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Abstract

A one-counter automatonis a pushdown automaton with a singleton stack alphabet, where stack
emptiness can be tested; it is areal-timeautomaton if it contains noε-transitions. We study the
computational complexity of the problems of equivalence and regularity (i.e. semantic finite-
ness) on real-time one-counter automata. The first main result showsPSPACE-completeness of
bisimulation equivalence; this closes the complexity gap between decidability (Jančar, 2000) and
PSPACE-hardness (Srba, 2006). The second main result showsNL-completeness of language
equivalence ofdeterministicreal-time one-counter automata; this improves the knownPSPACE
upper bound (indirectly shown by Valiant and Paterson, 1975). Finally we proveP-completeness
of the problem if a given one-counter automaton is bisimulation equivalent to a finite system,
andNL-completeness of the problem if the language accepted by a given deterministic real-time
one-counter automaton is regular.
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1. Introduction

Among the various notions of behavioural equivalence inconcurrency theory[1], bisimula-
tion equivalence(or bisimilarity for short) is undoubtedly a central one in formal verification (cf,
e.g., [2]). We note that elegant characterizations of the bisimulation-invariant fragments of well-
known logics like first-order logic, monadic second-order logic or monadic path logic have been
obtained in terms of modal logic [3], the modalµ-calculus [4], andCTL∗ [5], respectively. Hence
it is natural to formulate thebisimilarity problem, asking if two given states of a given system
are bisimilar. Onfinite transition systemsthis problem isP-complete [6] and well understood.
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In the setting ofinfinite-state systems(see, e.g., [7] for Mayr’s classification of some of
them) the situation is less clear, though a lot of research has been devoted to this area (see [8]
for an up-to-date record). On the positive side we mention a very general and involved result
by Sénizergues who shows that bisimilarity on equational graphs of finite out-degree (closely
related to pushdown graphs) is decidable [9]. Unfortunately, there are various classes of infinite-
state systems for which the decidability status of bisimilarity is not clarified so far. As examples
we mention bisimilarity of PA (Process Algebra) processes and of ground tree rewrite systems.

When focussing on thecomputational complexityof bisimilarity checking of infinite-state
systems for which this problem is decidable, the situation becomes even worse. E.g., the above-
mentioned decidability result by Sénizergues only shows two semi-decision procedures, whereas
a nonelementary lower bound has been established only recently [10]. To the best of the authors’
knowledge, there has been essentially only one establishedclass of infinite-state systems for
which bisimilarity is decidable and the “exact” complexityis known, namely the basic parallel
processes, where bisimilarity isPSPACE-complete [11].

Language equivalenceessentially asks whether the sets of executable sequences of two given
systems (often presented by automata) are equal; this is a central decision problem in formal
languages and automata theory. It is folklore that already deciding whether a given pushdown
automaton is universal is undecidable. We note that bisimilarity is finer than language equiva-
lence, and the two equivalences coincide ondeterministicsystems. Language equivalence for
deterministic devices has turned out to have several intricate instances, in particular for various
subclasses of context-free languages. The most prominent result in this area is the decidability of
equivalence ofdeterministic pushdown automata (DPDA); this long-standing open decidability
question has been answered positively by Sénizergues [12](see also [13]), to which Stirling [14]
established a primitive recursive upper bound. The problemstill does not seem completely under-
stood, which was one motivating factor for the recent simplified proof via first-order grammars,
given in [15]. Regarding the lower bound for DPDA, language equivalence is only knownP-hard
(by theP-hardness of emptiness), hence the known complexity gap is very large.

Hence, a lot of research has been devoted to studying bisimulation (resp. language) equiv-
alence of subclasses of (resp. deterministic) pushdown automata. AcoNP upper bound for
language equivalence was shown for finite-turn DPDA [16]. For simple grammars (real-time
DPDA with a single control state), a polynomial algorithm was given in [17] (see [18] for a
recent upper bound); the inclusion problem is undecidable even here [19]. For bisimilarity of
the subclass BPA (real-time pushdown automata with a singlecontrol state) a 2EXPTIME up-
per bound has been stated by Burkart, Caucal and Steffen [20] (see [21] for an explicit proof),
whereas the lower bound has recently been lifted fromPSPACE to EXPTIME by Kiefer [22].

Another natural subclass of pushdown automata, the one in which we are interested here, are
one-counter automata, i.e., pushdown automata with a singleton stack alphabet, where stack-
emptiness can be tested. For bisimilarity of one-counter automata, decidability was shown
in [23]. An unpublished article [24] analyses the decision procedure of [23] and derives a
3EXPSPACE upper bound. APSPACE lower bound for bisimilarity is proven by Srba [25],
even for a weaker model of visibly one-counter nets (that cannot test for zero). Srba [25] also
shows aPSPACE upper bound for bisimilarity of visibly one-counter automata, via a reduction
to the model checking problem of the modalµ-calculus over one-counter automata [26]. In the
general case of (non-visibly) one-counter automata, the situation is surely more involved.

Deterministic one-counter automata (DOCA), whereε-transitions may occur in a determin-
istic fashion, were introduced by Valiant and Paterson [27]. In the same paper it was shown
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that language equivalence is decidable in time 2O(
√

n logn). A simple analysis of the proof in [27]
would yield aPSPACE upper bound for the problem. An announcement has been made that
DOCA equivalence can be solved in polynomial time [28]; unfortunately, the full proof [29] has
to be considered as incomplete. Hence the established complexity of the equivalence of DOCA
has remained unsolved betweenNL andPSPACE. Polynomial time algorithms for language
equivalence and inclusion for strict subclasses of real-time DOCA were given in [30, 31].

1.1. Our contribution

We study the computational complexity of deciding bisimilarity over transition systems gen-
erated by real-time one-counter automata (with noε-transitions), denotedROCAfor short.2 In
general ROCA are nondeterministic; we also consider the deterministic version, det-ROCA,
where bisimilarity essentially coincides with language equivalence.

The first main resultof this paper closes the complexity gap for bisimilarity on ROCA:
the known decidability (or the previously mentioned unpublished 3EXPSPACE upper bound)
is improved by establishingPSPACE-completeness. Oursecond main resultcloses the com-
plexity gap for det-ROCA: the knownPSPACE upper bound is improved by establishingNL-
completeness.

Another natural problem we consider is decidingregularity (semantic finiteness); the prob-
lem asks, given a state, if it is equivalent to a state of a finite system. For (nondeterministic)
ROCA, the decidability of this problem with respect to bisimilarity was proven in [23]; accord-
ing to [25], it follows from [6] and [32] that the problem is alsoP-hard. We show here that this
problem is, in fact,P-complete. Besides giving a new upper bound, we also providea simple
direct proof of the lower bound.

We also showNL-completeness of the question if the language of a given deterministic real-
time one-counter automaton is regular. The previously bestknown upper bound for this problem

(similarly as for the more general model withε-transitions) is a time bound of 2O(
√

n logn) [27]
(from where one can also derive aPSPACE upper bound).

The next table summarizes our complexity results. The lowerbounds (including the folklore
undecidability) were already known; here we show the upper bounds.

Bis-EQUIV Bis-REG Lang-EQUIV Lang-REG
ROCA PSPACE-complete P-complete Undecidable Undecidable

det-ROCA NL-complete NL-complete NL-complete NL-complete

As already mentioned, bisimilarity essentially coincideswith language equivalence in the
deterministic case; the bottom row thus contains only two results, in fact.

For proving these results, we employ an approach that can be called the “belt technique”; it
was used already in [23] for decidability. Here we refine and enhance the technique, to yield
a PSPACE upper bound. The main ideas can be sketched as follows. Givena ROCAA, by
FA we denote the finite automaton corresponding to the control unit of A in which we ignore
the zero tests. For “large” counter values,A behaves likeFA for “long time”; the only chance
for A to show a difference withFA is to reach one of specific configurations with zero in the
counter, called “incompatible configurations”. If two configurationsp(m) andq(n), wherep, q
are control states andm, n are counter values, are equivalent, then they must have the same
distance to incompatible configurations; this implies thatn is roughly linearly related tom, and

2Preliminary versions of the presented research results appeared at conferences Concur 2010 and MFCS 2011.
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thus the pairs (m, n) of equivalent configurations lie inside “linear belts” when viewed as points
in a 2-dimensional space.

To show that bisimilarity of ROCA belongs toPSPACE, we describe a nondeterministic pro-
cedure that is implementable in polynomial space; it constructs (guesses) a bisimulation relation
on-the-flywhile checking thelocal consistencyof the guesses. In fact, the guesses are performed
only for the pairs in (polynomially many) belts, since for the pairs outside the belts the correct
answer can be computed in polynomial time by using the above observation about the distances
to incompatible configurations. It is sufficient to perform only exponentially many steps; as if
no inconsistency has been found then we are sure that the pigeonhole principle guarantees a
repetition in each belt, and this guarantees the correctness of the positive answer.

The ideas in the proof also show that the set of all pairs (p(m), q(n)) that are equivalent has a
regular structure, with exponential periods, whose natural description can be computed by using
polynomial workspace.

FordeterministicROCA, our analysis shows that if we follow a shortest distinguishing word
for two configurations with small counter values, then we cannot move in a belt for long; and
once we leave the belt(s), the rest is short. This shows that two configurations with small counter
values are not equivalent if and only if they can be distinguished by a word whose length can
be bounded by a polynomial in the size of the input; anNL upper bound is thus immediate. For
configurations with large counter values (written in binary), the shortest distinguishing words
might be exponential but we can verify in nondeterministic logarithmic space that we can reach
a nonequivalent pair outside the belts shortly or that we canreach a nonequivalent pair with small
counter values (by moving down in a belt).

Finally the results on regularity follow easily, once we realize that a configuration is not
equivalent to any finite state system if and only if its reachability set contains configurations with
arbitrarily large distances to incompatible configurations.

1.2. Further related work

Further simulation and bisimulation problems on one-counter automata (with or without the
zero tests) were studied in other papers; some of them also used the “belt technique”. We can
refer to the recent paper [33] and the references therein. Other problems studied for one-counter
automata in the verification community can be exemplified by papers [34, 35, 36, 37, 38, 39].

Our NL-completeness result for deterministic real-time one-counter automata has not clari-
fied the complexity of equivalence checking for general deterministic one-counter automata (with
ε-transitions), left open in [27]. By using further (nontrivial) notions and ideas, we have shown
NL-completeness also for the mentioned general case in [40].

1.3. Organisation of the paper

Section 2 provides general definitions and the statements ofthe results. Section 3 shows
some simple facts, and clarifies the notion of “incompatibleconfigurations”. Section 4 contains
a description of the main algorithm, deciding bisimilarityof real-time one-counter automata; a
“geometrical presentation” of the algorithm is given in Section 5. In Section 6 we show the
polynomial-space complexity of the algorithm, its correctness, and we sketch the description of
the whole bisimulation equivalence relation for a given real-time one-counter automaton. Sec-
tion 7 shows that the equivalence problem is inNL for deterministic ROCA. Finally, Section 8
presents the results for regularity problems.
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2. Basic definitions and results

By N andZ we denote the set of nonnegative integers and the set of all integers, respectively.
For i, j ∈ Z, by [i, j] we denote the set{i, i+1, . . . , j}. For a finite setX, by |X| we denote its
cardinality. ByΣ∗ we denote the set of finite sequences of elements ofΣ, i.e. of wordsoverΣ.
If w ∈ Σ∗ then |w| denotes itslength. By ε we denote theempty word; thus |ε| = 0. We put
Σ+ = Σ∗ r {ε}.

Labelled transition systems (LTSs); deterministic LTSs

A labelled transition system, anLTS for short, is a tupleT = (S,Σ, (
a−→)a∈Σ), whereS is a

set ofstates, Σ is a set ofactions, and
a−→⊆ S × S is a set oftransitionslabelled with actiona.

If S andΣ are finite sets thenT is afinite LTS. (In fact, we will only deal with LTSs where the
action setΣ is finite while the state setS can be countably infinite.)

We write s
a−→ t instead of (s, t) ∈ a−→, and we extend the relations

a−→ to
w−→ for words

w ∈ Σ∗ inductively: s
ε−→ s; if s

a−→ s′ ands′
u−→ s′′ thens

au−→ s′′. By s
w−→ we denote thatw

is enabled in s, i.e., s
w−→ t for somet. We write−→ for

⋃

a∈Σ
a−→, and by−→∗ we denote the

reflexive and transitive closure of−→. We say thatt is reachable from sif s −→∗ t (i.e., s
w−→ t

for somew ∈ Σ∗).
An LTST = (S,Σ, (

a−→)a∈Σ) is adeterministicLTS, adet-LTSfor short, if for each pairs ∈ S,

a ∈ Σ there is at most onet such thats
a−→ t.

Bisimulation equivalence on LTSs and det-LTSs

Let T = (S,Σ, (
a−→)a∈Σ) be an LTS. We say thatB ⊆ S × S covers(s, t) ∈ S × S if for any

s
a−→ s′ there ist

a−→ t′ such that (s′, t′) ∈ B, and for anyt
a−→ t′ there iss

a−→ s′ such that
(s′, t′) ∈ B. ForB, B′ ⊆ S×S we say thatB covers B′ if B covers each (s, t) ∈ B′. A setB ⊆ S×S
is abisimulationif B coversB. Statess, t ∈ S arebisimilar, which is denoted bys∼ t, if there is
a bisimulation containing the pair (s, t).

The union of bisimulations is obviously a bisimulation. Therelation∼ is the greatest bisim-
ulation, i.e., the union of all bisimulations onS; it is obviously an equivalence relation.Bisim-
ulation equivalence, also calledbisimilarity, is defined also between states of different LTSs,
referring implicitly to their disjoint union.

We also note that fordeterministic LTSsbisimulation equivalence coincides with the variant

of language equivalence calledtrace equivalence: s ∼ t iff for all wordsw ∈ Σ∗ we haves
w−→

⇔ t
w−→ (i.e., s andt enable the same words, also called traces).

One-counter automata, and the generated LTSs
A real-time one-counter automaton, aROCAfor short, is a tupleA = (Q,Σ, δ) whereQ is a

nonempty finite set ofcontrol states, Σ is afinite alphabet, whose elements are calledactionsin
our context, andδ ⊆ Q×Σ×{0, 1}×Q×{−1, 0, 1} is atransition relationfor which (q, a, c, q′,−1) ∈
δ impliesc = 1. The tuples (q, a, c, q′, j) ∈ δ are also calledrules; thezero ruleshavec = 0, and
thepositive ruleshavec = 1.

Remark.The word “real-time” refers to the fact that there are noε-rules (q, ε, c, q′, j).
A configurationof A is a pair (q, n) ∈ Q× N wheren is thevalue of the counter; we often

write q(n) instead of (q, n). A ROCAA = (Q,Σ, δ) defines the LTST (A) = (Q×N,Σ, ( a−→)a∈Σ),

whereq(n)
a−→ q′(n+ j) iff (q, a, sgn(n), q′, j) ∈ δ; we put sgn(n) = 1 if n > 0 and sgn(n) = 0
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if n = 0. The configurationsp(0) are called thezero configurations. (We note that no counter
decrement is allowed in the zero configurations.)

A ROCAA = (Q,Σ, δ) is deterministic, adet-ROCAfor short, if for each tripleq ∈ Q, a ∈ Σ,
c ∈ {0, 1} there is at most one rule of the form (q, a, c, q′, j). We note thatT (A) is deterministic
iffA is deterministic.

In Fig. 1 we can see a fragment ofT (A), whereA contains the rules (p, a, 0, q, 0), (p, a, 1, q, 0),
(p, a, 1, p, 0), (p, b, 0, r, 0), (p, b, 1, r, 0), (q, a, 0, q,+1), (q, a, 1, p,−1), (r, b, 0, r, 0), (r, b, 0, q,+1),
(r, b, 1, q,+1).

.

.

.

.

.

.

.

.

.

Figure 1: A fragment of the LTST (A) generated by a ROCAA

Decision problems, and the results
We recall two standard propositions and then state our results as theorems. We use the no-

tation L (logarithmic space),NL, P (polynomial time),PSPACE, NPSPACE for the respective
standard complexity classes.

Thebisimilarity problem for finite LTSsasks, given a finite LTS (in a natural graph presenta-
tion) and two statess, t, whethers∼ t.

Proposition 1. The bisimilarity problem isP-complete for finite LTSs, andNL-complete for
deterministic finite LTSs.

We refer to [6] forP-completeness. For a finitedeterministicLTS F and two statess0, t0, we

note thats0 ≁ t0 iff in the LTSF × F (where we put (s, t)
a−→ (s′, t′) if s

a−→ s′ andt
a−→ t′) we

have (s0, t0) −→∗ (s, t) for some (s, t) such that some actiona is enabled precisely in one ofs, t in
F . Hence bisimilarity in finite deterministic LTSs can be presented as digraph reachability, i.e.,
as a well-knownNL-complete problem.

The bisimilarity problem for ROCAasks, given a ROCAA and two configurationsp(m)
andq(n), whetherp(m) ∼ q(n) in T (A). In our complexity results (stated below) we assume
a standard input encodingwhere thecounter values m, n are givenin binary; in fact, the given
complexity bounds are also valid in the case of unary encodings.

We first observe that the bisimilarity problem and the language equivalence problem are log-
space reducible to each other in the case ofdeterministicROCA. The latter problem assumes
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a given det-ROCAA = (Q,Σ, δ) with a set ofaccepting states F⊆ Q, and two configura-

tions p(m) andq(n); it asks whetherL(p(m)) = L(q(n)) whereL(r(k)) = {w ∈ Σ∗ | r(k)
w−→

r ′(k′) for somer ′ ∈ F andk′ ∈ N}.

Proposition 2. When restricted to det-ROCA, the bisimilarity problem and the language equiv-
alence problem are log-space reducible to each other.

Proof. Given a det-ROCAA = (Q,Σ, δ), for F = Q we havep(m) ∼ q(n) iff L(p(m)) = L(q(n)).
Hence bisimilarity reduces to language equivalence.

Now we assume a det-ROCAA = (Q,Σ, δ) andF ⊆ Q; we construct the det-ROCAA′ =
(Q∪{s},Σ∪{h}, δ∪δ′) arising fromA as follows. We extendQ with a fresh “sink” control states
and we add the rules (s, a, c, s, 0) for all a ∈ Σ andc ∈ {0, 1}; moreover, if for some triple (q, a, c)
there is no rule of the form (q, a, c, q′, j) then we add the rule (q, a, c, s, 0). Finally we extendΣ
with a fresh letterh and add the rules (q, h, c, q, 0) for all q ∈ F andc ∈ {0, 1}.

We can easily check thatp(m) ≁ q(n) in T (A′), for p, q ∈ Q, if and only if there is a word
w ∈ Σ∗ such thatwh is enabled precisely in one ofp(m), q(n); it is easy to check that the latter
condition holds if and only ifL(p(m)) , L(q(n)) (for A andF). Hence language equivalence
reduces to bisimilarity.

We will get the following results; recall the previous remark on the encodings of numbers.

Theorem 3. The bisimilarity problem for ROCA isPSPACE-complete.

Theorem 4. For a ROCAA = (Q,Σ, δ), the relation∼ on the state set ofT (A), i.e. the set
{(p(m), q(n)) | p(m) ∼ q(n)}, is effectively semilinear, with the description size exponential in the
size ofA.

Theorem 5.

1. There is a polynomialpoly with the following property. For any det-ROCAA with n
control states, if p(0) ≁ q(0) then there is a word w that is enabled in precisely one of
p(0), q(0) and that satisfies|w| ≤ poly(n).

2. The bisimilarity problem and the language equivalence problem areNL-complete for det-
ROCA.

Recall that the semilinearity of∼ (in Theorem 4) means that the set{(m, n) | p(m) ∼ q(n)} is the
union of finitely many linear subsets ofN × N, for each pairp, q ; a setA ⊆ N

k is linear if there
is a base vectorb ∈ N

k and periodsp1, p2, . . . , pℓ ∈ N
k such thatA = {b+ c1p1 + c2p2 + · · · +

cℓpℓ | c1, c2, . . . , cℓ ∈ N}. Another view is that∼ can be described by a formula in Presburger
arithmetic [41]. In fact, our semilinear sets will be ratherspecial, filling the “belts” and the
“background” sketched in Fig. 5 periodically, with exponential periods. Polynomial workspace
is sufficient for an algorithm generating a corresponding (exponential) description of∼.

PSPACE-hardness in Theorem 3 follows from [25], andNL-hardness in Theorem 5 follows
from Proposition 1; hence our contribution consists in showing the upper bounds.

We also consider the regularity problem. We say that aconfiguration p(m) of a ROCAA is
regular if p(m) ∼ f for some statef in a finite LTS; in other words,p(m) is regular iff the set of
states reachable fromp(m) is finite up to bisimilarity.
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Theorem 6. The problem asking if a given configuration p(m) of a ROCAA is regular isP-
complete. The restriction of the problem to det-ROCA isNL-complete.

For det-ROCA we have an analogue of Proposition 2, i.e., our regularity problem and the
language regularity problem are log-space reducible to each other in this case. In contrast, we
recall that both language equivalence and language regularity are undecidable for general, i.e.
nondeterministic, ROCA.

3. Prerequisites for the main algorithm

In Section 3.1 we observe some useful facts; Section 3.2 thenrecalls some important notions
that already appeared in [23].

3.1. Simple facts about bisimilarity

We assume a fixed LTST = (S,Σ, (
a−→)a∈Σ).

Proposition 7. If R ⊆ S × S is covered by R∪ R′ where R′ ⊆∼ then R⊆∼.

Proof. If R is covered byR∪ ∼ thenR∪ ∼ is a bisimulation, and thusR∪ ∼ ⊆ ∼.

ForU ⊆ S, by s
w−→ U we denote thats

w−→ t for somet ∈ U; similarly s−→∗ U means that
s−→∗ t for somet ∈ U. By thedistanceof s ∈ S to U ⊆ S we mean

distance(s,U) = min { ℓ ∈ N | ∃w ∈ Σ∗ : |w| = ℓ ∧ s
w−→ U} , where we put min∅ = ω.

We viewω as the first limit ordinal; hencen < ω for all n ∈ N.

We say thatU ⊆ S is bisim-closedif {s ∈ S | s∼ s′ for somes′ ∈ U} = U.

Proposition 8. If s ∼ t and U is bisim-closed thendistance(s,U) = distance(t,U).

Proof. If s∼ t ands
w−→ s′ then there must be somet′ such thatt

w−→ t′ ands′ ∼ t′; if, moreover,
s′ ∈ U andU is bisim-closed thent′ ∈ U.

We now define the equivalences∼0⊇∼1⊇∼2⊇ · · · by the following inductive definition. We
put∼0= S×S. Fork ≥ 1,∼k⊆ S×S is the set of all pairs covered by∼k−1. Note thats≁1 t iff s
andt enable different sets of actions (in which case there is noB ⊆ S × S that covers (s, t)). We
obviously have

⋂∞
i=0 ∼i ⊇∼.

Remark.An LTS T = (S,Σ, (
a−→)a∈Σ) is image-finiteif {s′ | s a−→ s′} is finite for each pair

s ∈ S, a ∈ Σ; in this case we have
⋂∞

i=0 ∼i =∼. We note thatT (A) generated by a ROCAA is
image-finite.

The next proposition is also standard.

Proposition 9. For any LTST = (S,Σ, (
a−→)a∈Σ) where|S| = n ∈ N we have∼n−1=∼n=∼.

Proof. By a standard partition refinement: when constructing∼0, ∼1, ∼2, . . . , we must reach a
fixpoint within n iterations.
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3.2. The underlying finite LTSFA and the setINC of incompatible configurations

Let us consider a ROCAA. We recall that the counter value can change by at most one in
one step and that the transitions do not depend on the concrete counter value when this value is
positive. Hence ifm is “large” thenp(m) behaves “for a long time” likep in the following finite
LTSFA controlled by thepositiverules ofA (Fig. 2 shows an example):

Definition 10. For a ROCAA = (Q,Σ, δ), we define theunderlying finite LTSFA as

FA = (Q,Σ, (
a−→)a∈Σ)

whereq
a−→ q′ iff there isj such that (q, a, 1, q′, j) ∈ δ.

Figure 2:FA arising fromT (A) in Fig. 1

We obviously havep(m) ∼m p (for anyp ∈ Q and anym ∈ N).

Convention.We will usually leave implicit if a concrete occurrence ofp (with no counter
value) refers to a control state or to a state inFA. E.g., in the expressionp(m) ∼m p we view
p(m) as a state inT (A) andp as a state inFA.

We now define the setINC as the set of configurations ofA which are “INCompatible” with
FA in the following sense:

Definition 11. Assuming a ROCAA = (Q,Σ, δ), where|Q| = n, we defineINC ⊆ Q × N and
dist : Q× N→ N ∪ {ω} as follows:

• INC = {p(m) | ∀q ∈ Q : p(m) ≁n q},

• dist(p(m)) = distance(p(m), INC).

We note thatp(m) ∈ INC implies m < n (sincem ≥ n implies p(m) ∼n p). SinceINC
is bisim-closed (ifp(m) ≁n r and p(m) ∼ q(n) then q(n) ≁n r), the next fact follows from
Proposition 8:

Proposition 12. If dist(p(m)) , dist(q(n)) then p(m) ≁ q(n).

Comparing the distances of configurations toINC is an important ingredient of our algo-
rithms. Regardingthe INC-membership problem, asking if p(m) ∈ INC when given a ROCA
A andp(m), it is sufficient to observe aPSPACE-upper bound for the analysis of Alg-Bisim in
Section 4. The more precise complexity bounds captured by the next proposition are useful later.

Proposition 13. TheINC-membership problem isP-complete; it isNL-complete when restricted
to deterministic ROCA.

9



Proof. We assume a ROCAA = (Q,Σ, δ), where|Q| = n, and show a polynomial-time algorithm
constructingINC. To the underlying finite LTSFA we (disjointly) add the restriction ofT (A) to

the state set{p(m) | p ∈ Q,m ∈ [0, n−1]}; each original transitionp(n−1)
a−→ q(n) is replaced

with p(n−1)
a−→ q (recall thatq(n) ∼n q). In the resulting finite LTS withn + n2 states we

construct the state-set partition corresponding to∼n, by standard partition-refinement techniques
(constructing∼0, ∼1, . . . , ∼n). Now p(m) belongs toINC iff it has noq in its partition class.
Hence theINC-membership problem is inP.

We now show that theINC-membership problem is inNL for det-ROCA. The respective
nondeterministic algorithm, given a det-ROCAA = (Q,Σ, δ) andp0(m0), first comparesm0 and
n = |Q|; if m0 ≥ n, then it returns NO (sincep0(m0) ∼n p0 and thusp0(m0) < INC). If m0 < n

then the algorithm tries to showp0(m0) ≁n q, successively for eachq ∈ FA. Since the LTSs
T (A) andFA are deterministic, we havep(m) ≁k q iff p(m) ≁1 q or there isa ∈ Σ such that
p(m)

a−→ p′(m′), q
a−→ q′, and p′(m′) ≁k−1 q′. It is thus sufficient that the workspace of the

algorithm can store a pair (p(m), q) and a numberk ≤ n, wherem < 2n; since the numbersm, k
can be stored in binary, a logarithmic bound for the workspace size is obvious.

We show the hardness results by a (log-space) reduction fromthe non-bisimilarity problem
for finite LTSs (recall Proposition 1, and the fact that bothP andNL are closed under comple-

ment). Assume a finite LTST = (S,Σ, (
a−→)a∈Σ) and two statesp0, q0 ∈ S. We construct the

ROCAA = (S ∪ {p′0, q′0},Σ ∪ {a′}, δ) wherep′0, q
′
0 < S, p′0 , q′0, anda′ < Σ; the rules inδ are

defined inductively as follows: for anyp, q ∈ S anda ∈ Σ, if p
a−→ q (in T ) then (p, a, 1, q, 0) is

in δ; we also put (p′0, a
′, 0, p0, 1) and (q′0, a

′, 1, q0, 0) in δ. We note thatA is a det-ROCA ifT is
a det-LTS. We observe thatr(1) ∼ r for all statesr of FA; moreover, ifr , q′0 thenp′0(0) ≁1 r.
It is also clear thatp0 ∼k q0 in T iff p′0(0) ∼k+1 q′0. Hence ifp0 ∼ q0 in T thenp′0(0) ∼ q′0, in
which casep′0(0) < INC. If p0 ≁ q0 in T , hencep0 ≁k q0 for k = |S| − 1 (by Proposition 9), then
p′0(0) ≁k+1 q′0, and thusp′0(0) ∈ INC.

The distance ofp(m) to INC is given by a shortest appropriate path inT (A) (if it exists).
A possible shortest path fromp(m) to INC is depicted in Fig. 3. Since the counter can drop by
at most one in one step, andr(k) ∈ INC implies k < n, we havedist(p(m)) > m− n ; hence
dist(p(m)) < ω implies that the set{q(n) | dist(q(n)) = dist(p(m)} is finite. We can also anticipate
that the constraintdist(p(m)) = dist(q(n)) < ω yields a certain linear relation betweenm and
n, as made more precise later. The complexity questions of computingdist(p(m)) will be also
addressed later.

Now we note an important property of the configurations from which INC is unreachable:

Lemma 14. Assume a ROCAA. If dist(p(m)) = ω then p(m) ∼ r for some state r ofFA.

Proof. Let us assume a ROCAA = (Q,Σ, δ), where|Q| = n. We verify that the set

R = { (p(m), q) | p(m) 6−→∗ INC, p(m) ∼n q }

is a bisimulation; the proof will be finished, sincep(m) 6−→∗ INC implies p(m) < INC, and thus
p(m) ∼n q for someq.

Let (p(m), q) ∈ R. Sincep(m) ∼n q, for any p(m)
a−→ p′(m′) there isq

a−→ q′ such that

p′(m′) ∼n−1 q′; similarly for anyq
a−→ q′ there isp(m)

a−→ p′(m′) such thatp′(m′) ∼n−1 q′.
Since p(m) 6−→∗ INC, we havep′(m′) 6−→∗ INC, and thus alsop′(m′) < INC; let r satisfy
r ∼n p′(m′). Since∼n−1 coincides with∼n in FA (by Proposition 9), we haver ∼n q′, and thus
p′(m′) ∼n q′; this implies (p′(m′), q′) ∈ R.

10



Figure 3: A path fromp(m) to INC

Corollary 15. Assume a ROCAA = (Q,Σ, δ), where|Q| = n. If dist(p(m)) = dist(q(n)) = ω
then p(m) ∼ q(n) iff p(m) ∼n q(n).

Proof. Assumedist(p(m)) = dist(q(n)) = ω. The “only-if”-direction of the claim is trivial. For
proving the “if”-direction, we recall thatp(m) ∼ r1 andq(n) ∼ r2 for somer1, r2 in FA (by
Lemma 14); ifr1 ∼n r2 thenr1 ∼ r2 (by Proposition 9).

4. Algorithm A lg-Bisim deciding bisimilarity for ROCA

After introducing some further notation we will present ourmain algorithm, deciding the
bisimilarity problem for ROCA in polynomial space.

Definition 16. Assume a ROCAA = (Q,Σ, δ) with |Q| = n. We partition (Q×N)× (Q×N) into
three parts: (Q× N) × (Q× N) = ClearYes ∪ ClearNo ∪ Unclear where

• ClearYes = {(p(m), q(n)) | dist(p(m)) = dist(q(n)) = ω andp(m) ∼n q(n)},

• ClearNo = {(p(m), q(n)) | dist(p(m)) , dist(q(n)) or p(m) ≁n q(n)},

• Unclear = {(p(m), q(n)) | dist(p(m)) = dist(q(n)) < ω andp(m) ∼n q(n)}.

We also put

Unclear = EFD0 ∪ EFD1 ∪ EFD2 ∪ · · ·

whereEFDi = Unclear ∩ {(p(i), q(n)) | p, q ∈ Q, n ∈ N}. (EFD can be read as “Equal Finite
Distances”.)

We note thatClearYes ⊆∼ andClearNo ⊆≁ (by the previously established facts). We have
already observed thatdist(p(m)) < ω implies that the set{q(n) | dist(q(n)) = dist(p(m)} is finite;
henceEFDi is finite for eachi ∈ N.

The nondeterministic algorithm Alg-Bisim:

Input: a ROCAA = (Q,Σ, δ), and two configurationsp0(m0), q0(n0).
11



1. If (p0(m0), q0(n0)) is in ClearYes then return YES; if inClearNo then return NO.

2. (This point applies when (p0(m0), q0(n0)) ∈ EFDm0.)

(a) Compute a bound ExpB (to be clarified later), exponential in the size ofA.

(b) PutR−2 = R−1 = ∅.
(c) For i = 0, 1, 2, . . . ,m0,m0+1,m0+2, . . . ,m0+ExpB do

i. ChooseRi ⊆ EFDi ; if i = m0 thenRi must contain (p0(m0)), (q0(n0)).

ii. If Ri−1 is not covered byRi−2 ∪ Ri−1 ∪ Ri ∪ ClearYes then FAIL.

(d) Return YES.

It will turn out that this algorithm can be implemented to runin polynomial space, and
that there is a computation returning YES if and only ifp0(m0) ∼ q0(n0). SincePSPACE =
NPSPACE, the upper bound in Theorem 3 will be thus established.

We perform the respective analysis of Alg-Bisim in Section 6, after we “visualize” some
related notions in Section 5.

Now we just remark thatp0(m0) ∼ q0(n0) implies that the computation that always chooses
Ri = EFDi ∩ ∼ in 2(c)i returns YES. On the other hand, if the for-loop in 2(c) had no upper bound
then for any infinite (i.e., non-failing) computation we would have (R0 ∪ R1 ∪ R2 ∪ · · · ) ⊆∼, by
Proposition 7; this would implyp0(m0) ∼ q0(n0). The bound ExpB in 2(a) will be chosen so
that a successful run up tom0 + ExpB guarantees a certain periodicity that in turn guarantees the
existence of some infinite successful run if the for-loop hadno upper bound.

5. Geometrical presentation of Alg-Bisim computations

Let us assume a ROCAA = (Q,Σ, δ). For any fixedp, q ∈ Q, a subsetX of {(p(m), q(n)) |
m, n ∈ N} can be naturally represented by black points in the 2-dimensional gridN × N: point
(m, n) is black if (p(m), q(n)) ∈ X, and white if (p(m), q(n)) < X. This is depicted in Fig. 4.

Figure 4: A black-white colouring representing a subset of{(p(m),q(n)) | m, n ∈ N}, for fixed p, q.

For representing subsetsX of {(p(m), q(n)) | p, q ∈ Q,m, n ∈ N}, we can put the respective
|Q|2 2-dimensional grids together, creating the 3-dimensionalgridN×N× (Q×Q); we have only
|Q|2 values in the third dimension. (Figures 5 and 7 should make this clear.) Here the point with
coordinates (m, n, (p, q)) is black iff (p(m), q(n)) ∈ X.

Fig. 5 indicates an over-approximation ofUnclear, as the later analysis will establish. The
set Unclear resides in the “belt space”, consisting of polynomially many linear belts with a

12



polynomial (vertical) thickness. There is a polynomially bounded “initial space” covering all
intersections of different belts; moreover,ClearYes will turn out to be periodic outside the initial
space, with an exponentially bounded period.

intitial space

belt
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e

belt space

be
lt

sp
ac

e
background space

ba
ck

gr
ou

nd
sp
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e

(q1, q1)
(q1, q2)
. . .

(qn, qn)

m

n

Figure 5: Partition of our 3-dimensional grid

A computation of Alg-Bisim can be viewed as moving a width-3 vertical window, depicted
in Fig. 6. Each chosen setRi is contained in thei-th “vertical cut” of the belts.

Figure 6: Vertical window of width 3, moved by Alg-Bisim

Fig. 7 illustrates a “repeat” of the cut in a belt, at positions i andi′; here each depicted black
point corresponds to an element of eitherRj ( j ∈ {i, i′}) or ClearYes. The exponential bound
ExpB in 2(a) of Alg-Bisim (and the pigeonhole principle) will guarantee a repeat in which the
difference of positions is a multiple of the (exponentially bounded) period ofClearYes; this
will provide the announced guarantee of the existence of an infinite computation when no fail
is encountered in 2(c)ii tillm0 + ExpB. To be more precise, we will need a repeat of a width-2
belt-cut, not just of a width-1 belt-cut depicted in Fig. 7.
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Figure 7: Repeat of a belt-cut

6. Analysis of Alg-Bisim, and the effective semilinearity of∼

In Section 6.1 we note some facts about the shortest paths inT (A), in particular a normal
form based on a lemma given already in [27]. In Section 6.2 we note some consequences of
these facts for computing distances inT (A), and for the membership problems forClearYes,
ClearNo, andUnclear. We then look at the shortest paths toINC, yielding the functiondist(p(m))
(the distance toINC), in Section 6.3. In Section 6.4 we make precise the periodicity of ClearYes,
and we show the linear belts in whichUnclear resides. In Section 6.5 we confirm that Alg-Bisim
works in polynomial space, and in Section 6.6 we demonstratethat Alg-Bisim indeed decides the
bisimilarity problem for ROCA. In Section 6.7 we derive the semilinear description of∼ stated
in Theorem 4.

6.1. Normal forms of shortest paths inT (A)

If we havep(m) −→∗ q(n) in the LTST (A) for a ROCAA, then a shortest path fromp(m) to
q(n) might be long even if|m− n| is small; in this caseq(n) is not reachable fromp(m) by using
positive rules only. We now want to show a normal form of shortest paths; it is sketched in Fig. 8
for the case when using zero rules is necessary.

The paths induced solely by positive rules are calledpositive paths; we formalize the positive
reachability relation as follows:

Definition 17. For a ROCAA = (Q,Σ, δ), we define the relations
w−→+ for all w ∈ Σ∗ inductively:

p(m)
ε−→+ p(m); if m> 0, p(m)

a−→ p′(m′) for a ∈ Σ, andp′(m′)
u−→+ q(n) thenp(m)

au−→+ q(n).
By p(m) −→∗+ q(n) we denote thatp(m)

w−→+ q(n) for somew ∈ Σ∗.

We note that only the last node of a positive path might be a zero configuration.
The following proposition, illustrated in Fig. 9, capturesa standard simple fact: if a path from

p(m) to q(n) makes a “high hill” then there is a shorter path fromp(m) to q(n). The bounds in
the proposition are not the best possible, but they are easy to show.
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Figure 8: A shortest path fromp(m) to q(n)

Proposition 18. Assume a ROCAA = (Q,Σ, δ), where|Q| = n, and a path

p0(m0)
a1−→ p1(m1)

a2−→ · · · aℓ−→ pℓ(mℓ) (1)

where ai ∈ Σ and w= a1a2 . . .aℓ is a shortest word such that p0(m0)
w−→ pℓ(mℓ). Then for each

j ∈ [0, ℓ] we have mj ≤ n2 in the case m0 = mℓ = 0, and mj < max{m0,mℓ} + n2 otherwise.
Moreover, if (1) is a shortestpositivepath from p0(m0) to pℓ(mℓ) then for each j∈ [0, ℓ] we

havemin{m0,mℓ} − n2 < mj < max{m0,mℓ} + n2.

Proof. If there is a counterexample (1) withm0 = mℓ = 0 then for the smallesti such thatmi > 0,

i.e. mi = 1, we have thatpi(mi)
ai+1−→ pi+1(mi+1)

ai+2−→ · · · aℓ−→ pℓ(mℓ) is also a counterexample.
Suppose now that (1) is a counterexample wheremx = max{m0,mℓ} ≥ 1. Let us fix some

j ∈ [1, ℓ − 1] such thatmj = mx + n
2. For eachh ∈ [0, n2] we now define

f (h) = max{i ∈ [0, j] | mi = mx + h} and g(h) = min{i ∈ [ j, ℓ] | mi = mx + h}.

We note thatf (h), g(h) are well defined, andf (0) < f (1) < · · · < f (n2) = j = g(n2) < g(n2−1) <
· · · < g(0); moreover,mi ≥ mx + h for all i ∈ [ f (h), g(h)]. This also implies that the path

pf (0)
af (0)+1−→ pf (0)+1

af (0)+2−→ · · ·
ag(0)−→ pg(0) is positive. By the pigeonhole principle we get someh, h′,

where 0≤ h < h′ ≤ n2 andpf (h) = pf (h′), pg(h) = pg(h′) (we haven2 + 1 valuesh in [0, n2], and
only n2 pairs of control states). But then we could removeaf (h)+1 . . .af (h′) andag(h′)+1 . . .ag(h)

sincepf (h)(mf (h)) = pf (h)(mx + h)
u−→+ pg(h)(mx + h) = pg(h)(mg(h)) for u = af (h′)+1 . . .ag(h′); this

contradicts the assumption thatw is a shortest word such thatp0(m0)
w−→ pℓ(mℓ).

The final claim for positive paths is derived analogously.

Given a shortest path fromp(m) to q(n), it is trivial that any subpath is a shortest path from its
start to its end. Proposition 18 thus bounds the maximum counter value in the “zero-touching”
part in Fig. 8, as well as the maxima of the “going-down” part and of the “going-up” part. We
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Figure 9: “Cutting a hill”

also have a lower bound for the overall minimum when there is no zero touching. Now we
clarify the cycles; we concentrate just on the “going-down”part, since the “going-up” part is
almost analogous when we reverse the positive ROCA-rules (i.e., replace each rule (p, a, 1, q, j)
with (q, a, 1, p,− j)).

Definition 19. Let A = (Q,Σ, δ) be a ROCA. By acycle we mean a nonempty sequence
of positive rules (q1, a1, 1, q2, j1), (q2, a2, 1, q3, j2), (q3, a3, 1, q4, j3), . . . , (qk, ak, 1, qk+1, jk) where
qk+1 = q1; the numberk ≥ 1 is thelength of the cycle. The abovecycleis simpleif 1 ≤ i < j ≤ k
impliesqi , q j. The numbere=

∑k
i=1 j i is called theeffectof the cycle; ife< 0, thend = −e is

called thedropof the cycle.

We note that the effect of a cycle is the change of the counter value that the cyclecauses when
performed. If the length of a cycle isk, then its effect is in [−k, k]. If |Q| = n, then the length of
any simple cycle is in [1, n] (and its effect is in [−n, n]).

We refer to [27] for a proof of the next proposition; intuitively, if |m− n| ≥ n2 andp(m) −→∗+
q(n), then there is a shortest positive path fromp(m) to q(n) in a certain normal form: the path
starts with a “short” prefix, then uses repeatedly a simple cycle (at least once), and finishes with
a “short” suffix (where the sum of lengths of the prefix and the suffix is less thann2).

In fact, onlydeterministicone-counter automata are considered in [27]. Nevertheless, the
actions labelling the transitions are irrelevant for the reachability questions. In the proposition
we can thus conveniently assume a bijection betweenΣ andδ: each actiona has a corresponding
rule (q, a, c, q′, j). We then say thatv ∈ Σ+ is a cycle if the corresponding sequence of (positive)
rules is a cycle.

Proposition 20. (Lemma 2 in [27].) Let A = (Q,Σ, δ) be a ROCA where|Q| = n. Assume
p(m) −→∗+ q(n) and m≥ n+ n2. Then there are words w, v1, v2, v3 such that w is a shortest word

satisfying p(m)
w−→+ q(n), and

• w = v1(v2)iv3 for some i> 0,

• |v1v3| < n2, and v2 is a cycle with|v2| ≤ n and with a drop d∈ [1, n],
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• p(m)
v1−→+ p′(m′)

v2−→+ p′(m′ − d)
v2−→+ p′(m′ − 2d)

v2−→+ · · ·
v2−→+ p′(m′ − id)

v3−→+ q(n)
for some p′ ∈ Q and m′ ∈ N (where v2 is repeated i times).

In later applications of Proposition 20 we will also implicitly use the fact that in the described
case we can cut off and pump the cycle in the following sense:

p(m+ ( j − i)d)
v1(v2) j v3−−−−−−→+ q(n) for all j > 0 such thatm+ ( j − i)d ≥ n+ n2, and

p(m)
v1(v2) j v3−−−−−−→+ q(n+ (i − j)d) for all j ∈ [0, i].

There is an analogous claim forp(m) −→∗+ q(n) wherem + n2 ≤ n; herev2 is a cycle
with a positive effect. The claim follows from Proposition 20 by reversing the positive rules
(i.e. replacing (p, a, 1, q, j) with (q, a, 1, p,− j)) and consideringq(n) −→∗+ p(m). We can also
analogously cut off and pump the cycle.

In the next section we use Propositions 18 and 20 for noting a fact about the complexity
of computing distances. This fact will help us later to clarify the membership problems for
ClearYes, ClearNo andUnclear. In fact, just polynomial-space algorithms would suffice for
our analysis of Alg-Bisim; the better complexity bounds in Section 6.2 are substantial for the
deterministic case.

6.2. Computing (representations of) distances for ROCA

We first recall a standard simple fact regarding space-efficient implementations of (integer)
arithmetic operations:

Proposition 21. There is a procedure that, givenop ∈ {+,−, ·,÷, mod} and m, n, j ∈ N in binary,
returns the j-th bit of(mop n), while using workspace O(log log max{m, n}) whenop ∈ {+,−} and
O(max{log log max{m, n}, log min{m, n}}) whenop ∈ {·,÷,mod}.

Informally speaking, in the caseop ∈ {+,−} just two pointers moving in the binary presenta-
tions ofmandn are sufficient (when performing the standard algorithm); ifop ∈ {·,÷, mod} then
we also use a piece of workspace that can store the smaller ofm, n (while realizing a standard
textbook algorithm).

Given a ROCAA and two configurationsp(m), q(n), the valuedistance(p(m), {q(n)}) can
be obviously written in linear space (in binary); this follows easily from Propositions 18 and 20
(recall also Fig. 8). The next proposition shows that each specific bit of distance(p(m), {q(n)})
can be computed in nondeterministic logarithmic space (andthus also in polynomial time).

Remark. We thus also getNL-completeness of the reachability problem for ROCA, when
the initial and final counter values are given in binary. The proposition is derived from Prop. 20
(i.e. Lemma 2 in [27]) by using standard means (like Prop. 21); we provide a proof to be self-
contained.

Proposition 22. The following decision problem isNL-complete.
Input: A ROCAA, two configurations p(m), q(n), j ∈ N, c ∈ {0, 1} (m, n, j written in binary).
Question:Is distance(p(m), {q(n)}) finite and is the j-th bit of its binary presentation c ?

Proof. NL-hardness follows from digraph reachability; we will show that the problem is inNL.
Assume a given ROCAA = (Q,Σ, δ), where|Q| = n, and two configurationsp(m), q(n). We

first show a nondeterministic procedure deciding ifp(m) −→∗+ q(n).
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1. If |m− n| < n2, then we just stepwise guess a respective positive path fromp(m) to q(n);
we always remember just the current configurationp′(m′), wherem′ is represented by the
differenced = m′ − m in the workspace. By Proposition 18 we can restrict ourselves to
d ∈ [−(m−min{m, n}+n2−1),max{m, n}−m+n2−1]; this guaranteesd ∈ [−2n2+2, 2n2−2],
and thusd can be written in 4 logn bits. At the same time we can count the lengthℓ of the
guessed path (presentingℓ in binary).

2. If |m−n| ≥ n2 then we base the procedure on the normal-form path guaranteed by Prop. 20;
w.l.o.g. we assumem > n since otherwise we could just reverse the positive rules. We
guess a tuple (d1, ℓ1, d2, ℓ2, d3, ℓ3, p′) where 0≤ ℓ1+ ℓ2 < n2, |d1|+ |d2| < n2, d3, ℓ3 ∈ [1, n],
andp′ ∈ Q. We verify that

• from p(m) we can reachp′(m+d1) in ℓ1 moves,

• from p′(n+d2) we can reachq(n) in ℓ2 moves,

• from p′(n+d2+d3) we can reachp′(n+d2) in ℓ3 moves, and

• d3 divides (m+ d1) − (n+ d2).

Each configurationr(k) stored in the workspace during this process is representedby
(r, k−m) or by (r, k−n) (i.e., we put only small differences in the workspace, as in 1.).

The above nondeterministic procedure obviously runs in logarithmic space; moreover, any suc-
cessful run also yields a (small) presentation of the lengthof some path fromp(m) to q(n) (i.e.
of an upper bound fordistance(p(m), {q(n)})): eitherℓ in 1., or the tuple (ℓ1, ℓ2, ℓ3, d1, d2, d3) in
2.; in the latter case, the represented (big) number is

ℓ1 + ℓ2 + ℓ3 · ((m+ d1) − (n+ d2)) ÷ d3.

For deciding ifp(m) −→∗ q(n) (when the zero rules are allowed), we add the possibility toguess
somer, r ′ ∈ Q and to verify thatp(m) −→∗+ r(0), r(0) −→∗ r ′(0), and thatq(n) −→∗+ r ′(0) when
the (positive) rules are reversed. It is clear that this variant also runs in logarithmic space, and
any successful run provides a (small) presentation of the length of a path fromp(m) to q(n).

For a concrete presentation of an upper bound fordistance(p(m), {q(n)}), we can decide in
nondeterministic logarithmic space if the bound can be strengthened; this follows from the fact
that we can compare two (small) presentations by using the procedures captured by Proposi-
tion 21.

Since NL is closed under complement, we can thus construct a nondeterministic proce-
dure working in logarithmic space where each successful runfinishes with a presentation of
distance(p(m), {q(n)}). Extracting thej-th bit of distance(p(m), {q(n)}) from the presentation
can be done in logarithmic space (by invoking Proposition 21again).

Proposition 22 will be particularly helpful later, for clarifying the complexity of the mem-
bership problems forClearYes, ClearNo, andUnclear. We can now note that it implies that
dist(p(m)) = distance(p(m), INC) can be computed in polynomial time (once we recall the effi-
cient constructability ofINC, shown in Proposition 13 and its proof).
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6.3. Distance toINC, and the period∆n
Our previous reasoning allows us to derive further useful consequences for the function

dist(p(m)), including the exponentially bounded periodicity of theset {m | dist(p(m)) = ω}
(for any fixedp).

Convention. In the rest of the paper we will derive the existence of several polynomials
polyi : N→ N, in particular

poly0(n) ∈ O(n3), poly′0(n) ∈ O(n2) in Proposition 23,
poly1(n) ∈ O(n4) in Proposition 26,
poly2(n) ∈ O(n8) in Proposition 31,
poly3 in Proposition 38.

Their concrete form will be left implicit (as well as the degree ofpoly3) but we will assume that
such polynomials are fixed, and whenever we refer to one of them, we mean the respective fixed
polynomial. We will later relatepoly1(n) and poly2(n) to the belt-thickness and to the initial
space in Fig. 5.

We now show a set of linear equationsx = σ1m+ σ2 (whereσ1, σ2 are rational constants)
such that any finitedist(p(m)) must satisfy one of them. (Recall the shortest path toINC sketched
in Fig. 3.)

Proposition 23. There are polynomialspoly0(n) ∈ O(n3) and poly′0(n) ∈ O(n2) such that the
following holds. Given a ROCAA = (Q,Σ, δ), with |Q| = n, if p(m) −→∗ INC then

dist(p(m)) = c1 + d1
m+ c2

d2
(2)

where d1 ∈ [0, n], d2 ∈ [1, n], c1 ∈ [0, poly0(n)], c2 ∈ [−poly′0(n), poly′0(n)].

Proof. Suppose thatp0(m0)
a1−→ p1(m1)

a2−→ · · · aℓ−→ pℓ(mℓ) is a shortest path fromp0(m0) to
INC; hencepℓ(mℓ) ∈ INC and thusmℓ < n. The path obviously never visits a configuration twice,
and each subpath of this path is a shortest path from its startto its end. By using Proposition 18
we derive thatmj < max{m0, n} + n2 for all j ∈ [0, ℓ].

If m0 < n + n
2 thenpi(mi) ∈ Q× [0, n+2n2−1] for all i ∈ [0, ℓ], and thusℓ < n · (n+ 2n2). We

can putc1 = ℓ andd1 = 0 in (2); hered2, c2 are irrelevant, and we can considerd2 = 1, c2 = 0.
Assume nowm0 ≥ n + n2, and leti0 be the smallest such thatmi0 = n − 1; we note that

pi(mi) ∈ Q × [0, n+n2−1] for all i ∈ [i0, ℓ], and thusℓ − i0 < n · (n + n2). The (positive)

path p0(m0)
a1−→ p1(m1)

a2−→ · · ·
ai0−→ pi0(mi0) can be assumed to be in the form guaranteed by

Proposition 20, wherea1a2 . . .ai0 = v1(v2)iv3 for the appropriatev1, v2, v3 and i > 0. Hence
i0 = |v1v3| + |v2| · m0+c−(n−1)

d whered is the drop of the cyclev2 and c is the counter change
caused byv1v3. Since|v1v3| < n2, and thusc ∈ [−(n2−1), n2−1], and |v2| ≤ n, d ∈ [1, n], we
are done: in (2) we putc1 = |v1v3| + (ℓ − i0), d1 = |v2|, d2 = d, c2 = c− (n − 1). We thus have
c1 ∈ [0, n2−1+n · (n+n2)−1], d1 ∈ [1, n], d2 ∈ [1, n], c2 ∈ [−(n2−1)− (n−1), (n2−1)− (n−1)].

The reasoning in the proof of Proposition 23 has further consequences. Informally speaking,
the next proposition shows that the set{m | p(m) −→∗ INC } is “dense” if it is not a small finite
set. The set{m | p(m) 6−→∗ INC } might be not “dense”, but it is “periodic”. Any number that is
a multiple of drops of simple cycles of the relevant ROCAA can serve as a period but we use

∆n defined as∆n = n! = n · (n−1) · (n−2) · · · · · 2 · 1
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at our level of analysis. (See also Remark after Proposition24.)

Proposition 24. Assume a ROCAA = (Q,Σ, δ) with |Q| = n, and a configuration p(m) such that
m≥ n + n2.

1. If dist(p(m)) < ω then there is d∈ [1, n] such thatdist(p(m+ jd)) < ω for all j ∈ Z

satisfying m+ jd ≥ n + n2.

2. We havedist(p(m)) = ω iff dist(p(m+∆n)) = ω (for m≥ n + n2).

Proof. Point 1. A shortest path fromp(m) to INC, wherem ≥ n + n2, starts with a positive path

p(m)
v1−→+ p′(m′)

v2−→+ p′(m′ − d)
v2−→+ p′(m′ − 2d)

v2−→+ · · ·
v2−→+ p′(m′ − id)

v3−→+ r(n−1) (for
somep′, r ∈ Q andm′ ∈ N), as discussed in the proof of Proposition 23; hered is the drop of the

cyclev2. It is clear thatp(m+ jd)
v1(v2)i+ jv3−−−−−−−→ r(n−1) wheneveri + j > 0. Sincer(n−1) −→∗ INC,

we are done.
Point 2. If m ≥ n + n2 then Point 1 implies thatp(m) −→∗ INC iff p(m+∆n) −→∗ INC; this

follows from the fact thatm= (m+ ∆n) − ∆nd d and∆n is divisible by anyd ∈ [1, n].

Remark.We have chosen∆n = n! ≤ nn = 2n logn; though∆n is exponential inn, it can be written
in O(n logn) bits. In more detail, we could specify∆A as the least common multiple of simple
cycle drops inA. But this number is also exponential in the worst case (as shown by creating
separate cycles whose drops are pairwise different primes); therefore we use simply∆n = n!
at our level of complexity analysis. We note that an upper bound finer thann! is recalled from
number theory in Lemma 1 in [27].

6.4. ClearYes is periodic andUnclear is inside belts

We aim to make precise the periodicity ofClearYes; recall that for a ROCA withn control
states we haveClearYes = {(p(m), q(n)) | dist(p(m)) = dist(q(n)) = ω andp(m)) ∼n q(n)}.

Proposition 25. Assume a ROCAA = (Q,Σ, δ) with |Q| = n. If m, n ≥ n+ n2 then(p(m), q(n)) ∈
ClearYes iff (p(m+i∆n), q(n+ j∆n)) ∈ ClearYes for all i , j ∈ N.

Proof. If m, n ≥ n thenp(m) ∼n q(n) iff p ∼n q (sincep(m) ∼n p andq(n) ∼n q). Form, n ≥ n+n2

we havedist(p(m)) = dist(q(n)) = ω iff dist(p(m+i∆)) = dist(q(n+ j∆)) = ω (for all i, j ∈ N), by
Proposition 24(2).

When discussing Fig. 3, we mentioned informally that a constraintdist(p(m)) = dist(q(n)) <
ω imposes a linear relation betweenm andn. This is formalized in the next proposition, which
implies thatUnclear resides in polynomially belts with polynomial (vertical) thickness.

Proposition 26. There is a polynomialpoly1(n) ∈ O(n4) such that the following holds. If, for
a ROCAA = (Q,Σ, δ) with |Q| = n, we havedist(p(m)) = dist(q(n)) < ω then for some
α, β ∈ [1, n2] we have

|n− α
β
m| < poly1(n).

Proof. Assumedist(p(m)) = dist(q(n)) < ω. When expressingdist(p(m)) = c1 + d1
m+c2

d2
and

dist(q(n)) = c′1 + d′1
n+c′2
d′2

as in (2) in Proposition 23, we getc1 + d1
m+c2

d2
= c′1 + d′1

n+c′2
d′2

. If d1 > 0

andd′1 > 0 then we (multiply both sides by
d′2
d′1

and) derive
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n =
d′2d1

d′1d2
m+
(

d′2c1

d′1
+

d′2d1c2

d′1d2
− d′2c′1

d′1
− c′2

)

= α
β
m+ ρ

whereα, β ∈ [1, n2] and|ρ| ≤ n · poly0(n)+n2 · poly′0(n)+ poly′0(n), and thus|ρ| = |n− α
β
m| ∈ O(n4)

(sincepoly0(n) ∈ O(n3) andpoly′0(n) ∈ O(n2)); we note thatρ is a rational number such thatβρ
is an integer.

If d1 = 0 or d′1 = 0 thendist(p(m) = dist(q(n)) ≤ poly0(n), and thusm < n + poly0(n) and
n < n + poly0(n) (sincedist(r(k)) = distance(r(k), INC) > r − n). We can putα = β = 1 and note
that |n− α

β
m| < n + poly0(n).

Definition 27. Assume a ROCAA = (Q,Σ, δ) where|Q| = n. By abelt Bgiven by its slopeα
β

whereα, β ∈ [1, n2] we mean the set{(p(m), q(n)) | p, q ∈ Q,m, n ∈ N, |n− α
β
m| < poly1(n)}. By

BeltSpace we mean the union of all belts.

Hence Proposition 26 implies that the setUnclear =
⋃∞

i=0 EFDi is a subset of BeltSpace. We
can now also note that the vertical thickness of the belts in Fig. 5 is 2· poly1(n).

The next fact is not needed for the analysis of Alg-Bisim but we note it for later use; as
expected, the BeltSpace-membership problemasks if (p(m), q(n)) ∈ BeltSpace when given a
ROCAA andp(m), q(n) (wherem, n are presented in binary).

Proposition 28. TheBeltSpace-membership problem is inL.

Proof. The membership is determined bym, n (the control states are irrelevant). We have to
check if there areα, β ∈ [1, n2] such that|n− α

β
m| < poly1(n), i.e., eitherβn ≥ αmandβn−αm<

β · poly1(n), or βn < αm andαm− βn < β · poly1(n). It is a routine to show that this can be done
in logarithmic space (recalling Proposition 21).

6.5. Alg-Bisim works in polynomial space

As the first step of our complexity analysis, we explicitly recall thelocality of checking the
bisimulation conditions inT (A), whereA = (Q,Σ, δ) is a ROCA; the locality follows from the
fact that the counter value can change by at most one in one step. Forp, q ∈ Q andm, n ∈ N we
define theneighbourhood

Neigh(p(m), q(n)) = {(p′(m′), q′(n′)) | p′, q′ ∈ Q, |m′−m| ≤ 1, |n′−n| ≤ 1}.

Proposition 29. For a ROCAA = (Q,Σ, δ), a pair(p(m), q(n)) is covered by R⊆ (Q×N)×(Q×N)
in T (A) iff it is covered by R∩ Neigh(p(m), q(n)).

It is this locality which allows us to restrict toRi−2 ∪ Ri−1 ∪ Ri in 2(c)ii in Alg-Bisim.
We now recall that Alg-Bisim also uses procedures for solving the membership problems for

ClearYes, ClearNo, andUnclear =
⋃∞

i=0 EFDi ; though polynomial-space upper bounds would
suffice here, we show better bounds in the next proposition; we also include the deterministic
case for later use. An instance of the membership problem forClearYes is a ROCA and two con-
figurationsp(m), q(n) (wherem, n are presented in binary); similarly forClearNo andUnclear.

Proposition 30.

1. The membership problems forClearYes, ClearNo, andUnclear are in P. When restricted
to det-ROCA, the problems areNL-complete.
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2. Given a ROCAA = (Q,Σ, δ) and i ∈ N (in binary), the setEFDi can be computed in
polynomial time.

Proof. We consider a ROCAA = (Q,Σ, δ) where |Q| = n. First we note that deciding if
p(m) ∼k+1 q(n) is straightforward once we construct the setNeigh(p(m), q(n))∩ ∼k (due to
the locality). This makes clear that deciding ifp(m) ∼n q(n) can be done in time bounded by a
polynomial (in the size ofA). In the deterministic case, decidingp(m) ≁n q(n) is obviously in
NL (we just stepwise guess a word no longer thann that is enabled in precisely one ofp(m), q(n)),
and we recall thatNL =co-NL.

Since we can constructINC in polynomial time (recall the proof of Proposition 13),dist(p(m))
is computable in polynomial time (as follows from Proposition 22). It is thus clear that there is
a polynomial-time procedure deciding to which of the setsClearYes, ClearNo, andUnclear a
given pair (p(m), q(n)) belongs. Propositions 13 and 22 also show that the membership problems
for ClearYes, ClearNo, andUnclear areNL-complete in the deterministic case.

Since all elements ofEFDi , for any fixedi, are in BeltSpace, their number is bounded by a
polynomial inn, andEFDi can be constructed in polynomial time, w.r.t. the size ofA and the
length of the binary presentation ofi (recall Proposition 26).

To finish the description of Alg-Bisim, we need to specify the exponential bound ExpB (com-
puted in 2(a)). To this end we introduce a polynomialpoly2; the valuepoly2(n) will bound the
initial space in Fig. 5. It is chosen so that it guarantees that the neighbourhood of any “point”
in a belt to the right of the initial space does not intersect any other belt, and the background in
the neighbourhood guarantees the periodicity ofClearYes as captured by Proposition 25. Tech-
nically, we recall Proposition 26, yielding the polynomialpoly1(n) ∈ O(n4), and we fixpoly2 by
the next proposition:

Proposition 31. There is a polynomialpoly2(n) ∈ O(n8) satisfying the following conditions for
any n∈ N andα, β, α′, β′ ∈ [1, n2], where we write X instead ofpoly2(n):

1. α
β
X − poly1(n) − 1 > n+ n2;

2. if α
′

β′ <
α
β

then α
β
X − poly1(n) − 2 > α

′

β′ X + poly1(n).

Proof. We can rewrite 1. asX > β
α
· (poly1(n)+1+n+n2), and 2. asX > ββ′

αβ′−α′β · (2·poly1(n)+2).

Since ββ′

αβ′−α′β ≤ n4 andpoly1(n) ∈ O(n4), the claim is clear.

Corollary 32. Assume a ROCAA = (Q,Σ, δ) where|Q| = n. If m > poly2(n), α, β ∈ [1, n2], and
|n− α

β
m| < poly1(n) then for any(p′(m′), q′(n′)) ∈ Neigh(p(m), q(n)) we have

1. m′ ≥ n + n2 and n′ ≥ n + n2;

2. if |n′ − α′
β′ m

′| < poly1(n) for α′, β′ ∈ [1, n2] then α
′

β′ =
α
β
.

For each ROCAA = (Q,Σ, δ) where|Q| = n we put

ExpB = poly2(n) + 1+ (∆n)3 · 24n2·poly1(n). (3)

Remark.It would suffice to replacepoly2(n) in (3) with max{0, poly2(n) −m0}. We simply want
to guarantee that the “window” in Fig. 6 moves far enough to the right of the initial space to
ensure a convenient repeat in each belt (whose simplified version is sketched in Fig. 7).
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We note that it suffices for Alg-Bisim to always have just currentRi−2,Ri−1,Ri in memory (a
subset of the vertical belt-cuts of the “window” in Fig. 6, where the numbers are presented in
binary). Hence the next lemma is now clear.

Lemma 33. Alg-Bisim can be implemented to run in polynomial space.

6.6. Correctness ofAlg-Bisim

We now show that Alg-Bisim indeed decides the bisimilarity problem for ROCA. One direc-
tion is easy:

Proposition 34. If the input satisfies p0(m0) ∼ q0(n0) then there is a computation ofAlg-Bisim
that returns YES.

Proof. If p0(m0) ∼ q0(n0) then either (p0(m0), q0(n0)) ∈ ClearYes or (p0(m0), q0(n0)) ∈ EFDm0.
The former case is clear, so we assume the latter. If we alwayschooseRi = EFDi ∩ ∼ in 2(c)i
then we cannot fail in 2(c)ii: it is sufficient to consider justRi−2,Ri−1,Ri since any (p(m), q(n)) ∈∼
is covered byNeigh(p(m), q(n)) ∩ ∼ (due to the locality captured by Proposition 29).

For the other direction we also use another aspect of the locality, following from the fact

that transitionsp(m)
a−→ p′(m+ j) are independent of the concrete valuem when the value is

positive. Informally, if (p(m), q(n)) is covered byR and the “shift” (m′, n′)  (m′+z1, n′+z2)
(by a “shift-vector” (z1, z2)) maps each element ofR in Neigh(p(m), q(n)) to an element ofR (in
Neigh(p(m+z1), q(n+z2))) then the assumption thatR covers (p(m), q(n)) implies thatR covers
(p(m+z1), q(n+z2)).

Proposition 35. Assume a ROCAA = (Q,Σ, δ) and a set R⊆ (Q×N)× (Q×N). Let all m, n,m+
z1, n+ z2 be positive, where m, n ∈ N and z1, z2 ∈ Z, and assume that for each(p′(m′), q′(n′)) ∈
Neigh(p(m), q(n)) we have that(p′(m′), q′(n′)) ∈ R implies(p′(m′ + z1), q′(n′ + z2)) ∈ R. If R
covers(p(m), q(n)) then R also covers(p(m+ z1), q(n+ z2)).

Proof. Let the assumptions hold and letRcover (p(m), q(n)). Consider a transitionp(m+z1)
a−→

p′(m+z1+ j). Since there is also the transitionp(m)
a−→ p′(m+ j) we must haveq(n)

a−→ q′(n+ j′)
such that (p′(m+ j), q′(n+ j′)) ∈ R. Since (p′(m+ j), q′(n+ j′)) ∈ Neigh(p(m), q(n))), we have

(p′(m+ z1 + j), q′(n+ z2 + j′)) ∈ R, andp(m+ z1)
a−→ p′(m+ z1 + j) can be thus “matched” by

q(n+z2)
a−→ q′(n+z2+ j′). For any transitionq(n+z2)

a−→ q′(n+z2+ j′) we deduce a matching

transitionp(m+ z1)
a−→ p′(m+ z1 + j) analogously.

Lemma 36. Given a ROCAA and two configurations p0(m0), q0(n0), there is a computation of
Alg-Bisim returning YES (for the inputA, p0(m0), q0(n0)) if and only if p0(m0) ∼ q0(n0).

Proof. The “if” part was shown by Proposition 34. To show the “only if” part, let us con-
sider a computation returning YES, for the inputA, p0(m0), q0(n0). If ( p0(m0), q0(n0)) ∈
ClearYes then we are done, sinceClearYes ⊆∼; we thus assume (p0(m0), q0(n0)) ∈ EFDm0. Let
R0,R1, . . . ,Rm0+ExpB be the sets chosen by the computation in 2(c)i; hence (p0(m0), q0(n0)) ∈ Rm0.

We now show that there is a bisimulation containing the setsR0,R1, . . . ,Rm0 (while it might
not contain allRm0+ j for j > 0); the proof will be thus finished.

We assume thatA = (Q,Σ, δ) where|Q| = n, and consider the periodic sequencei0 < i1 <
· · · < iℓ wherei0 = 1+max{m0, poly2(n)}, i j+1 = i j+(∆n)3 for all j ∈ [0, ℓ−1], andℓ = 24n2·poly1(n).
The definition (3) guarantees thatiℓ ≤ m0 + ExpB, and thusRi is defined for alli ≤ iℓ.
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Let us now consider a concrete beltB, given by its slopeα
β

whereα, β ∈ [1, n2]. Recall Fig. 7
for the idea of a “width-1 cut” repeat; we now derive a “width-2 cut” repeat (which is needed
for a consistent periodic filling ofB described later). We say thata pair (i, i′), wherei = i j1 and
i′ = i j2 for 1 ≤ j1 < j2 ≤ ℓ, is arepeat(of a width-2B-cut) if the following holds:

for any p, q ∈ Q, anym ∈ {i, i + 1}, and anyn such that|n− α
β
m| < poly1(n), if we

put m′ = m+ (i′ − i)(∆n)3 andn′ = n + α
β
(i′ − i)(∆n)3 then (p(m), q(n)) ∈ Rm iff

(p(m′), q(n′)) ∈ Rm′ .

We note thatα
β
(∆n)3 is a multiple of∆n sinceβ ∈ [1, n2] and∆n = n!. Thus also (p(m), q(n)) ∈

ClearYes iff (p(m′), q(n′)) ∈ ClearYes (for m, n,m′, n′ as above); here we use Proposition 25 and
Corollary 32(1).

For eachi ≥ i0, the sets{(p, q,m, n) | p, q ∈ Q,m ∈ {i, i + 1}, |n − α
β
m| < poly1(n)} and

{(p, q,m, n) | p, q ∈ Q,m ∈ {i+ (∆n)3, i+ (∆n)3+1}, |n− α
β
m| < poly1(n)} have the same number of

elements that is bounded byn2·2·2·poly1(n). We thus easily deduce that our choiceℓ = 24n2·poly1(n)

and the pigeonhole principle guarantee that there is a repeat (i, i′), wherei = i j1 < i j2 = i′ for
somej1, j2 ∈ [0, ℓ]; let us fix such a repeat (i, i′).

Informally speaking, we now “fill the beltB after i′” periodically, with the periodi′ − i =
( j2− j1) · (∆n)3. Formally we define the setsRB

j for j = poly2(n)+1, poly2(n)+ 2, . . . inductively
as follows:

1. If j ∈ [poly2(n)+1, i′], and n satisfies|n − α
β

j| < poly1(n), and (p( j), q(n)) ∈ Rj then

(p( j), q(n)) ∈ RB
j . (HereRB

j is the intersection ofRj with the beltB.)

2. If j > i′, andn satisfies|n− α
β

j| < poly1(n), and (p( j − (i′ − i)), q(n− α
β
(i′ − i))) ∈ RB

j−(i′−i)

then (p( j), q(n)) ∈ RB
j . (HereRB

j can be viewed as the “shift” ofRB
j−(i′−i) by the vector

(i′ − i, α
β
(i′ − i)).)

We now show inductively thatRB
j is covered byRpoly2(n) ∪ RB

j ∪ RB
j+1 ∪ ClearYes when j =

poly2(n)+1, and thatRB
j is covered byRB

j−1∪RB
j ∪RB

j+1∪ClearYes for eachj > poly2(n)+1. For
eachj ∈ [poly2(n)+1, i′−1] the claim is true since the considered run of Alg-Bisim is successful:
by Corollary 32(2) the neighbourhoods of the “points” in thebelt B outside the initial space do
not intersect other belts, hence covering ofRB

j by Rj−1 ∪ Rj ∪ Rj+1 ∪ ClearYes implies covering
of RB

j by RB
j−1 ∪ RB

j ∪ RB
j+1 ∪ ClearYes (using the locality captured in Proposition 29).

For eachj ≥ i′ the claim follows from the validity of the claim forj′ = j − (i′ − i): by
Corollary 32(1) we can use the periodicity ofClearYes captured in Proposition 25 ((p(m), q(n)) ∈
ClearYes implies (p(m+ (i′ − i)), q(n+ α

β
(i′ − i))) ∈ ClearYes since both (i′ − i) and α

β
(i′ − i)

are multiples of∆n), and we also use the periodicity of our belt filling, and the “shifted” locality
captured by Proposition 35.

We putRbelt−B =
⋃∞

j=poly2(n)+1 RB
j , and note thatRbelt−B is covered byRpoly2(n) ∪ Rbelt−B ∪

ClearYes.
We proceed similarly for all belts (i.e., for all slopesα

β
whereα, β ∈ [1, n2]), and defineRbelts

as the union of the setsRbelt−B for all beltsB.
Now we deduce thatR = R0 ∪ R1 ∪ · · · ∪ Rpoly2(n) ∪ Rbelts is covered byR∪ ∼, and we

invoke Proposition 7. SinceRbelts∩ {(p( j), q(n)) | p, q ∈ Q, n ∈ N} coincides withRj for all
j ∈ [poly2(n) + 1,m0] (whenm0 > poly2(n)), there is a bisimulation containingR0,R1, . . . ,Rm0,
and thusp0(m0) ∼ q0(n0).

24



Lemmas 33 and 36 prove the upper bound in Theorem 3 (stated in Section 2).

6.7. Effective semilinearity of∼ (Theorem 4)

Theorem 4 can be now verified in a straightforward way. We do not give all tedious technical
details but we give the main ideas, based on the previous analysis of Alg-Bisim. First we note
that we can now assume that Alg-Bisim is adjusted so that it always choosesRi = EFDi ∩ ∼;
we have shown that the membership in∼ can be decided in polynomial space. In this case, for
R= R0∪R1∪· · ·∪Rpoly2(n)∪Rbelts(defined as in the proof of Lemma 36) we haveR∪ClearYes =∼,
as we now show. Suppose it is not the case. Then for a beltB, given by its slopeα

β
, and

for the (first) respective repeat (i, i′) we would havep′(m′) ∼ q′(n′) for somem′ > i′ where
(p′(m′), q′(n′)) ∈ EFDm′∩B though (p′(m′), q′(n′)) < Rbelt−B; supposem′ is the smallest possible.
We now derive a contradiction by using a “shift of∼” by the vector (−(i′ − i)),−α

β
(i′ − i)) (that

is opposite to the vector used for the inductive construction of Rbelt−B). Let us defineR′ =
R′i+1 ∪ R′i+2 ∪ R′i+3 ∪ · · · ⊆ B such that (p( j), q(n)) ∈ B belongs toR′j (for j ∈ {i+1, i+2, i+3, . . . })
iff p( j+(i′−i)) ∼ q(n+ α

β
(i′−i)). We can now easily check thatR′ is covered byRB

i ∪R′∪ClearYes;

henceR′ ⊆∼. But p′(m′ − (i′ − i)), q′(n′ − α
β
(i′ − i)) is in R′m′−(i′−i) though it is not inRB

m′−(i′−i); we
must surely havem′ − (i′ − i) > i′, and we have thus contradicted thatm′ was the smallest.

There is surely a procedure producing a formula describing the whole setClearYes (based
on Proposition 24(2)). We have thus shown that Alg-Bisim can be enhanced to produce a (Pres-
burger) formula describing the whole set∼ if it can remember all constructedR0,R1,R2, . . . , and
thus works in exponential space.

It is now a routine to note that the resulting exponential formula can be produced by using
only polynomial workspace. The main trick is that the belt-cut repeats (i, i′) do not need to
be looked for in fully rememberedR0,R1,R2, . . . but they can be nondeterministically guessed
and then verified: when processingi, Alg-Bisim guesses that there will be the appropriatei′ later
(within an exponentially bounded number of steps to be now counted), remembers just the width-
2 cut ati, continues with producing the description of the belt-filling until i′ where it verifies that
(i, i′) is indeed a repeat.

7. Bisimilarity is in NL for deterministic ROCA

We recall thatClearNo = {(p(m), q(n)) | dist(p(m)) , dist(q(n)) or p(m)) ≁n q(n)}, for a
(general) ROCAA = (Q,Σ, δ) where|Q| = n. The factClearNo ⊆≁ can be made more precise:

Proposition 37. If dist(p(m)) < dist(q(n)), then p(m) ≁k q(n) for k = dist(p(m)) + n.

Proof. If dist(p(m)) < dist(q(n)) thenp(m)
w−→ p′(m′) where|w| = dist(p(m)) andp′(m′) ∈ INC.

If p(m) ∼k q(n) for k = dist(p(m)) + n then there must beq′(n′) such thatq(n)
w−→ q′(n′) and

p′(m′) ∼n q′(n′). Sinceq′(n′) < INC, there isr ∈ Q (a state inFA) such thatq′(n′) ∼n r ≁n

p′(m′); this contradicts withp′(m′) ∼n q′(n′).

Let us now consider adeterministicROCAA = (Q,Σ, δ) generating the deterministic LTS

T (A) = (Q × N,Σ, (
a−→)a∈Σ). We note that the LTST (A) × T (A), where (p(m), q(n))

a−→
(p′(m′), q′(n′)) iff p(m)

a−→ p′(m′) andq(n)
a−→ q′(n′), is also deterministic. We observe that

p(m) ≁k+1 q(n) iff there isw ∈ Σ∗ of length at mostk such that (p(m), q(n))
w−→ (p′(m′), q′(n′))

where p′(m′) ≁1 q′(n′). Hence the question of equivalence inT (A) reduces to a (specific)
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Figure 10: Projection of a path inT (A) × T (A); the start-node is projected toP1 and the end-node toP2

reachability question in the deterministic LTST (A)×T (A). Figure 10 sketches the projection of
a path inT (A)×T (A) toN×N; here the start-node (p1(m1), q(n1)) of the path is projected to the
point P1 = (m1, n1), while the end-node (p2(m2), q2(n2)) is projected to the pointP2 = (m2, n2).
(The figure does not show the third dimension, i.e., the respective pairs of control states are not
depicted.)

Remark.We note that the reachability problem in the deterministic LTS T (A) × T (A) is
undecidable in general. This follows from the standard factthat the trace inclusion problem,

asking if∀w ∈ Σ∗ : (p(m)
w−→)⇒ (q(n)

w−→) for a given det-ROCAA = (Q,Σ, δ) andp(m), q(n),

is undecidable; hence the question if (p0(m0), q0(n0)) −→∗ {(p(m), q(n)) | ∃a ∈ Σ : p(m)
a−→

∧¬(q(n)
a−→)} is undecidable. In contrast, our question if (p0(m0), q0(n0)) −→∗ {(p(m), q(n)) |

∃a ∈ Σ : (p(m)
a−→ ∧¬(q(n)

a−→)) ∨ (¬(p(m)
a−→) ∧ q(n)

a−→)} is decidable, and even inNL.

The next lemma proves Point 1. in Theorem 5. It shows that ifp0(m0) ≁ q0(n0) for a det-
ROCA, wherem0, n0 are “small” (i.e., bounded by a polynomial) then the “equivalence level”,
i.e. the maximalk such thatp0(m0) ∼k q0(n0), is “small”.

Remark.This is not true in the case of nondeterministic ROCA. We could use disjoint cycles
whose lengths are pairwise different prime numbers to construct a simple example wherep(0) ≁
q(0) but p(0) ∼k q(0) for k being the least common multiple of the cycle lengths.

In a more elegant version of the next lemma we would havem0 = n0 = 0 but we use a form
that is technically convenient later.

Lemma 38. There is a polynomialpoly3 with the following property. For any det-ROCAA =
(Q,Σ, δ) with |Q| = n, if p0(m0) ≁ q0(n0), and m0, n0 ≤ poly2(n) or m0 ≤ poly2(n) and
(p0(m0), q0(n0)) ∈ BeltSpace, then p0(m0) ≁k q0(n0) for k = poly3(n).

Proof. Let us consider a det-ROCAA = (Q,Σ, δ) with |Q| = n, and supposep0(m0) ≁ q0(n0),
m0 ≤ poly2(n), andn0 ≤ poly2(n) or (p0(m0), q0(n0)) ∈ BeltSpace. It is convenient first to
show the existence of a polynomialpoly′3 such thatdistance((p0(m0), q0(n0)),Target) ≤ poly′3(n)
where

Target =≁n ∪ (ClearNo r BeltSpace);
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we will then derivepoly3 by usingpoly′3. Let us thus assume that

(p0(m0), q0(n0))
a1−→ (p1(m1), q1(n1))

a2−→ · · · aℓ−→ (pℓ(mℓ), qℓ(nℓ)) (4)

is a shortest path inT (A) × T (A) such that (pℓ(mℓ), qℓ(nℓ)) ∈ Target, i.e., pℓ(mℓ) ≁n qℓ(nℓ), or
dist(pℓ(mℓ)) , dist(qℓ(nℓ)) and| nℓ − αβmℓ | ≥ poly1(n) for all α, β ∈ [1, n2]. There surely must be
such a path, sincep0(m0) ≁ q0(n0). Fig. 10 might depict such a path, when (p0(m0), q0(n0)) is
projected toP1 and (pℓ(mℓ), qℓ(nℓ)) is projected toP2.

We note that the path (4) cannot enterClearYes, so (p j(mj), q j(n j)) ∈ BeltSpace for all
j ∈ [0, ℓ−1]. Let us now fix arbitraryα, β ∈ [1, n2], and consider a maximal “α

β
-segment to the

right of poly2(n)”; i.e., we consider a subpath of (4) of the form

(pi0(mi0), qi0(ni0))
ai0+1

−→ (pi0+1(mi0+1), qi0+1(ni0+1))
ai0+2

−→ · · ·
ai1−→ (pi1(mi1), qi1(ni1)) (5)

wheremi0 = poly2(n), mj > poly2(n) for all j ∈ [i0 + 1, i1], and | n j − αβmj | < poly1(n) for all
j ∈ [i0, i1]; the maximality means that one of the following conditionsholds:

1. i1 = ℓ, in which case necessarilypi1(mi1) ≁n qi1(ni1) ;

2. mi1+1 = poly2(n), in which casemi1 = poly2(n)+1 (the segment returns topoly2(n));

3. (pi1+1(mi1+1), qi1+1(ni1+1)) is in ClearNo r BeltSpace.

(In Fig. 10 we can see two such maximal segments, for two different slopesα1
β1

, α2
β2

.) Since
p(m) ∼n p if m ≥ n, Condition 1 can be rephrased aspi1 ≁n qi1 (i.e., pi1 ≁ qi1). Condition
3 is here equivalent to| ni1+1 − αβmi1+1 | ≥ poly1(n); we have either thatpi1+1 ≁n qi1+1 or that
at least one of the valuesdist(pi1+1(mi1+1)), dist(qi1+1(ni1+1)) is finite (which implies that the
values differ, since (pi1+1(mi1+1), qi1+1(ni1+1)) is outside BeltSpace and we recall Proposition 26
and Definition 27).

The α
β
-segment (5) can be viewed as a computation of a single ROCAA′, with only positive

rules; we can imagine that this ROCA hasmj in the counter, and remembersp j , q j and the
(rational) offset (n j − αβmj) in the control unit. Formally we defineA′ = (Q′,Σ, δ′) where

Q′ = { (p, q, ρ) | p, q ∈ Q, andρ = n− α
β
m for somem, n ∈ N such that| n− α

β
m| < poly1(n) }.

We note that there are no more thanβ · 2 · poly1(n) possible values for the rational componentρ ;
thus the number|Q′| of the control states ofA′ is no greater than

K = 2 · n4 · poly1(n). (6)

The rules inδ′ are induced byδ as follows:

if ( p, a, 1, p′, j1) ∈ δ and (q, a, 1, q′, j2) ∈ δ then for any possibleρ such thatρ′ = ρ − α
β

j1 + j2
satisfies|ρ′| < poly1(n) we put ((p, q, ρ), a, 1, (p, q, ρ′), j1) ∈ δ′.

(Note that (n+ j2) − α
β
(m+ j1) = (n− α

β
m) − α

β
j1 + j2.)

For technical convenience we also considerA′rev = (Q′,Σ, δ′rev) working in the opposite
direction (simulating (5) from right to left); hereδ′rev is induced byδ′ as follows:

if (( p, q, ρ), a, 1, (p′, q′, ρ′), j) ∈ δ′ then ((p′, q′, ρ′), a, 1, (p, q, ρ),− j) ∈ δ′rev.
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We can now easily check that the path (5) inT (A) × T (A) gives rise to the following path in
T (A′rev):

r i1(m
′
i1)

ai1−→ r i1−1(m′i1−1)
ai1−1

−→ · · ·
ai0+1

−→ r i0(m
′
i0) (7)

wherem′j = mj −mi0 andr j = (p j , q j, n j−αβmj) for all j ∈ [i0, i1]; we have conveniently chosen
m′i0 = mi0−mi0 = 0, which is possible sincemi0 = poly2(n) andmj > poly2(n) for all j ∈ [i0+1, i1].
(We note thatα

β
m′j + ρ j , whereρ j = n j−αβmj , might be not an integer, but it is convenient that the

positive path (7) finishes in a zero configuration.)
We can also easily check that any path fromr i1(m

′
i1
) to r i0(0) in T (A′rev) gives rise to a path

(with the same length) from (pi0(mi0), qi0(ni0)) to (pi1(mi1), qi1(ni1)) in T (A) × T (A).
This implies that (7) is a shortest path fromr i1(m

′
i1
) to r i0(0) in T (A′rev), and that it can be

assumed to be in the normal form captured by Proposition 20 ifm′i1 ≥ K2. (In the lower belt in
Fig. 10 we have hinted at this normal form by depicting a repeated “cycle” in the path-segment.)

If m′i1 < K2 + n · K then the maximalm′j , j ∈ [i0, i1], is no greater than 2· K2 + n · K (by

Proposition 18). We now assume thatm′i1 ≥ K2 + n · K, which will be contradicted. The normal
form of (7) allows us to assume that the path (5) is of the form

(pi0(mi0), qi0(ni0))
v1−→ (p(m), q(n))

v2−→ (p(m+D), q(n+α
β
D))

v2−→ (p(m+2D), q(n+2α
β
D))

v2−→ · · ·
· · · v2−→ (p(m+xD), q(n+xα

β
D))

v3−→ (pi1(mi1), qi1(ni1))

whereD ∈ [1,K] and x ≥ n. We cannot havepi1(mi1) ≁n qi1(ni1) (i.e., pi1 ≁ qi1), since cut-
ting off a cycle leads to a contradiction: our assumptions would yield pi1 ∼n pi1(mi1−D) ∼n
pi1(mi1) ≁n qi1(ni1) ∼n qi1(ni1−D) ∼n qi1, and thus by (p(m+(x−1)D), q(n+(x−1)α

β
D))

v3−→
(pi1(mi1−D), qi1(ni1−αβD)) we would reach Target earlier.

Therefore (pi1+1(mi1+1), qi1+1(ni1+1)) is in ClearNo r BeltSpace; we have|ni1+1 − αβmi1+1| ≥
poly1(n) and at least one ofdist(pi1+1(mi1+1)), dist(qi1+1(ni1+1)) is finite (and they are necessarily
different). By Proposition 24(1) we deduce that there isd ∈ [1, n] such that by cutting off d
cycles we would keep at least one distance finite and reach Target earlier: we have

(p(m+(x−d)D), q(n+(x−d) α
β
D))

v3ai1+1

−→ (pi1+1(mi1+1−dD), qi1+1(ni1+1−αβdD))

andmi1+1−dD > poly2(n), | (ni1+1 − αβdD) − α
β
(mi1+1 − dD) | = | ni1+1 − αβmi1+1 | ≥ poly1(n), and at

least one ofdist(pi1+1(mi1+1−dD)), dist(qi1+1(ni1+1−αβdD)) is finite (and they are different).

We can thus conclude that in the path (4) we havemj ≤ poly2(n) + 2 · K2 + n · K and
(p j(mj), q j(n j)) ∈ BeltSpace for all j ∈ [0, ℓ−1]. Since (4) cannot visit a node twice, we surely
have

ℓ ≤ (1+ poly2(n) + 2 · K2 + n · K) · n6 · 2 · poly1(n)

(wheren6 = n · n · n2 · n2 accounts for the tuples (p, q, α, β)). We thus getpoly′3 such thatpoly′3(n)
bounds the lengthℓ of the path (4).

We havemℓ ≤ m0 + poly
′
3(n), andnℓ ≤ n0 + poly

′
3(n), and we recall thatm0 ≤ poly2(n)

andn0 < n
2 · poly2(n) + poly1(n). If dist(pℓ(mℓ)) , dist(qℓ(nℓ)) then Proposition 23 implies that

min {dist(pℓ(mℓ)), dist(qℓ(nℓ))} ≤ n·(n2 ·poly2(n)+poly1(n)+poly′3(n))+O(n3). By Proposition 37
we thus deduce thatp0(m0) ≁k q0(n0) for k = poly′3(n)+ n · (n2 · poly2(n)+ poly1(n)+ poly′3(n))+
O(n3) + n. Hencek is indeed bounded bypoly3(n) for a polynomialpoly3.
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We will now prove the next lemma, recalling that the bisimilarity problem has the instances
A, p0(m0), q0(n0) wherem0, n0 are given in binary. The lemma finishes a proof of Theorem 5. (It
also applies to language equivalence, by Proposition 2.)

Lemma 39. The bisimilarity problem is inNL for deterministic ROCA.

Proof. It is sufficient to show that the complement of the trace equivalence problem for det-
ROCA is in NL, sinceNL =co-NL. Let us consider an instanceA = (Q,Σ, δ), p0(m0), q0(n0)
where|Q| = n, and assumep0(m0) ≁ q0(n0).

We recall that the membership for BeltSpace is in L (by Proposition 28) and that the mem-
bership problem forClearNo is in NL (in our deterministic case, by Proposition 30). It is thus
sufficient to explore the case where

(p0(m0), q0(n0)) ∈ BeltSpace andp0(m0) ∼n q0(n0).

The subcase wherem0 ≤ poly2(n) is clear by Lemma 38: a (nondeterministic) algorithm can

just follow a path (p0(m0), q0(n0))
a1−→ (p1(m1), q1(n1)))

a2−→ (p2(m2), q2(n2))
a3−→ . . . in T (A) ×

T (A), whereai is always guessed and only the current pair (pi(mi), qi(ni)) is kept in memory;
at mostpoly3(n) moves are performed, until somepi(mi) ≁1 qi(ni) is encountered. Here we can
presentmi , ni in the workspace plainly in binary; there is no need to use differencesmi−m0, ni−n0

sincem0, n0 are “small”.
We thus further assume thatm0 > poly2(n). Hencem0 can be “big” and (p0(m0), q0(n0)) can

be projected “far to the right” in a belt (recall Fig. 10); letus denote the respective belt byB and
its slope byα

β
. Sincep0(m0) ≁ q0(n0), there must be a shortest path from (p0(m0), q0(n0)) to

Target′ defined as

Target′ =≁1 ∪ (ClearNo r BeltSpace) ∪ ({(p(poly2(n)), q(n)) | p, q ∈ Q, n ∈ N} ∩ B∩ ≁).

Such a path

(p0(m0), q0(n0))
a1−→ (p1(m1), q1(n1))

a2−→ · · · aℓ+1−→ (pℓ+1(mℓ+1), qℓ+1(nℓ+1)) (8)

cannot enter∼, and we thus havemj > poly2(n) and (p j(mj), q j(n j)) ∈ B for all j ∈ [0, ℓ]; in other
words, if mj = poly2(n) or |n j − αβmj | ≥ poly1(n) then j = ℓ+1. The path (8), possibly except

of the last move (pℓ(mℓ), qℓ(nℓ))
aℓ+1−→ (pℓ+1(mℓ+1), qℓ+1(nℓ+1)), can be naturally viewed as a path

in T (A′) where the ROCAA′ is defined as in the proof of Lemma 38, withK control states as
given in (6).

We have shown, in fact, that the membership problem for Target
′ is in NL. Informally

speaking, other established facts allow us to deduce that either the path (8) is short ormℓ+1 =

poly2(n). The former case can be easily verified in (nondeterministic) logarithmic space (since
ℓ is small, and the differencesmj −m0, n j − n0 are thus small). The latter case reduces, in fact,
to an instance of the reachability problem forA′, which can be solved in (nondeterministic)
logarithmic space (recall Proposition 22). We now formalize this idea.

Suppose|mℓ−m0| < K2+n ·K; then by Proposition 18 we havemj ∈ [m0−n ·K−2K2,m0+n ·
K +2K2] for all j ∈ [0, ℓ]. In this case the algorithm can just guess a pair (pℓ+1(mℓ+1), qℓ+1(nℓ+1))
(presentingmℓ+1, nℓ+1 by the differencesmℓ+1 −m0, nℓ+1 − n0 in the workspace), verify its mem-
bership in Target′ and its reachability from (p0(m0), q0(n0)) by using logarithmic space only.

If |mℓ −m0| ≥ K2 + n · K then the correspondence of the path (8) inT (A) × T (A) with the
respective (shortest) path inT (A′) allows us to assume that (8) is in the form

29



(p0(m0), q0(n0))
v1−→ (p(m), q(n))

v2−→ (p(m−D), q(n−α
β
D))

v2−→ (p(m−2D), q(n−2α
β
D))

v2−→ · · ·
· · · v2−→ (p(m−xD), q(n−xα

β
D))

v3−→ (pℓ(mℓ), qℓ(nℓ))
aℓ+1−→ (pℓ+1(mℓ+1), qℓ+1(nℓ+1))

where|v1v3| < K2, |v2| ≤ K, x ≥ n, andD ∈ [1,K] or D ∈ [−K,−1].
The case (pℓ+1(mℓ+1), qℓ+1(nℓ+1)) ∈≁1 ∪ (ClearNo r BeltSpace) can be excluded by “cut-

ting off the cycles” (i.e., by decreasing the number ofv2-segments), similarly as in the proof of
Lemma 38. If we hadpℓ+1(mℓ+1) ≁1 qℓ+1(nℓ+1), then by cutting off onev2-segment we would
reach Target′ earlier. If (pℓ+1(mℓ+1), qℓ+1(nℓ+1)) ∈ ClearNo r BeltSpace, and pℓ+1(mℓ+1) ≁n

qℓ+1(nℓ+1), then by cutting off onev2-segment we would again reach Target′ earlier. In the
remaining subcase, when (pℓ+1(mℓ+1), qℓ+1(nℓ+1)) ∈ ClearNo r BeltSpace and at least one of
dist(pℓ+1(mℓ+1)), dist(qℓ+1(nℓ+1)) is finite (and thusdist(pℓ+1(mℓ+1)) , dist(qℓ+1(nℓ+1))), there is
d ∈ [1, n] (derived from Proposition 24(1)) such that cutting off d “cycle-segments”v2 gives rise
to a shorter path to Target′ (namely to a pair outside BeltSpace for which the distances toINC
are different).

We thus havemℓ+1 = poly2(n), (pℓ+1(poly2(n)), qℓ+1(nℓ+1)) ∈ B∩ ≁, (andm0 ≥ poly2(n) +
K2 + n · K). To handle this possibility, our algorithm can guess a pair(p′(poly2(n)), q′(n)) ∈ B,
verify that p′(poly2(n)) ≁ q′(n), and then verify the reachability of (p′(poly2(n)), q′(n)) from
(p0(m0), q0(n0)) in T (A) × T (A). Verifying the reachability can be handled by an explicit log-
space reduction to the reachability problem forA′. A direct procedure can work as follows: it
guessesp, q ∈ Q, d11, d12, d21, d22 ∈ [−K2,K2], and D ∈ [1,K] such thatβ dividesD, and it
verifies that inT (A) × T (A) we have:

• from (p0(m0), q0(n0)) we can reach (p(m0+d11), q(n0+d12)) within K2 moves,

• from (p(poly2(n)+d21), q(n+d22)) we can reach (p′(poly2(n)), q′(n)) within K2 moves,

• from (p(poly2(n)+d21+D), q(n+d22+
α
β
D)) we can reach (p(poly2(n)+d21), q(n+d22)) within

K (positive) moves,

• ((m0+d11)−(poly2(n)+d21)) modD = 0, ((n0+d12)−(n+d22)) mod α
β
D = 0, and

• ((m0+d11)−(poly2(n)+d21)) ÷ D = ((n0+d12)−(n+d22)) ÷ ( α
β
D).

Recalling Proposition 21, we can easily check that the overall (nondeterministic) algorithm ver-
ifying that p0(m0) ≁ q0(n0) can be implemented to run in logarithmic space.

8. Regularity problems

We now prove Theorem 6, which states that the regularity problem (is a given configuration
p(m) bisimilar to a state in a finite LTS?) isP-complete for general ROCA, andNL-complete for
det-ROCA. We assume a fixed ROCAA = (Q,Σ, δ) with n control states. The next proposition
is a variant of saying thatp(m) is nonregular iff the set{q(n) | p(m) −→∗ q(n) −→∗ INC} is
infinite.

Proposition 40. A configuration p(m) is not regular if and only if there is q such that p(m) −→∗
q(m+2n) −→∗ INC.
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Proof. We recall thatq(n) 6−→∗ INC implies thatq(n) ∼ r for somer in FA (by Lemma 14).
Hence ifp(m) −→∗ q(m+2n) impliesq(m+2n) 6−→∗ INC (for all q) then fromp(m) we can reach
only finitely many configurations up to bisimilarity, since each of them is bisimilar either to some
r in FA or toq(n) wheren < m+2n. The “only if” part is thus clear.

For the “if” part we note that a pathp(m)
u1−→ q(m+ 2n)

u2−→ INC can be written in the form

p(m)
u11−→ q1(m+ n)

u12−→ q(m+ 2n)
u21−→ q2(m+ n)

u22−→ INC

where the subpathq1(m+n)
u12−→ q(m+2n)

u21−→ q2(m+n) is positive. By the pigeonhole principle,
this subpath can be written

q1(m+ n)
v1−→ r(h)

v2−→ r(h+d)
v3−→ q(m+ 2n)

w1−→ r ′(h′+d′)
w2−→ r ′(h′)

w3−→ q2(m+ n)

whered, d′ > 0. For everyi ≥ 1 we thus have

p(m)
u11v1−→ r(h)

v2(v2)id′

−→ r(h+d+ idd′)
v3w1−→ r ′(h′+d′ + idd′)

w2(w2)id

−→ r ′(h′)
w3u22−→ INC.

Hence for everyℓ ∈ N there is a configuration that is reachable fromp(m) and its distance toINC
is finite but larger thanℓ. Thereforep(m) is non-regular.

We recall that theINC-membership problem isP-complete for (general) ROCA, andNL-complete
for deterministic ROCA (Proposition 13); we also recallNL-completeness of the reachability
problem (Proposition 22). From Proposition 40 we thus deduce that the regularity problem for
ROCA (w.r.t. bisimilarity) is inP in general, and inNL in the case of det-ROCA. The latter
problem is obviouslyNL-hard (by digraph reachability); hence the next lemma finishes a proof
of Theorem 6.

In the lemma we only use ROCA withweak zero-tests(like in Petri nets): we say that a
ROCAA = (Q,Σ, δ) is aone-counter netif (q, a, 0, q′, j) ∈ δ implies (q, a, 1, q′, j) ∈ δ.

Lemma 41. Regularity for ROCA isP-hard, even when restricted to one-counter nets.

Proof. We use a log-space reduction from bisimilarity on finite LTSs(recall Prop. 1). Given a

finite LTSF = (S,Σ, { a−→}a∈Σ) andp0, q0 ∈ S, we construct a one counter netA = (S∪{s0},Σ, δ),
s0 < S, as shown below; we will havep0 ∼ q0 in F iff s0(0) is regular inT (A).

For everyp
a−→ q in F we put (p, a, c, q, 0) into δ for bothc ∈ {0, 1}; any p(n) in T (A) just

mimics the behaviour ofp in F . We then completeδ by (s0, a, c, s0,+1) and (s0, b, c, p0, 0) for
c ∈ {0, 1}, and by (s0, a, 1, s0,−1), (s0, b, 1, q0,−1).

If p0 ∼ q0 then obviouslys0(m) ∼ s0(m′) for anym,m′; hences0(0) is regular. Ifp0 ≁ q0

then s0(0) ≁ s0(m) for any m > 0, and thuss0(m) ≁ s0(m′) for any m , m′; there are thus
infinitely many pairwise nonbisimilar states reachable from s0(0).
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[34] T. Brázdil, V. Brožek, K. Etessami, A. Kučera, D. Wojtczak, One-counter Markov decision processes, in: Proc. of
SODA, IEEE, 2010, pp. 863–874.
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