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Abstract

We study finite model reasoning in expressive Horn descrip-
tion logics (DLs), starting with a reduction of finite ABox
consistency to unrestricted ABox consistency. The reduction
relies on reversing certain cycles in the TBox, an approach
that originated in database theory, was later adapted to the
inexpressive DL DL-LiteF , and is shown here to extend to
the expressive Horn DL Horn-ALCFI. The model construc-
tion used to establish correctness makes the structure of finite
models more explicit than existing approaches to finite model
reasoning in expressive DLs that rely on solving systems of
inequations over the integers. Since the reduction incurs an ex-
ponential blow-up, we then develop a dedicated consequence-
based algorithm for finite ABox consistency in Horn-ALCFI
that implements the reduction on-the-fly rather than executing
it up-front. The algorithm has optimal worst-case complexity
and provides a promising foundation for implementations. We
next show that our approach can be adapted to finite (pos-
itive existential) query answering relative to Horn-ALCFI
TBoxes, proving that this problem is EXPTIME-complete in
combined complexity and PTIME-complete in data complex-
ity. For finite satisfiability and subsumption, we also show that
our techniques extend to Horn-SHIQ.

1 Introduction
Many popular expressive description logics (DLs) include
both inverse roles and some form of counting such as func-
tionality restrictions. This combination is well-known to re-
sult in a loss of the finite model property (FMP) and, con-
sequently, reasoning w.r.t. the class of finite models (finite
model reasoning) does not coincide with reasoning w.r.t. the
class of all models (unrestricted reasoning). On the one hand,
this distinction is gaining importance because DLs are in-
creasingly used in database applications, where finiteneness
of models and databases is a central assumption. On the other
hand, finite model reasoning is rarely used when DLs are
applied in practice, mainly because for many DLs that lack
the FMP, no algorithmic approaches to finite model reasoning
are known that lend themselves towards efficient implemen-
tation.

Among the most widely-known DLs that include both in-
verse roles and counting are ALCFI, ALCQI , SHIF , and
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SHIQ, which are prominent fragments of the OWL2 DL
ontology language. While finite model reasoning in these
DLs is known to have the same complexity as unrestricted
reasoning, namely EXPTIME-complete (Lutz, Sattler, and
Tendera 2005), the algorithmic approaches are rather differ-
ent when only finite models are admitted. For unrestricted
reasoning, there is a wide range of applicable algorithms such
as tableau and resolution calculi, which often perform rather
well in practical implementations. For finite model reason-
ing, all known approaches rely on the construction of some
system of inequations (Calvanese 1996; Lutz, Sattler, and
Tendera 2005) and then solve this system over the integers;
the crux is that the system of inequations is of exponential
size in the best case, and consequently it is far from obvi-
ous how to come up with efficient implementations. This is
also true for the two-variable fragment of first-order logic
with counting quantifiers (C2), into which the mentioned
DLs can be embedded (Pacholski, Szwast, and Tendera 2000;
Pratt-Hartmann 2005), that is, all known approaches to finite
model reasoning in C2 rely on solving (at least) exponentially
large systems of inequations.

Interestingly, the situation is quite different on the other
end of the expressive power spectrum. While SHIQ et al. be-
long to the family of expressive DLs, DL-LiteF is a compara-
bly inexpressive DL that emerged from database applications,
but also includes both inverse roles and functionality restric-
tions and thus lacks the FMP. Building on a technique that
was developed in database theory by Cosmadakis, Kanellakis,
and Vardi to decide the implication of inclusion dependen-
cies and functional dependencies over finite databases (1990),
Rosati has shown that finite model reasoning in DL-LiteF
can be reduced in polynomial time to unrestricted reasoning
in DL-LiteF (2008). The reduction is conceptually simple
and relies on completing the TBox by finding certain cyclic
inclusions and then ‘reversing’ them. For example, the cycle
∃r− v ∃s ∃s− v ∃r (funct r−) (funct s−)

that consists of existential restrictions in the ‘forward direc-
tion’ and functionality statements in the ‘backwards direction’
would lead to the addition of the reversed cycle
∃s v ∃r− ∃r v ∃s− (funct r) (funct s).

As a consequence, finite model reasoning in DL-LiteF does
not require new algorithmic techniques and can be imple-
mented as efficiently as unrestricted reasoning. The reduction



also makes explicit the logical consequences of finite models;
in a sense, it can be viewed as an explicit axiomatization of
finiteness.

Given that DL-LiteF is only a very small fragment
of ALCFI and SHIQ, this situation raises the ques-
tion whether the cycle reversion technique extends also
to larger fragments of these DLs. In particular, DL-LiteF
is a ‘Horn DL’, and such logics are well-known to be
algorithmically much more well-behaved than non-Horn
DLs such as ALCFI (Baader, Brandt, and Lutz 2005;
Calvanese et al. 2007). Maybe, then, this is the reason why
cycle reversion works for DL-LiteF?

In this paper, we show that the cycle reversion technique of
Cosmadakis et al. extends all the way to the expressive DLs
Horn-ALCFI and Horn-ALCQI. These logics, as well as
their extensions Horn-SHIF and Horn-SHIQ, are popular
in ontology-based data access (Hustadt, Motik, and Sattler
2007; Ortiz, Rudolph, and Šimkus 2011; Eiter et al. 2012;
Bienvenu, Lutz, and Wolter 2013) and properly extend DL-
LiteF and other relevant Horn DLs such as ELIF (Kris-
nadhi and Lutz 2007). We start with showing that finite ABox
consistency in Horn-ALCFI can be reduced to unrestricted
ABox consistency in Horn-ALCFI by cycle reversion; it
follows that the same is true for finite satisfiability, finite
subsumption, and finite instance checking. While the reduc-
tion technique is conceptually similar to that for DL-LiteF ,
the construction of a finite model in the correctness proof
is more demanding. In comparison to approaches to finite
model reasoning that rely on solving systems of inequations,
though, they make the structure of finite models considerably
more explicit.

Another crucial difference to the DL-LiteF case is that,
when completing Horn-ALCFI TBoxes, the cycles that have
to be considered can be of exponential length, and thus the
reduction is not polynomial. Consequently, when used in
a naive way it can neither be expected to perform well in
practice nor be used to (re)prove tight complexity bounds. To
address these shortcomings, we develop a dedicated calculus
for finite ABox consistency in Horn-ALCFI that implements
the reduction on-the-fly rather than executing it up-front. The
calculus is an extension of a consequence-based procedure
for unrestricted satisfiability in Horn-SHIQ that was intro-
duced by Kazakov in (2009) and implemented in the highly
performant reasoner CB, first to classify the notoriously diffi-
cult Galen ontology. Many other state-of-the art reasoners for
Horn-DLs are also based on consequence-based procedures,
including ELK (Kazakov, Krötzsch, and Simančı́k 2011a)
and CEL (Baader, Lutz, and Suntisrivaraporn 2006). Our al-
gorithm shares the main feature of other consequence-based
procedures to carefully avoid considering ‘types’ (conjunc-
tions of concept names) that are irrelevant for deciding the
problem at hand. We therefore believe that it provides a very
promising basis for efficient implementations of finite model
reasoning in Horn-ALCFI . It also (re)proves the optimal up-
per EXPTIME complexity bound for finite ABox consistency
in this DL. Via a reduction, the cycle reversing reduction and
the consequence-based algorithm can be applied also to finite
satisfiability and subsumption in Horn-ALCQI.

We then consider the paradigm of ontology-based data

access (OBDA), extending our results from finite ABox con-
sistency to answering positive existential queries (PEQs),
relative to Horn-ALCFI TBoxes over finite models. In par-
ticular, we show that the reduction based on cycle reversion
developed for ABox consistency also works in the case of
PEQ answering. The construction of (counter)models in the
correctness proofs, however, becomes yet more difficult and
technical, and proceeds in two stages. First, we carefully
modify the models constructed for finite ABox consistency
so that there are no unintended matches of acyclic conjunc-
tive queries (CQs). And second, we take a product with a
finite group of high girth to eliminate unintended matches
of cyclic CQs. Based on this result, we then prove that finite
PEQ entailment (the Boolean version of PEQ answering) in
Horn-ALCFI is EXPTIME-complete regarding combined
complexity and PTIME-complete regarding data complexity.
Previously, it was only known that finite CQ answering in
(non-Horn) ALCQI is decidable and in CONP regarding
data complexity (Pratt-Hartmann 2009).

Some proof details are deferred to the appendix in the long
version: http://tinyurl.com/kr14fmr

2 Preliminaries
We introduce the DLs Horn-ALCFI and Horn-ALCQI, as
well as the reasoning tasks studied in this paper. The origi-
nal definition of these DLs is based on a notion of polarity
and somewhat unwieldy (Hustadt, Motik, and Sattler 2007);
alternative and more direct definitions have been proposed
later, see for example (Lutz and Wolter 2012). For brevity, we
directly introduce Horn-ALCQI TBoxes in a normal form
that is convenient for our purposes and disallows syntactic
nesting of operators. It is a minor variation of the normal
form proposed in (Kazakov 2009).

Let NC, NR, and NI be countably infinite and disjoint sets
of concept names, role names, and individual names. A role
is either a role name r or an inverse role r−. A Horn-ALCQI
TBox T is a set of concept inclusions (CIs) that can take the
following forms:

K v A K v ⊥ K v ∃r.K ′

K v ∀r.K ′ K v (6 1 r K ′) K v (> n r K ′)

where K and K ′ denote a (possibly empty) conjunction of
concept names, A a concept name, r a (potentially inverse)
role, and n ≥ 2. Throughout the paper, we will deliberately
confuse conjunctions of concept names and sets of concept
names. The empty conjunction is abbreviated by >. As usual,
we allow to easily switch between role names and their in-
verse by identifying (r−)− and r. A Horn-ALCFI TBox is
a Horn-ALCQI TBox that does not include CIs of the form
K v (> n r K ′).

The semantics of Horn-ALCQI is based on interpretations
as usual, see (Baader et al. 2003) for details. We write T |=
C v D if the concept inclusion C v D is satisfied in all
models of the TBox T , and T |=fin C v D if the same holds
for all finite models. A concept nameA is (finitely) satisfiable
w.r.t. a TBox T if T has a (finite) model I with AI 6= ∅. If
T |= A v B (resp. T |=fin A v B) with A and B concept
names, then we say that B is (finitely) subsumed by A.



An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b are individual names. For simplicity, we make the
standard names assumption, that is, every interpretation I
interpretes all individuals as themselves; for example I satis-
fies A(a) if a ∈ AI . The standard names assumption implies
the unique name assumption (UNA). The results in this pa-
per, however, do not depend on any of these assumptions.
Throughout the paper, we sometimes write r−(a, b) ∈ A for
r(b, a) ∈ A and use Ind(A) to denote the set of all individual
names that occur in A.

We write A, T |= A(a) if the ABox assertion A(a) is sat-
isfied in all common models of the ABox A and the TBox T ,
and A, T |=fin A(a) if the same holds for all finite models.
We then say that a is a (finite) instance of A inA w.r.t. T . An
ABox A is (finitely) consistent w.r.t. T if there is a (finite)
model I of T that satisfies all assertions in A.

The above notions give rise to four decision problems stud-
ied in this paper, which are finite satisfiability (of a concept
name w.r.t. a TBox), finite subsumption (between two con-
cept names w.r.t. a TBox), finite ABox consistency (w.r.t. a
TBox) and finite instance checking (of an ABox individual
and a concept name, w.r.t. an ABox and a TBox). There are
easy polynomial time reductions from satisfiability to sub-
sumption to instance checking to ABox consistency, which
work both in the finite and in the unrestricted case.

The following examples show that, in Horn-ALCFI , finite
and unrestricted reasoning do not coincide.
Example 1
T = { A v ∃r.B, B v ∃r.B,

B v (6 1 r− >), A uB v ⊥ }
A is satisfiable w.r.t. T , but not finitely satisfiable. In fact,
when d ∈ AI in some model I of T , then there must be
an infinite chain r(d, d1), r(d1, d2), . . . with d ∈ AI , and
d2, d3, · · · ∈ BI . Since d cannot be in BI and r is inverse
functional, no two elements on the chain can be identified.

T ′ = { A1 v ∃r.A2, A2 v ∃r.(A1 uB),

> v (6 1 r− >) }
The reader might want to verify that T ′ 6|= A1 v B, but
T ′ |=fin A1 v B.
It follows form the observations in (Kazakov 2009) that,
for the purposes of deciding satisfiability of concepts in un-
restricted models, the normal form for TBoxes introduced
above can be assumed without loss of generality because
every Horn-ALCQI TBox T can be converted in polyno-
mial time into a TBox T ′ in the above form such that every
model of T ′ is a model of T and, conversely, every model
of T can be converted into a model of T ′ by interpreting the
concept names that were introduced during normalization. It
follows that normal form can be assumed w.l.o.g. both for
unrestricted reasoning and for finite model reasoning, and for
all reasoning problems considered in this paper.

3 From Finite Models to Unrestricted Models
We show that finite ABox consistency in Horn-ALCFI can
be reduced to unrestricted ABox consistency by reversing

certain cycles in the TBox. The reduction exhibited in this
section provides a novel decision procedure for finite ABox
consistency in Horn-ALCFI and Horn-ALCQI (as well as
for finite satisfiability, finite subsumption, and finite instance
checking) and is the basis for developing a consequence-
based procedure in Section 4. It also highlights the logical
consequences of finite models in Horn-ALCFI . The material
in this section is an extended and improved version of the
workshop paper (Ibáñez-Garcı́a, Lutz, and Schneider 2013).

Reversing Cycles
Let T be a Horn-ALCFI TBox. A finmod cycle in T is
a sequence K1, r1,K2, r2, . . . , rn−1,Kn, with K1, . . . ,Kn

conjunctions of concept names and r1, . . . , rn−1 (potentially
inverse) roles such that Kn = K1 and, for 1 ≤ i < n:

T |= Ki v ∃ri.Ki+1 and T |= Ki+1 v (6 1 r−i Ki).

By reversing a finmod cycleK1, r1,K2, r2, . . . , rn−1,Kn in
a TBox T , we mean to extend T with the following concept
inclusions, for 1 ≤ i < n:

Ki+1 v ∃r−i .Ki and Ki v (6 1 ri Ki+1).

The completion Tf of a TBox T is obtained from T by ex-
haustively reversing finmod cycles. Note that, although there
may be infinitely many finmod cycles, only finitely many
CIs can be added by cycle reversion (exponentially many in
the size of the original TBox, in the worst case). For finding
these finitely many CIs, it clearly suffices to consider finmod
cycles in which all triples (ri,Ki+1, ri+1) are distinct. Also
note that finding finmod cycles requires deciding unrestricted
subsumption, which is decidable and EXPTIME-complete.
Example 2 The TBox T ′ from Example 1 entails (in unre-
stricted models)

A1 uB v ∃r.A2, A2 v ∃r.(A1 uB),

A2 v (6 1 r− A1 uB), A2 uB v (6 1 r− A1).

Thus, A1, r, A2, r, A1, is a finmod cycle in T ′, which is re-
versed to

A2 v ∃r−.A1, A1 v ∃r−.A2,

A2 v (6 1 r A1), A1 v (6 1 r A2).

From A1 v ∃r−.A2, A2 v ∃r.(A1 u B), and A2 v (6
1 r A1), we obtain T ′f |= A1 v B, in correspondence with
T ′ |=fin A1 v B. Note that T ′ also contains another finmod
cycle, which is (A1 uB), r, A2, r, (A1 uB).
The following result shows that TBox completion provides a
reduction from finite ABox consistency to unrestricted ABox
consistency.
Theorem 3 Let T be a Horn-ALCFI TBox andA an ABox.
Then A is finitely consistent w.r.t. T iff A is consistent w.r.t.
the completion Tf of T .
The “only if” direction of Theorem 3 is an immediate conse-
quence of the observation that all CIs added by cycle rever-
sion are entailed by the original TBox in finite models.
Lemma 4 Let K1, r1, . . . , rn−1,Kn be a finmod cycle in T .
Then T |=fin Ki+1 v ∃r−i .Ki and T |=fin Ki v
(6 1 ri Ki+1) for 1 ≤ i < n,.



Proof. We have to show that if K1, r1, . . . , rn−1,Kn is a
finmod cycle in T and I is a finite model of T , then KIi ⊆
(6 1 ri Ki+1)

I and KIi+1 ⊆ (∃r−i .Ki)
I for 1 ≤ i < n. We

first note that, by the semantics of Horn-ALCFI, we must
have |KI1 | ≤ · · · ≤ |KIn |, thus Kn = K1 yields |KI1 | =
· · · = |KIn |. Fix some i with 1 ≤ i < n. Using |KIi | =

|KIi+1|, KIi ⊆ (∃ri.Ki+1)I , and KIi+1 ⊆ (6 1 r−i Ki)
I

, it
is easy to verify that KIi ⊆ (6 1 ri Ki+1)

I and KIi+1 ⊆
(∃r−i .Ki)

I , as required. o

We now prove the “if” direction of Theorem 3, which is much
more demanding as it requires to explicitly construct finite
models.

Constructing Finite Models
Assume that A is consistent w.r.t. Tf . Our aim is to construct
a finite model I of A and Tf (and thus also of T ). Before we
give details of the construction, we introduce some relevant
preliminaries.

Let CN(T ) denote the set of concept names used in T (or,
equivalently, in Tf). A type for Tf is a subset t ⊆ CN(T )
such that there is a (potentially infinite) model I of Tf and a
d ∈ ∆I such that tpI(d) = t, where

tpI(d) := {A ∈ CN(T ) | d ∈ AI}

is the type realized at d in I . We use TP(Tf) to denote the set
of all types for Tf . For t, t′ ∈ TP(Tf) and r a role, we write
• t →r t

′ if Tf |= t v ∃r.t′ and t′ is maximal with this
property;

• t→1
r t
′ if t→r t

′ and Tf |= t′ v (6 1 r− t);
• t 1↔1

r t
′ if t→1

r t
′ and t′ →1

r− t.
Note that when

t1 →1
r1 t2 →

1
r2 · · · →

1
rn−1

tn = t1 (∗)

then t1, r1, . . . , rn−1, tn is a finmod cycle in Tf and the fact
that it has been reversed means that all ‘→1’ in (∗) can be
replaced with 1↔1. Types related by 1↔1

r are connected very
tightly by the TBox Tf and are best considered together when
building finite models. This is formalized by the notion of
a type class, which is a non-empty set P ⊆ TP(Tf) such
that t ∈ P and t 1↔1

r t
′ implies t′ ∈ P , and P is minimal

with this condition. Note that the set of all type classes is
a partition of TP(Tf). We set P ≺ P ′ if there are t ∈ P
and t′ ∈ P ′ with t′ ( t. Let ≺+ be the transitive closure of
≺. A proof of the following observation can be found in the
appendix.
Lemma 5 ≺+ is a strict partial order.
We construct the desired finite model I of A and Tf by start-
ing with an initial interpretation that essentially consists of
the ABoxA and then exhaustively applying three completion
rules denoted with (c1) to (c3), where (c1) is given prefer-
ence over (c2). Completion repeatedly introduces elements
whose existence is required by CIs K v ∃r.C, carefully
distinguishing several cases to ensure that no functionality
restrictions are violated. We will prove that rule application
terminates after finitely many steps, producing a finite model.

During the construction of I, we will make sure that the
following invariants are satisfied:

(i1) tpI(d) ∈ TP(Tf) for all d ∈ ∆I ;

(i2) if (d, d′) ∈ rI \ (Ind(A) × Ind(A)), then we have
tpI(d)→r tpI(d′) or tpI(d′)→r− tpI(d);

(i3) if Tf |= K v (6 1 r K ′), then I |= K v (6 1 r K ′).

The initial version of I is defined by introducing an element
for every ABox individual, and an element dt for each t ∈
TP(Tf). In detail, we set

∆I = Ind(A) ∪ { dt | t ∈ TP(T )f }
AI = { a ∈ Ind(A) | A ∈ tpA(a) } ∪ {dt | A ∈ t }
rI = { (a, b) | r(a, b) ∈ A }

where

tpA(a) := {A ∈ CN(T ) | A, Tf |= A(a)}.

The completion rules are described in detail below.

(c1) Choose a d ∈ ∆I such that tpI(d) →1
r t, t 6→1

r− tpI(d),
and d /∈ (∃r.t)I . Add a fresh domain element e, and mod-
ify the extension of concept and role names such that
tpI(e) = t and (d, e) ∈ rI .

(c2) Choose a type class P that is minimal w.r.t. the order ≺+,
a λ = s 1↔1

r s
′ with s ∈ P , and an element d ∈ sI \

(∃r.s′)I .

For each λ = s 1↔1
r s
′ with s ∈ P , set

XIλ,1 = sI \ (∃r.s′)I XIλ,2 = s′
I \ (∃r−.s)I .

Take (i) a fresh set ∆s for each s ∈ P such that
|
⊎
s∈P ∆s| ≤ 2|T | · |∆I | and (ii) a bijection πλ between

XIλ,1 ∪∆s and XIλ,2 ∪∆s′ for each λ = s 1↔1
r s
′ with

s, s′ ∈ P and r a role name (the concrete construction is
detailed below). Now extend I as follows:

– add all domain elements in
⊎
s∈P ∆s;

– extend rI with πλ, for each λ = s 1↔1
r s
′ with s, s′ ∈

P and r a role name;
– interpret concept names so that tpI(d) = s for all d ∈

∆s, s ∈ P .

(c3) Choose a d ∈ ∆I such that tpI(d) →r t, tpI(d) 6→1
r t,

and d /∈ (∃r.t)I . Add the edge (d, dt) to rI , where dt is
the element introduced for type t in the initial version of I .

To complete the description of the rules, we have to show
that, in (c2), the sets ∆s and bijections πλ indeed exist. Let
nmax = max{|sI | | s ∈ P}. For each s ∈ P , set ∆s :=
{ds,i | |sI | < i ≤ nmax} and define the set of s-instances
Is := sI∪∆s. For each λ = s 1↔1

r s
′ with s, s′ ∈ P , define

Rλ := {(d, e) ∈ rI | d ∈ sI and e ∈ s′I}.

We first note that it is a consequence of invariant (i3) that

(∗) the relation Rλ is functional and inverse functional.



In fact, (d, e1), (d, e2) ∈ Rλ implies (d, e1), (d, e2) ∈ rI ,
d ∈ sI , and e1, e2 ∈ s′

I . By λ, Tf |= s v (6 1 r s′).
Thus, (i3) yields e1 = e2. Inverse functionality can be shown
analogously.

Let R1
λ be the domain of Rλ, and let R2

λ be its range.
By (∗), we have |R1

λ| = |R2
λ|. By definition of the sets ∆s,

we have |Is| = |Is′ |. Moreover, R1
λ ⊆ Is and R2

λ ⊆ Is′ .
We can thus choose a bijection πλ between Is \ R1

λ and
Is′ \ R2

λ, which is as required since Is \ R1
λ = XIλ,1 ∪∆s

and Is′ \R2
λ = XIλ,2 ∪∆s′ . The construction of the sets ∆s

clearly ensures that their union has the required cardinality.

The following theorem summarizes the statements that
remain to be proved in order to show that the construction of
I is well-defined and yields a finite model of A and Tf .
Theorem 6

1. Applying (c1) to (c3) preserves invariants (i1) to (i3);
2. Application of (c1) to (c3) terminates;
3. I is a model of A and Tf .

Proof. We refer to the appendix for full proofs and only
sketch the central idea in the proof of Point 2 here, going
back to (Cosmadakis, Kanellakis, and Vardi 1990). The main
issue in the termination proof is to show that no infinite
role chain r0(d0, d1), r1(d1, d2), . . . is generated in which
all the elements di are pairwise distinct. Since every appli-
cation of a completion rule generates only finitely many ele-
ments, any such chain must be generated by infinitely many
rule applications. As there are only finitely many types, we
must find elements di and dj with tpI(di) = tpI(dj) and
such that di and dj were generated by different rule appli-
cations. It can be shown that, w.l.o.g., we can assume that
the elements on the chain are ordered so that if j > i, then
dj was not generated by an earlier rule application than di.
Analysing the completion rules, it is easy to see that this im-
plies tpI(di) →1

ri tpI(di+1) →1
ri+1

· · · →1
rj−1

tpI(dj).

Since tpI(di) = tpI(dj), this is a finmod cycle, which
has been reversed when constructing Tf , and thus all arrows
→1
ri+`

can be replaced with 1↔1
ri+`

. By definition of the com-
pletion rules, this means that all of di, . . . , dj were introduced
in the same application of (c2), which is a contradiction to di
and dj being generated by different rule applications. o

4 Consequence-Driven Procedure
While completing TBoxes with reversed cycles yields a re-
duction of finite model reasoning to infinite model reasoning,
it blows up the TBox exponentially and is thus not suited for
direct implementation. In this section, we build on the results
from the previous section to devise a calculus for ABox con-
sistency in Horn-ALCFI that does not require TBox com-
pletion to be carried out up-front, but instead reverses cycles
‘on the fly’; moreover, the calculus implicitly groups together
cycles that are closely related, potentially reversing a very
large number of cycles in only a few steps (see Example 7
below). Our calculus belongs to a family of algorithms that
are known as consequence-driven procedures and underly
modern and highly efficient reasoners for Horn DLs such as

R1
K uA v A

R2
K v >

R3
K v Ai uAi v C

K v C
R4

K v ∃r.K′ K′ v ∀r−.A
K v A

R5
K v ∃r.K′ K v ∀r.A

K v ∃r.(K′ uA)
R6

K v ∃r.K′ K′ v ⊥
K v ⊥

R7

K v ∃r.K1 K v ∃r.K2 K1 v A

K v (6 1 r A) K2 v A

K v ∃r.(K1 uK2)

R8

K v ∃r.K′ K′ v ∃r−.K1 K v A

K′ v (6 1 r− A) K1 v A

K v A1 for any A1 ∈ K1

R9

Ki v ∃ri.Ki⊕n1

Ki⊕n1 v (6 1 r−i Ai) Ki v Ai
i < n

K1 v ∃r−0 .K0 K0 v (6 1 r0 A1)

Figure 1: Inference Rules

CEL, CB, and ELK (Baader, Lutz, and Suntisrivaraporn 2006;
Kazakov 2009; Kazakov, Krötzsch, and Simančı́k 2011b). It
thus establishes a promising foundation for actual implemen-
tations of finite-model reasoning in Horn-ALCFI and, via
the reduction in Section 6, in Horn-ALCQI. For simplicity,
we start with a calculus for finite satisfiability and finite sub-
sumption. An expansion to finite ABox consistency (and thus
to finite instance checking) is sketched afterwards.

The calculus starts with a given TBox T and then ex-
haustively applies a set of inference rules. To ease their
presentation, we assume that T is in a normal form that
is slightly stricter than the one introduced in Section 2: in
CIs K v ∀r.K ′ and K v (6 1 r K)′, K ′ must be a concept
name A. The inference rules are displayed in Figure 1. They
preserve the normal form and are applied in the sense that,
if the concept inclusions in the precondition (above the line)
are already present, then those in the postcondition (below
the line) are added. Recall that K stands for a conjunction
of concept names, which we read here modulo commutativ-
ity. Rule R1 is applied only if K u A occurs in the current
(partially completed) TBox, that is, there is a CI of the form
K uA v C or K ′ v ∃r.(K uA). The same is true for rule
R2 with K in place of K uA. In rule R9, ⊕n means addition
modulo n.

We point out that rules R1 to R8 are minor variations
of the corresponding rules in the calculus presented by
Kazakov (2009), the main difference being that our language
does not include role hierarchies. Rule R9 is novel and deals
with reversing cycles on the fly. Note that only the ‘first edge’
of each cycle is reversed, and that this is sufficient because
the cycle can be rotated to make any edge the ‘first’ one.



Example 7 Consider the TBox
T = {A v ∃r.(A uA1 u · · · uAn), (1)

A v (6 1 r− A) }. (2)
Cycle reversion from Section 3 reverses all of the exponen-
tially many cycles K, r,K with K ⊆ S := {A,A1, . . . , An}
and A ∈ K, adding K v ∃r−.K and K v (6 1 r K)
for all such K. In contrast, the calculus avoids introducing

‘irrelevant’ conjunctions K and instead jointly reverses all
these cycles by generating A v ∃r−.S and A v (6 1 r A):
S v A from R1 (3)
A v A from R1 (4)
S v ∃r.S from (1), (3),R3 (5)
S v (6 1 r− A) from (2), (3),R3 (6)
S v ∃r−.S and (7)
S v (6 1 r A) from (3), (5), (6),R9 (8)
A v Ai from (1), (3), (4), (6), (7),R8 (9)
A v ∃r−.S from (7), (9),R3 (10)
A v (6 1 r A) from (8), (9),R3 (11)

Note that avoiding to introduce ‘irrelevant’ conjunctions K
as illustrated by Example 7 is a main feature of consequence-
based procedures which enables the excellent practical per-
formance typically observed for this class of calculi.

The algorithm terminates after at most exponentially many
rule applications since there are only exponentially many
different concept inclusions that use the concept and role
names of the original TBox. Each rule application can be
performed in polynomial time, which is easy to see for the
rules R1–R8. For R9, the crucial observation is that it suffices
to consider all conjunctions K0,K1 and to check whether
they are involved in any cycle. The latter can easily be done
by a variation of directed graph reachability, where the nodes
of the graph are the conjunctions that occur in the current
TBox and the edges come from inclusions K v ∃r.K ′.

The following theorem, which is the main result of this
section, states that the calculus is sound and complete.

Theorem 8 Let T be a Horn-ALCFI TBox, T̂ be obtained
by exhaustively applying Rules R1–R9, and let A0 be a
concept name. Then A0 is finitely satisfiable w.r.t. T iff
A0 v ⊥ /∈ T̂ .
While Theorem 8 is formulated only for finite satisfiability,
the algorithm can of course also be used to decide finite
subsumption via the usual reduction to finite satisfiability.
The following continues Example 7.
Example 9 Let T be the TBox from Example 7 and

T ′ = T ∪ { A v ∃r.(A uX1), (12)
A v ∃r.(A uX2), (13)

X1 uX2 v ⊥ } (14)
The calculus derives A v ⊥, thus A is finitely unsatisfiable
w.r.t. T ′:1

AuXi v A from R1 (15)
A v ∃r.(AuX1uX2) from (11)–(13), (15),R7 (16)
A v ⊥ from (14), (16),R6 (17)

1A is obviously satisfiable w.r.t. T ′ in unrestricted models.

We now prove Theorem 8. The “only if” direction (soundness)
is straightforward by verifying that each rule is sound in finite
models. In contrast, the “if” direction (completeness) turns
out to be surprisingly subtle to establish. The proof strategy
is as follows. Assume that A0 v ⊥ /∈ T̂ . We construct a
(possibly infinite) model Î of T̂ with AÎ0 6= ∅ and show that
Î is actually a model of Tf . By Theorem 3, it follows that A0

is finitely satisfiable w.r.t. T . From now on, assume w.l.o.g.
that A0 actually occurs in T .

To construct Î, let KON(T̂ ) denote the set of all conjunc-
tions K such that K occurs in T̂ (in the sense explained
above) and K v ⊥ /∈ T̂ . The domain ∆Î consists of finite
words d = K1K2 · · ·Kn ∈ KON(T̂ )∗, and we use tail(d) to
denote Kn. Define Î by starting with

∆Î = KON(T̂ )

AÎ = {K ∈ KON(T̂ ) | K v A ∈ T̂ }
rÎ = ∅

Observe that sinceA0 occurs in T̂ andA0 v ⊥ /∈ T̂ , ∆Î con-
tains the conjunction K = A0 and thus AÎ0 6= ∅. We finish
the construction of Î by exhaustively applying the follow-
ing rule: if there is some d ∈ ∆Î with tail(d) v ∃r.K ′ ∈ T̂ ,
K ′ maximal with this property, and d 6∈ (∃r.K ′)Î , then add
a fresh element e = dK ′ to ∆Î , add (d,K ′) to rÎ , and add
dK ′ to AÎ whenever K ′ v A ∈ T̂ .

We first show that Î is a model of T̂ , which amounts to
a case distinction over the forms of CIs that can be present
in T̂ , in each case relying on the fact that T̂ is closed under
the rules of the calculus. Details are provided in the appendix.

Lemma 10 Î |= T̂ .

It remains to show that Î is a model of Tf , which is signif-
icantly more difficult to prove than Lemma 10 due to the
fact that Tf is obtained by reversing all cycles in T whereas
the calculus is more careful to reverse only the ‘relevant’
ones, as explained above. We start with the observation that,
when constructing Tf , it suffices to close only maximal cycles.
More precisely, a cycle K1, r1,K2, . . . ,Kn in a TBox T is
maximal if Kj+1 is maximal with T |= Kj v ∃rj .Kj+1, for
1 ≤ j < n. Let T max

f be the variation of Tf that is obtained
by reversing only maximal cycles.

Lemma 11 Tf is equivalent to T max
f .

To finish the proof of Theorem 8, let T 0
f , T 1

f , . . . be the
sequence of TBoxes obtained by starting with T 0

f = T and
then exhaustively closing maximal cycles, that is, T max

f is the
limit of this sequence. In the appendix, we prove by induction
on i that Î is a model of each T if , thus of Tf .

We now briefly consider an extension of our algorithm to
ABox consistency, with Figure 2 showing the additional rules.
Instead of starting with only a TBox T , the algorithm now
begins with a set T ∪A, where T is a TBox and A an ABox,
and then exhaustively applies rules R1 to R12. In rules R10



R10
K(a) K v A

A(a)
R11

K(a) r(a, b) K v ∀r.K′

K′(b)

R12

K1(a) K2(a) r(a, b) K(b) K1 v (6 1 r A)

K2 v ∃r.K′ K v A K′ v A

K′(b)

Figure 2: Additional Inference Rules

to R12, K(a) is an abbreviation for A1(a) · · · Ak(a) when
K = {A1, . . . , Ak}. Recall that rules R1 and R2 only apply
when the conjunction in their precondition occurs in the par-
tially completed TBox. For the extension with ABoxes, an
additional way for K to occur is that, for some ABox indi-
vidal a, K = {A | A(a) is in the partial completion}. It is
easy to see that rule application still terminates after exponen-
tially many steps. Let Γ be the set of concept inclusions and
ABox assertions finally generated. The algorithm is sound
and complete in the sense that A is finitely inconsistent w.r.t.
T iff there is an ABox individual a and a conjunctionK such
that Γ contains both K(a) and K v ⊥. To prove this, one
updates the construction of Î by starting with an initial in-
terpretation defined by setting ∆Î = Ind(A), rÎ = {(a, b) |
r(a, b) ∈ A}, and AÎ = {a ∈ Ind(A) | A(a) ∈ Γ}. The rest
of the construction of Î is as before. It is not hard to adapt
the proof of Lemma 10 to show that Î satisfies all inclusions
and assertions in Γ. As in the case of finite satisfiability, it
thus remains to prove that Î is a model of Tf . Fortunately, the
proof of goes through without modification.

Apart from providing a basis for practical implementations,
our algorithm also yields an EXPTIME upper bound for finite
ABox consistency in Horn-ALCFI. This result is known
from (Lutz, Sattler, and Tendera 2005), where it is shown
that ABox consistency in the non-Horn version of ALCQI
is in EXPTIME. A matching lower bound can be derived
from (Baader, Brandt, and Lutz 2008) where an EXPTIME
lower bound is established for unrestricted subsumption in
(the ELI fragment of) Horn-ALCFI; the proof can easily
be adapted to finite satisfiability.

Theorem 12 Finite satisfiability and finite ABox consistency
in Horn-ALCQI are EXPTIME-complete.

5 Query Answering in the Finite
In the ontology-based data access (OBDA) paradigm, the cen-
tral reasoning problem is answering database-style queries
over ABoxes in the presence of a DL TBox. In this section,
we study the finite model version of this problem, assuming
that queries are positive existential queries (PEQs) and that
TBoxes are formulated in Horn-ALCFI. We show that, as in
the case of ABox consistency, finite PEQ answering can be
reduced to unrestricted PEQ answering by reversing finmod
cycles in the TBox. This result enables the use of algorithms
for unrestricted PEQ answering also in the finite case. It

also allows us to show that finite PEQ answering w.r.t. Horn-
ALCFI TBoxes is EXPTIME-complete regarding combined
complexity, and PTIME-complete regarding data complexity.

We start with a brief introduction of positive existential
queries and of query answering. For simplicity, we concen-
trate on Boolean queries, that is, queries without answer
variables. It is, however, easy to adapt all techniques estab-
lished in this section to the case of queries with answer vari-
ables. A (Boolean) positive existential query (PEQ) q takes
the form ∃xϕ(x) where ϕ is built from atoms of the form
A(x) and r(x, y) using conjunction and disjunction, with
x, y variables from x, A a concept name, and r a role name.
Let I be an interpretation and q = ∃xϕ a PEQ. A match
of q in I is a mapping π : x → ∆I such that ϕ evaluates
to true unter the valuation that assigns true to an atom A(x)
in ϕ iff π(x) ∈ AI and true to an atom r(x, y) in ϕ iff
(π(x), π(y)) ∈ rI . We write I |= q if there is a match of
q in I. For an ABox A and a TBox T , we write A, T |= q
(resp. A, T |=fin q) if I |= q for all models (resp. finite
models) I of T and A. We then say that A, T entails (resp.
finitely entails) q. The problem that we are interested in is
finite query entailment, that is, given an ABox A, a TBox T ,
and a query q, to decide whether A, T |=fin q. We will study
both the combined complexity and the data complexity of this
problem. When studying combined complexity, all of A, T ,
and q are considered an input. In the case of data complexity,
T and q are assumed to be fixed and q is the only input.

The main result of this section is the following theorem,
where Tf is the TBox obtained from T by exhaustively re-
versing finmod cycles, exactly as in Section 3.
Theorem 13 Let T be a Horn-ALCFI TBox and A an
ABox that is finitely consistent w.r.t. T . For any PEQ q,

A, T |=fin q iff A, Tf |= q

The proof of the “⇐” direction is trivial. Indeed, if
A, T 6|=fin q, then there is a finite model I of A and T such
that I 6|= q. Since every finite model of T is also a model
of Tf by Lemma 4, it follows that A, Tf 6|= q.

For the proof of the “⇒” direction, we use a well-known
(infinite) canonical model U of A and Tf , constructed by
starting with the following initial interpretation

∆U = Ind(A)

AU = {a ∈ Ind(A) | A, Tf |= A(a)}
rU = {(a, b) | r(a, b) ∈ A}

and then exhaustively applying the following completion
rule: for all d ∈ ∆U such that Tf |= tpU (d) v ∃r.t′, where
t′ is maximal with this property and d /∈ (∃r.t′)U , add a
fresh element d′ to ∆U , the edge (d, d′) to rU , and d′ to the
interpretation AU of all concept names A ∈ t′.

The following properties of U are well-known and the
reason for why U is called canonical (Krisnadhi and Lutz
2007; Eiter et al. 2008; Ortiz, Rudolph, and Šimkus 2011).
Lemma 14

1. U is a model of A and of Tf ;
2. For any PEQ q, we have that A, Tf |= q iff U |= q.



By Point 2 of Lemma 14, we can establish the “⇒” direc-
tion of Theorem 13 by showing that A, T |=fin q implies
U |= q. The proof makes intense use of homomorphisms. For
interpretations I1, I2, a homomorphism from I1 to I2 is a
function h : ∆I1 → ∆I2 such that

1. h(a) = a for all a ∈ NI;

2. d ∈ AI1 implies h(d) ∈ AI2 for all concept names A;

3. (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for all (possibly
inverse) roles r.

For n > 0, an n-substructure of an interpretation I is an
interpretation I ′ obtained from I by selecting a domain
∆I
′ ⊆ ∆I with at most n elements and restricting I to ∆I

′
.

To show that A, T |=fin q implies U |= q, it suffices to
establish the following.

Proposition 15 For every n0 > 0, there is a finite model
Jn0

ofA and T such that there is a homomorphism from any
n0-substructure of Jn0 to U .

In fact, A, T |=fin q implies Jn0 |= q and thus there is an n0-
substructure J of Jn0 with J |= q, where n0 is the number
of variables in q. The latter is witnessed by a match π. By
Proposition 15, there is a homomorphism h from J to U and
thus a match of q in U can be found by composing π with h.

We construct the model J from Proposition 15 by mod-
ifying the finite model I constructed in Section 3. For two
reasons, the finite model I constructed in Section 3 need not
satisfy the condition formulated for Jn0 in Proposition 15.

1. I can contain paths of length ≤ n0 that do not exist in U .

2. I can contain cycles that do not exclusively consist of
ABox elements, while no such cycles are present in U .

Let us start with Problem 1 above. There are, in turn, two
sources for paths in I that we cannot reproduce in U .

(i) Application of (c3) can generate a path (d1, d) ∈ rI ,
(d, d2) ∈ sI such that tpI(d1) →r tpI(d) s← tpI(d2)
and d is not identified by an ABox element. Such situa-
tions are not necessarily reproducible in U . As a concrete
example, consider

A = { B1(a), B2(b) }
T = { B1 v ∃r.A, B2 v ∃r.A }.

The problematic path is (a, dt) ∈ rI , (dt, b) ∈ (r−)I with
t = {A}.

(ii) Application of (c2) can result in similar a situation as
above, but where the middle element d is replaced with a
sequence of elements e0, . . . , ek such that (ei, ei+1) ∈ rIi
for all i < k (for some roles r0, . . . , rk−1) and

tpI(e0) 1↔1
r1 · · ·

1↔1
rk−1

tpI(ek). (18)

For a very simple example, take

A = { B1(a), B2(b) }

and assume that T is such that B1
1↔1

r B2. Then an
application of (c2) will simply add r(a, b), an edge that
does not exist in U .

To obtain the desired model Jn0 from Proposition 15, we
first solve Problems (i) and (ii) above, and then Problem 2. To
make precise what we mean by this, we introduce bounded
simulations, a weakening of homomorphisms. A bounded
simulation of I1 in I2 is a relation ρ ⊆ ∆I1 × N×∆I2 such
that for all (d, i, e) ∈ ρ, the following conditions are satisfied:

1. if d ∈ AI1 , then e ∈ AI2 ;

2. if i > 0 and (d, d′) ∈ rI1 for some (possibly inverse)
role r, then there is an e′ ∈ ∆I2 with (e, e′) ∈ rI2 and
(d′, i− 1, e′) ∈ ρ.

We write (I1, d) �k (I2, e), for d ∈ ∆I1 and e ∈ ∆I2 ,
if there is a bounded simulation of I1 in I2 such that
(d, k, e) ∈ ρ and for all a ∈ NI ∩∆I1 , we have (a, k, a) ∈ ρ.
Then I1 �k I2 denotes that for every d ∈ ∆I1 , there is
an e ∈ ∆I2 with (I1, d) �k (I2, e). We write (I1, d) ∼k
(I2, e) if (I1, d) �k (I2, e) and vice versa.

With solving Problems (i) and (ii), we mean to establish
the following intermediate result.

Proposition 16 For every n0 > 0, there is a finite model In0

of A and T such that In0 �n0 U .

To remove the undesired paths illustrated in (i) above, we
modify the construction of I by replacing the elements dt,
t ∈ TP(Tf), that are introduced at the beginning of the con-
struction of I and used as ‘targets’ for role edges introduced
by applications of (c3). In the modified construction, we
instead introduce one (c3)-target for each n0-bounded simu-
lation type, which is an equivalence class of ∼n0

on the set
of all pointed interpretations (I1, d). In the example given
in (i) above, the result is that the two existential restrictions
would no longer be witnessed by the same dt because the
1-simulation type of the witnesses are different (one has an
r-predecessor inB1, the other inB2). Since simulations need
only to consider symbols that occur in the (fixed) ABox
A and (fixed) TBox T , there are only finitely many n0-
simulation types and thus finiteness of I is not compromised.

Undesired paths of type (ii) are avoided by modifying the
(c2) rule so that the sequences (18) are of length exceed-
ing n0 and thus the highlighted problem which involves both
ends of the sequence is not ‘visible’ in n0-substructures. We
also include an initial piece of the canonical model U for A
and Tf of depth n0 in the initial version of I to avoid the
undesired ‘shortcuts’ between ABox elements illustrated by
the example given in (ii) above.

The construction is spelled out in full detail in the appendix.
We have actually omitted some aspects in the overview above
for the sake of a clearer exposition, such as the fact that
we first exhaustively apply rules (c1) and (c2), followed by
exhaustive application of (c3) (the latter two in their modified
versions), and that we actually cannot include in the initial
I all n0-bounded simulation types, but must select only the
‘relevant’ ones. This finishes the proof of Proposition 16.

To solve Problem 2 above and thus obtain the model Jn0

stipulated by Proposition 15, we have to eliminate all non-
ABox-cycles of size at most n0 in the model In0

delivered by
Proposition 16. This is achieved by taking the product with a
suitable finite group of high girth, a technique championed



by Otto (2012). Details are provided in the appendix. This
finishes the proof of Theorem 13.

Apart from enabling the use of algorithms for unrestricted
PEQ answering also in the finite case, Theorem 13 yields
tight complexity bounds for finite PEQ entailment.

Theorem 17 Finite PEQ entailment in Horn-ALCFI is de-
cidable, EXPTIME-complete in combined complexity, and
PTIME-complete in data complexity.

Proof.(sketch) For the unrestricted case, an EXPTIME lower
bound is in (Baader, Brandt, and Lutz 2008) and a PTIME
one in (Calvanese et al. 2006). Both results can easily be
adapted to the finite case. The upper bounds can be proved
using the following straightforward algorithm for PEQ en-
tailment, which resembles existing algorithms such as those
presented in (Krisnadhi and Lutz 2007; Eiter et al. 2008;
Calı̀, Gottlob, and Lukasiewicz 2009; Ortiz, Rudolph, and
Šimkus 2011). Assume that an input ABox A, TBox T , and
PEQ q are given, and let n0 be the number of variables in q.
As a consequence of Theorem 3, finite satisfiability w.r.t. T
coincides with unrestricted satisfiability w.r.t. Tf . Using our
algorithm for computing finite satisfiability in Horn-ALCFI
in EXPTIME, we can thus compute the set TP(Tf) of types
for Tf without computing Tf or explicitly reasoning w.r.t. this
exponentially large TBox. Let A′ be the extension of A with
assertions {A(at) | A ∈ t} for each t ∈ TP(A). Now com-
pute an initial piece U ′ of the canonical model U ofA′ and Tf ,
namely its restriction to depth n0. Similar to the computation
of TP(Tf) above, we can do this by using finite subsumption
w.r.t. T instead of unrestricted subsumption w.r.t. Tf . It is not
difficult to prove that U ′ |= q iff U |= q. To check whether
U ′ |= q within the desired time bounds, we can simply enu-
merate all possible maps of variables in q to elements of U ′
and check whether any such map is a match. o

Note that decidability of PEQ entailment in Horn-ALCFI
was expected given a result by Pratt-Hartmann which states
that finite CQ answering for the two-variable guarded frag-
ment of first-order logic extended with counting quantifiers is
decidable (Pratt-Hartmann 2009). We assume that his proof
can be extended to unions of conjunctive queries (UCQs),
thus to PEQs. Pratt-Hartmann also analyses the data com-
plexity of finite CQ answering in his logic, but finds it to be
CONP-complete. He does not analyse combined complexity.
Theorem 17 suggests that PEQ entailment in Horn-ALCFI
has the same complexity in finite and in unrestricted mod-
els. For the unrestricted case, PTIME-completeness in data
complexity follows from the results in (Hustadt, Motik, and
Sattler 2007), and EXPTIME-completeness in combined com-
plexity is proved in (Eiter et al. 2008) for UCQs. We assume
that the techniques in that paper extend to PEQs.

6 From Horn-ALCFI to Horn-ALCQI
Our results for finite satisfiability and finite subsumption
(the reasoning tasks that do not involve ABoxes) extend in
a straightforward way from Horn-ALCFI to Horn-ALCQI.
In particular, we can convert a Horn-ALCQI TBox T into a
Horn-ALCFI TBox T ′ such that finite (un)satisfiability is
preserved by replacing each CI K v (> n r K ′) in T with

the following inclusions, for 1 ≤ i < j ≤ n:

K v ∃r.Bi, Bi v K ′, Bi uBj v ⊥ (∗)

While an easy unraveling argument can be used to prove that
this reduction is correct in the presence of infinite models,
more care is required in the finite case (see appendix).

Proposition 18 T is finitely satisfiable iff T ′ is finitely satis-
fiable.

It follows from Proposition 18 and Theorem 3 that a Horn-
ALCQI TBox T is finitely satisfiable iff (T ′)f is satisfiable.
Actually, it is not hard to see that this is the case iff Tf (the re-
sult of applying cycle reversion directly to the Horn-ALCQI
TBox, ignoring all inclusions A v (> n r C)) is satisfiable
because if any of the existential restrictions in T ′ \ T is in-
volved in a finmod cycle, then a simple semantic argument
shows that both Tf and (T ′)f are unsatisfiable. Proposition 18
also enables the use of our consequence-based procedure for
deciding finite satisfiability in Horn-ALCQI.

It is not immediately obious how to extend (∗) and Propo-
sition 18 to ABox consistency and instance checking. We
believe, though, that it is not too hard to modify the proof
of Theorem 3 for Horn-ALCQI, to adapt the consequence-
based procedure to allow a direct treatment of Horn-ALCQI
TBoxes without prior reduction to Horn-ALCFI, and to ex-
tend all model constructions underlying our results about
PEQ entailment to Horn-ALCQI . In particular, such a direct
approach should yield EXPTIME/ PTIME upper bounds for
PEQ entailment in Horn-ALCQI even when the numbers in
at least restrictions are coded in binary (note that, in this case,
the translation (∗) incurs an exponential blowup).

7 Future Work
As future research, it would be interesting to extend the re-
sults in this paper to Horn-SHIQ, that is, to add role hier-
archies and transitive roles. Reducing out role hierarchies
does not seem easily possible in the finite,2 so they would
have to be built directly into all constructions. For query
entailment, we expect transitive roles to cause significant
additional challenges, see for example (Eiter et al. 2009;
Mosurovic et al. 2013). In particular, transitive roles result in
an additional way in which the finite model property is lost,
illustrated by the TBox T = {A v ∃r.A, trans(r)} and the
conjunctive query q = ∃x r(x, x). We have {A(a)}, T 6|= q,
but {A(a)}, T |=fin q although neither counting nor in-
verse roles are present (the TBox T is formulated in the
DL ELtrans). Finite model reasoning in versions of Datalog±
that extend ELtrans has recently been studied in (Gogacz and
Marcinkowski 2013b; 2013a).

In this paper, we have not analyzed the size of finite mod-
els. It is, however, easy to prove a double exponential lower
bound on the size of finite models for satisfiability in Horn-
ALCFI by enforcing a tree of exponential depth in which
no two elements can be identical. A matching upper bound
follows from Pratt-Hartmann’s result that every finitely sat-
isfiable formula in first-order logic with two variables and

2In contrast to what we have claimed in the workshop predeces-
sor of this paper (Ibáñez-Garcı́a, Lutz, and Schneider 2013).



counting quantifiers has a model of at most double exponen-
tial size (Pratt-Hartmann 2005). Analyzing the size of finite
(counter)models for query entailment is left as future work.
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A Proofs for Section 3
Lemma 5. ≺+ is a strict partial order.

Proof. Since ≺+ is transitive by definition, it remains to
establish irreflexivity and asymmetry. To this end, it suffices
to show that ≺ is acyclic in the sense that there are no type
partitions P0, . . . , Pn, n ≥ 0, such that P0 ≺ · · · ≺ Pn =
P0. Assume to the contrary that there are such P0, . . . , Pn. By
reversing the order, we can assume that P0 � · · · � Pn = P0.
Then there are, for each i < n, types ti ∈ Pi and t′i+1 ∈ Pi+1

such that ti ( t′i+1. For uniformity, set tn = t0 and t′0 = t′n.

Let i < n. By definition of type partitions and since t 1↔1
r

t′ implies t′ 1↔1
r− t for all types t, t′ and roles r, we can

derive from ti, t
′
i ∈ Pi the existence of types s0,i, . . . , ski,i ∈

Pi, ki ≥ 0, and roles r0,i, . . . , rki−1,i such that

ti = s0,i
1↔1

r0,i s1,i
1↔1

r1,i · · ·
1↔1

rki−1,i
ski,i = t′i.

For each i, we thus find a sequence

ti, r0,i, s1,i, . . . , ski−1,i, rki−1,i, t
′
i (∗)

that satisfies the prerequisites for finmod cycles, namely

T |= sj,i v ∃rj,i.sj+1,i (19)
T |= sj+1,i v (6 1 rj,i sj,i) (20)

for all j = 0, . . . , ki (but this sequence need not be a finmod
cycle since ti = t′i is not guaranteed). Note that we cannot
have ki = 0 for all i, since then

t0 ( t′1 = t1 ( t′2 = t2 ( · · · ( t′n = tn,

in contradiction to tn = t0. In the following, we can thus
assume that ki > 0 for at least one i.

Because of (20), we have Tf |= ti v ∃r0,i.s1,i and
Tf |= s1,i v (6 1 r−0,i ti). Because of ti ( t′i+1, we thus ob-
tain Tf |= t′i+1 v ∃r0,i.s1,i and Tf |= s1,i v (6 1 r−0,i t

′
i+1).

Consequently, the following sequences also satisfy condi-
tions (19) and (20):

t′n, r0,n−1, s1,n−1, . . . , skn−1−1,n−1, rkn−1−1,n−1, t
′
n−1

t′n−1, r0,n−2, s1,n−2, . . . , skn−1−1,n−2, rkn−1−1,n−2, t
′
n−2

...
t′1, r0,0, s1,0, . . . , sk0−1,0, rk0−1,0, t

′
0.

Since t′0 = t′n, we can concatenate all these sequences to
a finmod cycle. As ki > 0 for at least one i, this cycle
is non-empty, and the construction of Tf ensures that the
reversed cycle is also present in Tf . Let us assume w.l.o.g.
that kn−1 > 0. The presence of the reversed cycle yields
Tf |= s1,n−1 v ∃r−0,n−1.t′n. Since tn 1↔1

r0,n−1
s1,n−1, we

have Tf |= s1,n−1 v ∃r−0,n−1.tn−1 and tn−1 is maximal with
this property. This is a contradiction to tn−1 ) t′n. o

Proof of Theorem 6
To eliminate case distinctions later on, for each λ = s 1↔1

r s
′

let λ− denote s′ 1↔1
r− s. We start with a technical lemma

that will be used below to show that applications of (c2)
preserve all invariants. The statement by the lemma is meant
to refer to a concrete application of (c2).

Lemma 19 If λ = s 1↔1
r s
′ with s, s′ ∈ P and (d, d′) ∈ πλ,

then tpI(d) = s and tpI(d′) = s′.

Proof. Let λ = s 1↔1
r s
′ and (d, d′) ∈ πλ. We first show

that tpI(d) = s. Since d is in the domain of πλ, we have
d ∈ ∆s or d ∈ XIλ,1. In the former case, tpI(d) = s is
immediate by construction of I. Thus assume that d ∈ XIλ,1.
Then s ⊆ tpI(d). From λ, we obtain Tf |= tpI(d) v ∃r.s′.
Let ŝ′ ⊇ s′ be maximal such that Tf |= tpI(d) v ∃r.ŝ′.
Note that, by λ and since s ⊆ tpI(d) and s′ ⊆ ŝ′, we have
Tf |= ŝ′ v (6 1 r tpI(d)). Thus tpI(d)→1

r ŝ
′.

Next, observe that ŝ′ →1
r− tpI(d). If this was not the case,

then (c1) would be applicable to d and, since its application is
preferred over applications of (c2), generate an e ∈ ∆I such
that (d, e) ∈ rI and e ∈ (ŝ′)I before the (c2) application
considered here. This contradicts the fact that d ∈ XIλ1

,
which implies that d /∈ (∃r.s)I by the time when (c2) was
applied.

In summary, we have established that λ′ = tpI(d) 1↔1
r ŝ
′

holds. Now assume to the contrary of what we have to show
that s ( tpI(d). Recall that P is the type class that the
current (c2) application treats, and that s, s′ ∈ P . By λ′,
there is a type class P ′ with tpI(d), ŝ′ ∈ P ′. Since s (
tpI(d), we have P ′ ≺ P . Since d ∈ XIλ,1, we had d /∈
(∃r.s′)I before the current rule application, thus also d /∈
(∃r.ŝ′)I . Summing up, before the current rule application we
had tpI(d), ŝ′ ∈ P ′, λ′ = tpI(d) 1↔1

r ŝ
′, d ∈ tpI(d), and

d /∈ (∃r.ŝ′)I . Consequently, rule (c2) was applicable also to
type class P ′. Since P ′ ≺ P and with the preference order
that (c2) imposes on type classes, this contradicts that the
current application is treating P .

It remains to show that tpI(d′) = s′. The argument is
exactly the same as above, with r− playing the role of r, s′
playing the role of s and vice versa, λ− playing the role of λ,
and tpI(d′) playing the role of tpI(d) and vice versa. o

Satisfaction of Invariants It is easy to verify that the ini-
tial interpretation I satisfies all invariants. Indeed, (i1) is
trivially satisfied. Since rI \ (Ind(A)× Ind(A)) = ∅, (i2) is
satisfied, too. Moreover, since A is consistent w.r.t. Tf , the
standard names assumption ensures that (i3) is satisfied. It
remains to show that each of the rules (c1) to (c3) preserves
the invariants.

Application of (c1) preserves all invariants. It is obvi-
ous that the invariants (i1) and (i2) are preserved with each
single application of (c1). We have to show that the same
is true for (i3). Assume that completion processed d ∈ ∆I

with tpI(d) →1
r t and t 6→1

r− tpI(d), and that after the ap-
plication (d, d1) ∈ rI , with d1 the fresh domain element
added. Assume to the contrary of what is to be proved that
Tf |= K v (6 1 r K ′) and there is a d2 ∈ ∆I distinct from



d1 such that d ∈ KI , (d, d2) ∈ rI , and d1, d2 ∈ K ′I . We
aim to show that if such d2 exists then t ⊆ tpI(d2), which
establishes a contradiction to the fact that d /∈ (∃r.t)I was
true before the rule application. According to (i2), we can
distinguish the following cases:

• tpI(d) →r tpI(d2). Then Tf |= tpI(d) v ∃r.tpI(d2)
and tpI(d2) is maximal with this property. From
tpI(d) →r t, we additionally get Tf |= tpI(d) v ∃r.t.
Furthermore, since K ⊆ tpI(d) and d1, d2 ∈ K ′I implies
K ′ ⊆ tpI(d2)∩ t, a simple semantic argument shows that
Tf |= K v ∃r.(tpI(d2) ∪ t). The maximality of tpI(d2)
thus implies t ⊆ tpI(d2).

• tpI(d2) →r− tpI(d). Then Tf |= tpI(d2) v ∃r−.tpI(d)
and, additionally, we have Tf |= tpI(d) v ∃r.t. Since
K ⊆ tpI(d) and K ′ ⊆ tpI(d2) ∩ t, a simple semantic
argument shows that Tf |= tpI(d2) v t. Since tpI(d2) is
a type for Tf by (i1), it follows that t ⊆ tpI(d2).

• r(d, d2) ∈ A. Then tpA(d) = tpI(d) by construction of
the initial interpretation I. Since tpI(d) →r t, we thus
have Tf |= tpA(d) v ∃r.t. With r(d, d2) ∈ A and by the
semantics, t ⊆ tpA(d2) = tpI(d2).

Application of (c2) preserves all invariants. Invariant
(i1) is clearly preserved by each single application of (c2).
We have to prove that the same is true for (i2) and (i3).

Assume that (c2) is applied to a type class P . Note that
λ holds if and only if λ− does. Then define πλ− to be the
converse of πλ, for all λ = s 1↔1

r s
′ with r an inverse role.

Note that πλ is a bijection fromXIλ,1∪∆s toXIλ,2∪∆s′ , just
as in the case where r is a role name. Also note that whenever
(d, e) ∈ rI is added by the current application of (c2) with
r a (potentially inverse) role, then there is a λ = s 1↔1

r s
′

such that (d, d′) ∈ πλ(d).
To show that (i2) is preserved by (c2), consider a (po-

tentially inverse) role r and a pair (d, d′) ∈ rI that has
been added in a (c2) application. Take λ = s 1↔1

r s′

such that (d, d′) ∈ πλ(d). From Lemma 19, we obtain
tpI(d) = s and tpI(d′) = s′. Consequently, s 1↔1

r s′

yields tpI(d)→r tpI(d′) and tpI(d′)→r− tpI(d).

We now show that (i3) is preserved by (c2). Let Tf |=
K v (6 1 r K ′), and assume to the contrary of what
is to be shown that, after some application of (c2), there
are (d, d1), (d, d2) ∈ rI with d ∈ KI , d1, d2 ∈ K ′I , and
d1 6= d2. We distinguish the following cases:

• (d, d1) was added by an application of (c2), (d, d2)
was not. By the former, there is λ = s 1↔1

r s′ such
that (d, d1) ∈ πλ. By Lemma 19, tpI(d) = s and
tpI(d1) = s′.
We aim to show that s′ ⊆ tpI(d2) because this means
that d ∈ (∃r.s′)I was true before the current appliction of
(c2), in contradiction to d being in the domain of πλ. Since
(d, d2) was not added by (c2), by (i2) we can distinguish
the following subcases:

– tpI(d) →r tpI(d2). Thus Tf |= tpI(d) v ∃r.tpI(d2)
and tpI(d2) is maximal with this property. Since

tpI(d) = s and by λ, Tf |= tpI(d) v ∃r.s′. Us-
ing the facts that Tf |= K v (6 1 r K ′), K ⊆
tpI(d) = s, K ′ ⊆ tpI(d2), and K ′ ⊆ tpI(d1) = s′,
an easy semantic argument shows that Tf |= tpI(d) v
∃r.(tpI(d2) ∪ s′). The maximality of tpI(d2) thus
yields s′ ⊆ tpI(d2).

– tpI(d2) →r− tpI(d). Then Tf |= tpI(d2) v ∃r−.s.
By λ, we have Tf |= s v ∃r.s′. Since K ⊆ s,
K ⊆ tpI(d2), K ⊆ tpI(d1) = s′, and Tf |= K v
(6 1 r K ′), a simple semantic argument shows that
s′ ⊆ tpI(d2).

– r(d, d2) ∈ A. Since d ∈ KI and d2 ∈ K ′I , we have
K ⊆ tpA(d) and K ′ ⊆ tpA(d2) by definition of the
initial interpretation I. Also, tpA(d) = s. By λ, we
thus have Tf |= tpA(d) v ∃r.s′. With Tf |= K v
(6 1 r K ′) and r(d, d2) ∈ A, the semantics yields
s′ ⊆ tpA(d2), thus s′ ⊆ tpI(d2).

• both (d, d1) and (d, d2) were added by an application of
(c2). Then there are λ1 and λ2, such that, for i ∈ {1, 2},
we have λi = si

1↔1
r s
′
i and (d, di) ∈ πλi

. Applying
Lemma 19 to λi yields si = tpI(d), for i ∈ {1, 2}. Con-
sequently, s1 = s2. We next show s′1 = s′2, thus λ1 = λ2.
For uniformity, we use s to denote s1 and s2. From λi,
we obtain Tf |= s v ∃r.s′i and s′i is maximal with this
property, for i ∈ {1, 2}. Lemma 19 yields tpI(di) = s′i.
Using the facts that Tf |= s v ∃r.s′i for i ∈ {1, 2}, K ⊆
tpI(d) = s, K ′ ⊆ tpI(di) = s′i for i ∈ {1, 2}, and
Tf |= K v (6 1 r K ′), an easy semantic argument shows
that Tf |= s v ∃r.(s′1 ∪ s′2). The maximality of s′1 and s′2
thus implies s′1 = s′2 as desired.
Hence, λ1 = λ2 and (d, d1), (d, d2) ∈ πλ1

. Since πλ1
is a

bijection, we obtain d1 = d2, a contradiction.

Application of (c3) preserves all invariants. It is obvious
that the invariants (i1) and (i2) are preserved with each single
application of (c3). It thus remains to treat (i3). Assume
that completion processed d ∈ ∆I with tpI(d) →r t and
tpI(d) 6→1

r t, adding the edge (d, dt) to rI . Since tpI(dt) =
t and tpI(d) 6→1

r t, there is no K v (6 1 r− K ′) ∈ Tf such
that K ⊆ t and K ′ ⊆ tpI(d). Take a K v (6 1 r K ′) ∈ Tf

with K ⊆ tpI(d) and K ′ ⊆ t. We have to prove that there
is no e ∈ ∆I distinct from dt such that (d, e) ∈ rI and
e ∈ K ′

I . This can be done exactly as in the case of the
completion rule (c1).

Termination of Model Construction
We show that the constructed interpretation I is indeed finite.

Proposition 20 ∆I is finite.

Proof. To analyze the termination of the construction of I,
we associate a certain directed tree T = (V,E) with the
model I that makes more explicit the way in which I was
constructed. Note that only the completion rules (c1) and
(c2) introduce new domain elements and that (c1) introduces
a single new element with each application whereas (c2) in-
troduces a whole (finite) set of fresh elements. Also note that
each application of a completion rule is triggered by a single



domain element d for which some existential restriction is
not yet satisfied.3 Now, the tree T is defined as follows:

• V consists of all subsets of ∆I that were introduced to-
gether by a single application of one of the completion
rules (c1) and (c2); additionally, the set of all elements in
the initial interpretation I is a node in V (in fact, the root
node);

• the edge (v, v′) is included in E if the elements in v′ were
introduced by an application of a completion rule to an
element d of v. We call this element the trigger of v′ and
denote it with dv′ .

To show that ∆I is finite, it clearly suffices to show that V is
finite. The outdegree of T is finite since every rule application
introduces only finitely many elements. By König’s Lemma,
it thus remains to show that T is of finite depth. We first note
that an easy analysis of (c1) and (c2) reveals the following
property:

(∗) if (v1, v2), (v2, v3) ∈ E, then there are d0, . . . , dk and
roles r0, . . . , rk−1 s.t.
– d0 = dv2 ∈ v1 and d1, . . . , dk = dv3 ∈ v2;
– tpI(di)→1

ri tpI(di+1) for all i < k.
Now assume towards a contradiction that the depth of T is
larger than 2|TP(Tf)|+1 and choose a concrete path v1 · · · vn
with v1 the root of T and n > 2|TP(Tf)|+ 1. This path gives
rise to a corresponding sequence of triggers dv1 , . . . , dvn .
Since the length of this sequence exceeds 2|TP(Tf)|, there
must be i, j with 2 ≤ i < j ≤ n and such that tpI(dvi) =
tpI(dvj ) and j > i+ 1. By applying (∗) multiple times, we
obtain a sequence of domain elements d0, . . . , dk and roles
r0, . . . , rk−1 such that

1. d0 = dvi ∈ vi−1, d1 ∈ vi, and dk = dvj ∈ vj−1;

2. tpI(d`)→1
r`

tpI(d`+1) for ` < k.

3. d0, . . . , dk contains all elements dvi , dvi+1
. . . , dvj .

Since tpI(dvi) = tpI(dvj ) and by Point 2, we have that
tpI(d0), r0, . . . , rk−1, tpI(dk) is a finmod cycle in Tf . Since
all finmod cycles in Tf have been reversed, we have

tpI(d0) 1↔1
r0 tpI(d1) 1↔1

r1 · · ·
1↔1

rk−1
tpI(dk). (†)

We prove the following claim:

Claim. If (c1) is triggered by d ∈ ∆I generating a new
element e ∈ ∆I , then there is no role r such that tpI(d) 1↔1

r
tpI(e).

Since dvi ∈ vi−1 and d1 ∈ vi, d1 was generated by the
application of a completion rule triggered by d0. By (†) and
the claim, this completion rule must be (c2). By definition of
(c2) and (†), all elements d1, . . . , dk have been introduced by
exactly this application of (c2). This leads to a contradiction:
we have d1 ∈ vi and dk ∈ vj−1, and since j > i + 1,
vi 6= vj−1. Consequently, d1 and dk were introduced by
different applications of completion rules. o

3In the case of (c2), there are potentially many domain elements
that trigger the same application. In such a case, we choose one
element as the actual trigger; see formulation of (c2).

The following is the remaining ingredient to the termination
proof (Claim in the proof of Proposition 20).

Lemma 21 If (c1) is triggered by d ∈ ∆I and generates
a new element e ∈ ∆I , then there is no role r such that
tpI(d) 1↔1

r tpI(e).

Proof. Observe that if e is introduced by an application of
(c1) to d ∈ ∆I , then Tf entails that tpI(d) →1

s tpI(e) for
some role s. Assume towards a contradiction that there is a
role r such that tpI(d) 1↔1

r tpI(e). Then, the finmod cycle
tpI(d), s, tpI(e), r−, tpI(d) occurs in Tf . Since every fin-
mod cycle in Tf is reversed, we have tpI(e) →1

s− tpI(d).
This is in contradiction to the assumption that e was intro-
duced by an application of (c1). o

Correctness of Model Construction
To complete the proof of the “if” direction of Theorem 3, it
remains to show the following.

Proposition 22 I is a model of A and Tf .

Proof. First, we show that for every assertion α ∈ A, I |= α.
This is a consequence of the definition of I. Indeed, for
every individual a, if α = A(a) ∈ A, then A ∈ tpA(a)
which by the definition of I implies that a ∈ AI . Further, if
α = r(a, b) ∈ A then (a, b) ∈ rI .

Next, we show that for every axiom K v C ∈ Tf , we have
that I |= K v C. We distinguish the following cases:

• C = A. Let d ∈ KI . Then K ⊆ tpI(d) and by (i1)
tpI(d) ∈ TP(Tf). Since Tf |= K v A, this yields A ∈
tpI(d) and thus d ∈ AI .

• C = ⊥. Follows from (i1). Indeed since for every d ∈ ∆I ,
tpI(d) ∈ TP(Tf), KI = ∅.

• C = ∃r.K ′. Let d ∈ KI . Then we have that K ⊆ tpI(d).
Since Tf |= K v ∃r.K ′, we have that tpI(d) →r t

′ for
some t′ with K ′ ⊆ t′. It suffices to show that there is
some d′ with (d, d′) ∈ rI and tpI(d′) = t′. The eas-
iest case is that such a d′ already exists in the initial
I. Assume that this is not the case. Note that one of
the following cases must apply: (1) tpI(d) →1

r t′ and
t′ 6→1

r− tpI(d), (2) tpI(d)→1
r t
′ and t′ →1

r− tpI(d), and
(3) tpI(d) 6→1

r t
′. These cases correspond exactly to the

completion rules (c1) to (c3). Thus, one of these rules will
add the required successor.

• C = ∀r.K ′. Let d ∈ KI and (d, d′) ∈ rI , We have
that K ⊆ tpI(d). Further, by (i2), we can distinguish the
following cases:

– tpI(d) →r tpI(d′). Then Tf |= tpI(d) v ∃r.tpI(d′)
and tpI(d′) is maximal with this property. Since Tf |=
K v ∀r.K ′, we have that Tf |= tpI(d) v ∃r.tpI(d′) ∪
K ′, and the maximality of tpI(d′) yields K ′ ⊆ tpI(d′),
and thus d′ ∈ K ′I .

– tpI(d′) →r− tpI(d). Then we have Tf |= tpI(d′) v
∃r−.tpI(d). Together with Tf |= K v ∀r.K ′, we ob-
tain Tf |= tpI(d′) v K ′. Since tpI(d′) ∈ TP(Tf) by
(i1), we obtain K ′ ⊆ tpI(d′) and thus d′ ∈ K ′I .



– r(d, d′) ∈ A. ThenK ⊆ tpA(d) by definition of the ini-
tial I . By the semantics, we thus have K ′ ⊆ tpA(d′) =
tpI(d′), thus d′ ∈ K ′I .

• C = (6 1 r K)′. Follows from (i3).
o

B Proofs for Section 4
We continue to assume that the original TBox T is in the
stricter normal form introduced at the begin of Section 4.
Before we can prove Î |= Tf , we will proceed as outlined
in Section 4, showing first that Î is a model of T̂ and that
it suffices to close only maximal cycles when constructing
T̂ . From here on, we will write K `T̂ K

′ as a shortcut for
K v A ∈ T̂ for all A ∈ K ′.

Lemma 10 Î |= T̂ .

Proof. Let K v C ∈ T̂ . We distinguish the following cases.
• C = ⊥.

If there were some d ∈ K Î , then the construction of Î
would ensure that tail(d) `T̂ K, and from K v ⊥ ∈ T̂
and R3 we would get tail(d) v ⊥ ∈ T̂ , which is im-
possible, as the following inductive argument shows. If
d = K ∈ Σ, the claim follows from the construction
in the initial step. If |d| > 1, then d was added due to
some element d′ with tail(d′) v ∃r.tail(d) ∈ T̂ . Now
tail(d) v ⊥ ∈ T̂ implies tail(d′) v ⊥ ∈ T̂ due to R6,
contradicting the inductive hypothesis.

• C = A.
Let d ∈ K Î . Then tail(d) `T̂ K by construction of Î.
Together with K v A ∈ T̂ , Rule R3 yields tail(d) v A ∈
T̂ , hence d ∈ AÎ by construction of Î.

• C = ∃r.K ′.
Let d ∈ K Î and assume tail(d) = K ′′. By construction of
Î , we have K ′′ `T̂ K. Further, from K v ∃r.K ′ ∈ T̂ , by
R3, K ′′ v ∃r.K ′ ∈ T̂ . Then the construction ensures that
d′ ∈ (∃r.K ′)Î as required.

• C = ∀r.A.
Let d ∈ K Î and (d, d′) ∈ rÎ . Further, let tail(d) = K1.
Since K v ∀r.A ∈ T̂ and K1 `T̂ K, we get by Rule R3

that K1 v ∀r.A ∈ T̂ . We distinguish the following cases.
(i) d′ = dK2 i.e., d′ was added after d because of some

K1 v ∃r.K2 ∈ T̂ , with K2 maximal with this property.
Since K1 v ∀r.A ∈ T̂ and K1 v ∃r.K2 ∈ T̂ , we get
by R5 that K1 v ∃r.(K2 uA) ∈ T̂ . Maximality of K2

implies that A ∈ K2. By R1, we have K2 v A ∈ T̂ and
thus d′ ∈ AÎ by construction of Î.

(ii) d = d′K1 i.e., d was added after d′ because of some
K2 v ∃r−.K1 ∈ T̂ with K2 = tail(d′). Since K1 v
∀r.A ∈ T̂ and K2 v ∃r−.K1 ∈ T̂ , we get by rule R4

that K2 v A ∈ T̂ . Thus, d′ ∈ AÎ by construction of Î.

• C = (6 1 r A).

Let d ∈ K Î and let K ′′ = tail(d). Assume that there are
e1, e2 with (d, ei) ∈ rÎ and ei ∈ AÎ for i = 1, 2. We
have K ′′ `T̂ K by construction of Î and thus, by Rule R3,
K ′′ v (6 1 r A) ∈ T̂ .
Let Ki = tail(ei); hence Ki v A ∈ T̂ , i = 1, 2. We
distinguish two cases according to the construction of Î.

(i) Each ei was added by K ′′ v ∃r.Ki and Ki is maximal
with this property. Hence ei = dKi. Since K ′′ v (6
1 r A) ∈ T̂ and Ki v A ∈ T̂ , we have by R7 that
K ′′ v ∃r.(K1 uK2) ∈ T̂ . The maximality conditions
on both Ki imply K1 ⊆ K2 and K2 ⊆ K1. Hence,
e1 = e2, and d ∈ (6 1 r A)Î as required.

(ii) d = e1K
′′ and e2 = dK2. Hence d is added after e1

due to some K1 v ∃r−.K ′′ ∈ T̂ with K ′′ maximal,
and e2 is added after d due to some K ′′ v ∃r.K2 ∈ T̂
with K2 maximal. Since K ′′ v (6 1 r A) ∈ T̂ and
Ki v A ∈ T̂ , we get by rule R8 that K1 v A′ ∈ T̂ for
every A′ ∈ K2. Then, by construction of Î, we have
e1 ∈ K Î2 and thus e2 cannot be added as an r-successor
of d. Hence, d ∈ (6 1 r A)Î .

o

Lemma 11. Tf is equivalent to T max
f .

Proof. It suffices to show that, for every cycle C in a TBox S ,
there is a maximal cycle Ĉ in S whose reversal implies the
reversal of C. More precisely, let C = K1, r1,K2, . . . ,Kn

be a cycle in S. We show that there is a maximal cycle
Ĉ = K̂1, r1, K̂2, . . . , K̂n whose reversal – that is, adding
the axioms K̂j+1 v ∃r−j .K̂j and K̂j v (6 1 rj K̂j+1) to
S– will lead to S implying the reversal of C. We proceed in
three steps.

First, we construct Ĉ = K̂1, r1, K̂2, . . . , K̂n iteratively as
follows. Initially, set K̂j = Kj for every j = 1, . . . , n. Then
exhaustively apply the following step.

While there is some L̂j+1 ) K̂j+1 maximal with S |=
K̂j v ∃rj .L̂j+1 for some j = 1, . . . , n − 1, set K̂j+1 =

L̂j+1.
The iteration terminates because the supply of conjunctions
is bounded and C’s length is fixed.

Second, we verify that Ĉ is indeed a cycle. It suffices to
show that one application of the construction step does not
destroy the cycle property, i.e., by replacing K̂j+1 with the
larger L̂j+1, the four subsumptions involving K̂j+1 now hold
for L̂j+1:

• S |= K̂j v ∃rj .L̂j+1 holds due to the step’s precondition.

• S |= L̂j+1 v ∃rj .K̂j+2 holds because S |= L̂j+1 v
K̂j+1 v ∃rj .K̂j+2.

• S |= L̂j+1 v (6 1 r−j K̂j) holds because S |= L̂j+1 v
K̂j+1 v (6 1 r−j K̂j).



• S |= K̂j+2 v (6 1 r−j+1 L̂j+1) holds because S |=
K̂j+2 v (6 1 r−j+1 K̂j+1) and S |= L̂j+1 v K̂j+1.

Third, we show that the reversal of Ĉ implies the reversal of
C. Again, it suffices to show that this is the case when Ĉ is
obtained from C applying one single construction step. Let
S+ be the TBox obtained from S after reversing Ĉ, that is,
S+ equals S plus the following 2j axioms.

. . . L̂j+1 v ∃r−j .K̂j K̂j+2 v ∃r−j+1.L̂j+1 (∗) . . .

. . . K̂j v (6 1 rj L̂j+1) L̂j+1 v (6 1 rj+1 K̂j+2) . . .

To prove that all 2j axioms that would be added by reversing
C are implied by S+, it suffices to show that S+ |= K̂j+1 v
L̂j+1 (which implies S+ |= K̂j+1 ≡ L̂j+1). Consider an
arbitrary model Î |= S+ and an instance d of K̂j+1 in Î.
Since Ĉ is a cycle, there is some e with (d, e) ∈ rIj+1 and
e ∈ K̂Ij+2. Then, due to the above axiom (∗) in S+, there is
some d′ with (d′, e) ∈ rIj+1 and d′ ∈ L̂Ij+1. Now, since C
is a cycle in S – i.e., K̂j+2 v (6 1 r−j+1 K̂j+1) ∈ S – and
because L̂j+1 ⊇ K̂j+1, we obtain that d′ = d. Hence d is an
instance of L̂j+1. o

When proving Î |= T max
f , we have to deal with the com-

plication that T max
f ⊆ T̂ need not hold. As illustrated by

Example 7, this is a actually a main feature of our calculus
because we are avoiding to introduce conjunctions K that are
‘irrelevant’ for the reasoning task at hand.

We address this issue by showing that the relevant conse-
quences of all concept inclusions in T max

f \ T̂ are reflected
in T̂ , even if the inclusions themselves are missing. To make
this more precise, note that T max

f \ T̂ only contains CIs of
the form

(i) K v ∃r.K ′ and

(ii) K v (6 1 r K ′).

Note that, while T is in the stricter normal form, cycle rever-
sion may have introduced CIs of the form (ii) with arbitrary
conjunctions K ′.

For CIs of the form (i), we observe that K,K ′ may be
irrelevant: they may not occur in T̂ . We show that there is
some conjunction K̂ ′ that satisfies K̂ ′ `T̂ K ′ and which
intuitively replaces K ′ such that for all relevant conjunctions
K̂ with K̂ `T̂ K, the inclusion K̂ v ∃r.K̂ ′ is contained in
T̂ .

For CIs of the form (ii), we show analogously that there is
a replacement A of K ′ such that for all relevant conjunctions
K̂ with K̂ `T̂ K, T̂ contains K̂ v (6 1 r A). However,
in this case the fact that A is a replacement of K ′ has to be
formalized even a bit more carefully. We cannot require that
K ′ `T̂ A, again because K ′ may be irrelevant. Instead, we
need that K̃ ′ `T̂ K ′ implies K̃ ′ v A ∈ T̂ for all relevant
K̃ ′.

What we have just discussed is Lemma 24 below. In order
to show that the above concept inclusions K̂ v ∃r.K̂ ′ and
K̂ v (6 1 r A) all are in T̂ , we consider the sequence of
TBoxes T 0

f , T 1
f , . . . that are obtained by repeatedly reversing

maximal cycles and whose limit is T max
f . Note that T i+1

f is
produced from T if by reversing one cycle, and that cycles are
defined in terms of semantic entailment of CIs of the form
(i) and (ii) by T if , rather than syntactic containment. We first
establish an auxiliary lemma that helps in bridging this gap.

Since, by assumption, the original TBox T is in the stricter
normal form introduced at the begin of Section 4, all TBoxes
T if contain ∀-restrictions only in the form ∀r.A. However,
due to cycle reversion, functionality restrictions may occur
in the form (6 1 r L′) for arbitrary conjunctions L′. Every
T if and every conjunction K that is satisfiable w.r.t. T if give
rise to a TBox (T if )K as follows:

1. for all CIs L v C ∈ T if with T if |= K v L and C of one
of the forms ∃r.L′, ∀r.A, and (6 1 r L′), include K v C;

2. then exhaustively apply rules R5 and R7′, where R7′ is
obtained from R7 by replacing containment in T̂ with
entailment in T if :

R7′

K v ∃r.K1 K v ∃r.K2 T if |= K1 v K ′

K v (6 1 r K ′) T if |= K2 v K ′

K v ∃r.(K1 uK2)

It is easy to see that T if |= (T if )K . Note that Step 1 above
addresses the fact that K need not occur syntactically in T if .

The proof of the following lemma uses (T if )K to introduce
two variants of the canonical model for T if and to extract the
required witnesses for entailments.
Lemma 23 For every i ≥ 0, the following hold.

1. If T if |= K v ∃r.K ′ and K is satisfiable w.r.t. T if then
there is some conjunction L′ with

(a) T if |= L′ v K ′ and
(b) (T if )K 3 K v ∃r.L′.

2. If T if |= K v (6 1 r K ′) and T if |= K ′ v ∃r−.K such
that K is maximal with this property and K ′ is satisfiable
w.r.t. T if , then there are L,L′ with

(a) T if |= K v L, and
(b) T if |= K ′ v L′, and
(c) T if 3 L v (6 1 r L′).

Proof. We begin by constructing a variant of the canonical
model for T if that will be used in the proofs of both points of
the lemma. Let K be a conjunction satisfiable w.r.t. T if . The
interpretation IK is defined as follows. The domain ∆IK

consists of words over the alphabet built up of all conjunc-
tions of concept names that occur in T if and are satisfiable
w.r.t. T if . Initially, ∆IK is the singleton set {d0} for d0 = K,
and the concept and role names are interpreted such that

tpIK (d0) = {A | T if |= K v A}
rIK = ∅



Then we add the required successors to the root node d0. For
every K v ∃r.L′ ∈ (T if )K such that L′ is maximal with this
property,
• add a fresh element e = KL′ to ∆IK ;
• add the pair (d0, e) to rIK ;
• interpret concept names such that tpIK (e) = {A | T if |=
L′ v A}.

Finally, we exhaustively generate required successors of non-
root elements. For every d = wL ∈ ∆IK with d 6= d0, and
every inclusion L v ∃r.L′ such that T if |= L v ∃r.L′, L′ is
maximal with this property, and d /∈ (∃r.L′)Î ,
• add a fresh element e = wLL′ to ∆IK ;
• add the pair (d, e) to rIK ;
• interpret concept names such that tpIK (e) = {A | T if |=
L′ v A}.

Note the difference between the treatment of the root node
d0 and all other nodes: for d0, we consider inclusions K v
∃r.L′ that are syntactically contained in (T if )K ; for all other
nodes, we consider inclusions that semantically follow from
T if (equivalently: from (T if )K).

Claim. IK |= T if .

Proof of Claim. Let L v C ∈ T if . We distinguish the fol-
lowing cases.

• C = ⊥. Assume that L has an instance d = wL̂ in IK .
Then T if |= L̂ v L due to the construction of IK ; hence
T if |= L̂ v ⊥, which is impossible, as the following
inductive argument shows. If d = K, the claim follows
from the assumption that K is satisfiable in T if . If |d| > 1
then d was added due to some element d′ = wL with
T if |= L v ∃r.L̂. Then T if |= L̂ v ⊥ implies T if |= L v
⊥ ∈ T̂ , contradicting the inductive hypothesis.

• C = A. Let d ∈ LIK with d = wL̂. Then T if |= L̂ v L
by construction of IK . Since L v A ∈ T if , we obtain
T if |= L̂ v A; hence d ∈ AIK .

• C = ∃r.L′. Let d ∈ LIK .

In case d = d0 = K, we have that T if |= K v L. Together
with L v ∃r.L′ ∈ T if , this implies that K v ∃r.L′ ∈
(T if )K by Step 1 of the construction of (T if )K . Let K ′ be
maximal with K v ∃r.K ′ ∈ (T if )K and L′ ⊆ K ′. In the
construction of IK , we thus create an r-successor e of d
with tpIK (e) ⊇ L′. Hence d ∈ (∃r.L′)IK .

In case d 6= d0, let d = wK ′. Then T if |= K ′ v L.
Together with L v ∃r.L′ ∈ T if , this implies that T if |=
K ′ v ∃r.L′. Then the construction of IK ensures that
there is an r-successor e of d with tpIK (e) ⊇ L′. Hence
d ∈ (∃r.L′)IK .

• C = ∀r.A. Let d ∈ LIK and (d, e) ∈ rIK .

In case d = d0 = K and e = KK ′, we have that
T if |= K v L; hence K v ∀r.A ∈ (T if )K as above.

Now e was added for some K v ∃r.K ′ ∈ (T if )K with
K ′ maximal. Since (T if )K is closed under application of
R5, we have that K v ∃r.(K ′ uA) ∈ (T if )K . Maximality
of K ′ implies that A ∈ K ′. The construction of IK then
implies that A ∈ tpIK (e); i.e., e ∈ AIK .

In case e = d0 = K and d = KK ′, we have that T if |=
K ′ v L; hence T if |= K ′ v ∀r.A (x). Now d was added
for some K v ∃r−.K ′ ∈ (T if )K with K ′. Since T if |=
(T if )K , we obtain T if |= K v ∃r−.K ′. Together with (x),
a simple semantic argument implies T if |= K v A; hence,
e ∈ AIK .

In case d = wK1 6= d0 and e = wK1K2, we have
that T if |= K1 v L; hence T if |= K1 v ∀r.A as
above. Now e was added because T if |= K1 v ∃r.K2

with K2 maximal. A simple semantic argument implies
T if |= K1 v ∃r.(K2 u A), and maximality of K2 again
yields A ∈ K2; i.e., e ∈ AIK .

In case e = wK1 6= d0 and d = wK1K2, we have that
T if |= K2 v L; hence T if |= K2 v ∀r.A. Now d was
added because T if |= K1 v ∃r−.K2. A simple semantic
argument implies T if |= K1 v A, i.e., e ∈ AIK .

• C = (6 1 r L′). Let d ∈ LIK , and let (d, ei) ∈ rIK and
ei ∈ (L′)IK for i = 1, 2.

In case d = d0 = K and ei = KKi, we have that
(i) T if |= K v L and (ii) T if |= Ki v L′ for i = 1, 2.
By construction of (T if )K , (i) and the assumption imply
(iii) K v (6 1 r L′) ∈ (T if )K . Now each ei was added
for some (iv) K v ∃r.Ki ∈ (T if )K with Ki maximal. Ap-
plying R7′ to (iv), (iii), (ii) yields K v ∃r.(K1 uK2) ∈
(T if )K . Maximality of the Ki implies that K1 = K2;
hence e1 = e2.

In case e1 = d0 = K, d = KK1, and e2 = KK1K2, we
have that (i) T if |= K1 v L plus (ii) T if |= K v L′ and
(iii) T if |= K2 v L′. By construction of (T if )K , (i) and
the assumption imply (iv) T if |= K v (6 1 r L′). Now
d was added for some (v) K v ∃r−.K1 ∈ (T if )K , and e2
was added for some (vi) K1 v ∃r.K2 ∈ (T if )K . A simple
semantic argument applied to (v), (vi), (iv), (ii) and (iii)
yields T if |= K v K2. This contradicts the assumption
that e2 was added for (vi).

In case d = wK ′ 6= d0 and ei = wK ′Ki, we argue as in
the first case, but purely on a semantic basis, i.e., referring
to entailment by T if instead of containment in (T if )K .

In case e1wK ′ 6= d0, d = wK ′K1, and e2 = wK ′K1K2,
we argue “semantically” as in the second case.

u

To prove claim (1), assume T if |= K v ∃r.K ′ with K
satisfiable w.r.t. T if . Since IK |= T if and due to Step 1 of
the construction of IK , there is some L′ with K v ∃r.L′ ∈
(T if )K and T if |= L′ v K ′.

To prove claim (2), assume T if |= K v (6 1 r K ′) and
T if |= K ′ v ∃r−.K with K maximal and K ′ – and thus K –



satisfiable w.r.t. T if . We construct an interpretation J from
the models IK and IK′ as follows. Start with two copies
of IK′ and one of IK , pairwise disjoint. Since T if |= K ′ v
∃r−.K withK maximal, the root di of each of the two copies
of IK′ has an r−-successor ei of type K. Delete the subtrees
starting at ei and replace the r-edges (ei, di) with (d0, di),
where d0 is the root of the copy of IK .

Now the proof of the previous claim that IK and IK′ are
models of T if can be easily refined to yield that

• all axioms L v C ∈ T if where C is of the form
A,⊥,∃s.L′,∀s.A are satisfied by J ;

• if an axiom L v (6 1 s L′) ∈ T if is violated by J , then
it is violated by the root of the copy of IK , i.e., s = r and
d0 ∈ LJ but d0 /∈ (6 1 r L′)J .

Since T if |= K v (6 1 r K ′) but obviously J 6|= K v
(6 1 r K ′), we have that J 6|= T if . Consequently, there is
an axiom L v (6 1 r L′) ∈ T if which is violated by d0;
that is, d0 ∈ LJ \ (6 1 r L′)

J . This establishes (c) directly
and implies (a) and (b): first, by construction of the IK′ , we
get T if |= K ′ v L′, which is (b). Second, with L v (6
1 r L′) ∈ T if and (b), we obtain T if |= L v (6 1 r K ′).
Since K is maximal with this property, we have L ⊆ K,
which implies (a). o

A conjunction K of concept names is active in T̂ if there is
a K̂ ∈ KON(T̂ ) with K̂ `T̂ K. Point (1) of the following
lemma implies the required statement Î |= T max

f .

Lemma 24 For every i ≥ 0, the following hold.

1. If T if 3 K v ∃r.K ′ and K is active in T̂ , then there is a
K̂ ′ ∈ KON(T̂ ) such that

(a) K̂ ′ `T̂ K
′;

(b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3
K̂ v ∃r.K̂ ′.

2. If T if 3 K v (6 1 r K ′) and K is active in T̂ , then there
is a concept name A such that

(a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ K
′ then K̃ ′ v A ∈ T̂ .

(b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3
K̂ v (6 1 r A).

3. Î |= T if
4. Point 1 holds when “T if 3 K v ∃r.K ′” is replaced with

“T if |= K v ∃r.K ′”.
5. Point 2 holds when “T if 3 K v (6 1 r K ′)” is replaced

with “T if |= K v (6 1 r K ′), T if |= K ′ v ∃r−.K, K is
maximal with this property, and K ′ is active in T̂ ”.

Proof. We simultaneously prove Points 1–5 by induction on
i, showing

• the straightforward base case for Points 1–3;

• that Points 1–3 imply Points 4 and 5 for every i ≥ 0;

• the induction step for Points 1–2 simultaneously, and for
Point 3.

For Point 1 of the base case, assume that T 0
f = T 3 K v

∃r.K ′ with K active in T̂ . Then K ∈ KON(T̂ ) because
T ⊆ T̂ , and K ′ is the required K̂ ′: (a) and (b) are due to
Rules R1 and R3, respectively.

For Point 2 of the base case, assume that T 0
f = T 3 K v

(6 1 r K ′). Then K ′ is in fact a concept name A because
we are assuming T to be in the stricter normal form. This A
is the required concept name: (a) holds trivially, and (b) is
due to Rule R3.
Point 3 of the base case follows from Î |= T̂ (Lemma 10)
and T̂ ⊇ T = T 0

f .

For Point 4, we will show that, for every i ≥ 0, Point 4 fol-
lows from Points 1–3. The following argument thus combines
base case and induction step for Point 4.

Assume that T if |= K v ∃r.K ′ with K active in T̂ . We
also have that K is satisfiable w.r.t. T if since Î |= T if by
Point 3 and, by construction, Î has an instance of K. Con-
sider the TBox (T if )K . By Lemma 23 (1), there is some L′
such that

(a′) T if |= L′ v K ′ and

(b′) (T if )K 3 K v ∃r.L′.
We shall show below that, for every K v ∃r.L′ in (T if )K ,
there is some K̂ ′ ∈ KON(T̂ ) with

(a′′) K̂ ′ `T̂ L
′

(b′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v
∃r.K̂ ′.

This implies (a) and (b). (b) is exactly (b′′′), and (a) follows
from (a′) and (a′′) by inspecting the root element K̂ ′ of ∆Î :
by construction of Î and (a′′), this element is an instance of
L′; since Î |= T̂ if (Point 3), it is an instance of K ′ too; by
construction of Î, we get K̂ ′ `T̂ K

′.

To prove the above, we use induction on the number of rule
applications used to construct (T if )K . The base case is that
K v ∃r.L′ enters (T if )K in Step 1 of the construction. Then
there is some L v ∃r.L′ ∈ T if with T if |= K v L. Since
K is active in T̂ , so is L: for some K̃ ∈ KON(T̂ ) with
K̃ `T̂ K, the root element K̃ of ∆Î must make L true.
By Point 1, there is a K̂ ′ ∈ KON(T̂ ) with (a′′) and (b′′) as
required.

In the induction step, K v ∃r.L′ enters (T if )K in Step 2
of the construction. In case this happens via an application of
R5, we have that L′ = L′1 uA and

(i) K v ∃r.L′1 ∈ (T if )K

(ii) K v ∀r.A ∈ (T if )K

Applying the induction hypothesis to (i), we obtain

(i′) there is some K̂ ′1 ∈ KON(T̂ ) with

(a′′′) K̂ ′1 `T̂ L
′
1



(b′′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3
K̂ v ∃r.K̂ ′1.

From (ii), we obtain L v ∀r.A ∈ T if for some L with
T if |= K v L because axioms with ∀-restrictions never
enter (T if )K in Step 2 of the construction. Since such axioms
are not generated by closing cycles either, we even have
L v ∀r.A ∈ T ; hence

(ii′) L v ∀r.A ∈ T̂ with T if |= K v L.

We now observe that T if |= K v L and K̂ `T̂ K imply
K̂ `T̂ L (again by consulting the domain element of Î
created for K̂). Hence, application of R3 to (ii′) yields

(ii′′) K̂ v ∀r.A ∈ T̂ for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K.

Now K̂ ′ := K̂ ′1 uA is as required:

• K̂ ′ ∈ KON(T̂ ).

Since K is active in T̂ , there is some K̂ ∈ KON(T̂ ) with
K̂ `T̂ K. By (b′′′), we thus have K̂ v ∃r.K̂ ′1 ∈ T̂ .
Applying R5 to this and (ii′) yields K̂ v ∃r.(K̂ ′1uA) ∈ T̂ .
Hence K̂ ′1 uA ∈ KON(T̂ ).

• (a′′) is satisfied, that is, K̂ ′1 uA `T̂ L
′
1 uA.

For every A′ ∈ L′1, we have K̂ ′1uA v A′ ∈ T̂ because of
(a′′′), R1, R3. Furthermore, K̂ ′1 uA v A ∈ T̂ due to R1.

• (b′′) is satisfied.
Let K̂ ∈ KON(T̂ ) such that K̂ `T̂ K. Then R5 applied
to (b′′′) and (ii′′) implies K̂ v ∃r.(K̂ ′1 uA) ∈ T̂ .

In case K v ∃r.L′ enters (T if )K via an application of R7′,
we have that L′ = L′1 u L′2 and

(i) K v ∃r.L′j ∈ (T if )K , j = 1, 2

(ii) K v (6 1 r L′3) ∈ (T if )K for some L′3 with

(iii) T if |= L′j v L′3, j = 1, 2.

Applying the induction hypothesis to (i), we obtain

(i′) there is some K̂ ′j ∈ KON(T̂ ), j = 1, 2, with

(a′′′) K̂ ′j `T̂ L
′
j

(b′′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3
K̂ v ∃r.K̂ ′j .

Regarding (ii), we observe that axioms with functionality
restrictions never enter (T if )K in Step 2. Hence, there is
some L v (6 1 r L′3) ∈ T if with T if |= K v L, and the
same observation as in the previous case yields K̂ `T̂ L

whenever K̂ `T̂ K. We thus obtain from Point 2 that

(ii′) there is some A with

(a4) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ L
′
3, then K̃ ′ v A ∈ T̂ .

(b4) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3
K̂ v (6 1 r A).

Furthermore (iii) and (a′′′) yield

(iii′) K̂ ′j `T̂ L
′
3 for i = 1, 2,

and with (a4) we get

(iii′′) K̂ ′j v A ∈ T̂ for i = 1, 2.

Now K̂ ′ = K̂ ′1 u K̂ ′2 is as required:

• K̂ ′ ∈ KON(T̂ ).

Since K is active in T̂ , there is some K̂ ∈ KON(T̂ ) with
K̂ `T̂ K. By (b′′′) and (b4), we thus have K̂ v ∃r.K̂ ′j ∈
T̂ and K̂ v (6 1 r A) ∈ T̂ . Applying R7 to these and
(iii′′) yields K̂ v ∃r.(K̂ ′1 u K̂ ′2) ∈ T̂ . Hence K̂ ′1 u K̂ ′2 ∈
KON(T̂ ).

• (a′′) is satisfied, that is, K̂ ′1 u K̂ ′2 `T̂ L
′
1 u L′2.

For every i = 1, 2 and A′ ∈ L′i, we have K̂ ′1 u K̂ ′2 v A ∈
T̂ because of (a′′′), R1, and R3.

• (b′′) is satisfied.
Let K̂ ∈ KON(T̂ ) such that K̂ `T̂ K. Then R7 applied
to (b′′′), (b4), (iii′′) implies K̂ v ∃r.(K̂ ′1 u K̂ ′2) ∈ T̂ .

For Point 5, we will show that, for every i ≥ 0, Point 5
follows from Points 1–3.

Assume that T if |= K v (6 1 r K ′), T if |= K ′ v
∃r−.K, K is maximal with this property, and K ′ is active in
T̂ . We have to show that there is an A such that

(a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ K
′, then K̃ ′ v A ∈ T̂ .

(b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v
(6 1 r A).

Since K ′ is active in T̂ and Î |= T if by Point 3, we also have
that K ′ is satisfiable w.r.t. T if . By Lemma 23 (2), there is
some L v (6 1 r L′) ∈ T if with

(i) T if |= K v L and

(ii) T if |= K ′ v L′.
We apply Point 2 and conclude that there is some A with

(a′) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ L
′, then K̃ ′ v A ∈ T̂ ;

(b′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ L, we have T̂ 3 K̂ v
(6 1 r A).

It remains to show that A is the required conjunction. For (a),
take some K̃ ′ ∈ KON(T̂ ) and assume that K̃ ′ `T̂ K

′. Then
(ii) and Point 3 (Î |= T if ) imply that K̃ ′ `T̂ L′. Now (a′)
implies that K̃ ′ v A ∈ T̂ .

For (b), take some K̂ ∈ KON(T̂ ) with K̂ `T̂ K. Then
(i) and Î |= T if imply that K̂ `T̂ L. Now (b′) implies that
T̂ 3 K̂ v (6 1 r A).

For Points 1–2 of the induction step, we prove both points
simultaneously. If any of the CIs K v ∃r.K ′ and K v (6
1 r K ′) is in T i−1f , then we can use the induction hypothesis
for it. Otherwise, the respective CI has been introduced by
closing a cycleK1, r1,K2, . . . , rn−1,Kn in T i−1f withK =



Kj for some j ∈ {1, . . . , n− 1}, and thus Kj is active in T̂ .
Take some K̃ ∈ KON(T̂ ) with K̃ `T̂ Kj . Applying Point 4
of the induction hypothesis to T i−1f |= Kj v ∃rj .Kj+1, we
find a K̂j+1 ∈ KON(T̂ ) such that

(i) K̂j+1 `T̂ Kj+1, and

(ii) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj , we have T̂ 3 K̂ v
∃rj .K̂j+1.

By Point (i), Kj+1 is active in T̂ and thus we can iterate the
argument to find

K̂j+2, . . . , K̂n = K̂1, K̂2, . . . , K̂j

with the following properties, for 1 ≤ j < n.

(iii) K̂j `T̂ Kj and K̂j ∈ KON(T̂ );

(iv) T̂ 3 K̂j v ∃rj .K̂j+1.
Let 1 < j ≤ n. Applying Point 5 of the induction hypothesis
to T i−1f |= Kj+1 v (6 1 r−j Kj), we find an Aj such that

(v) for all K̃j ∈ KON(T̂ ): if K̃j `T̂ Kj , then K̃j v Aj ∈ T̂ ;

(vi) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1, we have T̂ 3
K̂ v (6 1 r−j Aj).

From (vi) and (i), in particular we obtain:

(vii) T̂ 3 K̂j+1 v (6 1 r−j Aj).
From (iii) and (v), we obtain:

(viii) K̂j v Aj ∈ T̂ .
We can now apply the cycle rule R9 to the CIs in (iv), (vii)
and (viii), obtaining

(ix) T̂ 3 K̂j+1 v ∃r−j .K̂j

(x) T̂ 3 K̂j v (6 1 rj Aj+1)

To establish both Points 1 and 2, we set K̂ ′ = K̂j and A =
Aj+1, and we have to show

(1a) K̂j `T̂ K
′;

(1b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1, we have T̂ 3
K̂ v ∃r−j .K̂j ;

(2a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ Kj+1 then K̃ ′ v Aj+1 ∈
T̂ ;

(2b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj , we have T̂ 3 K̂ v
(6 1 rj Aj+1).

Now (1a) and (2a) are just (iii) and (v); hence it remains to
show (1b) and (2b). We first claim that

(xi) For every j ≥ 1, we have K̂ v A ∈ T̂ for all A ∈ K̂j .

To show (xi), let K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj . From (ii)
and (v), we get that

(xii) K̂ v ∃rj .K̂j+1 ∈ T̂ .

From (viii), and from (v) with K̂ `T̂ Kj , we obtain:

(xiii) K̂j v A, K̂ v Aj ∈ T̂ .

Applying R8 to (xii), (ix), (xiii), (vi) yields (xi).
For showing (1b), take a K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1.

With (xi), we get K̂ v A ∈ T̂ for every A ∈ K̂j+1. Hence,
R3 and (ix) give us that K̂ v ∃r−j .K̂j ∈ T̂ . For showing
(2b), take K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj . Again with (xi),
we get that K̂ v A ∈ T̂ for every A ∈ K̂j which, by R3 and
(x), yields K̂ v (6 1 rj Aj+1) ∈ T̂ as required.

For Point 3 of the induction step. For every K v C ∈ T if ,
if K is realized in Î, then in the form of a supertype from
KON(T̂ ). Thus it is easy to show that Î is a model of every
K v C ∈ T if , using Points 1 and 2 for the cases C = ∃r.K ′
and C = (6 1 r K ′), and deriving the remaining cases from
Î |= T̂ .

o

C Proofs for Section 5
Recall that, to establish Proposition 15 we have to show the
following.

Proposition 25 For every n0 > 0, there is a finite model
Jn0

ofA and T such that there is a homomorphism from any
n0-substructure of Jn0

to U .

As explained in the main paper, the first step towards proving
Proposition 25 is to show Proposition 16, repeated here for
convenience.

Proposition 16 For every n0 > 0, there is a finite model In0

of A and T such that In0
�n0
U .

For the rest of Section C, fix a concrete n0 (and, as in the main
paper, an ABoxA and TBox T ). To prove Proposition 16, we
modify the finite model construction of Section 3. In particu-
lar, we modify the initial interpretation, use modified versions
of the completion rules (c2) and (c3), and change the strat-
egy of rule application. Here is a more detailed summary of
the implemented changes:

• The elements dt introduced in the initial version of I in the
original construction and used as targets for applications
of (c3) are not present.

• Instead of including only A in the initial version of I, we
include an initial piece of the canonical model U of A and
T , truncated to depth n0.

• We then apply only (c1) and (c2), where the latter is
modified in a way so that all new paths introduced between
elements that existed already before a rule application
exceed length n0.

• To provide targets for applications of (c3), we determine
all relevant n0-simulation types and add them disjointly to
the constructed interpretation.

• The previous two steps are iterated until no new n0-
simulation types are added.

• We then apply a modified version of (c3) that respects
n0-simulation types.



Details are provided in what follows.

We introduce some missing bits of notation. An (unbounded)
simulation of I1 in I2 is a relation ρ ⊆ ∆I1 × ∆I2 such
that for all (d, e) ∈ ρ, Condition 1 of bounded simulations is
satisfied, as well as the following variation of Condition 2:

2′. if (d, d′) ∈ rI1 for some (possibly inverse) role r with
sig(r) ⊆ sig(A) ∪ sig(T ), then there is an e′ ∈ ∆I2 with
(e, e′) ∈ rI2 and (d′, e′) ∈ ρ.

We write (I1, d) � (I2, d) if there is a simulation ρ of I1 in
I2 such that (d, e) ∈ ρ and for all a ∈ Ind(A)∩∆I , we have
(a, a) ∈ ρ.

Proof of Proposition 16: Applying (c1) and (c2)
We define a finite interpretation I0 by starting with the subin-
terpretation U0 of U to those elements that can be reached
from an ABox individual by traveling at most n0 role edges.
Note that the ABox A is a substructure of U0, but that the
elements dt from the initial interpretation I in Section 3 are
not present. Next, we exhaustively apply the two completion
rules (c1) and (c2′) to the initial I0 just defined, where (c1)
is as in Section 3 and (c2′) is a modified version of (c2).
Note that, also in the original construction of the finite model
I in Section 3, it is safe to apply (c3) only after no further
applications of (c1) and (c2) are possible since (c3) cannot
trigger an application of (c1) or (c2).

(c2′) Choose a type class P that is minimal w.r.t. the order ≺+

and such that there is a λ = s 1↔1
r s
′ with s ∈ P , and an

element d ∈ ∆I0 with d ∈ sI0 \ (∃r.s′)I0 .

For each λ = s 1↔1
r s
′ with s ∈ P , set

XI0λ,1 = sI0 \ (∃r.s′)I0 XI0λ,2 = s′
I0 \ (∃r−.s)I0 .

Take (i) a fresh set ∆s for each s ∈ P and (ii) a bijection
πλ between XI0λ,1 ∪ ∆s and XI0λ,2 ∪ ∆s′ for each λ =

s 1↔1
r s
′ with s, s′ ∈ P and r a role name, and extend I0

as follows:
– add all domain elements in

⊎
s∈P ∆s;

– extend rI0 with πλ, for each λ = s 1↔1
r s
′ with s, s′ ∈

P and r a role name;
– interpret concept names so that tpI0(d) = s for all
d ∈ ∆s, s ∈ P .

An element d in the extended I0 is called old if it existed
already before the extension (that is, d /∈

⊎
s ∆s) and new

otherwise. A path is a sequence d1r1d2 · · · dkrkdk+1, with
d1, . . . , dk+1 ∈ ∆I0 , r1, . . . , rk (potentially inverse) roles
and (di, di+1) ∈ rI0i for 1 ≤ i ≤ k. A path is simple
if there are no multiple occurrences of the same node.
We will show below that we can choose the sets ∆s and
bijections πs such that:

1. |
⊎
s∈P ∆s| ≤ O(2|T | · |T |n0 · |∆I0 |);

2. no edge (d1, d2) ∈ rI0 is introduced with both d1, d2
old;

3. for each new element d1 ∈
⊎
s ∆s, there is at most one

simple path d1r1d2 · · · dkrkdk+1 of length at most n0
such that d1, . . . , dk are new and dk+1 is old.

Rules are applied in the same preference order as in Section 3.

We now argue that, in rule (c2′) above, the sets ∆s and
πλ indeed exist also with these modified conditions. We first
extend I0 to a new interpretation I ′0 by adding required suc-
cessors up to depth n0, which results in tree-shaped substruc-
tures of depth n0 to be attached to elements of I0. During the
process, we assign to each newly generated element a level
and a type. In detail:

• all elements of I0 are assigned level 0;

• whenever there is an element d on level ` < n0 and a λ =
s 1↔1

r s
′ with s, s′ ∈ P and r a (potentially inverse) role

such that tpI0(d) = s and there is no (d, d′) ∈ rI0 with
d′ ∈ s′I0 , then add a new element d′, put tpI0(d′) = s′,
add (d, d′) to rI0 , and assign to d′ level `+ 1.

Call the resulting interpretation I ′0. We can now apply the
original (c2) operation to I ′0 instead of to I0. This gives us
a set ∆′s for each s ∈ P and a bijection π′λ from X

I′0
λ,1 ∪∆′s

to XI
′
0

λ,2 ∪∆′s′ for each λ = s 1↔1
r s
′ with s, s′ ∈ P and r a

role name.
Set ∆s = ∆′s ∪ {d ∈ ∆I

′
0 \ ∆I0 | tpI′0(d) = s}, and

define πλ as the extension of π′λ by all pairs (d, d′) ∈ rI′0
such that d, d′ ∈ ∆I

′
0 \ ∆I0 . It can be verified that πλ is

a bijection from XI0λ,1 ∪ ∆s to XI0λ,2 ∪ ∆s′ . Moreover, we
have |∆I′0 | ≤ |∆I0 | + (|∆I0 | · |T |n0), and thus the size
bound in Point 1 above is a consequence of the fact that
|
⊎
s∈P ∆′s| ≤ 2|T | · |∆I′0 |.

The invariants (i1)–(i3) from Section 3 are satisfied also with
the modified initial interpretation and the modified version
of (c2′):

• The modified initial interpretation satisfies the invariants:
(i1), (i2) are satisfied by construction of U , and (i3) holds
because U |= Tf (Lemma 14).

• To show that the invariants are preserved by applications
of (c1) and the old (c2) starting from the modified initial
interpretation, the same arguments as for Theorem 3 (1)
go through.

• The invariants are preserved by the new (c2′), too, be-
cause the model extension described in (c2′) is identical
to that in (c2) except for the potentially larger number
of elements added, and the arguments for why the old
(c2) preserves all invariants do not depend on that exact
number.

Furthermore, termination can be proved in exactly the same
way as before.

In the following three lemmas, we will show that bounded
simulations from I0 and extensions thereof in U exist. It
suffices to consider n0-neighborhoods: for a given model
J , we denote by J |n0

d∗ the restrictions of I to the elements
reachable from a given element d∗ by travelling along at most
n0 role edges.

Lemma 26 I0 �n0
U .



Proof. Let d∗ ∈ ∆I0 . We show that (I0|n0

d∗ , d
∗) � (U , e) for

some e ∈ ∆U . For brevity, we use ∆ to denote the domain of
I0|n0

d∗ . An element d ∈ ∆ is an initial element if it is present
in the initial version of (the modified) I. A forward path is a
sequence d0r0d1 · · · dk−1rk−1dk such that

(a) (di, di+1) ∈ rI0|
n0
d∗

i for all i < k.
(b) tpI0(di)→ri tpI0(di+1) for all i < k.

(c) (r−i , di+1) 6= (ri−1, di−1) for 0 < i < k;
(d) d1, . . . , dk are not initial.

An element d ∈ ∆ is a root if the following two conditions
are satisfied:

(i) if (d, e) ∈ rI0|
n0
d∗ , then both d and e are initial or

tpI0(d)→r tpI0(e);
(ii) for every forward path d = d0r0d1 · · · rk−1dk and each

(dk, e) ∈ rI0|
n0
d∗ , we have that tpI0(dk) →r tpI0(e) or

e = dk−1 and r = r−k−1.
We first show the following:

(1) every initial element is a root;
(2) ∆ contains at least one root dr such that d∗ is reachable

from dr on a forward path.
To show (1) and (2), we write d ≺ e if the rule application
that created d happened before the one that created e. We
write d � e if d � e or d and e are initial elements or d and
e have been created in the same application (thus of (c2′)).

Take some element dr ∈ ∆ that is minimal w.r.t. �, i.e.,
whenever d � dr, we also have dr � d. We will now show
that

(α) dr is a root, and
(β) d∗ is reachable from dr on a forward path.

Since every initial element is �-minimal, (α) establishes (1).
Furthermore, (α) and (β) establish (2).

For (α), we have to show Conditions (i) and (ii) of roots. For
(i), take some element e with (dr, e) ∈ rI0|

n0
d∗ . If both dr, e

are initial, we are done. If dr is initial and e is not, we have
tpI0(dr)→r tpI0(e) due to the construction of I0. If e is
initial and dr is not, then this contradicts dr being minimal.
Finally, if none of dr, e is initial, then we consider the
rule application that created the edge (dr, e) ∈ rI0|

n0
d∗ : if it

was (c1), then �-minimality of dr ensures tpI0(dr)→r

tpI0(e). If it was (c2′), we have tpI0(dr)
1↔1

r tpI0(e).

To show (ii), let dr = d0r0d1 · · · rk−1dk be a forward path
and (dk, e) ∈ rI0|

n0
d∗ . In case the edge (dk, e) ∈ rI0|

n0
d∗ was

created in an application of (c2′), we have tpI0(dk) 1↔1
r

tpI0(e) and we are done. Otherwise, this edge was created
in an application of (c1), and either tpI0(dk)→r tpI0(e)
(in which case we are done) or tpI0(e) →r− tpI0(dk).

Then the edge (dk−1, dk) ∈ rI0|
n0
d∗

k−1 was created in an ap-
plication of (c1) (in which case we must have e = dk−1
and r = r−k−1 and are done) or of (c2′).
In the latter case, we trace that (c2′) application backwards
on the path. If all elements dr = d0, . . . , dk have been

created by the same application, we have that e ≺ d0,
which contradicts dr being�-minimal. Otherwise, d0 is an
old element of that application, and we consider a simple
path d0 = d′0r

′
0d
′
1 · · · r′`−1d′` = dk of length ≤ 2n0 from

dr = d0 = d′0 to dk = d′`. Due to its construction, I0|n0

d∗

has to contain such a path. Then some edge on this new
path must have been created in an application of (c2′):
otherwise, we would have d′0 ≺ d′1 ≺ · · · ≺ d′j � · · · �
d′`−1 � d′`, that is, d′j would have been created in two
different (c1) rule applications.
Consider the latest such (c2′) application in the construc-
tion of I0 and observe that d′` = dk is old for it (we reuse
the argument from above). If d′0 = d0 is old for it as well,
then we get a contradiction as follows. Take the maximal
index f such that d′0, . . . , d

′
f are all old and the minimal

index g such that d′g, . . . , d
′
` are all old. Since f < g due

to Condition 2 of (c2′), there is a middle element d′j′ with
j′ = b f+g2 c, which has simple paths of length ≤ n0 to
both old elements d′f and d′g . These paths coincide due to
Condition 3 of (c2′), which contradicts the assumption
that d′0r

′
0d
′
1 · · · r′`−1d′` is simple.

Otherwise, if d′0 had been created in the same (c2′) ap-
plication, then we would get dk ≺ d′0 which contradicts
dr being �-minimal. Finally, if d′0 had been created af-
ter that (c2′) application, we would get d′1 ≺ d′0, again
contradicting �-minimality of dr.

For (β), we observe that, by construction of I0|n0

d∗ , there
is a simple path dr = d0r0d1 . . . rk−1dk = d∗ in I0|n0

d∗

with k ≤ n0 such that no element other than possibly d0
is initial. We pick such a path, and our choice ensures
Conditions (a), (c) and (d) of forward paths. This leaves us
with showing Condition (b).

Since (di, di+1) ∈ r
I0|

n0
d∗

i for all i < k, we have that
either tpI0(di) →ri tpI0(di+1) or tpI0(di+1) →r−i
tpI0(di) for all i < k. Assume that there is some i with
tpI0(di+1) →r−i

tpI0(di) but tpI0(di) 6→ri tpI0(di+1),
and take the smallest such i. Then the edge (di, di+1) ∈
rI0i has been introduced in some application of (c1), and
the previous edge (di−1, di) ∈ rI0i−1 has been introduced
in some application of (c2′) (otherwise, we would have
di+1 = di−1 and ri = r−i−1, contradicting Condition (d)
of forward paths). We can now reuse the above argument,
tracing back that application of (c2′), and derive a contra-
diction.

We say that a relation ρ ⊆ ∆ × ∆U is rooted if for every
(d, e) ∈ ρ, there is a forward path d0r0d1 · · · rk−1dk and
elements e0, . . . , ek ∈ ∆U such that d0 is a root, dk = d,
ek = e, (di, ei) ∈ ρ for all i ≤ k and (ei, ei+1) ∈ rUi for all
i < k. We define a sequence of relations

ρ0 ⊆ ρ1 ⊆ · · · ⊆ ∆×∆U

such that
(†) if (d, e) ∈ ρi, then tpI0(d) = tpU (e);
(‡) ρi is rooted.



Choose a root dr such that d∗ is reachable from dr by a
forward path, whose existence is guaranteed by Point 2 above.
Also choose an er ∈ ∆U with tpU (er) = tpI0(dr), which
exists by invariant (i1). Then
• set

ρ0 = {(d, d) | d ∈ ∆ is initial} ∪ {(dr, er)}

Note that (†) and (‡) are trivially satisfied.
• ρi+1 is obained from ρi by doing the following for each

(d, e) ∈ ρi and (d, d′) ∈ rI0|
n0
d∗ . By (‡), there is a forward

path d0r0d1 · · · rk−1dk and elements e0, . . . , ek ∈ ∆U

such that d0 is a root, dk = d, ek = e, (di, ei) ∈ ρ for all
i ≤ k and (ei, ei+1) ∈ rUi for all i < k. By Point 2 above,
we can distinguish two cases:
– tpI0(dk)→r tpI0(d′) and it is not true that d′ = dk−1

and r = r−k−1.
Then tpI0(d)→r tpI0(d′). By (†), we have tpU (e)→r

tpI0(d′) and thus we find an e′ ∈ ∆U with (e, e′) ∈
rU and tpU (e′) = tpI0(d′). Include (d′, e′) in ρi+1.
Clearly, (†) is still satisfied. Using that it is not true that
d′ = dk−1 and r = r−k−1, it is also straightforward to
show that (‡) is still satisfied.

– d′ = dk−1 and r = r−k−1.
Then we do not need to add an extra tuple to ρi since
there already is a (d′, e′) ∈ ρi such that (e, e′) ∈ rU .
To see this, recall that ek−1 and ek are such that
(dk−1, ek−1) ∈ ρi, (dk, ek) ∈ ρi, and (ek−1, ek) ∈
rUk−1. Since d′ = dk−1 and r = r−k−1, ek−1 can serve
as the required e′.

Set ρ =
⋃
i≥0 ρi. By construction, ρ is a simulation. Since

there is a forward path from dr to d∗, by construction of
ρ there must be some (d∗, e) ∈ ρ. Thus we have shown
(I0|n0

d∗ , d
∗) � (U , e). Note that tpI0(d∗) = tpU (e) as re-

quired. o

Proof of Proposition 16: Generating Witnesses
for (c3)
To prepare for the application of (a modified version) of the
completion rule (c3), we need to generate elements that can
be used as ‘targets’ for edges in place of the elements dt from
the original finite interpretation I . To prepare for this, we first
extend the finite model I0 constructed so far to an infinite
interpretation I+0 . While I+0 will of course not be part of the
finite model that we aim to construct, it will guide the further
construction.

We obtain I+0 from I0 by starting with I+0 = I0 and then
exhaustively applying the completion rule from the construc-
tion of the canonical model U , repeated here for convenience:
for all d ∈ ∆I

+
0 such that Tf |= tpI+0

(d) v ∃r.t′, where

t′ is maximal with this property and d /∈ (∃r.t′)I
+
0 , add a

fresh element d′ to ∆I
+
0 , the edge (d, d′) to rI

+
0 , and d′ to

the interpretation AI
+
0 of all concept names A ∈ t′.

Lemma 27 I+0 �n0
U .

Proof. (sketch) Let d∗ ∈ ∆I
+
0 . We show that (I+0 |

n0

d∗ , d
∗) �

(U , e) for some e ∈ ∆U . For brevity, we use ∆ to denote the
domain of I+0 |

n0

d∗ . We distinguish three cases:

1. d∗ is from ∆I0 .
Then Lemma 26 gives us an n0-bounded simulation ρ
of (I0, d∗) in (U , e) for some e. We can extend ρ to the
desired n0-bounded simulation of (I+0 , d∗) in (U , e) by
following the applications of the completion rule applied to
construct I+0 from I0, and exploiting that U is constructed
by applying the same rule.

2. d∗ is not from ∆I0 and ∆ contains elements from ∆I0 .
Let d0 be the unique element from ∆ that is in ∆I0 and
can be reached from d∗ in I+0 |

n0

d∗ on a path of minimal
length.4 Start with a n0-bounded simulation ρ of (I0, d0)
in (U , e) for some e (given by Lemma 26), restricted to
the elements of ∆. Then proceed as in Case 1.

3. ∆ contains no elements from ∆I0 .
Exploiting Invariant (i1), it is easy to show by induction on
the number of rule applications used to construct I+0 that
for every d ∈ ∆I

+
0 , there is an e ∈ ∆U with tpI+0

(d) =

tpU (e). For d, d′ ∈ ∆, we write d ≺ d′ if d′ was created by
a later rule appliction than d during the construction of I+0
from I0. Let d0 be the unique element of ∆ that is minimal
w.r.t. ≺. We start with the initial bounded simulation ρ =
{(d0, n0, e)} for some ewith tpI+0

(d0) = tpU (e) and then
proceed as in Case 1 above.

o

We now choose one representative (J , d) ∈ S of each n0-
simulation type S realized in I+0 , i.e., such that there is
some d ∈ ∆I

+
0 with (I+0 , d) ∈ S. Then extend I0 with

pairwise disjoint copies of all the chosen representatives. By
Lemma 27, the resulting interpretation I1 satisfies I1 �n0

U .
We treat I1 as an initial interpretation in the same way as
we have treated U0 as an initial intepretation for constructing
I0 and repeat the application of (c1) and (c2′) as described
above, which results in a completed version of the interpre-
tation I1. Lemmas 26 and 27 apply also to I1 in place of
I0, with the proofs going through without modification. The
same is true for the invariants (i1) to (i3). Since I+1 might re-
alize n0-simulation types that are not realized in I+0 , we then
disjointly add copies of the new simulation types. Repeat-
ing this process leads to a sequence of finite interpretations
I0, I1, . . . . Since there are only finitely many n0-simulation
types and since the simulation type of added representatives
does not change by applying the rules (c1) and (c2′), this
process eventually stabilizes. Call the resulting finite interpre-
tation Iω . By what was said above, we have the following.

Lemma 28 Iω �n0
U and I+ω �n0

U .

The disjoint copies just added will serve as the desired ‘tar-
gets’ for applying (a modified version) of the completion rule
(c3), described in the next section.

4This element d0 is unique since I+0 extends I0 by attaching
tree-shaped structures to existing elements.



Proof of Proposition 16: Applying (c3)
To construct the desired finite interpretation I, it remains to
start with the infinite model I = I+ω and exhaustively apply
a modified version (c3′) of the completion rule (c3).

(c3′) If d ∈ ∆I , tpI(d) →r t, and d /∈ (∃r.t)I , then by con-
struction of I+ω , we find an element e ∈ ∆I

+
ω such that

(d, e) ∈ rI
+
ω and tpI+ω (e) = t. By construction of Iω,

there is an element e′ ∈ ∆Iω such that (I+ω |n0
e , e) and

(Iω|n0

e′ , e
′) have the same simulation type. Include in rI

the edge (d, e′).

The modified version of (c3) preserves all invariants because
the same arguments as for the old (c3) go through.
Lemma 29 I is a model of A and Tf .
Proof. It is easy to see that the proof of Proposition 22 goes
through also for the modified version of I: the essential
ingredients of that proof are the invariants (i1)–(i3), which
hold for I as argued above, plus the argument after the case
distinction (1)–(3) for axioms of the formK v ∃r.K ′, which
is unaffected by our modification of the rules. o

We can now establish the main property that is satisfied by
the finite model I just constructed, but not by the finite model
I built in Section 3.
Lemma 30 For every n0-substructure I ′ of I, I ′ � U .
Proof. By Lemma 28, it suffices to show that I �n0 I+ω .
We call an edge (d, e) ∈ rI special if it was added in the
construction of I from Iω, that is, by applying (c3′). The
source of the special edge (d, e) ∈ rI is the element from
{d, e} that plays the role of d in the formulation of (c3′).

Let d∗ ∈ ∆I . In the following, we construct an n0-
bounded simulation ρ of (I, d∗) in (I+ω , d∗). To assist with
the construction of ρ, we associate with every tuple (d, i, e)
in the partially constructed ρ an i-bounded simulation ρd,i,e
of (I+ω , d) in (I+ω , e) whose purpose is to guide the further
construction.

We start with setting ρ = {(d∗, n0, d∗)}. As the required
n0-bounded simulation ρd∗,n0,d∗ of (I+ω , d∗) in (I+ω , d∗),
we use the identity, that is, the set of all triples (d, i, d) with
d ∈ ∆I

+
ω and i ≤ n0. To extend the initial ρ just defined, we

distingush three cases.
Assume that (d, i, e) ∈ ρ with i > 0 and (d, d′) ∈ rI is

non-special. Then (d, d′) ∈ rIω ⊆ rI
+
ω and thus we find a

triple (d′, i− 1, e′) ∈ ρd,i,e with (e, e′) ∈ rI+ω . Add (d′, i−
1, e′) to ρ and set ρd′,i−1,e′ = ρd,i,e.

Now assume that (d, i, e) ∈ ρ with i > 0, (d, d′) ∈ rI

is special, and d is the source of this edge. Then there is a
d′′ ∈ ∆I

+
ω such that (d, d′′) ∈ rI

+
ω and (I+ω , d′′) has the

same n0-simulation type as (Iω, d′). Then (I+ω , d′′) must
also have the same n0-simulation type as (I+ω , d′). We can
thus find an (i − 1)-bounded simulation ν of (I+ω , d′) in
(I+ω , d′′). Since (d, i, e) ∈ ρd,i,e, there must be an e′′ ∈ ∆I

+
ω

with (d′′, i − 1, e′′) ∈ ρd,i,e and (e, e′′) ∈ rI
+
ω . We add

(d′, i− 1, e′′) to ρ. The required (i− 1)-bounded simulation
ρd′,i−1,e′′ of (I+ω , d′) in (I+ω , e′′) is obtained by composing
ν with ρd,i,e.

Finally assume that (d, i, e) ∈ ρ with i > 0, (d, d′) ∈ rI
is special, and e is the source of this edge. Then there is a
d̂ ∈ ∆I

+
ω such that (d̂, d′) ∈ rI+ω and (I+ω , d̂) has the same

n0-simulation type as (Iω, d). Then (I+ω , d̂) must also have
the same n0-simulation type as (I+ω , d). We can thus find an
i-bounded simulation ν of (I+ω , d̂) in (I+ω , d). Composing ν
with ρd,i,e, we find an i-bounded simulation η of (I+ω , d̂) in
(I+ω , e). Since (d̂, d′) ∈ rI+ω , there must be some ê ∈ ∆I

+
ω

such that (d′, i−1, ê) ∈ η and (e, ê) ∈ rI+ω . Add (d′, i−1, ê)
to ρ. The required (i − 1)-bounded simulation ρd′,i−1,ê of
(I+ω , d′) in (I+ω , ê) is provided by η. o

Proof of Proposition 25: Products
Recall that we are looking for a finite model ofA and Tf such
that every n0-substructure of this model homomorphically
embeds into U . The model I from the previous section is still
not as required since it may contain cycles that are not present
in U . While such cycles cannot be completely avoided, they
can be made large enough so that they are not ‘visible’ in
n0-substructures. To achieve this, we take the product of I
with a finite group of high girth, see (Otto 2004). We start
with recalling some basic notions of group theory.

Let (G, ◦) be a finite group generated by a (finite) set
{gi | i ≥ 0} of involutive generators, i.e., gi = g−1i . The
Cayley graph of G is the undirected graph that has as vertices
the group elements h ∈ G and where {h, h′} is an edge if
h′ = h ◦ gi.

We are interested in groups whose Cayley graph satisfies
two properties. First, it should have high girth, where the
girth of a graph is the length of a shortest cycle contained in
that graph. Second, for all group elements h and generators
g1, g2, we want to have h ◦ g1 6= h ◦ g2; in other words,
the outdegree of every node in the Cayley graph should be
exactly k, with k the number of generators. Such a graph is
called k-regular.

Explicit constructions of k-regular graphs with girth
greater than m, for any k and m, have been studied in the
literature. The following is a known result, see e.g. (Alon
1995) for a full discussion of the construction.

Theorem 31 (Margulis 1982; Imrich 1984)
For every k,m > 0 there exists a finite group G which is
generated by a set of k involutive generators, and whose
Cayley graph has regular degree k and girth at least m.

Let J be an interpretation. We use EJ to denote the set of
all edges of J , that is, all sets {d, e} such that (d, e) ∈ rI
for some role r. Let (G, ◦) be a finite group with involutive
generators gS , S ∈ EJ : that is, the set of edges EJ can
be embedded via an injection into a set generating G. The
existence of such a group G is granted by Theorem 31. We
use J ⊗G to denote the interpretation with domain ∆J ×G
defined as follows:

AJ⊗G = {〈d, h〉 ∈ ∆J ×G | d ∈ AJ }
rJ⊗G = {(〈d, h〉, 〈d′, h ◦ g{d,d′}〉) | (d, d′) ∈ rJ }.



Reduction to loop free models. As a preliminary, we first
transform I to rule out cycles of length 1 (reflexive loops) or
2. More precisely, an interpretation J is called loop free if it
satisfies the following three conditions for all individuals d, e
and (possibly inverse) roles r, s:

1. If d /∈ Ind(A), then (d, d) /∈ rJ .
2. If (d, e) /∈ Ind(A) × Ind(A) and (d, e) ∈ rJ ∩ sJ , then
r = s.

The following construction shows how to transform I into
a loop free model I ′. Let r1, . . . , rR be the role names oc-
curring in A and Tf . We take 2R+ 2 disjoint copies of ∆I ,
and interpret ABox elements in the last copy and concept
names in every copy the same way as in ∆I . In the model to
be constructed, rk-edges between non-ABox elements jump
over k copies (modulo 2R+ 2), and rk-edges between ABox
elements remain in the last copy if they originate there, or
otherwise jump over k copies (modulo 2R+1 this time). This
way, we leave the ABox structure intact in the last copy, and
break up all other cycles of length 1 and 2. More precisely,

∆I
′

= ∆I × {0, . . . , 2R+ 1}

AI
′

= {〈d, i〉 | d ∈ AI , 0 ≤ i ≤ 2R+ 1}

rI
′

k = {(〈d, i〉, 〈e, i⊕2R+2 k〉) | (d, e) ∈ rIk \ Ind(A)2}
∪ {(〈d, i〉, 〈e, i⊕2R+1 k〉) | (d, e) ∈ rIk ∩ Ind(A)2,

i ≤ 2R}
∪ {(〈d, 2R+ 1〉, 〈e, 2R+ 1〉) | (d, e) ∈ rIk ∩ Ind(A)2}

ABox individuals are interpreted in the first copy, that is, we
identify a with 〈a, 2R+ 1〉. Note that the last line preserves
the structure of the ABox, and the preceding lines ensure
loop freeness (but do not generally rule out cycles of length
3).
Indeed, I ′ is loop free:

1. Whenever (〈d, i〉, 〈d, i〉) ∈ rI′k , the construction ensures
that i = 2R+ 1 and d is an ABox element.

2. Let (〈d, i〉, 〈e, j〉) ∈ (rI
′ ∩ sI′)\ Ind(A)2. We distinguish

three cases.
Both r, s are role names: r = rk, s = r`. Then the above
pair has been added in the first or second line of the con-
structions of both rI

′

k and rI
′

` . If it was added in the second
line, then we have j = i⊕2R+1 k = i⊕2R+1 ` which, due
to 0 < k, ` ≤ R, implies k = ` and hence rk = r`. The
case for the first line is analogous.
One of r, s is a role name; the other is not: r = rk, s = r−` .
As in the previous case, the above pair must have been
added in the first or second line of the constructions of
both role interpretations. If it was added in the second line,
then we have j = i⊕2R+1 k and i = j ⊕2R+1 `. Inserting
the first equation into the second, we get i = i ⊕2R+1

k ⊕2R+1 `, which is impossible because 0 < k + ` ≤ 2R.
The case for the first line is analogous.
None of r, s are role names: r = r−k , s = r−` . This case
reduces to the first case if we swap 〈d, i〉 and 〈e, j〉.

It is an easy exercise to show that I ′ is a model of A and Tf ,
and that I ′ � I. From Lemma 30, we thus get I ′ �n0

U .

Products of loop free models. Now consider the finite
model I of A and Tf constructed in the previous section.
By the reduction just shown, we may assume that I is loop
free. By Theorem 31, we can take a finite group G with |EI |
involutive generators {gS | S ∈ EI}, such that the Cayley
graph of G has girth higher than n0 and is |EI |-regular. We
then form the product I ⊗ G. This interpretation is almost
as required, but does not necessarily satisfy the ABox. To fix
this, we consider the interpretation Ĵ that can be obtained as
follows:

• start with I−⊗G, where I− is obtained from I by remov-
ing, for each r(a, b) ∈ A, the pair (a, b) from rI ;

• then take an arbitrary but fixed hA ∈ G, for every a ∈
Ind(A) and identify each ABox element a with (a, hA);

• finally, for each r(a, b) ∈ A, add (〈a, h〉, 〈b, h〉) to rĴ , for
every pair 〈a, h〉, 〈b, h〉 ∈ ∆J .

Note that all copies of the ABox in Ĵ , not just the ‘main’ one
identified by hA, inherit the relational structure of the ABox.
We first observe that Ĵ is still a (finite!) model of A and Tf .
This essentially follows from the observations in (Otto 2004).

Lemma 32 Ĵ is a model of A and Tf .

Proof. To show that Ĵ is a model of Tf , we use the fact that
I is a model of Tf and the construction of Ĵ . CIs of the form
K v A, K v ⊥, K v ∃r.K ′, and K v ∀r.K ′ are easy
to deal with. We thus concentrate on CIs K v (6 1 r K ′).
Assume that 〈d, h〉 ∈ K Î . By construction of Ĵ , this means
d ∈ KI . Assume to the contrary of what is to be shown
that there are (〈d, h〉, 〈ei, hi〉) ∈ rĴ for i = 1, 2 such that

〈ei, hi〉 ∈ K ′Ĵ and 〈e1, h1〉 6= 〈e2, h2〉. Then (d, ei) ∈ rI
and, since I is a model of Tf , we obtain e1 = e2 =: e. Now
the construction of Ĵ yields that, if both d, e interpret ABox
elements in I, then h1 = h2 = h, and that otherwise hi =
h ◦ g{d,e} for both i = 1, 2. Finally, using the construction of
Ĵ , it is easy to observe that Ĵ is a model of A. o

A cycle in Ĵ (of length n) is a path p1, r1, . . . , rn, pn+1,
where n > 2, pi ∈ ∆Ĵ , each ri is a (possibly inverse) role
such that (pi, pi+1) ∈ rĴi , and p1 = pn+1. Further, a cycle is
simple if, for 1 ≤ i < j ≤ n, we have pi 6= pj . An element
p = 〈d, h〉 ∈ ∆Ĵ is an ABox element if d ∈ Ind(A). Note
that this definition includes all “copies” of ABox elements
from I, not just those that interpret ABox individuals. We
say that Ĵ is k-acyclic relative to A if every simple cycle in
Ĵ of length at most k contains exclusively ABox elements.

Lemma 33 Ĵ is n0-acyclic relative to A.

Proof. We start with the following observation:

Claim. If (p1, p2) ∈ rĴ with pi = 〈di, hi〉, i ∈ {1, 2},
and at least one of d, e is not an ABox element, then h2 =
h1 ◦ g{d1,d2}.

In fact, this is immediate if r is a role name. If r = s−, then
h1 = h2◦g{d1,d2}, which by multiplication with g{d1,d2} and



due to the generators being involutive yields h1 ◦ g{d1,d2} =
h2.

Let α = p1, r1, . . . , rn, pn+1 be a simple cycle in Ĵ , with
pi = 〈di, hi〉 for 1 ≤ i ≤ n, such that for some i, pi is not an
ABox element. Assume to the contrary of what is to be shown
that n ≤ n0. We show that hi−1, hi, and hi+1 are all different.
Consequently, α gives rise to a cycle of length between three
and n0 in the Cayley graph of G (even if some of the other
elements on α should coincide), which contradicts the non-
existence of such cycles. We have hi−1 6= hi since otherwise
hi−1 = hi−1◦gi−1, which is not possible due to n0-regularity
of the Cayley graph of G; for the same reason, hi 6= hi+1.
Finally, assume to the contrary of what we want to show that
hi−1 = hi+1. Then hi−1◦gi−1◦gi = hi−1. Multiplying with
gi yields hi−1◦gi−1 = hi−1◦gi, which gives gi−1 = gi by k-
regularity of G. Since gi−1 = g{di−1,di} and gi = g{di,di+1},
this yields di−1 = di+1, thus pi−1 = pi in contrast to α
being simple. o

Lemma 34 Every n0-substructure J ′ of Ĵ homomorphi-
cally embeds into U , the canonical model of A and Tf .

Proof. We may assume w.l.o.g. that J ′ is connected. We start
with making a useful observation.

Claim 1. For each p1 ∈ ∆Ĵ that is not an ABox element,
there is at most one simple path p1r1p2 · · · pkrkpk+1 in J ′
such that p1, . . . , pk are not ABox elements and pk+1 is an
ABox element.
Proof. Assume there is a p1 ∈ ∆Ĵ that is not an ABox
element and such that there are two simple paths in J ′ of the
described form. Each such path p1r1p2 · · · pkrkpk+1 gives
rise to a corresponding path d1r1d2 · · · dkrkdk+1 in I such
that d1, . . . , dk are not ABox individuals, but dk+1 is. Note
that the initial version of the modified finite interpretation I
contains U0, which takes the form of the ABox A extended
with a tree of depth n0 below each ABox individual, and that
later steps in the construction of I only add successors to
leaves in these trees. Therefore and since the length of all
mentioned paths is clearly bounded by n0, both paths in I
must be inside the same tree of U0. But then, since they start
and end at the same element and are simple, they must be
identical.

Choose an arbitrary p0 = (d0, h0) ∈ ∆J
′
. By Lemma 30,

we know that (I, d0) �n0
U , witnessed by an n0-bounded

simulation ρ. We use ρ to construct the desired homomor-
phism η from J ′ to U .

In what follows, let π be the projection on the first com-
ponent of elements in ∆Ĵ . We define a sequence of par-
tial homomorphisms ηi, i ≥ 0, that is, partial functions
ηi : ∆J

′ ×∆U that satisfy Conditions 1 to 3 of homomor-
phisms. The desired homomorphism η is then obtained in
the limit. We will make sure that all ηi satisfy the following
properties:

(a) (π(p), n0 − i, ηi(p)) ∈ ρ for all p ∈ ∆J
′
;

(b) if J ′ contains a path of length ≤ i from an initial element
to p, then ηi(p) is defined, where an element q is initial if
η0(q) is defined.

We start by defining η0 as follows.

• If ∆J
′

contains ABox elements, then set η0(p) = a for all
p = 〈a, h〉 ∈ ∆J

′
with a ∈ Ind(A).

• If ∆J
′

does not contain ABox elements, then choose an
e ∈ ∆U with (π(p0), n0, e) ∈ ρ and set η0(p0) = e.

Clearly, η0 satisfies (a) and (b) and Condition 1 of homomor-
phisms. Satisfaction of Condition 2 follows from (∗). Finally,
satisfaction of Condition 3 follows from the existence of ρ
and the fact that, by definition of bounded simulations, ρ
preserves all edges between ABox elements.

In the induction step, ηi+1 is obtained from ηi by defin-
ing a value for all p2 ∈ ∆J

′
such that there is some edge

(p1, p2) ∈ rĴ with ηi(p1) defined and ηi(p2) undefined. To
define ηi+1(p2), we observe that (π(p1), π(p2)) ∈ rI fol-
lows from (p1, p2) ∈ rĴ and (π(p1), n0 − i, ηi(p1)) ∈ ρ
holds by (a). Moreover, we have i < n0 by (b) and since
any two elements in J ′ reach each other by a path of length
≤ n0, thus i = n0 contradicts ηi(p2) being undefined. Conse-
quently there must be some e such that (π(p2), ni−i−1, e) ∈
ρ and (ηi(p1), e) ∈ rU . Set ηi+1(p2) = e.

We next show that ηi+1 is well-defined, that is, if (p1, p) ∈
rĴ and (p2, p) ∈ sĴ with ηi(p1) and ηi(p2) defined and
ηi(p) undefined, then (p1, r) = (p2, s). Assume to the con-
trary that this is not the case. We distinguish three cases:

• p ∈ {p1, p2}. Then (p1, p1) ∈ rĴ or (p2, p) ∈ sĴ . We
address the fomer case, the latter is analogous. Let p1 =

〈d1, h1〉. Then (p1, p1) ∈ rĴ yields (d, d) ∈ rI . Since I
is loop free, d ∈ Ind(A), thus p is an an ABox element.
This is a contradiction to ηi(p) being undefined
• p /∈ {p1, p2}, p1 = p2, and r 6= s. Let p1 = 〈d1, h1〉 and
p = 〈d, h〉. Then we have (d1, d) ∈ rI and (d1, d) ∈ sI .
Since I is loop free and d /∈ Ind(A) (because p cannot be
an ABox element), this yields r = s as required.

• p /∈ {p1, p2} and p1 6= p2. Since ηi(p1) and ηi(p2) are
defined and ηi+1(p) is not, pj is reachable from some
initial element p̂j on a path Pj of length i and this is the
shortest path from any initial element to pj , for j ∈ {1, 2}.
If ∆J

′
contains no ABox elements, then p̂1 = p̂2 = p0.

Otherwise, p̂1 and p̂2 are ABox elements and we obtain
from Claim 1 and the fact that both p̂1 and p̂2 are reachable
from p that p̂1 = p̂2. For readability, we from now on use
p̂ to denote p̂1(= p̂2).
Let p′ be the element on the path P1 that also occurs on
the path P2 and is furthest away from p̂ (such an element
always exists since p̂ is on both paths). Consider the fol-
lowing cycle in Ĵ :

1. from p′ to p1 along P1;
2. from p1 to p along r;
3. from p to p2 along s−;
4. from p2 to p′ backwards along P2.
Since p /∈ {p1, p2} and p1 6= p2, this cycle has length
> 2 as required. Moreover, the cycle is simple: by choice,
the two travelled subpaths of P1 and P2 do not share



any elements, including p1 and p2. Moreover, p does not
occur on these subpaths because ηi must be defined for
all elements on the subpaths whereas it is not defined
for p. Since p occurs on a simple cycle, p must be an
ABox element. This yields a contradiction to ηi(p) being
undefined.

To finish the proof, we note that it is clear that ηi+1 satisfies
(a), (b), and all three conditions of homomorphisms. o

D Proofs for Section 6

Proposition 18 T is finitely satisfiable iff T ′ is finitely satis-
fiable.

Proof. The “if” direction is trivial since every model of T ′ is
also a model of T . For the “only if” direction, let I be a finite
model of T . We construct a finite model J of T ′ by taking n
copies of I and ‘rewiring’ all role edges across the different
copies such that the concept names Bi can be interpreted in
a non-conflicting way.

Specifically, since I satisfies K v (> n r K ′) we can
choose a function succ : KI × {0, . . . , n− 1} → ∆I such
that the following conditions are satisfied:
• for all d ∈ KI and i < n: (d, succ(d, i)) ∈ rI and

succ(d, i) ∈ (K ′)I ;
• for all d ∈ KI and i < j < n: succ(d, i) 6= succ(d, j).
Then define the desired interpretation J by setting

∆J = {di | d ∈ ∆I and i < n}
EJ = {di | d ∈ EI and i < n}

for all E ∈ NC \ {B0, . . . , Bn−1}
BJi = {di | d ∈ ∆I} for all i < n

sJ = {(di, ei) | (d, e) ∈ sI and i < n}
for all s ∈ NR \ {r}

rJ = {(di, ei) | (d, e) ∈ rI , i < n,

and d /∈ KI or e 6= succ(d, j) for any j}
∪ {(di, e(i+j) mod n) | (d, e) ∈ rI , i, j < n,

and e = succ(d, j)}

It remains to verify that J is indeed a model of T ′. Clearly,
the CIs in (∗) on page 9 are satisfied. To verify that all con-
cept inclusions in T are satisfied by J , we observe that the
construction ensures that the number of r-successors (and
-predecessors) in any A ∈ CN of every (x, i) is the same as
that for x.

We first claim that, for every d ∈ ∆I and every s-successor
e of d in I , the i-th copy of d in J has exactly one copy of e
as an s-successor:
Claim. Let s be a role, di ∈ ∆J , and let {e ∈ ∆I |
(d, e) ∈ sI} = {e1, . . . , e`} for some ` ≥ 0. Then
{ej ∈ ∆I | (di, ej) ∈ sI} = {ej11 , . . . , e

j`
` }, for some

j1, . . . , j` ∈ {0, . . . , n− 1}.
This claim is implied by the construction of sJ : consider a
given di ∈ ∆J and (possibly inverse) role s. If s is neither

r nor r−, then every ek contributes exactly one s-successor
eik of di. The same holds if s = r and d /∈ KI . If s = r and
d ∈ KI , then each ek = succ(d, j) for some j contributes
exactly one s-successor e(i+j) mod n

k of di, and every other
ek contributes eik. For s = r−, then every ek ∈ KI with
d = succ(ek, j) for some j contributes e(i−j) mod n

k , and
every other ek contributes eik.

As an immediate consequence, we obtain that all qualified
and unqualified number restrictions in d ∈ ∆I are preserved
in every di ∈ ∆J :
Fact. Let di ∈ ∆J andD = (./ s n C) where ./ ∈ {6,>},
s is a role or inverse role, and C is either a conjunction of
concept names, or the negation of such a conjunction, or >,
or ⊥. Then d ∈ DI iff di ∈ DJ .
This can be concluded from the previous claim and the ob-
servation that e and eji satisfy the same concept names. The
fact includes the cases s = r and s = r−, and it implies that
existential, and universal restrictions are preserved – for the
latter it is necessary to allow that C is a negated conjunction.

We are now ready to prove that J is a model of T ′, proceed-
ing by type of CI. We distinguish the following cases.

• L v A and L v ⊥, both in T . These are satisfied because
they are satisfied by I and due to the construction: every d
in I and every di in J are instances of the same non-Bi
concept names.

• L v ∃s.L′ in T . Let di ∈ LJ . Then d ∈ LI due to the
construction. Since I satisfies the axiom, d ∈ (> 1 s L′)I .
With the previous fact, we conclude di ∈ (> 1 s L′)J ,
hence di ∈ (∃s.L′)J . This argument includes the cases
s = r and s = r−.

• L v ∀s.L′ in T . In the argument above, replace “∈ (>
1 s L′)...” with “/∈ (> 1 s ¬L′)...”.

• L v (6 1 s L′) in T . Then di ∈ LJ implies d ∈ LI ,
hence d ∈ (6 1 s L′)I and, due to the previous fact,
di ∈ (6 1 s L′)I .

• L v (> m s L′) in T . Apply the same argument as above.

• Bi v K ′ andBiuBj v ⊥. Follows from the construction.

• K v ∃r.Bi. Let dj ∈ KJ , which implies d ∈ KI .
Let e = succ(d, (i − j) mod n). Then the construction
yields that (dj , ei) ∈ rJ — because i = (j+ (i− j) mod
n) mod n — and ei ∈ BJi . Hence dj ∈ (∃r.Bi)J .

o

E Examples
Example 1
Consider a TBox T containing the following axioms:

A v ∃r1.B B v (6 1 r−1 A)

B v ∃r2.A A v (6 1 r−2 B)

C1 v A
C1 v ∀r1.C2 C2 v ∀r2.C1



After closing, we get the following relations on types:

A 1↔1
r1 B (21)

B 1↔1
r2 A (22)

A,C1
1↔1

r1 B,C2 (23)

B,C2
1↔1

r2 A,C1 (24)

Hence two type partitions P1 = {{A}, {B}} and P2 =
{{A,C1}, {B,C2}} with P2 ≺+ P1.

Now consider the ABoxA = {C1(a), X(a), A(b), X(b)}.
Where X is just any concept name that ”activates” the types
A,C1, X , A,X; but does not affect cycles.


