlavee level”,
i.e. the maximak such thatpy(mg) ~k qo(no), is “small”.

Remark.This is not true in the case of nondeterministic ROCA. We dage disjoint cycles
whose lengths are pairwisefiirent prime numbers to construct a simple example wpgre~
g(0) but p(0) ~¢ q(0) for k being the least common multiple of the cycle lengths.

In a more elegant version of the next lemma we would lhmaye- np = 0 but we use a form
that is technically convenient later.

Lemma 38. There is a polynomiatory3 with the following property. For any det-ROCA =
(Q,%,06) with |Q| = n, if po(mp) ~ qo(no), and My, Ng < Pporyz(N) Oor My < poryz(N) and
(Po(Mo), do(No)) € BerTSeack, then p(mo) ~<k go(No) for k = poryz().

Proof. Let us consider a det-ROCH = (Q, X, 6) with |Q| = ~, and suppos@o(mp) ~ do(No),
My < pory2(N), andng < poryz(N) or (po(Mo), do(No)) € BerLrSpace. It is convenient first to
show the existence of a polynomialy’; such thatlistance((po(mo), do(No)), TARGET) < PoLY7(N)
where

TARGET =~ U (ClearNo ~. BELTSPACE);
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we will then deriveroLys by usingroLy}. Let us thus assume that

(Po(Mo), Go(Mo)) — (Pa(Mn), Aa(N)) —> - -~ = (pe(My), Ae(ne)) 4)

is a shortest path ifi (A) x 7 (A) such that p,("My), q:(N;)) € TARGET, i.€., pe(My) =y ge(Ne), OF
dist(p.(my)) # dist(qe(n;)) and|n; — gmy | > pova(n) for all ., g € [1, N%]. There surely must be
such a path, sincpo(mp) ~ do(no). Fig. 10 might depict such a path, whem (), go(no)) is
projected toP; and (p,(my), q¢(ny)) is projected tdP,.

We note that the path (4) cannot en@earYes, so (p;(m;),q;(n;)) € BerrSeack for all
j € [0,¢-1]. Let us now fix arbitraryr, 8 € [1,~%], and consider a maximalz=segment to the
right of poLy,(N)”; i.e., we consider a subpath of (4) of the form

(o (Mo, G (11)) 25 (Pigsa(Mhyst): et (M) = -+ —5 (pu(M,), 6, (1)) (5)

wherem; = poLyp(N), mj > poryo(N) for all j € [ip + 1,i1], and|n; — %mj| < pory1(n) for all
j € [io, i1]; the maximality means that one of the following conditidrtdds:

1. i1 = ¢, in which case necessarify, (m;,) =y o, (n;,);
2. m 41 = pory2(N), in which casem;, = poLy,(n)+1 (the segment returns toLyz(n));

3. (Pig+1(Mi,+1), Gipr1(Niy11)) is in ClearNo . BELTSPACE.

(In Fig. 10 we can see two such maximal segments, for tviierint slope%, %.) Since
p(m) ~y pif m > n, Condition 1 can be rephrased ps ~, q;, (i.e., pi, ~ ¢,). Condition
3 is here equivalent tpn; ;1 — %m1+1| > poLy1(N); we have either thapi, .1 ~y 0,+1 Or that
at least one of the valuedist(pi,+1(M,+1)), dist(gi,+1(ni,+1)) is finite (which implies that the
values diter, since fi,.1(M,+1), di,+1(Ni,+1)) iS outside BrrSpace and we recall Proposition 26
and Definition 27).

The%—segment (5) can be viewed as a computation of a single RACAvith only positive
rules; we can imagine that this ROCA hag in the counter, and remembeps, g; and the
(rational) dfset f; — %mj) in the control unit. Formally we defin@’ = (Q’, X, §") where

Q ={(p.g,p)| p.ge Q,andp =n— %mforsomem,n € N such thatn - %ml < pory1(N) }.

We note that there are no more tha2 - roLy1(N) possible values for the rational compongnt
thus the numbegiY| of the control states oft’ is no greater than

K =2-~*- poryi(N). (6)

The rules iny’ are induced by as follows:

if(p,alp,j1)edand @ a l,d, j2) €6 thenfor any possible such thap’ = p — %jl + 2
satisfiedo’| < porv1(n) we put ((p,d,0).a, 1, (p. 9,0, j1) € 6"

(Note that (1 + j2) — 5(M+ ju) = (N—5M) - Zj1 + j2.)
For technical convenience we also consicd#g, = (Q',Z,d.,) working in the opposite
direction (simulating (5) from right to left); hew&,, is induced by’ as follows:

if((p.0,0),a L (p.q.p),]) €6 then (Q’.q,0),a L, (P, p), —]) € Oey-
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We can now easily check that the path (5)7iQA) x 7 (A) gives rise to the following path in
T (Ae):
ai a1 A

ri, (M) — rip-a (M _y) — - — rig(ng) (7)
WherenYj =m; —m, andrj = (p,—,q,—,n,——%mj) forall j € [io,i1]; we have conveniently chosen
m,(0 = m,—m, = 0, which is possible sinag, = poLy,(N) andm; > pory,(~) for all j € [ig+1, i4].
(We note tha M+ pj, wherep; = nj—%mj, might be not an integer, but it is convenient that the
positive path (7) finishes in a zero configuration.)

We can also easily check that any path froniny ) to ri,(0) in 7/ (A, ) gives rise to a path
(with the same length) frompi, (m,), G, () o (P, (M,). G, (M) in T (A) X T(A).

This implies that (7) is a shortest path fram(ny ) to ri,(0) in 7(Ar,), and that it can be
assumed to be in the normal form captured by Proposition 29 it K2. (In the lower belt in
Fig. 10 we have hinted at this normal form by depicting a régek&ycle” in the path-segment.)

If m{, < K?+~- K then the maximairt, j € [io, i1], is no greater than 2K? + N - K (by
Proposition 18). We now assume timgt > K2 + ~ - K, which will be contradicted. The normal
form of (7) allows us to assume that the path (5) is of the form

(Pro(M): G (1)) — (P(M), () — (P(M+D), G(n+4D)) — (P(M+2D), G(n+24D)) — - --
-+ =% (p(M+xD), q(n+x2D)) —> (pi,(M, ). Gy (1))

whereD € [1,K] andx > ~. We cannot havey, (m,) =, q,(n,) (i.e., pi, »~ q;,), since cut-
ting off a cycle leads to a contradiction: our assumptions woulddypgl ~y pi,(m,—D) ~y
Pu(M,) s Gu(W) ~x G,(1,-D) ~ Gy, and thus by f(m+(x-1)D).q(n+(x-1)§D)) —>
(pi,(m,-D), qil(nil—%D)) we would reach ArGer earlier.

Therefore 0, +1(mM;+1), Gi,+1(Ni,+1)) IS in ClearNo . BeLrSpace; we haveln;, .1 — %m1+1l >
poLy1(N) and at least one afist(p;,+1(m;,+1)), dist(gi,+1(ni,+1)) is finite (and they are necessarily
different). By Proposition 24(1) we deduce that therd is [1,nN] such that by cutting @ d
cycles we would keep at least one distance finite and reaeleT earlier: we have

(P (x-d)D), G+ (x-0)2D)) =5 (Pr42(M1-0D), Gipoa (M1~ §AD))

andm,.1—dD > pory2(N), | (Ni+1 — %dD) —42(my 1 —dD)| = |Ni41 — %m1+1| > pory1(N), and at
least one otlist(pi,+1(m;,+1~dD)), dist(d;,+1(ni, -1~ 5dD)) is finite (and they are dierent).

We can thus conclude that in the path (4) we haye< poryo(N) + 2 - K2 + n - K and
(pj(m;), gj(n;)) € BerrSeace for all j € [0, £-1]. Since (4) cannot visit a node twice, we surely
have

£ < (1+rorya(N) + 2- K2+ n-K) - N0 - 2- poLyy(N)

(wherex® = n-n-~?-N? accounts for the tuplep(q, @, 8)). We thus getory; such thaboLy;(~)
bounds the length of the path (4).

We havem, < mp + poLyj(n), andn, < np + poLy(n), and we recall thaty < poLy2(N)
andng < N2 - pory2(N) + pory1(n). If dist(pe(my)) # dist(q.(n)) then Proposition 23 implies that
min {dist(p,(my)), dist(q,(n,))} < N-(NZ-POLY2(N)+p0LY1(N)+p0LY’3(N))+O(N3). By Proposition 37
we thus deduce thaty(mp) ~k do(No) for k = PorLyj(N) + N - (N? - PoLY2(N) + PoLy1(N) + POLY4(N)) +
O(~®) + ~. Hencek is indeed bounded yorys(~) for a polynomiakorys. O
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We will now prove the next lemma, recalling that the bisimtiaproblem has the instances
A, po(mo), do(No) wheremy, Ny are given in binary. The lemma finishes a proof of Theoremt5. (|
also applies to language equivalence, by Proposition 2.)

Lemma 39. The bisimilarity problem is ilNL for deterministic ROCA.

Proof. It is sufficient to show that the complement of the trace equivalenoblgm for det-
ROCA is inNL, sinceNL =co-NL. Let us consider an instancg = (Q, X, 6), po(Moy), go(No)
where|Q| = n, and assumeg(mp) ~ qo(No).

We recall that the membership foreBSpack is in L (by Proposition 28) and that the mem-
bership problem foClearNo is in NL (in our deterministic case, by Proposition 30). It is thus
suficient to explore the case where

(Po(Mo), Go(No)) € BerrSpace and po(Mo) ~ do(No)-

The subcase whemy < pory,(n) is clear by Lemma 38: a (nondeterministic) algorithm can
just follow a path po(mo), Ao(Mo)) — (P1(M1), G (M) —> (P(M), Ga(z)) —> ... in T(A)
T (A), whereg; is always guessed and only the current pgi(rt), gi(n;)) is kept in memory;
at mostreory3(N) moves are performed, until sonpgm) -1 gi(n;) is encountered. Here we can
presentm, n; in the workspace plainly in binary; there is no need to ufiedincesn —my, Nj—ng
sincemy, ng are “small”.

We thus further assume thay > pory2(N). Hencemy can be “big” and po(mp), qo(no)) can
be projected “far to the right” in a belt (recall Fig. 10); let denote the respective belt Byand
its slope by%. Sincepo(Mp) ~ qo(no), there must be a shortest path fropy(fro), qo(no)) to
Tarcer’ defined as

TARGET” = 1 U (ClearNo ~ BerrSpace) U ({(p(pory2(n)), d(n)) | p,d € Q,n € N} N BN ).
Such a path

(Po(Mo), Go(No)) —> (Pa(My), G(Ne)) — -+ 25 (prya(Mes), Aera(Nesn) €)

cannot enter, and we thus have; > poLy,(~N) and (;(m;), gj(n;)) € Bforall j € [0, £]; in other
words, ifm; = poLya(N) or [nj — %mj| > pory1(N) thenj = ¢+1. The path (8), possibly except

of the last move g,(m;), g.(n;)) i (Pe+1(Mes1), de+1(nes1)), can be naturally viewed as a path
in 7 (A’) where the ROCAA’ is defined as in the proof of Lemma 38, withcontrol states as
givenin (6).

We have shown, in fact, that the membership problem fawHr’ is in NL. Informally
speaking, other established facts allow us to deduce ttisrahe path (8) is short ang,; =
roLy2(N). The former case can be easily verified in (hondeterma)istigarithmic space (since
¢ is small, and the diierencesn; — mg, nj — ng are thus small). The latter case reduces, in fact,
to an instance of the reachability problem @, which can be solved in (nondeterministic)
logarithmic space (recall Proposition 22). We now formalizis idea.

Supposém, —mg| < K2+n-K; then by Proposition 18 we havg € [mo—n-K —2K?, mg+N-

K +2K?] for all j € [0, £]. In this case the algorithm can just guess a pair{(Me+1), Ae+1(Ne+1))
(presentingn,. 1, ng,1 by the diferencesn,,; — mg, n,.1 — Ng in the workspace), verify its mem-
bership in Rreer’ and its reachability fromggo(mo), go(no)) by using logarithmic space only.

If |Im; — mp| > K2 + n - K then the correspondence of the path (8Ti(A) x 7 (A) with the
respective (shortest) path fn(A’) allows us to assume that (8) is in the form
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(Po(m), Go(Mo)) — (p(M), () — (p(M-D), g(n-4D)) —> (p(M-2D), g(N-25D)) —> - --
++ =% (p(M-xD). g(n-x2D)) ~> (pe(Me). Ae(ne)) = (Pra (M), Gr1(es1))

wherelvyvs| < K2, || < K, x> N, andD € [1,K] or D € [-K, -1].

The case fr+1(Mr+1), 9rr1(Nes1)) €=1 U (ClearNo ~\ BeLrSeace) can be excluded by “cut-
ting off the cycles” (i.e., by decreasing the numbergtegments), similarly as in the proof of
Lemma 38. If we hadp,1(me+1) <1 der1(nes1), then by cutting & onevy-segment we would
reach krger’ earlier. If (pr1(Mes1), Qrr1(Nev1)) € ClearNo ~ BerrSeace, and peya(mMpe1) ooy
de+1(Ne+1), then by cutting & onevp-segment we would again reachrGer’ earlier. In the
remaining subcase, whep/{1(my;1), d,+1(Ns+1)) € ClearNo ~ BeLrSeace and at least one of
dist(pe+1(Me+1)), dist(der1(ne+1)) is finite (and thuslist(per1(Mes1)) # dist(qe1(nNe+1))), there is
d € [1, ] (derived from Proposition 24(1)) such that cuttingj @ “cycle-segments¥, gives rise
to a shorter path toARGer’ (namely to a pair outsidedsBrSeace for which the distances tiNC
are diterent).

We thus havem,; = pory2(N), (Prr1(Pory2(N)), Or1(Ne+1)) € BN o¢, (@andmy > porya(N) +
K? + ~ - K). To handle this possibility, our algorithm can guess a fyaifrory>(~)), g'(n)) € B,
verify that p’(poLy2(N)) ~ '(n), and then verify the reachability op{((pory2(n)), g'(n)) from
(Po(Mo), qo(no)) iIn 7 (A) x 7 (A). Verifying the reachability can be handled by an expliog-
space reduction to the reachability problem J@r. A direct procedure can work as follows: it
guesseP,q € Q, diy, dip, da1, dry € [-K? K?], andD € [1,K] such thaig dividesD, and it
verifies that in7 (A) x 7 (A) we have:

e from (po(Mo), go(No)) we can reach(my+di1), q(No+ds2)) within K2 moves,
e from (p(poLy2(N)+do1), g(N+d22)) we can reachif (poLy2(N)), g (n)) within K2 moves,

e from (p(poLy2(N)+d21+D), q(N+da+ % D)) we can reachf(pory2(~N)+d21), q(n+dz2)) within
K (positive) moves,

e ((Mp+di11)—(PoLy2(N)+d21)) modD = 0, ((No+d12)—(N+dy2)) mod%D =0, and
[ ((rfb+d11)—(POLY2(N)+d21)) +D= ((n0+d12)—(n+d22)) = (% D)

Recalling Proposition 21, we can easily check that the dMgrandeterministic) algorithm ver-
ifying that po(mo) ~ go(ng) can be implemented to run in logarithmic space. O

8. Regularity problems

We now prove Theorem 6, which states that the regularitylprolfis a given configuration
p(m) bisimilar to a state in a finite LTS?) B-complete for general ROCA, amtL-complete for
det-ROCA. We assume a fixed ROCA = (Q, X, §) with ~ control states. The next proposition
is a variant of saying thgb(m) is nonregularft the set{q(n) | p(m) —* q(n) —* INC} is
infinite.

Proposition 40. A configuration gm) is not regular if and only if there is q such thafrp) —*
g(m+2n) —* INC.
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Proof. We recall thatg(n) /—* INC implies thatq(n) ~ r for somer in ¥4 (by Lemma 14).
Hence ifp(m) —* g(m+2n) impliesg(m+2x) 4—* INC (for all g) then fromp(m) we can reach
only finitely many configurations up to bisimilarity, sincaah of them is bisimilar either to some
r in F4 or toq(n) wheren < m+2n. The “only if” part is thus clear.

For the “if” part we note that a patb(m) N g(m + 2x) —2, INC can be written in the form
pIM) —5 gu(M+N) —> g(M+ 28) — gao(M + N) —> INC

where the subpatly (m+n) e g(m-+2n) N d2(m+n) is positive. By the pigeonhole principle,
this subpath can be written

Qu(m+N) = r(h) -2 r(h+d) — g(M+ 28) — 1 (W+d") —> 1’ (V) —> ga(m+ N)
whered, d’ > 0. For everyi > 1 we thus have

id” id
o(m) 2% r(h) "2 r(had + idd) 25 r(r+d +idd) " ) % Inc.

Hence for every e N there is a configuration that is reachable frp(m) and its distance ttNC

is finite but larger thad. Thereforep(m) is non-regular. O

We recall that th&NC-membership problem B-complete for (general) ROCA, aml_-complete
for deterministic ROCA (Proposition 13); we also reddll-completeness of the reachability
problem (Proposition 22). From Proposition 40 we thus dedhat the regularity problem for
ROCA (w.r.t. bisimilarity) is inP in general, and irNL in the case of det-ROCA. The latter
problem is obviousi\NL-hard (by digraph reachability); hence the next lemma fiessh proof
of Theorem 6.

In the lemma we only use ROCA witlveak zero-testflike in Petri nets): we say that a
ROCAA = (Q,%, ) is aone-counter neif (g,a,0,q’, j) € § implies @,a,1,q, j) € 6.

Lemma 41. Regularity for ROCA i®-hard, even when restricted to one-counter nets.

Proof. We use a log-space reduction from bisimilarity on finite L{&=zall Prop. 1). Given a

finite LTS¥ = (S, %, {—a>}aez) andpo, o € S, we construct a one counter né@t= (SU{%}, %, 9),
S ¢ S, as shown below; we will havpy ~ qp in F iff $(0) is regular in7 (A).

For everyp 2, gin ¥ we put (o, a, ¢, g, 0) into 6 for bothc € {0, 1}; any p(n) in 7 (A) just
mimics the behaviour op in #. We then completé by (s, a, ¢, S, +1) and &, b, ¢, po, 0) for
ce{0,1},and by &, a, 1, S0, 1), (S0, b, 1, o, —1).

If po ~ Qo then obviouslysy(m) ~ sp(m') for anym, n'; hencesy(0) is regular. Ifpg ~ go
then (0) » sp(m) for anym > 0, and thusss(m) = sp(m’) for anym # nv'; there are thus
infinitely many pairwise nonbisimilar states reachablerfig(0). O
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