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1 Introduction

Infinite-state systemsarise in many areas of computer science. Typical aspects one wishes to
model by them include the recursive behavior of programs, abstract data types like queues, the
communication between unbounded buffers or the real-time behavior of systems, numeric data
types like the integers or the reals, and many more.

Technically speaking we employ some finite encoding for representing theseinfinitely many
states and infinite relations between them. For instance, Petri nets allow to modelcertain concur-
rent aspects of systems – their finite description consists of the set of places and of the transitions
that can be fired between them.

The design and analysis of infinite-state systems has attracted a lot of research in the last
twenty years and indeed various models of infinite-state systems have been introduced and stud-
ied in the literature such as the above-mentioned Petri nets, (higher-order) pushdown systems,
well-structured transition systems, automatic structures, ground tree rewritesystems and counter
systems, just to mention a small fraction of them.

Two important aspects of the models of infinite-state systems are the following. On the one
hand, one wants the model to be as expressive as possible in order to model as many systems as
accurately as possible. On the other hand, one wishes to retain decidability and a low complexity
with respect to algorithmic verification problems such as reachability. One caneasily see that
there is a trade-off between the two. For instance, if our infinite-state modelallows to encode
the configuration graph of any Turing machine, we can be sure that reachability is undecidable.

In the context of hardware and software systems,formal verificationis the act of proving
or disproving the correctness of intended behavior of a system with respect to a certain formal
specification or property using formal methods.

Model checkingis a fully-automatic formal verification method which has been proven suc-
cessful in validating and verifying safety-critical systems. It asks to decide whether a given sys-
tem satisfies a given property, where the property is typically specified in some suitable logic.
If we would like to know whether the system satisfies a particular property, we construct an
abstract modelT for the system that comprises the behavior of the system and we express the
property via a formulaϕ in some logical language. Hence, we solve the initial problem by
checking whetherT satisfiesϕ, which in turn can be checked by using efficient model checking
algorithms. Concerning the choice of the suitable logic similar trade-off remarksapply: on the
one hand, the logic should be sufficiently expressive for being able to capture the relevant prop-
erties as precisely as possible – on the other hand, model checking the logicshould at least be
decidable and should have a low complexity, if possible.

Vardi proposed three different ways of measuring the complexity of the model checking prob-
lem [191] that we summarize briefly. Often, the presentation of the system is much larger than
the size of the formula. This motivates to study thedata complexityof model checking, which
views the formula as fixed and measures the computational complexity only in termsof the size
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1 Introduction

of the input system; thus one has a decision problem for each fixed formula. However, it can
very well be the case that one is aware of the system itself and has varyingformulas to be veri-
fied. In this spirit, theexpression complexityassumes the system to be fixed and asks to decide
whether it models the input formula. When both the system and the formula are accounted for as
non-constant and are hence part of the input, one obtains the most general variant, thecombined
complexityof the model checking problem.

From a complexity-theoretic viewpoint it seems fair to say that model checkingfinitesystems
is by now very well understood. A prominent exception is surely the complexity of model
checking the modalµ-calculus: the problem is known to lie inUP ∩ coUP [111] and hard for
deterministic polynomial time.

Over infinite-state systems however, already much simpler questions such asreachability can
indeed be much more involved. A very prominent example is the reachability problem for Petri
nets: to date the problem is known to be decidable [117, 136], but the best-known lower bound
is Lipton’sEXPSPACE-hardness proof from the seventies [37]. The problem is not even known
to be primitive-recursive.

On the other hand, powerful tools have been developed for obtaining decidability results.
Rabin’s tree theorem is surely one of the central decidability results in this context: it states that
the monadic second-order (MSO) theory of the infinite binary tree is decidable. This result can
immediately be applied to model checking pushdown systems (which are the transition systems
induced by pushdown automata), which provide a very natural way of modeling the call and
return behavior of recursive programs. Muller and Schnupp were thefirst to see that Rabin’s
tree theorem implies that model checkingMSO on pushdown systems is decidable [146]: every
pushdown system is interpretable in the complete binary tree viaMSO formulas. It is worth
mentioning that monadic second-order logic (the extension of first-order logic by allowing to
quantify over sets of elements of the domain instead of just over elements themselves) is indeed
a very powerful logic. Undeniably, this expressiveness comes at a price: the monadic second-
order theory of the infinite binary tree is nonelementary and thus the same nonelementary lower
bound applies toMSO model checking pushdown systems.

Temporal logicshave caught more and more attention as specification formalisms in the last
forty years not only in the context of model checking. The reason for this is that temporal logics
are still expressive enough for modeling the relevant behaviors of systems and moreover, in con-
trast to powerful logics like the above-mentioned monadic second-order logic, the complexity
of model checking decreases dramatically. The term “temporal logic” is used to describe log-
ical means for representing, and reasoning about, propositions qualified in terms of time. Two
classical such properties one wishes to express are statements like “every request is eventually
met by a response“ or “one will never reach a deadlock”. Three classical examples of temporal
logics include Linear Temporal Logic (LTL) [153] in which formulas make statements about the
future of paths, Computation Tree Logic (CTL) [47] in which time is accounted for in a tree-like
fashion, and the modalµ-calculus ([4]) that extends classical modal logic by adding least and
greatest fixed point operators.

It has been shown by Walukiewicz that model checking the modalµ-calculus on pushdown
systems isEXP-complete [197], whereas Kupferman and Vardi have followed an automata-
theoretic approach for obtaining such an exponential time decision procedure [120]. The latter
was inspired by Vardi’sEXP-completeness result on emptiness of two-way alternating parity
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tree automata [190]. Bouajjani, Esparza and Maler proved thatLTL model checking over push-
down systems isEXP-complete [18]. Moreover, in [18] it has been shown that from a regular
set of configurations both the set of reachable configurations and the set of configurations that
can reach this set are effectively regular again and furthermore computable in polynomial time.
Even better, the data complexity of model checkingLTL over pushdown systems is decidable
in polynomial time, where it is stillEXP-hard for the modalµ-calculus [196]. In fact, the latter
EXP lower bound already holds for the logicCTL, whereas model checkingCTL’s fragmentEF
is onlyPSPACE-complete [196]. Model checking Propositional Dynamic Logics on pushdown
systems and related models has been investigated in [81].

An important sublass of pushdown systems are the transition graphs of pushdown automata
over a singleton set of control states, the so-calledbasic process algebras(BPA). Model check-
ing various temporal logics on basic process algebras is often still (almost as) hard as for push-
down systems, however the data complexity dramatically decreases over them:it turns out to be
decidable in polynomial time [139].

A further important subclass of pushdown systems areone-counter systems: here, the in-
volved pushdown automata may contain an arbitrary finite set of control states, but there may
only be one stack symbol (plus an additional bottom-of-stack symbol). In fact, one-counter sys-
tems can be viewed as being obtained from a certain finite system (that corresponds to the case
when the counter is zero) that is connected to one of infinitely many successive copies of a fur-
ther finite system (that corresponds to the positive counter values) that are connected with each
other successively. Hence, the class of one-counter systems can be seen as one of the simplest
means to model infinite-state systems. Serre proved that model checking the modal µ-calculus
is PSPACE-complete on one-counter systems [168]. It can easily be seen that modelchecking
LTL on one-counter systems is interreducible to model checkingLTL on finite systems, and is
in factPSPACE-complete.EF model checking on one-counter systems has not been understood
very well so far: it has been shown hard for the complexity classDP in [108].

In the last twenty years many generalizations of pushdown systems have been investigated.
Pushdown systems themselves can analogously be seen as systems whose states are given by
the set of all finite words (over some fixed finite alphabet) and whose transitions are induced by
application of a finite set of word rewriting rules that are used in a prefix rewrite fashion. When
these rewrite rules are generalized in such a way that not only words, but words inside some regu-
lar language (on both sides of each rule) are rewritten, one obains the class ofprefix-recognizable
systems. In fact, Caucal showed that prefix-recognizable systems have decidableMSO theo-
ries [40, 41]. Model checking the modalµ-calculus is stillEXP-complete for them [33, 120],
whereas already reachability becomesEXP-hard (when there is a suffix language involved in
the rewrite rules) [71]. Caucal further generalized decidability ofMSO model checking on the
class of systems one obtains by alternately applying the operations unfoldingand inverse ratio-
nal mapping: the latter class is also known as theCaucal hierarchy[38]. The Caucal hierachy
has been characterized by Carayol and Wöhrle [36] in terms of the transition graphs of higher-
order pushdown automata (introduced by Maslov [134]). Usual pushdown automata manipulate
usual stacks of atomic symbols, whereas the stacks of order-n pushdown automata consist of a
sequence of order-(n-1) stacks for eachn > 1. In fact, model checking various temporal logics
on order-n pushdown systems quickly becomes nonelementary inn (even reachability), we refer
to [89] for various results on model checking higher-order pushdownsystems.
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1 Introduction

The before-mentioned classes provide good means for modeling the sequential behavior of
systems. The class of Petri nets can be seen as the corresponding parallel analog of pushdown
systems. Apart from reachability, decidability can moreover be shown formodel checkingLTL
on Petri nets, but the problem is still at least as hard as the reachability problem [60]. In the same
paper [60] Esparza proves that undecidability for model checking Petri nets already holds for the
fragmentEF of CTL. The complexity drops down toPSPACE-completeness for model checking
EF over communication-free Petri nets [139] as shown by Mayr, whereas the complexity of
reachability is much lower than for general Petri nets: it isNP-complete [61]. The latter class of
communication-free Petri nets is also known asbasic parallel processes(BPP).

In fact, Mayr found an elegant symbiosis of systems that behave sequentially or concurrently,
or both: the process rewrite systems (PRS) hierarchy [140]. It combines systems whose states
are essentially terms that can be built from basic atoms and applying the two operators sequential
and parallel composition, respectively. The states of such a (general) PRS system consist essen-
tially of the set of all such terms, but are interpreted in such a way that sequential composition is
associative and parallel composition is both associative and commutative. The transitions can be
seen to evolve from applying these term rewrite rules to subterms. Subclasses ofPRS are given
by putting syntactic restrictions on the left-hand side and right-hand side the rewrite rules to be
either purely sequential, purely parallel, singletons or unrestricted.

Viewed in this way, pushdown systems (resp. Petri nets) arePRS in which both the left-hand
side and the right-hand side of the rewrite rules are purely sequential (resp. purely parallel). Ba-
sic process algebras (resp. basic parallel processes) are the restrictions to thosePRS, where the
left-hand side is unary and the right-hand side is purely sequential (resp. purely parallel). Having
mixed forms, where the right-hand side of rules is unrestricted but the left-hand side is possibly
restricted, make up the the classesPA, PAD andPAN. Mayr showed thatEF model checking on
PAD is decidable [138]. For the classPA Lugiez and Schnoebelen proved decidability of model
checking first-order logic with reachability [130]. However, undecidability of model checking
EF holds forPAN since it is inherited from its undecidability over Petri nets. With the latter
formalisms one can model systems that involve parallel programs with unbounded recursions
and unbounded parallelism [5, 63].

A similar concept of defining infinite-state systems arose from the term rewriting community
with the study ofground tree rewrite systems(GTRS) [49]. While pushdown systems can be
seen as prefix word rewriting systems, the states of ground tree rewrite systems consist of finite
ranked trees, where the transitions are induced by a finite set of rankedtree rewriting rules (that
are applied to one subtree). The same way prefix-recognizable systems relate to pushdown sys-
tems, so doregular ground tree rewrite systems(RGTRS) relate to ground tree rewrite systems:
instead of only allowing single trees in the rewrite rules, they allow regular treelanguges to
appear there. We refer to the work of Colcombet [48] for an algebraic treatment of them. The
crucial difference to Mayr’sPRS hierarchy is that the states of the underlying system that are
defined by them are indeed the set of finite ranked trees and not equivalence classes on them (in
PRS different terms can potentially represent the same state since one works modulo associa-
tivity/commutativity). For regular ground tree rewrite systems model checking first-order logic
with reachability is decidable [56, 48]. Moreover, Löding showed that recurrent reachability and
model checkingEF (and several variants thereof) is decidable, whereas already model checking
CTL’s fragmentEG (constrained reachability) becomes undecidable [128].
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Apart from model checking, a second important verification task involvesequivalence check-
ing, which asks to determine whether two given systems behave equivalently with respect to
some notion of equivalence, such as isomorphism for instance. So insteadof having the speci-
fication given by some logical formalism, the desired behavior is rather given by some further
system and one wishes to decide if this further system behaves equivalently to the system that is
to be verified.

In particular, with the aid of an automated equivalence checker, it is possible for a system
designer to replace complex systems by simpler system. When doing so, one might be able to
drastically decrease the running time for verifying typical properties of interest and indeed make
use of the specific properties of the simpler one. For instance, if one can be sure that a given
infinite system behaves equivalently to a finite one, one could compute concrete response times
instead of having to traverse an infinite-state space, which might be very inefficient.

Various notions of equivalences have been proposed in the literature [8], ranging from trace
equivalence to isomorphism [69, 70]. Among these numerous notions of equivalence in veri-
fication,bisimulation equivalenceis surely the central one, see e.g [177] for a survey. Elegant
characterizations of well-known temporal logics have been proven in termsof bisimulation-
invariant fragments of classical logics. A famous result due to van Benthem states that the
bisimulation-invariant properties of first-order logic are precisely the properties that can be ex-
pressed in modal logic [187]. In the same spirit, the modalµ-calculus has been characterized as
the bisimulation-invariant properties that can be expressed in monadic second-order logic due
to Janin and Walukiwicz [97]. Finally, we mention a result by Moller and Rabinovich [145]
who showed that the temporal logicCTL∗ coincides with the bisimulation-invariant fragment of
monadic path logic (which is the restriction of monadic second-order logic restricted to sets of
elements of the domain that lie on a path).

Moreover, bisimulation equivalence has an vivid characterization in terms of agameplayed
by two players “Attacker” and “Defender” who alternately move in a pebblebisimulation game
on the pair of systems under consideration. One can prove that two systemsare bisimulation
equivalent (bisimilar for short) if, and only if, Defender has a winning strategy in this bisimula-
tion game [181, 176]. In other words, the bisimulation game can be seen as a guarded variant of
the classical Ehrenfeucht-Fraı̈sée game for first-order logic.

While between finite systems it is well-known that for bisimilarity checking efficient algo-
rithms exist [150, 113] and that the problem is generally complete for deterministic polynomial
time [7], only very little is known about the decidability and complexity status of equivalence
checking on various classes of infinite-state systems. Concerning infinite-state systems, when
comparing the knowledge and results that have been obtained on model checking with the ones
for equivalence checking, it seems fair to claim that the understanding ofequivalence check-
ing can be assessed as premature in total. Indeed, onany of the above-mentioned classes of
infinite-state systems, there has only been a single such class for which bisimilarity checking is
known to be decidable and for which the precise complexity could be determined: Jaňcar proved
PSPACE-completeness for bisimilarity checking of basic parallel processes [101]. Although this
is subjective, it seems that a possible reason for the latter is that equivalence checking on infinite-
state systems is a combinatiorally highly nontrivial problem. A summary of up-to-date records
of results on equivalence checking of infinite-state systems in Mayr’sPRS hierarchy [140] is
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being maintained by Jiri Srba [174].
Despite the fact that in the field of infinite-state equivalence checking thereare still many

more techniques to be developed and more understanding to be gained, there are undoubtedly
several highlights that should be mentioned (without claiming completeness). The most promi-
nent result in this area is the decidability of equivalence ofdeterministic pushdown automata
(DPDA); this long-standing decidability question in formal languages was positively answered
by Śenizergues [164] (see also [165]), for which Stirling [178] proved aprimitive recursive up-
per bound. The problem still does not seem to be completely understood, which was one of
the motivating factors for a recent simplified proof via first-order grammars, given in [103]. We
note that the decidability status of language equivalence of deterministic higher-order pushdown
systems remains an interesting open problem; some progress in this direction has been made by
Stirling [179]. Regarding the lower bound, the DPDA language equivalence is only knownP-
hard (easily derivable fromP-hardness of the emptiness problem), hence the known complexity
gap is very large. To the best of the author’s knowledge, we have the same phenomenon even
for real-timeDPDA [149], i.e. for DPDA in whichε-transitions are not present. AcoNP upper
bound was shown for finite-turn DPDA [166]. For simple grammars (real-timeDPDA with a
single control state), a polynomial algorithm deciding equivalence was shown in [94] (see [53]
for a recent upper bound).

Sénizergues has lifted his decidability techniques to prove that bisimilarity of equational
graphs (they lie between pushdown graphs and prefix-recognizable graphs) of finite out-degree
is decidable [167].EXP-hardness by Mayr and Kučera [121] was the best-known lower bound
for this problem, yet Kiefer recently establishedEXP-hardness already for the class of basic
process algebras [114], for which in turn at least a doubly exponential upper bound is known for
a while [31]; we refer to [102] for a more rigorous and simpler proof.

Decidability of bisimilarity for one-counter systems is surely inherited from its decidability
for pushdown systems, however Jančar independently established decidability in [100] whose
algorithm has been analyzed to run in triply exponential space by Yen [200]. A PSPACE lower
bound for bisimilarity of one-counter systems has been proven by Srba [175].

Concerning parallel models of computation Jančar proved that bisimilarity for Petri nets is
undecidable [99]. For normed PA processes Jerrum and Hirshfeld proved that bisimilarity [93]is
decidable in nondeterministc doubly exponential time, but decidability of the general case re-
mains open.

Being used in most of the above-mentioned lower bounds proofs, a generic technique entitled
“Defender’s Forcing” has been developed by Jančar and Srba in [110], where it is demonstrated
on the results like the undecidability (Π0

1-completeness) of bisimilarity of pushdown systems
with poppingε-steps orΣ1

1-completeness on the class of prefix-recognizable systems. When
reducing from a hard problem, the essential idea of “Defender’s Forcing” tries to set up a bisim-
ulation game that is designed in such a way that the pair of states/processes/configurations of the
infinite system are almost always syntactically equivalent, for allowing to implement a gadget
for Defender to make choices when necessary. Intuitively, due to the nature of the bisimulation
game, Attacker generally has more freedom in his moves since he is the one who chooses the
first system and the first transition in each round of the game. By forcing the pairs of states
(which are pairs of words in pushdown systems for instance) the technique implements a partic-
ular gadget that gives Defender the possibility to make choices. Whether aconceptually different
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1.1 Contributions and organization of this thesis

technique can be developed – in particular for deterministic systems – is a challenging research
question.

1.1 Contributions and organization of this thesis

This thesis summarizes several contributions of the author in the field of modelchecking and
equivalence checking of infinite-state systems.

More concretely, we mainly study the model checking problem for the branching-time log-
ics CTL, EF and Hennessy Milner logicHM and moreover equivalence checking (bisimula-
tion equivalence, weak bisimulation equivalence, branching bisimulation equivalence and trace
equivalence) on (a subset of) the following classes of systems: pushdown systems, one-counter
systems as well as succinct and parametric one-counter systems, higher-order pushdown sys-
tems, ground tree rewrite systems, basic process algebras and PA/PAD-processes.

The submitted papers of this thesis are listed in Chapter 10. The contributions of the author
in each chapter of this thesis are summarized in the Appendix.

Finally, we summarize the contents and results of this thesis:

• In Chapter 2 we provide some basic notation, introduce the relevant logics (CTL and its
fragmentEF and its fragment Hennessy Milner logicHM), introduce the different notions
of equivalence we look at in this thesis, and define the central decision problems we study
in this work.

• Chapter 3 surveys the classes of infinite-state systems that we concern ourselves with in
this thesis. We give an overview of Mayr’s Process Rewrite Systems (PRS) hierarchy and
integrate one-counter systems, higher-order pushdown systems and ground tree rewrite
systems into this hierarchy with respect to bisimilarity, weak bisimilarity and branching
bisimilarity. While the former integration of one-counter systems and higher-order push-
downs is trivial, the integration of ground tree rewrite systems is less obvious. We discuss
several relevant results in the literature on model checking and equivalence checking in
all of these classes of systems.

The main results in Section 3 appear only in Section 3.1 and consist of the following:

– An integration of (regular) ground tree rewrite systems into Mayr’sPRS hierarchy
with respect to bisimilarity, weak bisimilarity and branching bisimilarity.

These results will appear in Transactions on Computational Logic [78] andhave been
published as a conference paper in CONCUR 2011 [75] and are basedon joint work with
Anthony Widjaja Lin.

• In Chapter 4 is about equivalence checking of one-counter systems. The main results are
the following:

(1) It is shown that bisimulation equivalence of one-counter systems is complete for
PSPACE (Theorem 4.2). This improves a previously best-known3EXPSPACE up-
per bound for this problem and matches aPSPACE lower bound proven by Srba

7



1 Introduction

[175]. Moreover, it witnesses one of very few classes of infinite-statesystems, where
bisimulation equivalence is decidable and moreover the precise computationalcom-
plexity is known. Moreover, we show that deciding whether a one-counter system
is bisimilar to a finite system isP-complete (Theorem 4.5), which improves a pre-
viously best-known upper bound of triply exponential time for this problem from
[100, 200]. These results have been obtained in a joint work with Stanislav Böhm
and Petr Jaňcar published in CONCUR 2010 [15].

(2) With a similar technique as in (1) it is shown that trace equivalence of determin-
istic real-time one-counter automata isNL-complete (Theorem 4.3). Moreover, we
prove that deciding whether a deterministic real-time one-counter automaton accepts
a regular language isNL-complete as well (Theorem 4.6). Both results improve
a previously best-known2O(

√
n logn) time bounded algorithm from 1975 [186] for

both problems. This result has been obtained in joint work with Stanislav Böhm
published in MFCS 2011 [14].

Both results (1) and (2) have been merged into a journal paper that has been accepted for
publication in Journal of Computer and System Sciences [16].

(3) We show that equivalence of deterministic one-counter automata isNL-complete
(Theorem 4.27). The previously best-known upper bound for this problem is again
the (already above-mentioned) algorithm of Valiant and Paterson runningin time
2O(

√
n logn) from 1975 [186], from which one can derive aPSPACE upper bound that

has been the previously best-known complexity bound for this problem. Thisresult
has been obtained in a joint work with Stanislav Böhm and Petr Jančar published in
STOC 2013 [17].

• In Chapter 5 we discuss the following results:

(1) We show that there is already a fixed one-counter system for whichCTL model
checkingPSPACE-hard (Theorem 5.4).

(2) We “complement” Theorem 5.5 and show that model checking fixed one-counter
systems with inputCTL formulas of fixed leftward until depth is decidable in poly-
nomial time (Theorem 5.5).

(3) We develop a novel technique for proving lower bounds in model checking and
reachability questions on transition systems induced by one-counter automataand
timed automata. This technique was inspired by the question what the complexity of
model checking one-counter systems with respect to fixedCTL formulas is. Inspired
by two deep results from complexity theory, we develop a generic lower bound tech-
nique (Theorem 5.9) that allows us to derive the following hardness results:

(3a) There exists a fixedCTL formula for which model checking one-counter sys-
tems isPSPACE-hard (Theorem 5.10).

(3b) There exists a fixedCTL formula for which model checking succinct one-
counter systems isEXPSPACE-hard (Theorem 5.12).

(3c) Model checkingCTL’s fragmentEF on one-counter systems isPNP-hard (The-
orem 5.11).

8



1.1 Contributions and organization of this thesis

(3d) Deciding if a one-counter Markov decision process can reach a designated set
of zero configurations with probability arbitrarily close to1 is PSPACE-hard
(Theorem 5.13).

(3e) Model checking 2-clock timed automata with constants presented in unary against
fixedCTL formulas isPSPACE-hard (Theorem 5.15) and the reachability prob-
lem of 2-clock timed automata with very simple modulo tests and constants
presented in unary isPSPACE-hard (Theorem 5.16).

The results have been obtained in a joint work with Markus Lohrey published in STACS
2012 [79] and will appear in SIAM Journal of Computing [80]. The only exception is
result (3b) which has been obtained in a joint work with Christoph Haase, Joël Ouaknine
and James Worrell published in ICALP 2010 [73].

• In Chapter 6 we discuss the computational complexity of model checking one-counter sys-
tems and succinct and parametric one-counter systems against the logicsEF and Hennessy-
Milner logicHM. Our results are the following:

(1) Model checkingEF on one-counter systems is inPNP (Corollary 6.9). For this, we
develop a suitable fragment of Presburger arithmetic that is tailored towardsexpress-
ing the set of natural numbers that satisfy a givenEF formula in a given control state
of the one-counter system and provides a formalism for solving the globalmodel
checking problem.

(2) Model checkingEF on succinct one-counter systems isPSPACE-complete (Propo-
sition 6.13 and Theorem 6.16).

(3) Model checkingEF on parametric one-counter systems is undecidable (Theorem
6.17).

(4) Model checkingHM on parametric one-counter systems isPSPACE-complete (Propo-
sition 6.13 and Theorem 6.21).

Result (1) has been obtained in a joint work with Anthony Widjaja To and Richard Mayr
published in LICS 2009 [82] and the other results have been obtained in joint work with
Christoph Haase, Joël Ouaknine and James Worrell published in FOSSACS 2012 [74].

• In Chapter 7 we concern ourselves with model checkingEF (resp. HM) on the asyn-
chronous product of basic process algebras (resp. of prefix-recognizable systems) and the
sizes of Feferman-Vaught decompositions forEF andHM with respect to asynchronous
product. The main results are the following:

(1) Model checkingEF on the asynchronous product of two basic process algebras
is nonelementary (Theorem 7.2) and as a consequence model checking the asyn-
chronous product of two prefix-recognizable systems is also nonelementary (Theo-
rem 7.4). This solves questions raised by Löding and Mayr on the complexity of
model checkingEF on ground tree rewrite systems [128] and on PA/PAD processes
[139], respectively.

(2) The sizes of Feferman-Vaught type decompositions forEF andHM with respect
to asynchronous product are inherently nonelementary (Theorem 7.5). The same
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1 Introduction

nonelementary lower bound holds when restricted to finite transition systems (The-
orem 7.8).

These results have been obtained in a joint work with Anthony Widjaja Lin [77]published
in STACS 2012.

• Chapter 8 provides lower bounds on the decidability and computational complexity of
bisimilarity of pushdown systems and higher-order pushdown systems. We have the fol-
lowing results:

(1) Bisimilarity of order-two pushdown systems is undecidable (Theorem 8.7). We also
mention the undecidability of the lower order problem, i.e. deciding whether there
exists a reachable configuration of an order-k pushdown system that is bisimilar to
an order-k′ system (Theorem 8.8). These results have been obtained in a joint work
with Christopher Broadbent published in FSTTCS 2012 [27].

(2) Bisimilarity of pushdown systems is nonelementary (Theorem 8.9). This result is
a elaborate application of Defender’s Forcing technique [110] and significanlty im-
proves the previously best-knownEXP lower bound of this problem due to Kučera
and Mayr [121] which already dates back to 2002. This result has beenobtained in
a joint work with Michael Benedikt, Stefan Kiefer and Andrzej Murawskipublished
in LICS 2013 [17].

• In Chapter 9 we study the computational complexity of model checkingEF on (regular)
ground tree rewrite systems. Our main results are the following:

(1) Already model checking a given ground tree rewrite system againsta givenEF for-
mula is nonelementary, already when the formula has two nestings of theEF operator
(Theorem 9.1).

(2) Model checking ground tree rewrite systems againstEF formulas ofEF nesting depth
at most one is complete for the complexity classPNEXP (Corollary 9.9 and Theorem
9.9). The author is not aware of any previous natural problems that arecomplete
for the complexity classPNEXP. As an immediate corollary we obtain that checking
bisimilarity between a ground tree rewrite system and a finite system is incoNEXP

(Theorem 9.11), which provides a first elementary upper bound for thisproblem.
The same results hold forPA processes.

(3) Bisimilarity of regular ground tree rewrite systems and finite transition systems is
nonelementary (Theorem 9.12). We apply a lower bound technique by Kučera and
Mayr [121] in an elaborate way, where the main technical obstacle is the fact that
regular ground tree rewrite systems are not closed under direct product with finite
systems.

These results have been obtained in a joint work with Anthony Widjaja Lin published in
LICS 2011 [76].

10



2 Equivalence checking and model
checking

By N = {0, 1, . . .} we denote the set of non-negative integers and define[i, j]
def
= {i, i+1, . . . , j}

for eachi, j ∈ N. By N+ we denote the setN \ {0} of positive integers. For the rest of this
document, let us fix a countable set ofatomic actionsAct. A (labeled) transition systemis a
tupleT = (S,A, { a−→| a ∈ A}), where

• S is a set ofstates,

• A ⊆ Act is a finite set of atomic actions, and

• a−→⊆ S × S is a binary transition relation for eacha ∈ A.

We often writes
a−→ s′ to abbreviate(s, s′) ∈ a−→ and just writes

a−→ if there exists some state
s′ such thats

a−→ s′. The relations
a−→ are extended to

w−→ for wordsw ∈ A∗ inductively:
s

ε−→ s; if s
a−→ s′ ands′

u−→ s′′ thens
au−→ s′′. By s

w−→ we denote thatw is enabled ins,

i.e. s
w−→ s′ for somes′ ∈ S. For eachX ⊆ A, we define

X−→def
=
⋃
a∈X

a−→. We write−→ for
A−→ and by−→∗ we denote the reflexive and transitive closure of−→. Hences −→∗ s′ if, and

only if, s
w−→ s′ for somew ∈ A∗, i.e. if, and only if,s′ is reachable froms.

Notions of equivalence

The simplest and coarsest notion of equivalence that we would like to mentionis trace equiva-
lence. Two statess ands′ aretrace equivalentif {w ∈ A∗ | s w−→} = {w ∈ A∗ | s′ w−→}.

Among the numerous notions of equivalence [188] in the realm of formal verification and
concurrency theory, the central one isbisimulation equivalence(bisimilarity for short), which
enjoys pleasant mathematical properties. It can be seen to take the king role: There are important
characterizations of the bisimulation-invariant fragments of first-order logic, monadic second-
order logic, and monadic path logic in terms of modal logic [187], the modalµ-calculus [97], and
CTL∗ respectively [145]. In particular, bisimilarity is a fundamental notion for process algebraic
formalisms [143]. Many relevant properties of interests in verification (e.g. those expressible in
standard modal/temporal logics likeLTL,CTL, modalµ-calculus) cannot distinguish transition
systems that are bisimilar.

A relationR ⊆ S × S is abisimulationif R is symmetric and for each(s, t) ∈ R and each
a ∈ A the following holds:

• if s
a−→ s′ for somes′ ∈ S, thent

a−→ t′ and(s′, t′) ∈ R for somet′ ∈ S.

11



2 Equivalence checking and model checking

We writes ∼ t if there exists some bisimulationR such that(s, t) ∈ R.
Bisimulations and weak bisimulations are historically the most important notions of bisimula-

tions on transition systems in verification [144]. Weak bisimulations extend strong bisimulations
by distinguishing observable and non-observable (i.e.τ ) actions, and only require the observ-
able behavior of two systems to agree. In this sense, weak bisimulation is a coarser notion than
strong bisimulation.

Let us define
τ

=⇒def
=

τ−→∗
and

a
=⇒def

=
τ−→∗ ◦ a−→ ◦ τ−→∗

for eacha ∈ A \ {τ}. A weak
bisimulationwith respect to someinternal symbolτ ∈ A (we also sometimes denote this symbol
by ε in this thesis) is a symmetric relationR ⊆ S × S such that for each(s, t) ∈ R and each
a ∈ A the following holds:

• if s
a−→ s′ for somes′ ∈ S, thent

a
=⇒ t′ and(s′, t′) ∈ R for somet′ ∈ S.

We writes ≈ t if there exists some weak bisimulationR such that(s, t) ∈ R.
Strong (resp. weak) bisimilarity can also be described by simple pebble gamesbetween two

players:AttackerandDefender. Attacker’s goal is to prove that two given states arenotstrongly
(resp.not weakly) bisimilar, while Defender tries to prove otherwise. We will refer to Attacker
ashim and to Defender asher. In every round of the game, there is a pebble placed on a unique
state in each transition system. Attacker then chooses one transition system and moves the
pebble from the pebbled state to one of its successors by an action

a−→, wherea ∈ A. Defender
must imitate this by moving the pebbled state from the other system to one of its successors
by the same action

a−→ (resp.
a

=⇒). If one player cannot move, then the other player wins.
Defender wins every infinite game. Two statess andt are strongly/weakly bisimilar (resp. not
strongly/weakly-bisimilar) if, and only if, Defender (resp. Attacker) hasa winning strategy on
the game with initial pebble configuration(s, t).

Branching bisimulation [189] is a notion of semantic equivalence that is strictly coarser than
strong bisimulation but is strictly finer than weak bisimulation. It refines weak bisimulation
equivalence by preserving the branching structure of two processeseven in the presence of
unobservable transitions (that are labeled by a silent actionτ ); it is required that all intermediate
states that are passed through duringτ -transitions are related.

A branching bisimulationwith respect to someinternal symbolτ ∈ A is a symmetric relation
R ⊆ S × S such that for each(s, t) ∈ R and eacha ∈ A the following holds:

• if s
a−→ s′, thent

τ
=⇒ t′

a−→ t′′
τ

=⇒ t′′′ with (s, t′), (s′, t′′) ∈ R for somet′, t′′, t′′′ ∈ S.

We writes ≃ t if there is a branching bisimulationR such that(s, t) ∈ R.

Let us introduce the corresponding decision problem:equivalence checking.

EQUIVALENCE CHECKING FOR SOME NOTION OF EQUIVALENCE≡∈ {∼,≈,≃, . . .}
INPUT: A transition systemT and two statess, t of T .
QUESTION: Doess ≡ t hold inT ?

We note that sometimes we assume that the input to the equivalence problem consists of two
transition systems (from the same class of transition systems) and two of its states, respectively.

12



Since any class of transition systems that we consider in this thesis is effectively and efficiently
closed under disjoint union, we may assume, without loss of generality, thatthere is only one
transition system in the input to the equivalence checking problem (along withtwo of its states).

Logics

We assume the reader is familiar with first-order logic and monadic second-order logic as well
as with temporal logics such as Linear Temporal Logic (LTL), [127], Computation Tree Logic
(CTL), as well as the modalµ-calculus [4].

The temporal logics that we investigate in this thesis are all fragments ofCTL. We do not
include atomic propositions and rather work with transition labels and thus slightlydeviate from
the classical definition ofCTL (which contains atomic propositions but no transition labels).
However, since we are only interested in the model checking problem here, one can easily see
that model checking formulas of classicalCTL can efficiently be reduced to model checking
our transition-labeled variant ofCTL and vice versa with appropriate adjustments of the input
transition systems.

Formulasϕ of Computation Tree Logic (CTL) are given by the following grammar, wherea
ranges overAct:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ | EϕUϕ | EϕWUϕ

We introduce the abbreviationEFϕ
def
= E true Uϕ. Formulasϕ of the logic EF are given by the

following grammar, wherea ranges overAct:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ | EFϕ

Formulas of Hennessy-Milner logic(HM) are given by the following grammar, wherea ranges
overAct:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ
Given a transition systemT = (S,A, { a−→| a ∈ A}), some states ∈ S of T and some

formula ϕ, we define(T , s) |= ϕ by induction onϕ as follows, where we recall that−→
denotes the relation

(⋃{ a−→| a ∈ A}
)∗

:

(T , s) |= true for eachs ∈ S

(T , s) |= ¬ϕ def⇔ (T , s) 6|= ϕ

(T , s) |= ϕ1 ∧ ϕ2
def⇔ (T , s) |= ϕ1 and(T , s) |= ϕ2

(T , s) |= 〈a〉ϕ def⇔ (T , s′) |= ϕ for somes′ ∈ S with s
a−→ s′

(T , s) |= Eϕ1Uϕ2
def⇔ ∃n ≥ 1, s1, . . . , sn ∈ S : s = s1 −→ s2 · · · −→ sn,

(T , sn) |= ϕ2 and∀i ∈ [1, n− 1] : (T , si) |= ϕ1

(T , s) |= Eϕ1WUϕ2
def⇔ (T , s) |= Eϕ1Uϕ2 or

∃s1, s2, . . . ∈ S, : s = s1, and∀i ≥ 1 : (T , si) |= ϕ1, si −→ si+1

13



2 Equivalence checking and model checking

For reasons of simplicity of presentation we sometimes use a variant of the logicEF in this
thesis that allows to parametrize the set of action labels in theEF operator. By this we mean
formulas of the form〈Γ∗〉ϕ for subsetsΓ of the action labels that require the transitions of the
path to the state satisfyingϕ all to be labeled by elements ofΓ. This parametrized version of
EF is slightly more general than the standard definition ofEF-logic from above with respect
to expressiveness. However, all lower bound results in thesis easily carry over to the restricted
definition ofEF logic and all upper bounds in this thesis can be proven for the parametrized
variant.

Formulas of the parametrized variant ofEF over a finite setA ⊆ Act of labels are given by
the following grammar, whereΓ ⊆ A:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈Γ〉ϕ | 〈Γ∗〉ϕ

We write 〈Γ〉n (resp. [Γ]n) as an abbreviation for a sequence ofn consecutive〈Γ〉’s (resp.
[Γ]’s). For each transition systemT = (S,A, { a−→| a ∈ A}) and each formulaϕ (overA) of
parametrizedEF we define

(T , s) |= 〈Γ〉ϕ def⇔ (T , s′) |= ϕ for somes′ ∈ S with s
Γ−→ s′ and

(T , s) |= 〈Γ∗〉ϕ def⇔ (T , s′) |= ϕ for somes′ ∈ S with s
Γ−→

∗
s′.

We define[[ϕ]]T ⊆ S to be the set of states that satisfyϕ.

Let us introduce themodel checking problem.

MODEL CHECKING FOR A LOGICL ∈ {CTL,EF,HM, . . .}
INPUT: A transition systemT = (S,A, { a−→| a ∈ A}), a states of T and anL-formula

ϕ.
QUESTION: (T , s) |= ϕ?

Following Vardi [191], we distinguish three ways of measuring the computational complexity
of the model checking problem: (i)data complexitymeasures the complexity of the model
checking problem when the formula is fixed and only the transition system is part of the input,
(ii) expression complexitymeasures the complexity relative to a fixed system, thus only the
formula is part of the input, and (iii)combined complexityassumes that both the system and the
formula is part of the input. If not said otherwise, we mean the combined complexity.
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3 Infinite-state systems

The study of infinite-state verification has revealed thatunbounded recursionsandunbounded
parallelismare two of the most important sources of infinity in computer programs. Infinite-
state models with unbounded recursions such as Basic Process Algebra (BPA), and Pushdown
Systems (PDS) have been studied for a long time (e.g. [6, 146]). The same can be said about
infinite-state models with unbounded parallelism, which include Basic Parallel Processes (BPP)
and Petri nets (PN), e.g. [45, 86]. While these aforementioned models are eitherpurely sequen-
tial or purely parallel, there are also models that simultaneously inherit both of these features.
A well-known example arePA-processes [11], which are a common generalization ofBPA and
BPP. It is known that all of these models are not Turing-powerful in the sense that decision
problems such as reachability is still decidable (e.g. see [30]), which makesthem suitable for
verification.

In his seminal paper [140], Mayr introduced the Process Rewrite Systems(PRS) hierarchy
(see leftmost diagram in Figure 3.2) containing several models of infinite-state systems that gen-
eralize the aforementioned well-known models with unbounded recursions and/or unbounded
parallelism. The idea is to treat models in the hierarchy as a form of term-rewritesystems,
and classify them according to which terms are permitted on the left and right hand side of the
rewrite rules. In addition to the aforementioned models of infinite-state systems,thePRS hier-
archy contains three new models: (1) Process Rewrite Systems (PRS), which generalizePDS,
PA-processes, and Petri nets, (2)PAD-processes, which unifyPDS andPA-processes, and (3)
PAN-processes, which unify bothPA-processes and Petri nets. Mayr showed that the hierar-
chy is strict with respect to strong bisimulation. Despite of its expressive power PRS is not
Turing-powerful since reachability is still decidable for this class.

After having defined Mayr’sPRS hierarchy below, we introduce further models of infinite-
state systems that are relevant in this thesis and integrate them into thePRS hierarchy with
respect to bisimilarity, branching bisimilarity and weak bisimilarity. The aim of this chapter is to
mention some relevant results on these classes with respect to the model checking problem and
the equivalence checking problem. Since we discuss various differentclasses of infinite-state
systems and the literature on them is large, we do not claim that our list of results is complete.
We refer to Mayr’s PhD thesis [139] for a more thorough overview of model checking classes of
infinite-state systems in thePRS hierarchy against various temporal logics.

The technical contribution of this chapter is discussed in Section 3.1, wherewe integrate
ground tree rewrite systems into Mayr’sPRS hierarchy with respect to bisimilarity, branching
bisimilarity and weak bisimilarity.

In the following, let us fix a countable set of process constants (a.k.a. process variables)
X = {A,B,C,D, . . .}. The set ofprocess termst is given by the following grammar, whereX
ranges overX :

t ::= 0 | X | t.t | t||t
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3 Infinite-state systems

Thesizesize(t) of a termt is inductively defined assize(0) = size(X) = 1 andsize(t1.t2) =
size(t1||t2) = size(t1) + size(t2) + 1. The operator ’.’ is said to besequential compositionand
assumed to be associative, while the operator‖ is referred to asparallel compositionis assumed
both associative and commutative. The smallest equivalence relation on termsthat is associative
and commutative for parallel composition and that is associative for sequential composition is
denoted by≡ in the following. Mayr [140] distinguishes the following classes of processterms:

1 Terms consisting of a single constantX ∈ X .

S Process terms without any occurrence of parallel composition.

P Process terms without any occurrence of sequential composition.

G Arbitrary process terms possibly with sequential or parallel compositions.

A process rewrite system (PRS) is a tupleP = (Σ,A,∆), where

• Σ ⊆ X is a finite set of process constants,

• A ⊆ Act is a finite set of atomic actions, and

• ∆ is a finite set of rewrite rules of the formt1 7→a t2, wheret1 andt2 are terms over the
process constants inΣ with t1 6≡ 0 anda ∈ A.

Let us discuss the underlying transition systemT (P) = (S,A, { a−→| a ∈ A}). The state set
S is defined to be the set of all equivalence classes of all terms built overΣ modulo the above-
mentioned equivalence relation≡. Moreover, for eacha ∈ A, the transition relation

a−→ is
implicity defined by the following inference rules:

t1 7→a t2 ∈ ∆

t1
a−→ t2

t1
a−→ t′1

t1||t2 a−→ t′1||t2
t1

a−→ t′1
t1.t2

a−→ t′1.t2

Other models in in thePRS hierarchy areFinite Systems(FIN), Basic Process Algebra(BPA),
Basic Parallel Processes(BPP), Pushdown Systems(PDS), Petri nets(PN), PA processes(PA),
PAD processes(PAD), andPAN processes(PAN). They can be defined by restricting the terms
that are allowed on the left hand sideℓ and on the right hand sider of the PRS rewrite rules and
are abbreviated by PRS(ℓ, r), whereℓ, r ∈ {1,S,P,G}. An important result by Mayr [140] is
that thePRS hierarchy is strict with respect to strong bisimulation .

• Finite Systems= FIN = PRS(1, 1). It is easy to see that the class of finite transition sys-
tems coincides with PRS(1, 1): there is a one-to-one correspondence between the process
constants and the states of the underlying transition system that it describesas well as a
one-to-one correspondence between the rewrite rules and the transitions in the underlying
finite system.
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Figure 3.1: Mayr’sPRS hierarchy, strictness is shown with respect to bisimulation equivalence
[140].

Model checking. The computational complexity of model checking on finite systems is
very well understood, model checkingLTL, first-order and monadic second-order logic
arePSPACE-complete, whereP-completeness holds forCTL modal logic,EF logic, and
HM [123] and reachability isNL-complete, just to mention few results.

Model checking the modalµ-calculus, which is polynomial time equivalent to determining
the winner of a parity game [59], takes a prominent exception and is undoubtedly one of
the biggest open problems in logic in computer science: The best-known upper bound is
UP ∩ co-UP [111] (see also for fast implementations [161, 112, 67]) and the best-known
lower bound isP.

Equivalence Checking.By the classical partition refinement algorithm, one can decide
bisimulation equivalence of finite systems in polynomial time [150, 113]. Hardness forP
has been shown in [7]. The same complexity bounds hold for weak bisimilarity.On the
other hand, trace equivalence on finite systems isPSPACE-complete since it is polynomial
time equivalent to the equivalence problem of finite word automata.

• Pushdown Systems= PDS = PRS(S,S). Pushdown systems can equivalently be de-
fined as the configuration graphs of pushdown automata withoutε-transitions. Speaking
in terms of Mayr’s PRS hierarchy, they make up the graphs that one obtainsfrom ap-
plying purely sequential rewriting (i.e. both on the left-hand side and right-hand side of
rewrite rules the terms are purely sequential). In recent years a lot of research has been de-
voted to verification of pushdown systems. A central reason for this interest is surely that
pushdown systems allow to abstractly mimic the call and return behavior of procedural
programs. Let us mention an equivalent way of defining pushdown systems. Alternatively
a pushdown system can be seen to be given by a tupleP = (Q,A,Γ, { a→֒| a ∈ A}),
whereQ is a finite set ofcontrol states, A ⊆ Act is a finite set of action labels,Γ is a
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3 Infinite-state systems

finite stack alphabetthat contains a distinguishedbottom-of-stack symbol⊥, and where
finally for eacha ∈ A we have that

a→֒ is a set of rewrite rules of the formpX
a→֒ qw,

wherep, q ∈ Q andX ∈ Γ, w ∈ Γ∗ satisfyingX = ⊥ impliesw ∈ Γ∗⊥ andX 6= ⊥
impliesw ∈ Γ∗. The transition systemT (P) is defined as(S,A, { a−→| a ∈ A}), where

S = Q(Γ \ {⊥})∗⊥ and where each rule of the kindp⊥ a→֒ qw induces the transition

p⊥ a−→ qw and each rulepX
q→֒ w with X 6= ⊥ induces the transitionspXz

a−→ qwz
for eachz ∈ (Γ \ {⊥})∗⊥.

In this thesis we prefer to use the latter notion, in particular when defining one-counter
systems below.

Model Checking. By the use of automata-theoretic constructions it is shown that for each
regular set of configurations the set of reachable configurations (resp. the set of configura-
tions that can reach this set) is effectively regular again and computable in polynomial time
[29, 18]. In [18] it has been shown that such effective automata-theoretic constructions
can be used to show that model checking pushdown systems with respect tovarious logics
such as the alternation-freeµ-calculus orLTL is decidable and moreover yield exact com-
plexity bounds, we also refer to [118]. Rabin’s theorem states that the monadic-second
order (MSO) theory of the infinite binary tree is decidable. Since the each pushdown sys-
tem isMSO-interpretable in the infinite binary tree it follows thatMSO model checking
for pushdown systems is decidable, however with nonelementary complexity [180]. Two
further milestone results in this area were proven by Walukiwicz on the one hand, who
proved that model checking theµ-calculus is in fact elementary andEXP-complete [197],
and by Kupferman and Vardi, on the other hand, who have used the automata-theoretic
approach to obtain thisEXP upper bound [120]. The same complexity already holds for
the fragmentCTL of the modalµ-calculus [196], whereas model checking its fragmentEF

is PSPACE-complete [18, 196];PSPACE-hardness already holds forHM [139]. Model
checkingLTL on pushdown graphs is complete forEXP [18]. Model checkingCTL∗ on
pushdown systems has been shown2EXP-complete in [23]. Finally, model checkingPDL
on pushdown systems has been studied systematically [72], where it has also been proven
that model checkingPDL with intersection and converse is2EXP-complete.

Equivalence Checking. A folklore result is that language equivalence (in fact already
universality) of pushdown automata is undecidable. However, a celebrated result due to
Sénizergues states that language equivalence of deterministic pushdown automata (even
with ε-transitions) is decidable [165]. Later Stirling proved that the problem is in fact
primitive recursive [178]. Śenizergues later proved that bisimulation equivalence of push-
down systems (where possiblyε-transitions occur but only in a deterministic popping
fashion) is decidable [167]. In fact, in [167] it is even shown that decidability still holds
for equational graphs of finite out-degree. Unfortunately, to date thereis no complexity-
theoretic upper bound known for this problem. If one allowsε-transitions, thenweak
bisimilarity between is undecidable already for one-counter systems, i.e. the configura-
tion graphs of pushdown automata over a singleton stack alphabet, by [142].

In Section 8.2 we discuss a nonelementary lower bound for bisimilarity on pushdown
systems – it improves the previously best knownEXP lower bound by Kǔcera and Mayr
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for this problem [121].

• Basic Process Algebras= BPA = PRS(1,S). The transition graphs defined by Basic Pro-
cess Algebras can equivalently be viewed as the transition graph of pushdown automata,
where the set of control states is a singleton. It is well-known that with respect to trace
equivalenceBPA andPDS are equivalent. More precisely, for each pushdown systemP
and configurationc of P there exists aBPA P ′ along with a configurationc′ of P ′ such
thatc andc′ are trace equivalent.

Model Checking. Since the infinite binary tree can still be described by aBPA theMSO

of BPA’s is generally not elementary. The computational complexity of model checking
the modalµ-calculus,CTL, EF, LTL or the linear-timeµ-calculus onBPA coincides with
the respective complexity on pushdown systems, ranging betweenPSPACE-completeness
andEXP-completeness. However, in stark contrast to model checking pushdownsystems,
the data complexity all of the latter problems is known to be solvable in polynomial time,
cf. [139].

Equivalence Checking.SinceBPA are trace equivalent toPDS trace equivalence is un-
decidable. Burkart, Caucal and Steffen proved that bisimilarity ofBPA is decidable in
doubly exponential time [31]. Recently Jančar presented a simplified proof of the2EXP
upper bound [102]. Also the lower bound has recently been lifted fromPSPACE to EXP

by Kiefer [114]. Thus, there is still an exponential complexity gap for this problem. How-
ever, when normed basic processes algebras are considered bisimilaritycan be solved in
polynomial time [53]. For weak bisimilarity ofBPA the situation is less clear: the prob-
lem is not known to be decidable. Branching bisimilarity of normed basic process algebras
has recently been announced as decidable by [68], see whereas a more restricted variant
of normedness has been proven to be decidable inΣp2 by Caucal, Huynh and Tran [42].

• Petri Nets= PN = PRS(P,P). Petri netsor Vector Addition Systemsare a well-studied
infite-state model for modeling concurrency. As presented in Mayr’s framework push-
down systems are obtained from purely sequential rewriting, whereas Petri nets make up
the purely parallel counter part.

Model Checking. A classical result by Kosarju [117] and Mayr [136] states that reach-
ability of Petri nets is decidable. Only recently a significantly simplified proof has been
presented by Leroux [125]. This problem is of particular interest not only because its
complexity is far from being well understood; the best-known upper boundthat one can
derive from the above-mentioned papers is a non-primitive recursive upper one, whereas
anEXPSPACE lower bound already prevails since over thirty years [37]. Further classical
problems on Petri nets include the coverability problem, the boundedness problem and the
language regularity problem, which all have been shown to be decidable inEXPSPACE

[58, 157].

Already model checking ofCTL’s fragmentEF is undecidable over Petri nets but at least
as hard as the reachability problem [60, 61]. However, model checkingLTL and the linear-
timeµ-calculus [60, 85] is decidable.

Equivalence Checking.Trace equivalence of Petri nets has been shown undecidable by
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3 Infinite-state systems

Hirshfeld; the lower bound already holds forBPP [92]. Undecidability of bisimilarity
of Petri nets has been established by Jančar [99]. However decidability is known for
the problem of deciding if a given Petri net is bisimilar to a finite system or to decide
of a given Petri net is bisimilar to some finite system [105]. Model checking first-order
fragments on the reachability graphs of Petri nets has recently been studied [55]. Finally,
model checking the coverability graph of Petri nets againstCTL variants has recently been
investigated [13].

• Basic Parallel Processes= BPP = PRS(1,P). Basic Parallel Processes are also known
as communication-free Petri nets, i.e. Petri nets, where each transition consumes exactly
one token. This class has been introduced in [45].

Model Checking. Reachability forBPP has been provenNP-complete by Esparza [61].
Decidability of model checkingLTL carries over from Petri nets. It is shown in [139] that
model checkingLTL overBPP is at least as hard as reachability for Petri nets. Recall
that model checkingEF is undecidable for Petri nets. Mayr showed that model checking
EF onBPP is in factPSPACE-complete [137]. However, already model checkingCTL’s
fragmentEG (a formulaEGϕ holds in a states if from s there exists an infinite path whose
states all satisfyϕ) is undecidable onBPP as shown by Esparza and Kiehn [62].

Equivalence Checking.Jaňcar proved that bisimilarity of Petri nets is undecidable. He
showed a couple of years later that bisimilarity ofBPP is in fact decidable and inPSPACE
[101] matching thePSPACE lower bound proven by Srba [172]. Thus,BPA concists one
of few classes of infinite-state systems, where bisimilarity is known to be both decidable
and its precise complexity known. Recent progress has been provided by Czerwinski,
Hofman and Lasota who proved that branching bisimilarity between normed basic parallel
processes is decidable [52]. To date, it is a major open problem whether weak bisimilarity
of basic parallel processes is decidable, we refer to [96] for a recent devolopment.

• PA processes= PA = PRS(1,G) and PAD processes= PAD = PRS(S,G). PAD pro-
cesses can be used to model systems that behave nondeterminstically, concurrently (with-
out communication) and have the possibility to call subroutines whose return value can be
taken into account. PA processes can be seen as the join ofBPA andBPP: the left-hand
side of any rewrite rule may only consist of one symbol whereas the right-hand side my
be any term: Thus, they do not posses any means of passing information ofconcurrently
running processes nor can they take the return value of subroutines intoaccount.

Model Checking. Bouajjani and Habermehl proved that model checkingLTL over PA
processes is undecidable [19]. Undecidability ofCTL is inherited from the undecidabil-
ity of BPP. Lugiez and Schnoebelen proved that model checking first-order logicwith
reachability is decidable overPA [130]. Model checkingEF on PAD was shown to be
decidable by Mayr [138]. The upper proof [138] provides a sophisticated procedure run-
ning nonelementary in the input formula. It is left as an open problem whether this huge
complexity is inherent.

In this thesis we contribute to model checkingPAD in two ways. Firstly, we state that
given a PAD process one can effectively construct a ground tree rewrite system (to be
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3.1 Ground tree rewrite systems and its integration into Mayr’s PRS hierarchy

defined below) that is branching bisimilar (a notion of equivalence that lies between
bisimilarity and weak bisimilarity) to it. By employing well-known algorithms for model
checkingEF on ground tree rewrite systems [128], we obtain an alternative proof forthe
decidability of model checkingEF on PAD. Secondly, we answer the above-mentioned
complexity question affirmatively: We prove a nonelementary lower bound already for
model checking two concurrent basic process algebras in Chapter 7.

Equivalence Checking. Hirshfeld and Jerrum showed that bisimilarity of normed PA
processes is decidable in nondeterministic doubly exponential time [93]. To date it is
unknown whether bisimilarity of general PA processes is decidable. Yet, weak bisimilarity
of PA processes is highly undecidable [173, 110].

• PRS-processes= PRS = PRS(G,G) andPAN processes= PAN = PRS(P,G). The most
general variantPRS are systems obtained by ground term rewriting without any restric-
tions of the terms on the left-hand side or right-hand side of the rules.PAN processes
restrict the left-hand side of any rule to consist of parallel terms only. We summarize
these two systems since the decidability/complexity status both for model checkingand
for equivalence checking is the same for the two models.

Model Checking. Mayr proved that reachability is decidable onPRS and even deciding
if a PRS process can reach another process [139] that can execute acertain (definable) set
of transitions. It is not hard to see that model checkingHM is decidable onPRS since the
out-degree of everyPRS process is finite. On the other hand, undecidability already holds
for model checkingLTL andEF for PAN [139].

Equivalence Checking.Trace equivalence, bisimilarity and thus weak bisimilarity are all
undecidable onPRS – undecidability for all these problems is inherited from Petri nets.

3.1 Ground tree rewrite systems and its integration into
Mayr’s PRS hierarchy

Before thePRS hierarchy was introduced, another class of infinite-state systems called Ground
Tree/Term Rewrite Systems (GTRS) already emerged in the term rewriting community as a class
with good decidability properties. Recall that pushdown systems can be seen as systems whose
nodes are essentially finite words and whose transitions are given by a finite set of word rewriting
rules that are applied in a prefix-rewriting fashion. Ground tree rewrite systems rewrite systems
can be seen as the generalization of the latter to rewriting finite ranked trees.

Model Checking. While extending the expressive power ofPDS,GTRS still enjoys decidability
of reachability (e.g. [25, 50]), recurrent reachability [128], model checking first-order logic
with reachability [56, 48], and model checking the fragmentsLTLdet andLTL(Fs,Gs) of LTL
[185, 184]. Due to the tree structures thatGTRS use in their rewrite rules,GTRS can be used
to model concurrent systems with both unbounded parallelism (a new threadmay be spawned
at any given time) and unbounded recursions (each thread may behaveas a pushdown system).
When comparing the definitions ofPRS (and subclasses thereof) andGTRS, one cannot help
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3 Infinite-state systems

but notice their similarity. Moreover, there is a striking similarity between the problems that
are decidable (and undecidable) over subclasses ofPRS like PA/PAD processes andGTRS.
For example, reachability,EF model checking, andLTL(Fs,Gs) andLTLdet model checking are
decidable for both PAD-processes andGTRS [24, 128, 140, 141, 184, 185]. Furthermore, model
checking generalLTL properties is undecidable for bothPA-processes andGTRS [24, 185].

In Section 9 we concern ourselves with model checking (regular) ground tree rewrite systems
against specification in the logicEF and prove that already model checkingEF formulas with at
most two nesting of theEF operator are hard to model check onGTRS: the problem is nonele-
mentary. We provide aPNEXP-completeness result for model checkingEF formulas with at most
one nesting of theEF operator.

Equivalence Checking.Undecidability of trace equivalence and of weak bisimilarity on ground
tree rewrite systems is inherited from pushdown systems [110]. It is an interesting open problem
whether bisimilarity ofGTRS is decidable. In Chapter 9 we provide acoNEXP upper bound of
deciding bisimilarity between a ground tree rewrite system and a finite system. Moreover, we
show that deciding if a given regular ground tree rewrite is bisimilar to a given finite transition
system is nonelementary.

Despite the above-mentioned similarities betweenPA/PAD andGTRS, the precise connec-
tion between thePRS hierarchy andGTRS has not been investigated until recently. A particular
technical difference between the classesPA/PAD andGTRS is that the states of the underlying
transition system forPA/PAD is defined modulo the equivalence≡ on terms, whereas the states
of aGTRS are indeed finite ranked trees themselves (and not the equivalence classes on them).

For the rest of this section we discuss a joint work [78] with Anthony Widjaja Lin, which
has appeared as a conference paper in [75]. We extend Mayr’sPRS hierarchy by integrating
Ground Tree Rewrite Systems. We pinpoint the precise connection betweenthe expressive pow-
ers ofGTRS and models inside thePRS hierarchy with respect to strong, branching, and weak
bisimulation equivalence.

The results are summarized in the middle and right diagrams in Figure 3.2.

Our investigation is inspired by the work of Lugiez and Schnoebelen [131] and Bouajjani and
Touili [21], which studyPRS (or subclasses thereof) by first distinguishing process terms that
are “equivalent” in Mayr’s sense [140]. This approach allows them to make use of techniques
from classical theory of tree automata for solving interesting problems overPRS (or subclasses
thereof). Our translation fromPAD to GTRS is similar in spirit. We also show that Regular
Ground Tree Rewrite Systems (RGTRS) [128] — the extension ofGTRS with possibly infinitely
manyGTRS rules compactly represented as tree automata — have the same expressive power as
GTRS up to branching/weak bisimulation. Along the same ideas that are used in the latterproof
one can show thatPDS is equivalent to prefix-recognizable systems , abbreviated asPREF,
(cf. see [30]) up to branching/weak bisimulation. On the other hand, whenwe investigate the
expressive power ofGTRS with respect to strong bisimulation, we found thatPAD (evenPA) is
no longer subsumed inGTRS. Despite this, we can show that up to strong bisimulationGTRS

is strictly more expressive thanBPP andPDS, and is strictly subsumed inPRS. Finally, we
mention that our results imply that Mayr’sPRS hierarchy is also strict with respect to weak
bisimulation equivalence.
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3.1 Ground tree rewrite systems and its integration into Mayr’s PRS hierarchy

Mayr’s originalPRS hierarchy
w.r.t. strong bisimulation∼

PRS

PANPAD

PDS

PA

PN

BPA BPP

FIN

Our refinement withGTRS
w.r.t. strong bisimulation∼

PRS

PANGTRS PAD

PDS

PA
PN

BPA BPP

FIN

Our refinement withGTRS
w.r.t. branching bisimulation≃
and weak bisimulation≈

PRS

PANGTRS/RGTRS

PAD

PDS/PREF PA PN

BPA BPP

FIN

Figure 3.2: Depictions of Mayr’sPRS hierarchy and their refinements viaGTRS as Hasse di-
agrams (the top being the most expressive). The leftmost diagram is the origi-
nal (strict)PRS hierarchy where expressiveness is measured with respect to strong
bisimulation. The middle (resp. right) diagram is a strict refinement viaGTRS with
respect to strong (resp. weak/branching) bisimulation.

There are other models of multithreaded programs with unbounded recursions that have been
studied in the literature. Specifically, we mention Dynamic Pushdown Networks (DPN) and
extensions thereof (e.g. see [20]) since an extension ofDPN given in [20] also extends PAD-
processes. We leave it for future work to study the precise connectionsbetween these models
andGTRS.

Let us formally introduce regular ground tree rewrite systems (RGTRS), ground tree rewrite
systems (GTRS) and prefix-recognizable systems (PREF).

Let us first define ranked trees. Let� denote the prefix order onN∗, i.e. x � y for x, y ∈ N∗

if there is somez ∈ N∗ such thaty = xz, andx ≺ y if x � y andx 6= y. A ranked
alphabetis a collection of finite and pairwise disjoint alphabetsΣ = (Σi)i∈[0,k] for somek ≥ 0.
For simplicity we identifyΣ with

⋃
i∈[0,k]Σi. A ranked tree(over the ranked alphabetΣ) is a

mappingT : DT → Σ, whereDT ⊆ [1, k]∗ satisfies the following:DT is non-empty, finite and
prefix-closed and for eachx ∈ DT with T (x) ∈ Σi we havex1, . . . , xi ∈ DT andxj 6∈ DT for
eachj > i. We say thatDT is thedomainof T — we call these elementsnodes. A leaf is a node
x with T (x) ∈ Σ0. We also refer toε ∈ DT as theroot of T . By TreesΣ we denote the set of all
ranked trees over the ranked alphabetΣ. We also use the usual term representation of trees, e.g.
if T is a tree with roota and left (resp. right) subtreeT1 (resp.T2) we haveT = a(T1, T2).

Let T be a ranked tree and letx be a node ofT . We definexDT = {xy ∈ [1, k]∗ | y ∈ DT }
andx−1DT = {y ∈ [1, k]∗ | xy ∈ DT }. By T ↓x we denote thesubtree ofT with root x, i.e.
the tree with domainDT ↓x = x−1DT defined asT ↓x(y) = T (xy). Let T, T ′ ∈ TreesΣ and let
x be a node ofT . We defineT [x/T ′] to be the tree that is obtained by replacingT ↓x in T by T ′;
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3 Infinite-state systems

more formallyDT [x/T ′] = (DT \ xDT ↓x)∪ xDT ′ with T [x/T ′](y) = T (y) if y ∈ DT \ xDT ↓x

andT [x/T ′](y) = T ′(z) if y = xz with z ∈ DT ′ . Define|T | = |DT | as the number of nodes in
a treeT .

A regular ground tree rewrite system(RGTRS) is a tupleR = (Σ,A, R), whereΣ is a ranked

alphabet,A ⊆ Act is a finite set of action labels and whereR is finite set of rewrite rulesL
a→֒ L′,

whereL andL′ are regular tree languages given as nondeterministic bottom-up tree automata
(cf. [49] for more details). The transition system defined byR is T (R) = (TreesΣ,A, { a−→|
a ∈ A}), where for eacha ∈ A, we haveT

a−→ T ′ if and only if there is somex ∈ DT and

some ruleL
a→֒ L′ ∈ R such thatT ↓x ∈ L andT ′ = T [x/T ′′] for someT ′′ ∈ L′ (we say that

the rule was applied at nodex).
A ground tree rewrite system(GTRS) is anRGTRS R = (Σ,A, R), where for eachL

a→֒
L′ ∈ R we have that bothL = {T} andL′ = {T ′} is a singleton; we also writeT

a→֒ T ′ ∈ R
for this.

A prefix-recognizable system(PREF) is anRGTRS R = (Σ,A, R), where onlyΣ0 andΣ1

may be non-empty. We note that analogously pushdown systems are precisely thoseGTRS
R = (Σ,A, R), where onlyA0 andA1 may be non-empty.

While it follows from known results that there is a Petri net that is not trace equivalent to any
GTRS our first main result states that the expressive power ofGTRS with respect to branching
and weak bisimulation is strictly abovePAD.

Theorem 3.1 ([78]) Given a states of somePAD P one can compute in polynomial time a
GTRS R and a tree (state)T of T (R) such thats ≃ T . ✷

This result allows us to transfer some decidability/complexity results of model checking prob-
lems overGTRS to PA andPAD processes. In particular, it gives a simple proof of the decid-
ability of the problem of model checking the logicEF overPAD [141], and decidability (with
better complexity upper bounds that we will not state explicitly here) of the problem of model
checking the fragmentsLTLdet andLTL(Fs,Gs) of LTL overPAD (this decidability result was
initially given in [24] without upper bounds). Since in [56] it has been shown that model check-
ing first-order logic with reachability is decidable overGTRS, we obtain as a corollary that
model checking the logicsEF, andLTL’s fragmentsLTLdet andLTL(Fs,Gs) (see [185, 184] for
further details) are all decidable overPAD.

Corollary 3.2 ([78]) Model checking any of the logicsEF, LTLdet andLTL(Fs,Gs) is decidable
overPAD. ✷

Since everyGTRS is of course anRGTRS and everyPDS is of course aPREF, the below-
stated Theorem 3.3 allows us to deduce thatRGTRS andGTRS are equivalent up to branching
bisimulation and the same holds forPREF andPDS. Although the proof of Theorem 3.3 is not
very complicated, the reason why this could be of interest is for instance that previously both
bisimilarity of regular ground tree rewrite systems against finite systems and weak bisimilarity
of ground tree rewrite systems against finite systems have been studied [76] separately. Simi-
lar remarks apply to bisimilarity of prefix-recognizable systems and weak bisimilarity between
pushdown systems [110]. Theorem 3.3 states that both equivalence checking problems are in
fact equivalent up to polynomial time reductions.
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3.2 One-counter systems

Theorem 3.3 ([78]) The following containments hold:

1. Given a stateT of some givenRGTRS one can construct in polynomial time some state
T ′ of someGTRS P such thatT ≃ T ′.

2. Given a stateT of some givenPREF one can construct in polynomial time some stateT ′

of somePDS P ′ such thatT ≃ T ′.

3. Given a states of some givenBPP one can construct in polynomial time some stateT of
GTRS P such thatT ∼ s. ✷

We have obtained the following separation results, whose proofs make useof established
automata-theoretic techniques in a sophisticated way. We do not discuss the proof ideas here.

Theorem 3.4 ([78]) The following strictness results hold:

1. There exists a states of aPA such that no state of anyGTRS is bisimilar tos.

2. There exists a states of aGTRS such that no state of anyPAD is weakly bisimilar tos.

3. There exists states of aPDS such that no state of anyPAN is weakly bisimilar tos. ✷

3.2 One-counter systems

A one-counter systemis a configuration graph of a pushdown automatonP = (Q,A,Γ, { a→֒|
a ∈ A}) that satisfiesΓ = {A,⊥} for some symbolA: thus apart from the bottom-of-stack
symbol⊥ there is exactly one further stack symbolA. It is more convenient to abbreviate
states (configurations)(q, An⊥) in T (P) by q(n). Too, it is more convenient to write a one-
counter system as a tupleP = (Q,A, δ0, δ>0), whereδ0 ⊆ Q × A × {0,+1} × Q and where
δ>0 ⊆ Q×A×{−1, 0,+1}×Q with the obvious meaning; e.g. an element(q, a,−1, q′) ∈ δ>0

would allow, in case the current counter is positive, to change fromq to q′ on reading the lettera
and hereby decreasing the counter by one. Hence, one-counter systems can be seen as one of the
simplest means to model infinite-state systems – they can be seen to consist of a special finite
transition system corresponding to counter value0 that is connected toω copies of some finite
transition system corresponding to the positive counter values. It is folklore how one-counter
systems integrate to Mayr’s PRS hierarchy with respect to bisimilarity and branching and weak
bisimilarity, cf. Figure 3.3.

Let us briefly discuss the extensions of succinct and parametric one-counter systems without
providing rigorous definitions.Succinct one-counter systemsare one-counter systems in which
the increments and decrements that appear in the rewrite rules are specifiedby numbersgiven
in binary. Parametric one-counter systems“generalize” the latter by allowing in the rewrite rule
to increment the counter by the value of a variable (ranging over a set of variablesX) that can
be instantiated by any integer. For parametric one-counter systems it remainsto discuss how
the model checking problem is defined. Given a parametric one-counter automatonP and a
configurationq(n), we write (T (P), q(n)) |= ϕ if for everyassignmentα : X → Z of the
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3 Infinite-state systems

parameters that occur on transitions ofP we have that the succinct one-counter systemTα that
is induced byα satisfies(Tα, q(n)) |= ϕ. Analogously, the reachability problem in a given
parametric one-counter system asks whether reachability holds insomesuccinct one-counter
system that one obtains in some way by evaluating the parameters.

Model Checking. A folklore result states that reachability of one-counter systems isNL-
complete. The reachability problem for succinct and parametric one-counter systems has re-
cently shown to beNP-complete [83]. It is also easy to see that model checkingHM on one-
counter systems isP-complete. While model checking first-order logic with reachability is
nonelementary already over the complete binary tree (which is in fact aBPA but not aOCS), To
recently proved that its complexity drops toPSPACE when model checking (even asynchronous
products of) one-counter systems [182]. To’s proof is inspired by anupper bound technique that
we have developed for model checkingEF on one-counter systems (Chapter 6).

Serre proved that the computational complexity of model checking the modalµ-calculus on
OCS is in PSPACE [169] and thus simpler than onPDS (unlessPSPACE = EXP), where it
is alreadyEXP-complete forCTL [119, 196, 198], as mentioned above. Since the emptiness
of alternating finite word automaton over a unary alphabet [98] can easily be expressed by a
µ-calculus formula, a matchingPSPACE lower bound for model checking the modalµ-calculus
onOCS follows, in fact already for a fixed formula.

In Section 5 we analyze the computational complexity of model checkingCTL. We prove that
model checkingCTL on any fixed one-counter system can be done in polynomial time provided
the inputCTL formula has only constantly many leftward nestings of the until operator (a notion
that we make more precise in Chapter 5). Concerning lower bounds, we show that both the
expression complexity and the data complexity of model checkingCTL on OCS is PSPACE-
hard. In particular for hardness of the data complexity we develop new lower bound techniques
inspired from two deep results in complexity theory. Too, we discucss that for succinct one-
counter systems the data complexity of model checkingCTL is EXPSPACE-complete.

The computational complexity of model checkingEF onOCS has been shown to beDP-hard
[108], whereDP consists of all languages that are the intersection of a language inNP and a
language incoNP. This lower bound has slightly been improved toPNP

|| -hardness [72], where

PNP
|| is the set of all problems that can be solved by a deterministic polynomial time bounded

Turing machine that hasparallel access to an oracle fromNP or equivalently by a deterministic
polynomial time bounded Turing machine that has access to an oracle fromNP but queries
the oracle only logarithmically many times [194, 171], see also [162] for a finer analysis. In
Chapter 5 we provide aPNP lower bound for this problem, by making use of our lower bound
technique. A matchingPNP upper bound for model checkingEF on one-counter systems is
content of Chapter 6. We obtain as a corollary that it isPNP-complete to decide whether a given
one-counter system is weakly bisimilar to a given finite transition system.

The complexity of model checking succinct one-counter systems is provenPSPACE-complete
for the logicsEF andHM in Chapter 6. We show that even model checkingHM on parametric
one-counter systems isPSPACE-complete, whereas it becomes undecidable for model checking
EF.

Equivalence Checking.It is a folklore result that trace equivalence of one-counter systems is

26



3.2 One-counter systems

w.r.t. strong bisimulation∼

PRS

PANGTRS PAD

PDS

OCS

PA
PN

BPA BPP

FIN

w.r.t. branching bisimulation≃
and weak bisimulation≈

PRS

PANGTRS/RGTRS

PAD

PDS/PREF PA PN

OCS BPA BPP

FIN

Figure 3.3: Refinement of Mayr’sPRS hierarchy withGTRS andOCS as Hasse diagrams (the
top being the most expressive).

undecidable. Decidability of bisimilarity ofOCS follows from its decidability forPDS [167].
However, Jaňcar independently proved decidability of bisimilarity onOCS [100], however the
proof from [100] only allowed to prove an elementary upper bound: in fact Yen [200] analyzed
Jaňcar’s algorithm and proved that it runs in triply exponential space. The previously best known
lower bound was firstDP [108] but then lifted toPSPACE-hardness by Srba [175]. We discuss
in Chapter 4 our result that bisimilarity ofOCS is in factPSPACE-complete. We also prove that
one can decide in polynomial time whether for a given one-counter system there exists some
finite system that is bisimilar to it. Mayr proved that weak bisimilarity on one-counter systems
is undecidable [142]. It is not hard to see that the question whether a given one-counter system
can be simulated by another one is also undecidable. However, when they both cannot test for
zero, then the latter problem becomes decidable [1, 109]. In fact, very recently it has been shown
that even weak similarity for one-counter systems without zero-test is decidable [95], which is
surprising since weak bisimilarity is undecidable for them [142].

Trace equivalence of deterministic one-counter automata (which are deterministic pushdown
automata over a singleton stack alphabet plus a bottom-of-stack symbol and possibly containing
ε-transitions) has been proven decidable by Valiant and Paterson [186]many years before the
decidability for deterministic pushdown automata has been proven by Sénizergues [164]. The
running time of the algorithm in [186] is2O(

√
n logn). By a simple analysis of their proof, a

PSPACE upper bound can be derived for this problem. It follows immediately from digraph
reachability that this problem isNL-hard. Thus, there has been still an exponential complexity
gap betweenNL andPSPACE for trace equivalence of deterministic one-counter automata. We
close this exponential complexity gap in Chapter 4 and provide anNL-completeness result for
this problem.
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3.3 Higher-Order Pushdown Systems

Higher-order pushdown automatageneralize usual pushdown automata by allowing the stack
to contain other stacks instead of only single symbols. They were introducedby Maslov [134]
and independently by Damm and Goerdt [54]. These devices are closelyrelated to recursion
schemes, which are essentially simply typedλY terms that generate a single infinite tree. In fact,
higher-order pushdown automata generate the same class of trees assafehigher-order recursion
schemes [115]. Enjoying decidableµ-calculus theories, the class of trees generated by recursion
schemes shows a lot of promise as a model for verifying higher-order functional programs [116,
148]. In the last couple years a lot of research has been devoted to verification of recursion
schemes, which are in fact are strictly more expressive than safe ones [154, 152].Collapsible
pushdown automataextend higher-order pushdown automata by allowing “links” to the stack
and are equi-expressive to the simply typedλY terms with respect to the trees they generate
[87]. In this thesis we only concern ourselves with the systems generated by (non-collapsible)
higher-order pushdown automata.

Before we define them we need to inductively define the set ofk-stacks, for eachk ≥ 1, over
some finite stack alphabetΓ with [, ] 6∈ Γ and where⊥ 6∈ Γ is a specialbottom-of-stack symbol:

• A 1-stackis an element ofΓ∗⊥.

• A (k + 1)-stackis a finite sequence[α1][α2] · · · [αn], wheren ≥ 1 andαi is ak-stack for
eachi ∈ [1, n].

Let us denote byStacksk(Γ) the set of allk-stacksover Γ. The empty orderk-stack⊥k is

inductively defined as⊥1
def
= ⊥ and⊥k+1

def
= [⊥k] for eachk ≥ 1.

Over each1-stackα we define the (partial) operationswapw for eachw ∈ Γ∗ ∪ Γ∗⊥ as

swapw(α)
def
=





wa2 · · · an⊥ if w ∈ Γ∗, α = a1 · · · an⊥ ∈ Γn⊥, n ≥ 1

w if w ∈ Γ∗⊥ andα = ⊥, and

undefined otherwise

and

top1(α)
def
=

{
a1 if α = a1 · · · an⊥ ∈ Γn⊥, n ≥ 1 and

⊥ otherwise.

Let us define the partial operationpop1(α)
def
= swapε(α) and for eachk-stackα = [α1][α2] · · · [αn]
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with k ≥ 2 let us define:

swapw(α)
def
= [swapw(α1)][α2] · · · [αn]

pushk(α)
def
= [α1][α1][α2] · · · [αn]

pushℓ(α)
def
= [pushℓ(α1)][α2] · · · [αn] for each2 ≤ ℓ < k

popk(α)
def
=

{
[α2] · · · [αn] if n ≥ 2

undefined otherwise

popℓ(α)
def
= [popℓ(α1)][α2] · · · [αn] for each2 ≤ ℓ < k

topk(α)
def
= α1

topℓ(α)
def
= topℓ(α1) for each1 ≤ ℓ < k

Let Opk
def
= {swapw | w ∈ Γ∗ ∪ Γ∗⊥} ∪ {popℓ | ℓ ∈ [1, k]} ∪ {pushℓ | ℓ ∈ [2, k]} denote the

set ofk-operations. Noteα ∈ Stacksk(Γ) andop ∈ Opk impliesop(α) ∈ Stacksk(Γ) if op(α)
is defined.

For eachk ≥ 1, anorder-k pushdown system (k-PDS) is given by a tupleP = (Q,A,Γ,∆),
where

• Q is a finite set ofcontrol states,

• A ⊆ Act is a finite set ofatomic actions,

• Γ is a finitestack alphabet, and where

• ∆ ⊆ Q × (Γ ∪ {⊥}) × A × Q × Opk is a finite set ofstack rewrite rules, where each
(q, x, a, q, op) ∈ ∆ satisfies

(i) x = ⊥ andop = swapw impliesw ∈ Γ∗⊥ and

(ii) x ∈ Γ andop = swapw impliesw ∈ Γ∗.

We abbreviate(q, x, a, q′, op) ∈ ∆ by qx
a→֒P q′op.

The transition system ofP is T (P)
def
= (Q× Stacksk(Γ),A, { a−→| a ∈ A}), whereq(α)

a−→
q′(α′) if there isqx

a→֒P q′op in ∆ such thattop1(α) = x andα′ = op(α) for eachq, q′ ∈ Q,
eacha ∈ A and eachα, α′ ∈ Stacksk(Γ).

Thus, states ofT (P) are elements ofQ × Stacksk(Γ) that we also denote asconfigurations
ofP. We call a configurationq0(α0) of P normedif there exists some control stateqf ∈ Q with
qf (⊥k) 6 a−→ (emits noa-transition) for eacha ∈ A, and such that every configurationq(α) with
q0(α0) −→∗ q(α) we haveq(α) −→∗ qf (⊥k).

We refer to Figure 3.4 for integrating higher-order pushdown systems intoMayr’s PRS hier-
archy.

Model Checking. Reachability on order-k pushdown systems is complete for(k−1)-EXP [28].
It is worth mentioning that the transition graphs of higher-order pushdownsystems have finite
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3 Infinite-state systems

w.r.t. strong bisimulation∼

PRS

PANGTRS PAD

PDS

⋃

k

k-PDS

OCS

PA
PN

BPA BPP

FIN

w.r.t. branching bisimulation≃
and weak bisimulation≈

PRS

PANGTRS/RGTRS

PAD

PDS/PREF PA PN

⋃

k

k-PDS

OCS BPA BPP

FIN

Figure 3.4: Refinement of Mayr’sPRS hierarchy withGTRS, OCS and
⋃
kk-PDS as Hasse

diagrams (the top being the most expressive).

out-degree and decidable monadic second-order theories [32, 36]. We refer to [89, 34, 88] for
various results on reachability and model checkingLTL, CTL, EF and the modalµ-calculus on
higher-order pushdown systems, lying between(k − 1)-EXP andk-EXP.

Equivalence Checking.Undecidability of trace equivalence of higher-order pushdown systems
is inherited from pushdown systems. Deciding equivalence of deterministic order-k pushdown
automata is an interesting open problem, although some progress has been made on this by
Stirling [179] on second-order simple grammars. We discuss undecidability of bisimulation
equivalence of order-two pushdown systems in Section 8.1.
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4 Equivalence checking of one-counter
systems

In this chapter we determine the exact computational complexity of checking bisimilarity of
one-counter systems and deterministic one-counter systems. Our main resultsin this chapter are
that bisimilarity of (real-time) one-counter systems isPSPACE-complete and of deterministic
one-counter systems isNL-complete both for real-time and even in the presence ofε-transitions.
We also prove exact complexity bounds for regularity of general and deterministic one-counter
systems, i.e. the question whether there exists a finite system that is bisimilar to the input system:
we show that for general one-counter systems the problem isP-complete, whereas it isNL-
complete for the deterministic case.

Mayr proved that weak bisimilarity of one-counter systems is undecidable [142]. Bisimilarity
of one-counter systems has been proven decidable by Jančar [100]; the algorithm from [100]
was analyzed to run in triply exponential space by Yen [200]. APSPACE lower bound for this
problem has been proven by Srba [175]. OurNL complexity results on equivalence of deter-
ministic one-counter systems improve the previously best-known superpolynomial time upper
bound by Valiant and Paterson [186] from 1975 that holds even in the presence ofε-transitions.
For deterministic one-counter systems, the presence ofε-transitions makes the problem more
complicated and indeed the proof technique drastically deviates from the real-time case that we
discuss here in more detail.

From Section 4.1 to Section 4.7 we concern ourselves with the real-time case: we discuss in
detail aPSPACE upper bound for bisimilarity of one-counter systems and anNL upper bound
for deterministic one-counter systems. Finally we discuss in Section 4.7. the overall proof
strategy forNL-completeness of equivalence deterministic one-counter automata (with possible
ε-transitions) and point out the additional intricacy in comparison to the real-timecase.

Bibliographic notes. The results on real-time one-counter systems have been published in the
conference papers [15] (CONCUR 2010) in joint work with Stanislav Böhm and Petr Jančar and
[14] (MFCS 2011) in joint work with Stanislav B̈ohm (which been merged in a journal paper
[16] (Journal of Computer and System Sciences, 2013) and the resulton general deterministic
one-counter systems have appeared in the conference paper [17] (STOC 2013) in joint work
with Stanislav B̈ohm and Petr Jančar.

4.1 A few notations and the main results

Let us introduce a few notations. Let us fix a transition systemT = (S,A, { a−→| a ∈ A}). For
a subsetU ⊆ S, by writing s

w−→ U we mean thats
w−→ u for someu ∈ U ; similarly s −→∗ U

means thats −→∗ u for someu ∈ U .
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4 Equivalence checking of one-counter systems

A transition systemT = (S,A, { a−→| a ∈ A}) is image-finiteif for eachs ∈ S and each
a ∈ A there are only finitely manyt ∈ S such thats

a−→ t; T is a deterministictransition
system if for each pairs ∈ S, a ∈ Σ there is at most onet such thats

a−→ t. We say
T = (S,A, { a−→| a ∈ A}) is afinite transition systemif S is finite.

We recall that a union of bisimulations is again a bisimulation;∼ is the greatest bisimulation
(the union of all bisimulations onS), and it is an equivalence relation.

We also note that fordeterministictransition systems bisimulation equivalence coincides with
the variant of language equivalence calledtrace equivalence: s ∼ t if, and only if, for all words
w ∈ Σ∗ we haves

w−→ ⇔ t
w−→ (i.e.,s andt enable the same words, also called traces). Let us

briefly define deterministic one-counter systems. A one-counter systemP = (Q,A, δ0, δ>0) is
deterministicif for eachq ∈ Q and eacha ∈ A there is at most one pair(j, q′) ∈ {0,+1} ×Q
such that(q, a, j, q′) ∈ δ0 and at most one pair(j, q′) ∈ {−1, 0,+1}×Q such that(q, a, j, q′) ∈
δ>0. Figure 4.1 shows an example of a transition system that is generated by a one-counter
system.

.

.

.

.

.

.

.

.

.

Figure 4.1: The transition systemT (P) generated by some one-counter systemP

We also define the equivalences∼0⊇∼1⊇∼2⊇ · · · by the following inductive definition.
We put∼0= S × S. Fork ≥ 1, we define∼k⊆ S × S as

∼k
def
= {(s, s′) | ∀s a−→ t∃s′ a−→ t′ : t ∼k−1 t and∀s′ a−→ t′∃s a−→ t : t ∼k−1 t

′}

Note thats 6∼1 t if, and only if, s, t enable different sets of actions. We recall the following
standard facts (see, e.g., [143]).

Proposition 4.1 For any image-finite transition systemT = (S,A, { a−→| a ∈ A}) we have:

1.
⋂
i∈N ∼i = ∼ (hences ∼ t if, and only if,∀i ∈ N : s ∼i t).

2. If |S| = k ∈ N then∼k−1=∼k=∼. ✷
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4.1 A few notations and the main results

A crucial fact for Point 1. is that
⋂
i∈N ∼i is a bisimulation in image-finite systems. Point 2. is

established by a standard partition refinement: when constructing∼0, ∼1, . . . , we reach a fixed
point withink iterations.

The main problems we are interested in are the following ones.

BISI-OCS

INPUT: A one-counter systemP and two configurationsp(m) andq(n) of P.
QUESTION: Doesp(m) ∼ q(n) hold inT (P)?

If the input is restricted to deterministic one-counter systems, then we get the problem BISI-
DET-OCS.

BISI-DET-OCS

INPUT: A deterministic one-counter systemP and two configurationsp(m) andq(n) of
P.

QUESTION: Doesp(m) ∼ q(n) hold inT (P)?

We recall that the problem BISI-DET-OCS is, in fact, logspace equivalent to the classical lan-
guage equivalence for deterministic (real-time) one-counter automata (with acceptance via final
state for instance).

We will derive the following complexity results, assuming a standard input encoding, where
the counter valuesm,n are given in binary. In fact, the lower bounds are not based on using
largem,n: The lowerNL bound for equivalence of determininistic one-counter systems trivially
follows from the folklore digraph reachability problem and thePSPACE lower bound for the
nondeterministic case was proven by Srba [175].

Hence all the results hold both for binary and unary encodings of the input configurations.

Theorem 4.2 ([16]) The problemBISI-OCSis PSPACE-complete. ✷

Theorem 4.3 ([16]) The problemBISI-DET-OCS is NL-complete. Moreover, given a deter-
ministic one-counter systemP with k control states, ifp(0) 6∼ q(0) thenp(0) 6∼ℓ q(0) where
ℓ ≤ pol(k) for a polynomialpol (that is independent ofP). ✷

Our proof implicitly delivers to the following structural result.

Theorem 4.4 ([16]) Given a one-counter systemP = (Q,A, δ0, δ>0), the relation∼ onT (P),
i.e. the set{(p(m), q(n) | p(m) ∼ q(n)} is effectively semilinear, with the description size
exponential in the size ofP. ✷

By ∼ being semilinear we mean that the set{(m,n) | p(m) ∼ q(n)} is the union of finitely
many linear subsets ofN×N for each pairp, q. Recall that a subsetA ⊆ Nm is linear if there is
a base vectorb ∈ Nm and periodsp1, p2, . . . , pℓ ∈ Nm such thatA = {b+ c1p1 + c2p2 + · · ·+
cℓpℓ | c1, c2, . . . , cℓ ∈ N}. Another view is that∼ can be described by a formula in Presburger
arithmetic.

We also consider the following regularity problems.
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4 Equivalence checking of one-counter systems

REG-BISI-OCS

INPUT: A one-counter systemP and a configurationp(m) of P.
QUESTION: Is there a statef in some finite transition system such thatp(m) ∼ f ?

REG-DET-OCS

INPUT: A deterministic one-counter systemP = (Q,A, δ0, δ>0), and a configuration
p(m) of P.

QUESTION: Is there a statef in a finite transition system such thatp(m) ∼ f?

Our results are the following.

Theorem 4.5 ([16]) REG-BISI-OCSis P-complete. ✷

Theorem 4.6 ([16]) REG-BISI-DET-OCSis NL-complete. ✷

4.2 The underlying finite system and consistent colorings

In this section we recall the ingredients of the proofs which already appeared in [100]. If not
said otherwise, we (implicitly) refer to a fixedOCS P = (Q,A, δ0, δ>0), where|Q| = k. We
first introduce the finite transition systemFP which underliesP, and the reachability distance of
configurations ofP to a (small finite) subsetINC of configurations which are incompatible with
FP . The equality of the distances ofp(m), q(n) to INC is a necessary condition forp(m) ∼
q(n). Then we recall a natural correspondence between (bisimulation) relations onQ × N and
black-white colorings of the 3-dimensional spaceN × N × (Q×Q).

The underlying finite-state system FP and the set INC

Definition 4.7 Given a one-counter systemP = (Q,A, δ0, δ>0), theunderlying finite transition
systemFP is (Q,A, { a−→| a ∈ A}), whereq

a−→ q′ if, and only if, there is somej such that
(q, a, j, q′) ∈ δ>0. ✷

Intuitively speakingFP behaves likeP when the counter values are very large.
By just writing p (without any counter value) in such contexts we refer to the statep of the

finite transition systemFP . We easily observe thatp(m) ∼m p. Recalling Proposition 4.1(2),
we note that fork = |Q| we havep ∼ q if, and only if, p ∼k q if, and only if, p ∼k−1 q. (Thus
∼k−1 coincides with∼ in FP .)

We now define the setINC as the set of configurations ofP which are “INCompatible” with
FP : when recalling thatk = |Q| we viewp(m) as incompatible withFP if there is noq ∈ Q
such thatp(m) ∼k q. The valuedist(p(m)) is the length of a shortest path in the transition
systemT (P) starting inp(m) and ending in somep′(m′) ∈ INC.

Definition 4.8 ([16, 100]) Assuming a one-counter systemP = (Q,A, δ0, δ>0), where|Q| = k,
we defineINC ⊆ Q× N anddist : Q× N → N ∪ {ω} as follows:
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4.2 The underlying finite system and consistent colorings

• INC
def
= {p(m) ∈ Q× N | ∀q ∈ Q : p(m) 6∼k q},

• dist(p(m))
def
= inf { ℓ | ∃w ∈ A∗ : |w| = ℓ ∧ p(m)

w−→ INC } , whereinf ∅ = ω. ✷

The following proposition is not difficult to prove.

Proposition 4.9 ([16]) The following holds:

1. If p(m) ∈ INC thenm < k.

2. The membership inINC (givenP andp(m), is p(m) ∈ INC ?) isP-complete; it isNL-
complete whenP is a deterministic one-counter system. ✷

Figure 4.2 sketches a (shortest) pathu from p(m) to INC; we note that if, e.g.,n = k + |u|
thendist(p(m)) < dist(q(n)), and thusp(m) 6∼ q(n) as the next lemma states; the lemma also
shows thatp(m) ∼k q(n) impliesp(m) ∼ q(n) whenINC is unreachable from bothp(m) and
q(n).

Figure 4.2: A path fromp(m) to INC

Lemma 4.10 ([16, 100])

1. If dist(p(m)) = ℓ < dist(q(n)) for someℓ ∈ N, thenp(m) 6∼ℓ+k q(n); hencep(m) ∼
q(n) impliesdist(p(m)) = dist(q(n)).

2. If p(m) 6−→∗ INC, q(n) 6−→∗ INC (sodist(p(m)) = dist(q(n)) = ω) thenp(m) ∼ q(n)
if, and only if,p(m) ∼k q(n). ✷

PROOF (SKETCH) Point 1. is immediate since Attacker can force the game toINC from p(m)
which then results in a pair of configurations that can surely not be bisimilar.

For Point 2. the “only-if”-direction is trivial. For the “if”-direction one can prove that due to
∼k−1=∼k in FP we have that the relation

R = { (q1(n1), q2(n2)) | q1(n1) ∼k q2(n2) andq1(n1) 6−→∗ INC, q2(n2) 6−→∗ INC }
is a bisimulation. �
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4 Equivalence checking of one-counter systems

Figure 4.3: A colored plane for a pair(p, q)

Bisimulations and consistent colorings

We still refer to a fixed one-counter systemP = (Q,A, δ0, δ>0), where|Q| = k. Recall that
a bisimulation onT (P) is a relationR onQ × N that satisfies certain closure properties. The
relationR is thus a subset of(Q × N) × (Q × N). We could depict suchR in Figure 4.1, e.g.
by adding special dotted arcs betweenp(m), q(n) for (p(m), q(n)) ∈ R. But we use another
geometrical presentation of a relationR onQ×N. E.g., Figure 4.3 can be viewed as presenting
a (part of a) black-white coloring of points in the gridN × N, corresponding to a fixed pair
(p, q) ∈ Q×Q: (p(m), q(n)) ∈ R precisely for those(m,n) which are colored black. Putting
togetherk2 such colored 2-dimensional nonnegative-integer grids, one for each(p, q) ∈ Q×Q,
we get a coloring of the 3-dimensional grid, where the 3rd axis has onlyk2 values. (We will later
partition this 3-dimensional grid as in Figure 4.5.)

We now formalize the discussed notions.

Definition 4.11 ([16]) For a (general) binary relationR onQ×N, by thecoloringχR we mean
the functionχR : N × N × (Q × Q) → {•, ◦} whereχR(m,n, (p, q)) = • if, and only if,
(p(m), q(n)) ∈ R.

Given (a coloring)χ : N × N × (Q × Q) → {•, ◦}, byRχ we denote the relationRχ =
{(p(m), q(n)) | χ(m,n, (p, q)) = •}. ✷

We note the one-to-one correspondence:RχR
= R andχRχ = χ.

We now introduce (local) consistency of colorings (given our fixed one-counter system), and
we easily note that bisimulation relations correspond to consistent colorings.Roughly speaking,
coloring (m,n, (p, q)) black is (locally) consistent if(m,n, (p, q)) (i.e., the pair(p(m), q(n)))
is covered by the neighboring points (i.e. pairs) which are colored black.

Definition 4.12 ([16]) A coloring χ : N × N × (Q × Q) → {•, ◦} is consistent in a point
(m,n, (p, q)) if eitherχ(m,n, (p, q)) = ◦, or χ(m,n, (p, q)) = • and the following (bisimula-
tion) conditions are satisfied:

(1) if p(m)
a−→ p′(m + j) (recall that j ∈ {−1, 0, 1}) then there isq′(n + j′) such that

q(n)
a−→ q′(n+ j′) andχ(m+ j, n+ j′, (p′, q′)) = •;

(2) if q(n)
a−→ q′(n + j′) then there isp′(m + j) such thatp(m)

a−→ p′(m + j) andχ(m +
j, n+ j′, (p′, q′)) = •.
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4.3 Normal forms of paths

Thus, consistency ofχ in (m,n, (p, q)) is determined by the values ofχ on

Neighbours(m,n, (p, q))
def
= {(m′, n′, (p′, q′)) | |m′ −m| ≤ 1, |n′ − n| ≤ 1}.

A coloringχ is consistentif it is consistent in each point(m,n, (p, q)). ✷

The following proposition is obvious.

Proposition 4.13 ([16])

1. R ⊆ (Q × N) × (Q × N) is a bisimulation if, and only if,χR is consistent. (Henceχ is
consistent if, and only if,Rχ is a bisimulation.)

2. The coloringχ∼ (i.e. χR whereR = { (p(m), q(n)) | p(m) ∼ q(n) }) is the “darkest”
consistent coloring, i.e.: ifχ is consistent andχ(m,n, (p, q)) = • thenχ∼(m,n, (p, q)) =
•. ✷

4.3 Normal forms of paths

In this section we note some “normal forms” of (shortest) paths inT (P), for a one-counter
systemP = (Q,A, δ0, δ>0) with |Q| = k that we fix from now on.

We first capture the section content at an intuitive level. As suggested by Figure 4.2, a shortest
path fromp(m) to INC can assumed to be in the following normal form: it starts with a short
prefix, where “short” means “bounded by a polynomial ink,” then repeats a simple counter-
decreasing cycle (whenm is large), and then finishes with a short suffix (which might reach
zero several times). Figure 4.4 illustrates a more general case, when the counter valuen in the
targetq(n) can be also large (unlike the case ofINC wheren < k). This also entails that the set
{m | p(m) −→∗ INC} is “periodic” (for eachp ∈ Q). We now make these observations precise.

We start with introducing the restriction
w−→+ of

w−→ which captures thepositive paths, where
the counter value never becomes zero. We define

w−→+ inductively: ifm ≥ 1 thenp(m)
ε−→+

p(m); if m ≥ 1 andp(m)
a−→ q(n)

u−→+ q′(n′) (which entailsn, n′ ≥ 1) thenp(m)
au−→+

q′(n′). By writing p(m) −→∗
+ q(n) we mean thatp(m)

w−→+ q(n) for somew ∈ A∗.

We say thatv ∈ A+ is acycleif there is aq ∈ Q such thatq(m)
v−→+ q(m + d) (for some

m ∈ N, d ∈ Z); d is called theeffectof the cyclev, called also thedrop if d < 0 and theincrease
if d > 0. A cyclev ∈ A+ is asimple cycleif no proper subword ofv is a cycle.

The following proposition can be shown by a straightforward, though a bittechnical, proof
using a notion of a most effective (dropping) simple cycle on a pathp(m)

w−→+ q(n) where
m ≥ n+ k2 which has already been proven in [186]. An example is shown in Figure 4.4.

Proposition 4.14 (A consequence from [186])Givenp(m), q(n), if u is a shortest word such
that p(m)

u−→ q(n) (not necessarilyp(m)
u−→+ q(n)) then there isw such that|w| = |u|,

p(m)
w−→ q(n), and

• w = w1(v1)
r1w2(v2)

r2w3, where
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4 Equivalence checking of one-counter systems

• |w1| ≤ k3, |w2| ≤ k3, |w3| ≤ k3,

• v1 is a dropping cycle and|v1| ≤ k, and

• v2 is an increasing cycle and|v2| ≤ k. ✷

prefix cycle down cycle up suffixzero touching

p(m)

q(n)

p'(m')

p'(m'-d)
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   ...

    ...

      ...
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z(0) z'(0) ... time

c
o
u
n
te

r 
h
e
ig

h
t

Figure 4.4: A shortest path fromp(m) to q(n)

We now fix a polynomialpoly0(k) (independent of theOCS P) whose existence is captured
by the following proposition. In fact,poly0(k) ∈ O(k3), but we do not perform a detailed
analysis. Recall again Figure 4.2.

Proposition 4.15 ([16]) There is some polynomialpoly0 : N → N such that the following holds.
If p(m) −→∗ INC thenp(m)

u−→ q(n) for someq(n) ∈ INC, u = u1(u2)
ru3, andr ≥ 0, where

(1) |u| = dist(p(m)),

(2) |u1u3| ≤ poly0(k), and

(3) |u2| ≤ k and eitheru2 = ε or u2 is a dropping cycle with the dropd ∈ [−k,−1].

One can thus writedist(p(m)) as a linear function inm where the coefficients and offsets are
polynomially bounded in the size of the one-counter system: more precisely have

dist(p(m)) = c1 + d1
m− c2
d

whered1 = |u2| ≤ k, 1 ≤ d ≤ k, 0 ≤ c1 ≤ poly0(k), −poly0(k) ≤ c2 ≤ poly0(k). ✷

Now we make precise a (sufficiently small) periodicity of{m | p(m) −→∗ INC}.

Lemma 4.16 ([16]) Let us put∆ = k!. For each configurationp(m) with m > k + poly0(k)
we havep(m) −→∗ INC if, and only if,p(m+∆) −→∗ INC. ✷
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4.4 Initial space, belts, and periodic background

4.4 Initial space, belts, and periodic background

We now exploreχ∼ for a given one-counter systemP = (Q,A, δ0, δ>0) with |Q| = k (recall
Subsection 4.2); this gives rise to linear belts, as already noted and used in[109, 106, 100, 15].

By Lemma 4.10(1),p(m) ∼ q(n) impliesdist(p(m)) = dist(q(n)). In casedist(p(m)) =
dist(q(n)) < poly0, wherepoly0 is from Prop. 4.15, this equality is only possible for polynomi-
ally many suchp(m), q(n).

For the infinitely many remaining pairs of configurationsp(m), q(n) the equalitydist(p(m)) =
dist(q(n)) < ω thus yields a “linear-belt constraint”

n ≈ α

β
m whereα, β ∈ [1, k2], (4.1)

with an error, calledoffset, |n − α
βm| ≤ poly1(k) for a polynomialpoly1. We capture this in

Lemma 4.18, after introducing the notion of belts (cf. Figure 4.5).

Definition 4.17 ([16]) Assume integersα, β, h ≥ 1 such thatα andβ are relatively prime. The
beltB(α, β, h) is defined asB(α, β, h) = {(m,n) ∈ N × N : |n− α

βm| < h
2}. By theslopeof

the belt we mean the (rational) valueαβ ; the valueh is the (vertical)thicknessof the belt. ✷

The following lemma states that above some sufficiently large but polynomially bounded
counter value each pair(p(m), q(n)) having the same finite distance toINC lies in precisely one
of polynomially many belts, and moreover the different belts are so far awayfrom each other
that local consistency (with respect to any coloring) of any point in the one belt is not influenced
by any point of the other belt.

Lemma 4.18 ([16]) There are polynomialspoly1 and poly2 (independent of the one-counter
systemP) such that:

(1) If max{m,n} > poly2(k) and dist(p(m)) = dist(q(n)) < ω then there are uniquely
determined relatively primeα, β ∈ [1, k2] for which(m,n) ∈ B(α, β, poly1(k)).

(2) If max{m,n} > poly2(k) and(m,n) ∈ B(α, β, poly1(k)) then for every pair(m′, n′) ∈
B(α′, β′, poly1(k)) for relatively primeα′, β′ ∈ [1, k2] such thatα

′

β′ 6= α
β we have|m −

m′| > 1 or |n− n′| > 1. ✷

The next definition partitions our 3-dimensional grid (cf Figure 4.5); hereand further we
assume thatpoly0, poly1, poly2 are fixed polynomials guaranteed by Lemma 4.16 and 4.18, and
also thatpoly2(k) ≥ k + poly0(k) (for all k).

Definition 4.19 ([16]) We partitionN × N × (Q×Q) into the following sets:

• INITIAL SPACE: all (m,n, (p, q)) such thatm,n ≤ poly2(k).

• BELTSPACE: all (m,n, (p, q)) outside the initial space such that(m,n) ∈ B(α, β, poly1(k))
for some (relatively prime)α, β ∈ [1, k2].

• BACKGROUND: all remaining(m,n, (p, q)). ✷
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Figure 4.5: Partition of our 3-dimensional grid

We easily observe that we can compute the belt-points in the vertical cut at a given m (cf.
Figure 4.6):

Proposition 4.20 ([16]) There is a polynomial-time algorithm which, given aOCS P andm,
computes all (polynomially many) points(m,n, (p, q)) in INITIAL SPACE andBELTSPACE. ✷

We note that Lemma 4.18 implies for each(m,n, (p, q)) in BACKGROUND thatp(m) ∼ q(n)
if, and only if, p(m) ∼k q(n) andp(m) 6−→∗ INC, q(n) 6−→∗ INC. Hence Lemma 4.16 then
implies the following corollary.

Corollary 4.21 ([16]) The coloringχ∼ is periodic onBACKGROUND, with the period∆ = k!
in both the horizontal and vertical directions, i.e.: if(m,n, (p, q)) and(m+ i∆, n+ j∆, (p, q))
belong toBACKGROUND thenχ∼(m,n, (p, q)) = χ∼(m+ i∆, n+ j∆, (p, q)). ✷

4.5 A polynomial space algorithm for bisimilarity of
one-counter systems

Due to the general factPSPACE = NPSPACE it suffices to show anondeterministicpolynomial
space algorithm for BISI-OCS, as well as for some subproblems like the following one. Recall
thatINC can be constructed in polynomial time (Prop. 4.9).

Proposition 4.22 ([16]) There is a polynomial time algorithmALG1 which, given a one-counter
systemP and a configurationp(m), decides ifp(m) −→∗ INC. ✷

In fact, later we strengthen the claim but the above form of Prop. 4.22 is sufficient for the
moment.

Corollary 4.23 ([16]) There is a polynomial space algorithmALG2 which, given a one-counter
systemP and (m,n, (p, q)) in BACKGROUND, decides ifp(m) ∼ q(n) (i.e., if p(m) ∼k q(n)
andp(m) 6−→∗ INC, q(n) 6−→∗ INC). ✷
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Figure 4.6: Vertical window of width 3

We now consider the following nondeterministic algorithm ALG for BISI-ROCA; it uses the
algorithm ALG2 from Corollary 4.23 as a subprocedure, and refers to the polynomialspoly1,
poly2 which were fixed before Definition 4.19. (Recall Figure 4.5;poly1(k) is the vertical
thickness of the belts andpoly2(k) determines the initial space.)

Before we give the algorithm for deciding BISI-OCS in polynomial space, let us explain it
on an intuitive level. In case the initial pair of configurations lies in BACKGROUND, we call
ALG2 to get the definite answer. So let us hence assume the initial pair of configurations lies
in INITIAL SPACE∪ BELTSPACE. The algorithm will guess a coloring of the 3D space that is
locally consistent and is compatible with the determined colors from the background (that we
obtain quickly from ALG2).

Starting fromr = 0 our algorithm will guess some subset of the “vertical window” of points
(m,n, (p, q)) with m = r that are in INITIAL SPACE∪ BELTSPACE. Since there are only poly-
nomially many belts each of polynomial thickness and since the initial area is polynomially
bounded, only a polynomially sized subset thus has to be guessed. The idea is that precisely
the points in this subset will be the points in this small vertical window that are (guessed to be)
colored with color•, thus all other points in the same vertical window will be colored◦.

Providedr ≥ 1 our algorithm ALG will store in its memory only the guessed subsets of
exactly three such consecutive windows, namely forr − 1, r, r + 1 as depicted in Figure 4.6.
The algorithm then efficiently verifies on the fly that these guessed subsetsare locally consistent
possibly by looking at the background coloring dictated by ALG2. If local consistency fails, then
our guessing was wrong. Beforer is then increased by one, the subset for windowr − 1 can
safely be deleted from the memory and the new subset of the vertical window(r+1)+1 = r+2
is guessed (but the subsets for windowsr andr + 1 are kept). Since the background coloring is
periodic and the thickness and number of belts is polynomially bounded, one can prove that if
such a guessing of subsets of three vertical windows can be successfully carried through without
ever violating local consistencyfor exponentiallymany consecutiver starting fromr = 0 (this
exponential bound will be denoted∆′ below), then this guessing can in fact be prolonged ad
infinitum and thus we have guessed a coloring that is locally consistent. Of course, in our
guessed coloring, we have to make sure that the initial pair of configurations is colored•. Let us
list algorithm ALG.
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4 Equivalence checking of one-counter systems

Algorithm ALG for deciding BISI-OCS

Input: A one-counter systemP = (Q,A, δ0, δ>0), and two configurationsp0(m0), q0(n0).

1. If (m0, n0, (p0, q0)) is in BACKGROUND (recall Proposition 4.20) then use ALG2 and
otherwise go to the next step.

2. Compute the sufficiently large and exponentially bounded∆′ (we omit the exact value of
∆′ here)
and forr = 0, 1, 2, . . . ,max{poly2(k),m0}+∆′ do the following (cf. Figure 4.6):

• Using the algorithm from Proposition 4.20, nondeterministically choose a subset
GUESSr of the intersection of the vertical cut at pointr with the belt and/or initial
space; hence

GUESSr ⊆ {(m,n, (p, q)) | m = r} ∩
(

INITIAL SPACE∪ BELTSPACE

)
;

its elements are deemed to be colored black while the other points in the initial and
belt space of this vertical cut are white; the color of the background points is deemed
to correspond toχ∼. If r = m0 then(m0, n0, (p0, q0)) must be in GUESSr.

• If r ≥ 1 then check consistency of all points in GUESSr−1, using the chosen
GUESSr−2 (if r ≥ 2), GUESSr−1, GUESSr, and the assumedχ∼ on BACKGROUND

(recall Definition 4.12). This task can require to call ALG2 for finding the value of
χ∼ for the points in BACKGROUND which are neighbors of the initial and/or belt
space. If a consistency test fails, this run of ALG fails.

3. (If r = max{poly2(k),m0}+∆′ is successfully processed then)
halt with the answerp0(m0) ∼ q0(n0).

Lemma 4.24 ([16]) ALG is a nondeterministic polynomial space algorithm decidingBISI-
OCS. ✷

4.6 A nondeterministic logspace algorithm for equivalence
of deterministic one-counter systems

We now assume a fixeddeterministicOCS P = (Q,A, δ0, δ>0), where|Q| = k, generating the
deterministic transition systemT (P) = (Q × N,A, { a−→| a ∈ A}. We note that the transition
systemT (P)×T (P), where(p(m), q(n))

a−→ (p′(m′), q′(n′)) if, and only if,p(m)
a−→ p′(m′)

andq(n)
a−→ q′(n′), is also deterministic. We easily observe thatp(m) 6∼ q(n) if, and only

if, there is somew ∈ Σ∗ such that(p(m), q(n))
w−→ (p′(m′), q′(n′)) wherep′(m′) 6∼1 q

′(n′).
Hence the question of equivalence inT (P) reduces to a reachability question in the deterministic
transition systemT (P) × T (P). We write a path(p(m), q(n))

w−→ (p′(m′), q′(n′)) rather as
(m,n, (p, q))

w−→ (m′, n′, (p′, q′)), referring to our3-dimensional space. Figure 4.7 sketches
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Figure 4.7: Examples of paths inT (P) × T (P) related to a pairp(0), q(0) and various words
w ∈ A∗.

some such paths when starting withm = n = 0. (The figure is simplified, it does not show the
third dimension; hence the respective pairs of states are not depicted.)

A crucial fact for our result can be informally expressed as follows. When a (long) segment
of such a path is inside some belt with slopeαβ (whereα, β ∈ [1, k2]) then the segment can
be viewed as a computation-path ofonedeterministic one-counter system: we can imagine that
the current point(m,n, (p, q)) is represented bym in the counter, while(p, q) and the (rational)
offsetn− α

βm (with the absolute value bounded by12poly1(k)) is stored in the finite control-unit.
The number of possible offsets is polynomially bounded ink, and a long path that corresponds
to w inside the belt can be replaced with a normal-form path that corresponds tov1(v2)

rv3, by
using (the “going up” form of) Proposition 4.14, wherev2 is a cycle for the deterministicOCS
with the (polynomially) larger set of control states. In other words, any minimal distinguishing
witness can visit each belt only for polynomially many steps.

Using the above fact, a straightforward analysis shows that the shortestwords witnessing
nonequivalence are polynomially bounded, in the case of nonequivalent pairs in INITIAL SPACE.
If we also allow largem,n (written in binary) in the inputp(m), q(n) then a shortest witness
of the factp(m) 6∼ q(n) can be exponential (in the input size) but it is also at most exponential
and its existence can be verified in nondeterministic logarithmic space, using thenormal forms
of paths and standard algorithms for arithmetic operations. These are the key ingredients for
proving Theorem 4.3.

4.7 Regularity problems

We now prove Theorems 4.5 and 4.6. We assume a fixedOCS with k states. The next propo-
sition is a variant of saying thatp(m) is nonregular if, and only if, the set{q(n) | p(m) −→∗

q(n) −→∗ INC} is infinite.

Proposition 4.25 ([16]) p(m) is not regular if, and only if, there is aq ∈ Q such thatp(m) −→∗

q(m+ 2k) −→∗ INC. ✷
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4 Equivalence checking of one-counter systems

PROOF We recall that ifq(n) 6−→∗ INC thenq(n) ∼ r for somer in FP . Hence “only if” is
obvious.
For the “if” direction we note that a pathp(m)

u1−→ q(m+2k)
u2−→ INC can be writtenp(m)

u11−→
q1(m + k)

u12−→ q(m + 2k)
u21−→ q2(m + k)

u22−→ INC where all states=configurations in the
segmentq1(m+ k)

u12−→ q(m+2k)
u21−→ q2(m+ k) have the counter values at leastm+ k. The

first segment must contain an increasing cycle, the second a dropping cycle. By pumping the
cycles appropriately we get infinitely many states reachable fromp(m) which have ever larger
distance toINC. �

It is not surprising that membership problem forINC is P-complete for (general)OCS, and
NL-complete for deterministicOCS. Hence from Proposition 4.25 one can easily show that the
problem REG-BISI-OCS is inP, and REG-BISI-DET-OCS inNL. Since REG-BISI-DET-OCS
is obviouslyNL-hard (by a reduction from the reachability in directed finite graphs), with the
next lemma one can finish the proofs of Theorems 4.5 and 4.6. In the lemma we only useOCS
with weak zero-tests(like in Petri nets): we say that aOCS P = (Q,A, δ0, δ>0) is aone-counter
net if for x ∈ {0, 1} we have(q, a, x, q′) ∈ δ0 only if (q, a, x, q′) ∈ δ>0.

Lemma 4.26 ([16]) REG-BISI-OCSis P-hard, even when restricted to one-counter nets.✷

4.8 Equivalence of general deterministic one-counter
automata

Let us discuss the crucial technical difficulties of proving anNL upper bound for the equivalence
of deterministic one-counter systems/automata in whichε-transitions may occur (in a determin-
istic fashion, of course); we call themdocain the following.

Doca were first studied by Valiant and Paterson in 1975 [186]; they showed that equivalence
is decidable in time2O(

√
n logn), and a simple analysis of their proof reveals that the equivalence

problem is inPSPACE. The problem is easily shown to beNL-hard, there has been an exponen-
tial gap for this problem. There were attempts to settle the complexity of the doca equivalence
problem but the problem proved to be intricate. Though doca are perhaps not a notorious com-
putational device, their close relation to finite automata and deterministic pushdown automata
(dpda) has motivated us to tackle this research problem. EstablishingNL-completeness for the
real-time case as discussed in Section 4.6 was a first step but it is far from clear if and how the
proof can be extended to the general case.

One reason of the intricacy seems to be that a doca can exhibit a behavior with exponential pe-
riodicity, demonstrated by the following example (taken from [186]). We takea family (Pn)n≥1

of docas, where each docaPn accepts the regular languageLn = {ambi | 1 ≤ i ≤ n,m ≡
0 (modpi)}, wherepi denotes theith prime number. The index of the Myhill-Nerode congru-
ence ofLn is obviously2Ω(n) but we can easily construct suchPn with O(n2 log n) states. The
example also demonstrates that doca are exponentially more succint than theirreal-time variant,
since one can prove that real-time doca acceptingLn have2Ω(n) states. Doca are also strictly
more expressive than their real-time variant. Analogous expressiveness and succinctness results
hold for dpda and real-time dpda, respectively.
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4.8 Equivalence of general deterministic one-counter automata

When thinking of an underlying finite transition system of a general deterministic one-counter
system one notices that it has exponentially many states, since the residue class modulo theleast
common multipleof all popping cycle counter effects has to be taken into account. In our recent
work, we were able to cope with this problem.

In [17] we show that language equivalence of doca isNL-complete (while language inclusion
is well-known to be undecidable); this closes the exponential complexity gap that has existed
since the 1970s when doca were introduced. Our approach helps to answer related questions
as well; e.g., regularity of the language accepted by a given doca can easily shown to beNL-
complete.

We remark that in [12, 159] it is stated that equivalence of doca can be decided in polynomial
time. Unfortunately, the proofs provided in [12, 159] were not exact enough to be verified, and
they raise several questions which are unanswered to date.

Overview of the proof in [17]. Instead of defining doca clasically as restricted dpda, we use a
convenient equi-succinct way where we partition the control states (andthus the configurations)
into stable states, in which the automaton waits for a letter to be read, and intoreset states,
in which the counter is reset to zero; in the latter case the residue class of thecurrent counter
value modulo the number, called aperiod, specified by the current reset state determines the
successor (stable) state. The periods correspond to the lengths of classical poppingε-cycles. We
explore in [17]trace equivalence, i.e. the classical language equivalence where all states are
viewed as accepting. We use a natural notion of theequivalence level, theeqlevelfor short, of
two configurations, corresponding to the length of a shortest non-equivalence witness word, and
stipulated to beω when the configurations are equivalent. For proving this result, we showthat
the eqlevels of two non-equivalent zero configurations aresmall, by which we mean that they
are bounded by a polynomial (in the size of the given doca).

The only ingredient of our proof which we take directly from the previousworks is acyclic
form of shortest positive paths in the transition systemT (P) generated by a docaP; this basic,
but technical, fact was proven already in [186].

The central notion in our proof in [17] is theextended deterministic transition systemText(P)
that is attached to a docaP. Besides the standard transition systemT (P), the extended system
includes an underlying finite deterministic transition system that might be exponentially large
in the size ofP and that captures thespecial modebehavior ofP. The special mode (which
can be seen as an abstraction of the behavior of the one-counter systemby only remembering
the residue class with respect to every occuring period of the reset states, but not the actual
counter value itself) mimics the normal mode and is switched to the normal mode whenever a
reset state is visited. The only difference is that when the zero counter value is reached (without
a reset) then a multiple of all periods of the reset states is silently added to the counter; thus
the counter never becomes zero in the special mode (until a reset state is visited and the normal
mode applies). The above mentioned special finite system arises naturally once we note that the
behavior of a special mode configuration depends on the residue classes of the counter value
modulo the periods of the reset states, and not on the concrete counter value itself.

Each normal configurationp(m) (wherep is the control state andm is the counter value)
thus has the special mode counterpartp̄(m). Thecrucial noveltyof our approach consists in an
explicit definition of the aboveText(P) and in a detailed analysis of thequadruple(b, ℓ, r, o)
associated with any pair of configurations(p(m), q(n)) as follows (herelev stands foreqlevel):
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4 Equivalence checking of one-counter systems

b = lev(p(m), q(n)) (Basic),ℓ = lev(p(m), p̄(m)) (Left), r = lev(q(n), q̄(n)) (Right), o =
lev(p̄(m), q̄(n)) (mOd). A simple fact thatmin{b, ℓ, r, o} must be equal to at least two compo-
nents of(b, ℓ, r, o) turns out to be very useful.

For each non-equivalent pair(p0(m0), q0(n0)) with a shortest non-equivalence witness word
w we define(pi(mi), qi(ni)) as the (stable) pair such thatp0(m0) is transformed topi(mi), and
q0(n0) is transformed toqi(ni) after having read the prefix ofw of lengthi. Each(pi(mi), qi(ni))
has the associated quadruple(bi, ℓi, ri, oi), and we note thatbi = b0 − i. Though we have the-
oretically exponentially many pairs(p̄(m), q̄(n)), it is easy to show that the set of eqlevels
{e | e = lev(p̄(m), q̄(n))} is small (i.e., its cardinality is bounded by a polynomial); in other
words, there are only few possible valuesoi. A straightforward analysis also shows that for
each natural numberg there are only fewp(m) such thatlev(p(m), p̄(m)) = g. By using such
observations we derive that ifm0 = n0 = 0 then there are only fewi such thatℓi 6= ri. Roughly
speaking,ℓi = ri < ω implies that the counter valuesmi andni are in one of only few linear re-
lations. Hence if our sequence(p0(m0), q0(n0)), (p1(m1), q1(n1)), (p2(m2), q2(n2)), . . . (with
m0 = n0 = 0) were long then it would have a long segment whereℓi = ri and the valuesmi,
ni are increasing on the whole. We contradict the existence of such a long segment by another
use of cyclicity and the properties of the quadruples(b, ℓ, r, o).

A complete version of this work is available [16].

Theorem 4.27 ([17]) Equivalence of deterministic one-counter automata isNL-complete. ✷
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5 Branching time model checking on
one-counter systems and a new lower
bound technique

In this section our starting point is to analyze the computational complexity of model checking
CTL on one-counter systems and succinctly presented one-counter systems.

In Section 5.1 we provide a fixed one-counter system for which model checking CTL is
PSPACE-hard. Complementing the latter lower bound, we discuss an upper bound result in
Section 5.2: we provide a polynomial time algorithm for model checking fixed one-counter sys-
tems against inputCTL formulas that satisfy a certain syntactical restriction – they have to have
a fixed “leftward until depth”, a notion to be made more precise below.

In Section 5.3 we discuss a new technique for proving lower bounds whichit is inspired
from two deep results from complexity theory. This technique is applied to prove that there
is already a fixedCTL formula for which model checking one-counter systems isPSPACE-
hard; a correspondingEXPSPACE-hardness result is proven for succinct one-counter systems.
Moreover, one can prove thatEF model checking of one-counter systems is hard forPNP. We
further apply the latter lower bound technique in Section 5.4 to prove that it isPSPACE-hard
to decide whether one can reach a specific zero configuration in a one-counter Markov decision
process with probability arbitrarily close to1. In Section 5.5 we apply our lower bound technique
to prove that (i) the data complexity of model checkingCTL on 2-clock timed automata is
PSPACE-hard and (ii) reachability of very basic 2-clock timed automata with modulo tests is
PSPACE-hard.

Bibliographic notes. The results in this chapter have been published in [79] (STACS 2010)
and will appear as a journal version in [80] (SIAM Journal of Computing) both in joint work
with Markus Lohrey. The only exception is theEXPSPACE-hardness hardness result of model
checking succinct one-counter systems against fixedCTL formulas which have been published
in [73] (ICALP 2010) in joint work with Christoph Haase, Joël Ouaknine and James Worrell.

5.1 Hardness of Expression Complexity

The goal of this section is to prove that model checkingCTL is PSPACE-hard already over a
fixedOCS. The overall proof will be provided by a reduction from the well-knownPSPACE-
complete problem to decide validity of quantified boolean formulas (QBF). Instead of discussing
all details here, we only pinpoint the decisive step in the lower bound proof. Most crucial is to be
able to compute a family ofCTL formulas(ϕi)i≥1 such that over the fixedP0 that is depicted in
Figure 5.1 we can express (non-)divisibility by2i. We implicitly assume that each control state
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Figure 5.1: The one-counter systemP0 for whichCTL model checking isPSPACE-hard.

x (like g, f, . . .) in P0 has a self-loop that is labelled byx and that does not change the current
counter value (these loops arenotdepicted in Figure 5.1). Moreover the transitions that one can
see in Figure Figure 5.1 are all labeled with some dummy symbol, say$. In our formulas below,
we will useEX as an abbreviation for〈$〉 and thatx is an abbreviation for〈x〉true: in particular
the formulax holds inq(n) if and only if q = x.

We need the following simple fact which characterizes divisibility by powers of two.

Fact 5.1 ([80]) Letn ≥ 0 andi ≥ 1. Then the following two statements are equivalent:

• 2i dividesn.

• 2i−1 dividesn and|{1 ≤ n′ ≤ n | 2i−1 dividesn′}| is even. ✷

The set of action labels ofP0 in Figure 5.1 coincides with its control states plus the dummy
symbol$.

Note that botht and t are control states ofP0. Now we define a family ofCTL formulas
(ϕi)i≥1 such that for eachn ∈ N we have that

• (T (P0), t(n)) |= ϕi if, and only if,2i dividesn and

• (T (P0), t(n) |= ϕi if, and only if,2i doesnotdividen.

On first sight, it might seem superfluous to let the control statet represent divisibility by powers
of two and the control statet to represent non-divisibility by powers of two sinceCTL allows
negation. By making use of Fact 5.1, we construct the formulasϕi inductively. However the fact
that we haveonly onefamily of formulas(ϕi)i≥1 to express both divisibility and non-divisibility
is a crucial technical subtlety that is necessary in order to avoid an exponential blowup in formula
size: since the size ofϕi has to be polynomially bounded ini, we simply cannot affordϕi to
appear twice in an inductive definition ofϕi+1. First, let us define the auxiliary formulas
test= t∨ t andϕ⋄ = q0∨ q1∨ q2∨ q3. Think ofϕ⋄ to hold in those control states that altogether
are situated in the “diamond” in Figure 5.1. We define

ϕ1
def
= test ∧ EX (f ∧ EF(f ∧ ¬EXg)) .
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Now assumei > 1. Then we define

ϕi
def
= test ∧ EXµi, where

µi
def
= E(ϕ⋄ ∧ EXϕi−1)U(q0 ∧ ¬EXq1).

Before we state thatϕi indeed expresses (non-)divisibility in Lemma 5.3, let us provide some
informal explanation. Observe thatϕi can only be true either in control statet or t. Note that
in the formulaµi the formula right to the until symbol expresses that we are inq0 and that
the current counter value is zero. Also note that the formula left to the until symbol requires
thatϕ⋄ holds, i.e., we are always in one of the four “diamond control states”. In other words,µi
expresses that we decrement the counter by moving along the diamond control state (by possibly
looping) and always check ifEXϕi−1 holds (and hereby jumping back tot or t to check ifϕi−1

holds), just until we are inq0 and the counter value is zero. Sinceϕi−1 is only used once inϕi,
we get:

Fact 5.2 ([80]) |ϕi| ∈ O(i). ✷

The following lemma states the correctness of the construction.

Lemma 5.3 ([80]) Letn ≥ 0 andi ≥ 1. Then

(1) (T (P0), t(n)) |= ϕi if, and only if,2i dividesn.

(2) (T (P0), t(n)) |= ϕi if, and only if,2i does not dividen. ✷

Building upon the above-mentioned gadget that allows us to test (non-)divisibility by powers
of 2, we can provide (still with quite some technical effort) a polynomial time reduction from
QBF to model checking the fixedP0 of Figure 5.1.

Theorem 5.4 ([80]) For the fixedOCS P0 that is depicted in Figure 5.1 the following problem
is PSPACE-hard.

INPUT: ACTL formulaϕ.
QUESTION: Does(T (P0), f(0)) |= ϕ hold? ✷

5.2 Upper bounds for CTL model checking

When inspecting thePSPACE-hardness proof for the expression complexity of model checking
CTL on fixed one-counter systems in the last section, we needed to construct formulas that
had a non-constant nesting of the until operator. This section complements the latter result
by providing a polynomial time algorithm for model checking fixed one-counter systems with
respect toCTL formulas whose leftward until nesting depth is constantly bounded. For aCTL

49



5 Branching time model checking on one-counter systems and a new lower bound technique

formulaϕ we inductively define itsleftward until depthlud(ϕ)

lud(true)
def
= 0

lud(¬ϕ) def
= lud(ϕ)

lud(ϕ1 ∧ ϕ2)
def
= max{lud(ϕ1), lud(ϕ2)}

lud(〈a〉ϕ) def
= lud(ϕ)

lud(Eϕ1Uϕ2)
def
= max{lud(ϕ1) + 1, lud(ϕ2)}

lud(Eϕ1WUϕ2)
def
= max{lud(ϕ1) + 1, lud(ϕ2)}

Our main result states that model checking each fixed one-counter systemagainst inputCTL
formulas of fixed leftward until depth is decidable in polynomial time. Its proof isbased on
a combinatorial analysis how for each control stateq of a one-counter systemP and for each
CTL formulaϕ the set{n ∈ N | (T (P), q(n)) |= ϕ} behaves: one can prove that this set is
ultimately periodic with an offset and period that is bounded polynomial in|ϕ| and exponential
only in |P|+ lud(ϕ).

Theorem 5.5 ([80]) For every fixed one-counter systemP and everyk ∈ N the following prob-
lem is decidable in polynomial time:

INPUT: A stateq(n) of T (P) and aCTL formulaϕ with lud(ϕ) ≤ k.
QUESTION:(T (P), q(n)) |= ϕ? ✷

Since everyEF formula can be seen as aCTL of leftward until depth at most one, we obtain
the following corollary.

Corollary 5.6 ([80]) EF model checking for each fixed one-counter system is decidable in poly-
nomial time. ✷

5.3 A new lower bound technique

In this section we first concern ourselves with model checkingfixedCTL formulas. For this we
develop a lower bound technique that can also be used for other settings,like model checking or
reachability of (extensions of) timed automata or deciding reachability objectives in one-counter
Markov decision processes. Before we discuss the technique, we would briefly like to discuss
why we are convinced that such a new technique is necessary, in particular for provingPSPACE-
hardness for model checking fixedCTL formulas on one-counter systems. Let us describe the
difficulties when aiming to provePSPACE-hardness in two standard ways: either reducing from
QBF or reducing from the membership problem of linearly space bounded Turing machines.

Firstly, when model checking a fixedCTL formula, one cannot expect a straightforward re-
duction from QBF in which theCTL formula depends on the QBF formula, simply because the
number of nested negations of a fixedCTL formula is of course fixed again. The situation for
model checking the modalµ-calculus is somewhat different since a single fixed point operator
can indeed mimic alternation.
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Secondly, let us discuss the hurdles when reducing from the word problem of a fixed linearly
space bounded Turing machineM on some inputw ∈ {0, 1}n. Essentially such a potential
reduction has to provide a way to modify the current configuration (which isagain a word from
{0, 1}n, say). But how can we encode such a configuration on a counter? It isimportant to
note that one can express already with a fixedEF formula some exponentially big periodic
behavior on the counter. More precisely, there exists already a fixedEF formulaϕ such that
for some control stateq over some one-counter systemP of sizem we have that{n ∈ N |
(T (P), q(n)) |= ϕ} is ultimately periodic with exponential periodicity (inm): simply introduce
O(

√
m) cycles toP each of pairwise different prime number lengths and let the formulaϕ

express that the current counter value is a multiple of all these prime numbers. This way of
enforcing large values naturally leads us to the following definitions. Letpi denote theith prime
number. It is well-known thatpi is polynomially bounded ini; hence it requires onlyO(log i)
bits for representing theith prime in binary.

For a number0 ≤M <
∏m
i=1 pi we define theChinese remainder representationCRRm(M)

as the boolean tuple

CRRm(M) = (xi,r)i∈[1,m],0≤r<pi with xi,r =

{
1 if M modpi = r

0 otherwise.

Usually the Chinese remainder representation ofM is the tuple(ri)i∈[1,m], whereri =M modpi.
Since the primespi will be always given in unary notation, there is no essential difference be-
tween this representation and our Chinese remainder representation.

In the spirit of proving lower bounds, the Chinese remainder representation of a number is a
potential “data-structure” that allows usto retrieveinformation about an object out of exponen-
tially many (depending on the input sizen) via fixedCTL formulas. We emphasize the word
retrievehere since the crucial point is that it is not all clear how tomodifya number: Assume
we encoded the current configuration ofM in Chinese remainder representation and one would
want to flip theith component of the boolean tuple, this would amount tomultiplyingthe current
counter value with a huge number. However, in a one-counter system onecan only increment or
decrement the current counter value or leave it as is. Analogously, if weencoded a configuration
from {0, 1}n classically, i.e. by the counter whose value would be between0 and2n−1, and we
would like to switch theith bit from 0 to 1, we would have to add2i to the counter, which one
cannot achieve in one step with a one-counter system (only with a succinctone-counter system)
and also not easily (if at all) in multiple steps without influencing the other bit positions.

5.3.1 Hardness of data complexity

The lower bound technique we develop is inspired by two deep results fromcomplexity theory.
Thefirst result , due to Chiu, Davida and Litow, states that one can transform a CRR-representation

very efficiently into a binary representation: we denote byBINm(N) them least significant bits
in the binary representation ofN ∈ N.

Theorem 5.7 ([43]) There is a logspace-uniformNC1-circuit family(Bm((xi,r)i∈[1,m],0≤r<pi))m≥1
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such that for everym ≥ 1,Bm hasm output gates and

∀ 0 ≤M <
m∏

i=1

pi : Bm(CRRm(M)) = BINm(M mod2m).

By [91], we could replace logspace-uniformNC1-circuits in Theorem 5.7 even byDLOGTIME-
uniform TC0-circuits. The existence of aP-uniform NC1-circuit family for converting from
CRR-representation to binary representation was already shown in [9].

The second resultfrom complexity theory we use is the concept ofserializability of com-
plexity classes. Intuitively, a complexity classC1 is calledC2-serializable (whereC2 is another
complexity class) if every languageL ∈ C1 can be accepted in the following way: There exists a
polynomialp(n) and aC2-machine (orC2-circuit family)A such thatx ∈ L is checked in2p(|x|)

many stages, which are indexed by the strings from{0, 1}p(|x|). In stagey ∈ {0, 1}p(|x|),A gets
from the stage indexed by the lexicographic predecessor ofy a constant number of bitsb1, . . . , bc
and computes from these bits, the indexy and the original inputx new bitsb′1, . . . , b

′
c which are

delivered to the lexicographic next stage. Cai and Furst proved thatPSPACE is P-serializable
[35]; in [90] Hertrampf, Lautemann, Schwentick, Vollmer and Wagner sharpened this to prove
thatAC0-serializability is sufficient, cf. [193]. So let us state this theorem again.

Theorem 5.8 ([90]) PSPACE is AC0-serializable. ✷

It is not stated in [90, 193] but not hard to prove thatlogspace-uniformAC0 suffices for
serializingPSPACE.

For our purpose, a slightly different definition ofAC0-serializability is useful: A language
L is AC0-serializable if there exists an nondeterministic finite automatonA over the alphabet
{0, 1}, a polynomialp(n), and a logspace-uniformAC0-circuit family (Cn)n≥0, whereCn has
exactlyn+ p(n) many inputs and one output, such that for everyx ∈ {0, 1}n we have:

x ∈ L ⇐⇒
∏

y∈{0,1}p(n)

Cn(x, y) ∈ L(A), (5.1)

where “
∏

” is ordered with respect to the lexicographic order on{0, 1}p(n) and for everyy ∈
{0, 1}p(n), Cn(x, y) is either0 or 1 (hence,

∏
y∈{0,1}p(n) Cn(x, y) is a binary string of length

2p(n)). We prove in [80] that this definition ofAC0-serializability is equivalent to the one in
[90].

Combining the efficient translation from Chinese remainder representation tobinary repre-
sentation of a natural number (Theorem 5.7) allows us to restate a variant of serializability along
Theorem 5.8 that is more tailored towards our purposes of provingPSPACE-hardness of model
checking fixedCTL formulas over one-counter systems and related verification problems.

Theorem 5.9 ([80]) For every languageL ⊆ {0, 1}∗ fromPSPACE there exists a polynomial
p(n) and a nondeterministic finite automatonA over the alphabet{0, 1} such that the following
holds: From a given inputx ∈ {0, 1}∗ with |x| = n one can construct in logspace a boolean
formulaF with propositional variablesxi,r (i ∈ [p(n)] and0 ≤ r < pi) such that:

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A). (5.2)
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PROOF (SKETCH) The formulaF essentially consists of the composition of the circuitCn from
(5.1) (which can be represented as a boolean formula) and an appropriate circuitBm from The-
orem 5.7 (which again can be represented as a boolean formula). �

The proof of the following theorem, stating that the data complexity of model checkingCTL

on one-counter systems isPSPACE-hard, uses the characterization provided in (5.2).

Theorem 5.10 ([80]) There exists a fixedCTL formula of the formEGψ, whereψ is an EF

formula, such that the following problem isPSPACE-complete:
INPUT: A one-counter systemP with control stateq.
QUESTION: Doesq(0) |= EGψ hold inT (P)? ✷

PROOF (SKETCH) One can construct in polynomial time a one-counter systemP that uses its
counter to represent theM from (5.2). The states of the NFAA of P are represented in con-
trol states ofP. Moreover, when feeding the simulation of the NFAA with the current bit
F (CRRm(M)), one needs to simulate the evaluation of the boolean formulaF onCRRm(M).
The evaluation ofF (CRRm(M)) can be done by adding toP ’s control states a possibility of
traversing the syntax tree ofF : The actual evaluation ofF can be achieved by traversing this
syntax tree which in turn can be accomplished by a fixedCTL formula – evaluating the atomic
subformulas ofF boils down to answering questions of the kind whether the current counter
value is congruentri modulopi, which is easy to check by introducing a popping cycle of length
pi into theOCS. After the bitF (CRRm(M)) has been obtained, the NFAA is fed with this bit
andM is incremented by one and the simulation continues untilM = 2m− 1 holds (this can be
checked analogously). �

By only making use of the efficient translation from Chinese remainder to binary represen-
tation (Theorem 5.7) we can prove that model checkingEF on one-counter systems is hard for
PNP.

Theorem 5.11 The following problem isPNP-hard:
INPUT: A one-counter systemP, a control stateq ofP and anEF formulaϕ.
QUESTION: Doesq(0) |= ϕ hold inT (P)? ✷

PROOF (SKETCH) We reduce from thePNP-complete problem MAX -LEX-SAT which asks
whether the lexicographically maximal satisfying truth assignment of a given boolean formula
α(x1, . . . , xn) assigns the least significant variablexn to 1. There is obviously a correspondence
between the set of all truth assignments{0, 1}{x1,...,xn} and{0, . . . , 2n − 1}. In order to obtain
the naturalj ∈ {0, . . . , 2n − 1} that corresponds to the lexicographically maximal truth assign-
ment we jump (via theEF operator) fromq(0) to some configurationq′(k) and test whether
k = j as follows: (i) test whetherk < 2n by testing whether one cannot subtract fromk some
number such that the result is2n, (ii) test whether the truth assignment that corresponds tok
satisfiesα, (iii) test whether there does not exist ak′ with k < k′ < 2n whose truth assignment
satisfiesα in analogy to (ii), and finally (iv) test whether the least significant bit ofk is 1. Points
(i) to (iii) can be done by evaluating appropriateEF formulas that mimic a boolean formula that
one obtains from theNC1 circuit from Theorem 5.7 (the translation from Chinese remainder
presentation to binary presentation), whereas Point (iv) is easy. �
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5 Branching time model checking on one-counter systems and a new lower bound technique

It is not clear whetherPNP-hardness already holds for a fixedEF formula. For fixedEF
formulas we were only able to prove hardness forPNP

|| and containment inPNP [82] (we discuss
EF model checking on one-counter systems in Chapter 6).

In [73] we have studied the data complexity of model checkingCTL on succinct one-counter
systems and proved that it isEXPSPACE-complete. The proof ofEXPSPACE-hardness is again
inspired by serializability arguments stating thatEXPSPACE isPSPACE-serializable (the conca-
tentation in (5.1) now involves doubly exponentially many numbers). However, it is technically
much more involved than thePSPACE-hardness proof of the data complexity of model checking
CTL on (non-succinct) one-counter systems. The main technical difficulty is that in a succinct
one-counter system of sizen there are onlyO(n) strongly connected components (in the un-
derlying finite automaton describing the system) implying that one can test divisibility only of
O(n) many primes.

Theorem 5.12 ([73]) There exists a fixedCTL formulaϕ such that the following problem is
complete forEXPSPACE:

INPUT: A succinct one-counter systemP and a control stateq ofP.
QUESTION: Does(T (P), q(0)) |= ϕ hold? ✷

5.4 Reachability objectives on one-counter Markov decision
processes

Markov decision processes(MDPs) extend classical Markov chains by allowing so callednon-
deterministic vertices. In these vertices, no probability distribution on the outgoing transitions
is specified. The other vertices are calledprobabilistic vertices; in these vertices a probability
distribution on the outgoing transitions is given. The idea is that in an MDP a player Eve plays
against nature (represented by the probabilistic vertices). In each nondeterministic vertexv, Eve
chooses a probability distribution on the outgoing transitions ofv; this choice may depend on the
past of the play (which is a path in the underlying graph ending inv) and is formally represented
by a strategy for Eve. An MDP together with a strategy for Eve defines an ordinary Markov
chain, whose state space is the unfolding of the graph underlying the MDP.

In this section we consider infinite MDPs, which are finitely represented by one-counter sys-
tems; this formalism was introduced in [26] under the nameone-counter Markov decision pro-
cess(OC-MDP). For a given OC-MDPM and a setR of control states ofM (a so called
reachability constraint) the following two setsValOne(R) andOptValOne(R) were considered
in [26]: ValOne(R) is the set of all statess of the MDP defined byM such that for everyε > 0
there exists a strategyσ for Eve under which the probability of finally reaching froms a control
state inR and at the same time having counter value0 is at least1− ε. OptValOne(R) is the set
of all statess of the MDP defined byM for which there exists a specific strategy for Eve under
which this probability becomes1. It was shown in [26] that for a given OC-MDPM, a set of
control statesR, and a states of the MDP defined byM,

• the question whethers ∈ OptValOne(R) is PSPACE-hard and inEXP, and

• the question whethers ∈ ValOne(R) is hard for every level of the boolean hierarchyBH.

54



5.5 Verification of timed automata

The boolean hierarchy is a hierarchy of complexity classes betweenNP/coNP andPNP
|| (parallel

access toNP) [151]. We use our lower bound techniques (based on the serializability of PSPACE
+ small depth circuits for converting numbers from Chinese remainder representation to binary
representation) in order to improve the second hardness result for the levels ofBH to PSPACE-
hardness.

Theorem 5.13 ([80]) Given a OC-MDP a set of its control statesR and some control states it
is PSPACE-hard to decide whethers ∈ ValOne(R). ✷

It is worth mentioning that as a byproduct, we also reprovePSPACE-hardness forOptValOne(R).
To the best of the author’s knowledge, it is still open whetherValOne(R) is decidable; the cor-
responding problem for MDPs defined by pushdown automata is undecidable [64].

5.5 Verification of timed automata

Timed automatawere introduced by Alur and Dill [3] and can be seen as an extension of finite
automata by allowing the usage of real-time clocks. Timed automata are one of the most impor-
tant formalisms for modeling real-time systems. In [3] it was shown that the reachability (i.e.
emptiness) problem for timed automata isPSPACE-complete.PSPACE-hardness already holds
when only three clocks are present as shown by Courcoubetis and Yannakakis [51]. The precise
computational complexity of reachability for 2-clock timed automata has been a major open
problem only until very recently when Fearnley and Jurdzinksi announced that the problem is
indeedPSPACE-hard [65], thus closing the previously best-known lower bound ofNP-hardness
[124] and thePSPACE upper bound that was known for this problem. It is interesting to note
that concerning the reachability problem, there is a close connection between bounded counter
automata and timed automata as recently shown by Haase et al. [84]: the reachability problem of
n-clock timed automata is equivalent to the the reachability problem of bounded(n−1)-counter
automata with respect to logarithmic space reductions.

In this section, we present an application of the serializability technique to timed automata.
It was shown in [147] that the reachability problem for 2-clock timed automatawith modulo
tests on counter values isPSPACE-hard. For the lower bound proof in [147] it is crucial that
the numerical constants that appear in the transitions of the timed automaton are encoded in
binary. We improve the lower bound from [147] by showing that the reachability problem for 2-
clock timed automata with modulo tests is alreadyPSPACE-hard when the numbers that occur
in transitions are encoded in unary. It shows that very simple extensions of the reachability
problem of timed automata with two clocks arePSPACE-hard. In [124] it has been shown that
model checkingCTL on timed automata with two clocks (but without modulo tests) isPSPACE-
hard (andPSPACE-complete). We prove that already the data complexity of this problem is
PSPACE-hard, although the very recentPSPACE-hardness result by Fearnley and Jurdzinksi
for reachability of 2-clock timed automata [65] implies this. Let us start with the definition of
timed automata, see e.g. [22] for more details.

Before we state the main results, let us introduce the model of timed automata. Here, we
slightly deviate from the definition of timed automata from [124] (and thus from our journal
paper [80]): we do not work with atomic propositons but with atomic actions. LetC be a finite
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5 Branching time model checking on one-counter systems and a new lower bound technique

set, whose elements are calledclocks. A mappingt ∈ RC+ from C to the setR+ of positive
real numbers is also called aclock valuation. The setB(C) of clock constraintsoverC is the
set of all boolean formulas with atomic formulas of the formc ∼ k, wherec ∈ C, k ∈ N and
∼ ∈ {≤,≥}. We use the usual abbreviations, e.g., we writec = k for c ≤ k ∧ c ≥ k. Let us
define the size of the clock constraintc ∼ k as|c ∼ k| = ⌈log k⌉; it is the length of the binary
encoding of the numberk. A clock valuationt ∈ RC+ satisfies a clock constraintγ ∈ B(C), if
the formulaγ becomes true, when each clockc ∈ C is replaced by the valuet(c).

A timed automaton(TA) is a tupleA = (Q,A, C, δ), where

• Q is a finite set ofcontrol states,

• A ⊆ Act is a finite set of action labels,

• C is a finite set ofclocks, and

• δ ⊆ Q×B(C)× A× 2C ×Q is a finite set oftransitions.

Thesizeof the TAA is defined as|A| = |Q|+ |C|+ |A|+∑p∈P |Qp|+
∑

(p,γ,a,R,q)∈δ |γ|. A
timed automatonA = (Q,A, C, δ) defines a transition system

T (A) = (Q× R
C
+,A ⊎ {ε}, { a−→| a ∈ A ⊎ {ε}}),

where(q, t)
a−→ (q′, t′) if, and only if, one of the following two cases holds:

• a = ε, q = q′ and there existsd ∈ R+ such thatt′(c) = t(c) + d for all c ∈ C (time d
elapses).

• a ∈ A and there exists a transition(q, γ, a,R, q′) ∈ δ such that (i) the mappingt : C →
R+ satisfies the clock constraintγ, (ii) t′(c) = t(c) for all c ∈ C \ R, and (iii) t′(c) = 0
for all c ∈ R (i.e., all clocks from the setR are reset).

In this section, we will only consider timed automata with only two clocksx andy. For a
natural numberm let tm : {x, y} → R+ be the clock valuation withtm(x) = m andtm(y) = 0.

CTL model checking on timed automata

As mentioned above in [124], it was shown that model checkingCTL over 2-clock timed au-
tomata isPSPACE-complete. The proof in [124] forPSPACE-hardness only works if the timed
automaton and theCTL formula are part of the input. Here we sharpen this result by showing
that model checkingCTL over 2-clock timed automata isPSPACE-hard already for a fixedCTL
formula.

Proposition 5.14 ([80]) There exists a fixedEF formulaϕfor which the following problem can
be computed by a logspace transducer:
INPUT: A boolean formulaF = F (x1, . . . , xn).
OUTPUT: A 2-clock TAA(F ) with distinguished control statesin andout such that for every
number0 ≤M ≤ 2n − 1 the following are equivalent:
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• F (BINn(M)) = 1.

• There exists a path from(in, tM ) to (out, tM ) in T (A(F )) such thatϕ holds on every
state of this path. ✷

By making use of the previous Proposition we can prove the followingPSPACE lower bound
on model checking 2-clock TA against a fixedCTL formula.

Theorem 5.15 ([80]) There exists a fixedCTL formula of the formEϕ1Uϕ2, whereϕ1 andϕ2

areEF formulas, such that the following problem isPSPACE-complete:
INPUT: A 2-clock TAA and a control stateq ofA.
QUESTION:(T (A), (q, t0)) |= Eϕ1Uϕ2? ✷

Reachability of timed automata with modulo tests

The final application of our lower bound technique concerns the controlstate reachability prob-
lem of timed automata with two clocks but very simple modulo tests. The expressiveness of
timed automata with periodic clock constraints has already been studied in [44].We refer to
[147], where it has been shown that the control state reachability problem (or equivalently the
emptiness problem) for 2-clock timed automata with modulo tests isPSPACE-hard (and in fact
PSPACE-complete). However, the lower bound construction in [147] heavily requires the con-
stants appearing in the clock constraints to be presented inbinary.

The set Mod(C) of modulo clock constraintsover a set of clocksC is the set of boolean
formulas with atomic formulas of the formc ≡ k modℓ andc ∼ k, wherec ∈ C, k, ℓ ∈ N and
∼ ∈ {≤,≥}. A modulo timed automaton (MTA)is a tupleA = (Q, {Qp | p ∈ P}, C, δ), where
everything is the same as for timed automata, but whereδ ⊆ Q× Mod(C)× A× 2C ×Q. The
size|A| of an MTA A is defined in analogy to TA. A clock valuationt : C → R+ satisfiesa
modulo constraint of the formc ≡ k modℓ whenever⌊t(c)⌋ ≡ k modℓ, where for eachr ∈ R+

we define⌊r⌋ to be the largest non-negative integern such thatn ≤ r. The transition system
T (A) of an MTA A is defined analogously as for timed automata (by taking into account the
above definition when a clock valuation satisfies a modulo constraint).

Theorem 5.16 ([80]) The following problem isPSPACE-hard, even if all constants that occur
in the input are given in unary:
INPUT: An MTAA = (Q,A, C, δ) with only two clocksx andy and two distinguished control
statesq0, q1 ∈ Q such that every transition(q, γ, a,R, q′) ∈ δ satisfies

• γ does not contain any atomic formulas of the formx ∼ k,

• x 6∈ R (i.e. x is never reset),

• γ does not contain any atomic formulas of the formy ≡ k modℓ, and

• if y ∼ k is an atomic formula inγ, thenk = 1.

QUESTION: Does(q0, t0) →∗ (q1, t) hold for some clock valuationt ∈ R
{x,y}
+ in T (A)? ✷
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6 Model Checking simple logics on
one-counter systems

In this section we concern ourselves with model checkingHM andEF on one-counter systems
and succinct/parametric one-counter systems.

Until recently the best-known upper bound for model checkingEF on one-counter systems
wasPSPACE proven by Serre [169] which already holds for model checking the modal µ-
calculus. The previously best-known lower bound for this problem was hardness forDP which
was extended to aPNP

|| lower bound in [72]. In Section 6.1 we show that this problem lies inPNP

and is thusPNP-complete by Theorem 5.11. As an application of this upper bound result, we
prove that weak bisimilarity between a one-counter system and a finite systemis in PNP, and in
factPNP-complete. It is worth mentioning that there are only very few natural problems known
to be complete forPNP; the above-mentioned MAX-LEX-SAT being one of them. Moreover,
we show that there is a fixedEF formula for which model checking one-counter systems is hard
for PNP

|| .
In Section 6.2 we discuss model checking parametric one-counter automata againstHM and

EF specifications. We show that both model checkingHM andEF is PSPACE-complete on
succinct one-counter systems. The latter is surprising since there is already a fixedCTL for
which model checking succinct one-counter systems isEXPSPACE-hard (Theorem 5.12). We
also study the model checking problem forHM andEF on parametric one-counter systems. We
prove that model checkingEF on parametric one-counter systems is undecidable via reduction
from Hilbert’s Tenth Problem. Finally, model checkingHM on parametric one-counter systems
is shown to bePSPACE-complete.

Bibliographic notes. The results on model checkingEF one-counter systems have been pub-
lished in the conference paper [82] (LICS 2009) in joint work with Richard Mayr and Anthony
Widjaja To. The results on model checkingCTL on succinct and parametric one-counter systems
have been published in the conference paper [73] (ICALP 2010) in joint work with Christoph
Haase, Jöel Ouaknine and James Worrell. The results on model checkingHM andEF on suc-
cinct and parametric one-counter systems have been published in the conference paper [74]
(FOSSACS 2012) in joint work with Christoph Haase, Joël Ouaknine and James Worrell.

6.1 EF model checking on one-counter systems is
P
NP-complete

In this section we prove that model checkingEF on OCS is in PNP and hencePNP-complete
by Theorem 5.11. For the upper bound we even restrict ourselves to thecase when the input
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formulas are given as directed acyclic graphs (DAGs). Firstly, this implies that our result is more
general, but more importantly it allows us to reduce in polynomial time the question whether a
given one-counter system is bisimilar to a finite transition system toEF model checking on
one-counter systems.

We not only prove that the model checking problem as a decision problem isin PNP but rather
solve theglobalmodel checking problem. The global model checking problem is a computation
problem and asks to compute for a given transition systemT and a given formulaϕ a presenta-
tion of the set of all states satifyingϕ. In our case of model checking one-counter systems, such
a global presentation will be given in terms of formulas of an adequate Presburger-like logic. In
fact, it turned out that only this more general approach allowed us to solvethis problem in the
end. Our proof strategy is as follows. We define a syntactic variant of Presburger arithmetic that
we call MIN-MAX ARITHMETIC for which we prove two things:

• The membership problem (i.e. the question given a formulaψ of M IN-MAX ARITH-
METIC and a natural numbern to decide whethern ∈ [[ψ]]) for M IN-MAX ARITHMETIC

is PNP-complete.

• Given a one-counter systemP with control statesQ and anEF formulaϕ one can compute
for each control stateq ∈ Q a formulaψq in M IN-MAX ARITHMETIC such that

[[ψq]] = {n ∈ N | (T (P), q(n)) |= ϕ}.

Thus, for each control stateq one can compute a presentationψq of the set of naturals that
satisfy theEF formulaϕ in control stateq.

Min-Max Arithmetic

Let us define MIN-MAX ARITHMETIC. Formally, a MIN-MAX ARITHMETIC formula (in DAG
presentation is a sequence of definitionsα = (αi)i∈[1,ℓ] for someℓ ≥ 1, where for eachi ∈ [1, ℓ]
thedefinitionαi is precisely one of the following, wherej, k ∈ [1, i−1] and where◦ ∈ {≤,≥}:

(1) ≡ m mod n, wheren > 0 andm ∈ Z/nZ,

(2) ◦n, wheren ∈ N,

(3) ¬αj
(4) αj ∧ αk,

(5) ◦minαj ,

(6) n ◦minαj , wheren ∈ N,

(7) ◦max(αj , n), wheren ∈ N, or

(8) m ◦max(αj , n), wherem,n ∈ N.

We formally putmin ∅ = ∞ andmax ∅ = −1. Let us now define the semantics of MIN-MAX

ARITHMETIC DAG formulas. For eachαi we define the set[[αi]] ⊆ N inductively as follows:
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(1) [[≡ m mod n]]
def
= {k ∈ N | k ≡ m mod n},

(2) [[◦n]] def
= {k ∈ N | k ◦ n},

(3) [[¬αj ]] def
= N \ [[αj ]],

(4) [[αj ∧ αk]] def
= [[αj ]] ∩ [[αk]],

(5) [[◦minαj ]]
def
= {k ∈ N | k ◦min[[αj ]]},

(6) [[n ◦minαj ]]
def
=

{
N if n ◦min[[αj ]]

∅ otherwise
,

(7) [[◦max(αj , n)]]
def
= {k ∈ N | k ◦max([[αj ]] ∩ [0, n])},

(8)

[[m ◦max(αj , n)]]
def
=

{
N if m ◦max([[αj ]] ∩ [0, n])
∅ otherwise.

We define[[α]]
def
= [[αℓ]]. Observe that MIN-MAX ARITHMETIC formulas can be seen as a frag-

ment of Presburger arithmetic (formulas in one free variable, thus definingultimately periodic
sets) being equi-expressive but with different succinctness.

The sizeof a MIN-MAX ARITHMETIC formula is defined as expected, where each of the
occurring constants is presented in binary.

The following lemma states that the set of naturals that is defined by a formula ofM IN-MAX

ARITHMETIC is ultimatily period with a threshold and period that is computable in polynomial
time.

Lemma 6.1 (Periodicity Lemma for M IN -M AX ARITHMETIC , [82]) Given aM IN-MAX ARITH-
METIC formulaα = (αi)i∈[1,ℓ] one can compute in polynomial time a thresholdtα and a period
pα such that the following holds:

∀n, n′ > tα : n ≡ n′ mod pα ⇒ n ∈ [[α]] ⇔ n′ ∈ [[α]]

The previous lemma is central for proving that the membership problem for MIN-MAX

ARITHMETIC is in PNP (in fact, one can prove that the membership problem isPNP-complete).

Proposition 6.2 ([82]) The following problem isPNP-complete:
INPUT: n ∈ N in binary and aM IN-MAX ARITHMETIC formulaα.
QUESTION:n ∈ [[α]]? ✷
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6 Model Checking simple logics on one-counter systems

From EF model checking to Min-Max Arithmetic

For the rest of this section, let us fix some one-counter systemP = (Q,A, δ0, δ>0). For technical
reasons, we add a fresh atomic actionλ ∈ A that does not previously occur inδ0 ∪ δ>0 and
which we fix for the rest of this section. Our goal is to “saturate”P with λ-labeled transitions
yielding a newOCS P ′ that allows us to characterize the reachability relation inT (P) in terms
of normalized pathsin T (P ′). By normalized paths we mean paths in which the sequence of
counter values of the states in the path are first non-increasing and then non-decreasing. LetP ′

denote the resulting one-counter systemafter saturation(to be made more precise below). Our
saturation construction has the following motivation:

(1) One can compute in polynomial time all information needed for representingnormalized
paths inT (P ′) in terms of few small arithmetic progressions (more details below).

(2) For everyEF formulaϕ in whichλ does not occur we have(T (P), q(n)) |= ϕ if, and only
if, (T (P ′), q(n)) |= ϕ for every configurationq(n).

A path in T (P) is a non-empty finite sequence of transitionsπ = q1(n1) → q2(n2) · · · →
qk(nk) in T (P). We callπ mountain, if n1 = nk andni ≥ n1 for eachi ∈ [1, k]. We callπ
zero, if ni = 0 for somei ∈ [1, k], otherwise we callπ positive. Let q1(n1), q2(n2) ∈ Q × N

be configurations. Then, we writeq1(n1) ↓T (P) q2(n2) (resp.q1(n1) ↑T (P) q2(n2)) whenever
q1(n1) → q2(n2) is a transition inT (P) andn2 ≤ n1 (resp. andn2 ≥ n1) . We now present a
saturation construction that allows us to shortcut mountain paths by addingλ-transitions.

Choosing control statesq, q′ ∈ Q andδ ∈ {δ0, δ>0}, we now present rules (R1) to (R4) that
can be applied only if(q, λ, 0, q′) 6∈ δ. In this case, we can add the transition(q, λ, 0, q′) to δ if
at least one of the following conditions holds:

(R1) (q, a, 0, q′) ∈ δ for somea ∈ A.

(R2) (q, a1,+1, q1) ∈ δ and(q1, a2,−1, q′) ∈ δ>0 for someq1 ∈ Q and somea1, a2 ∈ A.

(R3) (q, a1,+1, q1) ∈ δ, (q1, λ, 0, q2) ∈ δ>0, and(q2, a2,−1, q′) ∈ δ>0 for someq1, q2 ∈ Q
and somea1, a2 ∈ A.

(R4) (q, λ, 0, q1) ∈ δ and(q1, λ, 0, q′) ∈ δ for someq1 ∈ Q.

Formally, letP ′ = (Q,A, δ′0, δ
′
>0) denote the unique one-counter system that we obtain from

P by applying rules (R1)–(R4) until no longer possible. Clearly, one applies at most|Q|2 such
saturation steps in total.

The following lemma characterizes the reachability relation inT (P) with the one inT (P ′).

Lemma 6.3 ([82]) Letp(m), q(n) ∈ Q× N be configurations. Then, the following three state-
ments are equivalent:

(1) p(m) →∗ q(n) holds inT (P).

(2) p(m) →∗ q(n) holds inT (P ′).
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6.1 EF model checking on one-counter systems isPNP-complete

(3) There exists some configurationr(k) ∈ Q×N such thatp(m) ↓∗T (P ′) r(k) andr(k) ↑∗T (P ′)

q(n). ✷

Observe that ifq1(n1) ↑∗T (P ′) q2(n2) andn1 > 0, then alsoq1(n1+i) ↑∗T (P ′) q2(n2+i) for each
i ∈ N. Similarly, if q1(n1) ↓∗T (P ′) q2(n2) andn2 > 0, then alsoq1(n1 + i) ↓∗T (P ′) q2(n2 + i)
for eachi ∈ N. This motivates us to define, for eachq1, q2 ∈ Q, the following set of differences
of counter values of monotone positive paths:

∆>0
↑ (q1, q2)

def
= {d ∈ N | q1(1) ↑∗T (P ′) q2(d+ 1)}

∆>0
↓ (q1, q2)

def
= {d ∈ N | q1(d+ 1) ↓∗T (P ′) q2(1)}

Analogously, we collect the set of differences of counter values of monotone zero paths:

∆=0
↑ (q1, q2)

def
= {d ∈ N | q1(0) ↑∗T (P ′) q2(d)}

∆=0
↓ (q1, q2)

def
= {d ∈ N | q1(d) ↓∗T (P ′) q2(0)}

A theorem due to Chrobak [46] and Martinez [133] states that from a nondeterministic finite
automaton over a unary alphabet one can compute in polynomial time an at most quadratically
larger equivalent one that is in a certain normal form (Chrobak normal form). However, both
papers contain a subtle flaw that was recently fixed in [183]. The proof of the following lemma
will make use of this result.

Lemma 6.4 ([82]) Each of the sets∆>0
↑ (q1, q2),∆>0

↓ (q1, q2),∆=0
↑ (q1, q2),∆=0

↓ (q1, q2) is equiv-

alent to a union ofO(|Q|2) arithmetic progressions with offsets bounded byO(|Q|2) and periods
bounded byO(|Q|) that are moreover computable in polynomial time. ✷

Let q1, q2 ∈ Q be control states. Note that ifq1(n) ↓∗T (P ′) q3(1) ↑∗T (P ′) q2(n) for someq3 ∈ Q,
then alsoq1(n+i) ↓∗T (P ′) q3(1+i) ↑∗T (P ′) q2(n+i). Therefore, we define∇(q1, q2) ∈ N∪{∞}
to be

min{n > 0 | ∃q3 ∈ Q : q1(n) ↓∗T (P ′) q3(1) ↑∗T (P ′) q2(n)}.
Observe that∇(q, q) = 1 for everyq ∈ Q.

Lemma 6.5 ([82]) Either∇(q1, q2) = ∞ or ∇ ∈ O(|Q|2). Moreover∇(q1, q2) can be com-
puted in polynomial time. ✷

The next lemma characterizes zero paths.

Lemma 6.6 ([82]) There is a zero path fromq(n) toq′(n′) in T (P ′) if and only ifn ∈ ∆=0
↓ (q, q′′)

andn′ ∈ ∆=0
↑ (q′′, q′) for someq′′ ∈ Q. ✷

The next lemma characterizes positive paths.

Lemma 6.7 ([82]) Assumen ≤ n′. Then there exists a positive path inT (P ′) from q(n) to
q′(n′) if and only ifn ≥ ∇(q, q′′) andn′ − n ∈ ∆>0

↑ (q′′, q′) for someq′′ ∈ Q.
Assumen ≥ n′. Then there exists a positive path from(q, n) to (q′, n′) in T (P ′) if and only if
n′ ≥ ∇(q′′, q′) andn− n′ ∈ ∆>0

↓ (q, q′′) for someq′′ ∈ Q. ✷
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6 Model Checking simple logics on one-counter systems

Lemma 6.6 and Lemma 6.7 are the central ingredients to compute, for each control state,
a presentation of the natural numbers that satisfy a givenEF formula in terms of MIN-MAX

ARITHMETIC

Theorem 6.8 ([82]) From a given one-counter systemP and a givenEF formulaϕ, one can
compute in polynomial time for each control stateq of P an M IN-MAX ARITHMETIC formula
αq such that[[αq]] = {n ∈ N | (T (P), q(n)) |= ϕ}. ✷

By combining Theorem 6.8 with Proposition 6.2 we obtain the following corollary.

Corollary 6.9 ([82]) The following problem is inPNP:
INPUT: A one-counter systemP = (Q,A, δ0, δ>0), a configurationq(n) ∈ Q×N and anEF

formulaϕ.
QUESTION:(T (P), q(n)) |= ϕ? ✷

Since one can reduce in polynomial time weak bisimilarity of given one-countersystems
against a given finite transition system to model checking one-counter systems againstEF for-
mulas in DAG representation [122, 121], we obtain the following corollary.

Corollary 6.10 ([82]) One can decide inPNP whether a given one-counter system is weakly
bisimilar to a given finite transition system. ✷

Some lower bounds

The data complexity of model checkingEF on one-counter systems can shown to bePNP-
hard by a reduction from the problemINDEX-ODD, which asks for a given listϕ1, . . . , ϕn
of boolean formulas, whether there exists an odd indexi such thatϕ1, . . . , ϕi are all satisfiable
andϕi+1, . . . , ϕn are all unsatisfiable.

Theorem 6.11 ([82]) There exists a fixedEF formula for which model checking a given one-
counter system isPNP

|| -hard. ✷

For the latter problem the best-known upper bound isPNP, so there still remains a complexity
gap for this problem; but recall that for the combined complexity we have a matchingPNP lower
bound by Theorem 5.11. The latter also applies for weak bisimilarity against finite systems by
the following theorem proven by a reduction from thePNP-complete problemDSAT from [151],
thus matching Corollary 6.10.

Theorem 6.12 ([82]) Deciding whether a given one-counter system is weakly bisimilar to a
given finite transition system isPNP-hard. ✷

6.2 Model checking succinct and parametric one-counter
systems

Before we discuss our main results on model checking succinct and parametric one-counter sys-
tems, let us define them more formally. LetX = {x1, . . . , xn} denote a finite set ofparameters,
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Figure 6.1: A part of a succinct one-counter systemA constructed for simulating the validity of
a QBF formula.

and letOp
def
= {add(z), add(x) : z ∈ Z, x ∈ X} ∪ {zero} be a set ofoperations. A parametric

one-counter systemis a tupleA = (Q,A, X,∆), whereQ is a finite set ofcontrol states, and
∆ ⊆ Q × A × Op × Q is thetransition relation. A succinct one-counter systemis a paramet-
ric one-counter system withX = ∅. We write q

a,op−→ q′ whenever(q, a, op, q′) ∈ ∆ or just
q

op−→ q′ when the actiona is not important. Avaluationν : X → Z is a function assigning
an integer to each parameter. Given a parametric one-counter systemA, a valuation induces a

succinct one-counter systemAν which is obtained by replacing each transitionq
a,add(xi)−−−−−→ q′

by q
a,add(ν(xi))−−−−−−−→ q′. For a succinct one-counter systemA, we define its underlying transition

system asT (A)
def
= (Q × N,A, { a−→| a ∈ A}), whereq(n)

a−→ q′(n′) if, and only if, either

q
add(z)−−−−→ q′ andn′ = n+ z, or q

a,zero−−−→ q′ ∈ ∆ andn = n′ = 0.
The model-checking problemfor parametric (and thus for succinct) one-counter systems is

defined as follows.

MODEL CHECKING FOR PARAMETRIC ONE-COUNTER SYSTEMS

INPUT: A parametric one-counter systemA with control statesQ, q ∈ Q and a formula
ϕ.

QUESTION: Does(T (Aν), q(0)) |= ϕ hold for each assignmentν : X → Z?

Model checking succinct one-counter systems

In this section we prove that model checkingHM succinct one-counter systems isPSPACE-hard
and that model checkingEF on them is inPSPACE. Thus both model checkingHM andEF on
succinct one-counter systems turns out to bePSPACE-complete. These results can be seen in
stark contrast toEXPSPACE-completeness of model checkingCTL on succinct one-counter
systems (Theorem 5.12).

The following proposition onPSPACE-hardness of model checkingHM on one-counter sys-
tems can easily proven by a reduction from the validity problem quantified Boolean formulas
(QBF): A part of the succinct one-counter system that one constructsin the reduction is depicted
in Figure 6.1. We do not go into further proof details here.

Proposition 6.13 ([74]) Model checkingHM on succinct one-counter systems isPSPACE-hard.✷
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6 Model Checking simple logics on one-counter systems

Next we are going to outline the proof thatEF model checking on succinct one-counter sys-
tems is inPSPACE, and hencePSPACE-complete by Proposition 6.13. To this end, let us fix
some succinct one-counter systemA with control statesQ. Our result is based on the follow-
ing combinatorial lemma, which expresses periodicity properties of reachability relations in the
succinct one-counter automatonA.

Lemma 6.14 ([74]) There are naturalsτ, δ ≤ exp(|A|) such that for eachn, n′,m,m′ > τ
with n ≡ n′ modδ andm ≡ m′ modδ the following statements hold for eachq, q′ ∈ Q:

(1) q(n) −→∗ q′(m) if, and only if,q(n′) −→∗ q′(m′) in T (P).

(2) q(n) −→∗
A q′(m) if, and only if,q(n′) −→∗

A q′(m′) in T (P). ✷

Let us assume the valuesτ andδ from Lemma 6.14 to be fixed for the rest of this section.
For thePSPACE upper bound, we will show that{n ∈ N | (T (P), q(n)) |= ϕ} is ultimately
periodic with periodicityδ (the periodicity is thus independent from|ϕ|).

Lemma 6.15 ([74]) We have(T (P), q(n)) |= ϕ if, and only if, (T (P), q(n′)) |= ϕ for each
control stateq ∈ Q and eachEF formulaϕ, providedn, n′ > τ + δ · |ϕ| andn ≡ n′ modδ. ✷

The previous lemma can now directly used to construct an alternating polynomial time algo-
rithm for model checkingEF on one-counter systems: as an important blackbox tool it uses a
result from [83] that states that reachability for succinct (even parametric) one-counter systems
is in NP.

Theorem 6.16 ([74]) EF model checking of succinct one-counter systems is inPSPACE. ✷

Model checking parametric one-counter systems

For the rest of this section we concern ourselves with model checking parametric one-counter
systems.

First, we consider model checkingEF on parametric one-counter systems and show that this
problem isΠ0

1-complete. WithEF being a notational fragment ofCTL, membership inΠ0
1 fol-

lows from the very simple fact thatCTL model checking on parametric one-counter systems is
in Π0

1 [73]. Thus, we concentrate in this section on a matchingΠ0
1-lower bound by giving a

reduction from Hilbert’s Tenth Problem to the complement of the model checking problem.

HILBERT’ S TENTH PROBLEM (HTP)

INPUT: A polynomialp with coefficients ranging over the integers.
QUESTION: Do there exista1, . . . , an ∈ Z such thatp(a1, . . . , an) = 0?

HTP was shown to beΣ0
1-complete by Matiyasevich [135]. Note thatHTP remainsΣ0

1-hard
if we restrict theai to range overN: A Diophantine equationp(x1, x2, .., xn) = 0 is solvable
in the integers if, and only if, one of the2n equationsp(±x1, . . . ,±xn) = 0 has a solution in
the naturals. Replacing every unknown with the sum of squares of four unknowns gives, by
Lagrange’s Theorem, the reduction in the other direction.
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6.2 Model checking succinct and parametric one-counter systems

Moreover, we may assume without loss of generality thatai > 0 for eachi ∈ [1, n]. If
someai were to be zero in a solution, we can obtain a new polynomialp′ in n− 1 variables by
replacingai with 0 in p.

Let us fix some polynomialp with coefficients ranging overZ. We will subsequently show
how we can compute fromp a parametric one-counter systemAp with a control stateqp and an
EF formulaϕp such thatp has a solutions over the naturals if, and only if,(T (Aν

p), qp(0)) |= ϕp
for somevaluationν of the parameters ofA. Recall that the valuation of the parameters ofAp

ranges overZ. However, we can easily ensure with a simpleEF formula that a parameterx is
positive. For the following succinct one-counter systemAx≥1

(T (Aν
x≥1), q(0)) |= ¬EF〈ℓ〉true

we have if, and only if,
ν(x) ≥ 1.

q • •

add(1)

add(x) ℓ, zero

More challenging than testing if a parameter is positive when reducing fromHTP is that we
need to be able to express a multiplication relation over the parameters in the parametric one-
counter system. In order to do that, we employ a trick that became popular by the work of
Robinson [158] which allows us to define multiplication in terms of the least common multiple.
In fact givenx, y ∈ N, we have

lcm(x+ y, x+ y + 1)− lcm(x, x+ 1)− lcm(y, y + 1)

=(x2 + x+ 2xy + y2 + y)− (x2 + x)− (y2 + y) = 2xy

We note that addition and subtraction of the parameters can easily be realizedby introducing
additional slack parameters in the parametric one-counter system. Thus, wecan enhance our
parametric one-counter system by transitions of the kindsub(x), meaning thatν(x) is subtracted
from the counter, provided the counter is at leastν(x). We now demonstrate that for parame-
tersx, y, z of some parametric one-counter system that each assume positive values,which we
can check as seen above, we can “express” inEF that z = lcm(x, y). Consider the following
parametric one-counter systemAlcm, where unlabeled transitions are assumed to be labeled with
“a, add(0)”:

Alcm : q •

•

•

•

•

•

•
a, add(1) a?,add(0)

a,sub(z)

a,sub(y)

a,sub(x)

ax, zero

ay, zero

az, zero

The idea is to express that for alln ∈ N, we have that bothx andy divide n if, and only if,
z dividesn. We note that for eachν : {x, y, z} → Z with ν(x), ν(y), ν(y) ≥ 1 we have that
(T (Aν

lcm), q(0))) |= AG(〈a?〉true → ((EF〈ax〉true ∧ EF〈ay〉true) ↔ EF〈az〉true)) if, and
only if, ν(z) = lcm(ν(x), ν(y)).
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6 Model Checking simple logics on one-counter systems

Thus, by introducing a sufficient number of slack variables, we can express multiplication,
addition and subtraction, which allows us to solveHTP for any arbitrary polynomial. Thus, we
obtain the following theorem.

Theorem 6.17 ([74]) Model checkingEF on parametric one-counter systems isΠ0
1-complete.✷

We note that by [135] there exists afixed universalpolynomialpu(n, k, x1, . . . , xm) such that
for each recursively enumerable setS ⊆ N, there is somek0 ∈ N such thatS = {n ∈ N |
∃n1, . . . , nm ∈ N : pu(n, k0, n1, . . . , nm) = 0}. This allows us to strengthen our result insofar
as there exists afixedEF formulaϕ and afixedparametric one-counter systemAwith a control
stateq0 ∈ Q such that it isΠ0

1-complete to decide for a givenn ∈ N whether(T (Aν), q0(n)) |=
ϕ holds for allν : X → Z.

The rest of this section will be devoted to sketching aPSPACE upper bound for model check-
ing HM on parametric one-counter systems. Let us fix some parametric one-counter system
A = (Q,A, X,∆) with X = {x1, . . . , xℓ}, some control stateq0 ∈ Q and someHM formula
α. Since we have already proven thatHM model checking of succinct one-counter systems is
in PSPACE Theorem 6.16 (we show that even model checkingEF on succinct one-counter sys-
tems is inPSPACE), in order to obtain aPSPACE upper bound, it is sufficient to show that if
(T (Aν), q0(0)) |= α holds for someν : X → Z then there is someµ : X → Z such that
(T (Aµ), q(0)) |= α and|µ(x)| can be represented with polynomially many bits in|A|+ |α| for
eachx ∈ X, since such an assignment can be guessed inPSPACE.

For eachq ∈ Q and each subformulaϕ of α, let us defineM(q, ϕ) ⊆ Zℓ × N ⊆ Zℓ+1 as
follows:

M(q, ϕ)
def
= {(z1, . . . , zℓ, n) | (T (Aν), q(n)) |= ϕ andν(xi) = zi, i ∈ [1, ℓ]}.

Before we proceed with the upper bound, we need to introduce some additional notation. For
an integer matrixA = (aij) ∈ Zm×n, we denote by||A|| = maxi{

∑
j |aij |} the norm ofA.

For an integer vector~b = (bi), we denote by||~b|| = ∑
i |bi| the norm of~b. A system of linear

Diophantine inequalities (SLDI)is a system of the formS = (A~x ≥ ~b), whereA ∈ Zm×n is an
m×nmatrix,~b ∈ Zm is anm-vector and~x is ann-vector of indeterminants all ranging over the
integers. BySol(S), we denote the set ofinteger solutionsto the SLDIS = (A~x ≥ ~b). Finally,

we define||S||mat
def
= ||A|| and||S||vec

def
= ||~b||.

Recall thatx1, . . . , xℓ are the parameters ofA. Our overall goal is to expressM(q, ϕ) by a
unionof solutions to SLDIs, each of the form

S = (A~x ≥ ~b), whereA ∈ Z
m×(ℓ+1) and~b ∈ Z

m for somem ≥ 1.

In the remainder of this section, we will assume for any(A~x ≥ ~b) thatA is somem × (ℓ + 1)
matrix and~b is somem-vector for somem ≥ 1. The intuition is that theith component of~x with
i ∈ {1, . . . , ℓ} is going to correspond to the parameterxi of A and the(ℓ+1)th component of~x is
going to correspond to the counter value where theHM formula is evaluated. In caseA = (aij)

we define||A||ℓ+1
def
= max{|ai(ℓ+1)| : i ∈ [m]} and lift this definition to||S||ℓ+1

def
= ||A||ℓ+1.
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6.2 Model checking succinct and parametric one-counter systems

In order to prove that small valuationsν : X → Z suffice forα, one can prove that for each
q ∈ Q and each subformulaϕ of α, we have

M(q, α) =
⋃

i∈I
Sol(Si) (6.1)

for some index setI with ||Si||mat ≤ poly(|ϕ|) and||Si||vec ≤ poly(|ϕ|) · exp(|A|) for eachi ∈ I.
Once this fact has been established, one can show that each SLDISi admits solutions that can
be represented using polynomially many bits in|A| + |α|, thus establishing the desired upper
bound on necessary valuations of the parameters ofA.

We require some additional notation that, together with the subsequent lemma, willbe useful
for proving the existence of sets of SLDIs of “small” size for eachM(q, ϕ). LetH ⊆ Zℓ+1. We

defineH − xk
def
= {(z1, . . . , zℓ, zℓ+1 − zk) ∈ Zℓ+1 | (z1, . . . , zℓ+1) ∈ H} for eachk ∈ [ℓ] and

H − z
def
= {(z1, . . . , zℓ, zℓ+1 − z) ∈ Zℓ+1 | (z1, . . . , zℓ+1) ∈ H} for eachz ∈ Z. The following

lemma states that solutions to SLDIs are closed under the operations−xk and−z and gives
bounds on the blow-up of the introduced norms. We remark that we do not require an effective
variant of this lemma to establish ourPSPACE upper bound.

Lemma 6.18 ([74]) Let S = (A~x ≥ ~b) be an SLDI withA = (aij) ∈ Zm×(ℓ+1). Then the
following holds:

(1) For eachk ∈ [1, ℓ] there is some SLDIS ′ withSol(S ′) = Sol(S)−xk, ||S ′||mat ≤ ||S||mat+
||S||ℓ+1, ||S ′||ℓ+1 = ||S||ℓ+1, and||S ′||vec= ||S||vec.

(2) For eachz ∈ Z, there is some SLDIS ′ with Sol(S ′) = Sol(S) − z, ||S ′||mat = ||S||mat,
||S ′||ℓ+1 = ||S||ℓ+1, and||S ′||vec≤ ||S||vec+ ||S||ℓ+1 · |z|. ✷

The previous lemma allows one to prove (6.1). Bynmax(A) we denote the largest absolute
value of constants appearing inA. The following lemma implies (6.1) and can be proven by
induction on the structure of theHM formula.

Lemma 6.19 ([74]) For everyq ∈ Q and every subformulaϕ of α in negation normal form,
we haveM(q, ϕ) =

⋃
i∈I Sol(Si), whereI is some index set and eachSi is some SLDI with

||Si||mat ≤ |ϕ|, ||Si||ℓ+1 ≤ 1, ||Si||vec≤ (nmax(A) + 1) · |ϕ|. ✷

The following lemma from [163] states that solvable SLDIs have small solutionswhose norm is
independent on the number of rows of the SLDI.

Lemma 6.20 ([163], p. 239)Each solvable SLDIA~x ≥ ~b has a solution of norm at most
poly(||A||+ ||~b||). ✷

Let us come back to our original formulaα. By Lemma 6.19, there exists some SLDISi such
thatM(q0, α) = Sol(Si), and where||Si||mat ≤ |α| and||Si||vec ≤ (nmax(A) + 1) · |α|. Since
we are interested in whether(T (Aν), q0(0)) |= α for someν : X → Z, think of adding to
each matrix that occurs inSi two more rows expressing thatxℓ+1 = 0. Let us call the resulting
SLDI S ′

i. By Lemma 6.20, we know that ifS ′
i is solvable, thenS ′

i has a solution of norm at
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6 Model Checking simple logics on one-counter systems

mostpoly(nmax(A) + |α|). In other words, if(T (Aν), q0(0)) |= α for someν : X → Z, then
(T (Aµ), q0(0)) |= α already holds for someµ : X → Z and the number of bits for representing
µ(x) is polynomially bounded in|A|+ |α| for eachx ∈ X.

Hence, we obtain the following theorem.

Theorem 6.21 ([74]) Model checkingHM on parametric one-counter systems is inPSPACE.✷
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7 Lower bounds on verifying
asynchronous products and the size of
Feferman-Vaught decompositions

Concurrent systems are systems which consist of multiple processes that are simultaneously exe-
cuted and possibly interacting with each other. A standard way of designingconcurrent systems
is to compose together several individual processes by taking some “product” operators. Vari-
ous product operators have been introduced in concurrency theoryand verification ranging from
synchronized products (the strongest form of products) to asynchronous products (the weakest
form of products). From the point of view of system design, synchronized products are the most
suitable form of compositional operators. Unfortunately, from the point of view of system ver-
ification, they are known to be too powerful. For example, while reachability isNL-complete
for finite transition systems, it becomesPSPACE-complete when the same problem is consid-
ered over synchronized products of finite transition systems (a.k.a. communicating finite-state
machines). In the case of infinite-state systems, we see a more drastic change: while reachabil-
ity is decidable in polynomial time for pushdown systems (PDS), the same problem becomes
undecidable when considered over synchronized products of twoPDS (note: these subsume
Minsky’s counter machines).

In order to circumvent the problem of high complexity and undecidability in verifying con-
current systems composed from individual processes via synchronized products, various weaker
notions of products were introduced. Apart from asynchronous products which prohibit the pro-
cesses to communicate, stronger product operators were introduced byrestricting the types of
synchronization that are allowed among the processes. Several such restrictions include bounded
context switches [155], and finite synchronization [199]. These restricted product operators can
serve as good underapproximations of synchronized products. For example, a recent study of
concurrency bugs conducted by the authors of [129] reveal that many real-world concurrency
bugs can be detected within a small number of context switches. In addition, such restrictions
also lead to decidability or lower computational complexity in model checking. Forexample,
checking reachability over communicating finite-state machines and communicatingpushdown
systems with bounded context switches are bothNP-complete [155].

When we consider logic model checking, the situation is not as simple. Asynchronous prod-
ucts do not make model checking easier than synchronized products when we use logics like
LTL andCTL (and, in fact, even their restrictions toLTL(Fs,Gs) and the logicEG). Intuitively,
the reason is that synchronization is easily to simulate in such logics. Consequently, reachability
of 2-stack pushdown systems, which is well-known to be undecidable, easily reduces to model
checking any of aforementioned logics over asynchronous products of two PDS. In contrast,
the situation is substantially better when we consider simpler logics like Hennessy-Milner Logic
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

(HM) and its extension with the reachability operator (EF). In fact, powerful the(Feferman-
Vaught) compositional method(e.g. [132, 156, 199]), which reduces model checking of product
structures to model checking of their components, can be used for obtaining decidability or bet-
ter upper complexity bounds of model checkingHM andEF. We now state a simplified variant
(in comparison to [156]) of the compositional method, where for transition systemsT1, . . . , Tk
we denote by

∏k
i=1 Ti the asynchronous product of theTi.

Theorem 7.1 ([156]) For eachHM/EF formulaϕ over the action labelsA = A1 ∪ . . . ∪ Ak,
for nonempty and pairwise disjoint setsA1, . . . ,Ak, one can computek finite sets ofHM/EF
formulas{ψ1

i }i∈I1 , . . . , {ψki }i∈Ik overA1, . . . ,Ak respectively, and a positive boolean formula
(i.e. no negations)β with variables{x1i }i∈I1 , . . . , {xki }i∈Ik such that forall transition systems
T1, . . . , Tk with initial statess1, . . . , sk we have(

∏k
i=1 Ti, s̄) |= ϕ if, and only if,β[µ] is true,

wheres̄ = (s1, . . . , sk) andµ assigns the variables ofβ as follows:µ(xji ) = 1 if, and only if,
(Tj , sj) |= ψji .

Actually, a stronger version of Theorem 7.1 was proven in [156] (e.g. with atomic propositions).
In the statement of Theorem 7.1, thek sets of formulas and the positive boolean formulaβ
are referred to as thedecompositionof ϕ. To give some concrete illustrations of the power of
this compositional theorem, Theorem 7.1 can be used to show that model-checking fixedEF
formulas (i.e. the complexity is only measured the size of the system) isNL-complete for the
asynchronous product of finite systems (cf.PSPACE-completeness of communicating finite-
state systems),PSPACE-complete for the asynchronous product of pushdown systems [182],
andP-complete for the asynchronous product of basic process algebras.

Despite the aforementioned usefulness of the compositional method, the technique yields
output decompositions with nonelementary complexity in the size of the formula (see [156]),
which is not desirable from both theoretical and practical viewpoints. In fact, it was recently
shown that when we consider stronger logics like first-order logic, where the compositional
method is also possible (e.g. see [132]), this nonelementary complexity is unavoidable [57]. It is
natural to ask whether the size of the decomposition is nonelementary when weconsider simpler
logics likeHM orEF. In fact, this open question has been posed in the literature (e.g. [66, 156]).
It is worth mentioning that such a nonelementary lower bound on the size of decompositions is
simpler to prove for first-order logic, simply because one can enforce models of nonelementary
outdegree.

This open question actually brings us to a more fundamental open question: how does the
asynchronous product affect the complexity of model checking ofHM logic andEF? This open
question has manifested itself in the literature in various concrete forms. As anexample, take
the result that model checkingEF over pushdown systems isPSPACE-complete [196]. Over
the asynchronous product oftwo pushdown systems, the best algorithm for model checkingEF

runs in nonelementary time [182]. In fact, the same nonelementary gap is currently present for
asynchronous product of two basic process algebras. Failing to answer this open question is also
the reason for the existing nonelementary complexity gaps for several verification problems for
PA processes [139]. Recall thatPA can be seen as the asynchronous product extension ofBPA.

In this chapter, we provide answers to the above open questions. A main contribution of this
chapter is to show that, for each integerk > 0, there exists an asynchronous product of two
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basic process algebras whoseEF-logic theory requiresk-fold exponential time to solve. This
means that model checkingEF over the class of asynchronous products of twoBPA requires
nonelementary time, which is in stark contrast toPSPACE-completeness ofEF model checking
overBPA [196]. As an upshot of our result, it follows that model checkingEF-logic overPA-
processes requires nonelementary time, which solves an open question posed by Mayr [139] and
at the same time a question by Löding on model checkingEF on ground tree rewrite systems
[128] (the asynchronous product of twoBPAs is a very restricted ground tree rewrite system).

We also show that similar results hold forHM. More precisely, we prove that for each integer
k > 0 there exists an asynchronous product of twoprefix-recognizable systems(an extension
of BPA andPDS introduced by Caucal [40] by allowing infinitely many rewrite rules com-
pactly represented by regular languages) whoseHM theory requiresk-fold exponential time
to solve. This means that model checkingHM over the class of asynchronous products of two
prefix-recognizable systems requires nonelementary time, which is in stark contrast toPSPACE-
completeness ofHM model checking over prefix-recognizable systems (which easily follows1

from the result of [196]).
An important corollary of our two aforementioned results is that there is no elementary algo-

rithm for computing decompositions of formulas inHM andEF in the sense of Theorem 7.1.
We even go one step further and show that no decompositions of formulas inHM-logic andEF-
logic of elementary size even exist in general (it could still be the case that the decompositions
are generally elementarily large only but the algorithms computing them run in nonelementary
complexity — but we show that this cannot be the case). In other words,bothdescriptional and
computational complexity of the compositional method forHM andEF in the sense of Theo-
rem 7.1 are inherently nonelementary. Incidentally, this also entails the same nonelementary
lower bounds for the compositional method provided in [66] since they generalize Theorem
7.1. Wrapping up, our results entail that the compositional method forEF (resp. HM) inher-
entlyhas to output nonelementary big decompositions for asynchronous product andBPAs (resp.
prefix-recognizable systems) are classes of “hard instance” (infinite-state) transition systems that
witness this.

So far, our nonelementary lower bounds for the compositional method forHM-logic andEF-
logic require the use of infinite-state systems. This still leaves the possibility thatTheorem
7.1 could hold when we restrict the transition systems under consideration to be finite-state.
Questions of this form are of particular interests in finite model theory (e.g. see [126]) and
in verification of finite-state systems. We show, however, that the same nonelementary lower
bounds even relativize to the class of asynchronous products of finite systems.

This chapter is organized as follows. We fix notations and definitions in Section 7.1. We
present nonelementary lower bounds for the classes of asynchronous products ofBPAs and
prefix-recognizable systems in Section 7.2. In Section 7.3, we use results from Section 7.2 to
prove nonelementary lower bounds for the compositional methodà la Feferman and Vaught for
the logicsHM andEF over all transition systems, as well as over all finite transition systems.

Bibliographic notes. The results in this chapter have been published in the conference paper
[77] (STACS 2012) in joint work with Anthony Widjaja Lin.

1On the same note, evenµ-calculus over prefix-recognizable systems is onlyEXP-complete [118, 33].
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

7.1 Preliminaries

Asynchronous product of systems:Givenk ≥ 1 transition systemsT1 = (S1,A1, { a−→1| a ∈
A1}), . . . , Tk = (Sk,Ak, { a−→k| a ∈ Ak}), whereAi ∩ Aj = ∅ for eachi 6= j, we define its
asynchronous product

∏k
i=1 Ti = (S,A, { a−→| a ∈ A}), whereS =

∏k
i=1 Si, A =

⋃k
i=1 Ai,

and where for eacha ∈ A we have(s1, . . . , sk)
a−→ (s′1, . . . , s

′
k) if, and only if, si

a−→i s
′
i for

somei ∈ [1, k] with a ∈ Ai andsj = s′j for eachj ∈ [1, k] \ {i}.

Logic: For reasons of simplicity of presentation, we talk about a parametrized variant of the
logic EF in this chapter that allows to restrict the set of action labels in theEF operator.

Basic process algebras: We briefly recall basic process algebras. A basic process algebra
(BPA) is a tupleP = (Σ,A,∆), whereΣ is a finite set ofprocess constants, A ⊆ Act is a finite
set of action labels and∆ is a finite set ofrewrite rulesof the formu 7→a v, wherea ∈ A, u ∈ Σ
andv ∈ Σ∗. The associated transition systemT (P) is defined asT (P) = (Σ∗,A, { a−→| a ∈
A}), where

a−→= {(uw, vw) | u 7→a v ∈ ∆, w ∈ Σ∗} for eacha ∈ A. Thesizeof theBPA is
defined as|P| = |Σ|+ |A|+∑u 7→av∈∆(1 + |v|).

7.2 Hardness of asynchronous product

We start by proving a nonelementary lower bound for the problem ofmodel checkingEF on
BPA×BPA:
MODEL CHECKING EF ON BPA× BPA

INPUT: Two BPAsP = (Σ,A,∆), P ′ = (Σ′,A′,∆′) with A ∩ A′ = ∅, a pair of process
constants〈X,X ′〉 ∈ Σ× Σ′, and anEF formulaϕ overA ∪ A′.

QUESTION: Does(T (P)× T (P ′), 〈X,X ′〉) |= ϕ hold?

Theorem 7.2 ([77]) Model checkingEF onBPA× BPA is nonelementary. ✷

We then show that this lower bound implies a nonelementary lower bound for model checking
HM over the class of asynchronous products of two prefix-recognizablesystems.

Proof of Theorem 7.2

The structure of the proof of Theorem 7.2 is as follows. We first show how to encode large
counters asEF formulas evaluated over the class of asynchronous products of twoBPAs. Such
large counters are enforced by the two stacks in the twoBPAs, which alternately “guess” an
encoding of a counter and “check” the correctness of the encoding. In this chapter we will
not provide details how this encoding of large counters can be used to encode computations of
Turing machines with a nonelementary membership problem since this is rather standard.

Large counters: The following encoding of large numbers is from [195, 34]. In the following,
the notationsn andℓwill range overN. We define the standardTower functionTower : N×N →
N inductively asTower(0, n)

def
= n andTower(k, n)

def
= 2Tower(k−1,n), for eachk > 0 and each

n ∈ N.
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7.2 Hardness of asynchronous product

We define the alphabetsΩℓ
def
= {0ℓ, 1ℓ} and the valuesval(0ℓ)

def
= 0 andval(1ℓ)

def
= 1 for each

ℓ ≥ 0.
A (1, n)-counteris a word fromΩn0 . Thevalueval(c) of some(1, n)-counterc = σ0 · · ·σn−1

is defined asval(c)
def
=
∑n−1

i=0 2i · val(σi) ∈ [0, 2n − 1]. So the set of valuesval(c) for (1, n)-
countersc equals[0, 2n − 1] = [0,Tower(1, n) − 1]. An (ℓ, n)-counterwith ℓ > 1 is a word
c = c0σ0c1σ1 . . . cmσm, wherem = Tower(ℓ− 1, n)− 1, eachci is an(ℓ− 1, n)-counter with

val(ci) = i andσi ∈ Ωℓ−1 for eachi ∈ [0,m]. We defineval(c)
def
=
∑m

i=0 2
i · val(σi). Observe

thatval(c) ∈ [0,Tower(ℓ, n) − 1] and the length of each(ℓ, n)-counter is uniquely determined
by ℓ andn.

In the following, we defineΩ′
ℓ = {0′ℓ, 1′ℓ} to be a fresh copy ofΩℓ; moreover defineΣℓ =⋃ℓ

i=0Ωi and analogouslyΣ′
ℓ =

⋃ℓ
i=0Ω

′
i.

Definition of the two BPAs: For each integerℓ > 0, let us define the following simpleBPA
Pℓ = (Σℓ,Aℓ,∆ℓ), where

• Aℓ = Σℓ ∪ Σℓ, whereΣℓ = {σ | σ ∈ Σℓ} is a dual copy ofΣℓ.

• ∆ℓ = {τ 7→σ στ | σ, τ ∈ Σℓ} ∪ {σ 7→σ ε | σ ∈ Σℓ}.

The transition systemT (Pℓ) has a fairly regular behavior. The set of states isΣ∗
ℓ . Executing an

actionσ ∈ Σℓ from a stateu ∈ (Σℓ)
∗ allows to remove exactly this leftmost symbolσ from u if

u is non-empty and begins withσ, otherwiseσ cannot be executed fromu. Dually, from every
nonempty stateu ∈ (Σℓ)

+ of T (Pℓ) we can execute every actionσ ∈ Σℓ yielding the stateσu;
the only state from which theσ ∈ Σℓ are not executable is the empty wordε. We define the BPA
P ′
ℓ analogously toPℓ but by priming every symbol. Formally,P ′

ℓ = (Σ′
ℓ,A

′
ℓ,∆

′
ℓ), where

• A′
ℓ = Σ′

ℓ ∪ Σ′
ℓ, whereΣ′

ℓ = {σ′ | σ′ ∈ Σ′
ℓ} is a dual copy ofΣ′

ℓ.

• ∆′
ℓ = {τ ′ 7→σ′ σ′τ ′ | σ′, τ ′ ∈ Σ′

ℓ} ∪ {σ′ 7→σ′ ε | σ′ ∈ Σ′
ℓ}.

Note that the set of states ofT (Pℓ) × T (P ′
ℓ) is (Σℓ)

∗ × (Σ′
ℓ)

∗. Given a states = (u, u′) ∈
(Σℓ)

∗ × (Σ′
ℓ)

∗, we callu the left stack ofs andu′ the right stack ofs. So we treat the words
u andu′ as stacks with their left-most symbols being the top of the stack. Recall that every
(ℓ, n)-counter is in particular a word overΣℓ−1. We extend this notion to words overΣ′

ℓ−1 in
the usual way. So each(ℓ, n)-counter will in particular be either a word overΣℓ−1 or overΣ′

ℓ−1,
depending on whether we address the left stack or the right stack. Note that if some word over
Σk (resp. overΣ′

k) has an(ℓ, n)-counter as a prefix, then the length of this prefix is uniquely
determined byℓ andn.

An extended(ℓ, n)-counteris either a stringcσ, where eitherc ∈ Σ∗
ℓ−1 is an(ℓ, n)-counter

andσ ∈ Ωℓ, or a stringc′σ′, wherec′ ∈ (Σ′
ℓ−1)

∗ is an(ℓ, n)-counter andσ′ ∈ Ω′
ℓ.

Next, we define someEF formulas (with primed counterparts for the right stack) for each
ℓ, n ∈ N:

1. countσ(ℓ,n) for eachσ ∈ Ωℓ such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= countσ(ℓ,n) if, and only
if, for some(ℓ, n)-counterc we have thatcσ is a prefix ofu.
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

2. countσ
′

(ℓ,n) for eachσ′ ∈ Ωℓ such that(T (Pℓ)× T (P ′
ℓ), (u, u

′)) |= countσ
′

(ℓ,n) if, and only
if, for some(ℓ, n)-counterc′ we have thatc′σ′ is a prefix ofu′.

3. xcount(ℓ,n) such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= xcount(ℓ,n) if, and only if, some ex-
tended(ℓ, n)-countercσ (for σ ∈ Ωℓ) is a prefix ofu.

4. xcount′(ℓ,n) such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= xcount′(ℓ,n) if, and only if, some ex-
tended(ℓ, n)-counterc′σ′ (for σ′ ∈ Ω′

ℓ) is a prefix ofu′.

5. first(ℓ,n) (resp.first′(ℓ,n)) such that(T (Pℓ)× T (P ′
ℓ), (u, u

′)) |= first(ℓ,n) (resp.(T (Pℓ)×
T (P ′

ℓ), (u, u
′)) |= first′(ℓ,n)) if, and only if, some extended(ℓ, n)-countercσ (resp.c′σ′)

with val(c) = 0 (resp.val(c′) = 0) is a prefix ofu (resp.u′).

6. last(ℓ,n) (resp. last′(ℓ,n)) such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= last(ℓ,n) (resp.(T (Pℓ) ×
T (P ′

ℓ), (u, u
′)) |= last′(ℓ,n)) if, and only if, some extended(ℓ, n)-countercσ (resp. c′σ′)

with val(c) = Tower(ℓ, n)−1 (resp.val(c′) = Tower(ℓ, n)−1) is a prefix ofu (resp.u′).

7. eq(ℓ,n) such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= eq(ℓ,n) if, and only if, there exist extended
(ℓ, n)-counterscσ ∈ (Σℓ−1)

∗Ωℓ andc′σ′ ∈ (Σ′
ℓ−1)

∗Ω′
ℓ such that (i)cσ is a prefix ofu,

(ii) c′σ′ is a prefix ofu′, and (iii) val(c) = val(c′).

8. inc(ℓ,n) (resp. inc′(ℓ,n)) such that(T (Pℓ) × T (P ′
ℓ), (u, u

′)) |= inc(ℓ,n) (resp. (T (Pℓ) ×
T (P ′

ℓ), (u, u
′)) |= inc′(ℓ,n)) if, and only if, there exist extended(ℓ, n)-counterscσ ∈

(Σℓ−1)
∗Ωℓ andc′σ′ ∈ (Σ′

ℓ−1)
∗Ω′

ℓ such that (i)cσ is a prefix ofu, (ii) c′σ′ is a prefix ofu′,
and (iii) val(c) + 1 = val(c′) (resp.val(c′) + 1 = val(c)).

9. succ(ℓ,n) (resp.succ′(ℓ,n)) such that(T (Pℓ)×T (P ′
ℓ), (u, u

′)) |= succ(ℓ,n) (resp.(T (Pℓ)×
T (P ′

ℓ), (u, u
′)) |= succ′(ℓ,n)) if, and only if, there are extended(ℓ, n)-countersc1σ1 and

c2σ2 (resp.c′1σ
′
1 andc′2σ

′
2) with σ1, σ2 ∈ Ωℓ (resp.σ′1, σ

′
2 ∈ Ω′

ℓ) such thatc1σ1c2σ2 is a
prefix ofu andval(c1) + 1 = val(c2) (resp.val(c′1) + 1 = val(c′2)).

The size of the formulas that we will define will be exponential inℓ and polynomial inn
(both represented in unary). This definition will be given by induction onℓ. We will start

with the following simple observations:xcount(ℓ,n)
def
=
∨
σ∈Ωℓ

countσ(ℓ,n), andxcount′(ℓ,n)
def
=

∨
σ′∈Ω′

ℓ
countσ

′

(ℓ,n).We will now construct several formulasϕ that we evaluate onT (Pℓ)×T (P ′
ℓ)

expressing properties of theleft stack. Without making them explicit, we can construct corre-
sponding analogsϕ′ expressing the respective property on theright stack.

Let us proceed by defining the above formulas for the case ofℓ = 1. We definecountσ(1,n) and

countσ
′

(1,n) as follows:

countσ(1,n)
def
=
〈
Ω0

〉n 〈σ〉true and countσ
′

(1,n)
def
=
〈
Ω′
0

〉n
〈σ′〉true

We putfirst(1,n)
def
= 〈00〉n〈Ω1〉true. The definition oflast(1,n) is analogous. We also define

eq(1,n) asxcount(1,n) ∧ xcount′(1,n) ∧
∧n−1
i=0 〈Ω0〉i〈Ω′

0〉i
(∧

σ∈Ω0
(〈σ〉true ↔ 〈σ′〉true)

)
. The

definitions ofinc(1,n) andsucc(1,n) are analogous.
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7.2 Hardness of asynchronous product

Let us now proceed to the case ofℓ > 1. We start by defining the formulacountσ(ℓ,n) for each
σ ∈ Ωℓ. We will achieve this, by making use of the formulasfirst(ℓ−1,n), last(j,n) with j ∈
[1, ℓ − 1], xcount(ℓ−1,n), andsucc(ℓ−1,n). The first two conjuncts of the definition ofcountσ(ℓ,n)
are self-explanatory,

countσ(ℓ,n)
def
= first(ℓ−1,n) ∧

[
Σℓ−1

∗]
(
xcount(ℓ−1,n) →

(
last(ℓ−1,n) ∨ succ(ℓ−1,n)

))
∧ addσ,

whereas the formulaaddσ will express that the symbolσ follows after the top-most(ℓ, n)-

counter. Formally we putaddσ
def
= ψσℓ−1, where

ψσj
def
=





[
Σj

∗] (
last(j,n) → ψσj−1

)
if j > 1

[
Σ1

∗] (
last(1,n) →

〈
10
〉n 〈11〉〈12〉 · · · 〈1ℓ−2〉〈Ωℓ−1〉〈σ〉true

)
if j = 1.

Intuitively, the formulaψσℓ−1 jumps to last extended(1, n)-counter of the last extended(2, n)-
counter. . . of the last extended(ℓ−1, n)-counter and expresses that the correct sequence follows
from this position. We now definefirst(ℓ,n) as follows:

first(ℓ,n)
def
= xcount(ℓ,n) ∧

[
Σℓ−1

∗] (〈
Ωℓ−1

〉
true →

〈
0ℓ−1

〉
true

)
.

The definition oflast(ℓ,n) is similar.
We now expresseq(ℓ,n), for eachℓ > 1, as the conjunction ofxcount(ℓ,n) ∧ xcount′(ℓ,n) and

[
Σℓ−1

∗]
(
xcount(ℓ−1,n) →



〈
Σ′
ℓ−1

∗〉

eq(ℓ−1,n) ∧

∧

σ∈Ωℓ−1

(〈Σ∗
ℓ−2〉〈σ〉true ↔ 〈Σ′∗

ℓ−2〉〈σ′〉true)






.

Let us give some intuition on the formulaseq(ℓ,n) for eachℓ ∈ [2, k]: Whenever we pop from
the left stack some string from(Σℓ−1)

∗ until on top of the left stack there is some extended
(ℓ − 1, n)-countercσ, one can remove from the right stack a string from(Σ′

ℓ−1)
∗ yielding an

extended(ℓ−1, n) counterc′τ ′ on top of the right stack such thatval(c) = val(c′) and moreover
σ = τ holds.

In analogy toeq(ℓ,n) one can define the formulainc(ℓ,n). Finally, let us definesucc(ℓ,n). We
put

succ(ℓ,n)
def
=
〈
Σ′
ℓ

〉 〈
(Σ′

ℓ−1)
∗〉 (eq(ℓ,n) ∧

〈
Σℓ−1

∗〉 〈
Σℓ
〉
inc′(ℓ,n)

)

Intuitively, we the formulasucc(ℓ,n) pushes onto the right stack some string that it checks to be
a copy of the topmost extended(ℓ, n)-counter of the left stack viaeq(ℓ,n), then pops the topmost
extended(ℓ, n)-counter of the left stack and then invokes the formulainc′(ℓ,n).

It is easy to see that the formulas given above express the desired properties. Furthermore, we
note that the size of each formula is exponential inℓ and polynomial inn.
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

By using standard arguments (e.g. see the proof ofPSPACE-hardness ofEF model checking
over pushdown systems in [18]), one can complete the proof of Theorem7.2 to encode compu-
tations of Turing machines. For proving lower bounds on the size of decompositions later, we
are rather interested in the word language of stack contents satisfying the above formulas from
1. to 9. For this, we briefly recall the notion of (deterministic) finite automata. Adeterministic
finite automaton (DFA) is a tupleA = (Q,Σ, q0, δ, F ), whereQ is a finite set ofstates, Σ is a
finite alphabet, q0 ∈ Q is theinitial state, δ : Q×Σ → Q is thetransition function, andF ⊆ Q
is the set offinal states. ByL(A) = {w ∈ Σ∗ | A acceptsw} we denote thelanguageof A. For

simplicity we define thesizeof A is as|A| def
= |Q|.

We will make use of the following lemma in Section 7.3.

Lemma 7.3 ([77]) EveryDFA accepting the regular language

Lℓ,n
def
= {u ∈ Σ∗

ℓ | ∃u′ ∈ (Σ′
ℓ)

∗ : (T (Pℓ)× T (P ′
ℓ), (u, u

′)) |= xcount(ℓ,n)}

has at leastTower(ℓ− 1, n) + 1 states. ✷

PROOF Recall that every extended(ℓ, n)-counter has a length that is uniquely determined byℓ
andn that is at leastTower(ℓ− 1, n) + 1. We have

Lℓ,n = {cσw | w ∈ Σ∗
ℓ , cσ is some extended(ℓ, n)-counter}.

The lemma now follows from the following simple observation: EveryDFAA over some alpha-
betΣ with L(A) = U · Σ∗ for some∅ ( U ⊆ Σm has at leastm states. �

Lower bounds for HM

We conclude this section by showing how Theorem 7.2 implies a nonelementary lower bound for
model checkingHM on the asynchronous product of two prefix-recognizable systems. Aprefix-
recognizable systemis a tupleR = (Σ,A,∆), whereΣ is finite set of process constants,A ⊆ Act

is a finite set of action labels and∆ is a finite set of rewrite rules of the formU 7→a V , where
a ∈ A, and whereU, V ⊆ Σ∗ are regular languages given asDFAs, say. The associated transition
system isT (R) = (Σ∗,A, { a−→| a ∈ A}), where

a−→= {(uw, vw) | u ∈ U, v ∈ V,w ∈ Σ∗ for
some ruleU 7→a V ∈ ∆} for eacha ∈ A.

One can now construct from a given pair ofBPAs P = (Σ,A,∆) andP ′ = (Σ′,A′,∆′)
and a givenEF formulaϕ overA ∪ A′ a pair of prefix-recognizable systemsR = (Σ,A,∆R)
andR′ = (Σ′,A′,∆′

R) and someHM formula ϕ̃ such that[[ϕ]]T (P)×T (P) = [[ϕ̃]]T (R)×T (R′) as
follows: By [39] one can compute for eachΓ ⊆ A (analogously for eachΓ′ ⊆ A′) a pair of
regular languagesUΓ andVΓ (resp.UΓ′ andVΓ′) each accepted byDFAs of at most exponen-

tial size (in|P| + |P ′|) such that the relation
Γ−→

∗
overΣ∗ (resp.

Γ′

−→
∗

over (Σ′)∗) is exactly

R(Γ̃)
def
= {(uw, vw) | u ∈ UΓ, v ∈ VΓ, w ∈ Σ∗} (resp.R′(Γ̃′)

def
= {(uw, vw) | u ∈ UΓ′ , v ∈

VΓ′ , w ∈ (Σ′)∗}). The latter is even shown for pushdown systems in [39]. Hence we can define
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theHM formula ϕ̃ to emerge fromϕ by replacing each occurence of〈Γ∗〉 by 〈Γ̃〉 and each oc-
currence of〈(Γ′)∗〉 by 〈Γ̃′〉.

Theorem 7.2 and the previous remark immediately imply the following corollary.

Corollary 7.4 ([77]) Model checkingHM on the asynchronous product of two prefix-recognizable
systems is nonelementary. ✷

We remark that model checkingHM on a single prefix-recognizable system is onlyPSPACE-
complete; the upper bound can be shown via reduction toEF model checking pushdown systems,
which is inPSPACE by [196].

7.3 Lower bounds for the compositional method for HM and
EF

We start by proving nonelementary lower bounds for the Feferman-Vaught type compositional
method forHM andEF logics (i.e. Theorem 7.1) already over the class of asynchronous products
of two transition systems. In Section 7.3 we will then show how our lower bounds canbe
relativized to the class of all asynchronous products oftwo finitetransition systems in the end of
this section.

Let us briefly recall decompositions following Theorem 7.1 forEF logic of the asynchronous
product of two transition systems. Analogously one can deal withHM. A decompositionwith
respect to the asynchronous product of two transition systems, the firstcomponent being defined
over action labelsA and the second one overA′ (we assume that any two such setsA andA′ are
non-empty and disjoint for the rest of this section) is a tripleD = (Ψ,Ψ′, β), whereΨ = {ψi}i∈I
andΨ′ = {ψ′

j}j∈J for index setsI andJ , whereβ is a positive boolean formula with variables
ranging over{xi}i∈I ∪ {x′j}j∈J , eachψ ∈ Ψ (resp. eachψ′ ∈ Ψ′) is anEF formula that is
interpreted on the first (resp. second) component, i.e. overA (resp. A′). Recall that such a
decomposition has the property that for every pointed transition systemT overA with states
and every pointed transition systemT ′ overA′ with states′ and everyEF formulaϕ overA∪A′

we have
(T × T ′, (s, s′)) |= ϕ ⇐⇒ β[µ] is true,

whereµ(xi) = 1 if, and only if,(T , s) |= ψi and whereµ(x′j) = 1 if, and only if,(T ′, s′) |= ψ′
j .

As expected, thesizeof such a decomposition is defined as|D| def
=
∑

ψ∈Ψ |ψ|+∑ψ′∈Ψ′ |ψ′|+|β|
.

The goal of this section is to prove the following lower bound on the size of decompositions
for EF andHM.

Theorem 7.5 ([77]) The size of decompositions forEF (resp. HM) formulas in the sense of
Theorem 7.1 cannot be bounded by an elementary function. More precisely, there is a family of
EF (resp. HM) formulas{ϕℓ | ℓ ≥ 1} whereϕℓ is defined over some action labelsAℓ ∪ A′

ℓ,
such that|ϕℓ| ≤ exp(ℓ), and such that for every elementary functionf : N → N there is some
h ∈ N such that every decompositionD for ϕh on the class of all asynchronous products of two
transition systems over, respectively,Ah andA′

h satisfies|D| > f(h). ✷
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

Proof of Theorem 7.5

The proof idea for Theorem 7.5 for the case of the logicEF is as follows (we will remark how to
adapt it for the logicHM later). We consider the sequence of pairs ofBPAs {(Pℓ,P ′

ℓ) | ℓ ≥ 1}
defined in the previous section, where the set of states ofT (Pℓ) (resp. T (P ′

ℓ)) is Σ∗
ℓ (resp.

(Σ′
ℓ)

∗). We will show that if a small (i.e. of elementary size) decomposition forEF formulas
exists in general, then there is a family ofDFAsAℓ of size elementary inℓwith L(Aℓ) = Lℓ,ℓ for
eachℓ, clearly contradicting Lemma 7.3. To this end, we invoke the result from [18]about the
sizes of automata expressing the sets of configurations ofBPAs satisfyingEF formulas combined
with standard constructions from automatic structures.

We first recall the following proposition from [18] about the size ofDFAs representing the set
of configurations ofBPAs satisfyingEF formulas.

Proposition 7.6 ([18]) Given anEF formulaϕ and aBPA P = (Σ,A,∆), there exists aDFA
Aϕ of size doubly exponential in|P| + |ϕ| with L(Aϕ) = [[ϕ]]T (P), i.e. Aϕ accepts the set of
statesu of T (P) with (T (P), u) |= ϕ. ✷

Actually, in [18], the authors construct alternating finite automata with polynomially many
states, which can be translated toDFAs of double exponential size (e.g. see [192]).

Define{ϕℓ | ℓ ≥ 1} asϕℓ
def
= xcount(ℓ,ℓ) over the action labelsAℓ andA′

ℓ, where recall that
Aℓ (resp.A′

ℓ) are the action labels of theBPA Pℓ (resp.P ′
ℓ) defined in the previous section.

To prove Theorem 7.5, assume to the contrary that the there exist decompositions forEF for-
mulasϕℓ, whose sizes can be bounded from above by an elementary function, say byTower(r, |ϕℓ|)
for somefixedr ∈ N. Let h ∈ N be a sufficiently large number for the following arguments
to work. Let us fix a smallest possible decompositionD = (Ψ,Ψ′, β) for the EF formula
ϕh = xcount(h,h) overAh ∪ A′

h. Thus by assumption|D| ≤ Tower(r, |ϕh|). LetΨ = {ψi}i∈I
andΨ′ = {ψ′

j}j∈J . Recall that eachψi ∈ Ψ is anEF formula overAh, and eachψ′
j ∈ Ψ′ is anEF

formula overA′
h. Moreoverβ is a positive boolean formula over the variables{xi}i∈I∪{x′j}j∈J

such that for every state(u, u′) ∈ (Σh)
∗ × (Σ′

h)
∗ of T (Ph)× T (P ′

h), it is the case that

(T (Ph)× T (P ′
h), (u, u

′)) |= ϕh ⇐⇒ β[µ] is true,

whereµ is the assignment toβ where we haveµ(xi) = 1 if, and only if, (T (Ph), u) |= ψi and
µ(x′j) = 1 if, and only if, (T (P ′

h), u
′) |= ψ′

j .
Next, we will use Proposition 7.6 and the small decomposition given by the assumption to

construct aDFA for the languageLh,h = {u ∈ Σ∗
h | ∃u ∈ (Σ′

h)
∗ : (T (Ph)×T (P ′

h), (u, u
′)) |=

ϕh} with less thanTower(h − 1, h) + 1 states, which will contradict Lemma 7.3. To do so,
we first make the following simple observation that relates the decompositionD of ϕh and the
formulaϕh itself.

Define theEF formulaβ̃ overAh∪A′
h to be obtained from the boolean formulaβ by replacing

each variablexi by ψi and each variablex′j by ψ′
j . Then, since all formulasψi andψ′

j are also

formulas overAh ∪ A′
h, the EF formula β̃ is also a formula overAh ∪ A′

h. Moreover, it is
easy to see that by assumption we have[[ϕh]]T (Ph)×T (P ′

h
) = [[β̃]]T (Ph)×T (P ′

h
). In fact, the latter
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immediately follows from the fact that

[[ψi]]T (Ph)×T (P ′
h
) = [[ψi]]T (Ph) × (Σ′

h)
∗, and (7.1)

[[ψ′
j ]]T (Ph)×T (P ′

h
) = Σ∗

h × [[ψ′
j ]]T (P ′

h
) (7.2)

which can easily be proven by induction on the structure of the formulasψi andψ′
j since no

action labels ofPh (resp.P ′
h) occur in the action labels ofψ′

j (resp.ψi). Thus, the goal to obtain
a contradiction will be to show that we can find a smallDFA for

L1(β̃) = {u ∈ Σ∗
h | ∃u′ ∈ (Σ′

h)
∗ : (T (Ph)× T (P ′

h), (u, u
′)) |= β̃}.

Using Proposition 7.6 we obtainDFAs for [[ψi]]T (Ph) (for eachi ∈ I) and[[ψ′
j ]]T (P ′

h
) (for each

j ∈ J) each of size doubly exponential in, respectively,|ψi| + |Ph| and|ψj | + |P ′
h|. To obtain

a smallDFA for L1(β̃) from theseDFAs, we will now perform some simple constructions from
automatic structures (e.g. see [184]). We first briefly recall the notion of(binary) automatic
relations. Fix a nonempty finite alphabetΣ. A pair of words(u,w) = (a1 · · · am, b1 · · · bn) ∈
Σ∗ × Σ∗ can be represented as a wordu ⊗ w = c1 · · · ck of lengthk = max(m,n) in the new
alphabetΣ⊥ × Σ⊥, whereΣ⊥ = Σ ∪ {⊥} with a “padding” symbol⊥ /∈ Σ, and

ci =





(ai, bi) if i ≤ m, i ≤ n
(ai,⊥) if i ≤ m, i > n
(⊥, bi) if i > m, i ≤ n.

A (binary) relationR ⊆ Σ∗ × Σ∗ is said to beautomaticif the language{u ⊗ v | (u, v) ∈
R} ⊆ (Σ⊥ × Σ⊥)∗ can be accepted by aDFA (i.e. is regular). We also writeπ1(R) to be
the projection ofR to the first component, i.e.,π1(R) = {u ∈ Σ∗ | ∃w : (u,w) ∈ R}. The
following proposition is folklore (e.g. see [184]):

Proposition 7.7 (folklore) Given two automatic relationsR1, R2 accepted byDFAs A1 and
A2, respectively, the following statements hold:

• The relationR1 ∩R2 can be accepted by aDFA of size at most|A1| · |A2|.

• The relationR1 ∪R2 can be accepted by aDFA of size at most|A1| · |A2|.

• The languageπ1(R1) ⊆ Σ∗ can be accepted by aDFA of size2O(|A1|). ✷

Observe now that[[ψi]]T (Ph)×T (P ′
h
) (for eachi ∈ I) and[[ψ′

j ]]T (Ph)×T (P ′
h
) (for eachj ∈ J)

is an automatic relation over the alphabetΣ = Σh ∪ Σ′
h that can be accepted byDFAs of size

doubly exponential in, respectively,|ψi|+ |Ph|+ |P ′
h| and|ψ′

j |+ |Ph|+ |P ′
h| by Proposition 7.6.

The construction of a smallDFA A for the languageL1(β̃) can be done in a bottom-up fashion
with respect tõβ using Proposition 7.7 by firstly taking unions and intersections from theDFAs
recognizing[[ψi]]T (Ph)×T (P ′

h
) (for eachi ∈ I) and[[ψ′

j ]]T (Ph)×T (P ′
h
) (for eachj ∈ J), and at the

end projecting to the first component. All in all, there are constantsc1, c2 with c1 < c2 (both
independent ofh) such that

|A| ≤ Tower(c1, |ϕh|+ |Ph|+ |P ′
h|) ≤ Tower(c2, h). (7.3)
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7 Lower bounds on verifying asynchronous products and the size of Feferman-Vaught decompositions

The latter inequality follows from the fact that|Ph| + |P ′
h| ≤ poly(h) and|ϕh| ≤ exp(h). On

the other hand, due to[[ϕh]]T (Ph)×T (P ′
h
) = [[β̃]]T (Ph)×T (P ′

h
) and Lemma 7.3, we must have

|A| ≥ Tower(h− 1, h) + 1. (7.4)

It is clear that if we chooseh sufficiently large, then inequalities (7.3) and (7.4) cannot hold at
the same time, a contradiction.

Remark. The proof above can be easily adapted to the case ofHM-logic by taking prefix-
recognizable systems and theHM formulas of the form ˜xcount(ℓ,ℓ) in analogy to the end of the
previous section (instead ofBPAs andEF formulas of the formxcount(ℓ,ℓ)).

Restricting to finite transition systems

Theorem 7.5 gives a nonelementary lower bound for decompositions overthe asynchronous
product of two general transition systems. This still leaves the possibility thatbetter upper
bounds might be possible when we consider only asynchronous products of finite transition
systems, i.e., the version of Theorem 7.1 when transition systems under consideration are finite.
The following theorem shows that this is not the case.

Theorem 7.8 ([77]) The size of decompositions forEF (resp. HM) formulas in the sense of
Theorem 7.1 cannot be bounded by an elementary function when restricted to the class of finite
transition systems. ✷

Roughly speaking, this theorem can be proven by combining Theorem 7.5 and the fact thatHM
andEF logics satisfy “finite model property with respect to a finite set of formulas”:a logicL
is said to satisfy thefinite model property with respect to a finite set of formulaswhenever, for
every finite setΞ of L-formulas and every transition systemT with states there exists afinite
pointed transition systemTΞ with statesΞ such that for allψ ∈ Ξ we have(T , s) |= ψ if, and
only if, (TΞ, sΞ) |= ψ.

It simple to check that when restricted to logics that are closed under boolean operations the
finite model property with respect to a finite set of formulas is equivalent to the finite model
property (for single formulas).
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8 Lower bounds for bisimilarity of
(higher-order) pushdown systems

In this chapter we present lower bounds for bisimilarity checking on pushdown systems and
higher-order pushdown systems. A celebrated result by Sénizergues states that bisimilarity
checking of pushdown systems is decidable [167]. Sénizergues’ upper bound consists of two
semi-decision procedures and unfortunately no complexity-theoretic upper bound is known for
this problem to date. The best-known lower bound for bisimilarity of pushdown systems isEXP-
hardness by Kǔcera and Mayr [121] — recently Kiefer proved thatEXP-hardness already holds
for the subclass basic process algebras [114]. Concerning higher-order pushdown systems it has
been open whether bisimilarity is decidable.

Our contributions in this chapter are as follows. In Section 8.1 we provide thedetailed con-
struction for undecidability of bisimilarity of order-two pushdown systems. Westate further
undecidability results on the thelower-order problemwhich asks, roughly speaking, asks to de-
cide if a given order-k pushdown system has a behavior that is inherently bisimilar to an order-k
pushdown systems (whether there is no reachable configuration that is bisimilar to an order-k′

pushdown system withk′ < k). In Section 8.2 we a high-level description of our proof that
bisimilarity of pushdown systems is nonelementary.

Bibliographic notes. The undecidability results on higher-order pushdown systems have been
published in the conference paper [27] (FSTTCS 2012) in joint work withChristopher Broad-
bent. The nonelementary lower bound on bisimiliarity of pushdown systems hasbeen accepted
for publication in the conference paper [10] (LICS 2013) in joint work with Michael Benedikt,
Stefan Kiefer and Andrzej Murawski.

8.1 Bisimilarity of order-2 pushdown systems is undecidable

Let us state the main decision problem which we study in this section.

k-PDS-BISIMILARITY

INPUT: A k-PDSP = (Q,A,Γ,∆) and two configurationsq(α), q′(α′) ∈ Q×Stacksk(Γ).
QUESTION: Doesq(α) ∼ q′(α′) hold inT (P)?

The following proposition is folklore and essentially follows from the fact that every configura-
tion of ak-PDS has only finitely many successors and thus a winning strategy for Attacker can
be represented by a finite tree by Kőnig’s Lemma, see also [110].
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8 Lower bounds for bisimilarity of (higher-order) pushdown systems

Proposition 8.1 The problemk-PDS-BISIMILARITY is in Π0
1 for eachk ≥ 1. ✷

Our undecidability proof fork-PDS-BISIMILARITY is a reduction from an appropriate variant
of Post’s Correspondence problem and inspired from [110]. For twowordsu, v over some finite
alphabetΣ we writeu � v if uw = v for somew ∈ Σ∗, that is if u is a prefix ofv. For a

wordw = a1 · · · an with ai ∈ Σ for eachi ∈ [1, n] we denote itsreverseby wR
def
= an · · · a1.

For a finite (resp. infinite) sequence of finite wordsu1, . . . , un (resp. u1, u2, . . .) we write
∏
i∈[1,n] ui

def
= u1u2 · · ·un (resp.

∏
i≥1 ui

def
= u1u2 · · · ) to denote their concatentation.

An instanceof (Modified) Post’s Correspondence Problemis given by a tupleX = (J,Σ, h1, h2),
whereJ ⊆ [1, n] for somen ≥ 1, Σ is a finiteword alphabet, and whereh1, h2 : J∗ → Σ∗ are
homomorphisms. We callX increasingif |h1(j)| ≤ |h2(j)| for eachj ∈ J . We callX non-
erasingif h1(j), h2(j) 6= ε for eachj ∈ J . A solutionto X is a wordw = j1 · · · jℓ ∈ J ℓ with
ℓ ≥ 1 andj1 = 1 such thath1(w) = h2(w). An ω-solutiontoX is a mappings : N+ → J with
s(1) = 1 such that the following equality overω-words holds:

∏
i≥1 h1(s(i)) =

∏
i≥1 h2(s(i)).

Remark 8.2 WhenX is non-erasing and increasing, the following two statements are equiva-
lent for eachs : N+ → J :

• The mappings is anω-solution toX .

• s(1) = 1 andh1(s(1) · · · s(ℓ)) � h2(s(1) · · · s(ℓ)) for everyℓ ∈ N+. ✷

The classical (finitary) problem MPCP asks, given an instanceX , whetherX has a solution.
The infinitary variantω-MPCP asks, given an instanceX , whetherX has anω-solution.

It was shown in [160] thatω-MPCP isΠ0
1-complete. As already observed in [110], Sipser’s

Σ0
1-hardness reduction [170] from the halting problem of Turing machines toMPCP can be

transferred to aΠ0
1-hardness reduction toω-MPCP even when restricting instances to be in-

creasing (by only using Steps 1 to 5 and avoiding Steps 6 and 7 in Section 5.2 of [170]). In fact,
by inspecting the homomorphisms constructed by Sipser, one can additionally assume that the
instances are non-erasing; the latter was not necessary in the undecidability proofs from [110],
but is essential in our hardness proofs. This leads us to the following problem.

ω-NONERASING-INCREASING-MPCP

INPUT: An instanceX = (J,Σ, h1, h2) that is non-erasing and increasing, i.e. such that
h1(j), h2(j) 6= ε and|h1(j)| ≤ |h2(j)| for eachj ∈ J .

QUESTION: DoesX have anω-solution?

The following result is folklore, see [170] for a proof.

Theorem 8.3 ([170]) The problemω-NONERASING-INCREASING-MPCPis Π0
1-complete. ✷

We proveΠ0
1-hardness of2-PDS-BISIMILARITY by giving a many-one reduction from the

problemω-NONERASING-INCREASING-MPCP. For this, let us fix an instanceX = (J,Σ, h1, h2)
of ω-NONERASING-INCREASING-MPCP. We will construct a2-PDA P = (Q,A,Γ,∆) and
two configurationsq([1⊥]) andq′([1⊥]) such thatX has anω-solution if, and only if,q([1⊥]) ∼
q′([1⊥]) holds inT (P).
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8.1 Bisimilarity of order-2 pushdown systems is undecidable

Overview of the Construction. We start from the pair of configurationsq([1⊥]) (the initial
left configuration) andq′([1⊥]) (the initial right configuration), thus both initial configurations
consist of just one order-1 stack. We partition the bisimulation game intothree phases.

Definingj1
def
= 1, in phase 1we repeatedly push indicesj2, j3, . . . ∈ J onto the order-1-stack

of bothconfigurations and we let Defender choose them by using the technique of “Defender’s
Forcing”. The idea is that Defender’s job is to push an infinite sequence of indices that is an
ω-solution toX onto both order-1 stacks ad infinitum. At any situation in the game of the
form q([jℓ · · · j1⊥]) andq′([jℓ · · · j1⊥]) Attacker can play the actionf to challenge Defender by
claiming thath1(j1 · · · jℓ) is not a prefix ofh2(j1 · · · jℓ) in the spirit of Remark 8.2.

This leads us tophase 2in which Defender wishes to proveh1(j1 · · · jℓ) � h2(j1 · · · jℓ) when
the bisimulation game is in the pairq([jℓ · · · j1⊥]) and q′([jℓ · · · j1⊥]). Let w = jℓ · · · j1⊥.
From the pairq([w]) andq′([w]) we let the game get to the pair of configurationst([w][w][w])
and t′([w][w][w]) by performing twopush2 operations on both configurations. From this po-
sition, by again using the “Defender’s Forcing” technique and popping on the top-most order-
1 stack, we allow Defender to choose a situation of the formx([uRjk−1 · · · j1⊥][w][w]) and
x′([uRjk−1 · · · j1⊥][w][w]), where1 ≤ k ≤ ℓ, whereu is a prefix (possibly empty) ofh2(jk),
and moreoverh1(j1 · · · jℓ) = h2(j1 · · · jk−1)u.

From the latter pair of configurations,phase 3deterministically prints from the left configu-
ration essentially (plus some intermediate symbols) the stringh1(j1 · · · jℓ)R by first performing
apop2, and from the right configuration essentially (plus some intermediate symbols)the string
uRh2(j1 · · · jk−1)

R by continuing with the current top order-1-stack.

Since we had three copies ofw at the end of phase two, we can now perform apop2 followed
by a single ‘wait’ on the left configuration, and twopop2s on the right configuration, so that both
then have stack[w]. This allows them both to empty their stacks using the same number ofpop1
operations, allowing our2-PDS to benormed. Thus our suggested definition of normedness
does not help recover decidability. Recall that a configurationp(α) of a k-PDS P is normedif
there exists some control stateqf in P with qf (⊥k) 6 a−→ (emits noa-transition) for eacha ∈ A,
and such that every configurationq(α) with q0(α0) −→∗ q(α) we haveq(α) −→∗ qf (⊥k).

When describing the rules in detail, we list the rewrite rules ofP in reverse order, i.e. first for
phase 3, then forphase 2and finally forphase 1. Adapting the notation from [110], the rewrite
rules that are presented in a represent the moves added to implement “Defender’s Forcing”.
These moves allow Defender to render the two configurations equal, and hence trivially bisimi-
lar, if Attacker does not allow Defender to “decide the stack operations”.

The Details.

Let Γ
def
= J ∪ Σ. The set of control statesQ, the set of actionsA and the transitions∆ of P

are implicitly given by the following rewrite rules. We describe the rules forphase 3first. We
suggest first reading the lemma that follows after the transitions before reading the transitions
themselves.
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x γ
f→֒P y pop2 and x′ γ

f→֒P y′ swapγ for eachγ ∈ Γ ∪ {⊥}
y a

a→֒P y pop1 and y′ a
a→֒P y′ pop1 for eacha ∈ Σ

y j
a→֒P y swapvR for eachj ∈ J , whereh1(j) = va

y′ j
a→֒P y′ swapvR for eachj ∈ J , whereh2(j) = va

y ⊥ ⊥→֒P z1 swap⊥ and y′ ⊥ ⊥→֒P z′1 pop2
z1 ⊥

p→֒P z pop2 and z′1 j
p→֒P z pop2 for eachj ∈ J

z j
p→֒P z pop1 for eachj ∈ J

For the following lemma, observe that from both the initial configurations in the lemma there
is a unique maximal (w.r.t.�) word that can be traced.

Lemma 8.4 ([27]) Assumej1, . . . , jℓ ∈ J with ℓ ≥ 1 and let0 ≤ k ≤ ℓ. Assume some2-stack
α = [uRjk · · · j1⊥][jℓ · · · j1⊥][jℓ · · · j1⊥], whereu ∈ Σ∗. Then we have

x(α) ∼ x′(α) if, and only if, h1(j1 · · · jℓ) = h2(j1 · · · jk)u.

We add the following rules to∆ in order to implementphase 2.

r1 j
f→֒P r2 push2 and r′1 j

f→֒P r′2 push2 for eachj ∈ J

r2 j
f→֒P t push2 and r′2 j

f→֒P t′ push2 for eachj ∈ J

t ⊥ ⊥→֒P x swap⊥ and t′ ⊥ ⊥→֒P x′ swap⊥

t j
p→֒P t′↓ swapj and t′ j

p→֒P t′↓ swapj for eachj ∈ J

t j
p→֒P t swapj for eachj ∈ J

t j
p→֒P t′j(w) swapj and t′ j

p→֒P t′j(w) swapj for eachj ∈ J and

each prefixw of h2(j)

t j
↓→֒P t pop1 and t′↓ j

↓→֒P t′ pop1 for eachj ∈ J

t′j(w) j
↓→֒P t pop1 for eachj ∈ J and each

prefixw of h2(j)

t j
〈j,w〉→֒ P x swapwR and t′j(w)j

〈j,w〉→֒ P x′ swapwR for eachj ∈ J and each

and t′↓ j
〈j,w〉→֒ P x swapwR prefixw of h2(j)

t′j(w) j
〈j,v〉→֒ P x swapvR for eachj ∈ J and all

prefixesv, w of h2(j) s.t.v 6= w

Lemma 8.5 ([27]) Letµ = j1 · · · jℓ ∈ J ℓ with ℓ ≥ 1. Then we have

r1([µ
R⊥]) ∼ r′1([µ

R⊥]) if, and only if, h1(µ) � h2(µ).
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Finally, let us add the following rules to∆ for implementingphase 1.

q k
↑→֒P q′j swapk and q′ k

↑→֒P q′j swapk for eachj, k ∈ J

q j
↑→֒P q swapj for eachj ∈ J

q j
f→֒P r1 swapj and q′j

f→֒P r′1 swapj for eachj ∈ J

q k
j→֒P q swapjk for eachk, j ∈ J

q′j k
j→֒P q′ swapjk for eachk, j ∈ J

q′j k
j′→֒P q swapj′k for eachk, j, j′ ∈ J with j′ 6= j

Lemma 8.6 ([27]) We haveq([1⊥]) ∼ q′([1⊥]) if, and only if,X has anω-solution. ✷

It is not hard to verify that both configurationsq([1⊥]) andq′([1⊥]) are normed. For the main
result in this section to be stated below, the lower bound follows from Theorem 8.3 and Lemma
8.6, whereas the upper bound is stated in Proposition 8.1.

Theorem 8.7 ([27]) The problem2-PDS-BISIMILARITY is Π0
1-complete. The lower bound

even holds when both input configurations are normed. ✷

The Lower Order Problem

Finally in [27], we studied the lower order problem problem which can be seen as the question
whether a given orderk-PDS has a reachable configuration that is bisimilar to an orderk′-PDS,
wherek′ < k. The lower order problem is defined below. In the following, a0-PDS is simply a
finite transition system. It is worth mentioning that the lower order problem is incomparable to
the problem of whether an inputk-PDS is bisimilar to ak′-PDS; in fact for this latter problem
decidability is still open wheneverk ≥ 2. Only very recently decidability of whether a given
pushdown system (1-PDS) is bisimilar to a finite system has been announced [104]. Let us de-
fine the lower order problem.

LOWER ORDERk,k′

INPUT: A k-PDS P and a configurationq(α) of P.
QUESTION: Does there exist a configurationr(β) of P with q(α) −→∗ r(β) such thatr(β) ∼

r′(β′), wherer′(β′) is a configuration of somek′-PDS P ′?

We have obtained the following additional undecidability result in [27].

Theorem 8.8 ([27]) The problemLOWER ORDERk,k′ isΣ0
1-hard and thus undecidable for each

k ≥ 2 and each0 ≤ k′ < k. The lower bound even holds when the inputk-PDS is determinis-
tic. ✷

To date, we are only aware of aΣ0
2 upper bound for the problem LOWER ORDERk,k′ .
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8 Lower bounds for bisimilarity of (higher-order) pushdown systems

8.2 Bisimilarity of pushdown systems is nonelementary

In this section we sketch a nonelementary lower bound for bisimiliarity of pushdown systems.
The latter problem can be defined as follows.

PDS-BISIMILARITY

INPUT: A PDS P = (Q,A,Γ, { a→֒| a ∈ A}) and two configurationsq(w), q′(w′) ∈
Q× Γ∗.

QUESTION: Doesq(w) ∼ q(w′) hold inT (P)?

We recall that bisimilarity has a natural game-theoretic characterization. Given two transition
systems, one can consider a the bisimulation game between the playersAttackerandDefender.
They play rounds, in which Attacker fires a transition from one of the systems and Defender
has to follow with an identically labeled transition from the other system. In the first round,
the chosen transitions must lead from the states to be tested for bisimilarity, while,in each
subsequent round, they must start at the states reached after the preceding round. Defender
loses if she cannot find a matching transition. In this framework, bisimilarity corresponds to the
existence of a winning strategy for Defender.

The game-theoretic reading suggests an intuitive way of reducing halting problems for Turing
machines to bisimulation problems, based on constructing bisimulation games that satisfy the
following condition: a given Turing machine halts on an input string if, and only if, Defender
has a winning strategy. Such games can be viewed as a competition between theplayers, in
which Defender is given an opportunity to exhibit an accepting run and Attacker is equipped
with mechanisms to challenge (and verify) the correctness of Defender’sconstruction. The
effect of constructing a run by Defender is achieved by allowing Defender to make choices
during the game. As the process of playing a bisimulation game naturally favorsAttacker as the
decision maker, it is not actually clear that the game can be used to express Defender’s choice.
Nevertheless, it turns out that thanks to the forcing technique of [110],it is possible to construct
transition systems in which Defender effectively ends up making choices.

When proving hardness of bisimilarity for classes of computational models, such as pushdown
systems, the positions of bisimulation games discussed above must correspond to configurations
of the machines. In particular, this means that during the game, players can be thought of as
having access to the associated computational resources. For example, inour case, Defender
will make moves that store his proposed accepting run on the stack. Additionally, the game
can also store some information in the control state of the pushdown system, but since we are
interested in finding polynomial-time reductions, these have to be of polynomial size.

Next we give more intuition for our argument by discussing howPSPACE computations can
be modeled through bisimulation games, following the argument of Kučera and Mayr [121]
(their argument is forEXP, which is equal to alternatingPSPACE, but we omit alternation from
the discussion, because alternating computation will not be used in our main argument). Let
us consider aPSPACE machineM and an input word. We can code the tape configuration
of such a machine by a stack of polynomial size, and we will thus naturally consider a reduc-
tion that produces a pair of pushdown systems – in fact, they are the same pushdown systems
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8.2 Bisimilarity of pushdown systems is nonelementary

but with different control states – whose stack configurations at any point represent sequences
of configurations ofM with separators (older configurations occur deeper in the stack). The
PDS will have moves that can push new tape symbols of the machineM on the stacks of each
configuration, and we can rely on Defender’s Forcing to delegate the choice of such moves to
Defender. The control state can be used to make sure that tapes are the of correct size, because
each configuration is of polynomial size and we can afford to create polynomially many control
states as part of a polynomial-time reduction.

In order to check that Defender’s choices amount to a computation history, the pushdown
system is able to move into a “verification mode”: at this point, suppose the top ofthe stacks
correspond to a cell having positioni at timet+1; the top stack symbolσ is saved in the control
state, the stack is popped until the top element corresponds to cell positioni at timet, and then
the symbol appearing is compared toσ: if the symbol corresponds to what the transition relation
of the machine says it should be, the machines behave in a bisimilar manner, andotherwise they
do not. Note that in order to support popping from positioni at timet + 1 to positioni at time
t, a counter will be required. Because in this case only polynomially many stepsare needed, the
control state space of the pushdown system can be used for that purpose.

What breaks down in this argument when we try to move to more powerful machines – e.g.
EXPSPACE machines? Firstly, tape configurations are now of size2n, and hence we can no
longer use the control state to verify that the tape configurations are evenof the right size.
Secondly, the verification of a valid transition can no longer be achieved byhaving the machines
simply pop their stacks in synch with one another – they would not know when they have reached
the corresponding cell position at the previous tape configuration.

We deal with the first difficulty by addingcountersto every cell in the stack content; thus
the code of a tape configuration will consist of a sequence ofn address bits followed by a
tape content. We can use these address bits to know that the end of a tape configuration has
occurred, and thus restrict the machines to have separators between configurations. The fact that
the addresses really do represent counters moving up sequentially will need to be verified, but
for EXPSPACE this can still be done through popping and control states.

The solution to the second difficulty is to perform verification of transitions in avery different
way from thePSPACE case. Verification will be carried out only when the machines reach the
boundary of a tape configuration. At this point, the machines will firstgo out of synchby one
tape configuration – with one machine popping the stack down to the next configuration marker
while the other keeps its stack intact. After this, the machines will pop stack symbols, but with
one machine emitting symbols corresponding exactly to what it sees, while the other machine
emits symbols corresponding to the configuration obtained by applying the transition function to
the symbols it sees. Thus, in the second phase, the machines will emit the same symbolsexactly
when the two successive configurations obey the transition function.

The above idea can be extended fromEXPSPACE to k-EXPSPACE inductively. Indices that
count up to a given tower of exponentials will now precede each tape symbol. The indices used
to capture smaller towers will be embedded into those for larger ones. For instance, assuming
that c0, · · · , c2n−1 are the binary strings representing the numbers0, · · · , 2n − 1 respectively,
the sequencec0σ0 · · · c2n−1σ2n−1, whereσi’s are bits, will be used to represent natural numbers
from the interval[0, 22

n − 1]. The indexing can be used to enforce that the stack consists of
tape configurations of the correct size. The verification that counting indices are incremented
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8 Lower bounds for bisimilarity of (higher-order) pushdown systems

correctly as well as the verification that the tape configurations obey the transition function, can
be done using the technique of going out of synch and reading distinct symbols.

Altogether, we getk-EXPSPACE-hardness for allk, and thus a nonelementary lower bound.
Our construction can be adapted for normed pushdown systems, i.e. for pushdown systems in
which every reachable configuration can reach an empty-stack configuration.

Theorem 8.9 ([10]) The problemPDS-BISIMILARITY is nonelementary. The lower bound
even holds when both input configurations are normed, i.e. if every reachable configuration
can reach an empty-stack configuration. ✷
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In this chapter we investigate the following verification problems over groundtree rewrite sys-
temsGTRS (and the extensionRGTRS): (1) model checking against the logicEF andEF1
(i.e. EF restricted to those formulas in which in the parse tree of the formula, every branch has
at most one occurence of the operatorEF) and (2) weak and strong bisimilarity checking of
GTRS/RGTRS against finite transition systems. These problems are arguably the most basic
verification problems over infinite-state systems, especially in the concurrent setting (cf. [139]).
Our main contribution is to pinpoint the complexity of these problems.

The starting point of this chapter is thatEF model checking overGTRS has a nonelementary
complexity, already when consideringEF formulas with two occurrences ofEF operators that
are nested. We remark that a nonelementary lower bound for model checking EF onGTRS is
inherited from our lower bound proof for model checking an asynchronous product of twoBPA
(Theorem 7.2) which was found later than the results presented in this chapter. Nevertheless, we
present the proof for this lower bound due to the following reasons: (i) the proof of Theorem 7.2
requires an unbounded nesting of theEF operators, whereas the results in this chapter already
provide this lower bound when the input formulas haveEF nesting depth at most two, (ii) our
lower bound technique allows to prove a nonelementary lower bound for bisimilarity between
a givenGTRS and a given finite system, and (iii) it turns out that the nesting depth of inputEF

formulas is a significant source of increase in computational complexity whenmodel checking
GTRS. This shows that the existing automata-based algorithms for model checkingEF onGTRS
(cf. [50, 56, 128]) are in some sense optimal, thus answering a question raised by L̈oding in
[128]. The lower bound proof is achieved by an exponential reductionfrom the decidable first-
order theory over finite words, which is well-known to have a nonelementary complexity [180].
With the same arguments one can also show that Hennessy-Milner logicHM suffices to show
the nonelementary lower bound over the more general class ofRGTRS.

We then proceed to look at the fragmentEF1 of theEF consisting of formulas withEF opera-
tor nesting depth at most one. This fragment is interesting for two reasons.Firstly, as mentioned
above, our proof of the nonelementary lower bound for problem (1) over GTRS requires pre-
cisely two nested occurrences ofEF operators. Secondly, there is a polynomial time reduction
from problem (2) to the problem of model checkingEF1 formulas overGTRS if the formulas
are represented as DAGs, which are exponentially more succinct than thestandard tree repre-
sentation of formulas. Our result is that the problem of model checkingEF1 (overGTRS) is
PNEXP-complete (i.e. within the second level of the exponential hierarchy). To thebest of the
author’s knowledge this is the only natural problem that is known to be complete this complex-
ity class. The latter result cannot be obtained by simply applying the existing automata-based
algorithms forEF-logic model checking (cf. [50, 56, 128]). Moreover, a further analysis of
our proof shows that checking bisimilarity between aGTRS and a finite system is solvable in
coNEXP. This has substantially decreased the nonelementary complexity gap with the best-
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9 Verifying ground tree rewrite systems

known lower bound for the problem, which isPSPACE. In fact, these proof techniques can be
easily applied to derive a better upper bound for verification problems forthe classPA, namely
bisimilarity checking ofPA-processes against finite systems is solvable incoNEXP giving the
first elementary upper bound for this problem (cf. [174]).

We then consider two natural extensions of the problem of checking bisimilarity against fi-
nite systems overGTRS: We show that bisimilarity against finite systems over the more general
classRGTRS is nonelementary. The difficulty of proving a complexity lower bound for bisim-
ilarity checking problem is due to the asymmetry between the power of Attacker and Defender
(Attacker is often more powerful) in such games. Known lower bound techniques for bisimi-
larity checking, a.k.a. “Defender’s Forcing”[110], are often implemented by the help of finite
control unit, which many infinite-state models have (e.g. pushdown systems and Petri nets).
The difficulty of providing Defender’s Forcing techniques in the absence of finite control unit
is witnessed by the plethora of open problems concerning decidability/complexity of equiva-
lence checking over infinite-state models likePA andPAD processes (cf. [174]). The lack of
a global finite control unit often means that Defender does not have animmediateway of pun-
ishing Attacker (i.e. Forcing him not to do something bad). In the case ofGTRS or RGTRS,
this means that at any given time Attacker may replace any of (potentially unbounded number
of) the subtrees that are present in the current configuration (i.e. a tree). The results presented
in this chapter provide the first methods for implementing Defender’s Forcingtechnique over
infinite-state models that lack finite-control unit for proving nonelementary lower bounds.

Our results for(R)GTRS are summarized in Table 9.1.
This chapter is organized as follows. Section 9.1 contains some preliminaries.In Section 9.2,

we analyze the complexity of model checkingEF and its fragmentEF1 onGTRS andRGTRS.
We prove a nonelementary lower bound for bisimilarity checking ofRGTRS against finite sys-
tems in Section 9.3. Section 9.3 depends on Section 9.2.

Bibliographic notes. The results in this chapter have been published in the conference paper
[76] (LICS 2011) in joint work with Anthony Widjaja Lin.

9.1 Preliminaries

The classPNEXP denotes deterministic polynomial time with oracle access toNEXP. It is in the
second level of exponential hierarchy, which in turn is inEXPSPACE. Unless stated otherwise
reductionsare always polynomial time many-one reductions. We define the tower function in
one argumentTOWER : N → N asTOWER(0) = 1 andTOWER(n + 1) = 2TOWER(n) for
eachn ∈ N.
A (binary) word is a finite sequencea1a2 · · · an, whereai ∈ {0, 1} for eachi ∈ [1, n] that we
also identify with the logical structurew = (U,P0, P1, <), whereU = [1, n] is the universe,
unary predicatesPa = {i ∈ [1, n] | ai = a} for eacha ∈ {0, 1} and the binary predicate<. By
a result of Stockmeyer thefirst-order theory over (binary) wordsis nonelementary [180]. We
assume in this chapter that first-order formulas are given in prenex normal form.

We will consider the parametrized variant of the logicEF in this chapter and moreover define,
for eachi ≥ 0, thefragmentEFi of EF to consist of all thoseEF formulasϕ such that each path

92



9.1 Preliminaries

Model
checking

GTRS RGTRS

EF0 PSPACE-complete

EF1 PNEXP-complete

EFk, k≥2 NONELEMENTARY

Bisimilarity
against finite

systems
GTRS RGTRS

∼ PSPACE · · · coNEXP
≈ NONELEMENTARY

Table 9.1:EFi model checking and bisimilarity against finite systems forGTRS andRGTRS.

in the syntax tree ofϕ contains at mosti occurences of the parametrizedEF operator (i.e. of the
form 〈Γ∗〉 for some finite setΓ ⊆ Act) .

In this chapter we will be interested in the following decision problems.

EF MODEL CHECKING ON (R)GTRS

INPUT: A (R)GTRS R = (Σ,A, R), a treeT ∈ TreesΣ and anEF formulaϕ.
QUESTION: (T (R), T ) |= ϕ?

The analogous question can be asked for the syntactic fragmentsEFi of EF. EF model checking
of RGTRS is proven to be decidable in timeTOWER(O(n)) in [128]. We also consider bisimi-
larity checking against finite transition systems.

BISIMILARITY OF (R)GTRS AGAINST FINITE SYSTEMS

INPUT: A (R)GTRS R = (Σ,A, R), a treeT ∈ TreesΣ, a finite transition systemT and
a states of T .

QUESTION: DoesT ∼ s hold?

By results from [107, 122] (see also Theorem 1 and Corollary 1 of [121]) bisimilarity against
finite systems can be reduced in polynomial time to model checkingEF1 formulas of the kind
ϕ1 ∧ [A∗]ϕ2, whereϕ1, ϕ2 areEF0 formulas in DAG representation.

93



9 Verifying ground tree rewrite systems

9.2 Model Checking EF and its fragments on (regular)
ground tree rewrite systems

Our first result is that model checkingEF2 overGTRS has nonelementary complexity, which
answers the a question raised by Löding [128].

Theorem 9.1 ([76]) Model checkingEF2 overGTRS is nonelementary. ✷

This proof of this theorem can easily be adapted to show that model checking EF0 overRGTRS
has nonelementary complexity. This lower bound proof is achieved by an exponential reduction
from the decidable first-order theory over finite words, which is well-known to be nonelemen-
tary [180]. Roughly speaking, we design ourGTRS in such a way that in the first phase it
reaches from an input tree a huge tree whose yield (a.k.a. frontier) we interpret as a word, which
will correspond to a word that witnessessatisfiabilityof an input first-order formula over finite
words. This can be realized by the first occurrence of theEF operator in the input formula.
In a second phase we mimic the assignment of variables of the first-order sentence by labeling
leaves appropriately. In the third and final phase, we check via a deterministic bottom-up tree
automaton whether the huge tree (whose leaves are now labeled with variables of the first-order
sentence) satisfies the remaining unquantified subformula. This can be realized by the second
occurrence of theEF operator.

Let us now proceed with the proof. Fix a first-order sentence over binary words

ψ = ∃x1∀x2 . . . ∃x2n−1∀x2n ϕ(x1, . . . , x2n).

Without loss of generality we will assumew 6|= ψ for each binary wordw with |w| < 2. Our
goal is to compute in exponential time aGTRSR = (Σ,A, R), some initial treestart ∈ TreesΣ,
and anEF2-formulaθ such that

∃w ∈ {0, 1}∗ : w |= ϕ if, and only if, start |= θ.

We define our set of actions as

A
def
= {ai | i ∈ [1, 2n]} ∪ {down, up0, up1, up2}

and let
P

def
= (
(
2[1,2n] ∪ {⊥}

)
× {0, 1}

denote the set ofproper leaf labels. The first component label⊥ will not be relevant in this but
in subsequent sections. We define the ranked alphabetΣ = (Σi)i∈{0,1,2} of R as follows, where
the setQ will be defined later:

• Σ0
def
= {start} ∪ P ∪Q,

• Σ1
def
= {root}, and

• Σ2
def
= {⋆}.
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The regular tree languageCombs consists of precisely those treesT ∈ TreesΣ such that

(1) T−1(root) = {ε}, i.e. the (one and) only node ofT that is labeled withroot is the root of
T ,

(2) for each leafx of T we haveT (x) ∈ P ,

(3) for each inner nodex 6= ε of T we have thatT (x) = ⋆ and thatx has a left child that is
a leaf, and

(4) there is at least one inner nodex (with T (x) = ⋆) that is the child ofε.

For eachI ⊆ [1, 2n] define the regular tree languageCombsI to consist of precisely those combs
T ∈ Combs such that

(1) for each leafx of T we haveT (x) ∈ 2I × {0, 1},

(2) for each two distinct leavesx, x′ of T with T (x) = (J, α) andT (x′) = (J ′, α′) we have
J ∩ J ′ = ∅, and

(3) I =
⋃{J | x is a leaf ofT andT (x) = (J, α)}.

Let us give an example for a tree inCombs{2,3,5,7}:

root

⋆⋆

(∅, 0) ⋆

({2, 5}, 1) ⋆

({3}, 1) ⋆

(∅, 0) ({7}, 1)

Intuitively, think of the sequence of thesecond componentsof leaf labels ofT ∈ CombsI
(i.e. the second-component projection of the labels of the yield ofT ) to correspond to a binary
word, and moreover, for each leafx of T , think of thefirst componentof T (x) to correspond to
the index set of variables{x1, . . . , xn} of ϕ that have been bound to the corresponding position
in the word. Hence every comb inCombsI corresponds to a unique binary word along with a
variable valuation with domainI. By Combsϕ denote the trees fromCombs[1,2n] whose word
and variable assignment interpretation satisfiesϕ.
The following three rewriting rules allow to reach all members ofCombs∅ from the singleton
treestart, whereα ∈ {0, 1}:

start
down→֒

root

⋆

(∅, α) ⋆

⋆
down→֒ ⋆

(∅, α) ⋆
⋆

down→֒ (∅, α)
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9 Verifying ground tree rewrite systems

Next, we add the following rules that allows to rewrite the leafs of combs (this rewriting will
correspond to assigning variables to the leaves), whereα ∈ {0, 1} andI ⊆ [1, 2n]:

〈I, α〉 ai→֒ 〈I ∪ {i}, α〉 for eachi ∈ [1, 2n] \ I.

In a next step, we compute in exponential time in|ψ| a nondeterministic tree automaton

A = (Q,F,A,∆)

that acceptsCombsϕ, in particularQ is a finite set ofstates, F ⊆ Q is a set offinal states, Σ is
our ranked alphabet from above and∆ ⊆ (Q ×Q× Σ2 ×Q) ∪ (Q × Σ1 ×Q) ∪ (Σ0 ×Q) is
the transition relation. We add the state setQ toA0 of ourGTRSR. Then we add the following
rewriting rules toR (which will realize the bottom-up computation ofA):

(1) for each rule(q, q′, a, q′′) ∈ ∆∩
(
Q2 × Σ2 ×Q

)
we add the rewriting rulea(q, q′)

up2→֒ q′′,

(2) for each rule(a, q′) ∈ ∆ ∩ (Σ0 ×Q) we add the rewriting rulea
up0−→ q′, and

(3) for each rule(q, root, q′) ∈ ∆ ∩ (Q× Σ0 ×Q) whereq′ ∈ F we add the rewriting rule

root(q′)
up1−→ root.

Finally we defineθ as

〈down∗〉 〈a1〉[a2] · · · 〈a2n−1〉[a2n] 〈{up0, up2}∗〉 〈up1〉 true.

One can easily check that∃w ∈ {0, 1}∗ : w |= ψ if, and only if, (T (R), start) |= θ, which
concludes the proof.

Model checking EF1 over GTRS is complete for P
NEXP

Our nonelementary lower bound proof above uses nested occurencesof two EF operators. Our
main result of this section is that prohibitting nested occurences ofEF operators yields an ele-
mentary model checking complexity.

Theorem 9.2 ([76]) OverGTRS model checking formulas〈Γ∗〉ϕ withϕ ∈ EF0 is in NEXP. ✷

Before sketching a proof of this theorem, we mention the following corollary,which can be
easily derived by (i) establishing a polynomial space procedure usingNEXP oracles (invoked
whenever subformulas of the form〈Γ∗〉ψ are seen), and (ii) using the fact thatPSPACENEXP =
PNEXP [2].

Corollary 9.3 ([76]) Model checkingEF1 overGTRS is in PNEXP. ✷

We now sketch the proof of Theorem 9.2. Let us now suppose that〈Γ∗〉ϕ is the given formula,
R = (Σ,A, R) is the givenGTRS, andT0 ∈ TreesΣ is the input tree. We wish to check whether
(T (R), T0) |= 〈Γ∗〉ϕ. Let us compute in polynomial time (cf. [128]) a nondeterministic bottom-

up tree automatonA that recognizes the setpostΓ
∗

R (T0)
def
= {T ∈ TreesΣ | T0 Γ−→

∗
T} of trees
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9.2 Model Checking EF and its fragments on (regular) ground tree rewritesystems

of R reachable fromT0 by applications of rules with labels fromΓ. It now suffices to show
how to compute nondeterministic bottom-up tree automata that recognize[[ϕ]]T (R). We do not
use the standard automata construction (e.g. [128]) for the set of trees satisfying a givenEF0
formula with respect to a givenGTRS since it suffers from a nonelementary blow-up. Given an
EF0 formula, letmrank(ϕ) be themodality rankof ϕ, i.e., the maximum nesting depth of〈·〉
operators inϕ.

We will show that[[ϕ]]T (R) can be expressed as a union of regular tree languages, each of
which can be accepted by a nondeterministic bottom-up tree automatonAi of exponential size
in |ϕ| + |R|. Furthermore, we can check whether someL(Ai) intersects withL(A) in nonde-
terministic time exponential in|ϕ|+ |R|.

Lemma 9.4 ([76]) We have[[ϕ]]T (R) =
⋃
i∈I L(Ai), for a family {Ai}i∈I , where |Ai| =

exp(|ϕ|+ |R|). One can nondeterministically check whetherL(A) intersects with someL(Ai)
in timeexp(|ϕ|+ |R|).

In fact our proof reveals that the parameter|ϕ| in the above lemma can be replaced bymrank(ϕ).
As a corollary, this yields the sameNEXP upper bound for the model checking problem when
ϕ is given as a DAG.

We now give a proof of Lemma 9.4. Letr = mrank(ϕ). We start by defining a standard
equivalence relation onTreesΣ based on the modality rank ofEF0 formulas: given two trees
T, T ′ ∈ TreesΣ andi ∈ N, write T ≃i T

′ if for everyEF0 formulaψ with mrank(ψ) ≤ i we
have(T (R), T ) |= ψ if, and only if, (T (R), T ′) |= ψ. In other words,T ≃i T

′ if, and only
if, T andT ′ satisfy the same formulas of modality rank at mosti. It is obvious that≃i is an
equivalence relation and thatT ≃i+1 T

′ impliesT ≃i T
′. Furthermore, it is well-known that

the equivalence relation≃i is of finite index, i.e., the number of equivalence classes of≃i is
finite. For each equivalence classC of ≃r, it is clear that either(T (R), T ) |= ϕ for all T ∈ C,
or (T (R), T ) 6|= ϕ for all T ∈ C. For the former case, we say that the equivalence classC
is positive; otherwise, it isnegative. Therefore, one idea is to define the family{Ai}i∈I of
nondeterministic bottom-up tree automata by associating one such automaton for each positive
equivalence classC of ≃r. Two problems with this approach arise unfortunately:

• it is not clear how to compute an automaton for each positive equivalence class, and

• this does not reveal an upper bound on the index of≃r.

We now define a finer relation≡i (for eachi ∈ N) that will give extra information which will
help us solve these two problems. To this end, letK be the maximum number of nodes in the

tree appearing in any rewrite rule inR. Also, letNi
def
= i ·K for eachi ≥ 0. Given any two trees

T, T ′ ∈ TreesΣ, we defineT ≡i T
′ if for each treet ∈ TreesΣ with at mostNi nodes at least

one of the following is true:

• the number of timest appears as a subtree ofT equals the number of timest appears as a
subtree ofT ′,

• the number of timest appears as a subtree exceedsNi both forT andT ′.
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In other words,T ≡i T
′ if, and only if, each subtree with at mostNi nodes appears inT and

T ′ the same number of times up the thresholdNi. In the following, we letTrees≤Ni

Σ denote the
set of trees fromTreesΣ with at mostNi nodes.

As before, it is easy to check that≡i is an equivalence relation and thatT ≡i+1 T
′ implies

T ≡i T
′. To complete the proof of Lemma 9.4, one can proceed as follows:

(1) show that≡i is finer than≃i,

(2) checking whether a functionf : Trees≤Ni

Σ → [0, Ni], representing the number of occur-
rences of subtrees with at mostNi nodes, actually describes an equivalence class of≡i

can be done rather efficiently,

(3) testing whether an equivalence class of≡i is positive (with respect toϕ) can be done
rather efficiently, and

(4) for each positive equivalence classC of ≡i, a nondeterministic bottom-up tree automaton
AC recognizingC can be computed rather efficiently.

As we will see, these will imply Lemma 9.4. For step (1) the following lemma can be shown.

Lemma 9.5 ([76]) For any two treesT, T ′ ∈ TreesΣ, we have thatT ≡i T
′ impliesT ≃i T

′.✷

Intuitively, this lemma holds since satisfaction ofEF0 formulas of modality ranki is only af-
fected by the number of occurences of trees of depthNi (up to some threshold).

Let us now proceed to step (2). Recall that each equivalence classC of ≡r can be described by
a function fromfC : Trees≤Nr

Σ → [0, Nr]. The converse, however, is false, e.g., it is impossible
to have a classC with fC(T ) > 1 for a treeT with two nodes butfC(T ′) = 0 for all treesT ′ with
one node. Also note that the special case wheref(T ) = 0 for all T ∈ Trees

≤Nr

Σ is impossible
for an equivalence class since trees have nonempty domain by definition. Therefore, we need
to be able to check whether a given functionf : Trees

≤Nr

Σ → [0, Nr] actually describes an
equivalence class in≡r. To this end, recall first that any functionf that describes an equivalence
class of≡r counts each subtree of treesT in Trees

≤Nr

Σ with fC(T ) > 0, i.e., if t is a subtree ofT ,
thent contributes to the value off(t). We will first define a new functiong : Trees≤Nr

Σ → [0, Nr]
that avoids “double counting”. This can be done by the following algorithm:

• Setg(T ) := 0 for all T ∈ Trees
≤Nr

Σ and repeat the following for eachT ∈ Trees
≤Nr

Σ with
f(T ) > 0 (ordered by the number of nodes, starting from the largest):

(1) Letf(T ) := f(T )− 1,

(2) g(T ) := g(T ) + 1,

(3) Go through all nodesu of T (except whenu is the root ofT ) and substractf(T ↓u)
by 1 (if becomes negative, then terminate abruptly).

Observe that if this algorithm terminates abruptly, thenf does not actually describe an equiv-
alence class ofC. Furthermore, the algorithm runs in time exponential inr + |R| (recall that
r ≤ |ϕ|) simply because|Trees≤Nr

Σ | ≤ exp(r+ |R|) can be shown. Now, suppose that the func-
tion g has been successfully computed from the given functionf . This implies thatg describes
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a forestF with each treeT ∈ Trees
≤Nr

Σ occurringg(T ) many times. The original functionf
then describes an equivalence class if, and only if, such a forest canbe further “connected into a
big tree”. This last check can be done using the following lemma.

Lemma 9.6 ([76]) The functionf : Trees≤Nr

Σ → [0, Nr] describes an equivalence class in≡r

if, and only if, the functiong : Trees≤Nr

Σ → [0, Nr] (and the forestF corresponding to it) can be
successfully computed fromf by the above algorithm and that one of the following conditions
are satisfied:

(1)
∑

T∈Trees≤Nr
Σ

g(T ) = 1.

(2)
∑

T∈Trees≤Nr
Σ

g(T ) > 1, and for some lettera with some rankh ∈ N and some trees

T1, . . . , Th occuring in the forestF , the treea(T1, . . . , Th) has more thanNr nodes. ✷

Observe that this lemma completes step (2) since this test can be performed in time exponential
in r + |R|.

We now proceed to step (3). This step is rather easy since checking whether an equivalence
classC of ≡r described by a functionfC : Trees≤Nr

Σ → [0, Nr] is positive can be done in time
exponential inr + |R|. Intuitively, the idea is to pick a representativeT of C of exponential
size and compute a finite transition system consisting of the neighborhood ofT up to depthr. It
turns out that the finite transition system also has size exponential inr+ |R|. Therefore, we may
use the standard linear-time algorithm for model checkingHM (i.e. EF0) formulas over finite
transition systems.

We now proceed to step (4), which is the final step. For this, we need to show how to compute
a nondeterministic bottom-up tree automaton recognizing an equivalence classC of ≡r described
by a functionfC : Trees≤Nr

Σ → [0, Nr].

Lemma 9.7 ([76]) Given a functionf : Trees
≤Nr

Σ → [0, Nr] that witnesses an equivalence
classC of ≡r, we can compute a nondeterministic bottom-up tree automaton recognizing pre-
ciselyC in time|f |poly(r+|R|) · exp(r + |R|). ✷

This lemma can be proven as follows. First, compute the functiong : Trees
≤Nr

Σ → [0, Nr]
using the above algorithm, which avoids double counting of subtrees. LetU denote all trees
t ∈ Trees

≤Nr

Σ such thatg(t) = Nr. Let t1, . . . , tm be an enumeration of all treest ∈ Trees
≤Nr

Σ

with g(t) > 0 withoutcounting multiplicities.
One can now design a nondeterministic bottom-up tree automaton that counts thatprecisely

g(ti) many nodesv occur such that the subtree rooted atv equalsti, and that an arbitrary number
of nodesv can occur such that the subtree rooted atv is a tree inU . It is easy to see that such an
automaton of size exponential inr and|R| can be computed.

To summarize, the proof of Lemma 9.4 can now be done as follows. The nondeterministic
bottom-up tree automataAi in the statement of Lemma 9.4 will correspond to positive equiv-
alence classesC described by some functionsfC : Trees≤Nr

Σ → [0, Nr]. Using the last step
above, the automatonAi can be computed in time exponential inr + |R| if f is given as an in-
put. Checking whetherL(A) ∩ L(Ai) 6= ∅ for somei requires us to nondeterministically guess
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9 Verifying ground tree rewrite systems

one such functionf , check whether it describes an equivalence class, compute the automaton
Ai corresponding to it, and check for language intersection withA in the standard way.

Let us discuss the ideas of a matching lower bound forEF1.

Lemma 9.8 ([76]) Over GTRS model checking formulas〈A∗〉ϕ, whereϕ ∈ EF0, is NEXP-
hard. ✷

PROOF (SKETCH) The reduction is from the2n × 2n tiling problem [151]. The idea is to reach

via
A−→

∗
some binary tree with superleafs, where asuperleafis a tree of depth one whose root

has arity2n. Each child of a superleaf will either have a nullary symbolb0 or b1, where the
root of a superleaf contains a tile type. Each superleaf corresponds toa grid element(i, j) ∈
[0, 2n − 1]× [0, 2n − 1], where the nullary symbols of the firstn (resp. lastn) children encode
i (resp. j) in binary. The formulaϕ is now a conjunction ofEF0 formulas expressing the
following:

(1) a superleaf for(0, 0) exists,

(2) whenever there are two superleafs corresponding to the same(i, j), then their tile types
are the same,

(3) if there is a superleaf for(i, j) with i < 2n−1 (resp.j < 2n−1), then there is a superleaf
for (i+ 1, j) (resp.(i, j + 1)), and finally

(4) the horizontal and vertical tiling conditions hold for every superleaf. �

By encodingcircuit valueinto nodes of trees (gates and its evaluations will be represented in
nodes in the tree) and invoking a subroutine to the trees that simulate the2n× 2n tiling problem
one can prove a matching lower bound forEF1.

Theorem 9.9 ([76]) OverGTRS model checkingEF1 is hard forPNEXP. ✷

9.3 Bisimilarity checking of (regular) ground tree rewrite
systems against finite systems

Since bisimilarity checking against finite systems can be reduced to model checkingEF1 formu-
las in DAG representation, the following theorem is known.

Theorem 9.10 ([128, 107])Bisimilarity checking ofRGTRS against finite systems is decidable
in timeTOWER(O(n)). ✷

OverGTRS, however, we obtain an elementary upper bound. It can be derived viaa reduction
to model checking formulas of the kindϕ1 ∧ [A∗]ϕ2, whereϕ1 andϕ2 areEF0 DAG-formulas
and then applying our upper bound result from Theorem 9.2. This technique can also be used to
prove acoNEXP upper bound for bisimilarity checking ofPA-processes against finite systems
(cf. [174]).

Theorem 9.11 ([76]) Bisimilarity checking ofGTRS against finite systems is incoNEXP. ✷
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As a main result of this section we prove that bisimilarity between a regular ground tree rewrite
system and a finite system has nonelementary complexity.

Theorem 9.12 ([76]) Bisimilarity checking ofRGTRS against finite systems is nonelementary.

Since from everyRGTRSR one can compute in polynomial time aGTRS that is weakly bisim-
ilar to R by Theorem 3.3 we obtain the following corollary. The author and Anthony Widjaja
Lin were not aware of Theorem 3.3 at the time when the paper [76] was finished and hence gave
a self-contained proof of the following corollary in [76].

Corollary 9.13 ([75, 76]) Weak bisimilarity checking ofGTRS against finite systems is nonele-
mentary. ✷

Although the proof of Theorem 9.12 also goes via an exponential reduction from the first-
order theory over finite words, due to the lack of finite control unit in(R)GTRS it is not at all
merely an adaptation of the proof of the nonelementary lower bound forEF2 model checking
overGTRS from the previous section. Roughly speaking, we implement Defender’s Forcing
technique by providing rewriting rules of the formL →֒ T , whereL is a regular tree language
andT is an explicit ranked tree. Such rules will allow Defender to punish Attackerin case he
did not play in a way that corresponds to evaluating the first-order sentence on the huge tree.
However, the biggest obstacle we have to overcome is the possibility of Attacker rewriting the
leaves of the tree (that corresponds to the word where the first-sentence is evaluated) in a chaotic
way since the leaves cannot communicate with each other.

Let us proceed to the proof of Theorem 9.12. We reuse some of the notation that was intro-
duced in Section 9.2. Again, let us fix a first-order sentence interpreted over binary words

ψ = ∃x1∀x2 . . . ∃x2n−1∀x2nϕ(x1, . . . , ϕ2n)

and let us assume againw 6|= ψ for each binary wordw with |w| < 2. Our goal is to compute
in exponential time anRGTRS R = (Σ,A, R), some initial treestart ∈ TreesΣ, some finite
transition systemT = (C,A, { a−→T | a ∈ A}), and a configurations∅ ∈ C such that

∃w ∈ {0, 1}∗ : w |= ψ if, and only if, start 6∼ s∅.

We call a subsetI ⊆ [1, 2n] game-conformif I = [1, k] for somek ∈ [0, 2n] andnon-game-
conformotherwise. Analogously, we call a combT ∈ CombsI game-conform(resp. non-
game-conform) if I is game-conform (resp. non-game-conform). Each game-conform comb
T ∈ Combs[1,k] naturally induces a valuationνT of variables with indices from[1, k] to positions
of the yield string defined byT . Let ϕ[νT ] denote the formula that is obtained fromϕ by
replacing the information given byνT and which is evaluated onT in the expected way. This
can be extended to defineψ[νT ]. Hence, e.g.ψ[νT ] is of the form∃xk+1 · · · ∀x2nϕ[νT ] in case
k is even.

In caseI ⊂ [1, 2n] andi ∈ [1, 2n] \ I we say a treeT ′ ∈ CombsI∪{i} is ani-extensionof T if
T ′ can be obtained fromT by choosing exactly one leafx and replacing its labelT (x) = (J, α)
by (J ∪ {i}, α). Recall that byCombsϕ we denote the trees fromCombs[1,2n] whose word
and variable assignment interpretation satisfiesϕ. Likewise letCombsϕ denote the trees from
Combs[1,2n] whose word and variable assignment interpretation does not satisfyϕ.
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9 Verifying ground tree rewrite systems

We define the regular tree languageCombs⊥ = Combs \⋃I⊆[1,2n] CombsI . In other words,
Combs⊥ consists of those combsT ∈ Combs that satisfy

(1) there is some leafx of T with T (x) ∈ {⊥} × {0, 1} or

(2) there are two distinct leavesx, x′ of T with T (x) = (J, α) andT (x′) = (J ′, α′) such that
J ∩ J ′ 6= ∅.

For each game-conformI we will introducetwoconfigurationssI andsI in T . For each non-
game-conformI we haveonecorresponding configurationuI in T . In addition our finite system

T has the configurationssucc andfail. We define as action labelsA
def
= {ai | i ∈ [1, 2n]} ∪ {ϕ}.

The idea of the bisimulation game and difficulties

We remark that we have not yet defined theRGTRSR nor the finite transition systemT . Yet, the
high level idea of the bisimulation game goes as follows, and uses Defender’s Forcing techniques
as e.g. in [121]:

• (initial round ) Attacker chooses from our initial treestart a combT from Combs[1,1] by

moving alongstart
a1−→ T for which he claims thatT |= ψ[νT ] holds. Defender will only

be able to responds∅
a1−→T s[1,1] in T . Hence the new pebble configuration is(T, s[1,1]).

• Next, we repeat the following round game, where the current pebble configuration is
(T, s[1,k]) whereT ∈ Combs[1,k] for each roundk = 1, . . . , 2n− 1:

– (universal round) If k is odd, then Attacker is supposed to move inT , namely

s[1,k]
ak+1−→T s[1,k+1] although the moves[1,k]

ak+1−→T s[1,k+1] is possible. Defender is

now forced to move inT (R), namelyT
ak+1−→ T ′ for somek + 1-extensionT ′ of T .

This response corresponds to the universal quantification∀xk+1 in ψ.

– (existential round) If k is even, then Attacker is supposed to move inT (R), namely

T
ak+1−→ T ′ for somek+1-extensionT ′ of T . This move corresponds to the existential

quantification∃xk+1 in ψ. Defender’s only possible response inT is s[1,k]
ak+1−→T

s[1,k+1].

• (final round ) Finally, when we are in the pebble configuration(T, s[1,2n]), whereT ∈
Combs[1,2n], the actionϕ can be performed that allows Attacker to win (via a rule inR
that containsCombsϕ on the left-hand side) if, and only if,T |= ϕ[νT ].

In order to implement such a game, several difficulties arise. Let us discuss these difficulties
for the universal round (the existential round can be treated dually) andgive solutions to them.
The question is: In the universal round, how can we force Attacker to make in T the move

s[1,k]
ak+1−→T s[1,k+1]?

• 1. Difficulty: What if Attacker movess[1,k]
ak+1−→T s[1,k+1] (which will exist in T )?

Solution: We add the ruleCombs[1,k]
ak+1→֒ s[1,k+1] to R such that Defender has the

possibility to threaten syntactic equivalence by respondingT
ak+1−→ s[1,k+1] in T (R) and

hence wins.
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• 2. Difficulty: What if Attacker movesT
ak+1−→ T ′ in T (R) for somek + 1-extension of

T rather than playing inT ? Solution: Defender can react inT , depending on whether
T ′ |= ψ[νT ′ ] or T ′ 6|= ψ[νT ′ ]. In caseT ′ |= ψ[νT ′ ] she can move tos[1,k+1] and can win.
In caseT ′ 6|= ψ[νT ′ ] she can move tos[1,k+1] and can win.

• 3. Difficulty: What if Attacker playsT
ai−→ T ′ wherei ∈ [1, k]? I.e. Attacker plays an

action that has already been played and thus clearlyT ′ ∈ Combs⊥. Solution: We allow a
simple transition to a configuration inT from which Defender can surely win since surely
T ′ ∈ Combs⊥ and henceT ′ 6∈ Combsϕ.

• 4. Difficulty: What if Attacker plays inT
ai−→ T ′ in T (R) wherei > k + 1? I.e.

Attacker deviates from playing a sequence of actionsa1 · · · ak that correspond to assigning
variables to positions of the yield string of the tree. We also say that the current pebble
configuration is non-game-conform.Solution: We allow in T a special transition for
Defenders[1,k]

ai−→ u[1,k]∪{i} that allows her to win.

The solutions to Difficulty 1 and 2 are standard and are similar to a technique elaborated in
[121]. The solution to Difficulty 3 is straightforward. The real difficultyin the absence of a
finite control(e.g. pushdown systems have a finite control) in the game is Difficulty 4. We have
to provide configurations inT that allow to remember the set of variables in the current treeT
that have been assigned. The difficulty that now arises is that Attacker can continue labeling
leafs inT and pretend some moves later that the current treeT is game-conform all of a sudden
(and hence threaten to play the above-mentioned punishing moves for instance). We have to
carefully design transitions inT that sooner or later punish Attacker since he was the one who
deviated from playing game-conform.

The finite system:

We now define the outgoing transitions ofs[1,k] and ofs[1,k], for each possiblek ∈ [0, 2n− 1]:

(1) s[1,k]
ak+1−→T s[1,k+1],

(2) s[1,k]
ak+1−→T s[1,k+1],

(3) s[1,k]
ak+1−→T s[1,k+1] if k is odd,

(4) s[1,k]
ak+1−→T s[1,k+1] if k is even,

(5) s[1,k]
ai−→T s[1,2n] for eachi ∈ [1, k],

(6) s[1,k]
ai−→T s[1,2n] for eachi ∈ [1, k],

(7) s[1,k]
ai−→T u[1,k+1]∪{i} for eachi ∈ [k + 2, 2n],

(8) s[1,k]
ai−→T u[1,k+1]∪{i} for eachi ∈ [k + 2, 2n],
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Figure 9.1: A snapshot ofT and the outgoing transitions ofs[1,3] in the strong bisimulation game
(i ranges over[1, 2n]).

(9) s[1,2n]
ϕ−→T succ,

(10) s[1,2n]
ai−→T s[1,2n] for eachi ∈ [1, 2n],

(11) s[1,2n]
ϕ−→T fail and the transition

(12) fail
ai−→T fail for eachi ∈ [1, 2n].

Let us now define the outgoing transitions ofuI for each non-game-conformI ⊆ [1, 2n]:

(1) uI
ai−→T s[1,2n] for eachi ∈ I,

(2) uI
ai−→T uI∪{i} for eachi 6∈ I for which I ∪ {i} is non-game-conform,

(3) uI
ai−→T sI∪{i} for eachi 6∈ I for which I ∪ {i} is game-conform, and

1. (4)uI
ai−→T sI∪{i} for eachi 6∈ I for which I ∪ {i} is game-conform.

A snapshot ofT is depicted in Figure 9.1.

The RGTRS

Recall thatC denotes the set of states ofT and thatP denotes the set of proper leaf labels as
defined in Section 9.2. We define the ranked alphabetΣ = (Σi)i∈{0,1,2} of R as follows:

• Σ0 = {start} ∪ P ∪ C,

• Σ1 = {root} and
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• Σ2 = {⋆}.

We note that the only relevant trees (i.e. configurations) inT (R) in our reduction whose leafs
are labeled withC aresingleton trees. ToR we add the rewriting rules

• c
b→֒ c′ for each transitionc

b−→T c′ in T

Furthermore, we add the following leaf rewriting rules, whereα ∈ {0, 1}:

(1) 〈I, α〉 ai→֒ 〈I ∪ {i}, α〉 for eachi ∈ [1, 2n] \ I,

(2) 〈I, α〉 ai→֒ 〈⊥, α〉 for eachi ∈ I, and

(3) 〈⊥, α〉 ai→֒ 〈⊥, α〉 for eachi ∈ I.

Let us add for each possibleI ⊆ [1, 2n] andk ∈ [0, 2n− 1], the following rules toR:

(1) Combs[1,k]
ak+1→֒ s[1,k+1] if k is odd,

(2) Combs[1,k]
ak+1→֒ s[1,k+1] if k is even,

(3) Combs[1,k]\{i}
ai→֒ s[1,k] for eachi ∈ [1, k − 2],

(4) Combs[1,k]\{i}
ai→֒ s[1,k] for eachi ∈ [1, k − 2],

(5) CombsI\{i}
ai→֒ uI for eachi ∈ I if I is non-game-conform,

(6) CombsI
ai→֒ s[1,2n] for eachi ∈ I,

(7) Combsϕ
ϕ→֒ fail, and

(8) Combsϕ ∪ Combs⊥
ϕ→֒ succ.

One can easily verify that for eachT ∈ Combsϕ∪Combs⊥ we haveT ∼ s[1,2n]. This following
lemma establishes correctness of the construction.

Lemma 9.14 ([76]) Let I ⊆ [1, 2n]. If I is game-conform, then

(1) sI 6∼ sI ,

(2) ∀T ∈ CombsI : T 6∼ sI if, and only if,T |= ψ[νT ], and

(3) ∀T ∈ CombsI : T ∼ sI if, and only if,T |= ψ[νT ]. ✷

MoreoverI is non-game-conform, then for eachT ∈ CombsI we haveT ∼ uI .

Finally, in order to realize the initial round (as mentioned above) we add the rulesstart
a1→֒ s[1,1]

andstart
a1→֒ Combs[1,1] to R. Theorem 9.12 follows.
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In total I submit 12 papers published at international conferences, outof which three journal
papers have emerged so far.

[10] Michael Benedikt, Stefan G̈oller, Stefan Kiefer, and Andrzej S. Murawski. Bisimilarity of
Pushdown Automata is Nonelementary. InLICS. IEEE Computer Society, 2013

[14] Stanislav B̈ohm and Stefan G̈oller. Language Equivalence of Deterministic Real-Time
One-Counter Automata Is NL-Complete. InProc. of MFCS, volume 6907 ofLecture
Notes in Computer Science, pages 194–205. Springer, 2011

[15] Stanislav B̈ohm, Stefan G̈oller, and Petr Jaňcar. Bisimilarity of one-counter processes is
PSPACE-complete. InProc. of CONCUR, volume 6269 ofLecture Notes in Computer
Science, pages 177–191. Springer, 2010

[16] Stanislav B̈ohm, Stefan G̈oller, and Petr Jaňcar. Equivalence and regularity of real-time
one-counter automata.Journal of Computer and System Sciences, 2013. accepted for
publication

[17] Stanislav B̈ohm, Stefan G̈oller, and Petr Jaňcar. Equivalence of deterministic one-counter
automata is NL-complete. InProc. of STOC. ACM, 2013. to appear

[27] Christopher Broadbent and Stefan Göller. On Bisimilarity of Higher-Order Pushdown
Automata: Undecidability at Order Two. InProc. of FSTTCS, volume 18 ofLIPIcs, pages
160–172. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012

[73] Stefan G̈oller, Christoph Haase, Joël Ouaknine, and James Worrell. Model Checking
Succinct and Parametric One-Counter Automata. InProc. of ICALP (2), volume 6199 of
Lecture Notes in Computer Science, pages 575–586. Springer, 2010

[74] Stefan G̈oller, Christoph Haase, Joël Ouaknine, and James Worrell. Branching-time model
checking of parametric one-counter automata. InProc. of FoSSaCS, volume 7213 of
Lecture Notes in Computer Science, pages 406–420. Springer, 2012

[75] Stefan G̈oller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Hierarchy
via Ground Tree Rewrite Systems. InProc. of CONCUR, volume 6901 ofLecture Notes
in Computer Science, pages 543–558. Springer, 2011

[76] Stefan G̈oller and Anthony Widjaja Lin. The Complexity of Verifying Ground Tree
Rewrite Systems. InProc. of LICS, pages 279–288. IEEE Computer Society, 2011
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[77] Stefan G̈oller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hard. In
Proc. of STACS, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.to
appear

[78] Stefan G̈oller and Anthony Widjaja Lin. Refining the Process Rewrite Systems Hierarchy
via Ground Tree Rewrite Systems.Transactions on Computational Logic, 2013. accepted
for publication

[79] Stefan G̈oller and Markus Lohrey. Branching-time model checking of one-counter pro-
cesses. InProc. of STACS, volume 5 ofLIPIcs, pages 405–416. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010

[80] Stefan G̈oller and Markus Lohrey. Branching-time model checking of one-counter pro-
cesses and timed automata.SIAM Journal of Computing, 2013. to appear

[82] Stefan G̈oller, Richard Mayr, and Anthony Widjaja To. On the computational complexity
of verifying one-counter processes. InProc. of LICS, pages 235–244. IEEE Computer
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[100] Petr Jaňcar. Decidability of Bisimilarity for One-Counter Processes.Information Com-
putation, 158(1):1–17, 2000.
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