Computational Aspects of
Infinite-State Verification

Cumulative Habilitation Thesis

by Stefan Gller

Defended on February's2014

Contents

Introduction 1

1.1 Contributions and organization of thisthesis 7

Equivalence checking and model checking 11

Infinite-state systems 15

3.1 Ground tree rewrite systems and its integration into Mayr’s PRS hierarchy 21

3.2 One-countersystems e e 25

3.3 Higher-Order Pushdown Systems 28

Equivalence checking of one-counter systems 31

4.1 Afew notationsandthe mainresults 31

4.2 The underlying finite system and consistent colorings 34

4.3 Normalformsofpaths, 37

4.4 Initial space, belts, and periodic background . Ce -« 39

4.5 A polynomial space algorithm for bisimilarity of one- counter systems ... 40

4.6 A nondeterministic logspace algorithm for equivalence of deterministiec one
CoUNter SYStems e e 42

4.7 Regularity problems. e 43

4.8 Equivalence of general deterministic one-counter automata 44

Branching time model checking on one-counter systems and a new lower

bound technique 47

5.1 Hardness of Expression Complexity 7 4

5.2 Upper bounds for CTL modelchecking 49

5.3 Anewlower boundtechnique 50
5.3.1 Hardness ofdatacomplexity 51

5.4 Reachability objectives on one-counter Markov decision processes. . . . 54

5.5 \Verification of timed automata L. 55

Model Checking simple logics on one-counter systems 59

6.1 EF model checking on one-counter systeni®¥8-complete 59

6.2 Model checking succinct and parametric one-counter systems 64

Lower bounds on verifying asynchronous products and the size of Feferman-

Vaught decompositions 71

7.1 Preliminaries e 74

Contents

10

7.2 Hardness of asynchronous product 74

7.3 Lower bounds for the compositional method forHMandEF 79
Lower bounds for bisimilarity of (higher-order) pushdown systems 8 3

8.1 Bisimilarity of order-2 pushdown systems is undecidable 83

8.2 Bisimilarity of pushdown systems is nonelementary 88
Verifying ground tree rewrite systems 91

9.1 Preliminaries e 92

9.2 Model Checking EF and its fragments on (regular) ground tree resystems 94
9.3 Bisimilarity checking of (regular) ground tree rewrite systems agairitd 8gis-

TBMS . . e e e 100

List of submitted papers 107

1 Introduction

Infinite-state systemarise in many areas of computer science. Typical aspects one wishes to
model by them include the recursive behavior of programs, abstreectygzes like queues, the
communication between unbounded buffers or the real-time behaviortehsysnumeric data
types like the integers or the reals, and many more.

Technically speaking we employ some finite encoding for representing ithfeseely many
states and infinite relations between them. For instance, Petri nets allow toeceadél concur-
rent aspects of systems — their finite description consists of the set of jplad®f the transitions
that can be fired between them.

The design and analysis of infinite-state systems has attracted a lot ofctesedhe last
twenty years and indeed various models of infinite-state systems have beeuded and stud-
ied in the literature such as the above-mentioned Petri nets, (highej)-prdgrdown systems,
well-structured transition systems, automatic structures, ground tree reysitams and counter
systems, just to mention a small fraction of them.

Two important aspects of the models of infinite-state systems are the followimgheJone
hand, one wants the model to be as expressive as possible in order tcasiatiEny systems as
accurately as possible. On the other hand, one wishes to retain decidatul@y@v complexity
with respect to algorithmic verification problems such as reachability. Oneasity see that
there is a trade-off between the two. For instance, if our infinite-state nadldels to encode
the configuration graph of any Turing machine, we can be sure thdtabtgity is undecidable.

In the context of hardware and software systefosnal verificationis the act of proving
or disproving the correctness of intended behavior of a system witlecepa certain formal
specification or property using formal methods.

Model checkings a fully-automatic formal verification method which has been proven suc-
cessful in validating and verifying safety-critical systems. It asks tidéewhether a given sys-
tem satisfies a given property, where the property is typically specifiednie suitable logic.

If we would like to know whether the system satisfies a particular propegycenstruct an
abstract modeJ for the system that comprises the behavior of the system and we expeess th
property via a formulap in some logical language. Hence, we solve the initial problem by
checking whethef satisfiesp, which in turn can be checked by using efficient model checking
algorithms. Concerning the choice of the suitable logic similar trade-off renaguly: on the

one hand, the logic should be sufficiently expressive for being ableptoreathe relevant prop-
erties as precisely as possible — on the other hand, model checking thehogid at least be
decidable and should have a low complexity, if possible.

Vardi proposed three different ways of measuring the complexity of thaehethecking prob-
lem [191] that we summarize briefly. Often, the presentation of the systemds larger than
the size of the formula. This motivates to study tfeta complexityof model checking, which
views the formula as fixed and measures the computational complexity only inaéthessize

1 Introduction

of the input system; thus one has a decision problem for each fixed farolaever, it can
very well be the case that one is aware of the system itself and has véoytinglas to be veri-
fied. In this spirit, theexpression complexigssumes the system to be fixed and asks to decide
whether it models the input formula. When both the system and the formulacrerded for as
non-constant and are hence part of the input, one obtains the mostlgeréant, thecombined
complexityof the model checking problem.

From a complexity-theoretic viewpoint it seems fair to say that model cheéikiibgsystems
is by now very well understood. A prominent exception is surely the coniplex model
checking the modal-calculus: the problem is known to lie I8P N coUP [111] and hard for
deterministic polynomial time.

Over infinite-state systems however, already much simpler questions stedchability can
indeed be much more involved. A very prominent example is the reachabilibtygondfor Petri
nets: to date the problem is known to be decidable [117, 136], but thé&kbesta lower bound
is Lipton’s EXPSPACE-hardness proof from the seventies [37]. The problem is not evewtkn
to be primitive-recursive.

On the other hand, powerful tools have been developed for obtainicigadelity results.
Rabin’s tree theorem is surely one of the central decidability results in thigxio it states that
the monadic second-ordd¥IG0) theory of the infinite binary tree is decidable. This result can
immediately be applied to model checking pushdown systems (which are théidrasgstems
induced by pushdown automata), which provide a very natural way oklimgdthe call and
return behavior of recursive programs. Muller and Schnupp weréirgido see that Rabin’s
tree theorem implies that model checkiM$O on pushdown systems is decidable [146]: every
pushdown system is interpretable in the complete binary treé/g@ formulas. It is worth
mentioning that monadic second-order logic (the extension of first-ordér hy allowing to
guantify over sets of elements of the domain instead of just over elements thes)seindeed
a very powerful logic. Undeniably, this expressiveness comes dte: fhe monadic second-
order theory of the infinite binary tree is nonelementary and thus the sare@entntary lower
bound applies td1SO model checking pushdown systems.

Temporal logicdhave caught more and more attention as specification formalisms in the last
forty years not only in the context of model checking. The reason feiighthat temporal logics
are still expressive enough for modeling the relevant behaviors t#regsand moreover, in con-
trast to powerful logics like the above-mentioned monadic second-ordir, ine complexity
of model checking decreases dramatically. The term “temporal logic” id tssdescribe log-
ical means for representing, and reasoning about, propositions qiiatifierms of time. Two
classical such properties one wishes to express are statements like rexyaest is eventually
met by a response*” or “one will never reach a deadlock”. Threeickssxamples of temporal
logics include Linear Temporal Logit. (L) [153] in which formulas make statements about the
future of paths, Computation Tree LogiCTL) [47] in which time is accounted for in a tree-like
fashion, and the modal-calculus ([4]) that extends classical modal logic by adding least and
greatest fixed point operators.

It has been shown by Walukiewicz that model checking the mpetaiculus on pushdown
systems isEXP-complete [197], whereas Kupferman and Vardi have followed an autgsma
theoretic approach for obtaining such an exponential time decision pnacgP0]. The latter
was inspired by Vardi'€XP-completeness result on emptiness of two-way alternating parity

tree automata [190]. Bouajjani, Esparza and Maler provedfhiatmodel checking over push-
down systems i€XP-complete [18]. Moreover, in [18] it has been shown that from a regula
set of configurations both the set of reachable configurations anetleé sonfigurations that
can reach this set are effectively regular again and furthermore dabipun polynomial time.
Even better, the data complexity of model checkifig. over pushdown systems is decidable
in polynomial time, where it is stilEXP-hard for the modal:-calculus [196]. In fact, the latter
EXP lower bound already holds for the logicT L, whereas model checkin@r'L's fragmentEF

is only PSPACE-complete [196]. Model checking Propositional Dynamic Logics on pasind
systems and related models has been investigated in [81].

An important sublass of pushdown systems are the transition graphshafqwas automata
over a singleton set of control states, the so-caiasic process algebrg8PA). Model check-
ing various temporal logics on basic process algebras is often still (almplstied as for push-
down systems, however the data complexity dramatically decreases oveiitthems out to be
decidable in polynomial time [139].

A further important subclass of pushdown systemsare-counter systemdere, the in-
volved pushdown automata may contain an arbitrary finite set of controkstatethere may
only be one stack symbol (plus an additional bottom-of-stack symbol) cthdae-counter sys-
tems can be viewed as being obtained from a certain finite system (thagpamds to the case
when the counter is zero) that is connected to one of infinitely many siveespies of a fur-
ther finite system (that corresponds to the positive counter values)réhabanected with each
other successively. Hence, the class of one-counter systems caarbassone of the simplest
means to model infinite-state systems. Serre proved that model checking taeuyeadculus
is PSPACE-complete on one-counter systems [168]. It can easily be seen that oiabdding
LTL on one-counter systems is interreducible to model chedkingon finite systems, and is
in fact PSPACE-complete EF model checking on one-counter systems has not been understood
very well so far: it has been shown hard for the complexity cl2Bsn [108].

In the last twenty years many generalizations of pushdown systems hewerivestigated.
Pushdown systems themselves can analogously be seen as systemstatkesare given by
the set of all finite words (over some fixed finite alphabet) and whosétitarssare induced by
application of a finite set of word rewriting rules that are used in a prefixite fashion. When
these rewrite rules are generalized in such a way that not only wortdsobds inside some regu-
lar language (on both sides of each rule) are rewritten, one obains fiseo@peefix-recognizable
systems In fact, Caucal showed that prefix-recognizable systems havealdeiSO theo-
ries [40, 41]. Model checking the modatcalculus is stillEXP-complete for them [33, 120],
whereas already reachability beconte$P-hard (when there is a suffix language involved in
the rewrite rules) [71]. Caucal further generalized decidabiliti&O model checking on the
class of systems one obtains by alternately applying the operations unfaltingverse ratio-
nal mapping: the latter class is also known as@aeical hierarchy[{38]. The Caucal hierachy
has been characterized by Carayol andhfle [36] in terms of the transition graphs of higher-
order pushdown automata (introduced by Maslov [134]). Usual ppweh@dutomata manipulate
usual stacks of atomic symbols, whereas the stacks of argeishdown automata consist of a
sequence of orderf1) stacks for each > 1. In fact, model checking various temporal logics
on ordern pushdown systems quickly becomes nonelementaty@ven reachability), we refer
to [89] for various results on model checking higher-order pushosygtems.

1 Introduction

The before-mentioned classes provide good means for modeling thensatjbehavior of
systems. The class of Petri nets can be seen as the correspondilej paghog of pushdown
systems. Apart from reachability, decidability can moreover be showméatel checkind TL
on Petri nets, but the problem is still at least as hard as the reachabilitiepr@0]. In the same
paper [60] Esparza proves that undecidability for model checkingriragralready holds for the
fragmentEF of CTL. The complexity drops down ®SPACE-completeness for model checking
EF over communication-free Petri nets [139] as shown by Mayr, whereasdmplexity of
reachability is much lower than for general Petri nets: Niscomplete [61]. The latter class of
communication-free Petri nets is also knowrbasic parallel processg8PP).

In fact, Mayr found an elegant symbiosis of systems that behave sjlyeor concurrently,
or both: the process rewrite systen®RG) hierarchy [140]. It combines systems whose states
are essentially terms that can be built from basic atoms and applying the tvadapesequential
and parallel composition, respectively. The states of such a (gen&3al¥¥stem consist essen-
tially of the set of all such terms, but are interpreted in such a way thaeaéglicomposition is
associative and parallel composition is both associative and commutatiwéxanisitions can be
seen to evolve from applying these term rewrite rules to subterms. SWHEEIERS are given
by putting syntactic restrictions on the left-hand side and right-hand sidewrée rules to be
either purely sequential, purely parallel, singletons or unrestricted.

Viewed in this way, pushdown systems (resp. Petri netsP&&in which both the left-hand
side and the right-hand side of the rewrite rules are purely sequenspl {parely parallel). Ba-
sic process algebras (resp. basic parallel processes) are tietiogstto thosePRS, where the
left-hand side is unary and the right-hand side is purely sequential rasgly parallel). Having
mixed forms, where the right-hand side of rules is unrestricted but thedefi-kide is possibly
restricted, make up the the clas$¥s PAD andPAN. Mayr showed thalEF model checking on
PAD is decidable [138]. For the claf¥ Lugiez and Schnoebelen proved decidability of model
checking first-order logic with reachability [130]. However, undecilitgtof model checking
EF holds for PAN since it is inherited from its undecidability over Petri nets. With the latter
formalisms one can model systems that involve parallel programs with unbduedursions
and unbounded parallelism [5, 63].

A similar concept of defining infinite-state systems arose from the term regrdgmmunity
with the study ofground tree rewrite system{&TRS) [49]. While pushdown systems can be
seen as prefix word rewriting systems, the states of ground tree rewsitarsy consist of finite
ranked trees, where the transitions are induced by a finite set of réngleacbwriting rules (that
are applied to one subtree). The same way prefix-recognizable systiatesto pushdown sys-
tems, so doegular ground tree rewrite systenfRGTRS) relate to ground tree rewrite systems:
instead of only allowing single trees in the rewrite rules, they allow regularlamguges to
appear there. We refer to the work of Colcombet [48] for an algebra#tnrent of them. The
crucial difference to Mayr'$RS hierarchy is that the states of the underlying system that are
defined by them are indeed the set of finite ranked trees and not lEmgagaclasses on them (in
PRS different terms can potentially represent the same state since one workionasdocia-
tivity/commutativity). For regular ground tree rewrite systems model checkisgdider logic
with reachability is decidable [56, 48]. MoreoveRding showed that recurrent reachability and
model checkind:=F (and several variants thereof) is decidable, whereas already ntoeting
CTL’s fragmentEG (constrained reachability) becomes undecidable [128].

Apart from model checking, a second important verification task invagesvalence check-
ing, which asks to determine whether two given systems behave equivalentlyesjtkat to
some notion of equivalence, such as isomorphism for instance. So irdteading the speci-
fication given by some logical formalism, the desired behavior is rathendiyesome further
system and one wishes to decide if this further system behaves eqtlividehe system that is
to be verified.

In particular, with the aid of an automated equivalence checker, it is pedsiba system
designer to replace complex systems by simpler system. When doing so, ortebmigitie to
drastically decrease the running time for verifying typical properties ofesteand indeed make
use of the specific properties of the simpler one. For instance, if oneecaarb that a given
infinite system behaves equivalently to a finite one, one could computestemesponse times
instead of having to traverse an infinite-state space, which might be vdfigiemt.

Various notions of equivalences have been proposed in the literafumaf@ing from trace
equivalence to isomorphism [69, 70]. Among these numerous notionsudfadence in veri-
fication, bisimulation equivalencis surely the central one, see e.g [177] for a survey. Elegant
characterizations of well-known temporal logics have been proven in tefrbgsimulation-
invariant fragments of classical logics. A famous result due to van Bengiates that the
bisimulation-invariant properties of first-order logic are precisely th@@rites that can be ex-
pressed in modal logic [187]. In the same spirit, the m@dahlculus has been characterized as
the bisimulation-invariant properties that can be expressed in monadicdsecder logic due
to Janin and Walukiwicz [97]. Finally, we mention a result by Moller and Rabgio[145]
who showed that the temporal logid L* coincides with the bisimulation-invariant fragment of
monadic path logic (which is the restriction of monadic second-order logiidates! to sets of
elements of the domain that lie on a path).

Moreover, bisimulation equivalence has an vivid characterization in tefragameplayed
by two players “Attacker” and “Defender” who alternately move in a pelbdenulation game
on the pair of systems under consideration. One can prove that two syatersimulation
equivalent bisimilar for short) if, and only if, Defender has a winning strategy in this bisimula-
tion game [181, 176]. In other words, the bisimulation game can be seeruasded variant of
the classical Ehrenfeucht-Fsae game for first-order logic.

While between finite systems it is well-known that for bisimilarity checking efficadgo-
rithms exist [150, 113] and that the problem is generally complete for detistinipolynomial
time [7], only very little is known about the decidability and complexity status ofvedgnce
checking on various classes of infinite-state systems. Concerning irdtateesystems, when
comparing the knowledge and results that have been obtained on modkihcheith the ones
for equivalence checking, it seems fair to claim that the understandiegui¥alence check-
ing can be assessed as premature in total. Indeednypof the above-mentioned classes of
infinite-state systems, there has only been a single such class for which lrigynaifeecking is
known to be decidable and for which the precise complexity could be detatmilagar proved
PSPACE-completeness for bisimilarity checking of basic parallel processes.[Athpugh this
is subjective, it seems that a possible reason for the latter is that equwaleacking on infinite-
state systems is a combinatiorally highly nontrivial problem. A summary of uate+ecords
of results on equivalence checking of infinite-state systems in M&RS hierarchy [140] is

1 Introduction

being maintained by Jiri Srba [174].

Despite the fact that in the field of infinite-state equivalence checking trerstill many
more techniques to be developed and more understanding to be gainedarin@indoubtedly
several highlights that should be mentioned (without claiming completendss)ndst promi-
nent result in this area is the decidability of equivalenceeterministic pushdown automata
(DPDA); this long-standing decidability question in formal languages was positivelywered
by Senizergues [164] (see also [165]), for which Stirling [178] proveatimitive recursive up-
per bound. The problem still does not seem to be completely understduch was one of
the motivating factors for a recent simplified proof via first-order grampgaven in [103]. We
note that the decidability status of language equivalence of deterministia+agier pushdown
systems remains an interesting open problem; some progress in this direstioegmamade by
Stirling [179]. Regarding the lower bound, the DPDA language equicalénonly knownP-
hard (easily derivable frorR-hardness of the emptiness problem), hence the known complexity
gap is very large. To the best of the author’s knowledge, we have the paenomenon even
for real-timeDPDA [149], i.e. for DPDA in whiche-transitions are not present. &NP upper
bound was shown for finite-turn DPDA [166]. For simple grammars (real-if@®A with a
single control state), a polynomial algorithm deciding equivalence wasrsio[94] (see [53]
for a recent upper bound).

Sénizergues has lifted his decidability techniques to prove that bisimilarity cdtenal
graphs (they lie between pushdown graphs and prefix-recognizetgbg) of finite out-degree
is decidable [167]EXP-hardness by Mayr and Kera [121] was the best-known lower bound
for this problem, yet Kiefer recently establishEXP-hardness already for the class of basic
process algebras [114], for which in turn at least a doubly exporeimier bound is known for
a while [31]; we refer to [102] for a more rigorous and simpler proof.

Decidability of bisimilarity for one-counter systems is surely inherited from itsdibility
for pushdown systems, however danindependently established decidability in [100] whose
algorithm has been analyzed to run in triply exponential space by Yen.[R0BSPACE lower
bound for bisimilarity of one-counter systems has been proven by Sris4 [1

Concerning parallel models of computation Sanproved that bisimilarity for Petri nets is
undecidable [99]. For normed PA processes Jerrum and Hirshielggthat bisimilarity [93]is
decidable in nondeterministc doubly exponential time, but decidability of thergenase re-
mains open.

Being used in most of the above-mentioned lower bounds proofs, aigé&Ehnique entitled
“Defender’s Forcing” has been developed byGarand Srba in [110], where it is demonstrated
on the results like the undecidabilityI{-completeness) of bisimilarity of pushdown systems
with poppinge-steps or::}-completeness on the class of prefix-recognizable systems. When
reducing from a hard problem, the essential idea of “Defender'dfgrtries to set up a bisim-
ulation game that is designed in such a way that the pair of states/procesfigs#ations of the
infinite system are almost always syntactically equivalent, for allowing to impiemgadget
for Defender to make choices when necessary. Intuitively, due to teenaf the bisimulation
game, Attacker generally has more freedom in his moves since he is the onghatses the
first system and the first transition in each round of the game. By forciagdlirs of states
(which are pairs of words in pushdown systems for instance) the teahimyquements a partic-
ular gadget that gives Defender the possibility to make choices. Whetbercaptually different

1.1 Contributions and organization of this thesis

technique can be developed — in particular for deterministic systems — is antfiadjeesearch
guestion.

1.1 Contributions and organization of this thesis

This thesis summarizes several contributions of the author in the field of rnbdeking and
equivalence checking of infinite-state systems.

More concretely, we mainly study the model checking problem for the hragegime log-
ics CTL, EF and Hennessy Milner logielM and moreover equivalence checking (bisimula-
tion equivalence, weak bisimulation equivalence, branching bisimulatiomadence and trace
equivalence) on (a subset of) the following classes of systems: pwshglystems, one-counter
systems as well as succinct and parametric one-counter systems, tridbepushdown sys-
tems, ground tree rewrite systems, basic process algebras and PA/BéE3gES.

The submitted papers of this thesis are listed in Chapter 10. The contribufitires author
in each chapter of this thesis are summarized in the Appendix.

Finally, we summarize the contents and results of this thesis:

¢ In Chapter 2 we provide some basic notation, introduce the relevant lagidsdnd its
fragmentEF and its fragment Hennessy Milner loditM), introduce the different notions
of equivalence we look at in this thesis, and define the central decisitepns we study
in this work.

e Chapter 3 surveys the classes of infinite-state systems that we concsefves with in
this thesis. We give an overview of Mayr’s Process Rewrite Syst@mRS)(hierarchy and
integrate one-counter systems, higher-order pushdown systems@nuigree rewrite
systems into this hierarchy with respect to bisimilarity, weak bisimilarity and bragch
bisimilarity. While the former integration of one-counter systems and highergnash-
downs is trivial, the integration of ground tree rewrite systems is less ohwiesliscuss
several relevant results in the literature on model checking and equieathecking in
all of these classes of systems.

The main results in Section 3 appear only in Section 3.1 and consist of theifudlow

— An integration of (regular) ground tree rewrite systems into MagR$ hierarchy
with respect to bisimilarity, weak bisimilarity and branching bisimilarity.

These results will appear in Transactions on Computational Logic [78]hand been
published as a conference paper in CONCUR 2011 [75] and are bageiht work with
Anthony Widjaja Lin.

¢ In Chapter 4 is about equivalence checking of one-counter systemesmain results are
the following:

(1) It is shown that bisimulation equivalence of one-counter systems is letamior
PSPACE (Theorem 4.2). This improves a previously best-kn@kXPSPACE up-
per bound for this problem and matche®&PACE lower bound proven by Srba

1 Introduction

[175]. Moreover, it witnesses one of very few classes of infinite-stgggems, where
bisimulation equivalence is decidable and moreover the precise computaional
plexity is known. Moreover, we show that deciding whether a one-cosystem

is bisimilar to a finite system iB-complete (Theorem 4.5), which improves a pre-
viously best-known upper bound of triply exponential time for this problesmf
[100, 200]. These results have been obtained in a joint work with StanigihnB
and Petr Jatar published in CONCUR 2010 [15].

(2) With a similar technique as in (1) it is shown that trace equivalence ofrdete
istic real-time one-counter automataN&-complete (Theorem 4.3). Moreover, we
prove that deciding whether a deterministic real-time one-counter automaigpia.c
a regular language iNL-complete as well (Theorem 4.6). Both results improve
a previously best-knowg®(vV*1ogn) time bounded algorithm from 1975 [186] for
both problems. This result has been obtained in joint work with StanistdurB
published in MFCS 2011 [14].

Both results (1) and (2) have been merged into a journal paper thatbasalbbcepted for
publication in Journal of Computer and System Sciences [16].

(3) We show that equivalence of deterministic one-counter automatd-somplete
(Theorem 4.27). The previously best-known upper bound for thisleno is again
the (already above-mentioned) algorithm of Valiant and Paterson rummitigne
20(Vnlogn) from 1975 [186], from which one can derivé8PACE upper bound that
has been the previously best-known complexity bound for this problem.r@$ust
has been obtained in a joint work with StanisladBn and Petr Jaar published in
STOC 2013 [17].

¢ In Chapter 5 we discuss the following results:

(1) We show that there is already a fixed one-counter system for wildh model
checkingPSPACE-hard (Theorem 5.4).

(2) We “complement” Theorem 5.5 and show that model checking fixedconater
systems with inpu€TL formulas of fixed leftward until depth is decidable in poly-
nomial time (Theorem 5.5).

(3) We develop a novel technique for proving lower bounds in modetkihg and
reachability questions on transition systems induced by one-counter autanuhta
timed automata. This technique was inspired by the question what the complexity of
model checking one-counter systems with respect to fixeldformulas is. Inspired
by two deep results from complexity theory, we develop a generic lowardtach-
nique (Theorem 5.9) that allows us to derive the following hardnes#sesu

(3a) There exists a fixe@TL formula for which model checking one-counter sys-
tems isPSPACE-hard (Theorem 5.10).

(3b) There exists a fixeTL formula for which model checking succinct one-
counter systems EXPSPACE-hard (Theorem 5.12).

(3c) Model checkingC TL's fragmentEF on one-counter systemsk$'P-hard (The-
orem 5.11).

1.1 Contributions and organization of this thesis

(3d) Deciding if a one-counter Markov decision process can reaasigmated set
of zero configurations with probability arbitrarily close tas PSPACE-hard
(Theorem 5.13).

(3e) Model checking 2-clock timed automata with constants presented i aginst
fixed CTL formulas isPSPACE-hard (Theorem 5.15) and the reachability prob-
lem of 2-clock timed automata with very simple modulo tests and constants
presented in unary BSPACE-hard (Theorem 5.16).

The results have been obtained in a joint work with Markus Lohrey puldish€ TACS
2012 [79] and will appear in SIAM Journal of Computing [80]. The onkgeption is
result (3b) which has been obtained in a joint work with Christoph HaagéQlaknine
and James Worrell published in ICALP 2010 [73].

In Chapter 6 we discuss the computational complexity of model checkingaungter sys-
tems and succinct and parametric one-counter systems against th&bgitd Hennessy-
Milner logic HM. Our results are the following:

(1) Model checkingeF on one-counter systems is P (Corollary 6.9). For this, we
develop a suitable fragment of Presburger arithmetic that is tailored toegpdsss-
ing the set of natural numbers that satisfy a giz&érformula in a given control state
of the one-counter system and provides a formalism for solving the grobdel
checking problem.

(2) Model checkingeF on succinct one-counter system$iSPACE-complete (Propo-
sition 6.13 and Theorem 6.16).

(3) Model checkingeF on parametric one-counter systems is undecidable (Theorem
6.17).

(4) Model checkingdM on parametric one-counter systemB$PACE-complete (Propo-
sition 6.13 and Theorem 6.21).

Result (1) has been obtained in a joint work with Anthony Widjaja To and Ritheayr
published in LICS 2009 [82] and the other results have been obtained trwjom with
Christoph Haase, @ Ouaknine and James Worrell published in FOSSACS 2012 [74].

In Chapter 7 we concern ourselves with model checkifg(resp. HM) on the asyn-
chronous product of basic process algebras (resp. of prefogrézable systems) and the
sizes of Feferman-Vaught decompositions EérandHM with respect to asynchronous
product. The main results are the following:

(1) Model checkingEF on the asynchronous product of two basic process algebras
is honelementary (Theorem 7.2) and as a consequence model cheakiagyti
chronous product of two prefix-recognizable systems is also nonetargdiheo-
rem 7.4). This solves questions raised yding and Mayr on the complexity of
model checkind=F on ground tree rewrite systems [128] and on PA/PAD processes
[139], respectively.

(2) The sizes of Feferman-Vaught type decompositionsEtorand HM with respect
to asynchronous product are inherently nonelementary (Theorem Tt&) same

1 Introduction

nonelementary lower bound holds when restricted to finite transition systemas (T
orem 7.8).

These results have been obtained in a joint work with Anthony Widjaja LingiédBlished
in STACS 2012.

e Chapter 8 provides lower bounds on the decidability and computational cxitypdé
bisimilarity of pushdown systems and higher-order pushdown systemsaVéetthe fol-
lowing results:

(1)

(2)

Bisimilarity of order-two pushdown systems is undecidable (Theorejn B/& also
mention the undecidability of the lower order problem, i.e. deciding whethee ther
exists a reachable configuration of an orégruishdown system that is bisimilar to

an orderk’ system (Theorem 8.8). These results have been obtained in a joint work

with Christopher Broadbent published in FSTTCS 2012 [27].

Bisimilarity of pushdown systems is nonelementary (Theorem 8.9). Thistris
a elaborate application of Defender’s Forcing technique [110] and signifiy im-
proves the previously best-knoviaXP lower bound of this problem due to Kera
and Mayr [121] which already dates back to 2002. This result has dl&@med in
a joint work with Michael Benedikt, Stefan Kiefer and Andrzej Murawgiblished
in LICS 2013 [17].

e In Chapter 9 we study the computational complexity of model checkihgn (regular)
ground tree rewrite systems. Our main results are the following:

(1)

(2)

©)

Already model checking a given ground tree rewrite system agaigisenEF for-
mula is nonelementary, already when the formula has two nestings B theerator
(Theorem 9.1).

Model checking ground tree rewrite systems agdifSbrmulas ofEF nesting depth
at most one is complete for the complexity cl&8&<P (Corollary 9.9 and Theorem
9.9). The author is not aware of any previous natural problems thatcanglete
for the complexity clas®NEXP. As an immediate corollary we obtain that checking
bisimilarity between a ground tree rewrite system and a finite systentiNBXP
(Theorem 9.11), which provides a first elementary upper bound fomptioislem.
The same results hold f&A processes.

Bisimilarity of regular ground tree rewrite systems and finite transition sysis

nonelementary (Theorem 9.12). We apply a lower bound technique bgrand
Mayr [121] in an elaborate way, where the main technical obstacle is théhtzic
regular ground tree rewrite systems are not closed under directgiraith finite

systems.

These results have been obtained in a joint work with Anthony Widjaja Lin pudaigin
LICS 2011 [76].

10

2 Equivalence checking and model
checking

By N = {0, 1, ...} we denote the set of non-negative integers and d{a‘tim}ad:Ef {i,i+1,...,j}
for eachi, ;7 € N. By N, we denote the setl \ {0} of positive integers. For the rest of this
document, let us fix a countable setaitbmic actionsAct. A (labeled) transition systerns a
tuple7 = (S, A, {-=| a € A}), where

e S is a set ofstates
e A C Actis a finite set of atomic actions, and
e —%5C S x S'is a binary transition relation for eache A.

We often writes - s’ to abbreviatés, s') €— and just writes — if there exists some state
s’ such thats —— ’. The relations—— are extended te~» for wordsw € A* inductively:

u au

s —» s;if s — ' ands’ — s thens — §”. By s —» we denote thatv is enabled ins,
. - X def .
i.e.s — ¢ for somes’ € S. For eachX C A, we define—~= |,y —. We write— for

A, and by—* we denote the reflexive and transitive closure-ef. Hences —* ' if, and
only if, s = &' for somew € A*, i.e. if, and only if,s’ is reachable froms.

Notions of equivalence

The simplest and coarsest notion of equivalence that we would like to mésti@te equiva-
lence Two statess ands’ aretrace equivalentf {w € A* | s =5} = {w € A* | ' -5},

Among the numerous notions of equivalence [188] in the realm of form@ication and
concurrency theory, the central onebisimulation equivalencébisimilarity for short), which
enjoys pleasant mathematical properties. It can be seen to take the kingtrete are important
characterizations of the bisimulation-invariant fragments of first-ordec lagonadic second-
order logic, and monadic path logic in terms of modal logic [187], the mpedallculus [97], and
CTL* respectively [145]. In particular, bisimilarity is a fundamental notion fagass algebraic
formalisms [143]. Many relevant properties of interests in verification tbase expressible in
standard modal/temporal logics likd L,CTL, modalu-calculus) cannot distinguish transition
systems that are bisimilar.

Arelation R C S x S is abisimulationif R is symmetric and for eacfs,¢) € R and each
a € A the following holds:

o if s % &' for somes’ € S, thent -+ ' and(s’, ') € R for somet’ € S.

11

2 Equivalence checking and model checking

We write s ~ t if there exists some bisimulatioR such thaf(s, t) € R.

Bisimulations and weak bisimulations are historically the most important notionsiofiiés
tions on transition systems in verification [144]. Weak bisimulations extendghigimulations
by distinguishing observable and non-observable ¢t)eactions, and only require the observ-
able behavior of two systems to agree. In this sense, weak bisimulation issgicoation than

strong bisimulation.

. def ~ def .
Let us define== =" and =555 o %5 o " for eacha € A\ {r}. A weak

bisimulationwith respect to somimternal symbotr € A (we also sometimes denote this symbol
by ¢ in this thesis) is a symmetric relatidd C S x S such that for eaclis,t) € R and each
a € A the following holds:

o if s %+ &' for somes’ € S, thent == ¢’ and(s',#') € R for somet’ € S.

We write s ~ t if there exists some weak bisimulatidhsuch that(s, ¢) € R.

Strong (resp. weak) bisimilarity can also be described by simple pebble deatvesen two
players:AttackerandDefender Attacker’s goal is to prove that two given states moéstrongly
(resp.notweakly) bisimilar, while Defender tries to prove otherwise. We will refer to éitea
ashimand to Defender dser. In every round of the game, there is a pebble placed on a unique
state in each transition system. Attacker then chooses one transition systemoses the
pebble from the pebbled state to one of its successors by an aétiowherea € A. Defender
must imitate this by moving the pebbled state from the other system to one of itssorze
by the same actior— (resp. ==). If one player cannot move, then the other player wins.
Defender wins every infinite game. Two stateandt are strongly/weakly bisimilar (resp. not
strongly/weakly-bisimilar) if, and only if, Defender (resp. Attacker) bBasinning strategy on
the game with initial pebble configuratids, ¢).

Branching bisimulation [189] is a notion of semantic equivalence that is stricyser than
strong bisimulation but is strictly finer than weak bisimulation. It refines weaiknbigtion
equivalence by preserving the branching structure of two processssin the presence of
unobservable transitions (that are labeled by a silent acjidhis required that all intermediate
states that are passed through durirtgansitions are related.

A branching bisimulatiowith respect to sommternal symbolr € A is a symmetric relation
R C S x S such that for eaclis, t) € R and eachu € A the following holds:

o if s %5 &, thent == t' % ¢ == ¢ with (s,t), (s, ") € R for somet’,t",t"" € S.
We write s ~ t if there is a branching bisimulatioR such that(s, t) € R.
Let us introduce the corresponding decision problequivalence checking

EQUIVALENCE CHECKING FOR SOME NOTION OF EQUIVALENCE=€E {N, N, }

INPUT: A transition systeny and two states, ¢t of 7.
QUESTION: Doess=tholdinT?

We note that sometimes we assume that the input to the equivalence problgistscohtwo
transition systems (from the same class of transition systems) and two of its stapestively.

12

Since any class of transition systems that we consider in this thesis is effeetivd efficiently
closed under disjoint union, we may assume, without loss of generalitythidiag is only one
transition system in the input to the equivalence checking problem (alongwatbf its states).

Logics

We assume the reader is familiar with first-order logic and monadic secaled-ogic as well
as with temporal logics such as Linear Temporal Lo¢i€EL(), [127], Computation Tree Logic
(CTL), as well as the modal-calculus [4].

The temporal logics that we investigate in this thesis are all fragment3 bf We do not
include atomic propositions and rather work with transition labels and thus sldgwigte from
the classical definition o€TL (which contains atomic propositions but no transition labels).
However, since we are only interested in the model checking problem dreeecan easily see
that model checking formulas of classicalL can efficiently be reduced to model checking
our transition-labeled variant @TL and vice versa with appropriate adjustments of the input
transition systems.

Formulasy of Computation Tree LogicQTL) are given by the following grammar, whete
ranges oveAct:

@ = true | ¢ | oA | (a)p | EpUp | EpWUgp

We introduce the abbreviatideF ¢ %TE true Uy. Formulasy of thelogic EF are given by the
following grammar, where ranges oveAct:

e u= true | ¢ | @Ay | (e | EFp
Formulas of Hennessy-Milner logi¢iM) are given by the following grammar, whedganges
overAct:
¢ u= true | o | oAe | (o)
Given a transition systerii = (S,A, {-%+| a € A}), some state € S of 7 and some
formula ¢, we define(7,s) = ¢ by induction ony as follows, where we recall that—
denotes the reIatioéU{iﬂ ac A}) .

(T,s) E true for eachs € S
Tk & (Ts)ie
(T keine: & (Ts)Eerand(T.s) e
(T,s) E (a)p & (T,s") = o for somes’ € S with s -2 &’
(T,s) = Epi1Upo def In>1,51,...,8, €5 :85=8] —> 89+ — Sy,
(T, sn) EwaandVi € [1,n—1]: (T, s;) E ¢1
(T,s) = Ep1WUps gef (T,s) = EpiUgpsy or

381,82,... € S,: s = 81, andvs >1: (T, Si)): ©1,8; — Si+1

13

2 Equivalence checking and model checking

For reasons of simplicity of presentation we sometimes use a variant of theEBgicthis
thesis that allows to parametrize the set of action labels irEtheperator. By this we mean
formulas of the form(I'™*)¢ for subsetd" of the action labels that require the transitions of the
path to the state satisfying all to be labeled by elements df This parametrized version of
EF is slightly more general than the standard definitiorEBflogic from above with respect
to expressiveness. However, all lower bound results in thesis easilyaser to the restricted
definition of EF logic and all upper bounds in this thesis can be proven for the parametrized
variant.

Formulas of the parametrized variantkff over a finite seA C Act of labels are given by
the following grammar, wherg C A:

@ = true | @ [oA | T)e | (T

We write (I')™ (resp. [[']") as an abbreviation for a sequencerotonsecutive(l')’s (resp.
[[]'s). For each transition systeffi = (S, A, {-%+| a € A}) and each formulg (over A) of
parametrized&F we define

(T,s) =Dy & (T.¢) = pforsomes’ € Swiths s’ and

(T.s) = M & (T8 = o for somes’ € S with s - .

We define[p]7 C S to be the set of states that satigfy

Let us introduce thenodel checking problem

MODEL CHECKING FOR A LOGICL € {CTL,EF,HM,...}

INPUT: A transition systen? = (S, A, {-*+| a € A}), a states of 7 and anC-formula

@Y.
QUESTION: (T,s) = ¢?

Following Vardi [191], we distinguish three ways of measuring the compunalticomplexity

of the model checking problem: (gata complexitymeasures the complexity of the model
checking problem when the formula is fixed and only the transition systemtigioidue input,

(il) expression complexityneasures the complexity relative to a fixed system, thus only the
formula is part of the input, and (iigombined complexitgssumes that both the system and the
formula is part of the input. If not said otherwise, we mean the combined caityple

14

3 Infinite-state systems

The study of infinite-state verification has revealed td@tounded recursionsnd unbounded
parallelismare two of the most important sources of infinity in computer programs. Irfinite
state models with unbounded recursions such as Basic Process Alg&ja énd Pushdown
Systems PDS) have been studied for a long time (e.g. [6, 146]). The same can be saitl ab
infinite-state models with unbounded parallelism, which include Basic ParatieéBsesEPP)
and Petri netsRN), e.g. [45, 86]. While these aforementioned models are efthely sequen-
tial or purely paralle| there are also models that simultaneously inherit both of these features.
A well-known example ar@A-processes [11], which are a common generalizatiddR¥ and
BPP. It is known that all of these models are not Turing-powerful in the ed¢hat decision
problems such as reachability is still decidable (e.g. see [30]), which ntlh&essuitable for
verification.

In his seminal paper [140], Mayr introduced the Process Rewrite SyteR$ hierarchy
(see leftmost diagram in Figure 3.2) containing several models of infinite statems that gen-
eralize the aforementioned well-known models with unbounded recursiaisraunbounded
parallelism. The idea is to treat models in the hierarchy as a form of term-resystems,
and classify them according to which terms are permitted on the left and aglitdide of the
rewrite rules. In addition to the aforementioned models of infinite-state systeeRS hier-
archy contains three new models: (1) Process Rewrite SysteRE,(which generalizé’DS,
PA-processes, and Petri nets, AD-processes, which uniffDS andPA-processes, and (3)
PAN-processes, which unify botPA-processes and Petri nets. Mayr showed that the hierar-
chy is strict with respect to strong bisimulation. Despite of its expressiveepBRS is not
Turing-powerful since reachability is still decidable for this class.

After having defined Mayr'°RS hierarchy below, we introduce further models of infinite-
state systems that are relevant in this thesis and integrate them inRRfhéierarchy with
respect to bisimilarity, branching bisimilarity and weak bisimilarity. The aim of thaptér is to
mention some relevant results on these classes with respect to the mod@hgipeoblem and
the equivalence checking problem. Since we discuss various diffelesges of infinite-state
systems and the literature on them is large, we do not claim that our list dfsresaomplete.
We refer to Mayr’s PhD thesis [139] for a more thorough overview of ehatiecking classes of
infinite-state systems in tHeRS hierarchy against various temporal logics.

The technical contribution of this chapter is discussed in Section 3.1, wierategrate
ground tree rewrite systems into MayPRS hierarchy with respect to bisimilarity, branching
bisimilarity and weak bisimilarity.

In the following, let us fix a countable set of process constants (a.k@cegs variables)
X ={A,B,C,D,...}. The set oprocess termsis given by the following grammar, wher€
ranges ovew’:

t = o | X | tt | t|t

15

3 Infinite-state systems

The sizesize(t) of a termt is inductively defined asize(0) = size(X) = 1 andsize(t1.t2) =
size(t1|t2) = size(t1) + size(t2) + 1. The operator.’ is said to besequential compositioand
assumed to be associative, while the opergismeferred to aparallel compositioris assumed
both associative and commutative. The smallest equivalence relation ortletrissassociative
and commutative for parallel composition and that is associative for sgglueomposition is
denoted by= in the following. Mayr [140] distinguishes the following classes of prodesss:

1 Terms consisting of a single constaXite X.

S Process terms without any occurrence of parallel composition.

P Process terms without any occurrence of sequential composition.

G Arbitrary process terms possibly with sequential or parallel compositions.
A process rewrite syster®PRS) is a tupleP = (X, A, A), where

e Y C X is afinite set of process constants,

e A C Actis a finite set of atomic actions, and

o A is a finite set of rewrite rules of the fortm —, t2, wheret; and¢y are terms over the
process constants M with ¢; £ 0 anda € A.

Let us discuss the underlying transition systgitP) = (S, A, {-| a € A}). The state set
S is defined to be the set of all equivalence classes of all terms builtoweodulo the above-
mentioned equivalence relatiea. Moreover, for eactu € A, the transition relation= is
implicity defined by the following inference rules:

t e ts €A t — t >t
t — ty ti|ta = t|to ty.ty =2 th .ty

Other models in in th@RS hierarchy ard=inite Systemg&F-IN), Basic Process Algebrd@PA),
Basic Parallel Processg8PP), Pushdown SysteniBDS), Petri nets(PN), PA processefPA),
PAD processeéPAD), andPAN processe@AN). They can be defined by restricting the terms
that are allowed on the left hand sifland on the right hand sideof the PRS rewrite rules and
are abbreviated by PR&r), wherel,r € {1,5,P,G}. An important result by Mayr [140] is
that thePRS hierarchy is strict with respect to strong bisimulation .

e Finite Systems- FIN = PRS1,1). Itis easy to see that the class of finite transition sys-
tems coincides with PR$, 1): there is a one-to-one correspondence between the process
constants and the states of the underlying transition system that it desxsibed| as a
one-to-one correspondence between the rewrite rules and the transittbe underlying
finite system.

16

N
e

FIN

Figure 3.1: Mayr’sPRS hierarchy, strictness is shown with respect to bisimulation equivalence
[140].

Model checking. The computational complexity of model checking on finite systems is
very well understood, model checking L, first-order and monadic second-order logic
arePSPACE-complete, wher®-completeness holds f@TL modal logic,EF logic, and

HM [123] and reachability idlL-complete, just to mention few results.

Model checking the modai-calculus, which is polynomial time equivalent to determining
the winner of a parity game [59], takes a prominent exception and is undiylotee of
the biggest open problems in logic in computer science: The best-knoven bppnd is
UP N co-UP [111] (see also for fast implementations [161, 112, 67]) and the ba&stikn
lower bound isP.

Equivalence Checking.By the classical partition refinement algorithm, one can decide
bisimulation equivalence of finite systems in polynomial time [150, 113]. Haslfw P

has been shown in [7]. The same complexity bounds hold for weak bisimil@itthe
other hand, trace equivalence on finite systerRSRACE-complete since it is polynomial
time equivalent to the equivalence problem of finite word automata.

e Pushdown Systems PDS = PRSS,S). Pushdown systems can equivalently be de-
fined as the configuration graphs of pushdown automata withtnainsitions. Speaking
in terms of Mayr's PRS hierarchy, they make up the graphs that one olftamsap-
plying purely sequential rewriting (i.e. both on the left-hand side and rightdlside of
rewrite rules the terms are purely sequential). In recent years a latedimeh has been de-
voted to verification of pushdown systems. A central reason for this sitersurely that
pushdown systems allow to abstractly mimic the call and return behavior oégtucal
programs. Let us mention an equivalent way of defining pushdownregsiglternatively
a pushdown system can be seen to be given by a fpte (Q,A,T,{<>| a € A}),
where(is a finite set ofcontrol statesA C Act is a finite set of action labelg; is a

17

3 Infinite-state systems

18

finite stack alphabethat contains a distinguishdmbttom-of-stack symbal, and where
finally for eacha € A we have that> is a set of rewrite rules of the formX N quw,
wherep,q € Q andX € I',w € I'* satisfyingX = 1| impliesw € T*1 and X # L
impliesw € T'*. The transition systerff (P) is defined agS, A, {-%| a € A}), where
S = Q(I'\ {L})*L and where each rule of the kind. < qw induces the transition

pL —% qw and each rul@X <% w with X # L induces the transitionsXz —% quwz
foreachz € (I'\ {L})*L.

In this thesis we prefer to use the latter notion, in particular when definingcometer
systems below.

Model Checking. By the use of automata-theoretic constructions it is shown that for each
regular set of configurations the set of reachable configuratiosis. (tlee set of configura-
tions that can reach this set) is effectively regular again and computalatyimopnial time
[29, 18]. In [18] it has been shown that such effective automatardtiecconstructions
can be used to show that model checking pushdown systems with respaidbtes logics
such as the alternation-freecalculus o TL is decidable and moreover yield exact com-
plexity bounds, we also refer to [118]. Rabin’s theorem states that thedimeecond
order MSO) theory of the infinite binary tree is decidable. Since the each pushdawn sy
tem isMSO-interpretable in the infinite binary tree it follows thstSO model checking
for pushdown systems is decidable, however with nonelementary compl&&@y. [Two
further milestone results in this area were proven by Walukiwicz on the ome, leho
proved that model checking thecalculus is in fact elementary alkP-complete [197],
and by Kupferman and Vardi, on the other hand, who have used the aattimearetic
approach to obtain thiEXP upper bound [120]. The same complexity already holds for
the fragmenCTL of the moda}:-calculus [196], whereas model checking its fragnteht

is PSPACE-complete [18, 196]PSPACE-hardness already holds féiM [139]. Model
checkingLTL on pushdown graphs is complete t6XP [18]. Model checkingCTL* on
pushdown systems has been sh@kXP-complete in [23]. Finally, model checkirigDL

on pushdown systems has been studied systematically [72], where it bdéeatsproven
that model checkin@DL with intersection and conversed&XP-complete.

Equivalence Checking. A folklore result is that language equivalence (in fact already
universality) of pushdown automata is undecidable. However, a cédebrasult due to
Sénizergues states that language equivalence of deterministic pushdtwamasa (even
with e-transitions) is decidable [165]. Later Stirling proved that the problem isdh f
primitive recursive [178]. 8nizergues later proved that bisimulation equivalence of push-
down systems (where possibiytransitions occur but only in a deterministic popping
fashion) is decidable [167]. In fact, in [167] it is even shown that dauility still holds

for equational graphs of finite out-degree. Unfortunately, to date ikare complexity-
theoretic upper bound known for this problem. If one allowsansitions, therweak
bisimilarity between is undecidable already for one-counter systems, i.e otffigura-
tion graphs of pushdown automata over a singleton stack alphabet, dy [142

In Section 8.2 we discuss a nonelementary lower bound for bisimilarity ondpush
systems — it improves the previously best knd@P lower bound by Kigera and Mayr

for this problem [121].

Basic Process Algebras BPA = PRS1, S). The transition graphs defined by Basic Pro-
cess Algebras can equivalently be viewed as the transition graph ad@ushautomata,
where the set of control states is a singleton. It is well-known that withergp trace
equivalenceBPA andPDS are equivalent. More precisely, for each pushdown sygtem
and configuratiorr of P there exists &PA P’ along with a configuratiom’ of P’ such
thatc andc’ are trace equivalent.

Model Checking. Since the infinite binary tree can still be described Bf& the MSO

of BPA’s is generally not elementary. The computational complexity of model chgckin
the modalu-calculus,CTL, EF, LTL or the linear-timeu-calculus orBPA coincides with

the respective complexity on pushdown systems, ranging betR&enCE-completeness
andEXP-completeness. However, in stark contrast to model checking pushsi@tems,

the data complexity all of the latter problems is known to be solvable in polynomial time,
cf. [139].

Equivalence Checking.SinceBPA are trace equivalent ®BDS trace equivalence is un-
decidable. Burkart, Caucal and Steffen proved that bisimilarit3leA is decidable in
doubly exponential time [31]. Recently Ja presented a simplified proof of tREXP
upper bound [102]. Also the lower bound has recently been lifted #6RACE to EXP
by Kiefer [114]. Thus, there is still an exponential complexity gap for thidfem. How-
ever, when normed basic processes algebras are considered bisirndarie solved in
polynomial time [53]. For weak bisimilarity dBPA the situation is less clear: the prob-
lem is not known to be decidable. Branching bisimilarity of normed basic psxigebras
has recently been announced as decidable by [68], see whereag aastacted variant
of normedness has been proven to be decidabi® iny Caucal, Huynh and Tran [42].

Petri Nets= PN = PRSP, P). Petri netsor Vector Addition Systenmere a well-studied
infite-state model for modeling concurrency. As presented in Mayrimdreork push-
down systems are obtained from purely sequential rewriting, wherd¢das\Bts make up
the purely parallel counter part.

Model Checking. A classical result by Kosarju [117] and Mayr [136] states that reach-
ability of Petri nets is decidable. Only recently a significantly simplified prosf lheen
presented by Leroux [125]. This problem is of particular interest mbg because its
complexity is far from being well understood; the best-known upper bdaidone can
derive from the above-mentioned papers is a non-primitive recurgperone, whereas
anEXPSPACE lower bound already prevails since over thirty years [37]. Furthesidak
problems on Petri nets include the coverability problem, the boundedradsprand the
language regularity problem, which all have been shown to be decidaB¥HRSPACE

[58, 157].

Already model checking of TL's fragmentEF is undecidable over Petri nets but at least
as hard as the reachability problem [60, 61]. However, model chetKibgnd the linear-
time p-calculus [60, 85] is decidable.

Equivalence Checking.Trace equivalence of Petri nets has been shown undecidable by

19

3 Infinite-state systems

Hirshfeld; the lower bound already holds fBPP [92]. Undecidability of bisimilarity
of Petri nets has been established byc3ari99]. However decidability is known for
the problem of deciding if a given Petri net is bisimilar to a finite system or taddec
of a given Petri net is bisimilar to some finite system [105]. Model checknsgrdirder
fragments on the reachability graphs of Petri nets has recently beendsgbfje Finally,
model checking the coverability graph of Petri nets agdifidt variants has recently been
investigated [13].

e Basic Parallel Processes BPP = PRS1, P). Basic Parallel Processes are also known
as communication-free Petri nets, i.e. Petri nets, where each transitisnnaes exactly
one token. This class has been introduced in [45].

Model Checking. Reachability forBPP has been proveNP-complete by Esparza [61].
Decidability of model checkingTL carries over from Petri nets. It is shown in [139] that
model checkind-TL over BPP is at least as hard as reachability for Petri nets. Recall
that model checkingF is undecidable for Petri nets. Mayr showed that model checking
EF onBPP is in fact PSPACE-complete [137]. However, already model check{tiglL'’s
fragmentEG (a formulaEGy holds in a state if from s there exists an infinite path whose
states all satisfy) is undecidable oBPP as shown by Esparza and Kiehn [62].

Equivalence Checking.Jartar proved that bisimilarity of Petri nets is undecidable. He
showed a couple of years later that bisimilarityBtP is in fact decidable and iRSPACE
[101] matching the®SPACE lower bound proven by Srba [172]. Thi&PA concists one

of few classes of infinite-state systems, where bisimilarity is known to be baitiatde
and its precise complexity known. Recent progress has been prowd€ddrywinski,
Hofman and Lasota who proved that branching bisimilarity between nornsgciferallel
processes is decidable [52]. To date, it is a major open problem whetlagrivisimilarity

of basic parallel processes is decidable, we refer to [96] for a teleolopment.

e PA processes PA = PRS1,G) and PAD processes PAD = PRSS, G). PAD pro-
cesses can be used to model systems that behave nondeterminsticallyserahc(with-
out communication) and have the possibility to call subroutines whose retulmcan be
taken into account. PA processes can be seen as the jBR0ANdBPP: the left-hand
side of any rewrite rule may only consist of one symbol whereas the rgynd-kide my
be any term: Thus, they do not posses any means of passing informationafrrently
running processes nor can they take the return value of subroutinesouant.

Model Checking. Bouajjani and Habermehl proved that model checkifd, over PA
processes is undecidable [19]. UndecidabilityCafL is inherited from the undecidabil-
ity of BPP. Lugiez and Schnoebelen proved that model checking first-order Vaithic
reachability is decidable oveétA [130]. Model checkingeF on PAD was shown to be
decidable by Mayr [138]. The upper proof [138] provides a soplatid procedure run-
ning nonelementary in the input formula. It is left as an open problem whéttschuge
complexity is inherent.

In this thesis we contribute to model checkiR4D in two ways. Firstly, we state that
given a PAD process one can effectively construct a ground tregteesystem (to be

20

3.1

3.1 Ground tree rewrite systems and its integration into Mayr’s PRS hierarchy

defined below) that is branching bisimilar (a notion of equivalence that kdad®en
bisimilarity and weak bisimilarity) to it. By employing well-known algorithms for model
checkingEF on ground tree rewrite systems [128], we obtain an alternative proatiéor
decidability of model checkingF on PAD. Secondly, we answer the above-mentioned
complexity question affirmatively: We prove a nonelementary lower bourehayr for
model checking two concurrent basic process algebras in Chapter 7.

Equivalence Checking. Hirshfeld and Jerrum showed that bisimilarity of normed PA
processes is decidable in nondeterministic doubly exponential time [93].affoidis
unknown whether bisimilarity of general PA processes is decidable. éat Wisimilarity

of PA processes is highly undecidable [173, 110].

PRS-processesPRS = PRSG, G) andPAN processes PAN = PRSP, G). The most
general varianPRS are systems obtained by ground term rewriting without any restric-
tions of the terms on the left-hand side or right-hand side of the ru?@dN processes
restrict the left-hand side of any rule to consist of parallel terms only. Wvensarize
these two systems since the decidability/complexity status both for model cherking
for equivalence checking is the same for the two models.

Model Checking. Mayr proved that reachability is decidable BRS and even deciding

if a PRS process can reach another process [139] that can exeairtaia (definable) set

of transitions. It is not hard to see that model checktiid is decidable orPRS since the
out-degree of ever?RS process is finite. On the other hand, undecidability already holds
for model checkind.TL andEF for PAN [139].

Equivalence Checking.Trace equivalence, bisimilarity and thus weak bisimilarity are all
undecidable ofPRS — undecidability for all these problems is inherited from Petri nets.

Ground tree rewrite systems and its integration into
Mayr's PRS hierarchy

Before thePRS hierarchy was introduced, another class of infinite-state systems calbesh¢r
Tree/Term Rewrite System&RS) already emerged in the term rewriting community as a class
with good decidability properties. Recall that pushdown systems can heasesystems whose
nodes are essentially finite words and whose transitions are given litgga&hof word rewriting
rules that are applied in a prefix-rewriting fashion. Ground tree rewygems rewrite systems
can be seen as the generalization of the latter to rewriting finite ranked trees.

Model Checking. While extending the expressive powelRiDS, GTRS still enjoys decidability
of reachability (e.g. [25, 50]), recurrent reachability [128], modeéaking first-order logic
with reachability [56, 48], and model checking the fragmdriit ;.; andLTL(Fs, Gs) of LTL
[185, 184]. Due to the tree structures ti&aERS use in their rewrite rules; TRS can be used
to model concurrent systems with both unbounded parallelism (a new tmapde spawned
at any given time) and unbounded recursions (each thread may behaveushdown system).
When comparing the definitions &RS (and subclasses thereof) aG@ RS, one cannot help

21

3 Infinite-state systems

but notice their similarity. Moreover, there is a striking similarity between thelprob that
are decidable (and undecidable) over subclassd2R6&f like PA/PAD processes and@TRS.
For example, reachabilit{,F model checking, antdTL(Fs, Gs) andLTL,.; model checking are
decidable for both PAD-processes &ntiRS [24, 128, 140, 141, 184, 185]. Furthermore, model
checking generdlTL properties is undecidable for bofiA-processes an@TRS [24, 185].

In Section 9 we concern ourselves with model checking (regular) groee rewrite systems
against specification in the logkF and prove that already model checkief formulas with at
most two nesting of th&F operator are hard to model check GmRS: the problem is nonele-
mentary. We provide BNEXP-completeness result for model checkEfgformulas with at most
one nesting of th&F operator.

Equivalence Checking.Undecidability of trace equivalence and of weak bisimilarity on ground
tree rewrite systems is inherited from pushdown systems [110]. It is aegtiteg open problem
whether bisimilarity ofGTRS is decidable. In Chapter 9 we provide@EXP upper bound of
deciding bisimilarity between a ground tree rewrite system and a finite systemeoit, we
show that deciding if a given regular ground tree rewrite is bisimilar to angivete transition
system is nonelementary.

Despite the above-mentioned similarities betw&fPAD and GTRS, the precise connec-
tion between th@RS hierarchy andsTRS has not been investigated until recently. A particular
technical difference between the clasBa&¢PAD andGTRS is that the states of the underlying
transition system foPA /PAD is defined modulo the equivaleneeon terms, whereas the states
of aGTRS are indeed finite ranked trees themselves (and not the equivalencesaiasthem).

For the rest of this section we discuss a joint work [78] with Anthony Widjdjg which
has appeared as a conference paper in [75]. We extend MalgBshierarchy by integrating
Ground Tree Rewrite Systems. We pinpoint the precise connection betineexpressive pow-
ers of GTRS and models inside theRS hierarchy with respect to strong, branching, and weak
bisimulation equivalence.

The results are summarized in the middle and right diagrams in Figure 3.2.

Our investigation is inspired by the work of Lugiez and Schnoebelen [181Bauajjani and
Touili [21], which studyPRS (or subclasses thereof) by first distinguishing process terms that
are “equivalent” in Mayr’s sense [140]. This approach allows them tkemse of techniques
from classical theory of tree automata for solving interesting problemsRR&ror subclasses
thereof). Our translation frorRAD to GTRS is similar in spirit. We also show that Regular
Ground Tree Rewrite SystemRGTRS) [128] — the extension o0& TRS with possibly infinitely
manyGTRS rules compactly represented as tree automata — have the same expressivapg
GTRS up to branching/weak bisimulation. Along the same ideas that are used in th@tatiér
one can show thaPDS is equivalent to prefix-recognizable systems , abbreviatellREsF,
(cf. see [30]) up to branching/weak bisimulation. On the other hand, wieemvestigate the
expressive power dETRS with respect to strong bisimulation, we found tlt&D (evenPA) is
no longer subsumed IGTRS. Despite this, we can show that up to strong bisimulaGdmiS
is strictly more expressive thaBPP and PDS, and is strictly subsumed iRRS. Finally, we
mention that our results imply that Mayr3RS hierarchy is also strict with respect to weak
bisimulation equivalence.

22

3.1 Ground tree rewrite systems and its integration into Mayr’s PRS hierarchy

RS PRS /PRS\
\ GTRS/RGTRS PAN
P

. N GTRS PA{) /PAN \
S WL e S
PN 7N
PDS PN PDS PDS/PREF PA PN
AN e AN NN/
BPA\ P

B BPA BPP BPA BPP
/ \ / N2
FIN FIN FIN

Mayr’s original PRS hierarchy Our refinement wittGTRS Our refinement wittGTRS
w.r.t. strong bisimulation- w.r.t. strong bisimulation- w.r.t. branching bisimulation-
and weak bisimulatior:

Figure 3.2: Depictions of Mayr'®RS hierarchy and their refinements V@ RS as Hasse di-
agrams (the top being the most expressive). The leftmost diagram is the orig
nal (strict) PRS hierarchy where expressiveness is measured with respect to strong
bisimulation. The middle (resp. right) diagram is a strict refinemenGJi&S with
respect to strong (resp. weak/branching) bisimulation.

There are other models of multithreaded programs with unbounded ratuthit have been
studied in the literature. Specifically, we mention Dynamic Pushdown Netw@R8IY and
extensions thereof (e.g. see [20]) since an extensiddRMN given in [20] also extends PAD-
processes. We leave it for future work to study the precise connedigingeen these models
andGTRS.

Let us formally introduce regular ground tree rewrite systeRGTRS), ground tree rewrite
systems GTRS) and prefix-recognizable systenRREF).

Let us first define ranked trees. Letdenote the prefix order ad*, i.e. x < y for z,y € N*
if there is somez € N* such thaty = zz, andx < y if + < y andx # y. A ranked
alphabetis a collection of finite and pairwise disjoint alphabgts= (%;);¢(o) for somek > 0.
For simplicity we identify> with Uz‘e[O,k ¥;. A ranked treg(over the ranked alphabgl) is a
mapping?’ : Dy — X, whereDr C [1, k|* satisfies the followingD7 is non-empty, finite and
prefix-closed and for each € Dy with T'(z) € 3; we haverl,...,zi € Dy andxj ¢ Dy for
eachj > i. We say thatD is thedomainof T'— we call these element®des A leafis a node
x with T'(z) € ¥y. We also refer ta € Dy as theroot of T'. By Treess; we denote the set of all
ranked trees over the ranked alphabet\Ve also use the usual term representation of trees, e.g.
if 7" is a tree with root: and left (resp. right) subtreg, (resp.75) we havel' = a(11,15).

Let T be a ranked tree and letbe a node of". We definetDy = {zy € [1,k]* | y € Dr}
andz~'Dr = {y € [1,k]* | zy € Dr}. By T% we denote thesubtree ofl" with root z, i.e.
the tree with domairD,. = x~! Dy defined ag™*(y) = T(zy). LetT, T’ € Treesy and let
= be a node of". We definel'[x/T"] to be the tree that is obtained by replacifig’ in T by T”;

23

3 Infinite-state systems

more formallyDrp, 71 = (D1 \ 2 D) U Dy with T2 /T'|(y) = T(y) if y € Dr \ Dypie
andT'[z/T"|(y) = T'(z) if y = zz with z € Dy. Define|T| = | Dr| as the number of nodes in
atreeT.

A regular ground tree rewrite syste(RGTRS) is a tupleR = (X, A, R), whereX is a ranked
alphabetA C Act is afinite set of action labels and whegas finite set of rewrite ruleg N L,
where L and L’ are regular tree languages given as nondeterministic bottom-up tree automata
(cf. [49] for more details). The transition system defined/ys 7(R) = (Treess, A, {——|
a € A}), where for eacln € A, we haveT' - T if and only if there is some € Dy and
some rulel <% L' € R such thatl** € L andT’ = T[z/T"] for someT” € L' (we say that
the rule was applied at nodg.

A ground tree rewrite systefGTRS) is anRGTRS R = (X, A, R), where for eachl, <%
L' € R we have that bott, = {T} andL’ = {T"} is a singleton; we also writ& < T’ € R
for this.

A prefix-recognizable syste(RREF) is anRGTRS R = (X, A, R), where only%, andX;
may be non-empty. We note that analogously pushdown systems are Igrédoise GTRS
R = (X,A, R), where only4, and A; may be non-empty.

While it follows from known results that there is a Petri net that is not trageévalent to any
GTRS our first main result states that the expressive pow&TaRS with respect to branching
and weak bisimulation is strictly abowAD.

Theorem 3.1 ([78]) Given a states of somePAD P one can compute in polynomial time a
GTRS R and a tree (state]’ of 7(R) such thats ~ 7. O

This result allows us to transfer some decidability/complexity results of modekahy prob-
lems overGTRS to PA andPAD processes. In particular, it gives a simple proof of the decid-
ability of the problem of model checking the lodgi over PAD [141], and decidability (with
better complexity upper bounds that we will not state explicitly here) of thbleno of model
checking the fragmentsTL;.; andLTL(Fs, Gs) of LTL over PAD (this decidability result was
initially given in [24] without upper bounds). Since in [56] it has beervalthat model check-
ing first-order logic with reachability is decidable oV RS, we obtain as a corollary that
model checking the logidsF, andLTL's fragmentd.TL4.; andLTL(Fs, Gs) (see [185, 184] for
further details) are all decidable ovieAD.

Corollary 3.2 ([78]) Model checking any of the logi&s, LTL4.; andLTL(Fs, Gs) is decidable
overPAD. O

Since everyGTRS is of course arRGTRS and everyPDS is of course &PREF, the below-
stated Theorem 3.3 allows us to deduce ®@T RS andGTRS are equivalent up to branching
bisimulation and the same holds lBREF andPDS. Although the proof of Theorem 3.3 is not
very complicated, the reason why this could be of interest is for instant@négously both
bisimilarity of regular ground tree rewrite systems against finite systems aakl bigmilarity
of ground tree rewrite systems against finite systems have been studjestpadately. Simi-
lar remarks apply to bisimilarity of prefix-recognizable systems and weak bisityiteetween
pushdown systems [110]. Theorem 3.3 states that both equivalenddradneroblems are in
fact equivalent up to polynomial time reductions.

24

3.2 One-counter systems

Theorem 3.3 ([78]) The following containments hold:

1. Given a statd” of some givelRGTRS one can construct in polynomial time some state
T’ of someGTRS P such thatl’ ~ T".

2. Given a statd” of some givef®REF one can construct in polynomial time some state
of somePDS P’ such thatl’ ~ T".

3. Given a state of some giveBPP one can construct in polynomial time some stétef
GTRS P such thatl" ~ s. O

We have obtained the following separation results, whose proofs makef established
automata-theoretic techniques in a sophisticated way. We do not discussdh@pas here.

Theorem 3.4 ([78]) The following strictness results hold:
1. There exists a stateof a PA such that no state of anyTRS is bisimilar tos.
2. There exists a stateof a GTRS such that no state of arfBAD is weakly bisimilar tos.

3. There exists stateof a PDS such that no state of arJAN is weakly bisimilar tos. O

3.2 One-counter systems

A one-counter systelis a configuration graph of a pushdown automaknr= (Q,A, T, {<3>|

a € A}) that satisfied” = {4, L} for some symbol4: thus apart from the bottom-of-stack
symbol L there is exactly one further stack symhél It is more convenient to abbreviate
states (configurationg);, A" L) in T(P) by ¢(n). Too, it is more convenient to write a one-
counter system as a tuple = (Q, A, do, d>0), wheredy C @ x A x {0,+1} x @ and where
ds0 € Q@ xAx{-1,0,+1} x Q with the obvious meaning; e.g. an eleménta, —1,¢') € d~¢
would allow, in case the current counter is positive, to change fréon’ on reading the letter
and hereby decreasing the counter by one. Hence, one-courtensysan be seen as one of the
simplest means to model infinite-state systems — they can be seen to consipeofad finite
transition system corresponding to counter valubat is connected t@ copies of some finite
transition system corresponding to the positive counter values. It is felklow one-counter
systems integrate to Mayr's PRS hierarchy with respect to bisimilarity andhirsmand weak
bisimilarity, cf. Figure 3.3.

Let us briefly discuss the extensions of succinct and parametric amgercsystems without
providing rigorous definitionsSuccinct one-counter systear® one-counter systems in which
the increments and decrements that appear in the rewrite rules are spegifiathberggiven
in binary. Parametric one-counter systeffgeneralize” the latter by allowing in the rewrite rule
to increment the counter by the value of a variable (ranging over a satriailesX) that can
be instantiated by any integer. For parametric one-counter systems it reimalissuss how
the model checking problem is defined. Given a parametric one-couwrtEmaton” and a
configurationg(n), we write (7 (P),q(n)) = ¢ if for everyassignmenty : X — Z of the

25

3 Infinite-state systems

parameters that occur on transitionsfofve have that the succinct one-counter sysi&nthat

is induced by« satisfies(7,,q(n)) E . Analogously, the reachability problem in a given
parametric one-counter system asks whether reachability holsisniresuccinct one-counter
system that one obtains in some way by evaluating the parameters.

Model Checking. A folklore result states that reachability of one-counter systemslis
complete. The reachability problem for succinct and parametric oneteosgystems has re-
cently shown to bélP-complete [83]. It is also easy to see that model checklivon one-
counter systems i®-complete. While model checking first-order logic with reachability is
nonelementary already over the complete binary tree (which is in faBBAsbut not aOCS), To
recently proved that its complexity dropsR6 PACE when model checking (even asynchronous
products of) one-counter systems [182]. To’s proof is inspired hypger bound technique that
we have developed for model checkiBf on one-counter systems (Chapter 6).

Serre proved that the computational complexity of model checking the medaliculus on
OCS is in PSPACE [169] and thus simpler than dADS (unlessPSPACE = EXP), where it
is alreadyEXP-complete forCTL [119, 196, 198], as mentioned above. Since the emptiness
of alternating finite word automaton over a unary alphabet [98] can easixpressed by a
u-calculus formula, a matchin@SPACE lower bound for model checking the modakalculus
on OCS follows, in fact already for a fixed formula.

In Section 5 we analyze the computational complexity of model checKirig We prove that
model checkindCTL on any fixed one-counter system can be done in polynomial time provided
the inputCTL formula has only constantly many leftward nestings of the until operatorti@mo
that we make more precise in Chapter 5). Concerning lower bounds, ave thlat both the
expression complexity and the data complexity of model checkifiy on OCS is PSPACE-
hard. In particular for hardness of the data complexity we develop neerlbaund techniques
inspired from two deep results in complexity theory. Too, we discucss tiaguiccinct one-
counter systems the data complexity of model checkifg is EXPSPACE-complete.

The computational complexity of model checkiBf on OCS has been shown to hgP-hard
[108], whereDP consists of all languages that are the intersection of a langualy€ ind a
language ircoNP. This lower bound has slightly been improvedRPP-hardness [72], where

Ph\”’ is the set of all problems that can be solved by a deterministic polynomial timedbdun
Turing machine that hgsarallel access to an oracle froNP or equivalently by a deterministic
polynomial time bounded Turing machine that has access to an oracleNFolvut queries
the oracle only logarithmically many times [194, 171], see also [162] for a& &nalysis. In
Chapter 5 we provide BNP lower bound for this problem, by making use of our lower bound
technique. A matchind®N" upper bound for model checkingF on one-counter systems is
content of Chapter 6. We obtain as a corollary that RYS -complete to decide whether a given
one-counter system is weakly bisimilar to a given finite transition system.

The complexity of model checking succinct one-counter systems is pR&@ACE-complete
for the logicsEF andHM in Chapter 6. We show that even model checkitlg on parametric
one-counter systemsESPACE-complete, whereas it becomes undecidable for model checking
EF.

Equivalence Checking.lt is a folklore result that trace equivalence of one-counter systems is

26

3.2 One-counter systems

PRS PRS
GTRS/RGTRS PAN

AN
GTRS PAD PAN
WO\ /

PDS / PDS/PREF PA
7N\ P
OCS BPA BPP ocC BPA BPP
\\\ / N
FIN FIN
w.r.t. strong bisimulation- w.r.t. branching bisimulation:

and weak bisimulatior:

Figure 3.3: Refinement of MayrBRS hierarchy withGTRS andOCS as Hasse diagrams (the
top being the most expressive).

undecidable. Decidability of bisimilarity ddCS follows from its decidability forPDS [167].
However, Jabar independently proved decidability of bisimilarity &CS [100], however the
proof from [100] only allowed to prove an elementary upper bound: ¢hYan [200] analyzed
Jartar’s algorithm and proved that it runs in triply exponential space. Tedqusly best known
lower bound was firsbDP [108] but then lifted toPSPACE-hardness by Srba [175]. We discuss
in Chapter 4 our result that bisimilarity 6fCS is in factPSPACE-complete. We also prove that
one can decide in polynomial time whether for a given one-counter systm éxists some
finite system that is bisimilar to it. Mayr proved that weak bisimilarity on one-calsystems
is undecidable [142]. It is not hard to see that the question whetheea give-counter system
can be simulated by another one is also undecidable. However, whendthegamnot test for
zero, then the latter problem becomes decidable [1, 109]. In fact, eeptly it has been shown
that even weak similarity for one-counter systems without zero-test isalgeif®5], which is
surprising since weak bisimilarity is undecidable for them [142].

Trace equivalence of deterministic one-counter automata (which arenileittic pushdown
automata over a singleton stack alphabet plus a bottom-of-stack symbabssilllp containing
e-transitions) has been proven decidable by Valiant and Paterson fi&8} years before the
decidability for deterministic pushdown automata has been proverebiz&gues [164]. The
running time of the algorithm in [186] ig9(V"logn) By a simple analysis of their proof, a
PSPACE upper bound can be derived for this problem. It follows immediately fronnaghig
reachability that this problem NL-hard. Thus, there has been still an exponential complexity
gap betweemNL andPSPACE for trace equivalence of deterministic one-counter automata. We
close this exponential complexity gap in Chapter 4 and providdlacompleteness result for
this problem.

27

3 Infinite-state systems

3.3 Higher-Order Pushdown Systems

Higher-order pushdown automaftgeneralize usual pushdown automata by allowing the stack
to contain other stacks instead of only single symbols. They were introduychthslov [134]

and independently by Damm and Goerdt [54]. These devices are cletalgd to recursion
schemes, which are essentially simply typ&dterms that generate a single infinite tree. In fact,
higher-order pushdown automata generate the same class of tedstdgher-order recursion
schemes [115]. Enjoying decidahlecalculus theories, the class of trees generated by recursion
schemes shows a lot of promise as a model for verifying higher-ordetiénal programs [116,
148]. In the last couple years a lot of research has been devotedifioat®n of recursion
schemes, which are in fact are strictly more expressive than safe tsl52]. Collapsible
pushdown automataxtend higher-order pushdown automata by allowing “links” to the stack
and are equi-expressive to the simply typed terms with respect to the trees they generate
[87]. In this thesis we only concern ourselves with the systems generat@gubb-collapsible)
higher-order pushdown automata.

Before we define them we need to inductively define the sgtsifcks for eachk > 1, over
some finite stack alphabgtwith [,] ¢ I" and wherel ¢ T is a speciabottom-of-stack symbol

e A 1-stackis an element of* L.

e A (k + 1)-stackis a finite sequencly |[az] - - - [], wheren > 1 ande; is ak-stack for
eachi € [1,n].

Let us denote bystacksy(I") the set of allk-stacksoverI". The empty orderk-stack L is
inductively defined ad ; def | and Ly def [Ly] for eachk > 1.
Over eachl-stacka we define the (partial) operatiewap,, for eachw € I'* UT'™* L as

wag---a,L fwel*a=a1--ap,lL e, n>1
swap,, («) % if we 'L anda = 1, and
undefined otherwise

and

; ()def a fa=a;---a,L el™Ll,n>1and
(0] (0% =
P1 1 otherwise.

Let us define the partial operatippp, («) def swap.(«) and for eaclk-stacka = [aq][az] - - - [a]

28

3.3 Higher-Order Pushdown Systems

with & > 2 let us define:

swap,(a) £ [swap,(a1)][az] - - o]
push,(a) L' [an][][an] - - [ova]
push,(a) % [pushy(a)][as] - [an] foreach2 < ¢ < k

p
pop; (1) def [ag] -+ [an] fn>2
k undefined otherwise

pops(@) L' [popy(an)][as] - - - [an] foreach? < ¢ <k
topp(a) = o

topy(«) def top,(ay) foreachl </ <k

Let Op, %" {swap,, | w € T* UT* L} U {pop, | £ € [1,k]} U {push, | £ € [2,k]} denote the
set ofk-operations Note« € Stacksy(I') andop € Op;, impliesop(«) € Stacksg(I") if op(«)
is defined.

For eachk > 1, anorder-k pushdown systenk{PDS) is given by a tupleP? = (Q,A, T, A),
where

e () is afinite set otontrol states
e A C Actis a finite set ofitomic actions
e T'is a finitestack alphabetand where
e AC Q@ x(Tu{Ll}) xAxQ@Q x Op, is a finite set ofstack rewrite ruleswhere each
(¢, z,a,q,0p) € A satisfies
(i) = = L andop = swap,, impliesw € I'* L and
(i) = € I'andop = swap,, impliesw € I'*.

We abbreviatdq, z, a, ¢, op) € A by gz b qop.

The transition system @ is T(P) £ (Q x Stacksy(I'), A, {-%| a € A}), whereg(a) —%
¢ () if there isqz <5 ¢'opin A such thatop, (o) = x ando’ = op(a) for eachq, ¢’ € Q,
eacha € A and eachy, o € Stacksy ().

Thus, states of (P) are elements of) x Stacksi(I") that we also denote a®nfigurations
of P. We call a configurationq(ag) of P normedif there exists some control staje € @ with
qr(Ly) /- (emits noa-transition) for eacl, € A, and such that every configuratig) with
qo(ag) —* q(a) we haveg(a) —* qr(Ly).

We refer to Figure 3.4 for integrating higher-order pushdown systemdate’s PRS hier-
archy.

Model Checking. Reachability on ordek-pushdown systems is complete fér— 1)-EXP [28].
It is worth mentioning that the transition graphs of higher-order pushdsystems have finite

29

3 Infinite-state systems

PRS PRS\
/
//\ GTRS/RGTRS PAN
GTRS PAD P

AN
] \ \ k-PDS |
k-PDS PA L,CJ PAD
DS / PDS/PREF PA PN
N

e /N /N 7
0CS BPA BPP 0cCs BPA BPP
N S N/
FIN T~ FIN
w.r.t. strong bisimulation- w.r.t. branching bisimulation:

and weak bisimulatior-

Figure 3.4: Refinement of MayrBRS hierarchy withGTRS, OCS and |J,.k-PDS as Hasse
diagrams (the top being the most expressive).

out-degree and decidable monadic second-order theories [32, &itefdf to [89, 34, 88] for
various results on reachability and model checkifd), CTL, EF and the modal:-calculus on
higher-order pushdown systems, lying betwéen- 1)-EXP andk-EXP.

Equivalence Checking.Undecidability of trace equivalence of higher-order pushdown systems
is inherited from pushdown systems. Deciding equivalence of deterministiz-b pushdown
automata is an interesting open problem, although some progress has beeonmad by
Stirling [179] on second-order simple grammars. We discuss undecidalfilltisionulation
equivalence of order-two pushdown systems in Section 8.1.

30

4 Equivalence checking of one-counter
systems

In this chapter we determine the exact computational complexity of checkinygilaisty of
one-counter systems and deterministic one-counter systems. Our mainirethit€hapter are
that bisimilarity of (real-time) one-counter systemd?SPACE-complete and of deterministic
one-counter systemsii_-complete both for real-time and even in the preseneetrdnsitions.
We also prove exact complexity bounds for regularity of general atetméistic one-counter
systems, i.e. the question whether there exists a finite system that is bisimilar touhgyistem:
we show that for general one-counter systems the problePacemplete, whereas it iBlL-
complete for the deterministic case.

Mayr proved that weak bisimilarity of one-counter systems is undecidat®.[Bisimilarity
of one-counter systems has been proven decidable @adft00]; the algorithm from [100]
was analyzed to run in triply exponential space by Yen [200RS®ACE lower bound for this
problem has been proven by Srba [175]. Qlir complexity results on equivalence of deter-
ministic one-counter systems improve the previously best-known supegmoigthtime upper
bound by Valiant and Paterson [186] from 1975 that holds even in #sepce of-transitions.
For deterministic one-counter systems, the preseneeti@nsitions makes the problem more
complicated and indeed the proof technique drastically deviates from thiénmeacase that we
discuss here in more detail.

From Section 4.1 to Section 4.7 we concern ourselves with the real-time casiseuss in
detail aPSPACE upper bound for bisimilarity of one-counter systems andNarupper bound
for deterministic one-counter systems. Finally we discuss in Section 4.7. #ralloproof
strategy foNL-completeness of equivalence deterministic one-counter automata (withlposs
e-transitions) and point out the additional intricacy in comparison to the realdase.

Bibliographic notes. The results on real-time one-counter systems have been published in the
conference papers [15] (CONCUR 2010) in joint work with StanislatiB and Petr Jaar and

[14] (MFCS 2011) in joint work with Stanislav @m (which been merged in a journal paper
[16] (Journal of Computer and System Sciences, 2013) and the cesgkneral deterministic
one-counter systems have appeared in the conference paper TXOC(2013) in joint work

with Stanislav Bhm and Petr Jaar.

4.1 A few notations and the main results
Let us introduce a few notations. Let us fix a transition sysfem (S, A, {—=| a € A}). For

asubsel/ C S, by writing s — U we mean that — u for someu € U; similarly s —* U
means that —* « for someu € U.

31

4 Equivalence checking of one-counter systems

A transition systen” = (S, A, {-+| a € A}) is image-finiteif for eachs € S and each
a € A there are only finitely many € S such thats — ¢; 7 is a deterministictransition
system if for each pais € S, a € ¥ there is at most one such thats —— t. We say
T = (S,A, {-%] a € A}) is afinite transition systerif S is finite.

We recall that a union of bisimulations is again a bisimulatienis the greatest bisimulation
(the union of all bisimulations 08), and it is an equivalence relation.

We also note that fodeterministidransition systems bisimulation equivalence coincides with
the variant of language equivalence callexte equivalences ~ t if, and only if, for all words
w € ©* we haves — < t — (i.e., s andt enable the same words, also called traces). Let us
briefly define deterministic one-counter systems. A one-counter syBtem @, A, dp, d~¢) IS
deterministidf for eachq € @ and eachu € A there is at most one paiy, ¢') € {0,+1} x Q
suchthatq, a, j, ¢') € dp and at most one paiy, ¢’) € {—1,0,+1} x @ such tha{q, a, j,q¢’) €
d>0. Figure 4.1 shows an example of a transition system that is generated l®rcnter
system.

Figure 4.1: The transition systef(P) generated by some one-counter sysfém

We also define the equivalenceg O ~1 D ~5 D --- by the following inductive definition.
We put~¢p= S x S. Fork > 1, we define~;,C S x S as

def

~k {(5,8") | Vs 3’ ot/ it~y tandVs’ % t'3s st it~y t'}

Note thats £, t if, and only if, s, ¢ enable different sets of actions. We recall the following
standard facts (see, e.g., [143]).

Proposition 4.1 For any image-finite transition systefn= (S, A, {-%| a € A}) we have:
1. N;en ~i = ~ (hences ~ tif, and only if,Vi € N : s ~; 1).

2. If|S| =k e Nthen~y_1 =~p =~. O

32

4.1 A few notations and the main results

A crucial fact for Point 1. is thaf),., ~; is a bisimulation in image-finite systems. Point 2. is
established by a standard partition refinement: when construstjing, . .., we reach a fixed
point within & iterations.

The main problems we are interested in are the following ones.

Bisi-OCS

INPUT: A one-counter syster® and two configurationg(m) andg(n) of P.
QUESTION: Doesp(m) ~ q(n) hold inT(P)?

If the input is restricted to deterministic one-counter systems, then we getdbkem Bsi-
DET-OCS.

BisI-DET-OCS
INPUT: A deterministic one-counter systefand two configurations(m) andg(n) of
P

QUESTION: Doesp(m) ~ ¢(n) hold in T (P)?

We recall that the problem IBI-DET-OCS is, in fact, logspace equivalent to the classical lan-
guage equivalence for deterministic (real-time) one-counter automata @eiglptance via final
state for instance).

We will derive the following complexity results, assuming a standard input@ng, where
the counter valuesn, n are given in binary. In fact, the lower bounds are not based on using
largem, n: The lowerNL bound for equivalence of determininistic one-counter systems trivially
follows from the folklore digraph reachability problem and R&PACE lower bound for the
nondeterministic case was proven by Srba [175].

Hence all the results hold both for binary and unary encodings of thé¢ agmfigurations.

Theorem 4.2 ([16]) The problenBisi-OCSis PSPACE-complete. O

Theorem 4.3 ([16]) The problemBisI-DET-OCSis NL-complete. Moreover, given a deter-
ministic one-counter systef with &£ control states, if(0) ¢ ¢(0) thenp(0) %, ¢(0) where
¢ < pol(k) for a polynomialpol (that is independent @?). O

Our proof implicitly delivers to the following structural result.

Theorem 4.4 ([16]) Given a one-counter systebh= (Q, A, do, d>¢), the relation~ on T (P),
i.e. the sef{(p(m),q(n) | p(m) ~ q(n)} is effectively semilinear, with the description size
exponential in the size @. O

By ~ being semilinear we mean that the $ét:,n) | p(m) ~ ¢(n)} is the union of finitely
many linear subsets &f x N for each paimp, q. Recall that a subset C N™ is linear if there is
a base vectoh € N™ and period®1, ps, . ..,pe € N™ such thatd = {b+ ci1p1 + copa + -+ - +
cepe | e1,¢2,. .., ¢ € N}. Another view is that- can be described by a formula in Presburger
arithmetic.

We also consider the following regularity problems.

33

4 Equivalence checking of one-counter systems

REG-BISI-OCS

INPUT: A one-counter syster® and a configuratiop(m) of P.
QUESTION: Is there a statg in some finite transition system such thétn) ~ f ?

REG-DET-OCS
INPUT: A deterministic one-counter systef = (Q, A, dp, d~0), and a configuration
p(m) of P.

QUESTION: Is there a stat¢ in a finite transition system such thatmn) ~ f?

Our results are the following.

Theorem 4.5 ([16]) REG-BIsI-OCSis P-complete. O

Theorem 4.6 ([16]) REG-BIsI-DET-OCSis NL-complete.)

4.2 The underlying finite system and consistent colorings

In this section we recall the ingredients of the proofs which already apgea [100]. If not
said otherwise, we (implicitly) refer to a fixeddCS P = (Q, A, do, 9>0), Where|Q| = k. We
first introduce the finite transition systefp which underlies?, and the reachability distance of
configurations ofP to a (small finite) subséNC of configurations which are incompatible with
Fp. The equality of the distances pfm), ¢(n) to INC is a necessary condition f@(m) ~
g(n). Then we recall a natural correspondence between (bisimulation) redatiay) x N and
black-white colorings of the 3-dimensional spatex N x (Q x Q).

The underlying finite-state system Fp and the set INC

Definition 4.7 Given a one-counter systef= (Q, A, dy, o), theunderlying finite transition
systemFp is (Q,A, {—=| a € A}), whereq - ¢’ if, and only if, there is somg such that
(Q7 avjv q/) € 5>0- O

Intuitively speakingFp behaves liké® when the counter values are very large.

By just writing p (without any counter value) in such contexts we refer to the statethe
finite transition systen®». We easily observe thatm) ~,, p. Recalling Proposition 4.1(2),
we note that fok = |Q| we havep ~ ¢ if, and only if, p ~ ¢ if, and only if,p ~;_1 ¢. (Thus
~_1 coincides with~ in Fp.)

We now define the séNC as the set of configurations &f which are “INCompatible” with
Fp: when recalling that = |@Q| we viewp(m) as incompatible withFp if there is nog € @
such thatp(m) ~p ¢. The valuedist(p(m)) is the length of a shortest path in the transition
systemiT (P) starting inp(m) and ending in somg/(m/) € INC.

Definition 4.8 ([16, 100]) Assuming a one-counter systém= (Q, A, do, d>0), where|Q| = k,
we defindNC C @ x N anddist : Q x N — NU {w} as follows:

34

4.2 The underlying finite system and consistent colorings

o INCZ{p(m) € Q x N | Vg € Q: p(m) 4 qb,
o dist(p(m)) E'inf {£| Fw € A* : [w| = £ A p(m) ~% INC}, whereinf § = w. O
The following proposition is not difficult to prove.
Proposition 4.9 ([16]) The following holds:
1. If p(m) € INC thenm < k.

2. The membership INC (given? and p(m), is p(m) € INC ?) is P-complete; it iSNL-
complete whefP is a deterministic one-counter system. O

Figure 4.2 sketches a (shortest) patfrom p(m) to INC; we note that if, e.g.n = k + |u]
thendist(p(m)) < dist(q(n)), and thugp(m) +# ¢q(n) as the next lemma states; the lemma also
shows thap(m) ~ ¢(n) impliesp(m) ~ ¢(n) whenINC is unreachable from both(m) and

q(n).

m

P1,P2,P3, .- Pk

Figure 4.2: A path fronp(m) to INC

Lemma 4.10 ([16, 100])
1. If dist(p(m)) = ¢ < dist(g(n)) for somel € N, thenp(m) %1 g(n); hencep(m) ~
q(n) impliesdist(p(m)) = dist(q(n)).
2. Ifp(m) £=* INC, g(n) /=" INC (sodist(p(m)) = dist(q(n)) = w) thenp(m) ~ q(n)
if, and only if,p(m) ~i q(n). O

PROOF(SKETCH) Point 1. is immediate since Attacker can force the gaméi®©from p(m)
which then results in a pair of configurations that can surely not be bisimilar.

For Point 2. the “only-if"-direction is trivial. For the “if"-direction one ngrove that due to
~_1=~ In Fp we have that the relation

R = {(q1(m),q2(n2)) | q1(n1) ~k g2(n2) andqi(n1) /=" INC, g2(n2) /=" INC}

is a bisimulation. -

35

4 Equivalence checking of one-counter systems

(TYYY YY)
(o YoX YoI Y
L X Yol Yol)
‘leCooc000@
eeeO000
[T oI Yol 1)
[JeleY X Yol)
012 ...

— N

o

Figure 4.3: A colored plane for a pdip,)

Bisimulations and consistent colorings

We still refer to a fixed one-counter systgh= (Q, A, dp, d~0), where|Q| = k. Recall that
a bisimulation orf/ (P) is a relationR on () x N that satisfies certain closure properties. The
relation R is thus a subset di) x N) x (@ x N). We could depict suctR in Figure 4.1, e.g.
by adding special dotted arcs betwegm), ¢(n) for (p(m),q(n)) € R. But we use another
geometrical presentation of a relati@on @) x N. E.g., Figure 4.3 can be viewed as presenting
a (part of a) black-white coloring of points in the giidl x N, corresponding to a fixed pair
(p,q) € Q x Q: (p(m),q(n)) € R precisely for thos¢m,n) which are colored black. Putting
togetherk? such colored 2-dimensional nonnegative-integer grids, one for(@aghec Q x Q,
we get a coloring of the 3-dimensional grid, where tfeaXis has only:2 values. (We will later
partition this 3-dimensional grid as in Figure 4.5.)

We now formalize the discussed notions.

Definition 4.11 ([16]) For a (general) binary relatiom? on @ x N, by thecoloring x r we mean
the functionyr : N x N x (Q x Q) — {e,0} wherexr(m,n,(p,q)) = e if, and only if,
(p(m),q(n)) € R.

Given (a coloring)x : N x N x (@ x @) — {e,0}, by R, we denote the relatiof, =

{(p(m), q(n)) [x(m,n, (p,q)) = o}. 0

We note the one-to-one correspondengg;, = R andxg, = x.

We now introduce (local) consistency of colorings (given our fixed-omanter system), and
we easily note that bisimulation relations correspond to consistent coloRogghly speaking,
coloring (m, n, (p, q)) black is (locally) consistent ifm, n, (p, q)) (i.e., the pair(p(m), g(n)))
is covered by the neighboring points (i.e. pairs) which are colored black.

Definition 4.12 ([16]) A coloringy : N x N x (@ x Q) — {e,o} is consistent in a point
(m,n, (p,q)) if either x(m,n, (p,q)) = o, or x(m,n, (p,q)) = e and the following (bisimula-
tion) conditions are satisfied:

(1) if p(m) - p'(m + j) (recall thatj € {—1,0,1}) then there isq’(n + ;) such that
g(n) == ¢'(n+j') andx(m +j,n+ 7', (p',q)) = »;

(2) if g(n) - ¢'(n + j) then there ig’(m + j) such thatp(m) —= p'(m + j) and x(m +
g+, d)) =e.

36

4.3 Normal forms of paths

Thus, consistency ofin (m, n, (p, q)) is determined by the values pfon

: def
Neighbours(m, n, (p,q)) = {(m',n/, (¢,) | |m’ —m| < 1,|n' = n| <1}.
A coloring x is consistentf it is consistent in each poiritn, n, (p, q)). O

The following proposition is obvious.
Proposition 4.13 ([16])

1. R C (Q x N) x (@ x N) is a bisimulation if, and only ifyr is consistent. (Hencg is
consistent if, and only if?, is a bisimulation.)

2. The coloringy.~. (i.e. xgr whereR = { (p(m),q(n)) | p(m) ~ q(n) }) is the “darkest”
consistent coloring, i.e.: if is consistentang(m, n, (p, q)) = etheny..(m,n, (p,q)) =
°. Od

4.3 Normal forms of paths

In this section we note some “normal forms” of (shortest) path$ (%), for a one-counter
systemP = (Q, A, o, 0>0) With |Q| = k that we fix from now on.

We first capture the section content at an intuitive level. As suggesteidjbgser.2, a shortest
path fromp(m) to INC can assumed to be in the following normal form: it starts with a short
prefix, where “short” means “bounded by a polynomialkif then repeats a simple counter-
decreasing cycle (whem is large), and then finishes with a short suffix (which might reach
zero several times). Figure 4.4 illustrates a more general case, wheoufiiercvaluen in the
targetq(n) can be also large (unlike the casd N wheren < k). This also entails that the set
{m | p(m) —* INC} is “periodic” (for eaclp € Q). We now make these observations precise.

We start with introducing the restrictioA™s . of — which captures thpositive pathswhere
the counter value never becomes zero. We deffre inductively: if m > 1 thenp(m) —,
p(m); if m > 1andp(m) % ¢(n) —=, ¢'(n’) (Which entailsn,n’ > 1) thenp(m) %,
¢'(n'). By writing p(m) —*_ g(n) we mean thap(m) — q(n) for somew € A*.

We say that € AT is acycleif there is ag € Q such thaiy(m) — ¢(m + d) (for some
m € N, d € 7); dis called theeffectof the cyclev, called also thelropif d < 0 and theincrease
if d > 0. Acyclev € AT is asimple cycléf no proper subword of is a cycle.

The following proposition can be shown by a straightforward, though #ebitnical, proof
using a notion of a most effective (dropping) simple cycle on a péth) —, ¢(n) where
m > n + k% which has already been proven in [186]. An example is shown in Figure 4.4

Proposition 4.14 (A consequence from [186]fGivenp(m), ¢(n), if u is a shortest word such
that p(m) — q(n) (not necessarily(m) ——, q(n)) then there isw such thatjw| = |ul,
p(m) % q(n), and

o w = wi(v) wy(ve) 2ws, where

37

4 Equivalence checking of one-counter systems

° |w1] < ks,]w2] < k?3, ‘wg‘ < ks,
e v is a dropping cycle antb; | < k, and

e v9 is an increasing cycle an| < k.

prefix cycle down zero touching cycle up suffix

counter height

'q(n)

a(n'+2d)
q'(n'+d")
q'(n")

z(0) z'(0) ... time

Figure 4.4: A shortest path frop(m) to ¢(n)

We now fix a polynomiapoly, (k) (independent of th©CS P) whose existence is captured
by the following proposition. In factpoly,(k) € O(k?), but we do not perform a detailed

analysis. Recall again Figure 4.2.

Proposition 4.15 ([16]) There is some polynomipbly,, : N — N such that the following holds.
If p(m) —* INC thenp(m) — q(n) for someg(n) € INC, u = u;(ug)"us, andr > 0, where

(1) |u| = dist(p(m)),
(2) |urus| < polyy(k), and

(3) |ug| < k and eitheruy = € or ug is a dropping cycle with the drog € [k, —1].

One can thus writelist(p(m)) as a linear function inn where the coefficients and offsets are
polynomially bounded in the size of the one-counter system: more pycltése

m — C2

d

dist(p(m)) = c1 + dy

whered; = |ug| < k,1 <d <k, 0< ¢ <polyy(k), —polyy(k) < ca < polyy(k).

Now we make precise a (sufficiently small) periodicity{of | p(m) —* INC}.

Lemma 4.16 ([16]) Let us putA = k!. For each configuratiom(m) with m > k + poly, (k)

we havep(m) —* INC if, and only if,p(m + A) —* INC.

38

4.4 Initial space, belts, and periodic background

4.4 Initial space, belts, and periodic background

We now explorey... for a given one-counter systef = (Q, A, o, d=0) With |Q| = & (recall
Subsection 4.2); this gives rise to linear belts, as already noted and d4€®jri06, 100, 15].
By Lemma 4.10(1)p(m) ~ q(n) impliesdist(p(m)) = dist(q(n)). In casedist(p(m)) =
dist(g(n)) < polyy, wherepoly,, is from Prop. 4.15, this equality is only possible for polynomi-
ally many suctp(m), ¢(n).
For the infinitely many remaining pairs of configuratignis:), ¢(n) the equalityist(p(m)) =
dist(¢(n)) < w thus yields a “linear-belt constraint”

n o~ %m wherea, 3 € [1, k2], (4.1)
with an error, calledffset |n — %m\ < poly, (k) for a polynomialpoly,. We capture this in
Lemma 4.18, after introducing the notion of belts (cf. Figure 4.5).

Definition 4.17 ([16]) Assume integers, 3, h > 1 such thato and 3 are relatively prime. The
belt B(a, 5, h) is defined a3(a, 5,h) = {(m,n) € NxN:[n—Fm|< 1. By theslopeof
the belt we mean the (rational) valds the valueh is the (vertical)thicknesf the belt. O

The following lemma states that above some sufficiently large but polynomiallgdeasl
counter value each pajp(m), ¢(n)) having the same finite distancel®C lies in precisely one
of polynomially many belts, and moreover the different belts are so far éway each other
that local consistency (with respect to any coloring) of any point in theelait is not influenced
by any point of the other belt.

Lemma 4.18 ([16]) There are polynomialgoly; and poly, (independent of the one-counter
systenfP) such that:

(1) If max{m,n} > poly,(k) anddist(p(m)) = dist(¢(n)) < w then there are uniquely
determined relatively prime, 3 € [1, k2] for which (m, n) € B(a, 3, poly; (k)).

(2) If max{m,n} > polyy(k) and(m,n) € B(«, 3, poly; (k)) then for every pai{m’,n') €
B(a!, B, poly, (k)) for relatively primea/, 3’ € [1, k2] such thatg—: # 5 we havelm —
m/| >1or|n—n/| > 1. O

The next definition partitions our 3-dimensional grid (cf Figure 4.5); reare further we
assume thatoly,, poly;, poly, are fixed polynomials guaranteed by Lemma 4.16 and 4.18, and
also thatpoly, (k) > k + polyy (k) (for all k).

Definition 4.19 ([16]) We partitionN x N x (@ x @) into the following sets:
e INITIAL SPACE all (m,n, (p,q)) such thatm,n < poly, (k).

e BELTSPACE all (m,n, (p, q)) outside the initial space such th@ah, n) € B(a, 3, poly; (k))
for some (relatively primey, 3 € [1, k?].

e BACKGROUND: all remaining(m,n, (p, q)). 0

39

4 Equivalence checking of one-counter systems

intitial spgce. | -~~~ — ce

(ax ar)
<q€‘jl(172¢}1)
Figure 4.5: Partition of our 3-dimensional grid

N

We easily observe that we can compute the belt-points in the vertical cutigemg (cf.
Figure 4.6):

Proposition 4.20 ([16]) There is a polynomial-time algorithm which, giverO&S P andm,
computes all (polynomially many) poirs:, n, (p, q)) in INITIAL SPACEand BELTSPACE. O

We note that Lemma 4.18 implies for eagh, n, (p, ¢)) in BACKGROUND thatp(m) ~ ¢(n)
if, and only if, p(m) ~j q(n) andp(m) +—* INC, ¢(n) /—* INC. Hence Lemma 4.16 then
implies the following corollary.

Corollary 4.21 ([16]) The coloringy.. is periodic onBACKGROUND, with the periodA = k!
in both the horizontal and vertical directions, i.e.:(ih, n, (p, ¢)) and(m + A, n+ jA, (p,q))
belong toBACKGROUND thenx..(m, n, (p, q)) = x~(m +iA,n+ jA, (p,q)). O

4.5 A polynomial space algorithm for bisimilarity of
one-counter systems

Due to the general faétSPACE = NPSPACE it suffices to show aondeterministipolynomial
space algorithm for B1-OCS, as well as for some subproblems like the following one. Recall
thatINC can be constructed in polynomial time (Prop. 4.9).

Proposition 4.22 ([16]) There is a polynomial time algorithALG; which, given a one-counter
systenP and a configuratiorp(m), decides ifp(m) —* INC. O

In fact, later we strengthen the claim but the above form of Prop. 4.22ffigient for the
moment.

Corollary 4.23 ([16]) There is a polynomial space algorithL G5 which, given a one-counter
systen? and (m, n, (p, q)) in BACKGROUND, decides ifp(m) ~ ¢(n) (i.e., if p(m) ~i q(n)
andp(m) /=" INC, g(n) /=" INC). O

40

4.5 A polynomial space algorithm for bisimilarity of one-counter systems

NN

(p.a) m

Figure 4.6: Vertical window of width 3

We now consider the following nondeterministic algorithmm@for Bisi-RocCA; it uses the
algorithm ALG, from Corollary 4.23 as a subprocedure, and refers to the polynopuals,
poly, which were fixed before Definition 4.19. (Recall Figure 4gwly, (k) is the vertical
thickness of the belts angbly, (k) determines the initial space.)

Before we give the algorithm for decidingi®-OCS in polynomial space, let us explain it
on an intuitive level. In case the initial pair of configurations lies inCB GROUND, we call
ALG, to get the definite answer. So let us hence assume the initial pair of cationg lies
in INITIAL SPACE U BELTSPACE. The algorithm will guess a coloring of the 3D space that is
locally consistent and is compatible with the determined colors from the baahkgrghat we
obtain quickly from A.G5,).

Starting fromr = 0 our algorithm will guess some subset of the “vertical window” of points
(m,n, (p,q)) with m = r that are in NITIAL SPACEU BELTSPACE. Since there are only poly-
nomially many belts each of polynomial thickness and since the initial area isquolghy
bounded, only a polynomially sized subset thus has to be guessed. Ehis idhat precisely
the points in this subset will be the points in this small vertical window that aresgpd to be)
colored with colore, thus all other points in the same vertical window will be colosed

Providedr > 1 our algorithm A.G will store in its memory only the guessed subsets of
exactly three such consecutive windows, namelyrfer 1,r,r 4+ 1 as depicted in Figure 4.6.
The algorithm then efficiently verifies on the fly that these guessed siudysdtscally consistent
possibly by looking at the background coloring dictated hyGA. If local consistency fails, then
our guessing was wrong. Befords then increased by one, the subset for window 1 can
safely be deleted from the memory and the new subset of the vertical wiprdey) +1 = r+2
is guessed (but the subsets for windovwendr + 1 are kept). Since the background coloring is
periodic and the thickness and number of belts is polynomially bounded,ammprove that if
such a guessing of subsets of three vertical windows can be sudbesafried through without
ever violating local consistendgr exponentiallynany consecutive starting fromr = 0 (this
exponential bound will be denoted’ below), then this guessing can in fact be prolonged ad
infinitum and thus we have guessed a coloring that is locally consistent. @$eoin our
guessed coloring, we have to make sure that the initial pair of configusai@olorece. Let us
list algorithm ALG.

41

4 Equivalence checking of one-counter systems

Algorithm ALG for deciding BsI-OCS

Input A one-counter syster® = (Q, A, dy, d~0), and two configurationgy(mg), go(no).

1. If (mg,no, (po,qo)) is in BACKGROUND (recall Proposition 4.20) then useL8, and
otherwise go to the next step.

2. Compute the sufficiently large and exponentially boundé@wve omit the exact value of
A’ here)
and forr = 0,1,2, ..., max{polys(k), mo} + A’ do the following (cf. Figure 4.6):

e Using the algorithm from Proposition 4.20, nondeterministically choose aesubs
GUESS. of the intersection of the vertical cut at pointwith the belt and/or initial
space; hence

GUESS. C {(m,n,(p,q)) |m=r}nN (INITIAL SPACEU BELTSPACE) ;

its elements are deemed to be colored black while the other points in the initial and
belt space of this vertical cut are white; the color of the backgroundp@inieemed
to correspond tg.. If r = mg then(mog, no, (po, go)) Must be in QESS..

e If » > 1 then check consistency of all points inuBss._1, using the chosen
GUESS._, (if r > 2), GUESS._1, GUESS., and the assumeg.. on BACKGROUND
(recall Definition 4.12). This task can require to call@y for finding the value of
X~ for the points in BBCKGROUND which are neighbors of the initial and/or belt
space. If a consistency test fails, this run affails.

3. (If r = max{polyy(k), mo} + A’ is successfully processed then)
halt with the answepy(mg) ~ go(no).

Lemma 4.24 ([16]) ALG is a nondeterministic polynomial space algorithm decidBigi-
OoCs O

4.6 A nondeterministic logspace algorithm for equivalence
of deterministic one-counter systems

We now assume a fixaedeterministicOCS P = (Q, A, o, d-0), Where|Q| = k, generating the
deterministic transition systefi(P) = (Q x N, A, {-%+| a € A}. We note that the transition
system7 (P)x T (P), where(p(m), g(n)) — (¢’ (m'), ¢'(n)) if, and only if, p(m) % p/(m”)
andg(n) % ¢/(n'), is also deterministic. We easily observe thét) % ¢(n) if, and only

if, there is somev € ©* such that(p(m), g(n)) —= (p'(m’), ¢ (n')) wherep'(m') 1 ¢'(n').
Hence the question of equivalence]iiiP) reduces to a reachability question in the deterministic

transition systeny (P) x T (P). We write a path(p(m), ¢(n)) — (p'(m’),¢'(n)) rather as
(m,n, (p,q)) — (m/,n',(p,q")), referring to our3-dimensional space. Figure 4.7 sketches

42

4.7 Regularity problems

:
{/::;ii‘;‘ﬁ

N
Figure 4.7: Examples of paths ih(P) x T (P) related to a paip(0), ¢(0) and various words
w € A*.

polyy (k)

polys (k)

some such paths when starting with= n = 0. (The figure is simplified, it does not show the
third dimension; hence the respective pairs of states are not depicted.)

A crucial fact for our result can be informally expressed as followsieWa (long) segment
of such a path is inside some belt with sloge(wherea, B € [1,k?)) then the segment can
be viewed as a computation-pathafedeterministic one-counter system: we can imagine that
the current pointm, n, (p, q)) is represented by: in the counter, whilép, ¢) and the (rational)
offsetn — %m (with the absolute value bounded §|;mly1 (k)) is stored in the finite control-unit.
The number of possible offsets is polynomially bounded,iand a long path that corresponds
to w inside the belt can be replaced with a normal-form path that correspond&tg”vs, by
using (the “going up” form of) Proposition 4.14, whergis a cycle for the deterministioCS
with the (polynomially) larger set of control states. In other words, any mingliséinguishing
witness can visit each belt only for polynomially many steps.

Using the above fact, a straightforward analysis shows that the shameds withessing
nonequivalence are polynomially bounded, in the case of nonequiyeen in INITIAL SPACE.
If we also allow largemn, n (written in binary) in the inpup(m), ¢(n) then a shortest witness
of the factp(m) + ¢(n) can be exponential (in the input size) but it is also at most exponential
and its existence can be verified in nondeterministic logarithmic space, usingreal forms
of paths and standard algorithms for arithmetic operations. These areythegkedients for
proving Theorem 4.3.

4.7 Regularity problems

We now prove Theorems 4.5 and 4.6. We assume a fX&édl with k states. The next propo-
sition is a variant of saying thai(m) is nonregular if, and only if, the sdy(n) | p(m) —*
q(n) —* INC} is infinite.

Proposition 4.25 ([16]) p(m) is not regular if, and only if, there is@ € @ such thap(m) —*
q(m + 2k) —* INC. O

43

4 Equivalence checking of one-counter systems

ProoOF We recall that ifg(n) /—* INC theng(n) ~ r for somer in Fp. Hence “only if” is
obvious.

For the “if” direction we note that a pagi{m) — ¢(m-+2k) —2» INC can be writtemp(m) %
a(m+k) 23 g(m +2k) 25 ¢(m + k) =3 INC where all states=configurations in the
segmenty; (m + k) =3 g(m + 2k) 225 ga(m + k) have the counter values at leastt k. The
first segment must contain an increasing cycle, the second a droppiley 8y pumping the
cycles appropriately we get infinitely many states reachable fronm) which have ever larger
distance tdNC. -

It is not surprising that membership problem 1&/C is P-complete for (generalpCS, and
NL-complete for deterministi©CS. Hence from Proposition 4.25 one can easily show that the
problem REG-BIsI-OCS is inP, and REG-BIsI-DET-OCS inNL. Since REG-BISI-DET-OCS

is obviouslyNL-hard (by a reduction from the reachability in directed finite graphs), wih th
next lemma one can finish the proofs of Theorems 4.5 and 4.6. In the lemmayvese®CS

with weak zero-testdike in Petri nets): we say that@CS P = (Q, A, dy, d~0) iS aone-counter
netif for x € {0,1} we have(q, a, x,q’) € d only if (¢,a,z,q’) € d-o.

Lemma 4.26 ([16]) REG-BIsI-OCSis P-hard, even when restricted to one-counter netsd

4.8 Equivalence of general deterministic one-counter
automata

Let us discuss the crucial technical difficulties of proving\dnupper bound for the equivalence
of deterministic one-counter systems/automata in whittansitions may occur (in a determin-
istic fashion, of course); we call thedocain the following.

Doca were first studied by Valiant and Paterson in 1975 [186]; theyatidhat equivalence
is decidable in tim@P(vVleen) and a simple analysis of their proof reveals that the equivalence
problem is inPSPACE. The problem is easily shown to & -hard, there has been an exponen-
tial gap for this problem. There were attempts to settle the complexity of the docalemce
problem but the problem proved to be intricate. Though doca are perttd@ notorious com-
putational device, their close relation to finite automata and deterministic pushaawmata
(dpda) has motivated us to tackle this research problem. Establishiggmpleteness for the
real-time case as discussed in Section 4.6 was a first step but it is far lramfand how the
proof can be extended to the general case.

One reason of the intricacy seems to be that a doca can exhibit a behakiexponential pe-
riodicity, demonstrated by the following example (taken from [186]). We &atemily (P,,)n>1
of docas, where each do@, accepts the regular language = {a"b; | 1 < i < n,m =
0 (modp;)}, wherep; denotes the!" prime number. The index of the Myhill-Nerode congru-
ence ofL,, is obviously22(") but we can easily construct sugh with O(n?logn) states. The
example also demonstrates that doca are exponentially more succint thagdhéime variant,
since one can prove that real-time doca accepfipgiave2¥(") states. Doca are also strictly
more expressive than their real-time variant. Analogous expressg/andssuccinctness results
hold for dpda and real-time dpda, respectively.

44

4.8 Equivalence of general deterministic one-counter automata

When thinking of an underlying finite transition system of a general detertiginise-counter
system one notices that it has exponentially many states, since the resslueoliulo théeast
common multipl®f all popping cycle counter effects has to be taken into account. Inecent
work, we were able to cope with this problem.

In [17] we show that language equivalence of doddliscomplete (while language inclusion
is well-known to be undecidable); this closes the exponential complexity gam#s existed
since the 1970s when doca were introduced. Our approach helpsweramdated questions
as well; e.g., regularity of the language accepted by a given doca ciéy sresvn to beNL-
complete.

We remark that in [12, 159] it is stated that equivalence of doca candéetkin polynomial
time. Unfortunately, the proofs provided in [12, 159] were not exaough to be verified, and
they raise several questions which are unanswered to date.

Overview of the proofin [17]. Instead of defining doca clasically as restricted dpda, we use a
convenient equi-succinct way where we partition the control statesifasdhe configurations)
into stable statesin which the automaton waits for a letter to be read, and iag®t states
in which the counter is reset to zero; in the latter case the residue classairtieat counter
value modulo the number, calledperiod specified by the current reset state determines the
successor (stable) state. The periods correspond to the lengthssadallaspping-cycles. We
explore in [17]trace equivalencei.e. the classical language equivalence where all states are
viewed as accepting. We use a natural notion ofatyeivalence levethe eglevelfor short, of
two configurations, corresponding to the length of a shortest norvagquoce witness word, and
stipulated to bev when the configurations are equivalent. For proving this result, we e
the eqlevels of two non-equivalent zero configurationssanall, by which we mean that they
are bounded by a polynomial (in the size of the given doca).

The only ingredient of our proof which we take directly from the previaasks is acyclic
form of shortest positive paths in the transition systé(P) generated by a dod@; this basic,
but technical, fact was proven already in [186].

The central notion in our proof in [17] is trextended deterministic transition systém; (P)
that is attached to a doda Besides the standard transition systgifP), the extended system
includes an underlying finite deterministic transition system that might be erpalhe large
in the size of P and that captures th&pecial modéehavior of P. The special mode (which
can be seen as an abstraction of the behavior of the one-counter fystarty remembering
the residue class with respect to every occuring period of the reses,shaitenot the actual
counter value itself) mimics the normal mode and is switched to the normal mode wehene
reset state is visited. The only difference is that when the zero counter igareached (without
a reset) then a multiple of all periods of the reset states is silently added touhtigathus
the counter never becomes zero in the special mode (until a reset stattei &gl the normal
mode applies). The above mentioned special finite system arises natulyemote that the
behavior of a special mode configuration depends on the residuesclaisdee counter value
modulo the periods of the reset states, and not on the concrete codnteitself.

Each normal configuratiop(m) (wherep is the control state anth is the counter value)
thus has the special mode counterpgdrh). Thecrucial noveltyof our approach consists in an
explicit definition of the abové.,:(P) and in a detailed analysis of thiiadruple(b, ¢, r, 0)
associated with any pair of configuratiofggm), ¢(n)) as follows (herdev stands foreqgleve):

45

4 Equivalence checking of one-counter systems

b = lev(p(m), q(n)) (Basic), ¢ = lev(p(m), 5(m)) (Left), r = lev(g(n), g(n)) (Right), o =
lev(p(m),q(n)) (mOd). A simple fact thatnin{b, ¢, r, o} must be equal to at least two compo-
nents of(b, ¢, r, o) turns out to be very useful.

For each non-equivalent pdipy(myo), go(no)) with a shortest non-equivalence witness word
w we defing(p;(m;), gi(n;)) as the (stable) pair such that(m) is transformed t®;(m;), and
qo(no) is transformed tq; (n;) after having read the prefix of of length:. Each(p;(m;), gi(n;))
has the associated quadrupbe ¢;, r;, 0;), and we note thai; = by — i. Though we have the-
oretically exponentially many pair&(m), g(n)), it is easy to show that the set of eglevels
{e | e = lev(p(m),q(n))} is small (i.e., its cardinality is bounded by a polynomial); in other
words, there are only few possible valugs A straightforward analysis also shows that for
each natural numberthere are only few(m) such thatev(p(m), p(m)) = g. By using such
observations we derive thatify = ng = 0 then there are only fewsuch tha¥; # r;. Roughly
speaking{; = r; < w implies that the counter values; andn; are in one of only few linear re-
lations. Hence if our sequené€ey(mo), go(no)), (p1(m1), q1(n1)), (p2(m2), g2(n2)), ... (with
mg = ng = 0) were long then it would have a long segment whgre- r; and the valuesn;,
n; are increasing on the whole. We contradict the existence of such a Igngeseby another
use of cyclicity and the properties of the quadrugled, r, o).

A complete version of this work is available [16].

Theorem 4.27 ([17]) Equivalence of deterministic one-counter automatdliscomplete. O

46

5 Branching time model checking on
one-counter systems and a new lower
bound technique

In this section our starting point is to analyze the computational complexity of Insbdeking
CTL on one-counter systems and succinctly presented one-counter systems.

In Section 5.1 we provide a fixed one-counter system for which modelkatg CTL is
PSPACE-hard. Complementing the latter lower bound, we discuss an upper bosuld ire
Section 5.2: we provide a polynomial time algorithm for model checking fixedamunter sys-
tems against inpuE TL formulas that satisfy a certain syntactical restriction — they have to have
a fixed “leftward until depth”, a notion to be made more precise below.

In Section 5.3 we discuss a new technique for proving lower bounds whishinspired
from two deep results from complexity theory. This technique is applied teeptiat there
is already a fixedCTL formula for which model checking one-counter system®3$$ACE-
hard; a correspondingBXPSPACE-hardness result is proven for succinct one-counter systems.
Moreover, one can prove thBF model checking of one-counter systems is hardPdf. We
further apply the latter lower bound technique in Section 5.4 to prove thaPBiA\CE-hard
to decide whether one can reach a specific zero configuration in acomgec Markov decision
process with probability arbitrarily close to In Section 5.5 we apply our lower bound technique
to prove that (i) the data complexity of model checki@@L on 2-clock timed automata is
PSPACE-hard and (ii) reachability of very basic 2-clock timed automata with modulo tests is
PSPACE-hard.

Bibliographic notes. The results in this chapter have been published in [79] (STACS 2010)
and will appear as a journal version in [80] (SIAM Journal of Compytingth in joint work

with Markus Lohrey. The only exception is tl&XPSPACE-hardness hardness result of model
checking succinct one-counter systems against fiXed formulas which have been published
in [73] (ICALP 2010) in joint work with Christoph Haase,&duaknine and James Worrell.

5.1 Hardness of Expression Complexity

The goal of this section is to prove that model checkind- is PSPACE-hard already over a
fixed OCS. The overall proof will be provided by a reduction from the well-knoR$PACE-
complete problem to decide validity of quantified boolean formulas (QBRped#adsof discussing
all details here, we only pinpoint the decisive step in the lower bound pkéost crucial is to be
able to compute a family & TL formulas(;);>1 such that over the fixe®, that is depicted in
Figure 5.1 we can express (non-)divisibility By We implicitly assume that each control state

a7

5 Branching time model checking on one-counter systems and a new lowed bechnique

Figure 5.1: The one-counter systé?p for which CTL model checking i®SPACE-hard.

z (like g, f,...) in Py has a self-loop that is labelled hyand that does not change the current
counter value (these loops aretdepicted in Figure 5.1). Moreover the transitions that one can
see in Figure Figure 5.1 are all labeled with some dummy symboB.dayour formulas below,
we will useEX as an abbreviation fai$) and thatc is an abbreviation fofz)true: in particular
the formulaz holds ing(n) if and only if ¢ = x.

We need the following simple fact which characterizes divisibility by powéte/o.

Fact 5.1 ([80]) Letn > 0 and: > 1. Then the following two statements are equivalent:
e 2/ dividesn.
e 2=t dividesn and|{1 < n’ < n | 2¢~! dividesn'}| is even. m)

The set of action labels d®, in Figure 5.1 coincides with its control states plus the dummy
symbol$.

Note that botht and¢ are control states dPy. Now we define a family of£ TL formulas
(vi)i>1 such that for each € N we have that

e (T(Po),t(n)) = ; if, and only if, 2¢ dividesn and
e (T(Po),t(n) k= ; if, and only if, 2¢ doesnotdivide n.

On first sight, it might seem superfluous to let the control stagpresent divisibility by powers
of two and the control stateto represent non-divisibility by powers of two sin€d L allows
negation. By making use of Fact 5.1, we construct the formpjasductively. However the fact
that we havenly onefamily of formulas(y;);>1 to express both divisibility and non-divisibility
is a crucial technical subtlety that is necessary in order to avoid an erfiabblowup in formula
size: since the size af; has to be polynomially bounded inwe simply cannot afforg; to
appear twice in an inductive definition gf;, ;. First, let us define the auxiliary formulas
test=tVtandy, = qoV q1 Vg2V g3. Think of o, to hold in those control states that altogether
are situated in the “diamond” in Figure 5.1. We define

o1 L testA EX(f AEF(f A -EXg)).

48

5.2 Upper bounds for CTL model checking

Now assume > 1. Then we define

p; = testA EXp;, where
i = E(ps ANEXpi-1)U(q0 A ~EXq1).

Before we state thap; indeed expresses (non-)divisibility in Lemma 5.3, let us provide some
informal explanation. Observe that can only be true either in control stater ¢. Note that

in the formulay; the formula right to the until symbol expresses that we aregyiand that

the current counter value is zero. Also note that the formula left to the ymtibsl requires
thaty, holds, i.e., we are always in one of the four “diamond control states"tHeravordsu;
expresses that we decrement the counter by moving along the diamona staitr (by possibly
looping) and always check EX¢; 1 holds (and hereby jumping backt®r ¢ to check ify;
holds), just until we are igy and the counter value is zero. Singg ; is only used once ii;,

we get:

Fact 5.2 ([80]) |¢i| € O(i). O

The following lemma states the correctness of the construction.
Lemma 5.3 ([80]) Letn > 0 andi > 1. Then
(1) (T(Po),t(n)) = ¢ if, and only if,2¢ dividesn.

(2) (T(Po),%(n)) = ¢; if, and only if,2! does not divide:. O

Building upon the above-mentioned gadget that allows us to test (nois#plity by powers
of 2, we can provide (still with quite some technical effort) a polynomial time redadtiom
QBF to model checking the fixe®, of Figure 5.1.

Theorem 5.4 ([80]) For the fixedOCS P, that is depicted in Figure 5.1 the following problem
is PSPACE-hard.

INPUT: ACTL formulag.

QUESTION: Does7 (Py), f(0)) = ¢ hold? O

5.2 Upper bounds for CTL model checking

When inspecting th@SPACE-hardness proof for the expression complexity of model checking
CTL on fixed one-counter systems in the last section, we needed to constmntlds that
had a non-constant nesting of the until operator. This section complemenlattir result
by providing a polynomial time algorithm for model checking fixed one-causystems with
respect taCTL formulas whose leftward until nesting depth is constantly bounded. Edrla

49

5 Branching time model checking on one-counter systems and a new lowed bechnique

formulay we inductively define itéeftward until depthud(y)

lud(true) = 0
ud(—¢) = lud(p)
lud(p1 A p2) et max{lud(¢1), lud(p2)}
wd((@)e) = lud()
lud(Ep1Ugps) def max{lud(¢1) + 1, lud(p2)}
lud(EgWUp2) %' max{lud(p1) + 1. lud(2)}

Our main result states that model checking each fixed one-counter sygéenst inputCTL
formulas of fixed leftward until depth is decidable in polynomial time. Its prodfdased on
a combinatorial analysis how for each control statf a one-counter systef@ and for each
CTL formulay the set{n € N | (T(P),q(n)) = ¢} behaves: one can prove that this set is
ultimately periodic with an offset and period that is bounded polynomigpjrand exponential
only in|P| + lud(yp).

Theorem 5.5 ([80]) For every fixed one-counter systé@frand everyk € N the following prob-
lem is decidable in polynomial time:
INPUT: A stateg(n) of 7(P) and aCTL formulay with lud(y) < k.
QUESTION:(T(P),q(n)) E ¢? O

Since evenEF formula can be seen ag@ L of leftward until depth at most one, we obtain
the following corollary.

Corollary 5.6 ([80]) EF model checking for each fixed one-counter system is decidable in poly-
nomial time. O

5.3 A new lower bound technique

In this section we first concern ourselves with model checkixed CTL formulas. For this we
develop a lower bound technique that can also be used for other selitiagapdel checking or
reachability of (extensions of) timed automata or deciding reachability obgsdtivone-counter
Markov decision processes. Before we discuss the technique, wd taefly like to discuss
why we are convinced that such a new technique is necessary, in fartanprovingPSPACE-
hardness for model checking fixéd'L formulas on one-counter systems. Let us describe the
difficulties when aiming to provBSPACE-hardness in two standard ways: either reducing from
QBF or reducing from the membership problem of linearly space boundedgimachines.

Firstly, when model checking a fixedTL formula, one cannot expect a straightforward re-
duction from QBF in which th&€TL formula depends on the QBF formula, simply because the
number of nested negations of a fixéd@L formula is of course fixed again. The situation for
model checking the modal-calculus is somewhat different since a single fixed point operator
can indeed mimic alternation.

50

5.3 A new lower bound technique

Secondly, let us discuss the hurdles when reducing from the wordepnadf a fixed linearly
space bounded Turing machivld on some inputv € {0,1}". Essentially such a potential
reduction has to provide a way to modify the current configuration (whielg@n a word from
{0,1}", say). But how can we encode such a configuration on a counter?inmpitant to
note that one can express already with a fi¥#dformula some exponentially big periodic
behavior on the counter. More precisely, there exists already a Ekefdrmula ¢ such that
for some control state over some one-counter systehof sizem we have tha{n € N |
(T(P),q(n)) E ¢} is ultimately periodic with exponential periodicity (in): simply introduce
O(y/m) cycles toP each of pairwise different prime number lengths and let the formula
express that the current counter value is a multiple of all these prime numbleis way of
enforcing large values naturally leads us to the following definitionspléenote the™ prime
number. It is well-known thap; is polynomially bounded in; hence it requires onl@(log i)
bits for representing th&" prime in binary.

For a numbef < M < [, p; we define theChinese remainder representati@RR,,, (M)
as the boolean tuple

. 1 if M modp; =r
CRR(M) = (@ir)ienimlosr<pi With i = {O otherwise.
Usually the Chinese remainder representatioh/as the tuple(r;);c(1), wherer; = M modp;.
Since the primeg; will be always given in unary notation, there is no essential differemee b
tween this representation and our Chinese remainder representation.

In the spirit of proving lower bounds, the Chinese remainder repregamtaf a number is a
potential “data-structure” that allows s retrieveinformation about an object out of exponen-
tially many (depending on the input sizg via fixed CTL formulas. We emphasize the word
retrieve here since the crucial point is that it is not all clear howrtodifya number: Assume
we encoded the current configuration/ef in Chinese remainder representation and one would
want to flip thei™ component of the boolean tuple, this would amounntdtiplyingthe current
counter value with a huge number. However, in a one-counter systegaaranly increment or
decrement the current counter value or leave it as is. Analogously,eéhaeded a configuration
from {0, 1}" classically, i.e. by the counter whose value would be betweerd2" — 1, and we
would like to switch the™ bit from 0 to 1, we would have to ad@’ to the counter, which one
cannot achieve in one step with a one-counter system (only with a suocieatounter system)
and also not easily (if at all) in multiple steps without influencing the other bitipas.

5.3.1 Hardness of data complexity

The lower bound technique we develop is inspired by two deep resultscioamlexity theory.
Thefirst result, due to Chiu, Davida and Litow, states that one can transform a CRRseation

very efficiently into a binary representation: we denotdiy,,, (V) them least significant bits

in the binary representation af € IN.

Theorem 5.7 ([43]) There is a logspace-unifordC!-circuit family (B ((i.r)ic[1,m],0<r<p;))m>1

51

5 Branching time model checking on one-counter systems and a new lowed bechnique

such that for everyn > 1, B,,, hasm output gates and

V0 < M <[] »i : Bn(CRRy(M)) = BIN,,, (M mod2™).
=1

By [91], we could replace logspace-unifo€ !-circuits in Theorem 5.7 even ByLOGTIME-
uniform TC-circuits. The existence of B-uniform NC!-circuit family for converting from
CRR-representation to binary representation was already shown in [9].

The second resultfrom complexity theory we use is the conceptsafrializability of com-
plexity classes. Intuitively, a complexity claSs is calledC»-serializable (wheré€, is another
complexity class) if every languadec< C; can be accepted in the following way: There exists a
polynomialp(n) and aCo-machine (oiC;-circuit family) A such that: € L is checked ireP(121)
many stages, which are indexed by the strings ffom }»(=). In stagey € {0, 1}, A gets
from the stage indexed by the lexicographic predecesspaabnstant number of bits, . . . , b.
and computes from these bits, the indeand the original input: new bitsb, . .., b, which are
delivered to the lexicographic next stage. Cai and Furst proved®8RACE is P-serializable
[35]; in [90] Hertrampf, Lautemann, Schwentick, Vollmer and Wagnerg@ed this to prove
that AC®-serializability is sufficient, cf. [193]. So let us state this theorem again.

Theorem 5.8 ([90]) PSPACE is AC’-serializable. O

It is not stated in [90, 193] but not hard to prove thagspace-uniformAC® suffices for
serializingPSPACE.

For our purpose, a slightly different definition AC°-serializability is useful: A language
L is AC’-serializable if there exists an nondeterministic finite automatasver the alphabet
{0, 1}, a polynomialp(n), and a logspace-unifordC°-circuit family (Cy,),>0, whereC,, has
exactlyn + p(n) many inputs and one output, such that for every {0, 1}" we have:

rel <][] Cunla,y) €L(A), (5.1)

where T]” is ordered with respect to the lexicographic order{on1}?(™) and for everyy
{0,137, Cy(2,y) is either0 or 1 (hence,[T, g 130 Cn(,y) is a binary string of length
2P(")). We prove in [80] that this definition oACC-serializability is equivalent to the one in
[90].

Combining the efficient translation from Chinese remainder representatioinaoy repre-
sentation of a natural number (Theorem 5.7) allows us to restate a vdrgantalizability along
Theorem 5.8 that is more tailored towards our purposes of prasRACE-hardness of model
checking fixedCTL formulas over one-counter systems and related verification problems.

Theorem 5.9 ([80]) For every languagd. C {0, 1}* from PSPACE there exists a polynomial
p(n) and a nondeterministic finite automatdnover the alphabef0, 1} such that the following
holds: From a given input € {0,1}* with || = n one can construct in logspace a boolean
formula F* with propositional variables;; . (i € [p(n)] and0 < r < p;) such that:
2m—1
zeL < [] F(CRR,(M)) € L(A). (5.2)
M=0

52

5.3 A new lower bound technique

PrROOF(SKETCH) The formulaF essentially consists of the composition of the cir€njtfrom
(5.1) (which can be represented as a boolean formula) and an ajpeaprcuit B,,, from The-
orem 5.7 (which again can be represented as a boolean formula). n

The proof of the following theorem, stating that the data complexity of modeikihg CTL
on one-counter systemskSPACE-hard, uses the characterization provided in (5.2).

Theorem 5.10 ([80]) There exists a fixedTL formula of the formEGy, where) is an EF
formula, such that the following problemRSPACE-complete:

INPUT: A one-counter systef with control statey.

QUESTION: Doeg(0) = EG# hold inT(P)? O

PROOF(SKETCH) One can construct in polynomial time a one-counter systethat uses its
counter to represent thel from (5.2). The states of the NFA of P are represented in con-
trol states ofP. Moreover, when feeding the simulation of the NFAwith the current bit
F(CRR,,(M)), one needs to simulate the evaluation of the boolean forfwa CRR,,,(M).
The evaluation off'(CRR,,,(M)) can be done by adding tB’s control states a possibility of
traversing the syntax tree @f: The actual evaluation of' can be achieved by traversing this
syntax tree which in turn can be accomplished by a fikédl formula — evaluating the atomic
subformulas ofF’ boils down to answering questions of the kind whether the current counter
value is congruent; modulop;, which is easy to check by introducing a popping cycle of length
pi into theOCS. After the bit F'(CRR,,(M)) has been obtained, the NFAIs fed with this bit
and M is incremented by one and the simulation continues driti= 2™ — 1 holds (this can be
checked analogously). n

By only making use of the efficient translation from Chinese remainder toybiepresen-

tation (Theorem 5.7) we can prove that model checlEiRgn one-counter systems is hard for
PNP,

Theorem 5.11 The following problem i®\P-hard:
INPUT: A one-counter systef, a control state; of P and anEF formula .
QUESTION: Doeg(0) = ¢ hold inT(P)? O

PROOF (SKETCH) We reduce from théNP-complete problem Mx-LEX-SAT which asks
whether the lexicographically maximal satisfying truth assignment of a gigetehn formula
a(z1,...,x,) assigns the least significant variablgto 1. There is obviously a correspondence
between the set of all truth assignmefiis1}{#1-#»} and{0,...,2" — 1}. In order to obtain
the naturalj € {0,...,2" — 1} that corresponds to the lexicographically maximal truth assign-
ment we jump (via théeF operator) fromg(0) to some configuratio’ (k) and test whether

k = j as follows: (i) test whethet < 2™ by testing whether one cannot subtract freraome
number such that the result 28, (ii) test whether the truth assignment that corresponds to
satisfiesy, (iii) test whether there does not exisk’awith k < k' < 2" whose truth assignment
satisfiesy in analogy to (ii), and finally (iv) test whether the least significant bit &f 1. Points

(i) to (iii) can be done by evaluating approprid&Eg formulas that mimic a boolean formula that
one obtains from th& C! circuit from Theorem 5.7 (the translation from Chinese remainder
presentation to binary presentation), whereas Point (iv) is easy. n

53

5 Branching time model checking on one-counter systems and a new lowed bechnique

It is not clear whethePNP-hardness already holds for a fix&F formula. For fixedEF
formulas we were only able to prove hardnessHpF and containment iRNP [82] (we discuss
EF model checking on one-counter systems in Chapter 6).

In [73] we have studied the data complexity of model checKifid. on succinct one-counter
systems and proved that itEXPSPACE-complete. The proof dEXPSPACE-hardness is again
inspired by serializability arguments stating tBXtPSPACE is PSPACE-serializable (the conca-
tentation in (5.1) now involves doubly exponentially many numbers). Howésrtechnically
much more involved than tHeSPACE-hardness proof of the data complexity of model checking
CTL on (non-succinct) one-counter systems. The main technical difficulty isrttzasuccinct
one-counter system of sizethere are onlyO(n) strongly connected components (in the un-
derlying finite automaton describing the system) implying that one can test ditysdmly of
O(n) many primes.

Theorem 5.12 ([73]) There exists a fixed@TL formula ¢ such that the following problem is
complete foEXPSPACE:

INPUT: A succinct one-counter systdtrand a control state of P.

QUESTION: Doeg7 (P), ¢(0)) = ¢ hold? O

5.4 Reachability objectives on one-counter Markov decision
processes

Markov decision process€BIDPs) extend classical Markov chains by allowing so cafied-
deterministic verticesln these vertices, no probability distribution on the outgoing transitions
is specified. The other vertices are calfgdbabilistic verticesin these vertices a probability
distribution on the outgoing transitions is given. The idea is that in an MDP &pEye plays
against nature (represented by the probabilistic vertices). In eacketeministic vertex, Eve
chooses a probability distribution on the outgoing transitions tfis choice may depend on the
past of the play (which is a path in the underlying graph ending and is formally represented
by a strategy for Eve. An MDP together with a strategy for Eve defines@inary Markov
chain, whose state space is the unfolding of the graph underlying the MDP.

In this section we consider infinite MDPs, which are finitely representechbycounter sys-
tems; this formalism was introduced in [26] under the name-counter Markov decision pro-
cess(OC-MDP). For a given OC-MDPM and a setR of control states ofM (a so called
reachability constraintthe following two setsd/alOne(R) andOptValOne(R) were considered
in [26]: ValOne(R) is the set of all statesof the MDP defined by\1 such that for every > 0
there exists a strategyfor Eve under which the probability of finally reaching frana control
state inR and at the same time having counter valug at leastl — ¢. OptValOne(R) is the set
of all statess of the MDP defined by\ for which there exists a specific strategy for Eve under
which this probability becomek. It was shown in [26] that for a given OC-MDP®1, a set of
control states?, and a state of the MDP defined by\,

¢ the question whether € OptValOne(R) is PSPACE-hard and irEXP, and

e the question whether € ValOne(R) is hard for every level of the boolean hierardBiy.

54

5.5 \Verification of timed automata

The boolean hierarchy is a hierarchy of complexity classes betiNB¢ooNP andP"\'P (parallel
access t&lP) [151]. We use our lower bound techniques (based on the serializalhityRACE
+ small depth circuits for converting numbers from Chinese remaindegseptation to binary
representation) in order to improve the second hardness result fovtie ¢t¢BH to PSPACE-
hardness.

Theorem 5.13 ([80]) Given a OC-MDP a set of its control statésand some control stateit
is PSPACE-hard to decide whether € ValOne(R). O

It is worth mentioning that as a byproduct, we also repS¥BACE-hardness foDptValOne(R).
To the best of the author’s knowledge, it is still open whet&One(R) is decidable; the cor-
responding problem for MDPs defined by pushdown automata is undeide].

5.5 Verification of timed automata

Timed automatavere introduced by Alur and Dill [3] and can be seen as an extensionit# fi
automata by allowing the usage of real-time clocks. Timed automata are one ofshanpor-
tant formalisms for modeling real-time systems. In [3] it was shown that thénabdity (i.e.
emptiness) problem for timed automat&SPACE-complete PSPACE-hardness already holds
when only three clocks are present as shown by Courcoubetis amadRkéakis [51]. The precise
computational complexity of reachability for 2-clock timed automata has been a oEgo
problem only until very recently when Fearnley and Jurdzinksi anoedithat the problem is
indeedPSPACE-hard [65], thus closing the previously best-known lower boundRfhardness
[124] and thePSPACE upper bound that was known for this problem. It is interesting to note
that concerning the reachability problem, there is a close connection bebseaeded counter
automata and timed automata as recently shown by Haase et al. [84]: thalniéigcproblem of
n-clock timed automata is equivalent to the the reachability problem of boumded)-counter
automata with respect to logarithmic space reductions.

In this section, we present an application of the serializability technique to tiotedhata.
It was shown in [147] that the reachability problem for 2-clock timed autometta modulo
tests on counter values RSPACE-hard. For the lower bound proof in [147] it is crucial that
the numerical constants that appear in the transitions of the timed automatomcadea in
binary. We improve the lower bound from [147] by showing that the rahitity problem for 2-
clock timed automata with modulo tests is alre&BPACE-hard when the numbers that occur
in transitions are encoded in unary. It shows that very simple extensfote weachability
problem of timed automata with two clocks &8PACE-hard. In [124] it has been shown that
model checking_TL on timed automata with two clocks (but without modulo test®SBACE-
hard (andPSPACE-complete). We prove that already the data complexity of this problem is
PSPACE-hard, although the very receRGEPACE-hardness result by Fearnley and Jurdzinksi
for reachability of 2-clock timed automata [65] implies this. Let us start with thmitien of
timed automata, see e.g. [22] for more details.

Before we state the main results, let us introduce the model of timed automate, virer
slightly deviate from the definition of timed automata from [124] (and thus framjournal
paper [80]): we do not work with atomic propositons but with atomic actiores(Lbe a finite

55

5 Branching time model checking on one-counter systems and a new lowed bechnique

set, whose elements are calleldcks A mappingt € |R$ from C to the setR of positive
real numbers is also calledcdock valuation The setB(C') of clock constraintver C is the
set of all boolean formulas with atomic formulas of the fatm &, wherec € C, k € N and
~ € {<,>}. We use the usual abbreviations, e.g., we wite k forc < k A c > k. Letus
define the size of the clock constraint- k as|c ~ k| = [log k]; it is the length of the binary
encoding of the numbek. A clock valuationt € RY satisfies a clock constrainte B(C), if
the formulay becomes true, when each clack C'is replaced by the valuéc).
A timed automatoifTA) is a tupleAd = (Q, A, C,), where

e () is afinite set otontrol states

e A C Actis afinite set of action labels,

e ('is afinite set otlocks and

e 5§ CQ x B(0) x A x 2% x Qis afinite set otransitions

Thesizeof the TA Ais defined asA| = |Q| + [C] + [A] + X ,ep (@pl + 2o (p 0, m,)0 V- A
timed automatod = (Q, A, C, ¢) defines a transition system

T(A) = (@ x RE, Aw {e}, {%|a € Aw {e}}),
where(q,t) % (¢, t') if, and only if, one of the following two cases holds:

e a = ¢,q = ¢ and there existd € Ry such that'(c) = t(c) + d forall ¢ € C (timed
elapses).

e a € A and there exists a transitidn, v, a, R, ¢') € 6 such that (i) the mapping: C' —
R, satisfies the clock constraint (ii) ¢(c¢) = t(c) forall ¢ € C'\ R, and (iii)t'(c) = 0
forall ¢ € R (i.e., all clocks from the sek are reset).

In this section, we will only consider timed automata with only two clogkandy. For a
natural numbern lett,, : {z,y} — R4 be the clock valuation with,,(x) = m andt,,(y) = 0.

CTL model checking on timed automata

As mentioned above in [124], it was shown that model checkifd, over 2-clock timed au-
tomata isSPSPACE-complete. The proof in [124] foPSPACE-hardness only works if the timed
automaton and th€TL formula are part of the input. Here we sharpen this result by showing
that model checking TL over 2-clock timed automata BSPACE-hard already for a fixe@TL
formula.

Proposition 5.14 ([80]) There exists a fixeBF formula ¢for which the following problem can
be computed by a logspace transducer:

INPUT: A boolean formuld” = F(x1,...,zp).

OUTPUT: A 2-clock TAA(F') with distinguished control statés and out such that for every
number) < M < 2™ — 1 the following are equivalent:

56

5.5 \Verification of timed automata

o F(BIN,(M)) = 1.

e There exists a path frorfin, ¢5/) to (out, t5s) in T(A(F')) such thaty holds on every
state of this path. O

By making use of the previous Proposition we can prove the follow$BACE lower bound
on model checking 2-clock TA against a fix€d L formula.

Theorem 5.15 ([80]) There exists a fixe@TL formula of the formEy; Ups, wherep, and ¢,
are EF formulas, such that the following problemR§ PACE-complete:

INPUT: A 2-clock TAA and a control state of A.

QUESTION:(T (A), (¢,t0)) E Ep1Upa? O

Reachability of timed automata with modulo tests

The final application of our lower bound technique concerns the costateé reachability prob-
lem of timed automata with two clocks but very simple modulo tests. The exprassv®f

timed automata with periodic clock constraints has already been studied in\(é&efer to

[147], where it has been shown that the control state reachability pnof@eequivalently the
emptiness problem) for 2-clock timed automata with modulo teRR$BACE-hard (and in fact
PSPACE-complete). However, the lower bound construction in [147] heavilyirequhe con-
stants appearing in the clock constraints to be presenteiciamny.

The set ModC') of modulo clock constraintever a set of clockg” is the set of boolean
formulas with atomic formulas of the form= k£ mod/ andc ~ k, wherec € C, k,¢ € N and
~ € {<,>}. Amodulo timed automaton (MTA9 a tupleA = (Q,{Q, | p € P},C,6), where
everything is the same as for timed automata, but whefeQ x Mod(C) x A x 2¢ x Q. The
size|A| of an MTA A is defined in analogy to TA. A clock valuation: C' — R satisfiesa
modulo constraint of the formm= k£ mod¢ whenevert(c) | = k mod/, where for eachr € R
we define|r| to be the largest non-negative integesuch that: < r. The transition system
T(A) of an MTA A is defined analogously as for timed automata (by taking into account the
above definition when a clock valuation satisfies a modulo constraint).

Theorem 5.16 ([80]) The following problem i®SPACE-hard, even if all constants that occur
in the input are given in unary:

INPUT: An MTAA = (Q, A, C,) with only two clocks: andy and two distinguished control
statesgg, ¢1 € @ such that every transitioty, v, a, R, ¢') € § satisfies

e ~ does not contain any atomic formulas of the farm £,

e z ¢ R(i.e. z is never reset),

e ~ does not contain any atomic formulas of the faym £ mod/, and
e if y ~ kis an atomic formula iny, thenk = 1.

QUESTION: Doegqo, to) —* (q1,t) hold for some clock valuatiohe [R{f’y} in7T(A)? O

57

6 Model Checking simple logics on
one-counter systems

In this section we concern ourselves with model checkihyandEF on one-counter systems
and succinct/parametric one-counter systems.

Until recently the best-known upper bound for model checkifigon one-counter systems
was PSPACE proven by Serre [169] which already holds for model checking the mpda
calculus. The previously best-known lower bound for this problem veadriess foDP which
was extended to ah\“’ lower bound in [72]. In Section 6.1 we show that this problem lie’R\R

and is thusPNP-complete by Theorem 5.11. As an application of this upper bound result, we
prove that weak bisimilarity between a one-counter system and a finite sigsteN", and in
fact PNP-complete. It is worth mentioning that there are only very few natural pnobknown
to be complete foPNP: the above-mentioned MAX-LEX-SAT being one of them. Moreover,
we show that there is a fixdeF formula for which model checking one-counter systems is hard
for PNP.

In “Section 6.2 we discuss model checking parametric one-counter autogaatatélM and
EF specifications. We show that both model checkitig and EF is PSPACE-complete on
succinct one-counter systems. The latter is surprising since there igyakefixed CTL for
which model checking succinct one-counter systemS4BSPACE-hard (Theorem 5.12). We
also study the model checking problem &k andEF on parametric one-counter systems. We
prove that model checkingF on parametric one-counter systems is undecidable via reduction
from Hilbert’s Tenth Problem. Finally, model checkifigl on parametric one-counter systems
is shown to bé>SPACE-complete.

Bibliographic notes. The results on model checkirigf one-counter systems have been pub-
lished in the conference paper [82] (LICS 2009) in joint work with Richisliayr and Anthony
Widjaja To. The results on model checki@d L on succinct and parametric one-counter systems
have been published in the conference paper [73] (ICALP 2010) inyaink with Christoph
Haase, Jél Ouaknine and James Worrell. The results on model chedkiM@@ndEF on suc-
cinct and parametric one-counter systems have been published in tlerecwd paper [74]
(FOSSACS 2012) in joint work with Christoph Haasegllouaknine and James Worrell.

6.1 EF model checking on one-counter systems is
PNP-complete

In this section we prove that model checkiBf on OCS is in PN and hence®NP-complete
by Theorem 5.11. For the upper bound we even restrict ourselves ta#isewhen the input

59

6 Model Checking simple logics on one-counter systems

formulas are given as directed acyclic graphs (DAGS). Firstly, this implegsotlr result is more
general, but more importantly it allows us to reduce in polynomial time the questiether a
given one-counter system is bisimilar to a finite transition systerfBRonodel checking on
one-counter systems.

We not only prove that the model checking problem as a decision probier®¥’ but rather
solve theglobalmodel checking problem. The global model checking problem is a computation
problem and asks to compute for a given transition systeamd a given formula a presenta-
tion of the set of all states satifying In our case of model checking one-counter systems, such
a global presentation will be given in terms of formulas of an adequat&uiiges-like logic. In
fact, it turned out that only this more general approach allowed us to #ub/@roblem in the
end. Our proof strategy is as follows. We define a syntactic variantesgirger arithmetic that
we call MIN-MAX ARITHMETIC for which we prove two things:

e The membership problem (i.e. the question given a formulaf MIN-MAX ARITH-
METIC and a natural number to decide whether € [¢/]) for MIN-MAX ARITHMETIC
is PNP-complete.

¢ Given a one-counter systefwith control states) and arEF formulay one can compute
for each control state € @ a formulay, in MIN-MAX ARITHMETIC such that

[¢q] = {n e N[(T(P),q(n)) = ¢}
Thus, for each control stateone can compute a presentationof the set of naturals that
satisfy theEF formulap in control state.
Min-Max Arithmetic

Let us define MN-MAX ARITHMETIC. Formally, a MN-MAX ARITHMETIC formula (in DAG
presentation is a sequence of definitians: (;);c1 ¢ for somel > 1, where for each € [1, /]
thedefinitioncy; is precisely one of the following, whefek € 1,7 — 1] and whereo € {<, >}:

(1) = m mod n, wheren > 0 andm € Z/nZ,
(2) on, wheren € N,

(3) —qy

(4) o A,

(5) ominay,

(6) n ominaj, wheren € N,

(7) omax(a;,n), wheren € N, or

(8) m o max(«j,n), wherem,n € N.

We formally putmin () = co andmax () = —1. Let us now define the semantics ofi M AX
ARITHMETIC DAG formulas. For each; we define the sefi;] C N inductively as follows:

60

6.1 EF model checking on one-counter systeni\fs-complete

(1) [=m mod n] d:ef{k‘eh\l\k:zmmodn},

(2) [on] E'{k e N|kon}

def

(3) [moy] = N\ [oy],
(4) o A i) = o] 0],
(5) [omin «] d:ef{k: € N | k omin[a,]},

N if i ;
© Dromina &1 Tnominlo
(¢ otherwise

(7) [o max(aj,n)] L' {k € N | k o max([o;] N [0, 7))},

(8)

ef [N ifmo Jno,
[m o max(aj,n)] d:f{@ L)t;]?zerwr?sae%([[aj]] [0, n])

We define[«] def [c]. Observe that MN-MAX ARITHMETIC formulas can be seen as a frag-
ment of Presburger arithmetic (formulas in one free variable, thus defitiingately periodic
sets) being equi-expressive but with different succinctness.

The sizeof a MIN-MAX ARITHMETIC formula is defined as expected, where each of the
occurring constants is presented in binary.

The following lemma states that the set of naturals that is defined by a formimanoeM Ax
ARITHMETIC is ultimatily period with a threshold and period that is computable in polynomial
time.

Lemma 6.1 (Periodicity Lemma for MIN-M AX ARITHMETIC , [82]) GivenaMIN-MAX ARITH-
METIC formulac = (i);e[1,¢ ONE can compute in polynomial time a threshojdind a period
P Such that the following holds:

Vn,n' >ty : n=n' mod p, = n € [a] & n' €[]

The previous lemma is central for proving that the membership problem for-Mlax
ARITHMETIC is in PNP (in fact, one can prove that the membership probleRNS-complete).

Proposition 6.2 ([82]) The following problem i®NP-complete:
INPUT: n € Nin binary and aMIN-MAX ARITHMETIC formulac.
QUESTION € [a]? 0

61

6 Model Checking simple logics on one-counter systems

From EF model checking to Min-Max Arithmetic

For the rest of this section, let us fix some one-counter syStem(Q), A, do, d~). For technical
reasons, we add a fresh atomic actiore A that does not previously occur iy U d~¢ and
which we fix for the rest of this section. Our goal is to “saturaketvith A-labeled transitions
yielding a newOCS P’ that allows us to characterize the reachability relatiofi () in terms

of normalized pathén 7 (P’). By normalized paths we mean paths in which the sequence of
counter values of the states in the path are first non-increasing anddheteareasing. LeP’
denote the resulting one-counter systafter saturation(to be made more precise below). Our
saturation construction has the following motivation:

(1) One can compute in polynomial time all information needed for representingalized
paths in7 (P’) in terms of few small arithmetic progressions (more details below).

(2) For everyEF formulay in which A does not occur we hav@ (P), ¢(n)) | ¢ if, and only
if, (T'(P’),q(n)) = ¢ for every configuratiog(n).

A pathin 7 (P) is a non-empty finite sequence of transitions= q1(n1) — g2(n2) -+ —
qr(ng) in T(P). We callmr mountain if n; = nj andn; > n, for eachi € [1,k]. We callr
zerq if n; = 0 for somei € [1, k], otherwise we calfr positive Let qi(n1),g2(n2) € @ x N
be configurations. Then, we writg(n1) l7(p) q2(n2) (resp.qi(n1) trp) g2(n2)) whenever
q1(n1) — g2(ne2) is a transition in7 (P) andng < n; (resp. anche > n;) . We now present a
saturation construction that allows us to shortcut mountain paths by addmagsitions.

Choosing control stateg ¢’ € Q andé € {4y, d>0}, we now present rules (R1) to (R4) that
can be applied only ifg, A, 0,¢’) ¢ 4. In this case, we can add the transiti@n\, 0, ¢') to ¢ if
at least one of the following conditions holds:

(R1) (¢,a,0,q") € § for somea € A.
(R2) (q,a1,+1,q1) € 6 and(q1, a2, —1,q") € d~o for someg; € @ and someu, as € A.

(R3) (q,a1,+1,q1) € 6, (q1,A,0,q2) € 650, @and(gz, az, —1,¢") € d>o for somegq;, g2 € Q
and someu, as € A.

(R4) (¢,X,0,¢1) € 6 and(q1,\,0,q’) € 6 for someq; € Q.

Formally, letP’ = (Q, A, d;, %) denote the unique one-counter system that we obtain from
P by applying rules (R1)—(R4) until no longer possible. Clearly, one apjlienostQ|? such
saturation steps in total.

The following lemma characterizes the reachability relatiof {#) with the one in7 (P’).

Lemma 6.3 ([82]) Letp(m), ¢(n) € Q x N be configurations. Then, the following three state-
ments are equivalent:

(1) p(m) —* g(n) holds inT (P).
(2) p(m) —* q(n) holds inT (P’).

62

6.1 EF model checking on one-counter systeni\fs-complete

(3) There exists some configuratiofk) € @ x N such thap(m) |7, (k) andr(k) 175,
q(n). O

Observe that ifj; (n) T*T(P,) g2(n2) andny > 0, then alsay; (ny +1) T*T(P’) g2(ng +1) for each
i € N. Similarly, if g;(n1) ¢*T(7),) g2(n2) andng > 0, then alsag; (ng + 7) i*T(P,) q2(ng + 1)
for eachi € IN. This motivates us to define, for eagh ¢» € @, the following set of differences
of counter values of monotone positive paths:

d *
A7q1,q2) € {d € N | q1(1) Ppry a2(d + 1)}
def .
AfO(Q17q2) = {deN|q(d+1) iT(p/) a2(1)}

Analogously, we collect the set of differences of counter values ofotome zero paths:

AT (g1, 2) € {d € N | q1(0) Ty aa(d)}
AT (q1,2) E{d € N | q1(d) Lrpry 42(0)}

A theorem due to Chrobak [46] and Martinez [133] states that from detenministic finite
automaton over a unary alphabet one can compute in polynomial time an atuadsatically
larger equivalent one that is in a certain normal form (Chrobak noraral)f However, both
papers contain a subtle flaw that was recently fixed in [183]. The prabidollowing lemma
will make use of this result.

Lemma 6.4 ([82]) Each of the setA?O(ql, @), Afo(ql,), A?O(ql, 32), AT (q1, ¢2) is equiv-
alent to a union 0O (|Q|?) arithmetic progressions with offsets boundedyQ|?) and periods
bounded by)(|Q|) that are moreover computable in polynomial time. O

Let g1, g2 € @ be control states. Note thatgf(n) u‘mj,) q3(1) T*T(p,) q2(n) for somegs € Q,

then alsay; (n+1) Yren q3(1+1) e g2(n+1). Therefore, we defin¥ (q1, g2) € NU{oo}
to be

min{n > 0| 3g3 € Q : 1(n) I7pry 43(1) Ty 22(n) }-
Observe thaV(q, q) = 1 for everyq € Q.
Lemma 6.5 ([82]) Either V(q1,q2) = oo or V € O(|Q|?). MoreoverV(q;, q2) can be com-
puted in polynomial time. a

The next lemma characterizes zero paths.

Lemma 6.6 ([82]) There is a zero path from(n) to¢'(n’) in T(P’) if and only ifn € Afo(q, q")
andn’ € A?O(q”, q') for somey” € Q. O
The next lemma characterizes positive paths.

Lemma 6.7 ([82]) Assumen < n’. Then there exists a positive path Tn(P’) from ¢(n) to
¢ (n') ifand only ifn > V(q,q") andn’ —n € A?O(q”, q') for someg” € Q.

Assume: > n’. Then there exists a positive path frdmn) to (¢/, ') in 7(P’) if and only if
n' > V(¢",¢)andn —n' € A7°(q,q") for somey” € Q. O

63

6 Model Checking simple logics on one-counter systems

Lemma 6.6 and Lemma 6.7 are the central ingredients to compute, for eachl cbate
a presentation of the natural numbers that satisfy a gifeformula in terms of MN-MAX
ARITHMETIC

Theorem 6.8 ([82]) From a given one-counter systefhand a givenEF formula ¢, one can
compute in polynomial time for each control statef P an MIN-MAX ARITHMETIC formula
ag such thafloy] = {n € N | (T(P),q(n)) = ¢}. O

By combining Theorem 6.8 with Proposition 6.2 we obtain the following corollary.

Corollary 6.9 ([82]) The following problem is iPNP:

INPUT: A one-counter systefd = (Q, A, dg, d>0), a configurationz(n) € @ x N and anEF
formulae.

QUESTION:(T (P), ¢(n)) & ¢? O

Since one can reduce in polynomial time weak bisimilarity of given one-cowsytems
against a given finite transition system to model checking one-countemsysgainsgF for-
mulas in DAG representation [122, 121], we obtain the following corollary.

Corollary 6.10 ([82]) One can decide iPNP whether a given one-counter system is weakly
bisimilar to a given finite transition system. a

Some lower bounds

The data complexity of model checkirF on one-counter systems can shown toF¥ -
hard by a reduction from the problemNDEX-ODD, which asks for a given lispq, ..., v,
of boolean formulas, whether there exists an odd ind&xch thaty, . . ., p; are all satisfiable
andy;+1, ..., e, are all unsatisfiable.

Theorem 6.11 ([82]) There exists a fixeBF formula for which model checking a given one-
counter system iBh\'P—hard. o

For the latter problem the best-known upper bouref8, so there still remains a complexity
gap for this problem: but recall that for the combined complexity we have ahingteNP lower
bound by Theorem 5.11. The latter also applies for weak bisimilarity agamitgt fiystems by
the following theorem proven by a reduction from #f¥ -complete problenDSAT from [151],
thus matching Corollary 6.10.

Theorem 6.12 ([82]) Deciding whether a given one-counter system is weakly bisimilar to a
given finite transition system RNP-hard. o

6.2 Model checking succinct and parametric one-counter
systems

Before we discuss our main results on model checking succinct ancheai@one-counter sys-
tems, let us define them more formally. Lét= {z4, ..., z, } denote a finite set gfarameters

64

6.2 Model checking succinct and parametric one-counter systems

42l 422 +2n y a
qo/\:./\f. .Q.
+0 +0 +0 \
0 dn A"

Figure 6.1: A part of a succinct one-counter systdroonstructed for simulating the validity of
a QBF formula.

and letOp gef {add(z),add(z) : z € Z,x € X} U {zero} be a set obperations A parametric

one-counter systels a tupleA = (Q, A, X, A), whereQ is a finite set ofcontrol statesand
A C Q x A x Op x @ is thetransition relation A succinct one-counter systéma paramet-
ric one-counter system withk = 0. We writeq =% ¢’ whenever(q, a,op,¢’) € A or just
q LN ¢’ when the actiom is not important. Avaluationr : X — Z is a function assigning

an integer to each parameter. Given a parametric one-counter sylstamaluation induces a
. o . : ... _a,add(z;
succinct one-counter systedt’ which is obtained by replacing each transitip 2dd(z:) q
,add(v(z;
by ¢ 2220 (i) ¢'. For a succinct one-counter systedn we define its underlying transition
system ag (A) ZM(Q x N, A, {-%| a € A}), whereq(n) - ¢/(n’) if, and only if, either
add(z) , a,zero ’
g——=¢andn’ =n-+z,0rq —— ¢ € Aandn =n' =0.
The model-checking problerfor parametric (and thus for succinct) one-counter systems is
defined as follows.

MODEL CHECKING FOR PARAMETRIC ONECOUNTER SYSTEMS
INPUT: A parametric one-counter systefwith control states), ¢ € @ and a formula

@Y.
QUESTION: Does(T(.A"),q(0)) = ¢ hold for each assignment: X — Z?

Model checking succinct one-counter systems

In this section we prove that model checkidlyl succinct one-counter system$SPACE-hard
and that model checkingF on them is inPSPACE. Thus both model checkingM andEF on
succinct one-counter systems turns out tAPlS®ACE-complete. These results can be seen in
stark contrast t&EXPSPACE-completeness of model checkifgl'L on succinct one-counter
systems (Theorem 5.12).

The following proposition oiPSPACE-hardness of model checkih$M on one-counter sys-
tems can easily proven by a reduction from the validity problem quantifiedeBodormulas
(QBF): A part of the succinct one-counter system that one consiruttte reduction is depicted
in Figure 6.1. We do not go into further proof details here.

Proposition 6.13 ([74]) Model checkindgdM on succinct one-counter systemB$PACE-hard.0

65

6 Model Checking simple logics on one-counter systems

Next we are going to outline the proof thHaf model checking on succinct one-counter sys-
tems is inPSPACE, and hencdSPACE-complete by Proposition 6.13. To this end, let us fix
some succinct one-counter systefrwith control stateg). Our result is based on the follow-
ing combinatorial lemma, which expresses periodicity properties of redithadlations in the
succinct one-counter automatgn

Lemma 6.14 ([74]) There are naturals,§ < exp(|.A|) such that for eacln,n’,m,m’ > =
with n = n’ modé andm = m’ modé the following statements hold for eaghy’ € Q:

(1) g(n) —* ¢/(m) if, and only if,q(n’) —* ¢'(m’) in T(P).
(2) g(n) —7% ¢'(m) if,and only if,q(n") —% ¢'(m') in T(P). O

Let us assume the valuesandé§ from Lemma 6.14 to be fixed for the rest of this section.
For thePSPACE upper bound, we will show thgtn € N | (T(P),q(n)) | ¢} is ultimately
periodic with periodicityd (the periodicity is thus independent frdmp|).

Lemma 6.15 ([74]) We have(T (P),q(n)) = ¢ if, and only if, (T (P),q(rn")) = ¢ for each
control stateg € @@ and eachEF formulayp, providedn,n’ > 7+ § - |¢| andn = n’ modé. O

The previous lemma can now directly used to construct an alternating polyirtomeaalgo-
rithm for model checkind=F on one-counter systems: as an important blackbox tool it uses a
result from [83] that states that reachability for succinct (even parapene-counter systems
isin NP.

Theorem 6.16 ([74]) EF model checking of succinct one-counter systemskSPACE. O

Model checking parametric one-counter systems

For the rest of this section we concern ourselves with model checkimgngdric one-counter
systems.

First, we consider model checkirigk on parametric one-counter systems and show that this
problem isI1Y-complete. WithEF being a notational fragment &TL, membership id1{ fol-
lows from the very simple fact th&TL model checking on parametric one-counter systems is
in 19 [73]. Thus, we concentrate in this section on a matcHiifgower bound by giving a
reduction from Hilbert’'s Tenth Problem to the complement of the model chggkioblem.

HILBERT'S TENTH PROBLEM (HTP)

INPUT: A polynomial p with coefficients ranging over the integers.
QUESTION: Do there existiy, ..., a, € Z such thap(ay,...,a,) = 0?

HTP was shown to b&:{-complete by Matiyasevich [135]. Note thafTP remainsX{-hard

if we restrict thea; to range oveiN: A Diophantine equatiop(x1, x2, ..,x,) = 0 is solvable
in the integers if, and only if, one of th#" equationg(+x1,...,+x,) = 0 has a solution in
the naturals. Replacing every unknown with the sum of squares of ftkirawns gives, by
Lagrange’s Theorem, the reduction in the other direction.

66

6.2 Model checking succinct and parametric one-counter systems

Moreover, we may assume without loss of generality that- 0 for eachi € [1,n]. If
somea; were to be zero in a solution, we can obtain a new polynoplial n — 1 variables by
replacinga; with 0 in p.

Let us fix some polynomigb with coefficients ranging ovef. We will subsequently show
how we can compute froma parametric one-counter systetp with a control state, and an
EF formulay, such thap has a solutions over the naturals if, and onlyTf(A}), ,(0)) = ¢,
for somevaluationv of the parameters ofl. Recall that the valuation of the parameters4yf
ranges over. However, we can easily ensure with a simpleformula that a parameter is
positive. For the following succinct one-counter systdn.{

add(1)
@ (T(A%51),4(0)) F ~EF({)true
q > .o we have if, and only if,
add(z) ¢, zero o) > 1.

More challenging than testing if a parameter is positive when reducing ffém s that we
need to be able to express a multiplication relation over the parameters in theepdcane-
counter system. In order to do that, we employ a trick that became populaebyadtk of
Robinson [158] which allows us to define multiplication in terms of the least commdtipieu
In fact givenz, y € N, we have

lem(z +y,x +y+1) —lem(z,z + 1) — lem(y,y + 1)
=@tz +2zy+y* +y) - (@®+2) - (Y +y) = 2ay

We note that addition and subtraction of the parameters can easily be rdalihetioducing
additional slack parameters in the parametric one-counter system. Thusywenhance our
parametric one-counter system by transitions of the &z), meaning that(z) is subtracted
from the counter, provided the counter is at least). We now demonstrate that for parame-
tersx, y, z of some parametric one-counter system that each assume positive wdlictsye

can check as seen above, we can “expres&Hfrnhatz = lcm(z,y). Consider the following
parametric one-counter syste#i.,, where unlabeled transitions are assumed to be labeled with
“a,add(0)™

a,sub(z)
(V as,zero
o ——» 0

a,add(1) a;,add(0) d,sub(y)
A Oy @) (y ay,zero
lem - q > - e

The idea is to express that for all € N, we have that botl andy divide n if, and only if,
z dividesn. We note that for each : {z,y,2} — Z with v(x),v(y),v(y) > 1 we have that
(T(AY,),4(0))) = AG((ar)true — ((EF(a;)true A EF(ay)true) <> EF(a;)true)) if, and

only if, v(z) = lem(v(x), v(y)).

67

6 Model Checking simple logics on one-counter systems

Thus, by introducing a sufficient number of slack variables, we canesgpmultiplication,
addition and subtraction, which allows us to solW&P for any arbitrary polynomial. Thus, we
obtain the following theorem.

Theorem 6.17 ([74]) Model checkindF on parametric one-counter systemglig-complete]

We note that by [135] there existdiged universapolynomialp,(n, k, z1, . . ., ,,) such that
for each recursively enumerable setC N, there is soméy, € N such thatS = {n € N |
Ing,...,nm € N : pyu(n, ko, n1,...,n,) = 0}. This allows us to strengthen our result insofar
as there exists fixed EF formula and afixed parametric one-counter systedwith a control
stategy € @ such that it i1{-complete to decide for a givenc N whether(T'(A"), qo(n)) =
@ holds forallv : X — 7.

The rest of this section will be devoted to sketchim@SPACE upper bound for model check-
ing HM on parametric one-counter systems. Let us fix some parametric one{ceysitem
A= (Q,A, X,A) with X = {z1,...,x¢}, Some control state; € Q and someHM formula
«. Since we have already proven th#lt1 model checking of succinct one-counter systems is
in PSPACE Theorem 6.16 (we show that even model checléfgn succinct one-counter sys-
tems is inPSPACE), in order to obtain @SPACE upper bound, it is sufficient to show that if
(T(A),q0(0)) E « holds for somes : X — Z then there is somg : X — Z such that
(T (A*),4q(0)) E « and|u(z)| can be represented with polynomially many bit$.ii + |«| for
eachr € X, since such an assignment can be guesse8RACE.

For eachy € @ and each subformula of o, let us defineM(q,) C Z¢ x N C 7! as
follows:

Mg, 0) L {(z1,...,20,m) | (T(AY),q(n)) £ ¢ andu(z;) = 2, € [1, 4]}

Before we proceed with the upper bound, we need to introduce some additiotation. For
an integer matrix4 = (a;;) € Z™*", we denote byfA| = max;{}_; |a;;|} the norm ofA.

For an integer vectas = (b;), we denote byjb| = 3", |b;| the norm ofb. A system of linear
Diophantine inequalities (SLDI} a system of the forny = (A% > 5), whereA € 7"™*™ is an

m x nmatrix,b € Z™ is anm-vector and is ann-vector of indeterminants all ranging over the
integers. BySol(S), we denote the set drfiteger solutionso the SLDIS = (AZ > b). Finally,
we definelSlma: = [4] and|Slvec =' 5]

Recall thatzy, . .., z, are the parameters of. Our overall goal is to expres$¥t(q, ¢) by a

unionof solutions to SLDIs, each of the form

=,

S = (AZ > D), whereA € 7™ andb € 7™ for somem > 1.

-,

In the remainder of this section, we will assume for @Ay > b) that A is somem x (£ + 1)
matrix andb is somemn-vector for somen > 1. The intuition is that thet component off with
i € {1,...,¢}is going to correspond to the parametgof .A and the(¢+1)™" component of? is
going to correspond to the counter value whereHiMeformula is evaluated. In casé = (a;;)

we define| Al ¢y ' max{|a;s1)| : i € [m]} and lift this definition to]S] ey L [A[4.

68

6.2 Model checking succinct and parametric one-counter systems

In order to prove that small valuatioms: X — Z suffice fora, one can prove that for each
q € @ and each subformula of o, we have

M(q, @) = JSol(Sy) (6.1)

i€l

for some index sef with |S;|mat < poly(|¢|) and|Si|vec < poly(|¢]|) - exp(].A|) for eachi € 1.
Once this fact has been established, one can show that eachSSkaDinits solutions that can
be represented using polynomially many bit§. 4] + |«/, thus establishing the desired upper
bound on necessary valuations of the parameters. of

We require some additional notation that, together with the subsequent lemmiae wieful
for proving the existence of sets of SLDIs of “small” size for edefiq, ©). Let H C Z/*+1. We
defineH — xy, def {(21,..., 20,2001 — 21) € 27V | (21,...,2041) € H} for eachk € [¢] and
H-=z d:ef{(zl, 20,2001 — 2) € 2V (21, ..., 2041) € H)} for eachz € Z. The following
lemma states that solutions to SLDIs are closed under the operationsind —z and gives
bounds on the blow-up of the introduced norms. We remark that we deqoire an effective
variant of this lemma to establish oBEPACE upper bound.

Lemma 6.18 ([74]) LetS = (AZ > b) be an SLDI withA = (aij) € 2™+, Then the
following holds:

(1) Foreachk € [1, /] there is some SLD§’ with Sol(S’) = Sol(S) — zk, |S |mat < |S|mat+
|Sle+1. [Sle+1 = [Slet1, and | S’ fvec = |S|vee

(2) For eachz € Z, there is some SLD§’ with Sol(S’") = Sol(S) — z, |S|mat = |S]mat
[8"le+1 = 1S]e41, and[S'lvee < |Svec+ [Sle1 - [2]- o

The previous lemma allows one to prove (6.1). By.(.A) we denote the largest absolute
value of constants appearing . The following lemma implies (6.1) and can be proven by
induction on the structure of tHéM formula.

Lemma 6.19 ([74]) For everyq € @ and every subformula of « in negation normal form,
we haveM(q, p) = U,;c; Sol(S;), wherel is some index set and ead is some SLDI with
|Sillmar < o], [Siller1 < 1, [Silvee < (nmadA) +1) - [e]. O

The following lemma from [163] states that solvable SLDIs have small solutithese norm is
independent on the number of rows of the SLDI.

Lemma 6.20ﬁ([163], p. 239)Each solvable SLDAZ > b has a solution of norm at most
poly(J-A[+ [b)- O

Let us come back to our original formula By Lemma 6.19, there exists some SL&)Isuch
that M (qo, «) = Sol(S;), and wherg|S; |mat < |a] and|S;|vec < (Pmaxf(A) + 1) - |a. Since
we are interested in whethéf'(A”),qo(0)) = « for somer : X — Z, think of adding to
each matrix that occurs i§; two more rows expressing thai,; = 0. Let us call the resulting
SLDI §/. By Lemma 6.20, we know that i is solvable, thersS] has a solution of norm at

69

6 Model Checking simple logics on one-counter systems

mostpoly(nmaxA) + |a|). In other words, if(7(A"), ¢0(0)) | « for somev : X — Z, then
(T(A*),q0(0)) = « already holds for some : X — Z and the number of bits for representing
w(z) is polynomially bounded ifA| + |«| for eachz € X.

Hence, we obtain the following theorem.

Theorem 6.21 ([74]) Model checkinddM on parametric one-counter systems iHPACE.O

70

7 Lower bounds on verifying
asynchronous products and the size of
Feferman-Vaught decompositions

Concurrent systems are systems which consist of multiple processeethabaltaneously exe-
cuted and possibly interacting with each other. A standard way of desigoira@urrent systems
is to compose together several individual processes by taking somdutgtwperators. Vari-
ous product operators have been introduced in concurrency thadryerification ranging from
synchronized products (the strongest form of products) to asgnohs products (the weakest
form of products). From the point of view of system design, syndexhproducts are the most
suitable form of compositional operators. Unfortunately, from the pdintea of system ver-
ification, they are known to be too powerful. For example, while reachabiliNLizomplete
for finite transition systems, it becom@SPACE-complete when the same problem is consid-
ered over synchronized products of finite transition systems (a.k.a. coicating finite-state
machines). In the case of infinite-state systems, we see a more drastieciwuilg reachabil-
ity is decidable in polynomial time for pushdown systerR®§), the same problem becomes
undecidable when considered over synchronized products oP®® (note: these subsume
Minsky’s counter machines).

In order to circumvent the problem of high complexity and undecidability iffyiag con-
current systems composed from individual processes via synckobpinducts, various weaker
notions of products were introduced. Apart from asynchronoudyats which prohibit the pro-
cesses to communicate, stronger product operators were introducedtbgting the types of
synchronization that are allowed among the processes. Severakstrittions include bounded
context switches [155], and finite synchronization [199]. Theseictstrproduct operators can
serve as good underapproximations of synchronized products.x&orpde, a recent study of
concurrency bugs conducted by the authors of [129] reveal thay meat-world concurrency
bugs can be detected within a small number of context switches. In additicimrestrictions
also lead to decidability or lower computational complexity in model checking.ekample,
checking reachability over communicating finite-state machines and communipashdown
systems with bounded context switches are B®complete [155].

When we consider logic model checking, the situation is not as simple. Asymas prod-
ucts do not make model checking easier than synchronized productsweéhase logics like
LTL andCTL (and, in fact, even their restrictions td L (Fs, Gs) and the logicEG). Intuitively,
the reason is that synchronization is easily to simulate in such logics. Cambgueachability
of 2-stack pushdown systems, which is well-known to be undecidabliéy esduces to model
checking any of aforementioned logics over asynchronous prodéitted®DS. In contrast,
the situation is substantially better when we consider simpler logics like Heniibsyr Logic

71

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

(HM) and its extension with the reachability operatbBF). In fact, powerful the(Feferman-
Vaught) compositional methdd.g. [132, 156, 199]), which reduces model checking of product
structures to model checking of their components, can be used for olgtdiedndability or bet-

ter upper complexity bounds of model checkidlyl andEF. We now state a simplified variant
(in comparison to [156]) of the compositional method, where for transitistesys7y, . .., Tx

we denote bf[f:l 7; the asynchronous product of tiig

Theorem 7.1 ([156]) For eachHM/EF formula ¢ over the action label®\ = A; U ... U A,

for nonempty and pairwise disjoint sefs, ..., A, one can computé finite sets oHM/EF
formulas{v} }icr,, - - -, {¥¥}icr, OVErAq, ..., A, respectively, and a positive boolean formula
(i.e. no negationsp with variables{z}};cy,, ..., {z¥}ics, such that forall transition systems
Ti, ..., T with initial statessy, ..., s, we have(]_[f:1 Ti,8) E ¢ if, and only if, B[u] is true,
wheres = (s, ..., sx) and u assigns the variables ¢f as foIIows:u(:cg) = 1if, and only if,
(T, 55) b= .

Actually, a stronger version of Theorem 7.1 was proven in [156] (eii atomic propositions).

In the statement of Theorem 7.1, thesets of formulas and the positive boolean formgla
are referred to as th@ecompositiorof ¢. To give some concrete illustrations of the power of
this compositional theorem, Theorem 7.1 can be used to show that mod&lnthéixed EF
formulas (i.e. the complexity is only measured the size of the systeMlisomplete for the
asynchronous product of finite systems (8fSPACE-completeness of communicating finite-
state systemsRSPACE-complete for the asynchronous product of pushdown systems [182],
andP-complete for the asynchronous product of basic process algebras.

Despite the aforementioned usefulness of the compositional method, thégtexlyields
output decompositions with nonelementary complexity in the size of the formua[156]),
which is not desirable from both theoretical and practical viewpoints.a¢h it was recently
shown that when we consider stronger logics like first-order logic, evliee compositional
method is also possible (e.g. see [132]), this nonelementary complexity isidable [57]. Itis
natural to ask whether the size of the decomposition is nonelementary whamsider simpler
logics likeHM or EF. In fact, this open question has been posed in the literature (e.g. [6, 156
It is worth mentioning that such a nonelementary lower bound on the sizeofrgmsitions is
simpler to prove for first-order logic, simply because one can enforceelmod nonelementary
outdegree.

This open question actually brings us to a more fundamental open questianddes the
asynchronous product affect the complexity of model checkingMflogic andEF? This open
guestion has manifested itself in the literature in various concrete forms. Asamnple, take
the result that model checkireF over pushdown systems BSPACE-complete [196]. Over
the asynchronous product tfo pushdown systems, the best algorithm for model checkg
runs in nonelementary time [182]. In fact, the same nonelementary gap entumpresent for
asynchronous product of two basic process algebras. Failing teceatisig/open question is also
the reason for the existing nonelementary complexity gaps for seveiftagon problems for
PA processes [139]. Recall theA can be seen as the asynchronous product extensBRAf

In this chapter, we provide answers to the above open questions. A maiibation of this
chapter is to show that, for each integer> 0, there exists an asynchronous product of two

72

basic process algebras whdse-logic theory requireg-fold exponential time to solve. This
means that model checkirigF over the class of asynchronous products of BRA requires
nonelementary time, which is in stark contrasP&®PACE-completeness diF model checking
over BPA [196]. As an upshot of our result, it follows that model checkiitglogic overPA-
processes requires nonelementary time, which solves an open quesiohyydvayr [139] and
at the same time a question bypding on model checkin§F on ground tree rewrite systems
[128] (the asynchronous product of tgfAs is a very restricted ground tree rewrite system).

We also show that similar results hold fdM. More precisely, we prove that for each integer
k > 0 there exists an asynchronous product of prefix-recognizable systeni@n extension
of BPA and PDS introduced by Caucal [40] by allowing infinitely many rewrite rules com-
pactly represented by regular languages) wheabg theory requires:-fold exponential time
to solve. This means that model checkidlyl over the class of asynchronous products of two
prefix-recognizable systems requires nonelementary time, which is in statriast taPSPACE-
completeness dfiM model checking over prefix-recognizable systems (which easily follows
from the result of [196]).

An important corollary of our two aforementioned results is that there is noezieary algo-
rithm for computing decompositions of formulasttv andEF in the sense of Theorem 7.1.
We even go one step further and show that no decompositions of formutéd-iogic andEF-
logic of elementary size even exist in general (it could still be the case thakeitompositions
are generally elementarily large only but the algorithms computing them run elemaentary
complexity — but we show that this cannot be the case). In other wbatlsdescriptional and
computational complexity of the compositional method v andEF in the sense of Theo-
rem 7.1 are inherently nonelementary. Incidentally, this also entails the saméemzntary
lower bounds for the compositional method provided in [66] since theyrgéne Theorem
7.1. Wrapping up, our results entail that the compositional metho@Rofresp. HM) inher-
entlyhas to output nonelementary big decompositions for asynchronousgbentiiBPAS (resp.
prefix-recognizable systems) are classes of “hard instance” (infitate) transition systems that
witness this.

So far, our nonelementary lower bounds for the compositional methddiNbltogic andEF-
logic require the use of infinite-state systems. This still leaves the possibilityltiedrem
7.1 could hold when we restrict the transition systems under consideration fiite-state.
Questions of this form are of particular interests in finite model theory (eeg. [K26]) and
in verification of finite-state systems. We show, however, that the samédenostary lower
bounds even relativize to the class of asynchronous products of fysienss.

This chapter is organized as follows. We fix notations and definitions in ®e¢tlh We
present nonelementary lower bounds for the classes of asynclsranoducts ofBPAs and
prefix-recognizable systems in Section 7.2. In Section 7.3, we use rasuitsSection 7.2 to
prove nonelementary lower bounds for the compositional medhad-eferman and Vaught for
the logicsHM andEF over all transition systems, as well as over all finite transition systems.

Bibliographic notes. The results in this chapter have been published in the conference paper
[77] (STACS 2012) in joint work with Anthony Widjaja Lin.

10On the same note, evencalculus over prefix-recognizable systems is dE¥P-complete [118, 33].

73

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

7.1 Preliminaries

Asynchronous product of systems: Givenk > 1 transition system$; = (S1, Ay, {—=1| a €

A1}, T = (S, Ar, {-50k| @ € Ag}), whereA; N A; = () for eachi # j, we define its
asynchronous produdi®_, 7; = (S,A, {-%| a € A}), whereS = [[*_, S;, A = U, A,

and where for each € A we have(si, ..., sk) — (s},...,s}) if, and only if, s; —»; s’ for

somei € [1, k] with a € A; ands; = s} for eachj € [1, k] \ {i}.

Logic: For reasons of simplicity of presentation, we talk about a parametrizechvvafighe
logic EF in this chapter that allows to restrict the set of action labels irEtheperator.

Basic process algebras: We briefly recall basic process algebras. A basic process algebra
(BPA) is atupleP = (X, A, A), whereX is a finite set oprocess constant® C Act is a finite

set of action labels and is a finite set ofewrite rulesof the formu —, v, wherea € A,u €

andv € X*. The associated transition systgiiP) is defined ag (P) = (X*,A, {-%| a €

A}), where—%5= {(uw,vw) | u +, v € A, w € ¥*} for eacha € A. Thesizeof the BPA is
defined asP| = [X[+ |A[+ >, pen (1 + [0]).

7.2 Hardness of asynchronous product

We start by proving a nonelementary lower bound for the problemadel checkindeF on

BPAxBPA

MODEL CHECKING EF oN BPA x BPA

INPUT: Two BPASP = (X,A,A), P/ = (XA, A’) with AN A’ = (), a pair of process
constantg X, X’) € ¥ x ¥/, and arEF formulay overA U A’.

QUESTION: Does(7(P) x T(P"),(X,X")) = ¢ hold?

Theorem 7.2 ([77]) Model checkindgeF on BPA x BPA is nonelementary. O

We then show that this lower bound implies a nonelementary lower bound foelrabecking
HM over the class of asynchronous products of two prefix-recognizgtems.

Proof of Theorem 7.2

The structure of the proof of Theorem 7.2 is as follows. We first show teoencode large
counters agF formulas evaluated over the class of asynchronous products ddR&s. Such
large counters are enforced by the two stacks in theBRAs, which alternately “guess” an
encoding of a counter and “check” the correctness of the encodimghid chapter we will
not provide details how this encoding of large counters can be used ddergomputations of
Turing machines with a nonelementary membership problem since this is rathearsta

Large counters: The following encoding of large numbers is from [195, 34]. In the follayyin
the notations:, and/ will range overN. We define the standaiidwer functionTower : N x N —

N inductively asTower(0,7) %' n and Tower(k, n) &' 2Tower(k=1n) for eachk > 0 and each
n € N.

74

7.2 Hardness of asynchronous product

We define the alphabet®, def {0¢, 1,} and the valuesal(0y) % andval(1y) %71 for each
> 0.

A (1, n)-counteris a word from€). Thevalueval(c) of some(1, n)-counterc = og - - - 01
is defined awal(c) def S5 28 - val(oy) € [0,2" — 1]. So the set of valuesal(c) for (1, n)-
counterse equals|0, 2" — 1] = [0, Tower(1,n) — 1]. An (¢, n)-counterwith ¢ > 1 is a word
€ = cpopC101 - . . CmOm, Wherem = Tower(¢ — 1,n) — 1, eache; is an(¢ — 1, n)-counter with
val(¢;) = i ando; € Q,_; for eachi € [0, m]. We defineval(c) def >, 2" - val(o;). Observe
thatval(c) € [0, Tower(¢,n) — 1] and the length of eact¥, n)-counter is uniquely determined
by ¢ andn.

In the following, we defing2, = {0;,1,} to be a fresh copy of};; moreover defin&, =
U’_, s and analogously, = [J5_, 2.

Definition of the two BPAs: For each integef > 0, let us define the following simplBPA
Pg = (Ee, Ag, AZ), where

o Ay =3X,UYX,, whereX, = {7 | 0 € ¥} is a dual copy of,.
e Ay={rs07|oTeX}U{o—ze]| o€ X}

The transition systerif (P,) has a fairly regular behavior. The set of statesjs Executing an
actionz € X, from a stateu € (3,)* allows to remove exactly this leftmost symlofrom u if
u is non-empty and begins with, otherwises cannot be executed from Dually, from every
nonempty state € (3,)* of 7(P,) we can execute every actionc 3, yielding the stateu;
the only state from which the € 3, are not executable is the empty ward\Ve define the BPA
P, analogously t&P, but by priming every symbol. Formall§;, = (X}, A}, A}), where

o A, =%,UY), whereX, = {0/ | o/ € &)} is a dual copy ob2).
o Ay={r" =g oo, T e E}u{o e |0 €3}

Note that the set of states @f(P,) x T(P;) is (X,)* x (X})*. Given a states = (u,u') €
(Xe)* x (X7)*, we callu the left stack ofs andw’ theright stack ofs. So we treat the words
v andu’ as stacks with their left-most symbols being the top of the stack. Recall that eve
(¢,n)-counter is in particular a word ovél,_;. We extend this notion to words ov&, , in
the usual way. So eadlf, n)-counter will in particular be either a word ovEy_; or overX;_,,
depending on whether we address the left stack or the right stack. Nuotié sbme word over
¥k (resp. overz}) has an(¢, n)-counter as a prefix, then the length of this prefix is uniquely
determined by andn.

An extended?, n)-counteris either a string:o, where either € Xj_, is an(¢,n)-counter
ando € €y, or a stringc’o’, whered’ € (¥,_,)* is an(¢, n)-counter and’ €).

Next, we define somé&F formulas (with primed counterparts for the right stack) for each
£,n e N:

1. countf, for eacho € Q, such thal(7(P¢) x T(Py), (u,u')) |= countf, if, and only
if, for some(¢, n)-counterc we have thato is a prefix ofu.

75

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

2. countf, , for eacho’ € ©, such tha(T (Py) x T(Py), (u, ') |= count?, ., if, and only
if, for some(¢, n)-counterc’ we have that'c’ is a prefix ofu’.

3. xcount(y) such that(7 (P,) x T(P,), (u,u')) | xcount, if, and only if, some ex-
tended(¢, n)-counterco (for o € Q) is a prefix ofu.

4. xcount(, ., such that(7(Pg) x T(Py), (u,u)) = xcount;, ., if, and only if, some ex-
tended(¢, n)-counterc’c’ (for o’ € §)) is a prefix ofu’.

5. first(y) (resp.first(,,\) such tha(7 (Pr) x T(Py), (u, u')) = first(y,) (resp.(T (Pe) x
T(Py), (u,u')) [= first(,) if, and only if, some extende(, n)-counterco (resp.c'c”)
with val(c) = 0 (resp.val(¢’) = 0) is a prefix ofu (resp.u’).

6. last(s,,) (resp.last’(&n)) such that 7 (P;) x T(P;), (u,u’)) = last (g, (resp.(T (P;) x
T(P)), (u,u)) = '35t/(e,n)) if, and only if, some extendeff, n)-counterco (resp.c'c’)
with val(c) = Tower(¢,n) — 1 (resp.val(c’) = Tower(¢,n) — 1) is a prefix ofu (resp.u’).

7. eqqy,) such that(7 (Py) x T(Py), (u,u')) |= eqq,) if, and only if, there exist extended
(¢,n)-countersco € (X,-1)*Qp andcd'o’ € (X,_,)*Q, such that (i)co is a prefix ofu,
(i) o’ is a prefix ofu’, and (iii) val(c) = val(¢).

8. inc(y,n) (resp. inc’(&n)) such that(7 (P;) x T(P,), (u,u')) = inc() (resp. (T (Pe) x
P)), (u,u inc if, and only if, there exist extende(, n)-countersco €
T(P, ! /(fm)) if, and only if, th [d
Y1 candc'o’ € (X, such that (i)co Is a prefix ofu, (i) c'o’ Is a prefix ofu’,
*Qy andc'o’ 1) h that (i)xo i fix ofu, (i) o’ i fix ofu’
and (i) val(c) + 1 = val(¢’) (resp.val(¢’) + 1 = val(c)).

9. succ(yn) (resp.succ’(&n)) such tha(7 (P) x T(Py), (u,u’)) |= succ,) (resp.(T (Pe) x
T(Pp), (u,u)) = succ’(f) if, and only if, there are extendgd, n)-countersci oy and
co0y (resp.cjo] andcyoh) with o1, 09 € Qp (resp.of, o5 €) such that o1c207 is @
prefix of u andval(c;) + 1 = val(c2) (resp.val(c)) + 1 = val(c})).

The size of the formulas that we will define will be exponentialfiand polynomial inn
(both represented in unary). This definition will be given by induction/fonWe will start

. . . . def def
with the following simple observationscount(;,,y = VUEQZ count‘&n), andxcount’(£7n) =

\/0’692 cou ”t?él,n)' We will now construct several formulgsthat we evaluate ot (P;) x T (P;)
expressing properties of theft stack Without making them explicit, we can construct corre-
sponding analogg’ expressing the respective property ontight stack

Let us proceed by defining the above formulas for the cage-of. We definecou “t?1,n) and

count?, - as follows:

count; ., def (Q0)" (7)true and count‘(’llm) def <QT)>” (o")true

We putfirst) def (00)™(Q1)true. The definition oflast(;) is analogous. We also define
eq(1,n) Asxcount(y ,y A xcount’(lyn) A /\?:_01 <§T()>1<ST{)>Z (/\UGQO(<E)true & (?>true)) . The
definitions ofinc(; ,,) andsucc, ;) are analogous.

76

7.2 Hardness of asynchronous product

Let us now proceed to the caselof 1. We start by defining the formulau nt‘&m for each
o € Q. We will achieve this, by making use of the formulést,_, ,, last(;) with j €
[1,¢ — 1], xcount(y_y), @andsucc(y_ . The first two conjuncts of the definition oéunt‘(’é,’n)
are self-explanatory,

count?&n) def first(p_1.,) A [Eg_l*} <xcount(g_1’n) — (Iast((g_l,n) \% SUCC(g_Ln))> A add?,

whereas the formuladd” will express that the symbat follows after the top-most/, n)-
counter. Formally we putdd” def Y7, where

def [2731 (IaSt(jm) - w?—l) if j>1

TS Gasti — (To)" (M) (Ta) -+ (T2 () o) orue) if j=1.

Intuitively, the formulayy_, jumps to last extended, n)-counter of the last extenddd, n)-
counter. .. of the last extendef — 1, n)-counter and expresses that the correct sequence follows
from this position. We now definfrst, .,y as follows:

first (g n) def xcount(g)y A [24_1*} ((Q—1) true — (0y—1) true).

The definition oflast, ,,) is similar.
We now expressq, ,,), for each? > 1, as the conjunction ofcounty ;) A xcount’(z n) and

In

[2571*] (xcount(g_lyn) —

<$*> &d(r—1,m) N /\ ((EF) (@)true > (S ,) (o) true)

c€Np_q

Let us give some intuition on the formulag,, .,y for each/ € [2, k]: Whenever we pop from
the left stack some string frorf®,_1)* until on top of the left stack there is some extended
(¢ — 1,n)-counterca, one can remove from the right stack a string frénj_,)* yielding an
extended? — 1, n) counterc’7’ on top of the right stack such thatl(c) = val(¢’) and moreover
o = 7 holds.

In analogy toeq(, ,,y one can define the formulac, ,,). Finally, let us defineucc,,,). We
put

SUCC(¢,n) def <22> <(E’£_1)*> (eq(&n) A <Eg_1*> <fg> inc’(&n))

Intuitively, we the formulasucc, ,,) pushes onto the right stack some string that it checks to be
a copy of the topmost extendé€ »n)-counter of the left stack vieq,), then pops the topmost
extended/, n)-counter of the left stack and then invokes the forrﬁu@yn).

Itis easy to see that the formulas given above express the desired@spFurthermore, we
note that the size of each formula is exponential and polynomial inv..

77

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

By using standard arguments (e.g. see the pro®SefACE-hardness oEF model checking
over pushdown systems in [18]), one can complete the proof of Thed:2to encode compu-
tations of Turing machines. For proving lower bounds on the size of degsitigns later, we
are rather interested in the word language of stack contents satisfyindhe fmrmulas from
1. to 9. For this, we briefly recall the notion of (deterministic) finite automataeterministic
finite automatonDFA) is a tupleA = (Q, X, o, 0,), whereQ is a finite set oktates X is a
finite alphabet ¢y € Q is theinitial state, 6 : Q x ¥ — @ is thetransition functionandF C @
is the set ofinal statesBy L(.A) = {w € ¥* | A acceptav} we denote théanguageof A. For
simplicity we define theizeof A is as|.A| gef Q.

We will make use of the following lemma in Section 7.3.

Lemma 7.3 ([77]) EveryDFA accepting the regular language

Lon & {ue)| € (5) : (T(P) x T(P)), () |= xcount g, }

has at leasfTower(¢ — 1,n) + 1 states. O

PROOF Recall that every extenddd, n)-counter has a length that is uniquely determined by
andn that is at leasTower(¢ — 1,n) + 1. We have

Ly = {cow | w € ¥}, co is some extendetl, n)-countes.

The lemma now follows from the following simple observation: EVBRA A over some alpha-
betX with L(A) = U - ¥* for somef) C U C X has at leastn states. n

Lower bounds for HM

We conclude this section by showing how Theorem 7.2 implies a nonelementamtound for
model checkinddM on the asynchronous product of two prefix-recognizable systerpsefix-
recognizable systemmatupleR = (X, A, A), whereX is finite set of process constamtsC Act

is a finite set of action labels ami is a finite set of rewrite rules of the forbi —, V', where

a € A, and wherd/, V' C ¥* are regular languages given@BAs, say. The associated transition
systemisT (R) = (X%, A, {-%| a € A}), where—%= {(uw,vw) | u € U,v € V,w € ¥* for
some rulel/ —, V € A} for eacha € A.

One can now construct from a given pairBPAs P = (X,A;A) andP’ = (X', A", A)
and a giverEF formulay over A U A’ a pair of prefix-recognizable systers= (X, A, Ar)
andR' = (¥, A, A%) and somedM formulay such thafo] 7 p) 7 () = [@l7T(R)xT(R?) @S
follows: By [39] one can compute for eadh C A (analogously for each’ C A’) a pair of
regular language&r andVr (resp. U andVp) each accepted bpFAs of at most exponen-

tial size (in|P| + |P’|) such that the relatior > over x* (resp. AN over (X)*) is exactly

R(T) L {(ww, vw) | u € Up,v € Vi, w € S*} (resp. R/(TY) & {(ww, vw) | u € Upr,v €
Vir,w € (X')*}). The latter is even shown for pushdown systems in [39]. Hence weefared

78

7.3 Lower bounds for the compositional method for HM and EF

the HM formula ¢ to emerge fromp by replacing each occurence @t*) by <f> and each oc-
currence of (T)*) by (I').

Theorem 7.2 and the previous remark immediately imply the following corollary.

Corollary 7.4 ([77]) Model checkindgiM on the asynchronous product of two prefix-recognizable
systems is nonelementary. O

We remark that model checkingM on a single prefix-recognizable system is oR§PACE-
complete; the upper bound can be shown via reducti&f tmodel checking pushdown systems,
which is inPSPACE by [196].

7.3 Lower bounds for the compositional method for HM and
EF

We start by proving nonelementary lower bounds for the FefermaniWayge compositional
method forHM andEF logics (i.e. Theorem 7.1) already over the class of asynchronousgqtsod
of two transition systems. In Section 7.3 we will then show how our lower boundsean
relativized to the class of all asynchronous productsvoffinitetransition systems in the end of
this section.

Let us briefly recall decompositions following Theorem 7.1Eétlogic of the asynchronous
product of two transition systems. Analogously one can deal With A decompositiorwith
respect to the asynchronous product of two transition systems, theofingtonent being defined
over action labelé\ and the second one ovAf (we assume that any two such sAtandA’ are
non-empty and disjoint for the rest of this section) is a triPle- (¥, ¥, 3), where¥ = {); };cs
and¥’ = {4} ;e for index setd and.J, whereg is a positive boolean formula with variables
ranging over{x;};c; U {x;}jg, eachy € ¥ (resp. each)’ € ¥') is anEF formula that is
interpreted on the first (resp. second) component, i.e. Avgesp. A’). Recall that such a
decomposition has the property that for every pointed transition sygtewer A with states
and every pointed transition systef over A’ with states’ and everyjeF formulay overA U A’
we have

(TxT. (s,8)) Ee < plulistrue
whereu(z;) = 1if, and only if, (T, s) |= ¢; and whereu(z’;) = 1if, and only if, (T, s') = .

As expected, theizeof such a decomposition is defined|&s %' > wew [V pew V1418

The goal of this section is to prove the following lower bound on the size cbmi@ositions
for EF andHM.

Theorem 7.5 ([77]) The size of decompositions f&F (resp. HM) formulas in the sense of
Theorem 7.1 cannot be bounded by an elementary function. More glsectgere is a family of
EF (resp. HM) formulas{y, | ¢ > 1} wherey, is defined over some action labels U A,
such that/p,| < exp(¢), and such that for every elementary functipn N — N there is some

h € N such that every decompositi@hfor ¢, on the class of all asynchronous products of two
transition systems over, respectively, and A}, satisfie§D| > f(h). O

79

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

Proof of Theorem 7.5

The proof idea for Theorem 7.5 for the case of the Idgtds as follows (we will remark how to
adapt it for the logidiM later). We consider the sequence of pair88As { (P, P;) | £ > 1}
defined in the previous section, where the set of stateg (@) (resp. 7(P,)) is X} (resp.
(X7)%). We will show that if a small (i.e. of elementary size) decompositionEerformulas
exists in general, then there is a familyldfAs A, of size elementary idwith L(.Ay) = L , for
each/, clearly contradicting Lemma 7.3. To this end, we invoke the result fromdb8t the
sizes of automata expressing the sets of configuratioBRA$ satisfyingeF formulas combined
with standard constructions from automatic structures.

We first recall the following proposition from [18] about the sizeDdfAs representing the set
of configurations oBPAs satisfyingeF formulas.

Proposition 7.6 ([18]) Given anEF formulay and aBPA P = (3, A, A), there exists ®FA
A, of size doubly exponential iP| + || with L(A,) = [¢]7(p), i.e. A, accepts the set of
statesu of 7(P) with (T(P),u) E . O

Actually, in [18], the authors construct alternating finite automata with polynigmimany
states, which can be translated1bAs of double exponential size (e.g. see [192]).

Define{y, | £ > 1} asyy def xcount, » over the action labels, andAj, where recall that
A, (resp.A;)) are the action labels of tH&PA P, (resp.P;) defined in the previous section.

To prove Theorem 7.5, assume to the contrary that the there exist desitionmforEF for-
mulasy,, whose sizes can be bounded from above by an elementary funciday, Sawer(r, |¢|)
for somefixedr € N. Leth € N be a sufficiently large number for the following arguments
to work. Let us fix a smallest possible decompositbn= (¥, ¥’ 3) for the EF formula
¢n = xcount,) OverAy, U Ay . Thus by assumptiofD| < Tower(r, |¢p]). Let W = {4 }icr
andl’ = {9’} ;e;. Recallthateacly; € ¥ is anEF formula overA,,, and each; € ¥'is anEF
formula overAj,. Moreoverg is a positive boolean formula over the variabjes}icr U{z’ } je
such that for every state:, u') € (X5)* x (,)* of T(Py) x T(Py), itis the case that

(T(Pn) x T(Ph), (u,v)) = on <= Blu]istrue

wherey is the assignment t6 where we have:(x;) = 1 if, and only if, (T (Py),u) = ; and
w(x) = 1if, and only if, (T (Py,), u') = ¥

Next, we will use Proposition 7.6 and the small decomposition given by thengdisun to
construct &DFA for the languagd.;, , = {u € X} | Ju € (X})* : (T(Pn) x T(Py), (u,v)) =
¢n} with less thanTower(h — 1, h) 4 1 states, which will contradict Lemma 7.3. To do so,
we first make the following simple observation that relates the decomposttioine;, and the
formulayy, itself.

Define theEF formulag overA, UA;] to be obtained from the boolean formuldy replacing
each variabler; by v; and each variable} by gb}. Then, since all formulag; andu}; are also
formulas overA; U A}, the EF formula 3 is also a formula oveA;, U A}. Moreover, it is
easy to see that by assumption we hgwg|r(p,)x7(r;) = HE]]T(p,L)XT(p;L). In fact, the latter

80

7.3 Lower bounds for the compositional method for HM and EF

immediately follows from the fact that

[Wilroxrey = Wil x (33)" and (7.1)
Wiy = Zhx [Wilre) (7.2)

which can easily be proven by induction on the structure of the formullaamdz/z; since no
action labels ofP;, (resp.P;) occur in the action labels @f} (resp.1);). Thus, the goal to obtain
a contradiction will be to show that we can find a sniafA for

Li(B) = {u e %} | 3u/ € (B4)": (T(Pu) x T(P), (u,) |= B}

Using Proposition 7.6 we obtaldFAs for [;]7(p,) (for eachi € I) and[[q/ﬂﬂp;b) (for each

J € J) each of size doubly exponential in, respectivély| + |Py| and|+;| + |P;,|. To obtain

a smallDFA for Ll(ﬁ) from theseDFAs, we will now perform some simple constructions from
automatic structures (e.g. see [184]). We first briefly recall the notiafbiofiry) automatic
relations. Fix a nonempty finite alphab®et A pair of words(u, w) = (a1 -+ am,b1---by) €

¥* x ¥* can be represented as a warch w = ¢; - - - ¢, of lengthk = max(m, n) in the new

alphabet:; x ¥, whereX; =X U {L} with a “padding” symboll ¢ ¥, and

(a;, b;) ifi<m,i<n
ci=1< (a;, 1) if i <m,i>n
(L, b) if i >m,i <n.

A (binary) relationR C ¥* x X* is said to beautomaticif the language{u ® v | (u,v) €
R} C (¥, x X,)* can be accepted by @FA (i.e. is regular). We also write;(R) to be
the projection ofR to the first component, i.ex;(R) = {u € £* | 3w : (u,w) € R}. The
following proposition is folklore (e.g. see [184]):

Proposition 7.7 (folklore) Given two automatic relation#,, R> accepted byDFAs A; and
As, respectively, the following statements hold:

e The relationR; N Ry can be accepted by@FA of size at mosfA, | - |As].
e The relationR; U R» can be accepted by@FA of size at mostA; | - |As|.
e The languager;(R;) C X* can be accepted by BFA of size20(411), o

Observe now thaly;]7(p,)x7(p;) (for eachi € I) and[y}]7p,)x7(p;) (for eachj € J)
is an automatic relation over the alphabet= ¥;, U ¥ that can be accepted)FAs of size
doubly exponential in, respectively);| +|Py| + [P}, | and|¢%| +|Py| + [Py, | by Proposition 7.6.
The construction of a smalFA A for the Ianguagell(ﬁ) can be done in a bottom-up fashion
with respect tq§ using Proposition 7.7 by firstly taking unions and intersections fronifes
recognizing[v;]7(p,)x7(p;) (for eachi € I) and[y}[r(p,)x7(p;) (for eachj € J), and at the
end projecting to the first component. All in all, there are constanis, with ¢; < ¢y (both
independent of) such that

|A| < Tower(c1, |@n| + |Pr| + |Pr,|) < Tower(ca, h). (7.3)

81

7 Lower bounds on verifying asynchronous products and the sizefefrRan-Vaught decompositions

The latter inequality follows from the fact thi®y,| 4+ |P;| < poly(h) and|ps| < exp(h). On

the other hand, due f]7(p,)x7(p;) = [Bl7(P,)x7(P;) @Nd Lemma 7.3, we must have
|A| > Tower(h — 1,h) + 1. (7.4)

Itis clear that if we choosg sufficiently large, then inequalities (7.3) and (7.4) cannot hold at
the same time, a contradiction.

Remark. The proof above can be easily adapted to /ﬂE/ cadeMlogic by taking prefix-
recognizable systems and tH& formulas of the formxcount,) in analogy to the end of the
previous section (instead 8PAs andEF formulas of the formxcount g).

Restricting to finite transition systems

Theorem 7.5 gives a nonelementary lower bound for decompositionstliwexsynchronous
product of two general transition systems. This still leaves the possibilitybisidér upper
bounds might be possible when we consider only asynchronous psodifnite transition

systems, i.e., the version of Theorem 7.1 when transition systems undateratisn are finite.
The following theorem shows that this is not the case.

Theorem 7.8 ([77]) The size of decompositions f&F (resp. HM) formulas in the sense of
Theorem 7.1 cannot be bounded by an elementary function when reftadtee class of finite
transition systems. O

Roughly speaking, this theorem can be proven by combining Theorenmd tha fact thatM
andEF logics satisfy “finite model property with respect to a finite set of formulaslogic £
is said to satisfy théinite model property with respect to a finite set of formuldsenever, for
every finite se& of £-formulas and every transition systemwith states there exists dinite
pointed transition systerfiz with statesz such that for alk) € = we have(T, s) E v if, and
only if, (7z, sz) = 1.

It simple to check that when restricted to logics that are closed under lnogbesations the
finite model property with respect to a finite set of formulas is equivalenteaditiite model
property (for single formulas).

82

8 Lower bounds for bisimilarity of
(higher-order) pushdown systems

In this chapter we present lower bounds for bisimilarity checking on pmshdystems and
higher-order pushdown systems. A celebrated result ényiZérgues states that bisimilarity
checking of pushdown systems is decidable [167@niZergues’ upper bound consists of two
semi-decision procedures and unfortunately no complexity-theoretia bpped is known for
this problem to date. The best-known lower bound for bisimilarity of pusimoygtems i€XP-
hardness by Ktera and Mayr [121] — recently Kiefer proved ti&XP-hardness already holds
for the subclass basic process algebras [114]. Concerning higtherpushdown systems it has
been open whether bisimilarity is decidable.

Our contributions in this chapter are as follows. In Section 8.1 we providdetaled con-
struction for undecidability of bisimilarity of order-two pushdown systems. diége further
undecidability results on the thewer-order problenwhich asks, roughly speaking, asks to de-
cide if a given ordef: pushdown system has a behavior that is inherently bisimilar to an érder-
pushdown systems (whether there is no reachable configuration thainiddiiso an orderk’
pushdown system with’ < k). In Section 8.2 we a high-level description of our proof that
bisimilarity of pushdown systems is nonelementary.

Bibliographic notes. The undecidability results on higher-order pushdown systems have been
published in the conference paper [27] (FSTTCS 2012) in joint work @Hhistopher Broad-
bent. The nonelementary lower bound on bisimiliarity of pushdown systeniseeasaccepted

for publication in the conference paper [10] (LICS 2013) in joint wotikmMichael Benedikt,
Stefan Kiefer and Andrzej Murawski.

8.1 Bisimilarity of order-2 pushdown systems is undecidable

Let us state the main decision problem which we study in this section.

k-PDS-BISIMILARITY

INPUT: A k-PDSP = (Q,A,T, A) and two configurationg(«), ¢’ (o) € QxStacks ().
QUESTION: Doesg(a) ~ ¢'(¢) hold inT(P)?

The following proposition is folklore and essentially follows from the fact #haery configura-
tion of ak-PDS has only finitely many successors and thus a winning strategy for Attaaker c
be represented by a finite tree b¥ig’s Lemma, see also [110].

83

8 Lower bounds for bisimilarity of (higher-order) pushdown systems

Proposition 8.1 The problemk-PDS-BISIMILARITY is inT1{ for eachk > 1. O

Our undecidability proof fok-PDS-BISIMILARITY is a reduction from an appropriate variant
of Post’s Correspondence problem and inspired from [110]. Fomarolsu, v over some finite
alphabett we writeu < v if uw = v for somew € ¥*, that is if u is a prefix ofv. For a

.) . def
wordw = ay - - - a, With a; € X for eachi € [1,n] we denote itseverseby wlR Za, - ay.

For a finite (resp. infinite) sequence of finite words ..., u, (resp. ui,us,...) wWe write

def def . .
[Licp o wi = wiuz -~ - up (resp.J [, wi = uiug - - -) to denote their concatentation.

An instanceof (Modified) Post’s Correspondence Problegiven by a tuplet’ = (J, %, hy, hs),
whereJ C [1,n] for somen > 1, X is a finiteword alphabetand whereh;, hy : J* — X* are
homomorphisms. We calt’ increasingif |hi(j)| < |ha(j)| for eachj € J. We call X non-
erasingif h1(j), ha(j) # € for eachj € J. A solutionto & is a wordw = jj - - - j, € J* with
¢ > 1andj; = 1 such thath; (w) = ha(w). An w-solutionto X" is a mapping : Ny — J with
5(1) = 1 such that the following equality over-words holds] [~ hi(s(i)) = [;5 h2(s(7)).

Remark 8.2 WhenX’ is non-erasing and increasing, the following two statements are equiva-
lent for eachs : Ny — J:

e The mapping is anw-solution toX’.
e s(1)=1andhi(s(1)---s(f)) = ha(s(1)---s(¢)) for everyl € N,. O

The classical (finitary) problem MPCP asks, given an instaticevhetherX’ has a solution.
The infinitary varianto-MPCP asks, given an instangg whetherX’ has anv-solution.

It was shown in [160] that-MPCP isII}-complete. As already observed in [110], Sipser’s
»{-hardness reduction [170] from the halting problem of Turing machin@dRECP can be
transferred to d19-hardness reduction to-MPCP even when restricting instances to be in-
creasing (by only using Steps 1 to 5 and avoiding Steps 6 and 7 in Sectioh[57D)). In fact,
by inspecting the homomorphisms constructed by Sipser, one can additicssliyna that the
instances are non-erasing; the latter was not necessary in the udmlé@gigaoofs from [110],
but is essential in our hardness proofs. This leads us to the followirdgmno

w-NONERASING-INCREASINGMPCP

INPUT: An instanceY’ = (J, 3, h1, ho) that is non-erasing and increasing, i.e. such that
h1(j), ha(j) # € and|hy(j)| < |ha(j)| for eachj € J.

QUESTION: DoesX have anv-solution?

The following result is folklore, see [170] for a proof.

Theorem 8.3 ([170]) The problemv-NONERASING-INCREASING-MPCPIis I1{-complete. O

We provell{-hardness o-PDS-BISIMILARITY by giving a many-one reduction from the
problemw-NONERASING-INCREASING-MPCP. For this, let us fix an instangé= (J, X, hy, ho)
of w-NONERASING-INCREASINGMPCP. We will construct 2-PDAP = (Q,A,T,A) and
two configurationg([1_L]) and¢’([1L]) such thatt’ has anv-solution if, and only if g([1L]) ~
¢ ([1L]) holds inT (P).

84

8.1 Bisimilarity of order-2 pushdown systems is undecidable

Overview of the Construction. We start from the pair of configurationg[1.L]) (the initial
left configuration) and/([1_L]) (the initial right configuration), thus both initial configurations
consist of just one orderstack. We partition the bisimulation game intoee phases

Defining j; def 1, in phase 1we repeatedly push indicgs, js, . .. € J onto the ordert-stack
of both configurations and we let Defender choose them by using the techriigDefender’s
Forcing”. The idea is that Defender’s job is to push an infinite sequehp®lices that is an
w-solution to X' onto both order stacks ad infinitum. At any situation in the game of the
formq([je--- j1L]) andq’([j¢ - - - j1-L]) Attacker can play the actiofito challenge Defender by
claiming thath (41 - - - j¢) is not a prefix ofha (51 - - - j¢) in the spirit of Remark 8.2.

This leads us tphase 2in which Defender wishes to provea (ji - - - j¢) = ha(j1 - - - j¢) when
the bisimulation game is in the paj([j,---j1L]) and¢'([je---j1L]). Letw = jz---j1L.
From the pairg([w]) andq’([w]) we let the game get to the pair of configuratiagfig][w][w])
and ¢ ([w]|[w][w]) by performing twopush, operations on both configurations. From this po-
sition, by again using the “Defender’s Forcing” technique and poppmthe top-most order-

1 stack, we allow Defender to choose a situation of the faffa’j._; - - - j; L] [w][w]) and
2 ([ufgp_1 - - j1 L] [w][w]), wherel < k < ¢, whereu is a prefix (possibly empty) of2(j),
and moreoveh (ji - - - je) = ha(j1 - - - jr—1)u.

From the latter pair of configurationghase 3deterministically prints from the left configu-
ration essentially (plus some intermediate symbols) the striig - - - j,) 7 by first performing
apop,, and from the right configuration essentially (plus some intermediate syntbelsjring
ufha (41 - - - jr_1)™ by continuing with the current top ordeérstack.

Since we had three copieswofat the end of phase two, we can now perforpog, followed
by a single ‘wait’ on the left configuration, and tyop,s on the right configuration, so that both
then have stacfw]. This allows them both to empty their stacks using the same numipepef
operations, allowing ou2-PDS to benormed Thus our suggested definition of normedness
does not help recover decidability. Recall that a configuragier) of a k-PDS P is normedif
there exists some control statein P with ¢;(Ly) /5 (emits noa-transition) for eachy € A,
and such that every configuratigf) with go(cg) —* ¢(a) we haveg(a) —* q¢(Ly).

When describing the rules in detail, we list the rewrite rule®af reverse order, i.e. first for
phase 3 then forphase 2and finally forphase 1 Adapting the notation from [110], the rewrite
rules that are presented inj g represent the moves added to implement “Defender’s Forcing”.
These moves allow Defender to render the two configurations equalesee krivially bisimi-
lar, if Attacker does not allow Defender to “decide the stack operations”.

The Details.

LetD def J U X. The set of control stateg, the set of actioné and the transitiona of P

are implicitly given by the following rewrite rules. We describe the rulesploase 3first. We
suggest first reading the lemma that follows after the transitions befadéngethe transitions
themselves.

85

8 Lower bounds for bisimilarity of (higher-order) pushdown systems

Ty i)p Y pops and '~ i)p y' swap,, foreachy e TU{ L}
ya<spy pop; and ' a <sp pop; for eacha € ©
Y i <Sp yswap,r for eachj € J, wherehy(j) = va
r g / ; A
y' j —p y swap,r for eachj € J, wherehy(j) = va
1 1
yLl <pzyswap;, and y' L <p 2] popy
P , . D .
z1 L <—p 2z popy and 2z} j —p z popy foreachj € J
zj i)p z pop; for eachj € J

For the following lemma, observe that from both the initial configurations in timerla there
is a unique maximal (w.r.t2) word that can be traced.

Lemma 8.4 ([27]) Assumej,...,j, € JwithZ > 1 and let0 < k& < ¢. Assume som2 stack
a = [ufje 51 L][je- -~ g1 L][je- - - j1L], whereu € ¥*. Then we have

z(a) ~ 2'(a) if,and onlyif, hq(j1---je) = ha(j1 - jx)u.

We add the following rules ta\ in order to implemenphase 2

r1j ‘i)p 79 pushy and 7 j i>7; 15, push, for eachj € J
r9 j i>7> t push, and 14 j ci>7> t' pushy for eachj € J
thipxswapL and t/J_i)p 2’ swap |
tip t] swap; and tj Sp t| swap for eachj € J
tj Lt swap; for eachj € J
tj Lo ti(w)swap;| and t'j im ti(w) swap; for eachj € J and
each prefixw of ha(j)
tj i>7> t pop; and | j im: t' pop; for eachj € J
th(w) j <i>7> t pop, for eachj € J and each
prefixw of ha(7)
tj <zi>u>p X swap,,r and t;(w)j <j£)}>'p x' swap,,r for eachj € J and each
and || j <Zi>u>p X Swap,,r prefixw of ha(5)

ti(w) j <<J’—v>>p x swap,r | foreachj € J and all

prefixesv, w of ho(j) s.t.v # w
Lemma 8.5 ([27]) Lety = ji - - - j, € J¢ with £ > 1. Then we have

([L)) ~ (L)) if,and only if, R (p) < ha(p).

86

8.1 Bisimilarity of order-2 pushdown systems is undecidable

Finally, let us add the following rules t& for implementingphase 1

qk i>7: qjswap,| and ¢k i>7> q; swapy, for eachj, k € J

qj <1>7> q swap; foreachj € J
qj im 71 SWap; and ¢y i>'p 71 Swap; for eachj € J
gk <i>p q swapy, foreachk,j € J

q; k i>7> q' swap;, foreachk,j € J

4k tj—>7> q swapjy, | foreachk, j, ;' € J with j' # j

Lemma 8.6 ([27]) We havey([1L1]) ~ ¢'([1L]) if, and only if, X has anw-solution. O

It is not hard to verify that both configuration§[1_L]) andq’([1_L]) are normed. For the main
result in this section to be stated below, the lower bound follows from The8t8 and Lemma
8.6, whereas the upper bound is stated in Proposition 8.1.

Theorem 8.7 ([27]) The problem2-PDS-BSIMILARITY is II{-complete. The lower bound
even holds when both input configurations are normed. O

The Lower Order Problem

Finally in [27], we studied the lower order problem problem which can lea & the question
whether a given orde-PDS has a reachable configuration that is bisimilar to an okG&DS,
wherek’ < k. The lower order problem is defined below. In the followin@-BDS is simply a
finite transition system. It is worth mentioning that the lower order problem ispewable to

the problem of whether an inp&tPDS is bisimilar to ak’-PDS; in fact for this latter problem
decidability is still open whenever > 2. Only very recently decidability of whether a given
pushdown systeml{PDS) is bisimilar to a finite system has been announced [104]. Let us de-
fine the lower order problem.

LOWER ORDER, ;-

INPUT: A k-PDS P and a configuratiog(«) of P.
QUESTION: Does there exist a configuratiofy3) of P with ¢(«) —* () such that(3) ~
r'(8"), wherer’(’) is a configuration of some/-PDS P’?

We have obtained the following additional undecidability result in [27].

Theorem 8.8 ([27]) The problenL oWER ORDER;, ;- is ¥:-hard and thus undecidable for each
k > 2 and each) < k’ < k. The lower bound even holds when the inptRDS is determinis-
tic. O

To date, we are only aware o5& upper bound for the problemdwER ORDER, .

87

8 Lower bounds for bisimilarity of (higher-order) pushdown systems

8.2 Bisimilarity of pushdown systems is nonelementary

In this section we sketch a nonelementary lower bound for bisimiliarity of ppghdystems.
The latter problem can be defined as follows.

PDS-BISIMILARITY

INPUT: A PDS P = (Q,AT,{<%| a € A}) and two configurationg(w), ¢’ (w') €
Q x I'.

QUESTION: Doesg(w) ~ g(w') hold inT(P)?

We recall that bisimilarity has a natural game-theoretic characterizatioen@®mo transition
systems, one can consider a the bisimulation game between the phdigeieerandDefender
They play rounds, in which Attacker fires a transition from one of the systand Defender
has to follow with an identically labeled transition from the other system. In therésd,
the chosen transitions must lead from the states to be tested for bisimilarity, whéach
subsequent round, they must start at the states reached after thdipgecound. Defender
loses if she cannot find a matching transition. In this framework, bisimilaritgesponds to the
existence of a winning strategy for Defender.

The game-theoretic reading suggests an intuitive way of reducing haltib¢epns for Turing
machines to bisimulation problems, based on constructing bisimulation gamestisigt tbe
following condition: a given Turing machine halts on an input string if, anly dnDefender
has a winning strategy. Such games can be viewed as a competition betwegxaytrs, in
which Defender is given an opportunity to exhibit an accepting run andckdtais equipped
with mechanisms to challenge (and verify) the correctness of Defenclamstruction. The
effect of constructing a run by Defender is achieved by allowing Digerto make choices
during the game. As the process of playing a bisimulation game naturally fattacker as the
decision maker, it is not actually clear that the game can be used to exprfswiBr's choice.
Nevertheless, it turns out that thanks to the forcing technique of [itlf]possible to construct
transition systems in which Defender effectively ends up making choices.

When proving hardness of bisimilarity for classes of computational modsik,as pushdown
systems, the positions of bisimulation games discussed above must cod-&sponfigurations
of the machines. In particular, this means that during the game, playersedaoulght of as
having access to the associated computational resources. For exanple case, Defender
will make moves that store his proposed accepting run on the stack. Addijaha game
can also store some information in the control state of the pushdown systegindeiwe are
interested in finding polynomial-time reductions, these have to be of polynoizgal s

Next we give mare intuition for our argument by discussing RMPACE computations can
be modeled through bisimulation games, following the argument dfekaand Mayr [121]
(their argument is foOEXP, which is equal to alternatingSPACE, but we omit alternation from
the discussion, because alternating computation will not be used in our ngaimemt). Let
us consider @SPACE machineM and an input word. We can code the tape configuration
of such a machine by a stack of polynomial size, and we will thus naturallsidena reduc-
tion that produces a pair of pushdown systems — in fact, they are the sainéoptn systems

88

8.2 Bisimilarity of pushdown systems is nonelementary

but with different control states — whose stack configurations at amt pgpresent sequences

of configurations ofM with separators (older configurations occur deeper in the stack). The
PDS will have moves that can push new tape symbols of the mackinen the stacks of each
configuration, and we can rely on Defender’s Forcing to delegate thieechf such moves to
Defender. The control state can be used to make sure that tapes afednect size, because
each configuration is of polynomial size and we can afford to create poiially many control
states as part of a polynomial-time reduction.

In order to check that Defender’s choices amount to a computation hiskerypushdown
system is able to move into a “verification mode”: at this point, suppose the tthe aitacks
correspond to a cell having positiomt timet + 1; the top stack symbet is saved in the control
state, the stack is popped until the top element corresponds to cell pasatitimet, and then
the symbol appearing is comparedtoif the symbol corresponds to what the transition relation
of the machine says it should be, the machines behave in a bisimilar mannethandise they
do not. Note that in order to support popping from positiat timet + 1 to position: at time
t, a counter will be required. Because in this case only polynomially many atepgeeded, the
control state space of the pushdown system can be used for thaspurpo

What breaks down in this argument when we try to move to more powerfulimehk e.g.
EXPSPACE machines? Firstly, tape configurations are now of &zeand hence we can no
longer use the control state to verify that the tape configurations areddvire right size.
Secondly, the verification of a valid transition can no longer be achievédbing the machines
simply pop their stacks in synch with one another — they would not know wiesriidve reached
the corresponding cell position at the previous tape configuration.

We deal with the first difficulty by addingountersto every cell in the stack content; thus
the code of a tape configuration will consist of a sequence afldress bits followed by a
tape content. We can use these address bits to know that the end of anéigaraton has
occurred, and thus restrict the machines to have separators betwdign@dions. The fact that
the addresses really do represent counters moving up sequentially edlitade verified, but
for EXPSPACE this can still be done through popping and control states.

The solution to the second difficulty is to perform verification of transitionsvarg different
way from thePSPACE case. Verification will be carried out only when the machines reach the
boundary of a tape configuration. At this point, the machines will §issbut of synclby one
tape configuration — with one machine popping the stack down to the nexjomation marker
while the other keeps its stack intact. After this, the machines will pop stack dgnidod with
one machine emitting symbols corresponding exactly to what it sees, while taero#tthine
emits symbols corresponding to the configuration obtained by applying ttsitiarfunction to
the symbols it sees. Thus, in the second phase, the machines will emit theysabudsexactly
when the two successive configurations obey the transition function

The above idea can be extended frBXPSPACE to k-EXPSPACE inductively. Indices that
count up to a given tower of exponentials will now precede each tapedyitie indices used
to capture smaller towers will be embedded into those for larger ones. Fan@es assuming
thatcg, - - - ,con_1 are the binary strings representing the numifiers- , 2™ — 1 respectively,
the sequenceyoy - - - con_109n_1, Whereo;’s are bits, will be used to represent natural numbers
from the interval[0, 22" — 1]. The indexing can be used to enforce that the stack consists of
tape configurations of the correct size. The verification that countirigéadare incremented

89

8 Lower bounds for bisimilarity of (higher-order) pushdown systems

correctly as well as the verification that the tape configurations obey th&ittaa function, can
be done using the technique of going out of synch and reading distimitcly.

Altogether, we gek-EXPSPACE-hardness for alk, and thus a nonelementary lower bound.
Our construction can be adapted for normed pushdown systems, i.eudlodgwn systems in
which every reachable configuration can reach an empty-stack cratfau

Theorem 8.9 ([10]) The problemPDS-BSIMILARITY is nonelementary. The lower bound
even holds when both input configurations are normed, i.e. if eveghedde configuration
can reach an empty-stack configuration. O

90

9 Verifying ground tree rewrite systems

In this chapter we investigate the following verification problems over grareelrewrite sys-
temsGTRS (and the extensioRGTRS): (1) model checking against the logkF and EF,

(i.e. EF restricted to those formulas in which in the parse tree of the formula, evangchias

at most one occurence of the operafdt) and (2) weak and strong bisimilarity checking of
GTRS/RGTRS against finite transition systems. These problems are arguably the most basic
verification problems over infinite-state systems, especially in the contwetimg (cf. [139]).

Our main contribution is to pinpoint the complexity of these problems.

The starting point of this chapter is tHaf model checking ove&TRS has a nonelementary
complexity, already when consideriidr formulas with two occurrences &F operators that
are nested. We remark that a nonelementary lower bound for modeliegddkon GTRS is
inherited from our lower bound proof for model checking an asyrubws product of twdPA
(Theorem 7.2) which was found later than the results presented in thikechidpvertheless, we
present the proof for this lower bound due to the following reasons:€ipthof of Theorem 7.2
requires an unbounded nesting of e operators, whereas the results in this chapter already
provide this lower bound when the input formulas h&Fenesting depth at most two, (ii) our
lower bound technique allows to prove a nonelementary lower bound fionilzigty between
a givenGTRS and a given finite system, and (iii) it turns out that the nesting depth of iput
formulas is a significant source of increase in computational complexity wioelel checking
GTRS. This shows that the existing automata-based algorithms for model cha&dkimgGTRS
(cf. [50, 56, 128]) are in some sense optimal, thus answering a queatsadrby loding in
[128]. The lower bound proof is achieved by an exponential reduétan the decidable first-
order theory over finite words, which is well-known to have a nonelemgtanplexity [180].
With the same arguments one can also show that Hennessy-MilneHdgisuffices to show
the nonelementary lower bound over the more general cldR&ORS.

We then proceed to look at the fragméifit; of the EF consisting of formulas witltF opera-
tor nesting depth at most one. This fragment is interesting for two reaBesy, as mentioned
above, our proof of the nonelementary lower bound for problem (& G¥RS requires pre-
cisely two nested occurrencesEf operators. Secondly, there is a polynomial time reduction
from problem (2) to the problem of model checkiB§; formulas overGTRS if the formulas
are represented as DAGs, which are exponentially more succinct thatatigard tree repre-
sentation of formulas. Our result is that the problem of model chedkig(over GTRS) is
PNEXP_complete (i.e. within the second level of the exponential hierarchy). Tbéseof the
author’s knowledge this is the only natural problem that is known to be coentiis complex-
ity class. The latter result cannot be obtained by simply applying the existiognata-based
algorithms forEF-logic model checking (cf. [50, 56, 128]). Moreover, a further lgsia of
our proof shows that checking bisimilarity betweeG&RS and a finite system is solvable in
coNEXP. This has substantially decreased the nonelementary complexity gap withsthe be

91

9 Verifying ground tree rewrite systems

known lower bound for the problem, whichiBSPACE. In fact, these proof techniques can be
easily applied to derive a better upper bound for verification problemhéoclasA, namely
bisimilarity checking ofPA-processes against finite systems is solvableMEXP giving the
first elementary upper bound for this problem (cf. [174]).

We then consider two natural extensions of the problem of checking bisityigayainst fi-
nite systems oveG TRS: We show that bisimilarity against finite systems over the more general
classRGTRS is nonelementary. The difficulty of proving a complexity lower bound for bisim-
ilarity checking problem is due to the asymmetry between the power of AttackieDafender
(Attacker is often more powerful) in such games. Known lower bound tqaks for bisimi-
larity checking, a.k.a. “Defender’s Forcing”[110], are often implemeriig the help of finite
control unit, which many infinite-state models have (e.g. pushdown systethBetn nets).
The difficulty of providing Defender’s Forcing techniques in the absewicfinite control unit
is witnessed by the plethora of open problems concerning decidability/cotyptxequiva-
lence checking over infinite-state models liR& and PAD processes (cf. [174]). The lack of
a global finite control unit often means that Defender does not haimmediateway of pun-
ishing Attacker (i.e. Forcing him not to do something bad). In the casgldfS or RGTRS,
this means that at any given time Attacker may replace any of (potentially adbdunumber
of) the subtrees that are present in the current configuration (i.ee) ffae results presented
in this chapter provide the first methods for implementing Defender’s Foteicisnique over
infinite-state models that lack finite-control unit for proving nonelementamgitdounds.

Our results forR)GTRS are summarized in Table 9.1.

This chapter is organized as follows. Section 9.1 contains some preliminargsction 9.2,
we analyze the complexity of model checkiBg and its fragmenEF; on GTRS andRGTRS.
We prove a nonelementary lower bound for bisimilarity checkin@GT RS against finite sys-
tems in Section 9.3. Section 9.3 depends on Section 9.2.

Bibliographic notes. The results in this chapter have been published in the conference paper
[76] (LICS 2011) in joint work with Anthony Widjaja Lin.

9.1 Preliminaries

The clasPNEXP denotes deterministic polynomial time with oracle acce¢$BXP. It is in the
second level of exponential hierarchy, which in turn i€KPSPACE. Unless stated otherwise
reductionsare always polynomial time many-one reductions. We define the tower faratio
one argumenTOWER : N — N asTOWER(0) = 1 andTOWER(n 4 1) = 2TOWER(®) for
eachn € N.
A (binary) word is a finite sequence;as - - - a,,, Wherea; € {0, 1} for eachi € [1,n] that we
also identify with the logical structureg = (U, Py, Pi, <), whereU = [1,n] is the universe,
unary predicate®, = {i € [1,n] | a; = a} for eacha € {0, 1} and the binary predicate. By
a result of Stockmeyer thigrst-order theory over (binary) words nonelementary [180]. We
assume in this chapter that first-order formulas are given in prenex himma

We will consider the parametrized variant of the logfein this chapter and moreover define,
for eachi > 0, thefragmentEF; of EF to consist of all thos&F formulasy such that each path

92

9.1 Preliminaries

Model GTRS RGTRS
checking
EFg PSPACE-complete
EF, PNEXP_complete
EF, k>2 NONELEMENTARY
Bisimilarity
against finite GTRS RGTRS
systems
~ PSPACE - - - coNEXP
~ NONELEMENTARY

Table 9.1EF; model checking and bisimilarity against finite systemsGaiRS andRGTRS.

in the syntax tree op contains at mostoccurences of the parametrizé operator (i.e. of the
form (I'*) for some finite sef’ C Act) .

In this chapter we will be interested in the following decision problems.

EF MoDEL CHECKING ON (R)GTRS

INPUT: A (R)IGTRS R = (X£,A, R), atreeT" € Treesy, and anEF formula.
QUESTION: (T(R),T) k= ¢?

The analogous question can be asked for the syntactic fragilents EF. EF model checking
of RGTRS is proven to be decidable in timleOWER(O(n)) in [128]. We also consider bisimi-
larity checking against finite transition systems.

BISIMILARITY OF (R)GTRS AGAINST FINITE SYSTEMS

INPUT: A (R)IGTRSR = (X,A, R), atreel € Treesy, a finite transition systerii and
a states of 7.
QUESTION: DoesT ~ s hold?

By results from [107, 122] (see also Theorem 1 and Corollary 1 of[jl@&isimilarity against
finite systems can be reduced in polynomial time to model chedkingformulas of the kind
©1 A [A¥]p2, Whereypy, o areEF, formulas in DAG representation.

93

9 Verifying ground tree rewrite systems

9.2 Model Checking EF and its fragments on (regular)
ground tree rewrite systems

Ouir first result is that model checkiritf2 over GTRS has nonelementary complexity, which
answers the a question raised yding [128].

Theorem 9.1 ([76]) Model checkind=F- over GTRS is nonelementary. a

This proof of this theorem can easily be adapted to show that model clydekjroverRGTRS
has nonelementary complexity. This lower bound proof is achieved bymonextial reduction
from the decidable first-order theory over finite words, which is wellvikkm@o be nonelemen-
tary [180]. Roughly speaking, we design oGl RS in such a way that in the first phase it
reaches from an input tree a huge tree whose yield (a.k.a. frontier}erpiiat as a word, which
will correspond to a word that witnesssatisfiabilityof an input first-order formula over finite
words. This can be realized by the first occurrence ofBReoperator in the input formula.
In a second phase we mimic the assignment of variables of the first-ortense by labeling
leaves appropriately. In the third and final phase, we check via a detstimimottom-up tree
automaton whether the huge tree (whose leaves are now labeled with \vadétiie first-order
sentence) satisfies the remaining unquantified subformula. This canlizedday the second
occurrence of th&F operator.

Let us now proceed with the proof. Fix a first-order sentence ovenpimards

Y =3V ... Fron_1VTo, @(T1,. .., o).

Without loss of generality we will assume = ¢ for each binary wordv with |w| < 2. Our
goal is to compute in exponential timeé&GI RS R = (X, A, R), some initial treatart € Treesy,,
and anEF,-formulad such that

Jw e {0,1}*: w k= if,andonlyif, start = 6.

We define our set of actions as

A S {a; | € [1,2n]} U {down, upy, up;, up}

and let
P “:ef((z[m”] U {J_}) x {0,1}

denote the set gfroper leaf labels The first component label will not be relevant in this but
in subsequent sections. We define the ranked alphabet;);c o 1,23 Of R as follows, where
the set) will be defined later:

o 3, & {start} U P UQ,
I d:ef{root}, and

o 3 L.

94

9.2 Model Checking EF and its fragments on (regular) ground tree resyistems

The regular tree languag®mbs consists of precisely those tré€sc Treesy, such that

(1) T~ 1(root) = {e}, i.e. the (one and) only node @fthat is labeled withroot is the root of
T,

(2) for each leaf: of " we haveT'(x) € P,

(3) for each inner node # ¢ of T we have thafl’'(z) = % and thatr has a left child that is
a leaf, and

(4) there is at least one inner nodéwith 7'(z) = %) that is the child ot.

Foreachl C [1,2n] define the regular tree languagembs; to consist of precisely those combs
T € Combs such that

(1) for each leaf: of T we haveTl'(x) € 27 x {0, 1},

(2) for each two distinct leaves, =’ of T with T'(z) = (J,«) andT'(2’) = (J',a’) we have
JNnJ =10, and

() I =U{J | zisaleafofl’ andT(x) = (J,)}.

Let us give an example for a tree G@mbs s 3 5 7y

root

*
(®,0>/ >*
(2551 Ok
N
(3.0
@0 Qq71)

Intuitively, think of the sequence of treecond components leaf labels of’” € Combs;
(i.e. the second-component projection of the labels of the yielfl)db correspond to a binary
word, and moreover, for each leabf T, think of thefirst componentf 7'(x) to correspond to
the index set of variablege, . .., 2, } of ¢ that have been bound to the corresponding position
in the word. Hence every comb {fombs; corresponds to a unique binary word along with a
variable valuation with domaif. By Combs,, denote the trees frorGombs; 5, whose word
and variable assignment interpretation satisfies
The following three rewriting rules allow to reach all member<ofbs; from the singleton
treestart, wherea € {0,1}:

d r:)ft d * d
start oy * 20 <\ * g 0,)
((2)7 Od§ * (®> a) *

95

9 Verifying ground tree rewrite systems

Next, we add the following rules that allows to rewrite the leafs of combs (thisitieg will
correspond to assigning variables to the leaves), where{0, 1} andI C [1, 2n|:

(I,a) & (Tu {i}, @) for eachi € [1,2n]\ I.
In a next step, we compute in exponential timeeih a nondeterministic tree automaton
A=(Q F A A)

that accept€ombs,, in particularQ is a finite set oftates /' C Q) is a set offinal statesX is
our ranked alphabet from above adC (Q x Q x X2 x Q) U (Q X X1 x Q) U (Xp x Q) is
the transition relation. We add the state @ab Ay of our GTRS R. Then we add the following
rewriting rules toR (which will realize the bottom-up computation &f):

(1) foreachruldq, ¢, a,q") € AN(Q? x ¥y x Q) we add the rewriting rule(q, ¢') &g

(2) foreachrulga,q’) € AN (Xy x Q) we add the rewriting rule P4 ¢/, and

(3) for each rulgq, root,¢') € AN (Q x X x Q) whereq’ € F we add the rewriting rule
root(q') —2 root.

Finally we defing) as

(down™) (a1)[az] -+ (azn—1)[aza] ({upy, up2}*) (upy) true.

One can easily check thatw € {0,1}* : w | v if, and only if, (T (R),start) = 6, which
concludes the proof.

Model checking EF, over GTRS is complete for PNEXP

Our nonelementary lower bound proof above uses nested occurateasEF operators. Our
main result of this section is that prohibitting nested occurenc&s afperators yields an ele-
mentary model checking complexity.

Theorem 9.2 ([76]) Over GTRS model checking formulad™)¢ with ¢ € EF(is in NEXP. O

Before sketching a proof of this theorem, we mention the following corollahych can be
easily derived by (i) establishing a polynomial space procedure WEXP oracles (invoked
whenever subformulas of the for(i*)¢ are seen), and (ii) using the fact tiREPACENEXP —
PNEXP [2]

Corollary 9.3 ([76]) Model checkingzF; overGTRS is in PNEXP, 0

We now sketch the proof of Theorem 9.2. Let us now supposéltiap is the given formula,
R = (X, A, R) isthe givenGTRS, andTj € Treesy. is the input tree. We wish to check whether
(T(R),Tp) = (I'")¢. Let us compute in polynomial time (cf. [128]) a nondeterministic bottom-

E
up tree automatont that recognizes the spostk; (7p) def {T € Treesy | Ty L T} of trees

96

9.2 Model Checking EF and its fragments on (regular) ground tree resyistems

of R reachable froni by applications of rules with labels from. It now suffices to show
how to compute nondeterministic bottom-up tree automata that recofwljzez). We do not
use the standard automata construction (e.g. [128]) for the set of atsfyiag a givenEF,
formula with respect to a give@TRS since it suffers from a nonelementary blow-up. Given an
EFo formula, letmrank(y) be themodality rankof ¢, i.e., the maximum nesting depth ¢f
operators inp.

We will show that[¢]7(z) can be expressed as a union of regular tree languages, each of
which can be accepted by a nondeterministic bottom-up tree autondatohexponential size
in |¢| + |R|. Furthermore, we can check whether sohiel;) intersects withZ(.A) in nonde-
terministic time exponential ifp| + |R|.

Lemma 9.4 ([76]) We have[yo]rr) = Ues L(A;), for a family {A;}ic;, where|A;| =
exp(|¢] + |R|). One can nondeterministically check whetligr4) intersects with somé(.A;)
in timeexp (|| + [R]).

In fact our proof reveals that the parametelrin the above lemma can be replacechimank ().
As a corollary, this yields the samdEXP upper bound for the model checking problem when
p is given as a DAG.

We now give a proof of Lemma 9.4. Let= mrank(yp). We start by defining a standard
equivalence relation ofireesy; based on the modality rank &F, formulas: given two trees
T,T' € Treesy andi € N, write T' ~; T" if for every EF, formula« with mrank(y) < i we
have(7T(R),T) [v if, and only if, (T(R),T") = 4. In other words,I" ~; T" if, and only
if, T andT” satisfy the same formulas of modality rank at mastt is obvious that~; is an
equivalence relation and that ~; . ; 7" impliesT ~; T’. Furthermore, it is well-known that
the equivalence relatiory; is of finite index, i.e., the number of equivalence classes: ofs
finite. For each equivalence claS®of ~,, it is clear that eithe(7 (R),T) = ¢ forall T € C,
or (T(R),T) = ¢ forall T € C. For the former case, we say that the equivalence class
is positive otherwise, it isnegative Therefore, one idea is to define the fam{ly;};c; of
nondeterministic bottom-up tree automata by associating one such automatanHqgrasitive
equivalence class of ~,.. Two problems with this approach arise unfortunately:

e itis not clear how to compute an automaton for each positive equivalerss alad
e this does not reveal an upper bound on the index,of

We now define a finer relatias; (for eachi € N) that will give extra information which will
help us solve these two problems. To this end Helbe the maximum number of nodes in the

tree appearing in any rewrite rule . Also, let NV; %, . K for eachi > 0. Given any two trees
T,T" € Treess,, we definel’ =; T" if for each treet € Treesy; with at mostN; nodes at least
one of the following is true:

e the number of timeg appears as a subtree’Bfequals the number of timeésppears as a
subtree off”,

e the number of timeg appears as a subtree exceadd$oth forT and7”.

97

9 Verifying ground tree rewrite systems

In other words;I" =; 7" if, and only if, each subtree with at maad% nodes appears il and
T’ the same number of times up the threshdid In the following, we IetTreeséNi denote the
set of trees fronTreesy, with at mostV; nodes.

As before, it is easy to check thag; is an equivalence relation and tHat=;.,; 7" implies
T =; T'. To complete the proof of Lemma 9.4, one can proceed as follows:

(1) show thats; is finer than~;,

(2) checking whether a functiofi : TreeséNi — [0, N;], representing the number of occur-

rences of subtrees with at ma¥t nodes, actually describes an equivalence class;of
can be done rather efficiently,

(3) testing whether an equivalence class=gfis positive (with respect tg) can be done
rather efficiently, and

(4) for each positive equivalence clagsf =;, a nondeterministic bottom-up tree automaton
Ac recognizingC can be computed rather efficiently.

As we will see, these will imply Lemma 9.4. For step (1) the following lemma can bersho
Lemma 9.5 ([76]) For any two trees’, T” € Treess;, we have thaf’ =; 7" impliesT ~; T".0

Intuitively, this lemma holds since satisfaction B, formulas of modality rank is only af-
fected by the number of occurences of trees of déptiup to some threshold).

Let us now proceed to step (2). Recall that each equivalencetti#ss, can be described by
a function fromf : TreesgNT — [0, N;]. The converse, however, is false, e.g., it is impossible
to have a clas§ with f¢(T") > 1 for a treeT” with two nodes buf¢(7") = 0 for all treesT” with
one node. Also note that the special case wtféie) = 0 for all T' € Trees§NT is impossible
for an equivalence class since trees have nonempty domain by definitiemefdre, we need
to be able to check whether a given functign TreeséNT — [0, N,] actually describes an
equivalence class ix,.. To this end, recall first that any functigithat describes an equivalence
class of=, counts each subtree of tréEsn Trees%NT with fe(T") > 0, i.e., ift is a subtree of’,
thent contributes to the value g¢f(t). We will first define a new function : Trees%NT — [0, N;]
that avoids “double counting”. This can be done by the following algorithm:

e Setg(T) := 0forall T € Treess"" and repeat the following for eadh € Treess'" with
f(T') > 0 (ordered by the number of nodes, starting from the largest):

(1) Letf(T) == f(T) — 1,
(2) 9(T) :== g(T) + 1,

(3) Go through all nodes of T (except whenu is the root ofT") and substracf (7+*)
by 1 (if becomes negative, then terminate abruptly).

Observe that if this algorithm terminates abruptly, thfedoes not actually describe an equiv-
alence class of. Furthermore, the algorithm runs in time exponentiat i |R| (recall that
r < |¢|) simply becausanrees%N’"] < exp(r + |R|) can be shown. Now, suppose that the func-

tion g has been successfully computed from the given funcfiomhis implies thayy describes

98

9.2 Model Checking EF and its fragments on (regular) ground tree resyistems

aforest F' with each treel’ TreesgN* occurringg(7’) many times. The original functioff
then describes an equivalence class if, and only if, such a foresectmther “connected into a
big tree”. This last check can be done using the following lemma.

Lemma 9.6 ([76]) The functionf : Trees%N" — [0, N,] describes an equivalence classin
if, and only if, the functiomy : Trees%NT — [0, N,] (and the forest’ corresponding to it) can be
successfully computed frofnby the above algorithm and that one of the following conditions

are satisfied:
(1) ETETreesgNT g(T) = 1.

(2) X retreessy 9(T') > 1, and for some letter, with some rank: € N and some trees
P
Ti,..., Ty occuring in the foresF’, the treea (71, . . ., Ty) has more thanV, nodes. O

Observe that this lemma completes step (2) since this test can be performed irgonertial
inr+|R|.

We now proceed to step (3). This step is rather easy since checkingenlaetiequivalence
classC of =, described by a functioife : TreeséN” — [0, N,] is positive can be done in time
exponential inr + |R|. Intuitively, the idea is to pick a representatiVeof C of exponential
size and compute a finite transition system consisting of the neighborh@dmfo depth-. It
turns out that the finite transition system also has size exponential ji® |. Therefore, we may
use the standard linear-time algorithm for model checkihg (i.e. EFy) formulas over finite
transition systems.

We now proceed to step (4), which is the final step. For this, we needwolshw to compute
a nondeterministic bottom-up tree automaton recognizing an equivalencé diss described
by a functionfc : Treess™" — [0, N,.].

Lemma 9.7 ([76]) Given a functionf : Trees%NT — [0, N,] that witnesses an equivalence
classC of =,, we can compute a nondeterministic bottom-up tree automaton recognizng p
ciselyC in time| f[POY(+HRD . exp(r + |R]). O

This lemma can be proven as follows. First, compute the funqtionTreesgNT — [0, N,]
using the above algorithm, which avoids double counting of subtreesU lagnote all trees
t € Treess"'" such thay(t) = N,. Letty, ..., t, be an enumeration of all treésc Treess""
with g(¢) > 0 withoutcounting multiplicities.

One can now design a nondeterministic bottom-up tree automaton that courgseitiaely
¢g(t;) many node® occur such that the subtree rooted aguals;, and that an arbitrary number
of nodesv can occur such that the subtree rooted ista tree inU. It is easy to see that such an
automaton of size exponentialirand|R| can be computed.

To summarize, the proof of Lemma 9.4 can now be done as follows. The teondeistic
bottom-up tree automatd; in the statement of Lemma 9.4 will correspond to positive equiv-
alence classe§ described by some function : Trees%NT — [0, N,;]. Using the last step
above, the automatad; can be computed in time exponentiakin- |R| if f is given as an in-
put. Checking whethek (A) N L(.A;) # 0 for somei requires us to nondeterministically guess

99

9 Verifying ground tree rewrite systems

one such functiory, check whether it describes an equivalence class, compute the automaton
A; corresponding to it, and check for language intersection With the standard way.
Let us discuss the ideas of a matching lower boundfar.

Lemma 9.8 ([76]) Over GTRS model checking formulaéA*)p, wherep € EFy, is NEXP-
hard. O

PROOF (SKeTCH) The reduction is from the” x 2" tiling problem [151]. The idea is to reach

via i>* some binary tree with superleafs, whersuperleafis a tree of depth one whose root
has arity2n. Each child of a superleaf will either have a nullary symtpbr b,, where the
root of a superleaf contains a tile type. Each superleaf corresporadgrid elementi, j) €
[0,2™ — 1] x [0,2™ — 1], where the nullary symbols of the first(resp. last:) children encode
i (resp. 7) in binary. The formulap is now a conjunction oEF, formulas expressing the
following:

(1) a superleaf fof0, 0) exists,

(2) whenever there are two superleafs corresponding to the gagjethen their tile types
are the same,

(3) ifthereis a superleaf fa, j) with i < 2" —1 (resp.j < 2™ —1), then there is a superleaf
for (i + 1, 7) (resp.(i,j + 1)), and finally

(4) the horizontal and vertical tiling conditions hold for every superleaf. n

By encodingcircuit valueinto nodes of trees (gates and its evaluations will be represented in
nodes in the tree) and invoking a subroutine to the trees that simulag tha™ tiling problem
one can prove a matching lower bound Edt; .

Theorem 9.9 ([76]) Over GTRS model checkingF; is hard for PNEXP, 0

9.3 Bisimilarity checking of (regular) ground tree rewrite
systems against finite systems

Since bisimilarity checking against finite systems can be reduced to modé&ingp &€, formu-
las in DAG representation, the following theorem is known.

Theorem 9.10 ([128, 107])Bisimilarity checking oRGTRS against finite systems is decidable
intime TOWER(O(n)). O

Over GTRS, however, we obtain an elementary upper bound. It can be deriveadreéduction

to model checking formulas of the kingy A [A*]p2, Wwherep; andys areEFy DAG-formulas
and then applying our upper bound result from Theorem 9.2. Thisigefean also be used to
prove acoNEXP upper bound for bisimilarity checking ¢fA-processes against finite systems
(cf. [174)).

Theorem 9.11 ([76]) Bisimilarity checking ofc TRS against finite systems is toNEXP. O

100

9.3 Bisimilarity checking of (regular) ground tree rewrite systems agairit¢ Bgstems

As a main result of this section we prove that bisimilarity between a regulangrivee rewrite
system and a finite system has nonelementary complexity.

Theorem 9.12 ([76]) Bisimilarity checking oRGTRS against finite systems is nonelementary.

Since from evenRGTRS R one can compute in polynomial timeiA RS that is weakly bisim-
ilar to R by Theorem 3.3 we obtain the following corollary. The author and Anthoigjajé
Lin were not aware of Theorem 3.3 at the time when the paper [76] wakduhiand hence gave
a self-contained proof of the following corollary in [76].

Corollary 9.13 ([75, 76]) Weak bisimilarity checking @i TRS against finite systems is nonele-
mentary. O

Although the proof of Theorem 9.12 also goes via an exponential reduittn the first-
order theory over finite words, due to the lack of finite control uni(R)GTRS it is not at all
merely an adaptation of the proof of the nonelementary lower bounBRgmodel checking
over GTRS from the previous section. Roughly speaking, we implement Defendertsirtg
technique by providing rewriting rules of the forlm— T', whereL is a regular tree language
andT is an explicit ranked tree. Such rules will allow Defender to punish Attarkease he
did not play in a way that corresponds to evaluating the first-order semt@mthe huge tree.
However, the biggest obstacle we have to overcome is the possibility of Attaekriting the
leaves of the tree (that corresponds to the word where the first-sensem@luated) in a chaotic
way since the leaves cannot communicate with each other.

Let us proceed to the proof of Theorem 9.12. We reuse some of the motiadéibwas intro-
duced in Section 9.2. Again, let us fix a first-order sentence interpregrdmary words

Qb = E|.TI1V1‘2 . ngn_lvajgn(p(xl, . ,(pgn)

and let us assume again [~ « for each binary wordv with |w| < 2. Our goal is to compute
in exponential time alRGTRS R = (3, A, R), some initial treestart € Treesy,, some finite
transition systen7” = (C, A, {-%+7| a € A}), and a configurationy € C such that

Jwe{0,1}":w =y if, and only if, start ¢ s.

We call a subsef C [1,2n] game-confornif I = [1, k] for somek € [0, 2n] andnon-game-
conformotherwise. Analogously, we call a comb € Combs; game-conform(resp. non-
game-conformif I is game-conform (resp. non-game-conform). Each game-confomi co
T € Combsy;) naturally induces a valuation- of variables with indices frorfi, k] to positions
of the yield string defined by". Let ¢[vr] denote the formula that is obtained fromby
replacing the information given by and which is evaluated dn in the expected way. This
can be extended to defingrr]. Hence, e.gi)[vr] is of the form3zy 1 - - - Voo, o[vr] in case
k is even.

In casel C [1,2n]andi € [1,2n]\ I we say atred” € Combs; ;) is ani-extensiorof 7T if
T’ can be obtained frorfi by choosing exactly one leafand replacing its labél’(z) = (J, «)
by (J U {i},). Recall that byCombs, we denote the trees froiiombsy; 5,) whose word
and variable assignment interpretation satisfied ikewise letCombs; denote the trees from
Combsy; »,) whose word and variable assignment interpretation does not satisfy

101

9 Verifying ground tree rewrite systems

We define the regular tree languagembs ;| = Combs \ ;¢ o,; Combs;. In other words,
Combs; consists of those comlds € Combs that satisfy N

(1) there is some leaf of T' with T'(z) € {L} x {0,1} or
(2) there are two distinct leavesz’ of T with T'(x) = (J, «) andT'(2’) = (J’, &’) such that
JNJ #0.
For each game-conforthwe will introducetwo configurationss; andsy in 7. For each non-
game-confornT we haveonecorresponding configuratiaky in 7. In addition our finite system
T has the configuratiorsicc andfail. We define as action labets %' {a; | i € [1,2n]} U {p}.

The idea of the bisimulation game and difficulties

We remark that we have not yet defined R&T RS R nor the finite transition systeff. Yet, the
high level idea of the bisimulation game goes as follows, and uses Defeaecing techniques
ase.g.in[121]:

e (initial round) Attacker chooses from our initial tregart a comb?’ from Combsy; ;) by

moving alongstart -* T for which he claims thal’ |= ¢ [v7] holds. Defender will only
be able to respongy -7 si1,1) In 7. Hence the new pebble configuration(s s, y)).
e Next, we repeat the following round game, where the current pebblfigooation is
(T, 511,1)) WhereT € Combsy; ;) for each roundk = 1,...,2n — 1:
— (universal round) If k is odd, then Attacker is supposed to moveT7in namely
Sk 2 s11x4) @lthough the movey ;) “3 7 57417 is possible. Defender is
now forced to move i (R), namelyT” %X T for somek + 1-extension” of T.
This response corresponds to the universal quantification; in .
— (existential round) If & is even, then Attacker is supposed to mov&ifR), namely
T 4 7' for somek+ 1-extensior” of 7. This move corresponds to the existential
quantificationdzy 1 in ¢. Defender’s only possible response7nis s j ak—*iT
S[1,k+1]-
e (final round) Finally, when we are in the pebble configurati6h, s, »,,)), whereT' ¢
Combs[; 5,,], the actiony can be performed that allows Attacker to win (via a rulédn
that containg€Combs,, on the left-hand side) if, and only if; = ¢[vr].

In order to implement such a game, several difficulties arise. Let us ditbase difficulties
for the universal round (the existential round can be treated duallyy&aedsolutions to them.
The question is: In the universal round, how can we force Attacker tkkenra7 the move

a
S[1,k] ii’r 5[1,kz+1]?
o 1. Difficulty: What if Attacker movess|; 3 a'“—ﬂfr 3S[1k+1 (Which will exist in 7)?
Solution: We add the ruleCombs; fias S[1,k+1) 1o R such that Defender has the

possibility to threaten syntactic equivalence by respon(ﬂnaéii S[Lk+1 InT(R) and
hence wins.

102

9.3 Bisimilarity checking of (regular) ground tree rewrite systems agairit¢ Bgstems

e 2. Difficulty: What if Attacker move§” “*3 T” in T(R) for somek + 1-extension of
T rather than playing iy ? Solution: Defender can react i, depending on whether
T" = lvp] or T = lvpi]. In casel” [= [vr] she can move te); ;7] and can win.
In caseT” | +[vr] she can move tey; ;1) and can win.

e 3. Difficulty: What if Attacker plays’ % 7" wherei € [1, k]? l.e. Attacker plays an
action that has already been played and thus cl&drly Combs | . Solution: We allow a
simple transition to a configuration A from which Defender can surely win since surely
T’ € Combs; and hencd” ¢ Combs,,.

e 4. Difficulty: What if Attacker plays inl” % T’ in T(R) wherei > k + 1? l.e.
Attacker deviates from playing a sequence of actions - a; that correspond to assigning
variables to positions of the yield string of the tree. We also say that thentyrebble
configuration is non-game-conforngolution: We allow in7 a special transition for
Defenders(; 4 iy up gugiy that allows her to win.

The solutions to Difficulty 1 and 2 are standard and are similar to a technigberatad in
[121]. The solution to Difficulty 3 is straightforward. The real difficuity the absence of a
finite control(e.g. pushdown systems have a finite control) in the game is Difficulty 4. We hav
to provide configurations iff” that allow to remember the set of variables in the currentfree
that have been assigned. The difficulty that now arises is that Attacketara@inue labeling
leafs in7" and pretend some moves later that the currentfresegame-conform all of a sudden
(and hence threaten to play the above-mentioned punishing moves forcejstalfe have to
carefully design transitions ifi that sooner or later punish Attacker since he was the one who
deviated from playing game-conform.

The finite system:

We now define the outgoing transitionssf ;; and ofs[; 4, for each possiblé € [0, 2n — 1]:

(1) spp Rasys S[1,k+1]

(2) S = S[Lk+1]s

(3) spa g sy if kis odd,

(4) S[a) 57 s If & is even,

(5) sk —27 s[1,20) TOr €achi € [1, &,

(6) [—27 s[1,20) for eachi € [1, &,

(7) spg —27 up k1o for eachi € [k +2,2n],

(8) S —o7 upk+1jug) for eachi € [k +2,2n],

103

9 Verifying ground tree rewrite systems

U[1,3]u{6,7}
a
u{1,3) :
Ul,3lu{6e} UR,3Ju{r} ... U[1,3u{2n}
U{2,3} az aw azn SUCC
@ Qg ke[1,3) ©
50 —g7~ S111] 57 11,2 5 513 S[Ln—1] = 5[1,2n] D @i
S as as an @i
S aj 8[1’1] as 8[1’2] as 5[173] 5[17”—1](1: 5[172”]

a; C fail ®

Figure 9.1: A snapshot of and the outgoing transitions efy 3) in the strong bisimulation game
(¢ ranges ovefl, 2n)).

(9) sp1,2n 57 succ,
(10) {120 —7 5[1,20) fOr €ACHI € [1,2n],
(11) S, ——7 fail and the transition
(12) fail 24 fail for eachi € [1,2n).
Let us now define the outgoing transitionsugffor each non-game-conforinC [1, 2n:
(1) ur =57 s[1.9, for eachi € I,
(2) ur 51 usyyqy for eachi ¢ I for which I U {i} is non-game-conform,
(3) ur =57 sy for eachi ¢ I for which I U {i} is game-conform, and
1. (B)u; 5 r Stuqsy foreachi ¢ I for which I U {i} is game-conform.

A snapshot off is depicted in Figure 9.1.

The RGTRS

Recall thatC' denotes the set of statespfand thatP denotes the set of proper leaf labels as
defined in Section 9.2. We define the ranked alphabet (3;);c(0,1,2) of R as follows:

e Yy ={start} UPUC,

e ¥, = {root} and

104

9.3 Bisimilarity checking of (regular) ground tree rewrite systems agairit¢ Bgstems

[] 22 = {*}

We note that the only relevant trees (i.e. configurationsg) (&) in our reduction whose leafs
are labeled witiC' aresingleton treesTo R we add the rewriting rules

e ¢ ¢ for each transition: iﬁ dinT
Furthermore, we add the following leaf rewriting rules, where {0, 1}:
(1) (I,a) < (TU{i},) for eachi € [1,2n] \ I,
(2) (I,a) < (L, a) for eachi € I, and
3) (L,a) & (L, «) foreachi € 1.
Let us add for each possibleC [1,2n] andk € [0, 2n — 1], the following rules taR:
(1) Combsyy 5 <3 s if ks odd,
(2) Combsyy <" spy oy if ks even,
(3) Combsyy i\ i} & s,k for eachi € [1,k — 2],
(4) Combsyy i\ i} & 3[4 foreachi € [1,k — 2],
(5) Combsp\ 11y &y foreachi € I'if I'is non-game-conform,
(6) Combs; & s[1,2n) for eachi € I,
(7) Combs,, < fail, and
(8) Combsz U Combs | < succ.

One can easily verify that for eadhe€ Combsg U Combs | we havel’ ~ sy 5, This following
lemma establishes correctness of the construction.

Lemma 9.14 ([76]) LetI C [1,2n]. If I is game-conform, then

(1) s1 571,

(2) VT € Combs;: T + sy if, and only if, T = ¢ [vr], and

(3) VT € Combs;: T ~ 57 if, and only if, 7" = ¢[vr]. O
Moreoverl is hon-game-conform, then for ea€he Combs; we havel’ ~ u;.

Finally, in order to realize the initial round (as mentioned above) we add thesturt & S[1,1]
andstart <> Combsy; ;; to R. Theorem 9.12 follows.

105

10 List of submitted papers

In total |1 submit 12 papers published at international conferencespfouhich three journal
papers have emerged so far.

[10] Michael Benedikt, Stefan @ler, Stefan Kiefer, and Andrzej S. Murawski. Bisimilarity of
Pushdown Automata is Nonelementary LICS IEEE Computer Society, 2013

[14] Stanislav Bhm and Stefan &ller. Language Equivalence of Deterministic Real-Time
One-Counter Automata Is NL-Complete. Rroc. of MFCS volume 6907 ofLecture
Notes in Computer Scienggages 194—-205. Springer, 2011

[15] Stanislav Bhm, Stefan @ller, and Petr Jarar. Bisimilarity of one-counter processes is
PSPACE-complete. IProc. of CONCURvolume 6269 ofLecture Notes in Computer
Sciencepages 177-191. Springer, 2010

[16] Stanislav Bhm, Stefan @ller, and Petr Jarar. Equivalence and regularity of real-time
one-counter automatalournal of Computer and System Scien@Xl3. accepted for
publication

[17] Stanislav Bhm, Stefan @ller, and Petr Jatar. Equivalence of deterministic one-counter
automata is NL-complete. IRroc. of STOCACM, 2013. to appear

[27] Christopher Broadbent and Stefal@r. On Bisimilarity of Higher-Order Pushdown
Automata: Undecidability at Order Two. Proc. of FSTTCSvolume 18 ofLIPIcs, pages
160-172. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012

[73] Stefan @ller, Christoph Haase, 8bOuaknine, and James Worrell. Model Checking
Succinct and Parametric One-Counter AutomataPrc. of ICALP (2) volume 6199 of
Lecture Notes in Computer Scienpages 575-586. Springer, 2010

[74] Stefan @ller, Christoph Haase, 8bOuaknine, and James Worrell. Branching-time model
checking of parametric one-counter automata. Ptoc. of FoSSaCSvolume 7213 of
Lecture Notes in Computer Scienpages 406—420. Springer, 2012

[75] Stefan Gller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Higyarch
via Ground Tree Rewrite Systems. Pmoc. of CONCURvolume 6901 oL ecture Notes
in Computer Scien¢ggages 543-558. Springer, 2011

[76] Stefan ®ller and Anthony Widjaja Lin. The Complexity of Verifying Ground Tree
Rewrite Systems. IRroc. of LICS pages 279—-288. IEEE Computer Society, 2011

107

10 List of submitted papers

[77] Stefan @ller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hand. |
Proc. of STACSLIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 201@.
appear

[78] Stefan Gller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Higyarch
via Ground Tree Rewrite SystemBansactions on Computational Log2013. accepted
for publication

[79] Stefan ®ller and Markus Lohrey. Branching-time model checking of one-coyme
cesses. IrProc. of STACSvolume 5 ofLIPIcs, pages 405-416. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010

[80] Stefan Gller and Markus Lohrey. Branching-time model checking of one-coymie
cesses and timed automa&AM Journal of Computin2013. to appear

[82] Stefan Wller, Richard Mayr, and Anthony Widjaja To. On the computational complexity
of verifying one-counter processes. Mmoc. of LICS pages 235-244. IEEE Computer
Society Press, 2009

108

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Parosh Aziz Abdulla and Karlis Cerans. Simulation is decidable foramater nets
(extended abstract). IRroc. of CONCURvolume 1466 of_ecture Notes in Computer
Sciencepages 253-268. Springer, 1998.

Eric Allender, Michal Koucky, Detlef Ronneburger, and Sambwd®oy. The pervasive
reach of resource-bounded kolmogorov complexity in computational caityptbeory.
To appear at JCS2010.

Rajeev Alur and David L. Dill. A theory of timed automataTheor. Comput. Sgi.
126(2):183-235, 1994.

André Arnold and Damian Niwiski. Rudiments ofi-calculus volume 146 ofStudies in
Logic and the Foundations of Mathematid$orth-Holland, 2001.

J. C. M. Baeten and W. P. Weijlan&rocess AlgebraCambridge University Press, 1990.

Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Decidabilityisimulation
equivalence for processes generating context-free languageks.Wnde Bakker, A. J.
Nijman, and Philip C. Treleaven, editoBARLE (2) volume 259 ofLecture Notes in
Computer Scienggages 94-111. Springer, 1987.

Jo¢ L. Balcézar, Joaquim Gabdry and Miklos Santha. Deciding Bisimilarity is P-
Complete.Formal Asp. Comput4(6A):638-648, 1992.

Vince Barany, Erich Gidel, and Sasha Rubin. Automata-based presentations of infinite
structuresLondon Mathematical Society Lecture Notes Se8&9, 2011.

Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log dapttlits for division
and related problemsIAM Journal on Computind.5(4):994-1003, 1986.

Michael Benedikt, Stefan @ler, Stefan Kiefer, and Andrzej S. Murawski. Bisimilarity
of Pushdown Automata is Nonelementary LICS. IEEE Computer Society, 2013.

Jan A. Bergstra and Jan Willem Klop. Algebra of communicating pseewith abstrac-
tion. Theor. Comput. Sgi37:77-121, 1985.

Piotr Berman and Robert Roos. Learning One-Counter Languiageolynomial Time
(Extended Abstract). IRroc. of FOCS$pages 61-67. IEEE, 1987.

Michel Blockelet and Sylvain Schmitz. Model checking coverabilitagirs of vector
addition systems. IRroc. of MFCSvolume 6907 ot_ecture Notes in Computer Science
pages 108-119. Springer, 2011.

109

Bibliography

[14] Stanislav Bhm and Stefan @ler. Language Equivalence of Deterministic Real-Time
One-Counter Automata Is NL-Complete. Rroc. of MFCS volume 6907 ofLecture
Notes in Computer Sciengeages 194—-205. Springer, 2011.

[15] Stanislav Bhm, Stefan @ller, and Petr Jaiar. Bisimilarity of one-counter processes is
PSPACE-complete. IRroc. of CONCURvolume 6269 ofLecture Notes in Computer
Sciencepages 177-191. Springer, 2010.

[16] Stanislav Bhm, Stefan @ller, and Petr Jdar. Equivalence and regularity of real-time
one-counter automatalournal of Computer and System Scien@&l3. accepted for
publication.

[17] Stanislav Bhm, Stefan @ller, and Petr Jaiar. Equivalence of deterministic one-counter
automata is NL-complete. IRroc. of STOCACM, 2013. to appear.

[18] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachabilitiysiseof push-
down automata: Application to model-checking. In Antoni W. Mazurkiewicd dzef
Winkowski, editorsProc. of CONCURvolume 1243 ot ecture Notes in Computer Sci-
ence pages 135-150. Springer, 1997.

[19] Ahmed Bouajjani and Peter Habermehl. Constrained properties, seanibgstems, and
petri nets. InProc. of CONCURvolume 1119 ofLecture Notes in Computer Science
pages 481-497. Springer, 1996.

[20] Ahmed Bouajjani, Markus Mller-Olm, and Tayssir Touili. Regular symbolic analysis of
dynamic networks of pushdown systems. In Ntar\badi and Luca de Alfaro, editors,
CONCUR volume 3653 of_ecture Notes in Computer Scienpages 473-487. Springer,
2005.

[21] Ahmed Bouajjani and Tayssir Touili. Reachability analysis of processite systems. In
Paritosh K. Pandya and Jaikumar Radhakrishnan, edRaos, of FSTTCSsolume 2914
of Lecture Notes in Computer Scienpages 74-87. Springer, 2003.

[22] Patricia Bouyer and Francois Laroussinie. Model checking timgdnaata. In Stephan
Merz and Nicolas Navet, editorsjodeling and Verification of Real-Time Systepeges
111-140. ISTE Ltd. — John Wiley & Sons, Ltd., January 2008.

[23] Laura Bozzelli. Complexity results on branching-time pushdown mdustking.Theor.
Comput. Scj.379(1-2):286-297, 2007.

[24] Laura Bozzelli, Mojnir Kretinsky, Vojtech Relak, and Jan Strejcek. On decidability of
LTL model checking for process rewrite systemsta Inf, 46(1):1-28, 2009.

[25] Walter S. Brainerd. Tree generating regular systénfermation and Contrqgl14(2):217—
231, 1969.

[26] Tomas Bizdil, Vaclav Brozek, Kousha Etessami, AntorKucera, and Dominik Wo-
jtczak. One-counter markov decision processeS@DA pages 863-874. SIAM, 2010.

110

Bibliography

[27] Christopher Broadbent and Stefatblér. On Bisimilarity of Higher-Order Pushdown
Automata: Undecidability at Order Two. IRroc. of FSTTCSvolume 18 ofLIPIcs,
pages 160-172. Schloss Dagstuhl - Leibniz-Zentrum fuer Inforn2@ik?.

[28] Christopher H. Broadbent and C.-H. Luke Ong. On global moldetking trees generated
by higher-order recursion schemes.FAroc. of FOSSACSolume 5504 of_ecture Notes
in Computer Scien¢gages 107-121. Springer, 2009.

[29] J. Richard Bichi. Regular canonical systemdArchiv fir Mathematische Logik und
Grundlagenforschung5:91-111, 1964.

[30] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Stefféerification on infinite
structures. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolkargdiandbook of
process algebrgpages 545—-623. Elsevier, 2001.

[31] Olaf Burkart, Didier Caucal, and Bernhard Steffen. An ElemenBisymulation Deci-
sion Procedure for Arbitrary Context-Free Processe$rtit. of MFCS volume 969 of
Lecture Notes in Computer Scienpages 423—-433. Springer, 1995.

[32] T. Cachat. Higher order pushdown automata, the Caucal higrafajraphs and parity
games. InProceedings of ICALPvolume 2719 ol_ecture Notes in Computer Science
pages 556-569. Springer, 2003.

[33] Thierry Cachat. Uniform solution of parity games on prefix-redpgble graphs Elec-
tronic Notes Theoretical Computer Scien68(6), 2002.

[34] Thierry Cachat and Igor Walukiewicz. The Complexity of Games ormeigdrder Push-
down Automata.CoRR abs/0705.0262, 2007.

[35] Jin-Yi Cai and Merrick Furst. PSPACE survives constant-widttilenecksinternational
Journal of Foundations of Computer Scien2€l):67—-76, 1991.

[36] Arnaud Carayol and Stefan &tirle. The Caucal Hierarchy of Infinite Graphs in Terms
of Logic and Higher-Order Pushdown Automata. HBTTCSvolume 2914 ofLecture
Notes in Computer Sciengeages 112-123. Springer, 2003.

[37] E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponéspace complete prob-
lems for petri nets and commutative semigroups: Preliminary reporSTRGC pages
50-54. ACM, 1976.

[38] D. Caucal. On infinite transition graphs having a decidable monadicyth&beoretical
Computer Scien¢@90(1):79-115, 2002.

[39] Didier Caucal. On the regular structure of prefix rewritigeoretical Computer Science
106:61-86, 1992.

111

Bibliography

[40] Didier Caucal. On infinite transition graphs having a decidable monae@yhIn Fried-
helm Meyer auf der Heide and Burkhard Monien, editétsceedings of the 23nd In-
ternational Colloquium on Automata, Languages and Programming (FC24), Pader-

born (Germany) number 1099 in Lecture Notes in Computer Science, pages 194-205.

Springer, 1996.

[41] Didier Caucal. On infinite transition graphs having a decidable monadaryhTheor.
Comput. Scj.290(1):79-115, 2003.

[42] Didier Caucal, Dung T. Huynh, and Lu Tian. Deciding Branching Bimiityaof Normed
Context-Free Processes Is. Inf. Comput, 118(2):306—315, 1995.

[43] Andrew Chiu, George Davida, and Bruce Litow. Division in logspaniform NC!.
Theoretical Informatics and Applications. Informatique €bhique et Applications
35(3):259-275, 2001.

[44] Christian Choffrut and Massimiliano Goldwurm. Timed automata with perictiick
constraintsJournal of Automata, Languages and Combinatqrifg):371-404, 2000.

[45] Sgren ChristensenDecidability and Decomposition in Process AlgebraBhD thesis,
Department of Computer Science, The University of Edinburgh, 1993.

[46] Marek Chrobak. Finite automata and unary languagé®eoretical Computer Science
47(3):149-158, 1986.

[47] Edmund M. Clarke and E. Allen Emerson. Design and synthesis ahsgnization skele-
tons using branching-time temporal logic.Llngics of Programsvolume 131 ol_ecture
Notes in Computer Sciengeages 52—71. Springer, 1981.

[48] Thomas Colcombet. On families of graphs having a decidable firsr dheéery with
reachability. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Msrdatthew Hen-
nessy, Stephan Eidenbenz, and Ricardo Conejo, edRaseedings of the 29th Interna-
tional Collogquium on Automata, Languages and Programming (ICALR2RO0alaga
(Spain) number 2380 in Lecture Notes in Computer Science, pages 98—-109g&prin
2002.

[49] Hubert Comon, Max Dauchet, Remi Gilleron, Christafding, Florent Jacquemard, De-
nis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata techniquepizhtions.
Available on:http://www.grappa.univ-lille3.fr/tata , 2007. release Oc-
tober, 12th 2007.

[50] Jean-Luc Coquig, Max Dauchet, Bmi Gilleron, and 8ndor Vagwlgyi. Bottom-up tree
pushdown automata: Classification and connection with rewrite sysiémsr. Comput.
Sci, 127(1):69-98, 1994.

[51] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum getdblems
in real-time systemd-ormal Methods in System Desigi{4):385—-415, 1992.

112

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography

Woijciech Czerwinski, Piotr Hofman, and Slawomir Lasota. Decidabilityp@nching
bisimulation on normed commutative context-free processeBrdo. of CONCURvol-
ume 6901 ol ecture Notes in Computer Scienpages 528-542. Springer, 2011.

Wojciech Czerwinski and Slawomir Lasota. Fast equivalencelehg for normed
context-free processes. Rroc. of FSTTCSvolume 8 ofLIPIcs, pages 260-271. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

W. Damm and A. Goerdt. An automata-theoretical characterizationedDtkhierarchy.
Information and Contrgl71(1-2):1-32, October 1986.

Philippe Darondeau, &phane Demri, Roland Meyer, and Christophe Morvan. Petri net
reachability graphs: Decidability status of fo propertiesPtoc. of FSTTCSvolume 13
of LIPIcs, pages 140-151. Schloss Dagstuhl - Leibniz-Zentrum fuer Inforp2@ikl.

Max Dauchet and Sophie Tison. The theory of ground rewritéesys is decidable.
In Proceedings of the 5th Annual IEEE Symposium on Logic in Computencgcie
(LICS '90), pages 242—-256. IEEE Computer Society Press, 1990.

Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schareilk Model Theory
Makes Formulas Large. IRroc. of ICALR volume 4596 ol ecture Notes in Computer
ScienceSpringer, 2007.

Stephane Demri. On selective unboundedness of vaddron of INFINITY, volume 39
of EPTCS pages 1-15, 2010.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calcutldeterminacy
(extended abstract). ROCS pages 368-377. IEEE Computer Society, 1991.

Javier Esparza. On the Decidabilty of Model Checking for Sdvaracalculi and Petri
Nets. InProceedings of the 19th International Colloquium on Trees in AlgebraRrnel
gramming volume 787 ol ecture Notes in Computer Scienpages 115-129. Springer,
1994.

Javier Esparza. Petri Nets, Commutative Context—Free GrammalBamic Parallel
Processes-undamenta Informatige80:23—41, 1997.

Javier Esparza and Astrid Kiehn. On the Model Checking ProbtamBfanching Time
Logics and Basic Parallel Processes CIAV, volume 939 ofLecture Notes in Computer
Sciencepages 353—-366. Springer, 1995.

Javier Esparza and Andreas Podelski. Efficient Algorithms fer pnd pos*t on Inter-
procedural Parallel Flow Graphs. Rroc. of POPL pages 1-11. ACM, 2000.

Kousha Etessami and Mihalis Yannakakis. Recursive markov idacggsocesses and
recursive stochastic games. Pnoceesing of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP 2QG%)mber 3580 in Lecture Notes in
Computer Science, pages 891-903, 2005.

113

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

114

John Fearnley and Marcin Jurdzinski. Reachability in two-clock timetbraata is
pspace-completeCoRR abs/1302.3109, 2013.

Ingo Felscher and Wolfgang Thomas. Compositionality and ReachakitliyConditions
on Path LengthsInt. J. Found. Comput. S¢i20(5), 2009.

Oliver Friedmann and Martin Lange. Solving parity games in practicéTVA volume
5799 ofLecture Notes in Computer Scienpages 182—-196. Springer, 2009.

Yuxi Fu. Checking Equality and Regularity for Normed BPA with Silendwés. InProc.
of ICALP, Lecture Notes in Computer Science. Springer, 2013. to appear.

R.J. van Glabbeek. The linear time — branching time spectrum I; the siesahcon-
crete, sequential processes. In J.A. Bergstra, A. Ponse, and 180 editorsHand-
book of Process Algebrahapter 1, pages 3—99. Elsevier, 2001.

Rob J. van Glabbeek. The linear time — branching time spectrum II;eimaustics of
sequential systems with silent moves (extended abstract). In E. Best, Bditbeedings

of the 4th International Conference on Concurrency Theory (CONGB)RHildesheim
(Germany) number 715 in Lecture Notes in Computer Science, pages 66—81. Springe
1993.

Stefan @ller. Reachability on prefix-recognizable graphd. Process. Lett.108(2):71—
74, 2008.

Stefan @ller. The Computational Complexity of Propositional Dynamic Logi€&hD
Thesis, University of Leipzig, 2008.

Stefan @ller, Christoph Haase, 8bOuaknine, and James Worrell. Model Checking
Succinct and Parametric One-Counter AutomataPrvc. of ICALP (2) volume 6199 of
Lecture Notes in Computer Scienpages 575-586. Springer, 2010.

Stefan Gller, Christoph Haase, 8bOuaknine, and James Worrell. Branching-time
model checking of parametric one-counter automatdrat. of FoOSSaCSolume 7213
of Lecture Notes in Computer Scienpages 406—420. Springer, 2012.

Stefan @ller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Higrarch
via Ground Tree Rewrite Systems. Pnoc. of CONCURvolume 6901 ot.ecture Notes
in Computer Scienggages 543-558. Springer, 2011.

Stefan Gller and Anthony Widjaja Lin. The Complexity of Verifying Ground Tree
Rewrite Systems. IRroc. of LICS pages 279-288. IEEE Computer Society, 2011.

Stefan @ller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hand. |
Proc. of STACSLIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.
appear.

Bibliography

[78] Stefan @ller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Higrarch
via Ground Tree Rewrite SystemEansactions on Computational Log2013. accepted
for publication.

[79] Stefan @ller and Markus Lohrey. Branching-time model checking of one-caoyme
cesses. IrProc. of STACSvolume 5 ofLIPIcs, pages 405-416. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

[80] Stefan Wller and Markus Lohrey. Branching-time model checking of one-caoyme
cesses and timed automa&AM Journal of Computin2013. to appear.

[81] Stefan Gller, Markus Lohrey, and Carsten Lutz. PDL with Intersection and €me/
Is 2 EXP-Complete. IfProc. of FoSSaCSrolume 4423 ofLecture Notes in Computer
Sciencepages 198-212. Springer, 2007.

[82] Stefan Gller, Richard Mayr, and Anthony Widjaja To. On the computational complexity
of verifying one-counter processes. Mmoc. of LICS pages 235-244. IEEE Computer
Society Press, 20009.

[83] Christoph Haase, Stephan Kreutze@lJOuaknine, and James Worrell. Reachability in
Succinct and Parametric One-Counter AutomataPrivc. of CONCURvolume 5710 of
LNCS pages 369-383. Springer, 2009.

[84] Christoph Haase, & Ouaknine, and James Worrell. On the relationship between reach-
ability problems in timed and counter automataPhoc. of RR volume 7550 ofecture
Notes in Computer Sciengeages 54-65. Springer, 2012.

[85] Peter Habermehl. On the complexity of the linear-time mu -calculus for pets- In
Proc. of ICATPN volume 1248 ol_ecture Notes in Computer Sciengages 102-116.
Springer, 1997.

[86] M. H. T. Hack. Decidability Questions for Petri Net®hD thesis, MIT, 1976.

[87] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and OftiBerre. Collapsible
pushdown automata and recursion schemesProt. of LICS pages 452-461. IEEE
Computer Society, 2008.

[88] Matthew Hague and C.-H. Luke Ong. Symbolic backwards-realityabnalysis for
higher-order pushdown systenisgical Methods in Computer Scien@g4), 2008.

[89] Matthew Hague and Anthony Widjaja To. The Complexity of Model CliegKCollapsi-
ble) Higher-Order Pushdown Systems. IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTUY, 20lume 8
of Leibniz International Proceedings in Informatics (LIPIcgages 228—-239. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[90] Ulrich Hertrampf, Clemens Lautemann, Thomas Schwentick, Heribeltmer, and
Klaus W. Wagner. On the power of polynomial time bit-reductions. Pnceedings

115

Bibliography

of the Eighth Annual Structure in Complexity Theory Conferepages 200-207. IEEE
Computer Society Press, 1993.

[91] William Hesse, Eric Allender, and David A. Mix Barrington. Uniformrgiant-depth
threshold circuits for division andd iterated multiplicatiodournal of Computer and
System Scienceg85:695-716, 200ttp:/www.cs.umass.edu/ ~whesse/ .

[92] Yoram Hirshfeld. Petri nets and the equivalence problenC3h, volume 832 ol ecture
Notes in Computer Sciengeages 165-174. Springer, 1993.

[93] Yoram Hirshfeld and Mark Jerrum. Bisimulation equivanlence is deail for normed
process algebra. IAroc. of ICALR volume 1644 ot.ecture Notes in Computer Science
pages 412-421. Springer, 1999.

[94] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial algon for de-
ciding bisimilarity of normed context-free processe$heoretical Computer Science
158(1&2):143-159, 1996.

[95] Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of Wé&ainulation on
One-counter Nets. IRroc. of LICS page ??7? IEEE, 2013. to appear.

[96] Piotr Hofman and Patrick Totzke. Approximating Weak Bisimilarity of Basizeafel
Processes. IEXPRESS/SQS8olume 89 ofEPTCS pages 99-113, 2012.

[97] David Janin and Igor Walukiewicz. On the Expressive Completeofas® Propositional
mu-Calculus with Respect to Monadic Second Order LogicProc. of CONCURvol-
ume 1119 ol ecture Notes in Computer Scienpages 263—-277. Springer, 1996.

[98] P. Jaiar and Z. Sawa. A note on emptiness for alternating finite automata with a one-
letter alphabetinformation Processing Letterd04(5):164-167, 2007.

[99] Petr Jabar. Undecidability of Bisimilarity for Petri Nets and Some Related Problems.
Theor. Comput. Sgi148(2):281-301, 1995.

[100] Petr Jabar. Decidability of Bisimilarity for One-Counter Processésformation Com-
putation 158(1):1-17, 2000.

[101] Petr Jabar. Strong Bisimilarity on Basic Parallel Processes is PSPACE-complete. In
Proc. of LICS pages 218-227. IEEE Computer Society, 2003.

[102] Petr Jabar. Bisimilarity on Basic Process Algebra is in 2-ExpTime (an explicit proof)
CoRR abs/1207.2479, 2012.

[103] Petr Jabar. Decidability of DPDA Language Equivalence via First-Order Grarsmiar
LICS, pages 415-424. |IEEE, 2012.

[104] Petr Jabar. Finiteness up to bisimilarity is decidable for pushdown procesSefR
abs/1305.0516, 2013.

116

Bibliography

[105] Petr Jabar, Javier Esparza, and Faron Moller. Petri nets and regulargzesé Comput.
Syst. Scj.59(3):476-503, 1999.

[106] Petr Jabar, Antorin Kucera, and Faron Moller. Simulation and bisimulation over one-
counter processes. FProc. of STACSvolume 1770 olecture Notes in Computer Sci-
ence pages 334-345, 2000.

[107] Petr JaBar, Antonin Kutera, and Richard Mayr. Deciding bisimulation-like equivalences
with finite-state processe$heor. Comput. Sgi258(1-2):409-433, 2001.

[108] Petr Jabar, Antonn Kucera, Faron Moller, and Zdenek Sawa. DP lower bounds
for equivalence-checking and model-checking of one-counter atonhaf. Comput,
188(1):1-19, 2004.

[109] Petr Jabar, Faron Moller, and Zdenek Sawa. Simulation Problems for One-Qounte
Machines. InProc. of SOFSEMvolume 1725 ofLecture Notes in Computer Science
pages 404-413. Springer, 1999.

[110] Petr Jabar and Jir Srba. Undecidability of bisimilarity by defender’s forcing. ACM
55(1), 2008.

[111] Marcin Jurdzinski. Deciding the winner in parity games is in up capgadnf. Process.
Lett, 68(3):119-124, 1998.

[112] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A Deterministid&xponential Al-
gorithm for Solving Parity GamesSIAM J. Compu}.38(4):1519-1532, 2008.

[113] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite gtacesses, and
three problems of equivalenclaformation and Computatiqr86(1):43-68, May 1990.

[114] Stefan Kiefer. BPA bisimilarity is EXPTIME-hardnf. Process. Lett.113(4):101-106,
2013.

[115] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Highed€y Pushdown Trees
Are Easy. InFoSSaCSvolume 2303 ot ecture Notes in Computer Sciengages 205—
222. Springer, 2002.

[116] Naoki Kobayashi. Types and higher-order recursion scedoreverification of higher-
order programs. IProc. of POPL, pages 416-428. ACM, 2009.

[117] S. R. Kosaraju. Decidability of reachability in vector addition systemsl4th Annual
Symposium on Theory of Computipgges 267-281. ACM Press, 1982.

[118] O. Kupferman, N. Piterman, and M. Y. Vardi. Model Checking lan®roperties of
Prefix-Recognizable Systems. Roceedings of the 14th International Conference on
Computer Aided Verificatigrvolume 2404 of_ecture Notes in Computer Scienpages
371-385. Springer, 2002.

117

Bibliography

[119] Orna Kupferman and Moshe Y. Vardi. Weak alternating automatatraedautomata
emptiness. I'BTOC '98: Proceedings of the thirtieth annual ACM symposium on Theory
of computingpages 224-233, New York, NY, USA, 1998. ACM Press.

[120] Orna Kupferman and Moshe Y. Vardi. An Automata-Theoretic Apph to Reasoning
about Infinite-State Systems. Rroceedings of the 12th International Conference on
Computer Aided Verificatigmumber 1855 in Lecture Notes in Computer Science, pages
36-52. Springer, 2000.

[121] Antorin Ku€era and Richard Mayr. On the complexity of checking semantic equivedenc
between pushdown processes and finite-state procelkgesnation and Computatign
208(7):772—796, 2010.

[122] Antorin KuCera and Ph. Schnoebelen. A general approach to comparing infaite-s
systems with their finite-state specification$heor. Comput. S¢i.358(2-3):315-333,
2006.

[123] M. Lange. Model Checking Propositional Dynamic Logic with All Eagr Journal of
Applied Logi¢ 4(1):39—-49, 2005.

[124] Francois Laroussinie, Nicolas Markey, and Ph. SchnoebelEfiicient timed model
checking for discrete-time systemiBheor. Comput. Sgi353(1-3):249-271, 2006.

[125] Xrdme Leroux. The general vector addition system reachability problenmdsbprger
inductive invariants. ILICS, pages 4-13. IEEE Computer Society, 2009.

[126] Leonid Libkin. Elements of Finite Model Theargpringer, 2004.

[127] Orna Lichtenstein and Amir Pnueli. Checking that finite state coneupregrams satisfy
their linear specification. IROPL, pages 97-107. ACM Press, 1985.

[128] Christof Loding. Infinite Graphs Generated by Tree Rewritind®hD thesis, RWTH
Aachen, 2003.

[129] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhoarniog from mistakes: a
comprehensive study on real world concurrency bug characteristic&SPLOS pages
329-339. ACM, 2008.

[130] Denis Lugiez and Ph. Schnoebelen. Decidable first-orderiti@ngogics for PA-
processeslnf. Comput, 203(1):75-113, 2005.

[131] Denis Lugiez and Philippe Schnoebelen. The regular viewpoifeprocessesTheor.
Comput. Scj.274(1-2):89-115, 2002.

[132] Janos A. Makowsky. Algorithmic aspects of the Feferman-Vatiggdrem. Annals of
Pure and Applied Logicl126(1-3):159-213, 2004.

[133] Andrew Martinez. Efficient computation of regular expressiaosfunary NFAs. In
Workshop on Descriptional Complexity of Formal Systgmages 216-230, 2002.

118

Bibliography

[134] AN Maslov. Multilevel Stack Automatdroblems of Information Transmissigfi2):38—
43, 1976.

[135] Yuri Matiyasevich. Enumerable sets are DiophantiSeviet Math. Dok].11:354-357,
1970.

[136] ErnstW. Mayr. An algorithm for the general Petri net readlitsproblem. SIAM Journal
on Computing13:441-460, 1984.

[137] Richard Mayr. Weak Bisimulation and Model Checking for BasicalelrProcesses. In
FSTTCSvolume 1180 ofLecture Notes in Computer Sciengeges 88—-99. Springer,
1996.

[138] Richard Mayr. Model Checking PA-Processes. Pimc. CONCUR volume 1243 of
Lecture Notes in Computer Scienpages 332—-346. Springer, 1997.

[139] Richard Mayr. Decidability and Complexity of Model Checking Problems for Infinite-
State System$hD thesis, TU-Munich, 1998.

[140] Richard Mayr. Process Rewrite Systetmformation and Computatiqri56(1):264—-286,
2000.

[141] Richard Mayr. Decidability of model checking with the temporal logic HReoretical
Computer Scienc®56(1-2):31-62, 2001.

[142] Richard Mayr. Undecidability of weak bisimulation equivalence f@olinter processes.
In Proc. of ICALR volume 2719 ot ecture Notes in Computer Scienpages 570-583,
2003.

[143] Robin Milner. Communication and Concurrencynternational Series in Computer Sci-
ence. Prentice Hall, 1989.

[144] Robin Milner. Communication and Concurrencirentice Hall, 1989.

[145] Faron Moller and Alexander Moshe Rabinovich. Counting on &Tan the expressive
power of monadic path logidnf. Comput, 184(1):147-159, 2003.

[146] D. E. Muller and P. E. Schupp. The theory of ends, pushdaomaata, and second-order
logic. Theor. Comput. Sgi37:51-75, 1985.

[147] G. Naves. Accessibilit dans les automates tempéris deux horloges. Memoire de
master 2, ENS Cachan (France), 2006.

[148] C.-H. Luke Ong and Steven James Ramsay. Verifying highenrdudetional programs
with pattern-matching algebraic data types. Froc. of POPL. pages 587-598. ACM,
2011.

[149] Michio Oyamaguchi. The equivalence problem for real-time DPDRAACM 34:731—
760, 1987.

119

Bibliography

[150] Robert Paige and Robert E. Tarjan. Three partition refinenigotidoms. SIAM Journal
on Computing16(6):973-989, December 1987.

[151] Christos H. PapadimitriolComputational ComplexityAddison-Wesley, 1994.

[152] Pawel Parys. Collapse operation increases expressive pbdeterministic higher order
pushdown automata. IRroc. of STACSvolume 9 ofLIPIcs, pages 603—614. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[153] Amir Pnueli. The temporal logic of programs. Rroc. of FOCS pages 46-57. IEEE
Computer Society, 1977.

[154] Emil Post. A variant of a recursively unsolvable prolBelletin of the American Mathem-
atical Society52(4):264-268, 1946.

[155] Shaz Qadeer and Jakob Rehof. Context-bounded modelingexflconcurrent software.
In TACAS volume 3440 ofecture Notes in Computer Scienpages 93—-107. Springer,
2005.

[156] Alexander Rabinovich. On compositionality and its limitatiodsCM Trans. Comput.
Log. 8(1), 2007.

[157] Charles Rackoff. Relativized questions involving probabilistic elgms. InProc. of
STOC pages 338—-342. ACM, 1978.

[158] Julia Robinson. Definability and Decision Problems in ArithmetlcSymbolic Logic
14(2):98-114, 1949.

[159] Robert RoosDeciding Equivalence of Deterministic One-Counter Automata in Polyno-
mial Time with Applications to Learnindg®hD thesis, The Pennsylvania State University,
1988.

[160] Keijo Ruohonen. Reversible machines and post's correspoagenblem for biprefix
morphisms. Elektronische Informationsverarbeitung und Kybernefk(12):579-595,
1985.

[161] Sven Schewe. Solving parity games in big stepsF$TTCS$volume 4855 ol ecture
Notes in Computer Sciengeages 449-460. Springer, 2007.

[162] Ph. Schnoebelen. Oracle circuits for branching-time model ahgckn ICALP, volume
2719 ofLecture Notes in Computer Scienpages 790-801. Springer, 2003.

[163] Alexander Schrijver. Theory of linear and integer programmingWiley-Interscience
series in discrete mathematics and optimization. Wiley, 1999.

[164] Géeraud ®nizergues. L(A)=L(B)? decidability results from complete formal systems
Theor. Comput. Sgi251(1-2):1-166, 2001.

[165] Geraud ®nizergues. L(A)=L(B)? A simplified decidability proofrlheor. Comput. Sgi.
281(1-2):555-608, 2002.

120

Bibliography

[166] Geraud ®nizergues. The Equivalence Problem for t-Turn DPDA Is Co-NFRrat. of
ICALP, volume 2719 of_ecture Notes in Computer Sciengmges 478-489. Springer,
2003.

[167] Geraud ®nizergues. The bisimulation problem for equational graphs of finite @rede
SIAM J. Comput.34(5):1025-1106, 2005.

[168] O. Serre. Parity Games Played on Transition Graphs of Onet@oBrocesses. IRro-
ceedings of FoSSaC®olume 3921 ofLecture Notes in Computer Sciengmges 337—
351. Springer, 2006.

[169] Olivier Serre. Parity games played on transition graphs of oneteo processes. In
L. Aceto and A. In@lfsdbttir, editors,Proc. of FOSSACSumber 3921 in Lecture Notes
in Computer Science. Springer, 2006.

[170] M. Sipser.Introduction to the theory of computatioRWS Publishing Company, 1997.

[171] Holger Spakowski andddg Vogel. Theta2p-completeness: A classical approach for new

results. InProc. of FST&TCS 20Q0volume 1974 ofLNCS pages 348-360. Springer,
2000.

[172] Jin Srba. Strong bisimilarity and regularity of basic parallel processes @acpsipard.
In Proc. of STACSvolume 2285 ot ecture Notes in Computer Scienpages 535-546.
Springer, 2002.

[173] Jin Srba. Undecidability of Weak Bisimilarity for PA-Processes. Oavelopments in
Language Theorywolume 2450 ol ecture Notes in Computer Sciengages 197-208.
Springer, 2002.

[174] Jin Srba. Roadmap of Infinite resultsyolume Vol 2: Formal Models and Semantics.
World Scientific Publishing Co., 2004. Updated version is availabltat//www.
brics.dk/ ~ srba/roadmap/

[175] Jin Srba. Beyond Language Equivalence on Visibly Pushdown Autorhatfical Meth-
ods in Computer Sciencg(1:2), 2009.

[176] Colin Stirling. Lokal model checking games. Rroc. of CONCURvolume 962 of
Lecture Notes in Computer Scienpages 1-11. Springer, 1995.

[177] Colin Stirling. The joys of bisimulation. IMathematical Foundations of Computer
Science 1998, 23rd International Symposium, MFCS’98, Brno, ICRepublic, August
24-28, 1998, Proceedingsolume 1450 of_ecture Notes in Computer Sciengmages
142-151. Springer, 1998.

[178] Colin Stirling. Deciding DPDA Equivalence Is Primitive Recursiva.Proc. of ICALR
volume 2380 ol ecture Notes in Computer Scienpages 821-832. Springer, 2002.

[179] Colin Stirling. Second-order simple grammars. A®NCUR volume 4137 of_ecture
Notes in Computer Sciengeages 509-523. Springer, 2006.

121

Bibliography

[180] Larry J. StockmeyerThe complexity of decision problems in automata and lo§ibD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974.

[181] Wolfgang Thomas. On the ehrenfeuchtigsa game in theoretical computer science. In
Proc. of TAPSOF Tvolume 668 of_ecture Notes in Computer Sciengages 559-568.
Springer, 1993.

[182] Anthony Widjaja To. Model Checking FO(R) over One-Countardeésses and beyond.
In Proc. of CSl.volume 5771 ofLecture Notes in Computer Sciengages 485-499.
Springer, 2009.

[183] Anthony Widjaja To. Unary finite automata vs. arithmetic progressidng. Process.
Lett, 109(17):1010-1014, 2009.

[184] Anthony Widjaja To.Model Checking Infinite-State Systems: Generic and Specific Ap-
proaches PhD thesis, LFCS, School of Informatics, University of Edinburdgh,@

[185] Anthony Widjaja To and Leonid Libkin. Algorithmic Metatheorems for iiadle LTL
Model Checking over Infinite Systems. In C.-H. Luke Ong, ediRmc. of FOSSACS
volume 6014 ol ecture Notes in Computer Scienpages 221-236. Springer, 2010.

[186] Leslie G. Valiant and Mike Paterson. Deterministic one-counter autonda Comput.
Syst. Scj.10(3):340-350, 1975.

[187] Johan van BenthenModal Correspondence TheorPhD thesis, University of Amster-
dam, 1976.

[188] Rob J. van Glabbeek. The linear time-branching time spectrum @edesbstract). In
CONCUR volume 458 ofLecture Notes in Computer Scienpages 278-297. Springer,
1990.

[189] Rob J. van Glabbeek and W. P. Weijland. Branching time and abietrac bisimulation
semanticsJ. ACM 43(3):555-600, 1996.

[190] M. Y. Vardi. Reasoning about The Past with Two-Way Automata.Pioceedings of
the 25th International Colloquium on Automata, Languages and Progiagymolume
1443, pages 628-641, London, UK, 1998. Springer.

[191] Moshe Y. Vardi. The Complexity of Relational Query Languages.Ploceedings of
the 14th Annual ACM Symposium on Theory of Compupages 137-146. ACM Press,
1982.

[192] Moshe Y. Vardi. An automata-theoretic approach to linear tempayal.ltn Banff Higher
Order Workshopvolume 1043 ofLecture Notes in Computer Sciengages 238—-266.
Springer, 1995.

[193] Heribert Volimer. A generalized quantifier concept in computatiaoabplexity theory.
Technical report, arXiv.org, 1998. http://arxiv.org/abs/cs.CC/986911

122

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Bibliography

Klaus W. Wagner. More complicated questions about maxima and minimlas@me
closures of NPTheor. Comput. S¢i51(1-2):53-80, 1987.

Igor Walukiewicz. Difficult configurations — on the complexity of LTrIn Kim Guld-
strand Larsen, Sven Skyum, and Glynn Winskel, editBreceedings of the 25th In-
ternational Colloquium on Automata, Languages and Programming (FC88), Aal-

borg (Denmark) number 1443 in Lecture Notes in Computer Science, pages 140-151.
Springer, 1998.

Igor Walukiewicz. Model Checking CTL Properties of PushdoBystems. InPro-
ceedings of the 20th Conference on Foundations of Software Techrasidgyheoretical
Computer Sciengevolume 1974 ot ecture Notes in Computer Scienpages 127-138.
Springer, 2000.

Igor Walukiewicz. Pushdown Processes: Games and Modalk@ige Inf. Comput,
164(2):234-263, 2001.

Igor Walukiewicz. Monadic second-order logic on tree-like dtites. Theoretical Com-
puter Science275(1-2):311-346, 2002.

Stefan Whrle and Wolfgang Thomas. Model checking synchronized proddiatéimite
transition systemsd.ogical Methods in Computer Scien&£4), 2007.

Hsu-Chun Yen. Complexity Analysis of Some Verification ProblemsJoe-Counter
Machines. unpublished manuscript.

123

Bibliography

124

