
Reasoning Over Description Logic Ontologies
under non-standard Assumptions

D i s s e r t a t i o n

submitted in accordance with the requirements of
the Free University of Bozen-Bolzano
for the degree of Doctor in Philosophy by

Yazmín Angélica Ibáñez García

Free University of Bozen-Bolzano





Dissertation advisors:

Prof. Alessandro Artale Prof. Dr. Carsten Lutz
KRDB Research Centre AG Theorie der künstlichen Intelligenz

Free University of Bozen-Bolzano Universität Bremen

Dissertation Reviewers:

Prof. Riccardo Rosati Prof. Ulrike Sattler
Sapienza Università di Roma University of Manchester

Examination Committee:

Prof. Michael Zakharyashev (chair) Prof. Sebastian Rudolph
Birbeck College, University of London Technische Univesität Dresden

Prof. Johann Gamper (secretary)
Free University of Bozen-Bolzano

Date of public defense: 24. 10. 2014





Abstract

The use of description logics (DLs) ontologies to provide a formal and general-purpose
conceptual model of a domain of interest has become a popular choice due to the increasing
need to add a semantic dimension to information processing. In that context, ontologies
constitute an ideal tool to provide a conceptualization of the domain of interest in areas
such as Enterprise Application Integration, Data Integration, and the Semantic Web. Nev-
ertheless, conceptual models are still usually designed in some class-based language such as
UML diagrams or ER schemata because of their intuitive and user-friendly interface. The
downside of using graphical languages is, however, the lack of formal semantics. Formalizing
the semantics of conceptual modeling languages in DLs has the advantage of keeping the
graphic interface for modeling, while providing reasoning capabilities that aid to verify
the quality of the conceptual models, as well as for performing reasoning, that is, to infer
implicit knowledge from the explicitly represented one. Indeed, those reasoning capabilities
can not only be used to infer subsumption relationships between classes in a conceptual
model or to verify the consistency of the model itself, but also to provide a formalization
for incomplete databases. In the latter context, DLs TBoxes can be understood as database
schema languages, ABoxes as a representation of the (incomplete) data, and query answer-
ing as the main reasoning service. Unfortunately, the semantic desiderata in the mentioned
applications are not fully matched on the DLs side. In particular, the common assumption
in database applications is that the intended models (i.e., database instances) are finite.
However, this is by no means the usual assumption in DLs mainly because traditional
DL languages have the finite model property (FMP). Languages supporting expressive
constraints, on the other hand, lack the FMP. This means that using description logics
for reasoning in the latter applications amounts to perform finite model reasoning. This
task, however, has been shown to be difficult from the algorithmic view point. One of the
main objectives of this thesis is to investigate finite model reasoning in DLs. Our results
concern the so-called Horn DLs, which are known for having good model theoretical prop-
erties, and although they are not able to express disjunction (covering constraints), they
have still enough expressive power to capture interesting modeling constraints, such as isa
relationships between classes and relations, and disjointness. Besides standard reasoning
tasks (subsumption, satisfiability), we also investigate ontological query answering under
the finite model assumption. The second objective of this thesis is to investigate the impact
of extending positive existential queries with negation on the computational complexity of
ontological query answering over Horn ontologies. The importance of considering negation
stems from the need of many natural queries to express difference or complementation to
retrieve the required information. A well-known fact from database theory is that answering
queries with negation is harder than without it, we will then focus on queries allowing for
the use of negative atoms in restricted forms: the so-called safe and guarded negation as
well as inequalities.
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Chapter

1
Introduction

One of the prominent advances in Knowledge Representation and Reasoning (KR) is the develop-
ment of technologies that use semantic means for handling information. In particular, logic-based
approaches provide general-purpose knowledge representation frameworks in which inferring
implicit knowledge amounts to verifying logical consequences.

Description logics (DLs) [12] are arguably among the most prominent logic-based formalisms
for knowledge representation. In a nutshell, DLs can be understood as syntactic variants of
modal logics, and thus decidable fragments of first-order logic (FOL) with well-defined formal
semantics and well-understood model theoretical properties.

In practice, the use of DLs for knowledge representation has reaffirmed itself with the emerging
paradigm of ontology. An ontology in computer science is intended to provide a formal and
general-purpose conceptual model of a domain of interest, which can then be used to add a
semantic dimension to information processing within that domain. The use of ontologies as
a formal tool to provide a conceptualization of the domain of interest has been recognized
and studied in several areas, such as Enterprise Application Integration, Data Integration [19],
and the Semantic Web [13]. Nevertheless, the conceptualization of a domain of interest is still
usually designed in some class-based language such as ER schema or UML diagrams. Mainly,
because these languages offer a graphical, intuitive and user-friendly interface. For example,
the UML class diagram in Figure 1.1 contains classes (e.g., Food, Dish) and associations (e.g.,
hasIngredient) between them conceptualizing notions on the domain of food and nutrition. The
downside of using these kinds of languages is, however, the lack of formal semantics.

Notably, it has been extensively advocated that DLs formalize the semantics of conceptual
modeling languages such as the Entity-Relation Model (ER) and UML class diagrams; and
provide the logical underpinning for the Web Ontology Language (OWL). This means that
database schemata and ontologies specified on those conceptual modeling formalisms can be
transformed into DL ontologies. And then, one can verify properties which ensure the correctness
and optimality of such schemata and ontologies using reasoning in DLs. For instance, verifying
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1. Introduction

ProteinContent: Integer
CarbsContent: Integer
FatContent: Integer

Food

Dish
   

FoodProduct

 
LowCarb

 
LowFat

 
HigProtein

 
IngredientAmount

  
MeasurementUnit

1..n

1..n hasIngredient

amountcomposition

Figure 1.1: Example of an ontology as UML class diagram

that all the constraints specified in a given schema are satisfied for some database instance
(schema consistency) can be rephrased into checking satisfiability of the corresponding DL
ontology. Furthermore, by verifying logical entailment w.r.t. the corresponding DL ontology, one
could verify whether some constraint in a schema is satisfied.

Unfortunately, the semantic desiderata in conceptual modeling are not fully matched on the
DLs side. In particular, the common assumption in database applications is that the intended
models (i.e., database instances) are finite. However, this is by no means the usual assumption
in DLs. In fact, this assumption is irrelevant when considering traditional description logics
such as ALC since they enjoy the finite model property (FMP), which implies that whenever a
DL ontology (specified in ALC) is satisfiable, then it has a finite model.

Indeed, in the presence of certain constraints in the modeling formalism, reasoning with
respect to finite structures differs from reasoning with respect to unrestricted ones, which
corresponds to the fact that certain DLs lack the finite model property. For instance, this
holds for the ER model, whose semantics can be formalized by the expressive description logic
ALCQI, which allows to express cardinality constraints and referring to the inverse of relations.
In particular, in an ER schema, an inconsistency might arise due to the interaction of cardinality
constraints along a cycle in the schema and the requirement of the legal databases for the schema
to be finite.

Therefore, when using description logics for reasoning in the latter applications one actually
should regard reasoning over finite models. Available results on finite model reasoning in DLs
have shown that this is not a trivial task. In particular, although reasoning over finite models in
ALCQI has the same computational complexity as reasoning over unrestricted (finite or infinite)
models [94], the procedures developed for the finite model case are not suitable for providing
an algorithmic tool to support some verification tasks in conceptual modeling and ontological
reasoning.

There are other typical assumptions in data models that do not have a match on the DLs

2
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side. For example, it is intended that every entity modeled in a schema has at least one instance
in every possible instantiation of the schema. This notion has been called strong consistency or
full satisfiability in the literature [78, 90], and needs also to be considered within the approach
of reasoning in conceptual models using DLs.

Furthermore, the use of DLs for ontological representation has proved to be successful in data-
intensive applications, especially in the context of the Semantic Web and in data integration. In
these applications, the typical scenario is that of answering queries over DL ontologies formalizing
incomplete databases under the open world semantics. In that case, DLs TBoxes formalize the
schema (constraints) of the database, and the ABox the available (known) data. The latter
usage of ontologies is referred as ontology-based data access (OBDA). The main reasoning task
in the OBDA setting is that of query answering, for which the same assumption of finite models
applies. As in the case of satisfiability or subsumption, when the logic used to represent the
ontology lacks the FMP, finite query answering is a different problem than evaluating queries
over unrestricted models.

One of the main objective of this thesis is to investigate finite model reasoning in DLs. In
particular, we focus on sub-Boolean fragments of expressive DLs. Since the main motivation for
the latter investigation is the application of DLs in data management systems, we address as
well in this thesis the application of our results in DLs to conceptual modeling and OBDA.

Due to their desirable model theoretical properties, positive existential queries, in particular,
conjunctive queries (CQs) and union of conjunctive queries, have played a key role in classical
database theory. Based on this, most of the research on query answering in the OBDA paradigm
has mainly considered such queries. However, it has been noticed in database theory that many
natural queries require complementation and difference; for example, to retrieve all ‘database
researchers that do not work in Europe’. Indeed, in the OBDA paradigm only few investigations
have considered extensions of CQs with negation. This might be explained by the fact that
answering queries with negation in expressive DLs easily becomes undecidable. Some recent
investigations provide initial results on answering queries with negation in Horn DLs [116].
However, there are still important problems left open. Hence, the second objective of this thesis
is to sharpen the panorama of answering queries with negation in Horn DLs.
In the next section, we provide a wider perspective on the applications of DLs in data man-
agement, and thus on the motivation of the work carried out in this thesis. The following two
sections on this chapter survey known results and particulars on the use of DLs in conceptual
modeling (Section 1.3) and ontology-based data access (Section 1.5). We discuss related work
to full satisfiability and finite model reasoning in Sections 1.4 and 1.6, respectively.

1.1 Description Logics

The syntax of DLs allows to represent knowledge in a structured way in terms of concepts
and roles, which correspond to unary predicates and binary predicates, respectively. Using
the various constructors provided by a particular description language one can then describe
complex concepts. For example, suppose we want to model knowledge in the domain of food and

3



1. Introduction

nutrition. Using the description language ALC which contains constructors that correspond to
the Boolean connectives, and constructors for quantifying (universally and existentially) over
domain elements connected through a certain role, one could express, starting from atomic
concepts such as Food and Ingredient, the ALC concepts

Food u HighProtein and Food u LowSugar .

These concepts intuitively describe ‘food with a high content of protein’ and ‘food with low
sugar content’ that may be relevant, e.g., for the dietary plan of a patient with type-2 diabetes.
If in addition containsNutrient is an atomic role and Sodium is another atomic concept, we can
form the concept descriptions

Food u ∃containsNutrient.Sodium and Food u ∀containsNutrient.¬Sodium .

denoting, respectively, those food items that contain sodium among their nutrients, and those
food items that do not contain sodium (all their nutrients are not Sodium).

Knowledge representation systems based on DLs provide facilities to store and manipulate
knowledge by means of an ontology. A DL ontology has two components: the terminological
knowledge or TBox and the assertional knowledge orABox. The TBox introduces the vocabulary
of an application domain, while the ABox describes a specific state of affairs of an application
domain in terms of that vocabulary. Continuing with our example of the food domain, we can
state, e.g., that all meat ingredients contain minerals:

Meat v ∃containsNutrient.Minerals

ABoxes, on the other hand, contain assertions about named individuals. For instance, if BEEF
and IRON are individuals then

Meat(BEEF) and Mineral(IRON)

are concept assertions, and
containsNutrient(BEEF, IRON)

is a role assertion. Together all these ABox assertions denote that beef is an instance of meat
that contains a mineral named iron as a nutrient.

DLs support inference patterns that occur in many applications of intelligent information
processing systems, and which are also used by humans to structure and understand the world
such as classification of concepts and individuals. Classification of concepts determines subcon-
cept/superconcept relationships between the concepts of a given terminology, and thus allows
one to structure hierarchically the terminology. This hierarchy provides useful information on
the connection between different concepts and it is used advantageously to speed-up other infer-
ence services. Classification of individuals determines whether a given individual is always an
instance of a certain concept (i.e., whether this instance relationship is implied by the description
of the individual and the definition of the concept). It thus provides useful information on the
properties of an individual. In Section 2.1, we will cover the formal notions related to DLs and
reasoning upon them.

4



1.2. DLs for Data Management

1.2 DLs for Data Management

An important aspect for developing a database application is to represent the relevant features
of the domain of interest about which the database should be knowledgeable. These features are
primordially about the structure of the data. Typically, the specification of such features is done
in a high-level language, which makes it accessible to both users and designers. The activity of
specifying the structure of the data managed in a database application is known as conceptual
(data) modeling. In databases, the best known language for conceptual data modeling is the
Entity-Relationship (ER) data model [44].

From the conceptual schema built during the conceptual modeling phase, the database
designer develops a logical schema. The role of the logical schema is to describe the structure of
the data stored in the database, which includes the data types, interconnections, and constraints
that must be satisfied by the data. Different data models are used for this purpose, but the
relational data model is usually the logical model of choice. The data structured and stored
according to the logical schema is then managed by large software systems called Database
Management Systems (DBMS). The database then stores facts about the (current) state of the
world. Usually the so-called closed world assumption (CWA) is made, this means, that a fact is
regarded as false unless it has been explicitly stated as true. Note that this is an assumption
that works well with the restriction that the database represents only a very limited form of
partial information. In order to provide access to the data stored in databases, DBMS support a
variety of query languages, specifying in a declarative way the data to be retrieved. For relational
databases, SQL (Structured Query Language) is the practical query language of choice. However,
based on the observation that tables can be viewed as predicates, first-order logic formulas with
free variables offer a more suitable representation from the theoretical viewpoint (although the
expressiveness of SQL goes beyond first-order logic [3, 91]). Figure 1.2 depicts the architecture
of a data management system.

With the emerging of more complex kinds of databases, such as distributed databases, that
keep information at various sources connected by networks, the problem of accessing information
stored in databases has become more difficult. Notably, the technologies for accessing distributed
databases need to be such that the user perceives a single database. In a more general setting,
heterogeneous and federated databases are collections of independent databases which choose to
share information but are maintained autonomously. Integrating heterogeneous data sources is a
fundamental problem in databases, which has been studied extensively for about three decades
both from a formal and from a practical point of view [20, 43, 70, 92, 123, 125].

Most of the research around this problem in the last two decades has been motivated by
the need to integrate data sources on the Web. The research around combining data residing
at different sources has been carried on under the name of data integration. Data integration,
as discussed, aims to provide the user with a unified view of multiple (possibly heterogeneous)
data sources. In the declarative approach to the data integration problem, it is assumed that
the data integration system is characterized by giving explicitly to the client a global, virtual,
reconciled and unified view of the data. In order to access the data, the user formulates queries
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in terms of the global view, and the system then reformulates the user query in terms of the data
sources using appropriate schema mappings. The abstract architecture to such an approach is
depicted in Figure 1.3.

We will now discuss how DLs have been applied in the described setting of data management.
Indeed, DLs are good candidates for describing the schema of databases since they are well suited
to capture structural aspects of data. In particular, the description logic language ALCQI fully
captures class-based representation formalisms such as ER schema and UML class diagrams [33].
For instance, consider the ER schema in Figure 1.4, specifying the structure of a food delivery
system. The following ALCQI axioms exemplify how the constraints in that diagram can be
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Figure 1.4: Example of an ER schema

captured:

Costumer v ∀livesAt.Address Costumer v (6 1 livesAt)

Costumer v ∃places.Order Costumer v ∀paysVia.PayMethod

Cash v PayMethod CreditCard v PayMethod

Order v ∀takenBy.Employee Employee v (6 5 takenBy−)

Furthermore, in data integration ontologies are considered as the ideal formal tool to provide
a shared conceptualization of the domain of interest. In the ontology-based data access (OBDA)
paradigm, from a given set of data sources at the internal level of an information system, the
aim is to build a service on top of that level presenting a conceptual view of the data to the end
users of the information system. The role of the ontology is to express the conceptual level of the
system and provide the unique access point for the interaction between clients and the system,
while keeping the data sources independent from the ontology. That means, that the ontology
describes the domain of interest at a high-level, abstracting away from how data sources are
maintained in the data level of the system itself. Essentially, in the OBDA scenario the goal
is to link to the ontology a collection of data that exists autonomously, and that has not been
necessarily structured with the purpose of storing the ontology instances [109].

Besides providing a (global) conceptual view of the data, DL ontologies also endow the data
in an information system with a semantic dimension. Indeed, with the advent of the Semantic
Web, which aims to allow computers to intelligently search, combine and process Web content,
representing the semantics of distributed information sources has become a necessity. To cover
that necessity, the intended meaning (i.e., the semantics) of some Web sources can be explicitly
specified in a format that is processable by computers in such a way that the data stored is
provided with formal semantics that specifies in a precise way which conclusions should be
drawn from the collected information. Formal modeling languages with automated deduction
capabilities have turned out to be successful in the latter task, and have given rise to the
paradigm of ontology. In that context, an ontology is understood as a formalism whose purpose
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is to support human or machines to share common knowledge in a structured way. The Web
Ontology Language (OWL) is intended for modeling complex schematic knowledge [62, 69, 130];
as the name suggests, OWL is most relevant for ontological modeling. Notably, the formal
underpinning of significant part of the OWL standard is provided by description logics [69].
Certain sublanguages, or so-called profiles, of OWL are of particular interest for this thesis:
OWL EL, OWL RL and OWL QL. The particularity of these profiles is that the description
logics underlying them are tractable. Specifically, the standard reasoning tasks (subsumption
and satisfiability) can be carried out in polynomial time.

1.3 Conceptual Data Modeling

In this section, we offer a general view of some results on applications of DLs in conceptual data
modeling.

One interesting aspect of conceptual modeling is the identification of a number of mecha-
nisms that support the development of large models by initially abstracting details, and then
introducing them in a step-wise and systematic manner. These mechanisms include: thinking of
objects as whole instead of just a collection of their attributes or components; abstracting away
the detailed differences between individuals, so that a class can represent the commonalities; and
abstracting the commonalities of several classes into a superclass. The benefits of abstraction in
conceptual modeling is that it results in a structured information model, which is easy to build
and maintain.

However, a major challenge of conceptual design is the generation of a schema that is
consistent and does not contain redundancies. Traditional tools developed to aid conceptual
schema design are mainly graphical, which made them appropriate for visualization purposes. But
the decision on how to organize concepts in a taxonomy, and specially the systematic verification
of the correctness of the schema is guided only by the designer’s experience. Application domains
are complex, and the construction of a large application schema must often be partitioned among
various designers, each part designed under the particular designer’s view of the domain. The
resulting schemata have to be then integrated into a larger one without losing consistency of
the information. Hence the need for automatic design tools that more effectively support the
construction of large, complex conceptual schemata, and the verification of their correctness.

A great deal of research has been dedicated to investigate the integration of deductive capabil-
ities of KR formalisms into conceptual data modeling. In [22] taxonomic reasoning techniques of
frame description languages are proposed for supporting knowledge acquisition and conceptual
schema design. The approach followed in this work is to extend conceptual models with defined
concepts and giving them a logic-based semantics. This made it possible to infer so-called isa
relationships between concepts on the basis of their descriptions. Further, Piza et al. [108]
propose a generalization of both semantic networks and frame systems with type constructors,
which are used in semantic data models. In particular, the similarity of abstraction mecha-
nisms of semantic models and the proposed KR formalism is exploited to develop an integrated

8



1.4. Full Satisfiability of Conceptual Models

conceptual modeling framework. The resulting framework is restricted to basic features, e.g.,
multi-valued roles and cardinality constraints are left out, as well as role hierarchies. Later on,
Artale et al. [7] related the object data model to ALC. The authors show how object database
descriptions can be expressed using concept descriptions. One significant aspect of this work
is the identification of reasoning problems in which one can take advantage of techniques for
automated reasoning in description logics. In a more general view of the problem, Calvanese
et al. [33] propose description logics as a unifying framework for class-based formalisms. That
work establishes a relationship between semantic and object-oriented data models by rephras-
ing them in terms of description logics. More specifically, they show that the description logic
ALCQI is expressive enough to formalize the semantics of ER and object oriented data models.
In fact, they provide a translation from ER schema (and object-oriented data models) to an
ALCQI TBox that is “information preserving". Notably, that formalization provided the basis
for reasoning in conceptual models. We will provide details of the formalization approach in
Chapter 2.

The seminal work in [21, 34, 35] was refined by Artale et al. [8], who investigate the computa-
tional complexity of reasoning over various fragments of the Extended Entity-Relationship (EER)
language, which includes isa between entities and relationships, disjointness and covering of en-
tities and relationships, cardinality constraints for entities in relationships and their refinements
as well as multiplicity constraints for attributes. In particular, this work extends the known
ExpTime-completeness result for UML class diagrams in [21]. Artale et al. [9] showed that rea-
soning over EER diagrams with isa relations between relationships is ExpTime-complete even
without relationship covering. They also establish that reasoning becomes NP-complete when
isa between relationships is dropped (while still allowing all types of constraints on entities); and
that by further omitting disjointness and covering over entities reasoning becomes polynomial.
The complexity upper bounds are established by a formalization of the EER diagrams using
variants of the description logic DL-Lite. These correspondences also show the usefulness of
DL-Lite as a language for reasoning over conceptual models and ontologies. We will revisit these
results in Chapter 7.

1.4 Full Satisfiability of Conceptual Models

To simplify the presentation in the following, we will refer to either an UML class diagram
or an ER schema simply as class diagram (CD). Informally, a legal instance of a CD C is an
instantiation of the classes (entities) and associations (relations) in C that precisely satisfy all
constraints in C. Hence, C is satisfiable if it has a legal instance. However, a more meaningful
satisfiability property involves ‘intended’ instances. For example, to require that for each class
C in C, there is a legal instance of C such that the extension of C is non-empty and finite. This
stronger notion of satisfiability was first introduced by Lenzerini and Nobili [90], and termed
strong satisfiability. Indeed, under the assumption that class diagrams are intended to model
real world domains, which are intrinsically finite, this notion seems appropriate. Lenzerini and
Nobili, have also pointed out that the interaction of cardinality restrictions and cycles in the
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diagram might cause that the only legal instance of the diagram is the empty instance. They
also show that, for a simple class of diagrams, a strongly satisfiable concept diagram has an
instance in which all class extensions are non-empty. In particular, these ‘restricted’ class of
diagrams allow only relations with cardinality constraints among classes, and do not include isa
relations.

Similar notions of satisfiability have been studied for more complex CDs. Kaneiwa and Satoh
[78] investigated the problem of full satisfiability on restricted CDs that include classes with
typed attributes and cardinality constraints on the attributes, unconstrained associations and
constrained generalization sets. They describe three triggers for inconsistency in such diagrams
and provide algorithms for deciding full satisfiability of the restricted CDs.

Verifying full satisfiability of CDs allows to detect unsatisfiable classes, which means either
that the diagram contains unnecessary information that should be removed, or that there is
some modeling error (e.g., over-constraining in the diagram) that leads to the loss of satisfiability.
In some scenarios, like in configuration management [26], verifying full satisfiability is an useful
reasoning task. Configuration management touches aspects of CDs that are not in the focus of
traditional model engineering. Most notably, it requires numerical reasoning as well as the ability
to handle instances independently from classes. Hence, it seems relevant to study a reasoning
task such as full satisfiability on the side of DLs, to provide a formal approach for supporting
verification of CDs. We will address full satisfiability on DLs that capture interesting modeling
features for the scenario of configuration management and discuss how our results can be applied
in that area in Chapter 7.

1.5 Ontology-Based Data Access

DL ontologies, as discussed in Section 1.2, can serve as high-level conceptualizations for (possible
distributed and heterogenous) data sources with the advantage that a semantic account of the
information is also provided. That setting allows users to access data without the need to know
how the data is actually organized and where it is stored. The constraints imposed by the
ontology aid to detect inconsistencies that might be present in the data. On the other hand,
the background knowledge provided by the ontology can also be used to enrich the data schema
with additional symbols to be used in a query. Figure 1.5 describes the abstract architecture of
an ontology-based data access system.

From the scenario described above, one can draw the conclusion that accessing data through
ontologies amounts to querying possibly incomplete and constrained databases. We will refer
to the latter task as ontological query answering. Notably, query processing in OBDA usually
involves also reformulating the query by using mappings that relate the data schema and the
ontology. However, this will not be explicitly considered in this thesis as it is out of scope.

From the semantic view point, constraints imposed by the ontology are taken into account
in ontological query answering using the notion of certain answers [1], which amounts to logical
entailment. Intuitively, the incompleteness of the data is handled by considering all possible
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extensions of the data satisfying the axioms in the ontology (i.e., all models of the ontology).
As a result of the certain answer semantics, the choice of the query language needs to be more
careful than for traditional databases. In particular, one cannot consider first-order logic queries
since this leads to undecidability. However, in settings dealing with incomplete databases [98], a
good trade-off regarding the query language choice has been found. In those settings, conjunctive
queries (and unions thereof), which correspond to the select-project-join fragment of SQL, are
the language of choice. Notably, these kind of queries are also the best supported by commercial
database management systems.

A typical assumption in OBDA scenarios [37, 48, 56, 89, 109] is that the amount of data is
large; think, for example, about large data sources on the Web. Hence, one of the challenges
in OBDA is to provide efficient ontological query answering, where efficient in this case means
that query answering has to be at least tractable (i.e., polynomial) w.r.t. to the size of the
data [39, 71, 103]. The impact of the choice of the ontology language on the OBDA setting
has been largely investigated in the literature [39–41, 53, 55, 81, 104]. The results of such
investigations have shown that expressive ontology languages are not really suited for ontological
query answering. In particular, in expressive fragments of OWL ontological query answering
is co-NP complete in data complexity [55, 93]. Hence, to overcome costly query answering
one needs to restrict the ontology language. Among the ontology languages guaranteeing at
least tractable complexity we have the languages Horn-SHIQ [53, 71, 104], EL++ [13, 88] and
DL-Lite [9].

From those restricted languages, the DL-Lite family of DLs was developed specifically for
capturing meaningful modeling features of ontology and conceptual modeling formalisms and
on the same time keeping the complexity of reasoning low [38, 40].

In particular, answering (unions of) conjunctive queries in DL-Lite is in AC0 which allows to
perform conjunctive query answering over DL-Lite ontologies by first reformulating the query
using the knowledge of the terminological part of the ontology (and thus independently of the
data) and then evaluating such a reformulation of the query over the data. Since the data is
assumed to be managed by a RDBMS, the evaluation of the reformulated query can thus be
carried out by an SQL-engine. This means that query answering in DL-Lite is as costly as query
answering in traditional databases (in case the size of the query is ignored), and that we can thus
take advantage of all the optimizations present in the SQL-engines. However, it is interesting to
note that the size of the proposed reformulations [40] may become very large (exponential in the
size of the original query). A number of alternative reformulating query mechanisms have been
proposed to limit the size of the reformulation; see e.g., [81] and reference therein. Furthermore,
for DLs for which query answering is polynomial, e.g., EL++, such a rewriting approach is
not possible anymore; although the so-called combined approach [85] allows to delegate query
answering to RDBMs by reformulating both the query and the data in terms of the constraints
of the terminological part of the ontology.

Following the tradition of classical databases, most of the research on ontological query
answering has concentrated on the study of positive queries, such as CQs and UCQs. Unfortu-
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nately, some natural queries require to express either of these difference or complementation;
for example, to retrieve ‘all members of the staff that do not belong to a union’ or ‘all students
whose month of birth is (different from) not September’. Indeed, a well-known fact from
database theory is that answering CQs with negation is harder than answering CQs; this is
the case, for example, for open world query-answering with integrity constraints [115], query-
answering in the context of data exchange [54] or query-answering using materialized views [2].
In the case of ontological query answering, it has been shown that answering conjunctive queries
extended with inequalities and safe negation over expressive ontologies is undecidable [41, 116].
On the other hand, the investigation of ontological query answering with these two forms of
negation over lightweight ontologies has received only limited attention. A remarkable exception
is the work by Rosati [116] in which it is shown that answering unions of conjunctive queries
with inequalities and safe negation over ontologies formulated in (some variants) of DL-Lite
is undecidable. Given the fact that the undecidability results were established for the case of
unions of CQs with inequality or safe negation, the question of whether this is also the case for
a single (instead of a union) negated CQ naturally arises. Moreover, even if this is the case, one
would be interested in knowing whether these extensions of CQs with negation can be restricted
in a way that decidability is recovered. Indeed, this is one of the research lines followed in this
thesis. We will discuss in more detail this topic and answer some of these questions in Chapter 6.

Observe that some of the data schemata integrated by the ontology in the OBDA setting
may contain constraints such as functionality or more generally, cardinality constraints. Hence,
in order to faithfully capture these constraints, one should use DLs that lack the finite model
property. This means that in such cases ontological query answering amounts to logical entailment
w.r.t. finite models. Again, this assumption stems from the fact that the data sources considered
are typically finite databases. We present a more detailed discussion on query answering under
the finite model assumption in Section 1.7 below, and present some contributions on ontological
query answering under this assumption in Chapter 5.

1.6 Finite Model Reasoning on DLs

In this section, we will discuss some of the techniques used in passed research on finite model
reasoning in description logics. As we discussed at the beginning of this section, finite model
reasoning differs from reasoning over arbitrary models in logics that lack the finite model property
(FMP). For description logics, this is the case e.g., for logics that allow the inverse constructor
for roles and some form of functionality constraints. These constructors present, e.g., in ALCQI,
in combination with cycles in the ontology may interact in such a way that an ontology admits
no finite model, although it admits one with infinite domain. That is, ALCQI lacks the FMP,
and thus, reasoning under the finite and under the unrestricted models constitute two distinct
problems.

Traditional techniques developed for reasoning w.r.t. arbitrary models on expressive description
logics (ALCQI included) are based on the correspondence between DLs and propositional
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dynamic logics (PDLs). PDLs are formalisms specifically designed for reasoning about program
schemes [87], and their correspondence with DLs was first described in [121] and extended to
more expressive logics in [46]. This correspondence allows to reduce concept consistency to
satisfiability of a formula of some PDL. The methods for checking satisfiability of PDL formulas
exploit the fundamental tree model property, which states that every satisfiable formula admits
a particular model that is tree-shaped and of bounded degree. If the domain is required to be
finite, however, the existence of a tree-like model is not guaranteed, and the known reasoning
methods are not applicable.

To cope with the problem of finite model reasoning on ALCQI, Calvanese [31] developed a
method based on the idea of constructing a system of linear equations from an ALCQI ontology,
and relating the existence of particular solutions of the system to the existence of a finite model
of the ontology. This method reduces the problem of concept finite satisfiability to that of finding
a solution over the integers for a system of equations. Further, the method relies on an expansion
of the original ALCQI ontology that causes a double exponential blow up. Since the size of the
linear equations depends on the size of the ontology, and the linear equations produced can be
solved in polynomial time, applying linear programing techniques, Calvanese’s method provided
a 2ExpTime upper bound for the complexity of finite concept satisfiability in ALCQI.

The upper bound provided by Calvanese was improved by the results on finite satisfiability of
the two variable fragment of first order logic with counting quantifiers (C2) from which ALCQI
is a fragment. In particular, finite satisfiability of C2 is NExpTime-complete [110]. Further, Lutz
et al. [94] showed that finite satisfiability of ALCQI is ExpTime-complete, i.e., it has the same
complexity of reasoning w.r.t. arbitrary models. Similar to Calvanese’s approach, the idea behind
their algorithm is to translate a given satisfiability problem into a system of inequations that
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can be solved using linear programing methods. In this translation, each variable represents
the number of elements described by so-called mosaics, which describe the (unary) type of
a domain element together with its neighborhood, i.e., the numbers and types of (relevant)
role successors. Using a rather strict notion of mosaics and an appropriate data structure to
represent mosaics allows to keep the number of mosaics exponential in the size of the input.
This yields an exponential bound on the number of variables and also on the size of systems of
inequations, which yields the ExpTime upper bound. Moreover, their results extend also to the
problem of reasoning in the presence of assertional knowledge, which shows that finite ABox
consistency in ALCQI is also ExpTime-complete. The result follows from a reduction to finite
concept satisfiability, which in particular also shows that the complexity bound is independent
of the way in which the numbers occurring in the TBox are coded. Notably, the algorithm is
best-case ExpTime since it constructs an exponentially large system of inequations, and thus, it
is not expected to have an acceptable runtime behavior if implemented in a naive way. Efficient
implementations of the algorithm are not known and are not apparent from the approach.

Interestingly, for less expressive description logics, finite model reasoning has resulted to
be more feasible. DL-LiteF is a comparably inexpressive DL tailored specifically for database
applications, but that also lacks the FMP because it includes both inverse roles and functionality
restrictions. Building on a technique that was developed in database theory by Cosmadakis,
Kanellakis and Vardi to decide the implication of inclusion dependencies and functional depen-
dencies in the finite [45], Rosati has shown that finite model reasoning in DL-LiteF can be
reduced (in polynomial time) to unrestricted reasoning in DL-LiteF [117]. In fact, the reduction
relies on completing the TBox by finding certain cyclic inclusions and ‘reversing’ them. For
example, the cycle

∃r− v ∃s ∃s− v ∃r (funct r−) (funct s−)

that consists of existential restrictions in the ‘forward direction’ and functionality statements
in the ‘backward direction’ would lead to the addition of the reversed cycle

∃s v ∃r− ∃r v ∃s− (funct r) (funct s).

We will explain in detail the cycle reversion technique in Chapter 3. A consequence of using the
reduction illustrated above is that finite model reasoning in DL-LiteF does not require any new
algorithmic techniques and can be implemented as efficiently as unrestricted reasoning. Given
that DL-LiteF is a very small fragment of ALCQI these observations raise the question whether
the cycle reversion technique extends also to larger fragments of these DLs. Specifically, to the
so-called Horn DLs which are well-known to be algorithmically better behaved than non-Horn
DLs such as ALCQI [71]. This is actually one of the main topics investigated in this thesis.
We will discuss in more detail the cycle reversion technique and its extensions to Horn DLs in
Chapter 3.
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1.7 Query Answering under the Finite Model Assumption

Other results involving reasoning w.r.t. finite domains in DLs and related formalisms, such as
those described in [17, 118], concern finite controllability [118] of answering (Boolean) conjunctive
queries (CQs) in the presence of a set of constraints. More precisely, for a given class of constraints
C, answering a query q w.r.t. a set of constraints ϕ is finitely controllable if deciding whether all
finite models of ϕ satisfy q is equivalent to the problem of deciding whether all (unrestricted)
models of ϕ satisfy q, in symbols ϕ |= q iff ϕ |=fin q. Notably, Rosati showed that answering CQs
w.r.t. inclusion dependencies is indeed finitely controllable, closing then a long standing open
problem left in [77]. To solve the problem, Rosati developed a finite model generation procedure
called finite chase; and then showed that for every database D and set Σ of IDs, and for every
N there exists a finite structure I extending D and satisfying Σ such that for every (Boolean)
CQ q comprised of at most N atoms I |= q iff Σ, I |= q. Notably, description logics such as
DL-Litecore and DL-LiteHcore are essentially based on IDs, and are thus finitely controllable.

Bárány et al. [17] studied finite controllability in the scenario where the constraints are
expressed using the guarded fragment of first-order logic (GF) [5] (which subsumes expressive
DLs such as ALC and ALCI– but not ALCQI [59]). Since CQs may not be guarded, the
FMP of the GF is not sufficient to establish finite controllability in that case. Rather, the
problem amounts to establish the FMP of an extension of the GF with universally quantified
Boolean combinations of negative atoms. Indeed, this is the case because evaluating a Boolean
conjunctive query q against a guarded first-order theory ϕ is equivalent to checking whether
ϕ∧¬q is unsatisfiable. Using the fundamental idea of the finite chase introduced by Rosati, the
authors show that the GF is finitely controllable. The main technical result presented in [17]
is that one can construct a family of finite models of a given satisfiable extended GF theory
ϕ∧¬q. The role of these so-called Rosati covers in proving finite controllability can be informally
explained as follows. Given a GF theory ϕ and a query q Bárány et al. show that there is an
acyclic query q̂, such that ϕ |= q iff ϕ |= q̂. Now, since q̂ is acyclic, it can be reformulated as a
GF-sentence. Then, the authors prove that the same reduction is also valid over finite models,
i.e., that ϕ |=fin q iff ϕ |=fin q̂. In particular, that given a finite model A of ϕ∧¬q̂, a finite model
of ϕ ∧ ¬q can also be found. Since q is not acyclic, A is not in general the desired model, i.e., it
may be a model of q. However, the existence of Rosati covers A provides finite models of ϕ∧¬q̂
retaining “sufficient degree of acyclicity” so as not to render a model of q.

Constructions of finite models with certain degree of acyclicity have been also studied by
Otto in [105]. The construction by Otto is provided in the context of finite transition systems
and Kripke structures. In general terms, the main result provided in [105] establishes that for a
finite transition system A (which can be regarded as a relational structure), and a given N ≥ 3,
it is always possible to construct a bisimilar transition system Â that does not contain cycles
of length less or equal to N . This construction is obtained from a product of A with a cyclic
group G of girth greater than N . We will come back to this construction in Chapter 5, where
we investigate ontological query answering under the finite model assumption.
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1.8 Results and Structure of the Thesis

The discussion in the previous sections puts in evidence that reasoning in DLs can and have
been used advantageously in data management applications. In that context, the need to provide
support for modeling features, such as cardinality constraints and inverse of relations, requires
the use of (expressive) DLs that lack the finite model property. In such cases, whenever reasoning
is used for data management applications one needs to consider finite model reasoning in DLs
instead of reasoning w.r.t. unrestricted (i.e., possibly infinite) models. The available results on
the subject have shown that this is a difficult task, and that in some cases requires algorithmic
techniques that are not transparent from the modeling perspective. Bearing this motivation
in mind, we investigate finite model reasoning in the so-called Horn DLs. These logics are of
interest because they provide sufficient expressive power as to capture some interesting features
in conceptual modeling (although they are not able to express covering constraints) and also
because, due to their model theoretical properties, they are usually well behaved w.r.t. complexity
of reasoning. We also investigate ontological query answering over Horn ontologies considering
queries with negation. We will particularly focus on queries allowing for so-called safe negation,
guarded negation and inequalities. We can summarize the results and contributions in this thesis
as follows:

• we determine the complexity of finite model reasoning in Horn fragments of expressive
DLs by reducing finite model reasoning to unrestricted reasoning (Chapter 3);

• given that such reduction may result in an inefficient procedure for finite model reason-
ing, we provide a consequence-driven algorithm for finite model reasoning in Horn DLs
(Chapter 4);

• we then extend these results for ontological query answering under the finite model as-
sumption (Chapter 5);

• in Chapter 6, we determine the data complexity of answering queries with negations over
Horn ontologies (see Table below);

DL-Litecore DL-LiteHcore ELI⊥

UCQ¬s undec. Cor. 6.4

CQ¬s coNP-hard undec.
Thm. 6.6

undec.
Thm. 6.2

1 guarded neg PTime-hard Lemma 6.8

≥ 2 guarded negs coNP-hard Lemma 6.9

≥ 2-CQ 6= coNP-hard
Thm. 6.14 undec. Thm. 6.12

1-CQ 6= PTime-hard
Thm. 6.13
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• finally, we put together the obtained results and argue on their use in database applications
(Chapter 7).

All the results presented in this thesis as original contributions have been published in the
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Chapter

2
Preliminaries

In this Chapter, we will formally introduce description logics and conceptual modeling languages.
We do this in a comparative manner. In more detail, we start with an introduction to the field
of description logics, and we then discuss the relation of description logics and conceptual
modeling languages. We introduce two of the main languages for conceptual modeling, namely,
ER schema and UML class diagrams, and show how the semantics of these modeling languages
can be captured by expressive description logics. Moreover, we provide an overview of the main
reasoning tasks defined for description logics systems, and discuss how this reasoning capabilities
have been used advantageously in conceptual modeling and database access.

2.1 Description Logics

Description logics (DLs) evolved from early knowledge representation formalisms such as seman-
tic networks [113] and frames [99], in which knowledge was represented by means of directed
graphs or structured objects. Unfortunately, the lack of formal semantics in these early formalisms
made them application-dependent, that is, the meaning of, e.g., a directed graph depended on
the implementation of a particular reasoning system. The use of formal logic for representing
and reasoning about knowledge constituted a crucial step towards providing semantic means to
knowledge representation formalisms. In fact, many aspects of semantic networks and frames
admit a translation into first-order logic (FOL) [66]. Building on that correspondence, subse-
quent research in knowledge representation and reasoning focused on overcoming the problems
inherent to the early knowledge representation formalisms.

Research in DLs [101] was initially developed under the name of terminological systems with
the aim of representing the basic terminology of an application domain. Subsequently, when the
interest focused on the set of concept constructors admitted in a language, they were known
as concept languages. Finally, the term description logics became popular when the attention
moved towards the properties of the underlying logical systems.
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Formally, DLs are fragments of first-order logic providing decidable reasoning services. The
syntax of DLs is designed for representing the important notions of the domain of interest
in a structured way. On the other hand, since they are provided with formal semantics, it is
possible to define reasoning services that allow to infer implicit knowledge from the explicit
representation.

In DLs, the main building blocks are basic entities called concepts and roles, from which
(complex) concept descriptions are built using the constructors provided by a particular descrip-
tion logic language. We will introduce in the remaining of this section the main description logic
languages that have been used for conceptual modeling and ontology-based data access. We
divide the presentation into two classes of DLs according to their expressive power:

Expressive DLs. These languages are propositionally closed, i.e., provide all the Boolean con-
structors for building concept descriptions. In addition to Boolean constructors, expressive
DLs provide some other interesting modeling features such as qualified numbers restric-
tions and inverse roles, which are useful in conceptual modeling applications. Although
reasoning over expressive DLs remains decidable, the complexity is usually high.

Horn DLs These are sub-Boolean languages, and thus rather unexpressive. The virtue of
Horn DLs is that they provide a good trade-off between expressive power and complexity
of reasoning. Indeed, Horn DLs are not able to express disjunctive statements, which is
a source of complexity of reasoning. Furthermore, these logics have low data complexity,
which makes them an ideal choice for reasoning about large amounts of data.

In addition to a description language, description logics provide formalisms for representing
intentional and assertional knowledge. The intensional knowledge regards the terminological
aspects of the domain of discourse, and it is asserted in the TBox. Typically, TBoxes contain
assertions specifying concept definitions, concept properties, as well as relations among concepts.
The assertional knowledge, on the other hand, describes the state of affairs in a particular
‘world’, and it is stored in the ABox in the form of assertions about (named) individuals such as
membership to a concept or participation to a relation from the terminology. A DL knowledge
base (KB), also known as ontology, is a pair (T ,A) where T is a TBox and A is an ABox in some
description language. In Sections 2.1.2 and 2.1.3 we present a general view of TBox and ABox
formalisms, respectively. Further, we will discuss variants of TBox formalisms in Section 2.1.4.
In particular, we will introduce Horn formalisms, which are know to influence the complexity
of reasoning. Indeed, the study of the trade-off between the expressiveness of a DL language
and the complexity of performing reasoning in the corresponding logic has constituted a major
area of research in DLs [9, 12, 13, 15, 72]. In Section 2.1.6, we present the main reasoning tasks
defined in the literature, as well as the known procedures and complexity results for performing
such tasks.
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2.1.1 Description Logic Languages

We next fix the vocabulary of all description logic languages used in this thesis. The vocabulary
is based on three disjoint countably infinite sets NC, NR,NI of concept names, roles names and
individual names, respectively. Throughout this thesis we will use the letters (possibly with
subindexes) A,B to denote concept names; p, q to denote role names; and a, b, c, . . . to denote
individual names, respectively.

Concept and role names, also known as atomic concepts and atomic roles, are the syntactic
building blocks for describing complex concept descriptions using the constructors available in a
given description language. A specific description logic language is mainly characterized by the
constructors it provides to build such complex concepts and roles. For example, the basic ALC
language introduced by Schmidt-Schauß and Smolka [122], contains all the Boolean constructors:
conjunction (u), disjunction (t) and negation (¬), as well as existential (∃) and universal (∀)
restrictions. In ALC, for example, one can describe the term ‘food products that are made from
an ingredient that grows in a developing country and that contain exclusively carbohydrates or
fats’ using the following concept:

FoodProduct u (∃madeFrom.∃growsIn.DevelopingCountry) u ∀contains.(Carbs t Fats).

Syntax and Semantics of the DL ALCQI

The DL ALCQI [32] is an extension of the basic ALC. In particular, the ALCQI description
language features a rich combination of constructors that include, besides all the Boolean
connectives, qualified number restrictions and a role constructor for inverses.

Definition 2.1 (ALCQI syntax). An ALCQI role is either a role name p ∈ NR or the inverse
p− of a role name p ∈ NR. The set of ALCQI concepts is defined by the following syntax rules:

C1, C2 ::= A | ¬C1 | C1 u C2 | C1 t C2 | (> n r C1) | (6 n r C1)

where A ranges over the set of concept names NC, r denotes a role, C1 and C2 are ALCQI
concepts and n ≥ 0 is an integer. 4

To improve readability we allow to easily switch between a role name and its inverse by identifying
(r−)− and r. We refer to concepts of the form (6 n r C) as at-most restrictions, and to concepts
of the form (> n r C) as at-least restrictions. The presence of all Boolean connectives in ALCQI
allows to express as usual disjunctions in terms of conjunction and negation:

C tD := ¬(¬C u ¬D).

Further, using the constructors in the definition above, the following abbreviations can also be
defined:
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> := A u ¬A;

⊥ := A t ¬A;

∃r.C := (> 1 r C); and

∀r.C := (6 0 r ¬C).

Recall that qualified (universal or existential) restrictions allow to represent the relationships
existing between the objects of two classes. For example, for describing ‘produce that are grown
exclusively in european countries’

∀growsIn.EuropeanCountry,

or ‘places where some cereal is grown’

∃growsIn−.Cereal.

Qualified number restrictions, on the other hand, can be used to describe objects connected to
a number of instances of certain concepts through a particular role. For example, the concept

(> 3 growsIn Region)

describes the ‘produce that grows in at least three regions’, while

(6 2 growsIn Region)

conversely characterizes ‘produce that grows in at most two regions’. Further, functionality
constraints can be expressed by a concept of the form (6 1 r C). For example, we can describe
the class of ‘endemic crops’ (i.e., crops that grow in a unique region) by the concept

Crop u (6 1 growsIn Region).

The inverse role constructor allows to denote the inverse of a given relation. One can for example
describe ‘the european countries that grow some cereal’ by the concept description:

EuropeanCountry u ∃growsIn−.Cereal

It is worth noticing that in a language without inverse of roles, in order to express the latter one
may think of using two distinct roles (e.g., growsIn and grows), but unfortunately they cannot
be put in the proper (semantic) relation.

Recall that one of the key features of DLs is that they are provided with formal semantics.
More precisely, the meaning of concept descriptions is given by Tarsky-style semantics: concepts
are interpreted as unary predicates and roles as binary predicates over a set called the domain.

Definition 2.2 (ALCQI semantics). An interpretation I is a pair (∆I , ·I), where ∆I is a
nonempty set called the domain of I and ·I is an interpretation function that maps
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• every concept name A to a subset AI of ∆I and

• each role name p to a binary relation pI over ∆I .

The interpretation function is extended to complex ALCQI concept and role descriptions as
follows:

(p−)I := {(d, e) ∈ ∆I ×∆I | (e, d) ∈ pI}

(¬C)I := ∆I \ CI

(C1 u C2)I := CI1 ∩ CI2
(C1 t C2)I := CI1 ∪ CI2
(> n r C)I := {d ∈ ∆ | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≥ n}

(6 n r C)I := {d ∈ ∆ | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≤ n}

where #S denotes the cardinality of the set S. Table 2.1 presents a condensed view on the
syntax and semantics of ALCQI concepts. 4

The fragment ALCFI of ALCQI consists of a restricted language in which only existential,
universal and functional restrictions (hence the F) can be expressed. More specifically, the
syntax of ALCFI concepts allows only number restrictions of the following form:

(6 0 r C); (> 1 r C); (6 1 r C).

ELIF is the fragment of ALCFI that disallows disjunctions. Other fragments of interest in this
thesis are the logic ELI that further disallows for functionality constraints, ELI⊥ which allows
⊥ in concept descriptions, and EL that only supports conjunctions of concepts and qualified
existential restrictions.

The DL-Lite family

The family of DL-Lite description logics was first proposed by Calvanese et al. [40], and later
extended by Poggi et al. [109] and Artale et al. [9]. DL-Lite was specifically designed to express
important types of constraints used in conceptual modeling formalisms such as UML class
diagrams and ER models (cf. Section 2.2.3) while maintaining low computational complexity
of reasoning [8, 9]. Furthermore, DL-Lite has also positioned itself as a prominent ontology
language. Notably, it forms the basis of OWL 2 QL, one of the three profiles of OWL 21 which
is the standard ontology language for specific requirements in the Semantic Web.

We next start by presenting the syntax of the DL-Lite concept language DL-LiteN , and then
we will introduce other members of the DL-Lite family as variations of DL-LiteN . DL-LiteN

allows for representing conjunctions, a limited form of negation, inverse roles and unqualified
number restrictions.

1http://www.w3.org/TR/owl2-profiles/
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Concept and Role Constructors

Name Syntax Semantics

top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \ CI

conjunction C1 u C2 CI1 ∩ CI2
disjunction C1 t C2 CI1 ∪ CI2
existential restriction ∃r. C {d ∈ ∆I | ∃e : (d, e) ∈ rI ∧ e ∈ CI}

value restriction ∀r. C {d ∈ ∆I | ∀e : (d, e) ∈ rI → e ∈ CI}

at least restriction (> n r C) {d ∈ ∆ | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≥ n}

at most restriction (6 n r C) {d ∈ ∆ | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≤ n}

inverse role p− {(d, e) ∈ ∆I ×∆I | (e, d) ∈ pI}

Axioms

concept assertion A(a) aI ∈ AI

role assertion p(a, b) (a, b) ∈ pI

concept inclusion C v D CI ⊆ DI

role inclusion r v s rI ⊆ sI

Table 2.1: Syntax and semantics of description logics

Definition 2.3 (DL-LiteN concepts). A DL-LiteN role is either a role name p ∈ NR or the
inverse of a role name p ∈ NR. DL-LiteN concepts are defined by the following rules:

B ::= ⊥ | A | (> n r)

C1, C2 ::= B | ¬B | C1 u C2

where A ranges over NC , r is a role, and n is a positive integer.

Concepts of the form (> n r) are abbreviations for concepts (> n r >) and called unqualified
number restrictions. Analogously, ∃r is as an abbreviation for (> 1 r ), which is called a domain
(or range if r is the inverse of a role name) restriction. Concepts of the form B are called basic
concepts, and those of the form C1, C2 are called complex concepts. 4

Note that the restricted use of negation in DL-LiteN in complex concepts disallows to express
disjunction, and therefore DL-LiteN is not Boolean closed. For some applications in conceptual
modeling, as we see later (cf. Section 2.1.6), the presence of Boolean connectors may become
useful. Hence, the extension DL-LiteNBool of DL-LiteN in which complex concepts are either basic
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concepts or Boolean combinations of complex concepts has also been considered.

C1, C2 ::= B | ¬C | C1 u C2 [ DL-LiteNBool concepts ]

The presence of Boolean combinations in DL-LiteNBool comes however at the price of increasing
the complexity of reasoning as we will discuss later in this section.

2.1.2 Terminological Knowledge: TBoxes

One important aspect of a DL ontology is given by the operations used to build the terminology.
Indeed, such operations are closely related to the forms and the meaning of the declarations
allowed in the TBox. One of the most basic forms of declarations considered in the literature
are concept definitions, which as suggested by the name, allow to define a new concept in terms
of atomic concepts or other previously defined concepts. For example, we can define ‘inorganic
fertilizers’ as ‘fertilizers with mineral composition’ by including the following declaration in the
TBox:

InorganicFertilizer ≡ Fertilizer u ∃hasComposition.Mineral.

Concept definitions are intended to express (logical) equivalence between concepts by asserting
both necessary and sufficient conditions required to hold for the instances of a certain concept.

Definition 2.4. (TBox) Let L be a description language. Let C1 and C2 be concepts in L, and
r, s roles in L. A concept inclusion (CI) in L is an expression of the form C1 v C2. An L-TBox
T is a finite set of concept inclusions. In cases where the description language is clear from the
context or irrelevant, we will use the term TBox instead of L-TBox. 4

Intuitively, a CI C1 v C2 states that if some object is an instance of C1, then it must be also an
instance of C2. For example, the knowledge that ‘cereals are a kind of crop, but not all crops
are cereals‘ can be represented by the concept inclusion:

Cereal v Crop

Note also that a concept definition can be expressed by two concept inclusions. For example,
to establish the equivalence between the terms ‘inorganic fertilizer’ and ‘mineral fertilizer’ one
could assert the following concept inclusions

InorganicFertilizer v MineralFertilizer MineralFertilizer v InorganicFertilizer.

The precise meaning of TBox statements is defined in terms of interpretations as follows.

Definition 2.5 (satisfaction relation). Let I = (∆I , ·I) be an interpretation and T a TBox,
then

• I satisfies a concept inclusion C1 v C2 ∈ T , denoted as I |= C1 v C2, if CI1 ⊆ CI2 .

• I is a model of T , denoted as I |= T , if I satisfies every concept inclusion C1 v C2 ∈ T .
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4

Other forms of TBox axioms that we will consider include role inclusions which are expressions
of the form

r v s,

and whose semantics are defined analogously, i.e., an interpretation I satisfies r1 v r2 if rI1 ⊆ rI2 .

Once the terminology is in place, it can be used to infer (implicit) knowledge about the
concepts and roles described in it. One of the basic inference tasks is classification, which amounts
to place a concept (or role) expression in the proper place in a taxonomic hierarchy of concepts
(or roles). Classification can be accomplished by verifying the subsumption relation between
each pair of concepts within the terminology. More generally, deduction services for TBoxes
can be viewed as logical implication which comprise verifying whether a generic relationship
(for example, a subsumption relation between two concepts) is a logical consequence of the
declarations in the TBox. The following are standard reasoning tasks considered in DLs.

Definition 2.6 (TBox reasoning tasks). Let T be a TBox, and C,D concepts.

TBox satisfiability: T is satisfiable if there exists a model I of T .

Concept satisfiability: A concept C is satisfiable with respect to T if there exists a model I
of T such that CI is nonempty.

Subsumption: A concept C is subsumed by a concept D with respect to T if CI ⊆ DI for
every model I of T . In this case we write C vT D or T |= C v D.

Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI for every
model I of T . In this case we write C ≡T D or T |= C ≡ D.

4

For description languages that provide conjunction (u) and the unsatisfiable concept bottom
(⊥), one can reduce all the previous TBox reasoning tasks to subsumption.

Proposition 2.1 ([50]). Let C and D be arbitrary concepts and T (a possibly empty) TBox in
a description language L that contains u and ⊥, we have

• T is unsatisfiable if > vT ⊥;

• C is unsatisfiable w.r.t. T if C vT ⊥; and

• C and D are equivalent w.r.t. T if C vT D and D vT C.
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2.1.3 Assertional Knowledge: ABoxes

Apart from representing knowledge about concepts and the relations holding between them, one
can also be interested in representing knowledge about specific individuals in the domain of
application. As we discussed at the beginning of the section, this is the role of the ABox. In the
ABox, normally two types of assertions about individual names (that represent real objects in
the domain of interest) are stated. The first type called concept assertions state that a certain
individual is an instance of a concept (it belongs to a certain class), whereas the second one
are called role assertions, and state that a pair of individuals belong to a certain relation. For
example, we could assert that ‘rice is a crop that grows in China’ by asserting

Crop(rice), growsIn(rice,China).

Definition 2.7. (ABox) Let C and r be a concept and a role in some concept language L,
respectively. Further, let a, b ∈ NI be individual names. A concept assertion is an expression of
the form C(a), and a role assertion is an expression of the form r(a, b). An L ABox A is a finite
set of concept and role assertions. 4

In a simplified view, an ABox can be seen as an instance of a relational database with only unary
or binary relations [109]. However, contrary to the closed-world semantics of classical databases,
the semantics of ABoxes is an open-world semantics since normally knowledge representation
systems are applied in situations where one cannot assume that the knowledge is complete.
Moreover, the TBox imposes semantic relationships between concepts and roles in the ABox
that do not have counterparts in database semantics.

An interpretation I can be extended to provide semantics for ABoxes by demanding that ·I

maps every individual name occurring in the ABox to an element aI of ∆I . In databases, it is
commonly assumed that distinct constants (individual names) denote distinct objects from the
domain. This assumption corresponds to the so-called unique name assumption (UNA). Given
the scope of this thesis, we will adhere to this assumption. Moreover, we will make the further
assumption that every individual name occurring in the ABox is interpreted as itself, that is,
aI = a. This corresponds to the standard name assumption (SNA), which clearly implies the
UNA.

The semantics of ABox assertion is defined in terms of the satisfaction relation as follows.

Definition 2.8. Let I be an interpretation. I satisfies A, denoted by I |= A, if

• for every C(a) ∈ A, a ∈ CI , and

• for every p(a, b) ∈ A, (a, b) ∈ pI .

In that case, I is said to be a model of A.
4

A model of an ABox A and a TBox T can be understood as an abstraction of a concrete ‘world’
where the concepts are interpreted as subsets of the domain as required by T and where the
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membership of the individuals to concepts and their relationships with one another in terms of
roles respect the assertions in the ABox. Verifying the existence of such a possible world is in
fact one of the basic reasoning tasks that involve the ABox.

Definition 2.9 (ABox consistency w.r.t. a TBox). Let T be a TBox. An ABox A is consistent
w.r.t. T if there exists a model I of T satisfying A. This is written in symbols as

I |= (T ,A).

4

Besides ABox consistency, one might consider the problem of verifying whether a given individual
is an instance of a certain concept. The latter is known as the instance checking problem.
Formally, an individual a is an instance of a concept C if a ∈ CI for every model I of T . One
can view an instance check as posing a query over an ontology. In fact, more sophisticated kinds
of queries such as database like queries have been studied in the literature. We will discuss
ontological query answering in Section 2.1.5.

2.1.4 Horn Description Logics

Horn logics have a long tradition in areas such as logic programing, mainly because of their model
theoretical properties and their low computational complexity. In the context of description logics,
however, the so-called Horn description logics have been only recently studied and understood [9,
13, 71, 88]. Horn DLs are characterized for having low complexity (tractable) of reasoning with
respect to the size of the data (ABox).

Horn-ALCQI is a fragment of ALCQI in which the form of the axioms in the TBox is
restricted. In fact, those restrictions resemble the ones imposed in the Horn fragment of first-
order logic.

Definition 2.10 (Horn-ALCQI TBoxes). A Horn-ALCQI TBox T is a set of concept inclusions
that can take the following forms:

K v A K v ⊥ K v ∀r.K ′ K v (6 1 r K ′) K v (> n r K ′)

where K and K ′ denote a conjunction of concept names, r denotes an ALCQI role, and n ≥ 1.
The empty conjunction is equivalent to >. 4

We will also be interested in the fragment Horn-ALCFI of Horn-ALCQI. A Horn-ALCFI
TBox restricts the occurrences of number restrictions to those of the form K v (> n r K ′) for
n = 1. Recall that such restrictions correspond to existential restrictions of the form K v ∃r.K ′.

Other prominent Horn description logics of interest are those from the DL-Lite family. We
define the so-called core and Horn DL-Lite TBoxes.
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Definition 2.11 (DL-Lite TBoxes). Let B1, B2 range over basic DL-LiteN concepts. A DL-Lite
core TBox is a finite set of concept inclusions of the form:

B1 v B2 or B1 uB2 v ⊥. [ DL-LiteNcore ]

A DL-Lite Horn TBox is a finite set of concept inclusions whose form is restricted to:
l

i

Bi v B [ DL-LiteNHorn ]

4

Note that DL-LiteNcore is a sublogic of DL-LiteNHorn. As before, we will also consider DL-Lite
TBoxes where the occurrences of number restrictions are restricted. In particular, we consider
the sublogics DL-LiteFα , for α ∈ {core,Horn}, where only number restrictions that express
existential restrictions and global functionality of roles (hence the F) are allowed. More precisely,
global functionality of a role r is expressed by the axiom (> r 2) v ⊥, alternatively, we will use
the notation

(funct r) [ global functionality ]

We will also consider extensions of DL-Lite with role hierarchies (H), i.e., axioms expressing
role inclusions r v s. Hence, we obtain the logics DL-Liteβ,Hα , with α ∈ {core,Horn} and
β ∈ {N ,F}.

2.1.5 Ontological Query Answering

One of the most prominent and recent applications of description logics is ontology base data
access (OBDA) [109]. The fundamental inference service in OBDA is answering queries posed
to the ABox taking into account the constraints in the TBox. The kind of queries that have
most often been considered are conjunctive queries, which are a subclass of first-order queries,
and correspond to the commonly used Select-Project-Join SQL queries [3]. There are at least
two key properties needed for making feasible such an approach:

(i) efficiency of query evaluation, with the ideal target being traditional database query pro-
cessing, and

(ii) that query evaluation can be done by leveraging the relational databases technology already
used for storing the data.

A first-order logic (FOL) query over an ontology is a, possibly open, FOL formula ϕ(~x) whose
predicate symbols are concept names and role names occuring in the ontology. In this thesis, we
will be interested in particular forms of FOL queries. We start by introducing positive existential
queries.
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Definition 2.12 (positive existential queries). Let NV be a countably infinite set of variables
disjoint from NC,NR and NI. A term t is an element from NV ∪ NI. A positive existential query
(PEQ) q(~x) is a first-order formula of the form ∃~y ϕ(~x, ~y) with free variables ~x = x1, . . . , xn and
the syntax of ϕ is determined by the following rules:

ϕ := A(t) | p(t1, t2) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (2.1)

where A ∈ NC is a concept name, p ∈ NR is a role name, and t1, t2 are terms. Expressions of the
form A(t) are called concept atoms and those of the form p(t1, t2) role atoms. The arity of q(~x)
is the number of variables in ~x, and those variables are called answer variables. A Boolean PEQ
query is a PEQ containing no answer variables. We write q instead of q(~x) if ~x is clear from the
context.

A conjunctive query (CQ) ∃~y ϕ(~x, ~y) is a positive existential query where ϕ is a conjunction
of (concept or role) atoms. 4

For many applications it becomes useful to associate a labeled graph to a conjunctive query.

Definition 2.13 (query graph). Let q be a (Boolean) CQ, and let terms(q) denote the set of
terms occurring in q. The query graph of q is the directed multigraph G = (V,E) with edge
labels and multiple node labels such that V = terms(q). Each node t is labeled with A iff q

contains unary the atom A(t), and E contains a directed edge (t1, r, t2) iff q contains the binary
atom r(t1, t2). 4

Extensions of CQs with some form of negation have been studied for ontological query
answering in DLs, as well as in areas related to management of incomplete information [6, 18,
54, 96, 116]. Fundamental insights from the database area have shown, however, that negation
tends to make queries difficult to evaluate or even undecidable. For that reason, only limited
forms of negation (which may still be of interest in practice) have been considered. In particular,
the addition of inequalities ( 6=) between two terms, and the so-called safe and guarded negation.

Definition 2.14 (queries with negation). A conjunctive query with inequalities (CQ 6=) is a
first-order formula of the form

∃~y ϕ(~x, ~y) ∧ ψ(~x, ~y),

where ϕ(~x, ~y) is a conjunction of (concept or role) atoms, and ψ(~x, ~y) is a conjunction of inequality
atoms of the form t 6= t′, with t, t′ terms.

A conjunctive query with safe negation (CQ¬s) is a formula

∃~y ϕ(~x, ~y),

where ϕ(~x, ~y) is a conjunction of (positive) atoms or negated atoms, and such that each variable
in a negated atom occurs in at least one positive atom.

Let q = ∃~y ϕ(~x, ~y) be a first-order formula with ϕ(~x, ~y) a conjunction of positive and negative
atoms; and let α be a negative atom in q. A guard for α in q is a positive atom in q that
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contains all the variables occuring in α. The query q is said to be a conjunctive query with
guarded negation if every negated atom in q has a guard.

A Boolean CQ extended with negations is defined in the natural way. 4

Differently from answering queries posed to a (complete) database instance D, where one can
regard D as an interpretation (i.e., a first-order structure), ontological query answering can be
thought of as querying various databases D1,D2, . . . which intuitively correspond to all possible
models of an ontology (T ,A). In fact, ontological query answering is comparable to querying
over incomplete databases [76, 98, 127], or query answering on databases under the open world
assumption [1, 129].

Example 1. For example, let the TBox T be

Fruit v Produce (2.2)

Crop v Produce (2.3)

Produce v ∃.growsIn (2.4)

∃.growsIn v Produce (2.5)

Locationv Country t Region (2.6)

Country u Region v ⊥ (2.7)

Let the available (incomplete) database about the concepts in the T be specified by the following
ABox A

growsIn(MANGO, PAKISTAN), Fruit(MANGO),

growsIn(DURIAN, SOUTH-ASIA).

Now, let q(x) = Produce(x) be the simple query that asks for ‘all the known produce’ in the
database. Then the answers to q are the ones in the set {MANGO, DURIAN}. Note that although
this is not explicitly asserted in A, by (2.2) every instance of Fruit is an instance of Produce, and
by (2.5) every object that has a growsIn-successor is an instance of Produce. For a slightly more
complex query take q′(x) = ∃y.Fruit(y) ∧ growsIn(y, x), that asks for ‘all the places that are
known to grow fruits’. Then, the only answer to this question is in the set {PAKISTAN}. This is
the case since the constraints imposed by (T ,A) do not imply that DURIAN is an instance of
Fruit; although there is model of the ontology in which this is the case. Z

Therefore, in the latter setting, a new notion of query answering is required. In order to capture
this notion formally, the so-called certain answers semantics has been introduced in the relevant
literature [1, 23]. Roughly, the notion of certain answers amounts to logical entailment. We
make this more precise in the following.

Definition 2.15. Let I = (∆I , ·I) be an interpretation, and q(~x) = ∃~y ϕ(~x, ~y) an n-ary positive
existential query. Further let bvars(q) denote the set ~y of bounded variables in q. A variable
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assignment for q in I is a mapping π : bvars(q)→ ∆I . A tuple of name individuals ~a = a1, . . . , an

is an answer to q in I, if there is a variable assignment π such that I satisfies q(~a) = ∃~y.ϕ(~a, ~y)
under π. We will write

I |=π ϕ(~a, ~y);

such an assignment π is called a match for q in I. The set of answers to q in I is denoted by
ans(q, I). Further, let (T ,A) be an ontology. ~a is called a certain answer to q w.r.t. (T ,A), if
for every model I of (T ,A), there is a match π for q in I, and in that case we write

(T ,A) |= q(~a).

The set of certain answers to q w.r.t. (T ,A) is defined as cert(q, (T ,A)) := {~a ⊆ ind(A) |
(T ,A) |= q(~a)}. 4

DL-Lite is particularly well-suited to provide the logical framework for accessing data [109,
114], as most of the DL-Lite were developed to meet the requirements (i) and (ii) above described.
In spite of being rather unexpressive, DLs of the DL-Lite family provide means for capturing
interesting modeling features for conceptual data modeling (see next Section). More expressive
ontology languages have also been considered for ontology-based data access [29, 53, 104, 126].

Note that computing the certain answers to a given query q amounts to logical entailment
w.r.t. a given ontology O = (T ,A). Hence, in principle, to effectively compute cert(q,O) it
is necessary to consider all possible models of O, which may be far from feasible. In order to
overcome this apparent difficulty, it has been observed that for ontologies expressed in certain
description logics it is possible to construct a so-called canonical (or universal) model (provided
that the ontology is satisfiable) [40, 51, 88, 104].

Given an ontology O, an interpretation U is a canonical model if the following hold

(i) U |= O (it is a model of O); and

(ii) for every model I of O there is a homomorphism from U to I.

Hence, procedures for constructing canonical models provide a formal tool for ontological query
answering. Since PEQs are preserved under homomorphisms [119], the problem of computing
cert(q,O) can be reduced to the problem of computing the answers to q in the canonical model
U of O.

Most of the approaches for constructing the canonical model of an ontology O can be seen as
adaptations of the chase procedure [3, 49], which is a fundamental algorithmic tool in databases
introduced for checking implication of dependencies [97], and later used for checking query
containment [77]. Similarly to the chase procedure, the basic idea behind the construction of the
canonical model of an ontology O = (T ,A) is to complete in a minimal fashion the ABox A in
such a way that the axioms in T are satisfied. However, the construction of canonical models is
in general neither convenient nor possible since these models may be infinite due to the presence
of cyclic concept inclusions in the TBox T . We will discuss specific constructions for canonical
models of Horn ontologies in Chapter 5. The following is a consequence of various results in the
relevant literature [9, 40, 55, 88, 95].
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Theorem 2.2. Let T be an L-TBox for L ∈ {DL-LiteNHorn,DL-LiteHHorn,Horn-ALCQI}, and
let A be an ABox. If O = (T ,A) is satisfiable, then there exists a canonical model U of O.
Further, let q be a PEQ and ~a a tuple of individuals in A, then the following are equivalent:

• ~a ∈ cert(q,O);

• U |=π q(~a).

2.1.6 Computational Complexity of Reasoning

The computational complexity of the reasoning problems discussed so far can be analyzed with
respect to different complexity measures, which depend on those parameters of the problem
that are regarded to be the input and those that are considered to be fixed. For satisfiability
and instance checking, the parameters to consider are the size of the TBox and the size of the
ABox. More precisely, the size of a TBox T (or and ABox A) is the number of symbols in T (or
in A) denoted by |T | (or by |A|). The size of an ontology (T ,A) is simply given by |T |+ |A|.
In analyzing the computational complexity of a reasoning problem over an ontology, there is a
distinction between data complexity and combined complexity [128]. Whenever the complexity
is measured with respect to the size of all inputs to the problem then one is interested in the
combined complexity. On the other hand, if only the ABox is considered as an input – while
the TBox is regarded to be fixed – then data complexity is of interest. Determining combined
complexity is relevant when one is interested in the complexity of algorithms for developing
and testing an ontology. On the other hand, determining data complexity is of interest in all
those cases where the size of the ABox (or the data) is considerably bigger than the TBox– and
hence the TBox size is inconsequential, and can be considered as fixed. The latter is indeed the
case for example in the context of ontology-based data access [68, 109], and other data intensive
applications [23, 89]. The complexity classes relevant for the problems discussed in this thesis
are the following:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ ExpTime

We refer the reader to [107] for the formal definition of these classes and an extensive textbook
treatment of computational complexity notions, which is out of the scope of this thesis.

We will present the results on the complexity of reasoning for the description logics introduced
in this chapter. A summary of those results is presented in Table 2.2. We start with the combined
complexity of the decision problems related to standard reasoning tasks from Definitions 2.6
and 2.9, specifically, subsumption and ABox consistency. Recall that other TBox reasoning tasks
can be reduced to subsumption (see Proposition 2.1).

Definition 2.16. We consider two main decision problems:

• subsumption: Given an ontology (T ,A) and concepts C,D as input, decide whether

(T ,A) |= C v D.
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• consistency: Given an ontology (T ,A) as input, decide whether A is consistent w.r.t. T .
4

Observe that, differently from what is stated in Definition 2.6, subsumption refers to implica-
tion w.r.t. to an ontology (T ,A). Nevertheless, subsumption w.r.t. a TBox alone can be seen
as an instance of the problem subsumption with an empty ABox A.

We summarize next the results regarding the computational complexity of the decision problems
in the definition above.

Theorem 2.3 ([9, 15, 32, 79]). Deciding subsumption/consistency for ALCQI, ELI, Horn-
ALCQI and DL-LiteN ,Hα for α = {core,Horn,Bool} ontologies is ExpTime complete.

The following results provide the reason why some logics from the DL-Lite family are called
lightweight.

Theorem 2.4 ([9, 40]). Deciding subsumption/consistency is

• NLogSpace complete for DL-Liteβcore,

• PTime complete for DL-LiteβHorn and EL,

• NP complete for DL-LiteβBool ontologies, with β ∈ {F ,N ,H}.

Horn description logics, as mentioned in the previous section, were developed for data intensive
applications in which it is desirable that reasoning is at least tractable, i.e., solvable in polynomial
time w.r.t. to the size of the data (ABox). The main reasoning task considered in that context
is ontological query answering. The main decision problem is the following:

Definition 2.17 (query answering:). Given an ontology (T ,A), a tuple of individuals ~a, and
a query q, decide whether

~a ∈ cert(q, T ,A).

4

The query answering problem has also been denominated as the recognition problem associated
to the query evaluation problem [39], i.e., given a(T ,A) and a query q, compute the set cert(T ,A).
The following theorem summarizes the results on the complexity of ontological query answering
on Horn DLs.

Theorem 2.5 ([9, 51]).

Data Complexity: PEQ/ UCQ answering is in AC0 for DL-Liteβcore and DL-LiteβHorn TBoxes,
with β ∈ {F ,N ,H}; and it is PTime complete for EL, ELI and Horn-ALCQI TBoxes.

Combined Complexity: PEQ/ UCQ answering is ExpTime-complete for Horn-ALCQI on-
tologies.
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Language
Combined complexity Data Complexity

subsumption query answering

ALCQI

ALCFI
ExpTime [9, 32] coNP [9, 71]DL-LiteF,Hβ

DL-LiteN ,Hβ

β ∈ {core, Horn, Bool}

DL-LiteNBool NP [9] coNP [9]
DL-LiteFBool

ELI
ExpTime [15] PTime [51, 88]

Horn-ALCQI

EL PTime [13] PTime [38, 116]

DL-LiteFHorn

PTime [9] in AC0 [9]DL-LiteNHorn

DL-LiteHHorn

DL-LiteNcore

NLogSpace [9] in AC0 [9]DL-LiteFcore

DL-LiteHcore

Table 2.2: Complexity of reasoning in description logics

An important property when considering ontological query answering regards the so-called FO-
rewritability. The problem of query answering for a DL language L is FO-rewritable if for
every query q and ontology (T ,A) in L, there exists a first-order query q̂ such that (T ,A) |= q

iff A |= q̂.

Theorem 2.6. query answering in DL-Liteαβ , with α ∈ {N ,F ,H} and β ∈ {core, Horn} is
FO-rewritable.

2.1.7 Finite Model Reasoning in DLs

For description languages containing inverse roles and functionality of roles, a TBox may admit
only models with an infinite domain, or the axioms in the TBox may cause that some concepts

35



2. Preliminaries

are only satisfiable in an infinite model. Let us consider the following example to illustrate this
fact.

Example 2. Let T be the following ALCFI TBox:

A v B u ¬∃s−

B v ∃s u ∀s.B u (6 1 s−)

In a model of this TBox, an instance of A can have no s-predecessors, while each instance of
B can have at most one. Therefore, for a model I of T , the existence of an object d ∈ AI

implies the existence of an infinite sequence of objects e1, e2, . . . ∈ BI , such that (d, e1) ∈ sI ,
and (ei, ei+1) ∈ sI . This clearly, means that A can only be satisfied in an interpretation with
an infinitely large domain. Z

A logic is said to have the finite model property (FMP) if every satisfiable formula of the
logic admits a finite model, i.e., a model with a finite domain. The example above shows that
very simple DLs in which functionality and inverse roles are present, and TBox axioms with
existential restrictions on the right hand side are allowed, lack the finite model property.

For all logics that lack the FMP, reasoning with respect to unrestricted and finite models
are fundamentally different tasks. Hence, this needs to be explicitly taken into account when
devising reasoning procedures.

In this section, we present the known results regarding finite model reasoning in DLs. We
say that an interpretation I = (∆I , ·I) is a finite model of T if I |= T and ∆I is finite. More
precisely, when we refer to finite model reasoning we address the following reasoning tasks.

Definition 2.18 (finite model reasoning).

finite TBox satisfiability: Given a TBox T , decide whether there is a finite model I of T .

finite concept satisfiability: Given a TBox T and concept C, decide whether there is a finite
model I of T , such that CI 6= ∅.

finite subsumption: Given an ontology (T ,A) and concepts C,D, decide whether for every
finite model I of T andA it holds that CI ⊆ DI , which is denoted with (T ,A) |=fin C v D.

finite (ABox) consistency: Given an ontology (T ,A), decide whether there is a finite model
of T such that I |= A.

4

Notably, when reasoning w.r.t. finite models some properties that are essential for developing
algorithms and establishing the complexity on reasoning in the case of unrestricted reasoning
fail. Such properties include the tree model property, or similar properties that are based on
‘unravelling’ structures. Observe that whenever a (finite) model has a cycle, the unravelling of
such a model into a tree generates an infinite structure.
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In particular, finite model reasoning in ALCQI can be realized using techniques that are
based on the encoding of the TBox using systems of linear inequalities [31, 94]. This technique
provides a reduction of finite satisfiability of an ALCQI TBox to the problem of solving a linear
system of inequalities over the integers. Since solving such systems of inequalities can be done
using linear programming techniques and the size of the systems is exponential w.r.t. the size of
the TBox [94], we have the following complexity result establishing that reasoning is as complex
as in the unrestricted case.

Theorem 2.7 ([94]). Finite concept satisfiability in ALCQI is ExpTime-complete.

Recall that for ALCQI all the reasoning tasks are reducible to each other (see, e.g., Proposi-
tion 2.1). Moreover, these reductions do not depend on whether the models are finite or not.
Hence, finite model reasoning is ExpTime-complete for ALCQI.

For less expressive DLs, the study of finite model reasoning has been limited to DL-Lite.
Given that DL-Lite was designed specifically to express typical constraints of the database
scenario, such as inclusion dependencies and unary functional dependencies, some of the results
and techniques for finite entailment for database dependencies [45] can be transferred to DL-
Lite. Based on the latter observation, Rosati [117] showed that, as in the case of expressive DLs,
finite model reasoning in DL-LiteFcore has the same complexity that reasoning w.r.t. unrestricted
models. More importantly from the algorithmic view point, Rosati provided a reduction of
finite model reasoning to unrestricted reasoning for the DL-LiteFcore case. In more detail, given
a DL-LiteFcore TBox T it is possible to extend T into a TBox T ′ that captures the finite model
entailments w.r.t. T .

Theorem 2.8 ([117]). Finite model reasoning in DL-LiteFcore is reducible to reasoning over
arbitrary models in DL-LiteFcore.

This reduction provides then computational complexity boundaries for finite model reasoning
in DL-LiteFcore. Note that the lower bound follows from the complexity of finite model reasoning
in DL-Litecore, which is the same as for unrestricted reasoning since this logic has the FMP.

Theorem 2.9 ([117]). Finite TBox satisfiability (and concept subsumption w.r.t.) DL-LiteFcore
TBoxes is in NLogSpace. Further, deciding finite query entailment in DL-LiteFcore is in AC0

w.r.t. data complexity.

One of the advantages of the finite model reasoning approach taken by Rosati is that it is
possible to resort to available means for reasoning w.r.t. unrestricted models to perform finite
model reasoning.

Surprisingly, for DL-LiteNHorn the complexity of finite model reasoning is not guaranteed to be
the same as for unrestricted model reasoning. This is the case as the combination of unqualified
numbers restrictions and the finite model assumption are enough to encode disjunction. Hence,
it is possible to encode, e.g., the SAT problem, which is known to be NP-complete [107].

Lemma 2.10 ([86]). Finite model satisfiability of DL-LiteNHorn TBoxes is NP-hard.
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Language
Combined complexity Data Complexity

subsumption query answering

ALCQI
ExpTime [94]

coNP-hard (?)ALCFI

DL-LiteF,Hcore in ExpTime [94] ?

DL-LiteNBool NP-hard (?) coNP-hard (?)
DL-LiteFBool

Horn-ALCQI in ExpTime [94] PTime-hard [38]

DL-LiteFHorn PTime-hard (?) ?

DL-LiteNHorn NP-hard [86] ?

DL-LiteFcore NLogSpace [117] in AC0 [117]

(?)These complexity boundaries follow from those of the corresponding sub-
logics without functionality or number restrictions, which have the FMP.

Table 2.3: Complexity of finite model reasoning

Finally, Table 2.3 summarizes the complexity boundaries for finite model reasoning on the DLs
lacking the FMP discussed in this section2.

2.2 Conceptual Modeling Formalisms

We start this section with a brief introduction to the Entity-Relationship model, which is the
most popular high-level conceptual data model. Afterwards, we introduce the class diagrams
of the Unified Modeling Language (UML), which is the most prominent and popular object
modeling methodology.

2.2.1 Entity-Relationship Schemata

The Entity-Relationship (ER) model is one of the best known and widely used semantic models
in industrial applications. The ER model was proposed by Chen in 1976 [44], and subsequently
several variants and extensions which differ in minor aspects related to expressiveness and
notation have been introduced [124]. We will present the syntax of Enhanced Entity Relationship
(EER) schemata as presented, e.g., in [36].

The ER model was originally proposed as a data model adopting the somewhat natural view
that the real world consists of entities and relationships. In the ER model the domain of interest

2Clearly, for DLs enjoying the FMP the boundaries in Table 2.2 apply.
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is modeled by means of an ER schema, which can be represented graphically thus making them
useful for the visualization and design of the data dependencies. ER schema have a first-order
logic formalization, and moreover they can also be formalized by description logics as we will
describe later on.

The basic modeling elements used to define EER schemata are entities, and relationships.
An entity denotes a set of objects that share common properties. A relationship represents an
association among various entities. Relationships usually have certain constraints that limit the
possible combinations of entities that may participate in the relationship. Cardinality constraints
restrict the minimal and maximal number of times each instance of an entity is allowed to
participate as certain component of a relationship. Such constraints can be used to specify, for
example, mandatory participation on a relation (1 :∞) and functionality (1 : 1). Additionally,
isa relations are used to represent inclusion between entities and relationships, and therefore
the inheritance of properties from a more general entity to a more specific one.

In more detail, an EER schema S is a collection of entity, relationship, and attribute defini-
tions over an alphabet of symbols partitioned into a set of entity symbols E, a set of relationship
symbols R and a set of domain symbols D.

An entity definition has the form:

define entity E
isa: E1, . . . Ek

participates: (m1..n1) as R1[c1],
. . .

(m`..n`) as R`[c`]
end

where E ∈ E is the entity to be defined, the isa clause specifies the set of entities of which E is
a subset, and each statement in the participates clause specifies that E participates in at least
mi and at most ni tuples as the component ci of relationship Ri, for i ∈ {1, . . . , `}.

A relationship definition is declared as follows:

define relationship R among E1, . . . , En

isa: R1, . . . , R`

end

where R ∈ R is the relationship to be defined, the entities E1, . . . , En ∈ E listed in the among
clause are those among which R is defined, i.e., the component ci of R is an instance of Ei, for
i ∈ {1, . . . , n}. The number of entities in the among clause is the arity of R. Note that there
might be indices i, j with Ei = Ej , hence the need to specify the label of the component in
R. The isa clause specifies that R is related via the isa relationship to R1, . . . , R`. For example,
Figure 2.1 shows an EER schema for modeling our agricultural domain.

EER schemata have a diagrammatic notation associated to them. In the commonly accepted
notation for EER diagrams, entities are depicted as rectangles and relationships are represented
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define entity Produce
participates: (1..∗) as growsIn[1],

end

define entity Location
participates: (1..∗) as growsIn[2],

end

define entity Fruit
isa: Produce

end

define entity Country
isa: Location

end

define entity Crop
isa: Produce

end

Figure 2.1: Example of EER schema for the agricultural domain

LocationgrowsInProduce

Fruit Crop

1..*1..*

Country

Figure 2.2: EER diagram

by diamond-shaped objects connected to the participating entities. The connectors between
relationships and entities are labeled with the component of the relationship, as well as the
cardinality constraints declared in the participates clause. An isa relation between two entities
(or relationships) is denoted by an arrow from the more specific to the more general entity
(relationship). For example, the diagram in Figure 2.2 corresponds to the EER schema in
Figure 2.1.

EER Semantics

The semantics of EER schemata is defined by specifying when a database satisfies all constraints
imposed by the schema, which is formalized by the notion of database instance. A database
instance B corresponding to an EER schema is constituted by a nonempty finite set ∆B and a
function ·B that maps

• each entity E ∈ E to a subset EB of ∆B,

• every relationship R ∈ R to a set RB of tuples over ∆B.

The elements EB, RB are called instances of E and R, respectively.

Definition 2.19. A database instance B is called legal for a schema S if it satisfies all integrity
constraints specified in S, that is,
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1. for each pair of entities E1, E2 ∈ E such that E1 isa E2, it holds that EB1 ⊆ EB2 ;

2. for each relationship R ∈ R among entities E1, . . . , Ek, (e1, . . . , ek) ∈ RB implies ei ∈ EBi
for every i ∈ {1, . . . , k}; and

3. for each entity E participating in R as the R[i] component with cardinality constraint
(m..n) it holds that

m ≤ #{r ∈ RB | r[i] = e} ≤ n.
4

For example the following set of atoms is a database instance of the schema from Figure 2.2.

Produce(mango), Produce(durian), Produce(rice)
Fruit(mango, Pakistan), Fruit(durian, south-Asia),
Crop(rice),
Location(Pakistan), Location(south-Asia)

One of the basic properties to verity for a given schema S is the existence of a legal database
instance. Further, for a more detailed analysis of the quality of S one may be interested in
verifying whether the extension of a particular entity E from S is non empty in a legal database
instance of S.

It has been shown that EER schemata can be translated to ALCQI TBoxes, and that there
is a correspondence between legal database instances and models of the obtained TBox [35].
Entities and domain symbols correspond to sets of objects (or unary relations) and can be
modeled in DLs by concept names. On the other hand, for modeling relations it is necessary
to resort to the so-called reification since relationships in EER schemata may have arbitrary
arity and DLs only have binary relations (i.e, roles). Reifying an EER schema means that each
relationship in the schema is modeled by a concept BR (whose instances represent the tuples of
the relationship) and for each component R[i] of the relationship a (binary) role connects BR
with the concepts BE used to model the entity E that participates as the component R[i]. Since
EER schemata express only necessary conditions for objects of the domain to be instances of
entities, they can be captured by means of concept inclusions in the TBox.

More precisely, for a given EER schema S, the TBox TS is defined using the following
vocabulary:

• for each entity symbol or relationship symbol X, there is a concept name BX ;

• for each relationship component Y there is a role PY .

Each constraint specified in S is modeled in TS using concept inclusions (see Table 2.4 as quick
reference):

• for each pair of entities E1, E2 such that E1isaE2,

BE1 v BE2 ;
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EER construct ALCQI axioms

Relationship R with entity E as the component
R[i]

BR v ∃PR[i].BEi u (6 1 PR[i] BEi )

isa between entities E1 and E2 BE1 v BE2

Cardinality constraint (m..n) on E as R[i] BE v (> m P−
R[i] BR) u (6 n P−

R[i] BR)

Table 2.4: ALCQI axioms derived from an EER schema

• for each relationship R of arity k among entities E1, . . . , Ek,

BR v
d

1≤i≤k
(
∃PR[i].BEi u (6 1 PR[i] BEi)

)
• for each entity E participating in a relationship R as R[i] with cardinality constraints

(m..n),
BE v (> m P−R[i] BR) if m 6= 0 and
BE v (6 n P−R[i] BR) if n 6=∞;

• for each pair X1, X2 ∈ E ∪R such that X1 6= X2 and X1 ∈ R,

BX1 v ¬BX2 .

This translation makes use of inverse roles and number restrictions to capture the semantics of
EER schemata. Notice that the resulting TBox TS may contain cyclic concept inclusions, even
when the corresponding EER diagrams is acyclic.

Intuitively, the extension of a relationshipR in a database instance is a set of tuples. Therefore,
it is implicit in the semantics of the EER model that there cannot be two tuples connected
through all roles of the relationship to exactly the same elements of the domain. Although the
latter constraints cannot be explicitly stated in ALCQI, the tree-model property guarantees
that the translation provided by TS is faithful in the sense that there will be no two instances
of the concept representing the same tuple of the relation [32, 35].

2.2.2 UML Class Diagrams

The Unified Modeling Language (UML) is the standard language for designing software and
analyzing its structure. UML is a general-purpose visual modeling language that is used to specify,
visualize, construct, and document the artifacts of a software system. The modeling language
is intended to unify past experience about modeling techniques and to incorporate current
software best practices into a standard approach. UML includes semantic concepts, notation,
and guidelines. It has static, dynamic, environmental, and organizational parts. Moreover, it
is intended to be supported by interactive visual modeling tools that have code generators
and report writers. The objective of UML is to provide system architects, software engineers,
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and software developers with tools for analysis, design, and implementation of software-based
systems as well as for modeling business and similar processes.

From the conceptual modeling view point, UML class diagrams are the most important
component of UML. Indeed, UML class diagrams are used for generating code skeleton and
database schemata, as well as means for knowledge representation such as for specifying ontolo-
gies, and for defining meta-models of other programming, modeling, and specification languages.
UML class diagrams model the domain of interest by visually describing classes of objects and
relationships among them.

We will treat UML class diagrams as ontology languages [42, 84], and therefore, we will
present them from the conceptual perspective. In particular, we will not deal with features
that are more relevant for the software engineering perspective, such as operations (methods)
associated to classes, or public, protected and private qualifiers for methods and attributes.

We will describe the constructors for UML class diagrams and provide their semantics. The
semantics of UML class diagrams can be described in terms of (the two variable fragment
of) FOL with counting quantifiers [60]. This formalization has been used extensively in the
literature [21, 78]. Since DLs are fragments of FOL, the semantics of UML class diagrams
relevant for this thesis can be captured as well using expressive description logics such as
ALCQI [21, 35]. We will present simultaneously the various UML class diagrams constructs
along with their DLs formalization.

A class diagram (CD) is a graphic representation of the overall structure of the domain of
discourse that shows a collection of static model elements. The main constituents of this static
view are classes and their relationships. Relationships among classes include associations and
generalizations.

A class in UML class diagrams denotes a set of objects with common features. Visually,
a class is represented by a rectangle with the specification of the class, which in in our case
consists of only of its name. In terms of logic, a class C corresponds to a unary predicate C.
Thus, in description logics, classes can be formalized by atomic concepts.

An n-association in UML class diagrams represents a relation between the instances of n ≥ 2
classes. Usually, an association has a related association class (see Fig. 2.3b) that describes the
properties of the association. Visually, an association class is connected to each class participating
in the association. Each connection of an association to a class is called an association end. A
binary association between two classes C1 and C2 is shown in Figure 2.3b.

Each association end can have a label indicating cardinality constraints on the participation
of classes in associations. In Figure 2.3b the label nl..nu specifies that each instance of the class
C1 participates at least nl times and at most nu times in the association R; in the same manner,
the label ml..mu specifies an analogous constraint for each instance of the class C2. The label
0..∗, indicates that the participation of a class is unconstrained.

In UML a generalization relation between a parent class C1 and a child class C2 specifies
that each instance of C1 is also an instance of C2. Hence, the instances of the child class inherit
the properties of the parent class. Typically, a child class satisfies additional properties that
in general do not hold for the parent class. In a class diagram, a generalization relation is
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 C 
a[i..j]: T

(a) UML class C

        

    

ml..mu nl..nuC1 C2
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A v ∃r1.C1 u ∃r2.C2

A v (6 1 r1) u (6 1 r2)
C1 v (> n` r

−
1 A) u (6 nu r

−
1 A)

C2 v (> m` r
−
2 A) u (6 mu r

−
2 A)

(b) Binary association class

    

            

{complete, disjoint}

. . .

C

C1 C2 Cn

Ci v C i ∈ {1, . . . , n}
Ci v ¬Cj i, j ∈ {1, . . . , n} with i 6= j

C v C1 t · · · t Cn

(c) A class hierarchy in UML

Figure 2.3: ALCQI formalization of UML class diagrams

indicated by an arrow from C2 to C1 (C2 is a child of C1). The formalization of the semantics
of generalization in DLs can be done in a very natural way by concept inclusions

C2 v C1.

Note that inclusion between DL concepts captures exactly the inheritance notion between
UML classes. In fact, this is a straightforward consequence of the semantics of v. As a conse-
quence, in the formalization provided, each association involving C1 is correctly inherited by C2.
Moreover, the formalization in DL also captures directly multiple inheritance between classes.
In UML, several generalizations can be grouped together to form a class hierarchy, as shown in
Fig. 2.3c. Such a hierarchy can be formalized by a set of concept inclusions:

Ci v C for each i ∈ {1, . . . , n}.

UML allows to specify constraints to describe, e.g., class identifiers, functional dependencies for
associations. These constraints are usually expressed through the use of OCL constraints [102],
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which amount to constraints expressible in FOL. In fact, due to their expressive power, OCL
constraints capture the semantics of the standard UML class diagrams. A liberal use of OCL
constraints can compromise the understandability of the diagram, and thus their use is typically
limited. Finally, observe that unrestricted use of OCL constraints makes reasoning on class
diagrams undecidable since it amounts to full reasoning in FOL.

In ontological knowledge representation, disjointness and covering constraints are the most
commonly used in practice. In UML diagrams these constraints are expressed by labels ‘disjoint′,
and ‘complete′ on generalization relationships. For example, in the diagram shown in Figure 2.3c,
the constraint {complete, disjoint} expresses that every instance of C must be an instance of
some of the class Ci, and that each pair of classes Ci, Cj do not have instances in common. To
formalize these constraints in DLs we can use the following concept inclusions

Ci v ¬Cj , for each i, j ∈ {1, . . . , n} with i 6= j (disjoint)

C v C1 t · · ·Cn (complete)

Naturally, it is also possible to impose constraints on hierarchies of association classes.

2.2.3 Class Diagrams with restricted expressivity

The formalization using description logics of EER schema and UML diagrams not only provides
formal semantics, but also provides an unified view for both modeling languages [35]. For that
reason, from now on, we will use the term class diagrams (CDs) to refer to UML class diagrams
or EER diagrams. We will consider CDs with restricted expressivity along the following:

• isa relations between classes and relations,

• disjoint and complete constraints on generalization (isa) hierarchies, and

• cardinality constraints on relation participation.

We denote with Dfull the CDs supporting all the constructs described above. Further, we will use
Dbool to denote the language without generalization between relations, and finally, Dref to denote
the further constrained language that disallows completeness constraints over generalization
hierarchies. We also consider a restriction of Dfull diagrams in which ‘complete’ constraints are
dropped as well as at-most constraints [m..n] for n > 2 on relation participation; and we denote
this class of diagrams as D−Horn. These diagrams are able to support functionality constraints
and integrity constraints given by Horn DLs axioms of the form A1u· · ·uAk v B. Further, D−ref
denotes the subclass of Dref diagrams that disallow for at-most restrictions [m..n] for n > 1 in
relation participation, i.e., only constraints of the form [m..∗] and [m..1] form ≥ 0 are supported.
See Table 2.5, for reference.

2.2.4 Reasoning on Class Diagrams

Traditional database modeling tools are not designed to support the verification of certain
properties of the schemata such as consistency or redundancy. Supporting these verification
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Language
Constraints

Classes Relations
isa disjoint complete isa card. refinement functionality

Dfull X X X X X X X

Dbool X X X 7 X X X

D−Horn X X X X 7 X X

Dref X X 7 7 X X X

D−ref X X 7 7 7 X X

Table 2.5: Class diagrams

tasks can be carried out by DL reasoners that take as input the translation of the schemata
into DLs. An inconsistency in a conceptual model may be the result of a design error or due to
over-constraining.

Recall that DLs are based on open-world semantics, which make them appropriate for
conceptual modeling. Indeed, the open-world semantics is natural for a conceptual schema
language since a schema is intended to determine the legal instantiations of a data oriented
application (e.g., a legal database instance). In fact, computing the subsumption relation between
concepts does not require to fix an instantiation; and thus the closed-world assumption is not
appropriate for verifying subsumption. Instead, one must employ the open-world assumption to
consider all possible instantiations.

From the discussion above, we can conclude that the formalization of the semantics of CDs
using DLs has the advantage that one can use inferences in DLs for verifying properties of
diagrams, in other words one can preform reasoning on CDs. Reasoning tasks of interest for
CDs include the following:

• subsumption between two classes C1, C2, i.e., verify whether in every possible instantiation
of a given diagram each instance of C1 is also an instance of class C2;

• satisfiability of a class C (or relation R) in a diagram, i.e., verify whether there exists an
instantiation of the diagram where the set of instances of C is non-empty;

• diagram satisfiability, which amounts to verify that there is an instantiation of the diagram
different from the empty one; and

• full satisfiability of a diagram, which corresponds to verify that there exists an instantiation
of the diagram where the set of instances of each class and relation is non-empty.

Formally, both DLs and CDs are interpreted using first-order semantics, according to which
one can distinguish between legal and illegal relational structures. A legal structure (or model)
is one satisfying all constraints (or axioms), while an illegal one violates at least one constraint
(or axiom). In DLs, the legal structures are called models, whereas for CDs they are called
instantiations. Nonetheless, the underlying principle is the same.
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The following known result relates reasoning in DLs and with reasoning on CDs.

Theorem 2.11 ([35]). Let C be a conceptual schema, C1, C2 classes from C, α a constraint
expressed in FOL, and TC its DL formalization.

• C is satisfiable if TC is satisfiable;

• C1 is satisfiable if BC1 is satisfiable w.r.t. TC;

• C1 subsumes C2 if TC |= BC1 v BC2 ;

• α is a consequence of C if TC |= α.
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Chapter

3
Finite Model Reasoning in Horn
DLs

One of the main lines of research in DLs has been dedicated to augment the expressivity of
the description languages without compromising the computational complexity of reasoning.
Moreover, some DL languages have been tailored for applications in Databases, where expressive
data models have been developed for representing the data manipulated by commercial applica-
tions. There is indeed a strong similarity between the approaches in knowledge representation
using description logics and conceptual modeling in databases [8, 34, 35]. In both scenarios the
knowledge is represented in form of a schema by defining classes denoting subsets of the domain
of interest, and by specifying various types of relations between classes which establish their
structural properties.

While in DBs it is usually assumed that the underlying domain is finite, reasoning in DLs
disregards such hypothesis. Although this seems to be in contrast with the purpose of representing
real world structures, which are inherently finite, it can be justified by the fact that most DLs
studied in the early days have the finite model property (FMP). The FMP of a logic implies that
it can always be assumed that the domain is finite when performing reasoning tasks. Still, the
FMP does not hold for all DLs; this is the case for DLs (see Section 2.1.7) allowing for inverse
roles and functionality of roles. Indeed, even rather unexpressive DL languages including these
constructors lack the FMP.

Example 3. Consider the following DL-LiteFcore TBox T :

A1 v ∃p1 ∃p−1 v B1 B1 v ∃p1

A1 u ∃p−1 v ⊥ (funct p−1 )

Observe that in every model I of T satisfying A1, there is an infinite sequence of objects
d1, d2, . . . ∈ ∆I , with d1 ∈ AI1 , dj ∈ BI1 for j > 1, and (di, di+1) ∈ pI1 , for 1 ≤ i. Note that
(funct p−1 ) and A1 u ∃p−1 v ⊥ imply that di 6= dj for i 6= j. Thus, ∆I is an infinite set, and
A1 is not finitely satisfiable w.r.t. T (as it is only satisfiable by infinite models of T ). However,
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(a) Infinite model satisfying A

{A1, 9p1} {9p�1 , B1} {9p�1 , B1} {9p�1 , B1} p1

p1

{B1, 9p1, 9p�1 } {B1, 9p1, 9p�1 }

(b) Finite model satisfying T and B

Figure 3.1: Models of T from Example 3

T is finitely satisfiable, and moreover T |=fin ∃p1 v ∃B1. See, e.g., the finite model of T in
Figure 3.1b. Z

Although the study of finite model reasoning in expressive description logics has been addressed
in the literature [31, 94, 117], finite model reasoning is rarely used in practice. This is mainly
because for many of the expressive DLs that lack the FMP, no algorithmic approaches to finite
model reasoning that lend themselves towards efficient implementation are known. Indeed, this
is the case for a wide spectrum of DLs: ALCFI,ALCQI, Horn-ALCFI, and Horn-ALCQI.
While for reasoning w.r.t. unrestricted models there is a large amount of applicable algorithms
such as tableaux and resolution calculi, which perform rather well in practical implementations,
the approaches investigated so far for finite model reasoning in expressive DLs [31, 94] have
provided only tools for showing that the complexity of finite model reasoning is the same as the
complexity of unrestricted reasoning –ExpTime-complete. In particular, all known approaches
rely on the construction of some systems of inequalities and them over the integers. The main
difficulty for using those approaches in practice is that the system of inequalities is of exponential
size in the best case, which falls far form obvious efficient implementations.

On the other end of the expressive power spectrum, the situation is quite different. For
DLs of the DL-Lite family that lack the FMP, and particularly for DL-LiteFcore, Rosati [117]
has shown that finite model reasoning can be reduced to unrestricted reasoning, and hence
that the complexity of both problems coincides. The approach proposed by Rosati builds on
a technique developed in database theory by Cosmadakis et al. [45] for deciding the finite
implication of unary inclusion dependencies and functional dependencies. The virtue of Rosati’s
approach is that finite model reasoning does not require any new algorithmic technique and can
be implemented as efficiently as unrestricted reasoning.

In this Chapter, we investigate (specific) reasoning methods for finite model reasoning in DLs
lacking the FMP. We will extend Rosati’s technique to larger fragments of Horn DLs. We start
with a detailed explanation of the so-called cycle reversion technique in Section 3.1. Afterwards,
we will show how cycle reversion is used for reducing finite model reasoning to unrestricted
reasoning in DL-LiteFHorn. In Section 3.3, we move on to the yet more expressive Horn-ALCQI.
As we will see, proving that for the Horn-ALCQI case cycle reversion captures completely finite
model entailment turns out to be quite challenging.
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Notation

We will introduce some notation that will be used along this chapter in order to ease the
presentation. Let T be a TBox, and A an ABox. We will write

• CN(T ) to denote the set of concept names occurring in T ;

• BC(T ) to denote the set of basic concepts occurring in a DL-Lite TBox T ;

• role(T ) to denote the set of role names and inverse roles occurring in T ; and

• ind(A) to denote the set of individual names occurring in A.

3.1 Cycle Reversion

We start our investigation of finite model reasoning in Horn DLs with an overview of the
cycle reversion technique. The main idea behind this technique stems from the axiomatization
of so-called finite implication unary inclusion dependencies (UINDs) and unary functional
dependencies (UFDs) presented in [45]. The essence of that axiomatization consists of detecting
strong connected components of a directed graph representing UINDs and UFDs. As observed
by Rosati [117], UINDs and UFDs can be seen as DL-LiteFcore concepts of the form:

B1 v B2 (UIND)

(funct r) (UFD)

Recall that #S denotes the cardinality of a set S. The following is a simple observation implied
by the DLs semantics.

Observation 1. Let T be a DL-LiteFcore TBox,

1. if T |= B1 v B2, then for every model I of T #BI1 ≤ #BI2 ; and

2. if T |= (funct r), then for every model I of T #(∃r−)I ≤ #(∃r)I .

We associate a directed graph G = (V,E) to a given DL-LiteFcore TBox T , such that each node
in V is labeled with a basic concept occurring in T and there is an edge (B1, B2) ∈ E whenever
#BI1 ≤ #BI2 holds for all models I of T . We will make this more precise below, but first let us
consider an example.

Example 4. For example, consider the following TBox T1:

∃s v ∃p1, ∃p−2 v ∃p
−
3 , (funct p−1 ),

∃p−1 v ∃p2, ∃p3 v ∃s−, (funct p−2 ),

∃p−2 v ∃p1, B v ∃p1, (funct s);
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9s�9s9p�1

9p�2

9p1

9p2 9p3

9p�3

B

Figure 3.2: Graph G1 corresponding to T1

the directed graph G1 depicted in Figure 3.2 represents the ‘≤’ relations implied among the
basic concepts in T1, according to Observation 1. The edges originated from Point 1 are drawn
as dashed arrows, while the solid ones represent edges originated by Point 2. Using Observation 1
along the cycle ∃p−1 , ∃p2, ∃p−2 , ∃p1, ∃p−1 in G1 it can be inferred that

#(∃p−1 )I ≤ #(∃p2)I ≤ #(∃p−2 )I ≤ #(∃p1)I ≤ #(∃p−1 )I

That means that the cardinality of the extensions of all the concepts in the cycle is the same in
every model of T1. Further, let us consider a finite model I of T1. We have that (∃p−1 )I ⊆ (∃p2)I

since ∃p−1 v ∃p2 ∈ T1, now, from #(∃p−1 )I = #(∃p2)I and I being finite we can conclude that
(∃p2)I ⊆ (∃p−1 )I , which means that ∃p2 v ∃p−1 is finitely entailed by T1. Analogously, from
(funct p−1 ) ∈ T1 and #(∃p1)I = #(∃p−1 )I we can conclude that (p−1 )I is a bijection and hence,
its inverse (p1)I is also a function, which means that (funct p1) if finitely entailed by T1. Z

The example above suggests a way to detect concept inclusions holding in finite models of
a given TBox T . Indeed, if we analyze the cycles in the directed graph G related to T , the
axioms that the result from ‘reversing’ the edges in a cycle are entailed in finite models. We
next formalize all the relevant notions to describe the cycle reversion procedure.

Definition 3.1. For a given DL-LiteFcore TBox T , we define the directed graph G = (V,E) as
follows: V is the set of basic concepts in T and

1. if B1 v B2 ∈ T , then (B1, B2) ∈ E;

2. if (funct r) ∈ T , then (∃r−,∃r) ∈ E.

The completion finClosure(T ) of T is the TBox obtained by applying the following rule:
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(cycle-reversion) if B1, B2, . . . , Bn = B1 is a cycle in G, then extend T with the
following concept inclusions, for every 1 ≤ i < n

• Bi+1 v Bi if (Bi, Bi+1) was added by Point 1; and

• (funct r−), if (Bi, Bi+1) was added by Point 2.

4

Going back to the TBox T1 from Example 4, consider the (only) cycle:

∃p−1 , ∃p2, ∃p−2 , ∃p1, ∃p−1

which corresponds to the axioms:

∃p−1 v ∃p2, (funct p−1 ), ∃p−2 v ∃p1, and (funct p−2 ). (3.1)

Then, applying cycle-revertion results in adding the following axioms to finClosure(T1):

∃p2 v ∃p−1 , (funct p1), ∃p1 v ∃p−2 , and (funct p2). (3.2)

From Definition 3.1, it follows that to compute the finClosure(T ) of a TBox T it is enough to
analyze the cycles in its corresponding graph G. We then obtain the following result.

Lemma 3.1. Let T be a DL-LiteFcore TBox. finClosure(T ) can be computed in polynomial time
on the size of T .

It has been shown that the completion of a DL-LiteFcore TBox T using cycle-reversion pro-
vides an axiomatization of the finite model entailments of T [117]. We reproof this result here
for didactic purposes. We start by showing that cycle-reversion is sound w.r.t. finite model
entailments.

Lemma 3.2. Let T be a DL-LiteFcore-TBox. We obtain then the following.

• if finClosure(T ) |= B1 v B2 then T |=fin B1 v B2; and

• if finClosure(T ) |= (funct r) then T |=fin (funct r).

Proof. It is enough to show that if B1, . . . , Bn is a cycle in G, then the axioms added by reversing
this cycle are entailed in every finite model I of T . Thus, let I be a finite model of T , we show
that for every 1 ≤ i < n:

(i) if Bi+1 v Bi was added by cycle-reversion, then BIi+1 ⊆ BIi .

(ii) if (funct r−) was added by cycle-reversion, then I |= (funct r−).
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Observe that the semantics of DL-LiteFcore implies that #BI1 ≤ #BI2 · · · ≤ #BIn . Since B1 = Bn,
we can conclude

#BI1 = #BI2 · · · = #BIn (∗)

Let us fix some 1 ≤ i < n; we treat each of the cases above:

• Case (i): By Definition 3.1, (Bi, Bi+1) ∈ E was added because Bi v Bi+1 ∈ T . Since I
is a model of T , we have BIi ⊆ BIi+1. Further, (∗) gives that #BIi = #BIi+1, and then
since I is finite we can conclude that BIi+1 ⊆ BIi , as required.

• Case (ii): By definition 3.1, (Bi, Bi+1) ∈ E was added because (funct r) ∈ T . Furthermore,
we have that Bi = ∃r− and Bi+1 = ∃r; (∗) yields that #(∃r−)I = #(∃r)I . This means
that rI is bijection, hence (r−)I is a function, and thus I |= (funct r−) as required.

We now show that the implications in the ‘other direction’ from Lemma 3.2 also hold, that is,
finClosure(T ) is complete for finite model entailment w.r.t. T . In order to do so, we need to
introduce first some useful notions. Recall that for any two concepts B1, B2, we write B1 vT B2

whenever T |= B1 v B2. To ease notation, for a given TBox T we sometimes will use Tf to
denote finClosure(T ).

Definition 3.2. Let T be a DL-LiteFcore TBox and Bi a basic concept, the lite-type of Bi w.r.t.
Tf is the set of basic concepts

[Bi] = {Bj ∈ BC(Tf) | Bi vTf Bj}.

We denote with lite-TP(Tf) the set of lite-types w.r.t. Tf . Further, we write

• [Bi]→r [Bj ] iff Bi vTf ∃r and [Bj ] = [∃r−].

• [Bi]→1
r [Bj ] iff [Bi]→r [Bj ] and (funct r−) ∈ Tf .

• [Bi] 1↔1
r [Bj ] iff [Bi]→1

r [Bj ] and [Bj ]→1
r− [Bi].

We use 1↔1
∗ to denote the transitive closure of the relation

⋃
r∈role(Tf )

1↔1
r. For a lite-type

[Bi], the cluster of [Bi] is the set C([Bi]) := {[Bj ] ∈ lite-TP(Tf) | [Bi] 1↔1
∗ [Bj ]}. 4

The intuition behind considering the lite-types [Bi] for each basic concept Bi is that we
can simplify the graph G′1 corresponding to Tf by adding one node for each [Bi], which will
aid to have more compact finite models. For example, consider the graph corresponding to
finClosure(T1) depicted in Figure 3.3. Since ∃p−1 v ∃p2, ∃p2 v ∃p−1 ∈ finClosure(T1), we have
that [∃p−1 ] = [∃p2] Furthermore, as (funct p2), (funct p−2 ) ∈ finClosure(T1) (hence the solid edges
([∃p1], [∃p2]), ([∃p2], [∃p1]) are in G′1 ) we have also that [∃p−1 ] 1↔1

p2
[∃p1].
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Figure 3.3: Graph of finClosure(T1)

For our completeness proof, we will construct an interpretation I f whose domain contains at
least one object for each satisfiable concept Bi w.r.t. Tf . Thus, the domain of I f will consist of
finite words from Σ∗, with the alphabet Σ := lite-TP(Tf). For a word σ = [B1] · · · [Bn], we write
tail(σ) to denote [Bn], and write ε to denote the empty word; by definition tail(ε) = [⊥]. We
construct I f inductively. We start by adding to the domain of I f exactly one object for each
element in Σ. More specifically, we set

∆0 := {[Bi] | Bi ∈ BC(Tf), Bi 6vTf ⊥}.

Assuming that ∆k is already defined. For all elements (σ · [Bi]) that are new in ∆k, we do the
following. For each class [Bj ] that is reachable along the relation 1↔1

∗ from [Bi], we add a fresh
domain element. More precisely, we add the following set of elements:

Γk = {(σ · [Bj ]) | (σ · [Bi]) ∈ ∆k, [Bj ] ∈ C([Bi]), tail(σ) 6vTf [Bj ]}.

Finally, for the inductive step from ∆k to ∆k+1 we add objects along the relation

⋃
r∈role(Tf )

→1
r .

For all domain objects σ that are new in ∆k ∪ Γk, we add a fresh object (σ · [Bj ]) whenever
tail(σ)→1

r [Bj ] for some r ∈ role(Tf). We assume in this case that [Bj ] 6∈ C(tail(σ)), otherwise,
there is already an object in Γk that can be used as an r-successor for σ.

∆k+1 :={(σ · [Bj ]) | σ ∈ ∆k ∪ Γk, s.t. tail(σ)→1
r [Bj ], for r ∈ role(Tf)}

∪∆k ∪ Γk.

The step of the construction from ∆k to Γk ensures that there is an equal number of objects
from each lite-type belonging to a cluster. On the other hand, in the step from ∆k to ∆k+1 we
add fresh r-successors for objects σ · [Bi] whenever we have that [Bi]→1

r [Bj ]. Note that since
(funct r−) ∈ Tf , no object already present in ∆k can be reused as r-successor for σ without
potentially violating the functionality of r−.
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Proposition 3.3. The above construction eventually reaches a fixed-point, i.e., there is an N
such that ∆N = ∆N+1. Moreover, N ≤ #role(Tf) + 1.

Proof. We first note that if an element (σ · [Bj ]) is added in the second part of the inductive
step (i.e., (σ · [Bj ]) 6∈ Γk) then tail(σ) →1

r [Bj ] for some role r ∈ role(Tf); and tail(σ) 1↔1
∗ [Bj ]

does not hold. Further, by construction for every σ = [B1] · · · [Bk], we have that [B1] →1
r1

[B2] . . . [Bk−1]→1
rk

[Bk]. Moreover, it can be shown by induction on the structure of σ that:

1. ri 6= ri+1 for every i ∈ {1, . . . , k − 1}; and

2. ri+i 6= r−i for every i ∈ {1, . . . , k − 1}.

Hence, the length of every σ is bounded byN = #role(Tf)+1; and since the number of equivalence
lite-types for Tf is bounded by the cardinality of BC(T ), only a finite number of words can be
produced in the construction.

Let ∆If = ∆N . Now, we fix the interpretation of the atomic concept and roles. The inter-
pretation for atomic concepts is straightforward, for each atomic concept A, we set

AI
f

= {σ ∈ ∆I
f
| tail(σ) vTf A}.

We define the interpretation of roles along the inductive steps for constructing ∆If . For each
atomic role p ∈ role(Tf), we define:

pI
f
0 = ∅ (3.3)

pI
f
k+1 = pI

f
k (3.4)

∪ {((σ · [Bi]), (σ · [Bj ])) ∈ (∆k ×∆k) | [Bi] 1↔1
p [Bj ]} (3.5)

∪ {((σ · [Bi]), (σ · [Bi][Bj ])) ∈ (∆k ×∆k+1) | [Bi]→p [Bj ]} (3.6)

∪ {((σ · [Bi][Bj ]), (σ · [Bi])) ∈ (∆k+1 ×∆k) | [Bi]→p− [Bj ]} (3.7)

∪ {((σ · [Bi]), [∃p−]) ∈ (∆k ×∆0) | Bi vTf ∃p, (funct p−) 6∈ Tf} (3.8)

∪ {([∃p], (σ · [Bi]) ∈ (∆0 ×∆k) | Bi vTf ∃p−, (funct p) 6∈ Tf}. (3.9)

At the beginning of the construction the model is disconnected (3.3). Once pIf
k is defined (3.4),

we add all pairs that result by connecting the objects added in ∆k∪Γk (3.5). Further, we add all
the pairs that result by connecting the objects created in the step from ∆k to ∆k+1 (3.6 and 3.7).
Finally, we connect all the objects σ and [Bj ] such that tail(σ)→r [Bj ] and (funct r−) 6∈ Tf (3.8)
and (3.9). Note that in this case no fresh element is created in the step from ∆k to ∆k+1, but
we can use the object [∃r−] already present in ∆0.

Lemma 3.4. I f is a finite model of Tf .
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Proof of Lemma 3.4. We proceed by analyzing the various kinds of statements in Tf . Let (σ ·
[Bi]) ∈ ∆k, k < N , we distinguish the following cases:

• case B v ⊥: It follows from the construction. Indeed, Tf |= B v ⊥, implies that there is
no σ ∈ ∆0 with σ ∈ BIf . Furthermore, no instance of B is introduced by the construction
in any ∆i with i > 0. Indeed, assume towards a contradiction that this is the case. Then,
there is some σ′ ∈ ∆j with tail(σ′) →r [B]. This means that Tf |= tail(σ) v ⊥, which
contradicts the fact that σ′ ∈ ∆If .

• case B v A: If σ ∈ BIf , then A ∈ tail(σ), then the construction ensures that σ ∈ AIf .

• case B v ∃r. If σ · [Bi] ∈ CI
f , then since C vTf ∃r, [Bi] →r [Bj ], and ∃r− ∈ [Bi]. By

construction, there is an object σ′ ∈ ∆k+1 such that ((σ · [Bi]), σ′) ∈ rI
f
k+1 . Indeed, if

[Bi] →1
r [Bj ] then either (i) σ′ = (σ · [Bj ]) was introduced in Γk and (σ, σ′ · [Bi]) ∈ rI

f

by (3.5); or (ii) an object σ′ = (σ · [Bi] · [Bj ]) was added in the step from ∆k to ∆k+1 and
(σ, σ · [Bi]) ∈ rI

f by (3.6) or (3.7). On the other hand, if (funct r−) 6∈ Tf , σ′ = [∃r−], and
(σ, [∃r−]) ∈ rIf by (3.8) or (3.9). Therefore, (σ · [Bi]) ∈ (∃r)If as desired.

• case (funct r). We observe that in the construction, whenever we have an object σ ∈ ∆k

such that tail(σ) vTf ∃r, and there is no object σ′ ∈ ∆If
k with (σ, σ′) ∈ rIf

k then exactly
one pair (σ, σ′) is added to rIf . Indeed, if (funct r−) ∈ Tf , then σ′ is created in the step
from ∆k to ∆k+1: either [tail(σ)] 1↔1

r [∃r−], and then σ′ ∈ Γk; or tail(σ)→1
r [Bi] and then

σ′ = (σ · [∃r]). Otherwise, if (funct r−) 6∈ Tf , then σ′ = [∃r−] ∈ ∆0.

Moreover, the construction of I f ensures the following.

Lemma 3.5. Let B1, B2 be basic concepts. If Tf 6|= B1 v B2, then there is d ∈ ∆If such that
d ∈ BIf

1 and d 6∈ BIf
2 .

Proof. We can assume w.l.o.g. that that B1 is satisfiable, as otherwise the statement holds
trivially. Assume Tf 6|= B1 v B2. By construction, there is an element d ∈ ∆If realizing the
lite-type [B1]. Further, d ∈ BIf

1 and since Tf 6|= B1 v B2, then B2 6∈ [B1] and hence d 6∈ BIf

2 .

We are now ready to prove that cycle-reversion is complete w.r.t. finite entailments.

Theorem 3.6 (completeness). Let T be a DL-LiteFcore TBox, if T |=fin B1 v B2 then Tf |=
B1 v B2.
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3. Finite Model Reasoning in Horn DLs

Proof. We prove the contraposition: Tf 6|= B1 v B2 implies T 6|=fin B1 v B2. If Tf 6|= B1 v B2,
then by Lemma 3.5 there is some e ∈ ∆If with d ∈ BIf

1 and d 6∈ BIf

2 . Since T ⊆ Tf , Lemma 3.4
yields I f |= T . Finally since I f is finite by Proposition 3.3 we can conclude T 6|=fin B1 v B2.

3.2 Cycle reversion in DL-LiteFHorn

In this section, we consider finite model reasoning in DL-LiteFHorn. More precisely, we discuss
how the cycle-reversion from the previous section can be almost straightforwardly extended to
the case of DL-LiteFHorn.

In the case of DL-LiteFHorn, we will be dealing with (arbitrary) conjunctions of basic concepts
instead of just basic concepts. Thus, an attempt to extend the previous notion of cycle, which
only involved basic concepts to (arbitrary) conjunctions of basic concepts, is to take care of this
fact. We first extend the relation →r to conjunctions of basic concepts.

Definition 3.3. Let T be a DL-LiteFHorn TBox. For a pair of conjunctions K1 =
d
iBi and

K2 =
d
j B
′
j of basic concepts and r a (possibly inverse) role, we write

• K1 →r K2 if T |= K1 v ∃r, and T |= ∃r− v K2.

• K1 →1
r K2 if K1 →r K2, and T |= (funct r−).

4

We use now these relations to define a suitable notion of finmod cycle.

Definition 3.4 (finmod cycle). Let T be a DL-LiteFHorn TBox. A finmod-cycle in T is a sequence

K1, r1,K2, r2, . . . , rn−1,Kn

where K1, . . . ,Kn are conjunctions of basic concepts from T and r1, . . . , rn−1 ∈ roles(T ) such
that Kn = K1, and for every i ∈ {1, . . . , n− 1}:

Ki →1
ri
Ki+1.

4

Observe that according to the previous definition, we can have various cycles in a TBox that
are related. To illustrate this we consider the following example.

Example 5. Consider the the following DL-LiteFHornTBox T2:

A1 uA2 v ∃r1 ∃r−1 v B1 uB2 uB3 uB4 (funct r−1 )

B1 uB2 v ∃r2 ∃r−2 v A1 uA2 (funct r−2 )

T1 contains the finmod-cycles:

{A1, A2}, r1, {B1, B2}, r2, {A1, A2} (C1)

{A1, A2}, r1, {B1, B2, B3}, r2, {A1, A2} (C2)

{A1, A2}, r1, {B1, B2, B3, B4}, r2, {A1, A2} (C3)
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3.2. Cycle reversion in DL-LiteFHorn

Following the same intuition as for the core case, we could conclude, for example, that in every
finite model I of T2 the presence of the cycle (C1) implies that #(A1 u A2)I = #(B1 u B2)I .
But then, by applying the same reasoning to cycles (C2) and (C3), we would also be able to
conclude that

#(B1 uB2)I = #(B1 uB2 uB3)I = #(B1 uB2 uB3 uB4)I .

Moreover, using a similar analysis one can conclude that (B1 u B2)I ⊆ (∃r−1 )I , and that
(B1 uB2)I ⊆ (B3 uB4)I . Then, the question is, what are the axioms that are needed in T2 to
capture those consequences? Z

The fact that various finmod-cycles are related to each other as in the example above, can be
explained by observing that in DL-LiteFHorn as well as in DL-LiteFcore one cannot distinguish
among the r-successors of a given object in a model of a TBox. Essentially, for any (finite or
unrestricted) model I of a given TBox T , the r-successor of an object d ∈ ∆I has lite-type
[∃r−] (w.r.t. T ). The latter observation, gives us a hint that in order to reverse all the ‘relevant
cycles’ it suffices to reverse finmod-cycles of the form:

[∃r−1 ], r2, [∃r−2 ], r3 . . . , r1, [∃r−1 ].

Definition 3.5 (cycle reversion rule). Let T be a DL-LiteFHorn TBox. We say that an finmod-
cycle is simple if it has the form:

[∃r−1 ], r2, [∃r−2 ], r3 . . . , rn, [∃r−1 ], s.t. rn = r1.

The finite model closure finClosure(T ) of T is obtained from T by exhaustively applying the
following rule:

(simple-cycle-reversion) For every simple finmod-cycle

[∃r−1 ], r2, [∃r−2 ], r3 . . . , rn, [∃r−1 ]

in T , extend T with the following axioms, for 1 ≤ j < n:

∃rj+1 v ∃r−j and (funct rj) (3.10)

4

According to the previous definition, the TBox T2 contains the simple finmod-cycle:

[∃r−1 ], r2, [∃r−2 ], r1, [∃r−1 ]

and the application of simple-cycle reversion adds the axioms:

∃r2 v ∃r−1 , (funct r1), ∃r1 v ∃r−2 , (funct r2).
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Note that in order to find all the simple finmod-cycles in a DL-LiteFHorn TBox T we rely
on TBox reasoning w.r.t. arbitrary models on DL-LiteFHorn. Thus, checking the existence of a
simple finmod-cycle can be done in polynomial time on the size of T since TBox reasoning in
DL-LiteFHorn is PTime-complete [9]. We then get the following complexity boundary.

Lemma 3.7. Let T be a DL-LiteFHorn TBox. Tf can be computed in polynomial time on the size
of T .

Furthermore, soundness of simple-cycle-reversion, follows from Lemma 3.2.

Lemma 3.8 (soundness). Let T be a DL-LiteFHorn-TBox.

• if Tf |=
d
k Bk v B then T |=fin

d
k Bk v B;

• if (funct R) ∈ Tf then T |=fin (funct R).

To prove the completeness of simple-cycle-reversion we use the model construction of the previous
section. More specifically, we show the following.

Lemma 3.9. For every DL-LiteFHorn axiom of the form C v B, where C is a concept of the
form B1 u . . . uBn. T |=fin C v B implies Tf |= C v B.

Proof. We show that if Tf 6|= C v B then T 6|=fin C v B. To prove the latter, we construct
a finite model J of Tf such that there is an object σ ∈ ∆J with σ ∈ CJ and σ 6∈ BJ . We
assume that Bi 6= Bj for i 6= j, and that n ≥ 2, we can make this assumption w.l.o.g. Indeed,
every conjunction with some Bi = Bj is logically equivalent to the one without repetitions. The
latter assumption allows us to regard C as the conjunction of lite-types {[B1], . . . , [Bn]}. In
what follows C will denote such conjunction of lite-types.

To construct J , we modify the construction of the interpretation I f from Definition 3.2. We
start with an initial interpretation J0 with domain

∆0 := {[Bi] | Bi ∈ BC(Tf), Bi 6vTf ⊥} ∪ {[C]}

and setting for every concept name A ∈ CN(Tf),

[Bi] ∈ AJ0 iff Tf |= Bi v A, and

[C] ∈ AJ0 iff Tf |= C v A,

and for every role name p, pJ0 = ∅.

Using the relations in Definition 3.3 we can extend J0 into the interpretation J similarly
as we did it for I f . Further, the same argument as in the proof of Lemma 3.4 goes through to
show that the constructed interpretation is also a finite model of Tf . By construction the object
[C] 6∈ BJ , and therefore J 6|= C v B as required.

Soundness and completeness of simple-cycle-reversion yield the following result.
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3.3. Cycle reversion in Horn-ALCFI

Theorem 3.10. For a given DL-LiteFHorn TBox T , we have that the following hold:

1. T is finitely satisfiable iff finClosure(T ) is satisfiable.

2. T |=fin C v B iff finClosure(T ) |= C v B.

We conclude that finite model TBox reasoning in DL-LiteFHorn can be reduced to arbitrary TBox
reasoning. Furthermore, Lemma 3.7 and the complexity of unrestricted reasoning in DL-LiteFHorn
imply the following complexity result.

Theorem 3.11. Finite model satisfiability and subsumption in DL-LiteFHorn can be decided in
PTime on the size of the TBox.

Since satisfiability and subsumption in DL-LiteHorn is PTime-complete, and that logic has the
finite model property, we obtain a lower PTime complexity bound for finite satisfiability and
subsumption in DL-LiteFHorn.

Theorem 3.12. Deciding finite model satisfiability and subsumption in DL-LiteFHorn is PTime-
complete.

3.3 Cycle reversion in Horn-ALCFI

In what follows, we present the main contribution of this chapter: we show how finite model
reasoning in Horn-ALCQI can be reduced to unrestricted reasoning by reversing cycles in the
TBox. In order to simplify the presentation, we start with the sub logic Horn-ALCFI instead
Horn-ALCQI. In Section 3.5, we then extend our results to the full logic Horn-ALCQI. In
Section 3.4, we will show that the cycle reversion technique provides decision procedures for
finite model reasoning in Horn-ALCFI and Horn-ALCQI.

We start by defining a suitable notion of cycle in Horn-ALCFI. Due to the presence of
qualified existential restrictions, this logic is expressive enough to distinguish the type of suc-
cessors of a given object in a model. Therefore, we need to proceed in a more sophisticated way
than in Section 3.2 for defining and reversing cycles in a TBox. Recall from Definition 2.10 that
Horn-ALCFI TBox axioms have the following (normal) form.

K v A K v ⊥ K v ∃r.K ′ K v ∀r.K ′ K v (6 1 r K ′)

where K and K ′ are conjunctions of concept names. For convenience, we will treat such con-
junctions as sets, and hence write A ∈ K or K ′ ⊆ K, to denote that a concept name A occurs
in K and that K ′ is a conjunction of concept names occurring in K, respectively.

Definition 3.6. Let T be a Horn-ALCFI TBox. A finmod cycle in T is a sequence
K1, r1,K2, r2, . . . , rn−1,Kn, with K1, . . . ,Kn conjunctions of concept names and r1, . . . , rn−1

(potentially inverse) roles such that Kn = K1 and, for 1 ≤ i < n:

T |= Ki v ∃ri.Ki+1 and T |= Ki+1 v (6 1 r−i Ki).
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K1

K2

K3

K4

r1 r2

r3r4

s

Figure 3.4: Cycles in a Horn ALCQI TBox

The completion Tf of T is obtained by exhaustively applying the following rule:

(cycle-reversion) if K1, r1,K2, r2, . . . , rn−1,Kn is a finmod cycle in T , then extend T
with the following concept inclusions, for 1 ≤ j < n:

Kj+1 v ∃r−j .Kj and Kj v (6 1 rj Kj+1). (3.11)

4

In principle, according to Definition 3.6 there may be infinitely many finmod cycles in a given
TBox since repetition of conjunctions and roles within the cycle is not explicitly disallowed.
Consider, for example, a TBox T ′ such that K1, r1,K2, r2,K3, r3,K4, r4,K1 is a cycle in T ′,
and T ′ |= K4 v ∃s.K2 and T ′ |= K2 v (6 1 s− K)4 (use Figure 3.4 as a visual aid). Then every
sequence of the form

K1, r1,K2, r2,K3, r3,K4, σ, r4K1,

with σ ∈ (s,K2, r2,K3, r3,K4)∗ is a cycle in T ′.
However, only finitely many CIs can be added to T by cycle-reversion since there are only

finitely many conjunctions modulo simple equivalence: e.g., A u A is equivalent to A. Indeed,
recall that we regard conjunctions of concept names as sets of concept names. In particular,
in the worst case exponentially many axioms –in the size of the original TBox– can be added
to T . We make the observation that for finding these finitely many CIs, it suffices to consider
finmod-cycles in which all triples (Ki, ri+1,Ki+1) are distinct. That is, we only consider simple
cycles in the graph theoretical sense, i.e., cycles with no repetitions of conjunctions (vertices)
and roles (edges) other than the starting and the ending conjunction. In our example above
K1, r1,K2, r2,K3, r3,K4, r4,K1 and K2, r2,K3, r3,K4, s,K2 are simple cycles.

Note that since the definition of a finmod-cycle is based on the subsumption entailed by
T , finding finmod cycles requires deciding unrestricted subsumption in Horn-ALCFI TBoxes,
which is decidable and ExpTime-complete (in ExpTime since it is a fragment of ALCQI [47],
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and ExpTime hard since it contains EL with functionality [13]). Let us consider the following
example to illustrate cycle-reversion in an Horn-ALCFI TBox.

Example 6. Consider the TBox T ′ consisting of the following axioms:

A v ∃r1.B B v (6 1 r−1 A) B v ∃r2.(A uD) A v (6 1 r−2 B)

C1 v A C1 v ∀r1.C2 C2 v ∀r2.C1

By inspecting these axioms, it is easy to see that T ′ entails the following:

A v ∃r1.B B v (6 1 r−1 A) B v ∃r2.A A v (6 1 r−2 B) (3.12)

A uD v ∃r1.B B v (6 1 r−1 A uD) B v ∃r2.(A uD) A uD v (6 1 r−2 B) (3.13)

A u C1 v ∃r1.B B u C2 v (6 1 r−1 A u C1)

B u C2 v ∃r2.(A u C1) A u C1 v (6 1 r−2 B u C2)
(3.14)

Thus, T ′ contains the following three finmod-cycles.

From (3.12) :

{A}, r1, {B}, r2, {A} (C1)

From (3.13) :

{A,D}, r1, {B}, r2, {A,D} (C2)

From (3.14) :

{A,C1}, r1, {B,C2}, r2, {A,C1} (C3)

Now, applying cycle-reversion to the finmod-cycle (C1), the following axioms are added to T ′f :

A v ∃r−2 .B, B v (6 1 r2 A),

B v ∃r−1 .A, A v (6 1 r1 B).

Additionally, for the cycle in (C2) cycle-revrsion adds the following:

A uD v ∃r−2 .B, B v (6 1 r2 A uD),

B v ∃r−1 .A uD, A uD v (6 1 r1 B).

Finally, reversing the cycle in (C3) yields the addition of the axioms:

A u C1 v ∃r−2 .(B u C2), B u C2 v (6 1 r2 A u C1),

B u C2 v ∃r−1 .(A u C1), A u C1 v (6 1 r1 B u C2).
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Note that T ′f contains: A v ∃r1.B, B v ∃r−1 .(AuD), and B v (6 1 r−1 A). Consequently,
T ′f |= A v D, which corresponds to the entailment T ′ |=fin A v D. Moreover, observe that cycles
(C1) and (C2) are related to each other, in the sense that the axioms added by reversing (C2)
entail those added by reversing (C1). On the other hand, this is not the case for (C3), the axioms
added by its reversion are not implied by any of the other two cycle reversion steps. Z

In general, the CIs added by cycle-reversion are not necessarily implied by the original TBox
w.r.t. arbitrary models. As an instance, for the TBox T ′ in the previous example, it holds that
T ′ 6|= A v D. However, it can be shown that for any TBox T the axioms added by cycle-reversion
are indeed entailed in finite models of T .

Lemma 3.13. Let K1, r1, . . . , rn−1,Kn be a finmod cycle in T , then T |=fin Ki+1 v ∃r−i .Ki

and T |=fin Ki v (6 1 ri Ki+1) for 1 ≤ i < n.

Proof. We have to show that, if K1, r1, . . . , rn−1,Kn is a finmod cycle in T , then for every finite
model I of T , it holds that for 1 ≤ i < n:

(i) I |= Ki+1 v ∃r−i .Ki, and

(ii) I |= Ki v (6 1 ri Ki+1).

Indeed, let I be a finite model of T . Since K1, r1, . . . , rn−1,Kn is a finmod cycle, then KIi ⊆
(∃ri.Ki+1)I and KIi+1 ⊆ (6 1 r−i Ki)

I for 1 ≤ i < n. We first note that, by the semantics of
Horn-ALCFI, we must have |KI1 | ≤ · · · ≤ |KIn |. Furthermore, we have that |KI1 | = · · · = |KIn |
since Kn = K1.

Now, fix some i with 1 ≤ i < n. KIi ⊆ (6 1 ri Ki+1)I and KIi+1 ⊆ (∃r−i .Ki)I follow from
|KIi | = |KIi+1|, KIi ⊆ (∃ri.Ki+1)I , and KIi+1 ⊆ (6 1 r−i Ki)

I and I being finite. Thus, (i) and
(ii) above hold as required.

As a consequence of Lemma 3.13 we obtain the following result showing that cycle-reversion is
sound w.r.t. finite model entailment.

Theorem 3.14. Let T be a Horn-ALCFI TBox. For every CI K v C, if Tf |= K v C then
T |=fin K v C.

We now aim to prove that cycle-reversion provides a complete axiomatization for finite model
entailment. In particular, we show the following.

Theorem 3.15. Let T be a Horn-ALCFI TBox. T |=fin K v C implies Tf |= K v C.
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In order to prove the previous theorem, we provide a construction of a finite model of the closure
of a TBox with particular properties. Indeed, this construction constitutes the main technical
tool used to prove the results in this Chapter. For this reason, we devote the next Section to
describe the details of the construction. Afterwards, in Section 3.4, we will utilize it to establish
the results on finite model reasoning in Horn-ALCQI.

3.3.1 Constructing Finite Models of Horn-ALCFI TBoxes

In this section, we will describe the construction of a finite model of a given (satisfiable) TBox T .
The construction will be guided by Tf , thus we will be constructing actually a finite I model of
Tf , and show that this model is also a finite model of T . Notably, I provides a witness for every
concept satisfiable w.r.t. Tf . Later on, we will use this property for showing that cycle-reversion
provides a complete axiomatization w.r.t. finite model entailment.

In order to describe the satisfiable concepts w.r.t. a certain TBox T , we will use the notion
of type. For Horn DLs, and in particular for Horn-ALCFI, a type is determined by a set of
satisfiable concept names. It suffices to consider such types since our TBoxes are in normal form.
We will describe this and other relevant preliminary notions in detail in what follows.

Definition 3.7 (Horn-ALCQI type). Let I = (∆I , ·I) be an interpretation, and d ∈ ∆I . The
type realized at d in I is defined as the following set of concept names:

tpI(d) := {A ∈ CN(T ) | d ∈ AI}.

Let T be an Horn-ALCQI TBox, and let CN(T ) be the set of concept names occurring in T .
A type for T is a subset t ⊆ CN(T ) such that there is a model I of T and a d ∈ ∆I such that

tpI(d) = t.

We use TP(T ) to denote the set of all types for T . 4

Intuitively, one could think of a type t for T as a satisfiable (maximal) conjunction t w.r.t. T .

Example 7. Consider a TBox T3 containing the following axioms:

D1 v ∃r1.D2 D2 v ∀r−1 .D3

Then t = {D1, D3} and t′ = {D2} are types for T3, while {D1} is not a type for T3. Indeed, in
every model I of T3, d ∈ DI1 implies d ∈ DI3 since T3 |= D1 v D3, thus tpI(d) = {D1, D3}. Z

We observe that in general the types for a TBox differ from the ones for its closure. For example,
consider the TBox T from Example 6; we have that {A} and {A,C1} are types for T , but they
are not types for Tf . Note that by the added axioms Tf |= A v D, hence those types are dropped
and instead we have {A,D} and {A,C1, D} as types for Tf .

For the purpose of constructing a finite model of a given TBox T , we will be interested in
the set of types for Tf , and moreover, we will have special interest in some relations holding
among these types.
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Definition 3.8. Let T be an Horn-ALCFI TBox. For t, t′ ∈ TP(Tf) and r ∈ role(T ), we write

• t→r t
′ if Tf |= t v ∃r.t′ and t′ is maximal with this property;

• t→1
r t
′ if t→r t

′ and Tf |= t′ v (6 1 r− t);

• t 1↔1
r t
′ if t→1

r t
′ and t′ →1

r− t.
4

We will use these relations to formalize what we call ∃-requirement during the construction of
the finite interpretation I. Intuitively, for an element d ∈ ∆I such that tpI(d) = t, if it holds
t→r t

′ for some role r ∈ role(T ), then there must exist some d′ ∈ ∆I with tpI(d′) = t′, in order
for I to be a model of Tf .

Observation 2. Whenever

t1 →1
r1
t2 →1

r2
· · · →1

rn−1
tn = t1 (3.15)

then t1, r1, . . . , rn−1, tn is a finmod cycle in Tf . Further, each→1
ri

in (3.15) can be replaced with
1↔1

ri
, for i ∈ {1, . . . , n− 1} since all cycles have been reversed in Tf .

Types related by 1↔1
r are connected very tightly by the TBox T . Recall that t 1↔1

r t
′ implies

that r is functional and inverse functional on the instances of t and t′, which means that rI is a
bijection on tI × t′I in any model I of T . Further, if I is finite, then it holds that the number of
instances of t and t′ coincide. For that reason, we consider the types related by 1↔1

∗ as a ‘whole’
in our construction of finite models. We formalize that by the notion of a type class.

Definition 3.9. A non-empty set P ⊆ TP(T ) is type class if it is the minimal set satisfying
the following:

if t ∈ P and there is a role r ∈ role(T ), such that t 1↔1
r t
′, then t′ ∈ P .

4

Note that the set of all type classes is a partition of TP(Tf). Indeed, for each type t for Tf , there
is a unique type class P , such that t ∈ P . Thus, for a given type t we can refer to the type class
of t. We set P ≺ P ′ if there are t ∈ P and t′ ∈ P ′ with t′ ( t. We will later be referring to the
strict partial order that is obtained by taking the transitive closure of ≺, denoted by ≺+. We
prove the following.

Lemma 3.16. ≺+ is a strict partial order.
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Proof. Since ≺+ is transitive by definition, it remains to establish irreflexivity and asymmetry.
To this end, it suffices to show that ≺ is acyclic in the sense that there are no type partitions
P0, . . . , Pn, n ≥ 0, such that P0 ≺ · · · ≺ Pn = P0. Assume to the contrary that there are such
P0, . . . , Pn. By reversing the order, we can assume that P0 � · · · � Pn = P0. Then there are,
for each i < n, types ti ∈ Pi and t′i+1 ∈ Pi+1 such that ti ( t′i+1. For uniformity, set tn = t0

and t′0 = t′n.

Let i < n. By definition of type partitions, and because t 1↔1
r t
′ implies t′ 1↔1

r− t for all
types t, t′ and roles r, we can derive from ti, t

′
i ∈ Pi the existence of types s0,i, . . . , ski,i ∈ Pi,

ki ≥ 0, and roles r0,i, . . . , rki−1,i such that

ti = s0,i
1↔1

r0,i
s1,i

1↔1
r1,i
· · · 1↔1

rki−1,i
ski,i = t′i.

For each i, we thus find a sequence

ti, r0,i, s1,i, . . . , ski−1,i, rki−1,i, t
′
i (∗)

that satisfies the prerequisites for finmod cycles, namely

T |= sj,i v ∃rj,i.sj+1,i (3.16)

T |= sj+1,i v (6 1 rj,i sj,i) (3.17)

for all j = 0, . . . , ki (but this sequence need not be a finmod cycle since ti = t′i is not guaranteed).
Note that we cannot have ki = 0 for all i since otherwise

t0 ( t′1 = t1 ( t′2 = t2 ( · · · ( t′n = tn,

in contradiction to tn = t0. In the following, we can thus assume that ki > 0 for at least one i.

Because of (3.17), we have Tf |= ti v ∃r0,i.s1,i and Tf |= s1,i v (6 1 r−0,i ti). Because of
ti ( t′i+1, we thus obtain Tf |= t′i+1 v ∃r0,i.s1,i and Tf |= s1,i v (6 1 r−0,i t′i+1). Consequently,
the following sequences also satisfy conditions (3.16) and (3.17):

t′n, r0,n−1, s1,n−1, . . . , skn−1−1,n−1, rkn−1−1,n−1, t
′
n−1

t′n−1, r0,n−2, s1,n−2, . . . , skn−1−1,n−2, rkn−1−1,n−2, t
′
n−2

...

t′1, r0,0, s1,0, . . . , sk0−1,0, rk0−1,0, t
′
0.

Since t′0 = t′n, we can concatenate all these sequences to a finmod cycle. As ki > 0 for at least
one i, this cycle is non-empty, and the construction of Tf ensures that the reversed cycle is also
present in Tf . Let us assume w.l.o.g. that kn−1 > 0. The presence of the reversed cycle yields
Tf |= s1,n−1 v ∃r−0,n−1.t

′
n. Since tn 1↔1

r0,n−1
s1,n−1, we have Tf |= s1,n−1 v ∃r−0,n−1.tn−1 and

tn−1 is maximal with this property. This is a contradiction to tn−1 ) t′n.
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Before moving forward, let us illustrate with an example the defined notions to understand
their relation to the finmod-cycles in a TBox.

Example 8. Consider the TBox T ′ from Example 6. Recall that it contains the following cycles:

{A}, r1, {B}, r2, {A}

{A,D}, r1, {B}, r2, {A,D}

{A,C1}, r1, {B,C2}, r2, {A,C1}

(3.18)

Some of the relations holding on types for T ′f are the following:

{A,D} 1↔1
r1
{B} 1↔1

r2
{A,D} (3.19)

{A,C1, D} 1↔1
r1
{B,C2} 1↔1

r2
{A,C1, D} (3.20)

Which gives the two type classes

P1 = {{A,D}, {B}} and P2 = {{A,C1, D}, {B,C2}}

with P2 ≺+ P1. Intuitively, those type classes capture the two relevant cycles in T ′f , i.e., those
in (3.19) and (3.20). This also formalizes the idea that the first two cycles in (3.18) are in some
sense ‘equivalent’.

Z

We are now ready to describe the construction of a finite interpretation of Tf . The initial
version of such an interpretation contains one element for each type for Tf , we then exhaustively
apply three completion rules denoted with (c1) to (c3) to that initial interpretation to obtain
the desired finite interpretation I. The completion repeatedly introduces elements following ∃-
requirements determined by t→r t

′ relations and carefully distinguishing several cases to ensure
that functionality restrictions are always satisfied. An element d ∈ ∆I has an ∃-requirement if
tpI(d) →r t

′ for some role r and type t′. We will make sure that the following invariants are
satisfied after each completion step:

(i1) tpI(d) ∈ TP(Tf) for all d ∈ ∆I ;

(i2) if (d, d′) ∈ rI , then we have tpI(d)→r tpI(d′) or tpI(d′)→r− tpI(d);

(i3) if Tf |= K v (6 1 r K ′), then I |= K v (6 1 r K ′).

Intuitively, invariant (i1) ensures that every element of the domain is an instance of a type
for Tf , hence by adding new elements to the domain we do not realize any unsatisfiable concept
w.r.t. Tf . Further, (i2) will ensure that domain elements are connected by a role r following
∃-requirements entailed by Tf . Finally, (i3) ensures that no role functionality entailed by Tf is
violated.
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3.3. Cycle reversion in Horn-ALCFI

Definition 3.10 (finite completion). The interpretation I is defined starting from an initial
domain which contains an element dt for every t ∈ TP(Tf). We start by setting

∆I = {dt | t ∈ TP(Tf)};

AI = { dt ∈ ∆I | A ∈ t };

rI = ∅.

(3.21)

Next, we describe the completion steps (c1)–(c3). Briefly, each of these steps selects and element
d ∈ ∆I whenever there is an ∃-requirement t →r t

′ that is not satisfied at d in I. In order
to construct the desired (finite) model we apply these steps exhaustively, therefore all the ∃-
requirements are satisfied in the limit of the construction. Both (c1) and (c2) introduce fresh
elements into ∆I , according to the nature of the ∃-requirement. Note that if t→1

r t
′ holds (i.e.,

r− is functional on t′) then one fresh element d′ realizing type t′ is required as the r-successor of
d to satisfy the requirement; this is the case handled by (c1). However, if additionally we have
that t′ →1

r− t (which means that t 1↔1
r t
′ holds) then (c2) is applied. The application of (c2)

treats the type class P of t, which amounts to satisfy multiple ∃-requirements in I. In order to
correctly construct the model I, we establish a preference on the application of these two steps
by giving priority to applications of (c1) over those of (c2). We explain in detail the reason for
this, once the definition of the steps is in place. On the other hand, (c3) does not introduce
elements into ∆I , but instead reuses an existing element to satisfy the existential requirement
for the selected object d. Note that this can be done without violating functionality constraints
whenever t→1

r t
′ does not hold. We define the completion steps as follows:

(c1) Choose an element d ∈ ∆I such that tpI(d)→1
r t, t 6→1

r− tpI(d), and d /∈ (∃r.t)I , then

– add a fresh elements e to ∆, and

– modify the extension of concept and role names such that tpI(e) = t and (d, e) ∈ rI .

(c2) Choose a type class P that is minimal w.r.t. the order ≺+, a λ = t 1↔1
r t
′ with t ∈ P ,

and an element d ∈ ∆I with ∃-requirement t 1↔1
r t
′; and let nmax = max{|sI | | s ∈ P},

for each s ∈ P , take a fresh set of domain elements

∆s := {ds,j | |sI | < j ≤ nmax}.

For each λ = s 1↔1
r s
′ with s ∈ P , let

XIλ,1 = sI \ (∃r.s′)I and XIλ,2 = s′
I \ (∃r−.s)I

and choose a bijection πλ between XIλ,1 ∪∆s and XIλ,2 ∪∆s′ , 1 then

– add the elements in
⊎
s∈P ∆s to ∆;

– for each λ = s 1↔1
r s
′ with s, s′ ∈ P , extend rI with πλ, and

1The construction of the sets ∆s clearly ensures that their union has the required cardinality.
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– interpret concept names so that tpI(d) = s for each d ∈ ∆s, and s ∈ P .

(c3) Choose an element d ∈ ∆I such that tpI(d)→r t, tpI(d) 6→1
r t, and d /∈ (∃r.t)I . Add (d, dt)

to rI , where dt ∈ ∆I is the element introduced for type t in the initialization step (3.21).
4

In order to show that the described construction of I is correct for our purposes, we prove that

1. I is indeed a model of Tf , and

2. I is finite, that is, ∆I is finite.

For the purpose of Point 1, we first show that after each step of the construction all the invariants
are preserved. Observe that from (3.21) it follows that the initial interpretation I satisfies (i1),
(i2) and (i3). We show now that each of the completion steps (c1) to (c3) preserves the
invariants.

Lemma 3.17. Each application of a completion step preserves (i1), (i2) and (i3).

Proof.

(c1) preserves all invariants.

• case (i1) and (i2): The definition of (c1) ensures that the invariants (i1) and (i2) are
preserved after each single application of (c1).

• case (i3): Assume that completion treated d ∈ ∆I with tpI(d) →1
r t and t 6→1

r− tpI(d),
and that after the application (d, d1) ∈ rI , with d1 the fresh domain element added.
Assume to the contrary of what is to be proved that Tf |= K v (6 1 r K ′) and there is
a d2 ∈ ∆I distinct from d1 such that d ∈ KI , (d, d2) ∈ rI , and d1, d2 ∈ K ′I . We aim to
show that if such d2 exists then t ⊆ tpI(d2), which establishes a contradiction to the fact
that d /∈ (∃r.t)I was true before the rule application. According to (i2), we can distinguish
the following cases:

– tpI(d)→r tpI(d2). Then Tf |= tpI(d) v ∃r.tpI(d2) and tpI(d2) is maximal with this
property. From tpI(d) →r t, we additionally get Tf |= tpI(d) v ∃r.t. Furthermore,
K ⊆ tpI(d) and d1, d2 ∈ K ′I imply K ′ ⊆ tpI(d2) ∩ t, a simple semantic argument
shows that Tf |= K v ∃r.(tpI(d2) ∪ t). The maximality of tpI(d2) thus implies
t ⊆ tpI(d2).

– tpI(d2) →r− tpI(d). Then Tf |= tpI(d2) v ∃r−.tpI(d) and, additionally, we have
Tf |= tpI(d) v ∃r.t. Since K ⊆ tpI(d) and K ′ ⊆ tpI(d2) ∩ t, a simple semantic
argument shows that Tf |= tpI(d2) v t. Since tpI(d2) is a type for Tf by (i1), it
follows that t ⊆ tpI(d2).
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(c2) preserves all the invariants To eliminate further case distinctions later on, for each
λ = s 1↔1

r s
′ let λ− denote s′ 1↔1

r− s. Indeed, note that λ holds if and only if λ− does.
Assume that (c2) is applied to a type class P . Then define πλ− to be the converse of πλ, for all
λ = s 1↔1

r s
′ with r an inverse role. Note that πλ is a bijection from XIλ,1 ∪∆s to XIλ,2 ∪∆s′ ,

just as in the case where r is a role name. Also note that whenever (d, e) ∈ rI is added by the
current application of (c2) with r a (potentially inverse) role, then there is a λ = s 1↔1

r s
′ such

that (d, d′) ∈ πλ(d). Moreover, we will need an intermediate technical lemma establishing that
if the application of (c2) adds a pair (d, d′) to rI in order to satisfy an ∃-requirement s 1↔1

r s
′,

then the types of d and d′ are exactly s and s′ respectively.

• case (i1): Invariant (i1) is preserved by each single application of (c2) by definition.

• case (i2): Consider a (potentially inverse) role r and a pair (d, d′) ∈ rI that has been
added in a (c2) application. Take λ = s 1↔1

r s
′ such that (d, d′) ∈ πλ(d). From Lemma 3.18,

we obtain tpI(d) = s and tpI(d′) = s′. Consequently, s 1↔1
r s
′ yields tpI(d) →r tpI(d′)

and tpI(d′)→r− tpI(d). Thus, (i2) is preserved.

• case (i3): Let Tf |= K v (6 1 r K ′), and assume to the contrary of what is to be
shown that, after some application of (c2), there are (d, d1), (d, d2) ∈ rI with d ∈ KI ,
d1, d2 ∈ K ′I , and d1 6= d2. We distinguish the following cases:

(d, d1) was added by an application of (c2), (d, d2) was not. By the former, there is
λ = s 1↔1

r s
′ such that (d, d1) ∈ πλ. By Lemma 3.18, tpI(d) = s and tpI(d1) = s′.

We aim to show that s′ ⊆ tpI(d2) because this means that d ∈ (∃r.s′)I was true before the
current appliction of (c2), in contradiction to d being in the domain of πλ. Since (d, d2)
was not added by (c2), by (i2) we can distinguish the following subcases:

– tpI(d) →r tpI(d2). Thus Tf |= tpI(d) v ∃r.tpI(d2) and tpI(d2) is maximal with
this property. Since tpI(d) = s and by λ, Tf |= tpI(d) v ∃r.s′. Using the facts that
Tf |= K v (6 1 r K ′), K ⊆ tpI(d) = s, K ′ ⊆ tpI(d2), and K ′ ⊆ tpI(d1) = s′, an
easy semantic argument shows that Tf |= tpI(d) v ∃r.(tpI(d2) ∪ s′). The maximality
of tpI(d2) thus yields s′ ⊆ tpI(d2).

– tpI(d2)→r− tpI(d). Then Tf |= tpI(d2) v ∃r−.s. By λ, we have Tf |= s v ∃r.s′. Since
K ⊆ s, K ⊆ tpI(d2), K ⊆ tpI(d1) = s′, and Tf |= K v (6 1 r K ′), a simple semantic
argument shows that s′ ⊆ tpI(d2).

– r(d, d2) ∈ A. Since d ∈ KI and d2 ∈ K ′I , we have K ⊆ tpA(d) and K ′ ⊆ tpA(d2)
by definition of the initial interpretation I. Also, tpA(d) = s. By λ, we thus have
Tf |= tpA(d) v ∃r.s′. With Tf |= K v (6 1 r K ′) and r(d, d2) ∈ A, the semantics
yields s′ ⊆ tpA(d2), thus s′ ⊆ tpI(d2).

both (d, d1) and (d, d2) were added by an application of (c2). Then there are λ1

and λ2, such that, for i ∈ {1, 2}, we have λi = si
1↔1

r s
′
i and (d, di) ∈ πλi

. Applying

71



3. Finite Model Reasoning in Horn DLs

Lemma 3.18 to λi yields si = tpI(d), for i ∈ {1, 2}. Consequently, s1 = s2. We next show
s′1 = s′2, thus λ1 = λ2.

For uniformity, we use s to denote s1 and s2. From λi, we obtain Tf |= s v ∃r.s′i and s′i
is maximal with this property, for i ∈ {1, 2}. Lemma 3.18 yields tpI(di) = s′i. Using the
facts that Tf |= s v ∃r.s′i for i ∈ {1, 2}, K ⊆ tpI(d) = s, K ′ ⊆ tpI(di) = s′i for i ∈ {1, 2},
and Tf |= K v (6 1 r K ′), an easy semantic argument shows that Tf |= s v ∃r.(s′1 ∪ s′2).
The maximality of s′1 and s′2 thus implies s′1 = s′2 as desired.

Hence, λ1 = λ2 and (d, d1), (d, d2) ∈ πλ1 . Since πλ1 is a bijection, we obtain d1 = d2, a
contradiction.

We proof now prove the following auxiliary Lemma.

Lemma 3.18. Let λ = s 1↔1
r s
′ be with s, s′ ∈ P and (d, d′) ∈ πλ, then tpI(d) = s and

tpI(d′) = s′.

Proof. Let λ = s 1↔1
r s
′ and (d, d′) ∈ πλ. We first show that tpI(d) = s. Since d is in the domain

of πλ, we have d ∈ ∆s or d ∈ XIλ,1. In the former case, tpI(d) = s is immediate by construction
of I. Thus assume that d ∈ XIλ,1. Then s ⊆ tpI(d). From λ, we obtain Tf |= tpI(d) v ∃r.s′. Let
ŝ′ ⊇ s′ be maximal such that Tf |= tpI(d) v ∃r.ŝ′. Note that, by λ, s ⊆ tpI(d) and s′ ⊆ ŝ′ we
have Tf |= ŝ′ v (6 1 r tpI(d)). Thus tpI(d)→1

r ŝ
′.

Next, observe that ŝ′ →1
r− tpI(d). If this was not the case, then (c1) would be applicable to d.

Since (c1) applications are preferred over applications of (c2), such (c1) application to d would
generate an e ∈ ∆I with (d, e) ∈ rI and e ∈ (ŝ′)I before the (c2) application considered here.
This contradicts the fact that d ∈ XIλ1

, which implies that d /∈ (∃r.s)I when (c2) was applied.

In summary, we have established that λ′ = tpI(d) 1↔1
r ŝ
′ holds. Now assume to the contrary

of what we have to show that s ( tpI(d). Recall that P is the type class that the current
(c2) application treats, and that s, s′ ∈ P . By λ′, there is a type class P ′ with tpI(d), ŝ′ ∈ P ′.
Since s ( tpI(d), we have P ′ ≺ P . Since d ∈ XIλ,1, we had d /∈ (∃r.s′)I before the current rule
application, thus also d /∈ (∃r.ŝ′)I . Summing up, before the current rule application we had
tpI(d), ŝ′ ∈ P ′, λ′ = tpI(d) 1↔1

r ŝ
′, d ∈ tpI(d), and d /∈ (∃r.ŝ′)I . Consequently, rule (c2) was

applicable also to type class P ′. Since P ′ ≺ P and with the preference order that (c2) imposes
on type classes, this contradicts that the current application is treating P .

It remains to show that tpI(d′) = s′. The argument is exactly the same as above, with r−

playing the role of r, s′ playing the role of s and vice versa, λ− playing the role of λ, and tpI(d′)
playing the role of tpI(d) and vice versa.

(c3) preserves all invariants. Again by definition of the completion step the invariants (i1)
and (i2) are preserved with each single application of (c3). We show that this is also the case
for (i3). Assume that the step treated d ∈ ∆I with tpI(d) →r t and tpI(d) 6→1

r t, adding the
edge (d, dt) to rI . Since tpI(dt) = t and tpI(d) 6→1

r t, there is no K v (6 1 r− K ′) ∈ Tf such
that K ⊆ t and K ′ ⊆ tpI(d). Take a K v (6 1 r K ′) ∈ Tf with K ⊆ tpI(d) and K ′ ⊆ t. We
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have to prove that there is no e ∈ ∆I distinct from dt such that (d, e) ∈ rI and e ∈ K ′I . This
can be done exactly as in the case of the completion rule (c1).

This concludes the proof of Lemma 3.17.

Now we can move on to the task of showing that the constructed interpretation I is a model
of Tf .

Lemma 3.19. I is a model of Tf .

Proof. We show that for every axiom K v C ∈ Tf , we have that I |= K v C. We distinguish
the following cases according to the structure of concept C:

• case ‘C = A’: Let d ∈ KI . Then K ⊆ tpI(d) and by (i1) tpI(d) ∈ TP(Tf). Since
Tf |= K v A, this yields A ∈ tpI(d) and thus d ∈ AI .

• case ‘C = ⊥’: Follows from (i1) since for every d ∈ ∆I , tpI(d) ∈ TP(Tf) KI = ∅.

• case ‘C = ∃r.K ′’: Let d ∈ KI . Then we have that K ⊆ tpI(d). Since Tf |= K v ∃r.K ′,
we have that tpI(d) →r t

′ for some t′ with K ′ ⊆ t′. It suffices to show that there is
some d′ with (d, d′) ∈ rI and tpI(d′) = t′. Note that one of the following cases must
apply: (1) tpI(d) →1

r t
′ and t′ 6→1

r− tpI(d), (2) tpI(d) →1
r t
′ and t′ →1

r− tpI(d), and
(3) tpI(d) 6→1

r t
′. These cases correspond exactly to the completion rules (c1) to (c3).

Thus, one of these rules will add the required successor.

• case ‘C = ∀r.K ′’: Let d ∈ KI and (d, d′) ∈ rI , We have that K ⊆ tpI(d). Further, by
(i2), we can distinguish the following cases:

– tpI(d)→r tpI(d′). Then Tf |= tpI(d) v ∃r.tpI(d′) and tpI(d′) is maximal with this
property. Since Tf |= K v ∀r.K ′, we have that Tf |= tpI(d) v ∃r.tpI(d′) ∪K ′, and
the maximality of tpI(d′) yields K ′ ⊆ tpI(d′), and thus d′ ∈ K ′I .

– tpI(d′) →r− tpI(d). Then we have Tf |= tpI(d′) v ∃r−.tpI(d). Together with Tf |=
K v ∀r.K ′, we obtain Tf |= tpI(d′) v K ′. Since tpI(d′) ∈ TP(Tf) by (i1), we obtain
K ′ ⊆ tpI(d′) and thus d′ ∈ K ′I .

• case ‘C = (6 1 r K)′’: Follows from (i3).

It now remains to show that I is finite. We will proceed by proving that the construction of
the model I terminates. For this purpose, we associate a directed tree T = (V,E) to the model
I that makes explicit the way in which I is constructed. Recall that (c1) and (c2) are the only
completion steps that introduce new domain elements and while (c1) introduces a single new
element with each application, (c2) introduces a whole (finite) set of fresh elements. Moreover,
the construction of I is defined in such a way that each application of a completion rule is
triggered by a single domain element for which some ∃-requirement is not yet satisfied.
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Definition 3.11. Let I be the interpretation constructed according to Definition 3.10. The
trace tree T = (V,E) of I is the labelled tree defined as follows:

• the domain of the initial interpretation ∆I0 ∈ V , and is the root node of T ;

• each v ⊆ ∆I introduced by a single application of either (c1) or (c2) is a node in V ;

• (v, v′, 1) ∈ E iff v′ is the singleton set introduced by an application of (c1) treating some
d ∈ v; and

• (v, v′, 2) ∈ E iff v′ is the set of elements introduced by an application of (c2) treating
some d ∈ v.

An element d as above is called the trigger of v′ and will be denoted by tg(v′). 4

Intuitively, the trace tree of the interpretation I makes explicit the growth of the domain of I,
and records the completion steps –(c1) or (c2)– responsible for such growth. From the definition
of trace tree and a careful analysis of the completion steps we can make the following observation.

Observation 3. Let T = (V,E) be the trace tree of I. For each (v1, v2, `), (v2, v3, `
′) ∈ E there

are d1, . . . , dk ∈ ∆I and roles r1, . . . , rk−1 such that

1. d1 = tg(v2) ∈ v1 and d2, . . . , dk ∈ v2, with dk = tg(v2); and

2. tpI(di)→1
ri

tpI(di+1) for all i < k;

3. if ` = `′ then ` = 1.

Using the structural properties of T , we show that ∆I is finite. The intuition behind the proof
is as follows: since each single application of either (c1) or (c2) introduces only a finite number
of objects to the domain ∆I , then each v ∈ V is finite; and moreover, each such v has finitely
many descendants. Hence, we only need to show that every branch in T has finite length to
prove that V is finite (and thus ∆I is finite too). What we have just explained, it is actually a
well-known result.

Lemma 3.20 (König’s Lemma). Every finitely branching tree has infinitely many vertices iff
it has at least one infinite simple path.

Proposition 3.21. Let T = (V,E) be the trace of I. Every simple path v0 . . . , vn in T has
length at most 2|TP(Tf)|.
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Proof. Assume towards a contradiction that there is a path in v0 · · · vn with v0 the root of T and
n > 2|TP(Tf)|. Let us consider the sequence of triggers associated to this path tg(v1), . . . , tg(vn).
Since the number of triggers exceeds 2|TP(Tf)|, there must be i, j with 1 ≤ i < j ≤ n and such
that tpI(tg(vi)) = tpI(tg(vj)) and j > i+1. Using repeatedly the arguments from Observation 3
along the path vi−1 . . . vj , we obtain that there is a sequence of domain elements d0, . . . , dk and
roles r0, . . . , rk−1 such that

1. d0 = tg(vi) ∈ vi−1, d1 ∈ vi, and dk = tg(vj) ∈ vj−1;

2. tpI(d`)→1
r`

tpI(d`+1) for ` < k.

3. d0, . . . , dk contains all elements tg(vi), tg(vi+1) . . . , tg(vj);

From tpI(tg(vi)) = tpI(tg(vj)) and Point 2 above we can conclude that

tpI(d0), r0, . . . , rk−1, tpI(dk)

is a finmod cycle in Tf . Since all finmod cycles in Tf have been reversed, we have

tpI(d0) 1↔1
r0

tpI(d1) 1↔1
r1
· · · 1↔1

rk−1
tpI(dk). (3.22)

Since d0 = tg(vi) ∈ vi−1 and d1 ∈ vi, d1 was generated by the application of a completion
step treating d0. We claim that, this completion rule must be (c2). Indeed, assume set vi was
introduced by an application of (c1) then vi = {d1}, and Tf entails that tpI(d0)→1

s tpI(d1) for
some role s. From the latter and (3.22) we get

tpI(d0)→1
s tpI(d1)→1

r−0
tpI(d0)

which then would imply that there is a finmod cyle whose reversal ensures tpI(d1)→1
s− tpI(d0)

holds. This contradicts the assumption that d1 was introduced by an application of (c1).
From (3.22), and point 3 in Observation 3 we can conclude that all elements d1, . . . , dk were

introduced by the same application of (c2). Now, observe that we have d1 ∈ vi and dk ∈ vj−1 and
j > i+ 1, vi 6= vj−1, which implies that d1 and dk were introduced by two different completion
steps, hence a contradiction.

Proposition 3.21 give us the missing argument for proving the desired result.

Lemma 3.22. ∆I is finite.

We are now in the position to prove the main result of this section.

Proof of Theorem 3.15. Let T be a Horn-ALCFI TBox, and Tf = finClosure(T ).

For the proof of Theorem 3.15, we show the equivalent statement:

(?) if Tf 6|= K v C, then T 6|=fin K v C.
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Assume that Tf 6|= K v C. Then, there is a model J of Tf such that there is some d ∈ ∆J

with d ∈ KJ and d 6∈ CJ . Let t = tpJ (d), note that by definition 3.7 t ∈ TP(Tf). Now, let I
be the interpretation constructed in Definition 3.10. By (3.21), there exists d′ ∈ ∆I such that
tpI(d′) = t. Further, by lemmata 3.19 and 3.22, I is a finite model of Tf , and since T ⊆ Tf , I |= T .
By choice we have that d ∈ KI and d′ 6∈ CI , and consequently I witnesses T 6|=fin K v C.

It is worth noticing that although the cycle reversion for Horn-ALCFI might result in an
exponential blow-up of the input TBox, which would lead to a double exponential procedure
for finite model reasoning on Horn-ALCFI. In Chapter 4 we will show that the cycle reversion
technique can be optimized for providing computationally optimal procedure. Recall that an
ExpTime upper bound follows already from the complexity of finite model reasoning in ALCFI.

3.4 Finite Model Reasoning in Horn-ALCFI

In this section, we will show how the cycle reversion technique in the previous section and the
construction of finite models can be extended to show that finite model reasoning on Horn-
ALCQI can be reduced to unrestricted reasoning. In fact, an easy consequence of Theorem 3.15
and Theorem 3.14 is the following.

Corollary 3.23. Finite model subsumption w.r.t. a Horn-ALCFI TBox T can be reduced to
subsumption w.r.t. finClosure(T ).

Furthermore, using the construction of finite models in Section 3.3.1 we can show that finite
model reasoning w.r.t. a TBox T is equivalent to reasoning (on unrestricted models) w.r.t. Tf .
Since all (finite) TBox reasoning tasks are reducible to (finite) concept satisfiability it suffices
to show the following.

Theorem 3.24. Let T be a Horn-ALCFI TBox, and A a concept name.

A is finitely satisfiable w.r.t. T iff A is satisfiable w.r.t. Tf .

Proof.

(⇒) Assume that A is finitely satisfiable w.r.t. T . We have by Theorem 3.14 that all finite
models of T are models of Tf since all the added axioms are entailed by T in finite models,
the it follows that A is satisfiable w.r.t. Tf .

(⇐) Assume that A is satisfiable w.r.t. Tf . Then, there is a type t for Tf with A ∈ t, that is
realized in the interpretation I constructed as in Definition 3.10, i.e., there is some d ∈ ∆I

with tpI = t, and moreover, d ∈ AI . Since T ⊆ Tf we get that I is also a finite model of
T by Lemmata 3.22 and 3.19. Hence, A is finitely satisfiable w.r.t. T .
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We cannot obtain directly the same result for reasoning tasks involving the ABox, namely, for
consistency and instance checking. However, we can modify the construction from Definition 3.10
as to consider also an ABox. More precisely, let (T ,A) be a Horn ALCFI ontology. Further,
assume that A is consistent w.r.t. Tf . Our aim is to construct a finite model J of A (and thus
also of T ).

Definition 3.12 (finite ABox completion). The interpretation J is defined starting from the
interpretation J0 whose domain ∆J0 contains one element for every ABox individual, and an
element dt for each t ∈ TP(Tf). More precisely, we set

∆J0 = Ind(A) ∪ { dt | t ∈ TP(Tf) }

AJ0 = { a ∈ Ind(A) | A ∈ tpA(a) } ∪ {dt | A ∈ t }

rJ0 = { (a, b) | r(a, b) ∈ A }

(3.23)

where tpA(a) := {A ∈ CN(T ) | A, Tf |= A(a)}.

J is then the result obtained from completing J0 using the same completion steps (c1), (c2), and
(c3) from Definition 3.10 respecting the priority of the step applications. Recall that application
of (c1) has priority over applications of (c2). 4

In order to to show that the construction of J is well-defined and yields a finite model
of A and Tf , we proceed as in Section 3.3.1. However, we need to make some adjustments to
the arguments. In particular, we cannot ensure that J satisfies invariant (i2). Indeed, for an
assertion r(a, b) ∈ A it might be the case that neither tpJ (a)→r tpI(b) nor tpJ (b)→r− tpJ (a).
Still, we can prove that the construction of J satisfies the following invariant.

(i2′) if (d, d′) ∈ rI \ (Ind(A)× Ind(A)), then we have tpI(d)→r tpI(d′) or tpI(d′)→r− tpI(d).

With that adjustment in place, one can prove that the construction of J satisfies the
invariants (i1), (i2′) and (i3). The initial interpretation J0 satisfies all the invariants. Indeed,
(i1) is trivially satisfied by the definition in (3.23). Further, since rJ0 \(Ind(A)×Ind(A)) = ∅, (i2′)
is satisfied too. Moreover, given that A is consistent w.r.t. Tf , the standard name assumption
ensures that (i3) is satisfied. To show that each of the rules (c1) to (c3) preserves the invariants
the exact same arguments as in the proof of Lemma 3.17 apply. Hence we have the following.

Proposition 3.25. Each application of a completion step during the construction of J preserves
the invariants (i1), (i2′) and (i3).

Using Proposition 3.25, we can now show that J is a model of A and Tf .

Proposition 3.26. J is a model of A and Tf .
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Proof. The proof that J |= Tf is the same as in the proof of Lemma 3.19, using Proposition 3.25.
It remains to show that for every assertion α ∈ A, J |= α. This is a consequence of the definition
of J . Indeed, for every individual a, if α = A(a) ∈ A, then A ∈ tpA(a) which by the definition
of J implies that a ∈ AI . Further, if α = r(a, b) ∈ A then (a, b) ∈ rJ .

Lastly, we need to show that J is finite, but this follows directly from Proposition 3.21.

Proposition 3.27. ∆J is finite

We now have all the ingredients to show the main result of this section.

Theorem 3.28. Let T be a Horn-ALCFI TBox and A an ABox. Then A is finitely consistent
w.r.t. T iff A is consistent w.r.t. Tf .

Proof.

(⇒) Assume that A is finitely consistent w.r.t. T . We need to show that A is consistent
w.r.t. Tf . This is a consequence of the observation that all CIs in Tf \ T are entailed by
the original TBox in finite models, as provided by Theorem 3.14.

(⇐) Assume that A is consistent w.r.t. Tf . Since T ⊆ Tf , we get that the interpretation J
constructed above is also a finite model of A and T by Propositions 3.27 and 3.26. Hence,
A is finitely satisfiable w.r.t. T .

3.5 From Horn-ALCFI to Horn-ALCQI

We now show that our results for finite satisfiability and finite subsumption, i.e., the reasoning
tasks that do not involve an ABox extend straightforwardly from Horn-ALCFI to Horn-ALCQI.
In particular, we can convert a Horn-ALCQI TBox T into a Horn-ALCFI TBox T ′ such that
finite (un)satisfiability is preserved by replacing each CI K v (> n r K ′) in T with the following
inclusions, for 1 ≤ i < j ≤ n:

K v ∃r.Bi, Bi v K ′, Bi uBj v ⊥ (3.24)

While an easy unraveling argument can be used to prove that this reduction is correct in the
presence of infinite models, more care is required in the finite case.

Proposition 3.29. T is finitely satisfiable iff T ′ is finitely satisfiable.
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Proof. The “⇐" direction is trivial since every model of T ′ is also a model of T . For the “⇒”
direction, let J be a finite model of T . We construct a finite model Ĵ of T ′ by taking n copies
of J and ‘rewiring’ all role edges across the different copies such that the concept names Bi can
be interpreted in a non-conflicting way.

Specifically, since J satisfies K v (> n r K ′), we can choose a function

succ : KJ × {0, . . . , n− 1} → ∆J

such that the following conditions are satisfied:

• for all d ∈ KJ and i < n: (d, succ(d, i)) ∈ rJ and succ(d, i) ∈ (K ′)J ;

• for all d ∈ KJ and i < j < n: succ(d, i) 6= succ(d, j).

Then define the desired interpretation Ĵ by setting

∆Ĵ = {di | d ∈ ∆J and i < n}

EĴ = {di | d ∈ EJ and i < n}, for all E ∈ NC \ {B0, . . . , Bn−1}

BĴi = {di | d ∈ ∆J } for all i < n

sĴ = {(di, ei) | (d, e) ∈ sJ and i < n}, for all s ∈ NR \ {r}

rĴ = {(di, ei) | (d, e) ∈ rJ , i < n, and d /∈ KJ or e 6= succ(d, j) for any j}

∪ {(di, e(i+j) mod n) | (d, e) ∈ rJ , i, j < n, e = succ(d, j)}

It remains to verify that J is indeed a model of T ′. Clearly, the CIs in (3.24) are satisfied.
To verify that all concept inclusions in T are satisfied by J , we observe that the construction
ensures that the number of r-successors (and -predecessors) in any A ∈ CN of every (x, i) is the
same as that for x.

We first claim that, for every d ∈ ∆J and every s-successor e of d in J , the i-th copy of d
in Ĵ has exactly one copy of e as an s-successor:

Claim 1. Let s be a role, di ∈ ∆J , and let {e ∈ ∆J | (d, e) ∈ sJ } = {e1, . . . , e`} for some ` ≥ 0.
Then {ej ∈ ∆J | (di, ej) ∈ sJ } = {ej1

1 , . . . , e
j`

` }, for some j1, . . . , j` ∈ {0, . . . , n− 1}.

This claim is implied by the construction of sJ : consider a given di ∈ ∆J and (possibly inverse)
role s. If s is neither r nor r−, then every ek contributes exactly one s-successor eik of di. The
same holds if s = r and d /∈ KJ . If s = r and d ∈ KJ , then each ek = succ(d, j) for some
j contributes exactly one s-successor e(i+j) mod n

k of di, and every other ek contributes eik. For
s = r−, then every ek ∈ KJ with d = succ(ek, j) for some j contributes e(i−j) mod n

k , and every
other ek contributes eik.

As an immediate consequence, we obtain that all qualified and unqualified number restrictions
in d ∈ ∆J are preserved in every di ∈ ∆J :
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Fact. Let di ∈ ∆J and D = (./ s n C) where ./ ∈ {6,>}, s is a role or inverse role, and C is
either a conjunction of concept names, or the negation of such a conjunction, or >, or ⊥. Then
d ∈ DJ iff di ∈ DĴ .

This can be concluded from the previous claim and the observation that e and eji satisfy the
same concept names. The fact includes the cases s = r and s = r−, and it implies that existential,
and universal restrictions are preserved – for the latter it is necessary to allow that C is a negated
conjunction.

We are now ready to prove that Ĵ is a model of T ′, proceeding by different types of CIs. We
distinguish the following cases.

• L v A and L v ⊥, both in T . These are satisfied because they are satisfied by J and
due to the construction: every d in J and every di in Ĵ are instances of the same non-Bi
concept names.

• L v ∃s.L′ in T . Let di ∈ LJ . Then d ∈ LJ due to the construction. Since J satisfies
the axiom, d ∈ (> 1 s L′)J . With the previous fact, we conclude di ∈ (> 1 s L′)J , hence
di ∈ (∃s.L′)J . This argument includes the cases s = r and s = r−.

• L v ∀s.L′ in T . In the argument above, replace “∈ (> 1 s L′)...” with “/∈ (> 1 s ¬L′)...”.

• L v (6 1 s L′) in T . Then di ∈ LJ implies d ∈ LJ , hence d ∈ (6 1 s L′)J and, due to
the previous fact, di ∈ (6 1 s L′)J .

• L v (> m s L′) in T . Apply the same argument as above.

• Bi v K ′ and Bi uBj v ⊥. Follows from the construction.

• K v ∃r.Bi. Let dj ∈ KJ , which implies d ∈ KJ .
Let e = succ(d, (i− j) mod n). Then the construction yields that (dj , ei) ∈ rJ — because
i = (j + (i− j) mod n) mod n — and ei ∈ BJi . Hence dj ∈ (∃r.Bi)J .

It follows from Proposition 3.29 and Theorem 3.24 that a Horn-ALCQI TBox T is finitely
satisfiable if and only if T ′f is satisfiable.

Conclusions

In this Chapter, we have shown that it is possible to extend the cycle reversion technique
introduced for DL-LiteFcore by Rosati [117] to more expressive Horn DLs. As described at the
beginning of the chapter, the cycle reversion technique amounts to add axioms to the TBox of
an ontology in order to axiomatize the entailments w.r.t. finite models of the ontology. Such
an axiomatization allows then to reduce finite model reasoning to reasoning w.r.t. unrestricted
reasoning. In particular, we have shown that for DL-LiteFHorn the simple treatment of cycles
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involving only concepts describing domain and range restrictions for roles (Definition 3.5) it is
enough for providing an axiomatization of finite model entailment w.r.t. DL-LiteFHorn TBoxes
(Lemma 3.9). Moreover, to show that the axiomatization given by Tf is complete for aDL-LiteFHorn
TBox T , we provide an explicit construction of a finite model of Tf . The reduction of finite
model (TBox) reasoning in DL-LiteFHorn to unrestricted reasoning also shows that the former
task is no more difficult than the latter –recall that computing Tf can be done in polynomial
time on the size of T (Lemma 3.7).

On the other hand, for the more expressive Horn-ALCFI, extending the cycle reversion
technique requires a more careful analysis. Indeed, due to the presence of qualified number
restrictions and universal restrictions, cycles involve more complex concepts than the simple
domain and range restrictions for roles. We ‘capture’ these concepts using the notion of types
for a Horn-ALCFI TBox T , which are essentially satisfiable concepts w.r.t. T . Using this more
sophisticated notion of cycles involving types, we show that reversing those cycles provides
a complete axiomatization, Tf , of finite model entailment w.r.t. Horn-ALCFI TBoxes (Theo-
rem 3.15). The latter requires a careful construction of a finite model of Tf . The major difficulty
to realize the latter construction is the interaction between different finmod-cycles, which is not
present in the less expressive DL-LiteFHorn. Using the axiomatization provided by Tf , we can
also reduce finite model reasoning in Horn-ALCFI to unrestricted reasoning in Horn-ALCFI.
Although this reduction does not give interesting complexity boundaries for finite model rea-
soning in Horn-ALCFI, it gives a more suitable basis of efficient implementation than the
techniques for full ALCFI based on systems of inequalities. Indeed, recall that an upper bound
for combined complexity of finite model reasoning on Horn-ALCFI follows already from the
complexity of finite model reasoning in ALCFI, which is ExpTime-complete. Further, note
that the definition of cycle-reversion may cause an exponential blow-up on the size of Tf w.r.t.
the size of the original TBox T . In Chapter 4, we will show such an exponential blow-up on Tf

can be avoided by reversing only relevant finmod-cycles in T .

Finally, we have shown that the standard reduction for unrestricted models to eliminate
qualified arbitrary ’at-least’ number restrictions from a Horn-ALCQI TBox also holds in finite
models. Hence extending all the results for Horn-ALCFI to Horn-ALCQI.
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Chapter

4
Consequence Driven Finite Model
Reasoning on Horn-ALCFI

We have shown in Chapter 3 that the axiomatization provided by cycle-reversion yields a reduc-
tion of finite model reasoning in Horn-ALCFI to arbitrary model reasoning in Horn-ALCFI.
However, in the worst-case reversing all the cycles entailed blows up the TBox exponentially.
The latter is a clear indication that from the algorithmic view point cycle-reversion (as defined
in Section 3.3) is not well suited for a direct implementation.

In this section, we build on the results of Chapter 3 to devise a consequence-driven procedure
for realizing finite model reasoning in Horn-ALCFI. Consequence-driven procedures, such as
CEL, CB, and ELK [14, 79, 80], underly modern and highly efficient reasoners for Horn-DLs.
While traditional reasoning procedures in DLs based on tableaux algorithms aim to build a
model of a given ontology that violates a subsumption test, consequence-driven ones derive
subsumptions relations explicitly using inference rules. The main advantage of using such
procedures is that subsumption relations are computed ‘all at once’ in a goal-directed fashion,
instead of enumerating ‘all possible’ pairs of concepts and building counter-models. The latter
approach for performing reasoning was first proposed for the description logic EL++ [13], and
later extended to the Horn-SHIQ description logic [79], which extends Horn-ALCQI with
transitive roles (S) and role hierarchies (H). The consequence-driven procedures developed for
these Horn DLs work by ‘saturating’ (or completing) the input axioms by exhaustively applying
a set of rules. These procedures are purely syntactic, and for that reason it is usually the case
that the input axioms are considered to be in certain normal form.

We present first a set of rules for saturating a Horn-ALCFI TBox T and deriving all
subsumptions holding in finite models of T . In Section 4.3, we then expand them to finite ABox
consistency and thus to finite instance checking.
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R1
K uA v A

R2
K v >

R3
K v Ai

d
Ai v C

K v C
R4

K v ∃r.K ′ K ′ v ∀r−.A
K v A

R5
K v ∃r.K ′ K v ∀r.A
K v ∃r.(K ′ uA) R6

K v ∃r.K ′ K ′ v ⊥
K v ⊥

R7

K v ∃r.K1 K v ∃r.K2 K1 v A

K v (6 1 r A) K2 v A

K v ∃r.(K1 uK2)

R8

K v ∃r.K ′ K ′ v ∃r−.K1 K v A
K ′ v (6 1 r− A) K1 v A

K v A1 for any A1 ∈ K1

Table 4.1: Inference rules for Horn-ALCFI

4.1 The Inference Rules

Our procedure starts with a given Horn-ALCFI TBox T which is in a slightly stricter normal
form than the one introduced in Chapter 2, and then exhaustively applies a set of inference
rules. More precisely, we consider axioms of the form

K v ∀r.K ′ and K v (6 1 r K ′), (4.1)

where K ′ must be a concept name A. Recall that K stands for a conjunction of concept names,
and that we regard such conjunctions as sets of concept names.

The inference rules displayed in Table 4.1 are minor variations of the corresponding rules in
the calculus presented by Kazakov [79]1. The main difference of our rules with respect to those
by Kazakov is that our language does not include role hierarchies.

Observe that, rules R1-R8 preserve the normal form in (4.1), and are applied in the sense
that, if the concept inclusions in the precondition (above the line) are already present in the
partially completed TBox, then those in the postcondition (below the line) are added to such
TBox. Moreover, note that Rule R1 is applied only if K u A occurs in the current (partially
completed) TBox, that is, there is a CI of the form K uA v C or K ′ v ∃r.(K uA). The same
is true for rule R2 with K in place of K uA.

We introduce an additional rule R9 which performs a syntactical cycle reversion. Note that
only the ‘first edge’ of each cycle is reversed, and that this is sufficient because the cycle can

1Indeed, Kazakov [79] presents a calculus for the more expressive DL Horn-SHIQ
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be rotated to make any edge the ‘first’ one. In the formulation of this rule, ⊕n means addition
modulo n.

(syntactical cycle-reversion)

R9

Ki v ∃ri.Ki⊕n1

Ki⊕n1 v (6 1 r−i Ai) Ki v Ai
0 ≥ i < n

K1 v ∃r−0 .K0 K0 v (6 1 r0 A1)

Let us consider the following example to illustrate the application of rules R1–R9 to a TBox.

Example 9. Consider the TBox T1 consisting of the following axioms:

A v ∃r.(A uA1 u · · · uAn), (4.2)
A v (6 1 r− A). (4.3)

cycle-reversion from Section 3.3 reverses all of the exponentially many cycles K, r,K with K ⊆
S := {A,A1, . . . , An} and A ∈ K, adding K v ∃r−.K and K v (6 1 r K) for all such K. In
contrast, the calculus avoids introducing ‘irrelevant’ conjunctions K and instead jointly reverses
all these cycles by generating A v ∃r−.S and A v (6 1 r A):

S v A from R1 (4.4)
A v A from R1 (4.5)
S v ∃r.S from (4.2), (4.4),R3 (4.6)
S v (6 1 r− A) from (4.3), (4.4),R3 (4.7)
S v ∃r−.S and (4.8)
S v (6 1 r A) from (4.4), (4.6), (4.7),R9 (4.9)
A v Ai from (4.2), (4.4), (4.5), (4.7), (4.8),R8 (4.10)
A v ∃r−.S from (4.8), (4.10),R3 (4.11)
A v (6 1 r A) from (4.9), (4.10),R3 (4.12)

Z

Note that avoiding to introduce ‘irrelevant’ conjunctions K, as illustrated by Example 9, is a
main feature of consequence-based procedures which enables the excellent practical performance
typically observed for this class of calculi.

The algorithm terminates after at most exponentially many rule applications since there
are only exponentially many different concept inclusions that use the concept and role names
of the original TBox. This of course because the TBox is in normal form, and modulo (simple)
equivalence (recall that we regard conjunctions as sets of concept names). Each rule application
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can be performed in polynomial time, which is easy to see for the rules R1–R8. For R9, the
crucial observation is that it suffices to consider all conjunctions K0,K1 and to check whether
they are involved in any cycle. The latter can easily be done by a variation of directed graph
reachability, where the nodes of the graph are the conjunctions that occur in the current TBox
and the edges come from inclusions K v ∃r.K ′.

4.2 Soundness and Completeness

In this section, we show that our calculus is sound and complete for concept satisfiability. The
following theorem states this result more precisely.

Theorem 4.1. Let T be a Horn-ALCFI TBox, T̂ be obtained by exhaustively applying Rules
R1–R9, and let A0 be a concept name. Then A0 is finitely satisfiable w.r.t. T iff A0 v ⊥ /∈ T̂ .

Proof of Theorem 4.1. “⇒:” The statement follows from the soundness of the rules R1–R9 w.r.t.
finite model entailment. Soundness of each application of rules R1–R8 is straightforward since
each rule derives only logical consequences of the axioms in its premises. Further, soundness of
R9 can be shown using Lemma 3.13. Indeed, if the premisses of R9 are satisfied, i.e., there are
conjunctions K0, . . .Kn−1 with Ki v ∃ri.Ki⊕n1, Ki⊕n1 v (6 1 r−i Ai), and Ki v Ai are axioms
in the partially closed TBox T , then, by definition K0, r0, . . . , rn−1,K1 is a finmod-cycle in T ,
and the axioms added by R9 are entailed in finite models of T .

The proof of the “⇐:” direction of Theorem 4.1 requires a more subtle analysis. We will
proceed in two steps: Assume that A0 v ⊥ /∈ T̂ .

Step 1: We construct a (possibly infinite) model Î of T̂ with AÎ0 6= ∅.

Step 2: We show that Î is actually a model of Tf .

Note that Step 2 allows us to reach our goal since, by Theorem 3.24, A0 satisfiable w.r.t.
Tf implies that A0 is finitely satisfiable w.r.t. T .

Notation

We next introduce some notation that will be relevant for the rest of this chapter.

• For a TBox T , we write T̂ to denote the saturation of T w.r.t. the rules R1–R9.

• We write KON(T̂ ) to denote the set of all conjunctions K such that K occurs in T̂ and
K v ⊥ /∈ T̂ .

• For two conjunctions K,K ′ and a concept name A, we will write K `T̂ K
′ as a shortcut

for K v A ∈ T̂ for all A ∈ K ′.
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With this notation at hand, we are ready to proceed with the first step of the proof of the “⇐:”
direction of Theorem 4.1.

Proof of Theorem 4.1 “⇐:”

Step 1: construct a model of T̂ . We aim to construct a model Î of T̂ . The domain ∆Î

consists of finite words d = K1K2 · · ·Kn ∈ KON(T̂ )∗. For a word d = K1K2 · · ·Kn we use tail(d)
to denote Kn. We start with an initial interpretation Î0, such that starting with

∆Î0 = KON(T̂ )

AÎ0 = {K ∈ KON(T̂ ) | K v A ∈ T̂ }

rÎ0 = ∅

We assume w.l.o.g. that A0 actually occurs in T . Further, since A0 v ⊥ /∈ T̂ , ∆Î contains the
conjunction K = A0 and thus AÎ0 6= ∅. The interpretation Î will be the result of exhaustively
applying the following rule to Î0:

(†) if there is some d ∈ ∆Î with tail(d) v ∃r.K ′ ∈ T̂ , K ′ maximal with this property, and
d 6∈ (∃r.K ′)Î , then add a fresh element e = dK ′ to ∆Î , add (d,K ′) to rÎ , and add dK ′ to
AÎ whenever K ′ v A ∈ T̂ .

Now, to conclude Step 1 it remains to show that Î is a model of T̂ .

Lemma 4.2. Î |= T̂ .

Proof. The proof amounts to a case distinction over the forms of CIs that can be present in T̂ ,
in each case relying on the fact that T̂ is closed under the rules of the calculus. Let K v C ∈ T̂ .
We distinguish the following cases.

• case ‘C = ⊥’.

If there were some d ∈ K Î , then the construction of Î would ensure that tail(d) `T̂ K,
and from K v ⊥ ∈ T̂ and R3 we would get tail(d) v ⊥ ∈ T̂ , which is impossible, as
the following inductive argument shows. If d = K ∈ KON(T̂ ), the claim follows from
the construction in the initial step. If |d| > 1, then d was added due to some element d′

with tail(d′) v ∃r.tail(d) ∈ T̂ . Now tail(d) v ⊥ ∈ T̂ implies tail(d′) v ⊥ ∈ T̂ due to R6,
contradicting the inductive hypothesis.

• case ‘C = A’.

Let d ∈ K Î . Then tail(d) `T̂ K by construction of Î. Together with K v A ∈ T̂ , Rule R3

yields tail(d) v A ∈ T̂ , hence d ∈ AÎ by construction of Î.
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• case ‘C = ∃r.K ′’.

Let d ∈ K Î and assume tail(d) = K ′′. By construction of Î, we have K ′′ `T̂ K. Further,
from K v ∃r.K ′ ∈ T̂ , by R3, K ′′ v ∃r.K ′ ∈ T̂ . Then the construction ensures that
d′ ∈ (∃r.K ′)Î as required.

• case ‘C = ∀r.A’.

Let d ∈ K Î and (d, d′) ∈ rÎ . Further, let tail(d) = K1. Since K v ∀r.A ∈ T̂ and K1 `T̂ K,
we get by Rule R3 that K1 v ∀r.A ∈ T̂ . We distinguish the following cases.

(i) d′ = dK2 i.e., d′ was added after d because of some K1 v ∃r.K2 ∈ T̂ , with K2

maximal with this property. Since K1 v ∀r.A ∈ T̂ and K1 v ∃r.K2 ∈ T̂ , we get by
R5 that K1 v ∃r.(K2 u A) ∈ T̂ . Maximality of K2 implies that A ∈ K2. By R1, we
have K2 v A ∈ T̂ and thus d′ ∈ AÎ by construction of Î.

(ii) d = d′K1 i.e., d was added after d′ because of some K2 v ∃r−.K1 ∈ T̂ with K2 =
tail(d′). Since K1 v ∀r.A ∈ T̂ and K2 v ∃r−.K1 ∈ T̂ , we get by rule R4 that
K2 v A ∈ T̂ . Thus, d′ ∈ AÎ by construction of Î.

• case ‘C = (6 1 r A)’.

Let d ∈ K Î and let K ′′ = tail(d). Assume that there are e1, e2 with (d, ei) ∈ rÎ and
ei ∈ AÎ for i = 1, 2. We have K ′′ `T̂ K by construction of Î and thus, by Rule R3,
K ′′ v (6 1 r A) ∈ T̂ .

Let Ki = tail(ei); hence Ki v A ∈ T̂ , i = 1, 2. We distinguish two cases according to the
construction of Î.

(i) Each ei was added by K ′′ v ∃r.Ki and Ki is maximal with this property. Hence
ei = dKi. Since K ′′ v (6 1 r A) ∈ T̂ and Ki v A ∈ T̂ , we have by R7 that
K ′′ v ∃r.(K1 uK2) ∈ T̂ . The maximality conditions on both Ki imply K1 ⊆ K2 and
K2 ⊆ K1. Hence, e1 = e2, and d ∈ (6 1 r A)Î as required.

(ii) d = e1K
′′ and e2 = dK2. Hence d is added after e1 due to some K1 v ∃r−.K ′′ ∈ T̂

with K ′′ maximal, and e2 is added after d due to some K ′′ v ∃r.K2 ∈ T̂ with K2

maximal. Since K ′′ v (6 1 r A) ∈ T̂ and Ki v A ∈ T̂ , we get by rule R8 that
K1 v A′ ∈ T̂ for every A′ ∈ K2. Then, by construction of Î, we have e1 ∈ K Î2 and
thus e2 cannot be added as an r-successor of d. Hence, d ∈ (6 1 r A)Î .

We now proceed with the second step of the proof of the “⇐:” direction of Theorem 4.1.

Step 2: T̂ is satisfiable implies Tf is satisfiable. We show that Î is a model of Tf , which
is significantly more difficult to prove than Lemma 4.2 due to the fact that Tf is obtained by
reversing all cycles in T whereas the calculus is more careful to reverse only the ‘relevant’ ones,
as explained above. We start with the observation that, when constructing Tf , it suffices to
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reverse only maximal cycles. More precisely, a cycle K1, r1,K2, . . . ,Kn in a TBox T is maximal
if every Kj+1 is (subset) maximal with T |= Kj v ∃rj .Kj+1, for 1 ≤ j < n.

To illustrate the notion of maximal cycle, consider the TBox T1 from Example 9:

A v ∃r.(A uA1 u · · · uAn),
A v (6 1 r− A).

Then, for example,

{A}, r, {A} and {A,A1, . . . , An}, r, {A}, r, {A,A1, . . . , An}

are both cycles in T1, but not maximal cycles since T1 |= A v ∃r.(A u A1 u · · · u An) and
T1 |= A u A1 u · · · u An v ∃r.(A u A1 u · · · u An). In fact, there are (at least) exponentially
many cycles in T1: consider all those of the form K, r,K with K ⊆ S := {A,A1, . . . , An}; and
the maximal cycle from those is S, r, S.

Let T max
f be the variation of Tf that is obtained by reversing only maximal cycles. We now

show the following.

Lemma 4.3. Tf is equivalent to T max
f .

Proof. It suffices to show that, for every cycle C in a TBox S, there is a maximal cycle Ĉ in S
whose reversal implies the reversal of C. More precisely, let C = K1, r1,K2, . . . ,Kn be a cycle
in S. We show that there is a maximal cycle Ĉ = K̂1, r1, K̂2, . . . , K̂n whose reversal – that is,
adding the axioms K̂j+1 v ∃r−j .K̂j and K̂j v (6 1 rj K̂j+1) to S– will lead to S implying the
reversal of C. We proceed in three steps.

• First, we construct Ĉ = K̂1, r1, K̂2, . . . , K̂n iteratively as follows. Initially, set K̂j = Kj for
every j = 1, . . . , n. Then exhaustively apply the following step.

While there is some L̂j+1 ) K̂j+1 maximal with S |= K̂j v ∃rj .L̂j+1 for some
j = 1, . . . , n− 1, set K̂j+1 = L̂j+1.

The iteration terminates because the supply of conjunctions is bounded and C’s length is
fixed.

• Second, we verify that Ĉ is indeed a cycle. It suffices to show that one application of the
construction step does not destroy the cycle property, i.e., by replacing K̂j+1 with the
larger L̂j+1, the four subsumptions involving K̂j+1 now hold for L̂j+1:

– S |= K̂j v ∃rj .L̂j+1 holds due to the step’s precondition.

– S |= L̂j+1 v ∃rj .K̂j+2 holds because S |= L̂j+1 v K̂j+1 v ∃rj .K̂j+2.

– S |= L̂j+1 v (6 1 r−j K̂j) holds because S |= L̂j+1 v K̂j+1 v (6 1 r−j K̂j).

– S |= K̂j+2 v (6 1 r−j+1 L̂j+1) holds because S |= K̂j+2 v (6 1 r−j+1 K̂j+1) and
S |= L̂j+1 v K̂j+1.
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• Third, we show that the reversal of Ĉ implies the reversal of C. Again, it suffices to show
that this is the case when Ĉ is obtained from C applying one single construction step. Let
S+ be the TBox obtained from S after reversing Ĉ, that is, S+ equals S plus the following
2j axioms.

. . . L̂j+1 v ∃r−j .K̂j K̂j+2 v ∃r−j+1.L̂j+1 (∗) . . .

. . . K̂j v (6 1 rj L̂j+1) L̂j+1 v (6 1 rj+1 K̂j+2) . . .

To prove that all 2j axioms that would be added by reversing C are implied by S+, it
suffices to show that S+ |= K̂j+1 v L̂j+1 (which implies S+ |= K̂j+1 ≡ L̂j+1). Consider
an arbitrary model Î |= S+ and an instance d of K̂j+1 in Î. Since Ĉ is a cycle, there
is some e with (d, e) ∈ rIj+1 and e ∈ K̂Ij+2. Then, due to the above axiom (∗) in S+,
there is some d′ with (d′, e) ∈ rIj+1 and d′ ∈ L̂Ij+1. Now, since C is a cycle in S – i.e.,
K̂j+2 v (6 1 r−j+1 K̂j+1) ∈ S – and because L̂j+1 ⊇ K̂j+1, we obtain that d′ = d. Hence
d is an instance of L̂j+1.

Using the previous Lemma, we can prove the desired result: let T 0
f , T 1

f , . . . be the sequence of
TBoxes obtained by starting with T 0

f = T and then exhaustively closing maximal cycles, that
is, T max

f is the limit of this sequence; we prove by induction on i that Î is a model of each T if ,
thus of T max

f .

However, we still have to deal with the complication that T max
f ⊆ T̂ needs not hold. As

illustrated by Example 9, this is actually a main feature of our calculus because we are avoiding
to introduce conjunctions K that are ‘irrelevant’ for the reasoning task at hand.

We address this issue by showing that the relevant consequences of all concept inclusions in
T max

f \ T̂ are reflected in T̂ , even if the inclusions themselves are missing. To make this more
precise, note that T max

f \ T̂ only contains CIs of the form

(i) K v ∃r.K ′ and

(ii) K v (6 1 r K ′).

Note that, while T and T̂ are in the stricter normal form described in (4.1), cycle-reversion may
have introduced CIs of the form (ii) with arbitrary conjunctions K ′.

For CIs of the form (i), we observe that K,K ′ may be irrelevant: they may not occur in
T̂ . We show that there is some conjunction K̂ ′ that satisfies K̂ ′ `T̂ K ′ and which intuitively
replaces K ′ such that for all relevant conjunctions K̂ with K̂ `T̂ K, the inclusion K̂ v ∃r.K̂ ′ is
contained in T̂ .

For CIs of the form (ii), we show analogously that there is a replacement A of K ′ such that
for all relevant conjunctions K̂ with K̂ `T̂ K, T̂ contains K̂ v (6 1 r A). However, in this case
the fact that A is a replacement of K ′ has to be formalized even a bit more carefully. We cannot
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require that K ′ `T̂ A, again because K ′ may be irrelevant. Instead, we need that K̃ ′ `T̂ K ′

implies K̃ ′ v A ∈ T̂ for all relevant K̃ ′.
What we have just discussed is Lemma 4.5 below. In order to show that the above concept

inclusions K̂ v ∃r.K̂ ′ and K̂ v (6 1 r A) all are in T̂ , we consider the sequence of TBoxes
T 0

f , T 1
f , . . . that are obtained by repeatedly reversing maximal cycles and whose limit is T max

f .
Note that T i+1

f is produced from T if by reversing one cycle, and that cycles are defined in terms
of semantic entailment of CIs of the form (i) and (ii) by T if , rather than syntactic containment.
We first establish an auxiliary lemma that helps in bridging this gap.

Since, by assumption, the original TBox T is in the stricter normal form introduced at the
begin of the chapter (cf. Equation 4.1), all TBoxes T if contain ∀-restrictions only in the form
∀r.A. However, due to cycle reversion, functionality restrictions may occur in the form (6 1 r L′)
for arbitrary conjunctions L′. Every T if and every conjunction K that is satisfiable w.r.t. T if
gives rise to a TBox (T if )K as follows:

1. for all CIs L v C ∈ T if with T if |= K v L and C of one of the forms ∃r.L′, ∀r.A, and
(6 1 r L′), include K v C;

2. then exhaustively apply rules R5 and R7′, where R7′ is obtained from R7 by replacing
containment in T̂ with entailment in T if :

R7′

K v ∃r.K1 K v ∃r.K2 T if |= K1 v K ′

K v (6 1 r K ′) T if |= K2 v K ′

K v ∃r.(K1 uK2)

It is easy to see that T if |= (T if )K . Note that Step 1 above addresses the fact that K need not
occur syntactically in T if .

The proof of the following lemma uses (T if )K to introduce two variants of the canonical model
for T if and to extract the required witnesses for entailments.

Lemma 4.4. For every i ≥ 0, the following hold.

1. If T if |= K v ∃r.K ′ and K is satisfiable w.r.t. T if then there is some conjunction L′ with

(a) T if |= L′ v K ′ and

(b) (T if )K 3 K v ∃r.L′.

2. If T if |= K v (6 1 r K ′) and T if |= K ′ v ∃r−.K such that K is maximal with this property
and K ′ is satisfiable w.r.t. T if , then there are L,L′ with

(a) T if |= K v L, and

(b) T if |= K ′ v L′, and

(c) T if 3 L v (6 1 r L′).
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Proof. We begin by constructing a variant of the canonical model for T if that will be used
in the proofs of both points of the lemma. Let K be a conjunction satisfiable w.r.t. T if . The
interpretation IK is defined as follows. The domain ∆IK consists of words over the alphabet built
up of all conjunctions of concept names that occur in T if and are satisfiable w.r.t. T if . Initially,
∆IK is the singleton set {d0} for d0 = K, and the concept and role names are interpreted such
that

tpIK
(d0) = {A | T if |= K v A}

rIK = ∅

Then we add the required successors to the root node d0. For every K v ∃r.L′ ∈ (T if )K such
that L′ is maximal with this property,

• add a fresh element e = KL′ to ∆IK ;

• add the pair (d0, e) to rIK ;

• interpret concept names such that tpIK
(e) = {A | T if |= L′ v A}.

Finally, we exhaustively generate required successors of non-root elements. For every d = wL ∈
∆IK with d 6= d0, and every inclusion L v ∃r.L′ such that T if |= L v ∃r.L′, L′ is maximal with
this property, and d /∈ (∃r.L′)Î ,

• add a fresh element e = wLL′ to ∆IK ;

• add the pair (d, e) to rIK ;

• interpret concept names such that tpIK
(e) = {A | T if |= L′ v A}.

Note the difference between the treatment of the root node d0 and all other nodes: for d0, we
consider inclusions K v ∃r.L′ that are syntactically contained in (T if )K ; while for all other
nodes, we consider inclusions that semantically follow from T if (equivalently: from (T if )K). We
make the following claim to finish the proof, and we provide a proof for it latter.

Claim 2. IK |= T if .

To prove Point (1) in the statement of the Lemma, assume T if |= K v ∃r.K ′ with K satisfiable
w.r.t. T if . Since IK |= T if and due to Step 1 of the construction of IK , there is some L′ with
K v ∃r.L′ ∈ (T if )K and T if |= L′ v K ′.

To prove Point (2), assume T if |= K v (6 1 r K ′) and T if |= K ′ v ∃r−.K with K maximal
and K ′ – and thus K – satisfiable w.r.t. T if . We construct an interpretation J from the models
IK and IK′ as follows. Start with two copies of IK′ and one of IK , pairwise disjoint. Since
T if |= K ′ v ∃r−.K with K maximal, the root di of each of the two copies of IK′ has an r−-
successor ei of type K. Delete the subtrees starting at ei and replace the r-edges (ei, di) with
(d0, di), where d0 is the root of the copy of IK .

Now the proof of the previous claim that IK and IK′ are models of T if can be easily refined
to yield that
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• all axioms L v C ∈ T if where C is of the form A,⊥,∃s.L′,∀s.A are satisfied by J ;

• if an axiom L v (6 1 s L′) ∈ T if is violated by J , then it is violated by the root of the
copy of IK , i.e., s = r and d0 ∈ LJ but d0 /∈ (6 1 r L′)J .

Since T if |= K v (6 1 r K ′) but obviously J 6|= K v (6 1 r K ′), we have that J 6|= T if .
Consequently, there is an axiom L v (6 1 r L′) ∈ T if which is violated by d0; that is, d0 ∈
LJ \ (6 1 r L′)J . This establishes (c) directly and implies (a) and (b): first, by construction
of the IK′ , we get T if |= K ′ v L′, which is (b). Second, with L v (6 1 r L′) ∈ T if and (b), we
obtain T if |= L v (6 1 r K ′). Since K is maximal with this property, we have L ⊆ K, which
implies (a).

It remains to proove the auxiliary Claim 2 used in the previous proof, which amounts to a case
distinction on the form of the axioms in T if .

Proof of Claim 2. Let L v C ∈ T if . We distinguish the following cases.

• C = ⊥. Assume that L has an instance d = wL̂ in IK . Then T if |= L̂ v L due to the
construction of IK ; hence T if |= L̂ v ⊥, which is impossible, as the following inductive
argument shows. If d = K, the claim follows from the assumption that K is satisfiable in
T if . If |d| > 1 then d was added due to some element d′ = wL with T if |= L v ∃r.L̂. Then
T if |= L̂ v ⊥ implies T if |= L v ⊥ ∈ T̂ , contradicting the inductive hypothesis.

• C = A. Let d ∈ LIK with d = wL̂. Then T if |= L̂ v L by construction of IK . Since
L v A ∈ T if , we obtain T if |= L̂ v A; hence d ∈ AIK .

• C = ∃r.L′. Let d ∈ LIK .

In case d = d0 = K, we have that T if |= K v L. Together with L v ∃r.L′ ∈ T if , this implies
that K v ∃r.L′ ∈ (T if )K by Step 1 of the construction of (T if )K . Let K ′ be maximal with
K v ∃r.K ′ ∈ (T if )K and L′ ⊆ K ′. In the construction of IK , we thus create an r-successor
e of d with tpIK

(e) ⊇ L′. Hence d ∈ (∃r.L′)IK .

In case d 6= d0, let d = wK ′. Then T if |= K ′ v L. Together with L v ∃r.L′ ∈ T if , this
implies that T if |= K ′ v ∃r.L′. Then the construction of IK ensures that there is an
r-successor e of d with tpIK

(e) ⊇ L′. Hence d ∈ (∃r.L′)IK .

• C = ∀r.A. Let d ∈ LIK and (d, e) ∈ rIK .

In case d = d0 = K and e = KK ′, we have that T if |= K v L; hence K v ∀r.A ∈ (T if )K
as above. Now e was added for some K v ∃r.K ′ ∈ (T if )K with K ′ maximal. Since (T if )K
is closed under application of R5, we have that K v ∃r.(K ′ u A) ∈ (T if )K . Maximality
of K ′ implies that A ∈ K ′. The construction of IK then implies that A ∈ tpIK

(e); i.e.,
e ∈ AIK .
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In case e = d0 = K and d = KK ′, we have that T if |= K ′ v L; hence T if |= K ′ v ∀r.A (x).
Now d was added for some K v ∃r−.K ′ ∈ (T if )K with K ′. Since T if |= (T if )K , we obtain
T if |= K v ∃r−.K ′. Together with (x), a simple semantic argument implies T if |= K v A;
hence, e ∈ AIK .

In case d = wK1 6= d0 and e = wK1K2, we have that T if |= K1 v L; hence T if |= K1 v ∀r.A
as above. Now e was added because T if |= K1 v ∃r.K2 withK2 maximal. A simple semantic
argument implies T if |= K1 v ∃r.(K2 u A), and maximality of K2 again yields A ∈ K2;
i.e., e ∈ AIK .

In case e = wK1 6= d0 and d = wK1K2, we have that T if |= K2 v L; hence T if |= K2 v ∀r.A.
Now d was added because T if |= K1 v ∃r−.K2. A simple semantic argument implies
T if |= K1 v A, i.e., e ∈ AIK .

• C = (6 1 r L′). Let d ∈ LIK , and let (d, ei) ∈ rIK and ei ∈ (L′)IK for i = 1, 2.

In case d = d0 = K and ei = KKi, we have that (i) T if |= K v L and (ii) T if |= Ki v L′

for i = 1, 2. By construction of (T if )K , (i) and the assumption imply (iii) K v (6 1 r L′) ∈
(T if )K . Now each ei was added for some (iv) K v ∃r.Ki ∈ (T if )K with Ki maximal.
Applying R7′ to (iv), (iii), (ii) yields K v ∃r.(K1 uK2) ∈ (T if )K . Maximality of the Ki

implies that K1 = K2; hence e1 = e2.

In case e1 = d0 = K, d = KK1, and e2 = KK1K2, we have that (i) T if |= K1 v L plus
(ii) T if |= K v L′ and (iii) T if |= K2 v L′. By construction of (T if )K , (i) and the assumption
imply (iv) T if |= K v (6 1 r L′). Now d was added for some (v) K v ∃r−.K1 ∈ (T if )K ,
and e2 was added for some (vi) K1 v ∃r.K2 ∈ (T if )K . A simple semantic argument applied
to (v), (vi), (iv), (ii) and (iii) yields T if |= K v K2. This contradicts the assumption that
e2 was added for (vi).

In case d = wK ′ 6= d0 and ei = wK ′Ki, we argue as in the first case, but purely on a
semantic basis, i.e., referring to entailment by T if instead of containment in (T if )K .

In case e1wK
′ 6= d0, d = wK ′K1, and e2 = wK ′K1K2, we argue “semantically” as in the

second case.

We say that a conjunction K of concept names is active in T̂ if there is a K̂ ∈ KON(T̂ ) with
K̂ `T̂ K. To achieve our goal in this step, it just remains to prove the following.

Lemma 4.5. For every i ≥ 0, the following hold.

1. If T if 3 K v ∃r.K ′ and K is active in T̂ , then there is a K̂ ′ ∈ KON(T̂ ) such that

a) K̂ ′ `T̂ K
′;

b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v ∃r.K̂ ′.
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2. If T if 3 K v (6 1 r K ′) and K is active in T̂ , then there is a concept name A such that

a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ K
′ then K̃ ′ v A ∈ T̂ .

b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v (6 1 r A).

3. Î |= T if

4. Point 1 holds when “T if 3 K v ∃r.K ′” is replaced with “T if |= K v ∃r.K ′”.

5. Point 2 holds when “T if 3 K v (6 1 r K ′)” is replaced with “T if |= K v (6 1 r K ′),
T if |= K ′ v ∃r−.K, K is maximal with this property, and K ′ is active in T̂ ”.

Proof of Lemma 4.5. We simultaneously prove Points 1–5 by induction on i, showing

• the straightforward base case for Points 1–3;

• that Points 1–3 imply Points 4 and 5 for every i ≥ 0;

• the induction step for Points 1–2 simultaneously, and for Point 3.

For Point 1 of the base case, assume that T 0
f = T 3 K v ∃r.K ′ with K active in T̂ . Then

K ∈ KON(T̂ ) because T ⊆ T̂ , and K ′ is the required K̂ ′: (a) and (b) are due to Rules R1 and
R3, respectively.

For Point 2 of the base case, assume that T 0
f = T 3 K v (6 1 r K ′). Then K ′ is in fact a

concept name A because we are assuming T to be in the stricter normal form. This A is the
required concept name: (a) holds trivially, and (b) is due to Rule R3.

For Point 3 of the base case follows from Î |= T̂ (Lemma 4.2) and T̂ ⊇ T = T 0
f .

For Point 4, we will show that, for every i ≥ 0, Point 4 follows from Points 1–3. The following
argument thus combines base case and induction step for Point 4.

Assume that T if |= K v ∃r.K ′ with K active in T̂ . We also have that K is satisfiable w.r.t.
T if since Î |= T if by Point 3 and, by construction, Î has an instance of K. Consider the TBox
(T if )K . By Lemma 4.4 (1), there is some L′ such that

(a′) T if |= L′ v K ′ and

(b′) (T if )K 3 K v ∃r.L′.

We will show below that, for every K v ∃r.L′ in (T if )K , there is some K̂ ′ ∈ KON(T̂ ) with

(a′′) K̂ ′ `T̂ L
′

(b′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v ∃r.K̂ ′.
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This implies (a) and (b). (b) is exactly (b′′′), and (a) follows from (a′) and (a′′) by inspecting
the root element K̂ ′ of ∆Î : by construction of Î and (a′′), this element is an instance of L′;
since Î |= T̂ if (Point 3), it is an instance of K ′ too; by construction of Î, we get K̂ ′ `T̂ K

′.

To prove the above, we use induction on the number of rule applications used to construct (T if )K .
The base case is that K v ∃r.L′ enters (T if )K in Step 1 of the construction. Then there is some
L v ∃r.L′ ∈ T if with T if |= K v L. Since K is active in T̂ , so is L: for some K̃ ∈ KON(T̂ ) with
K̃ `T̂ K, the root element K̃ of ∆Î must make L true. By Point 1, there is a K̂ ′ ∈ KON(T̂ )
with (a′′) and (b′′) as required.

In the induction step, K v ∃r.L′ enters (T if )K in Step 2 of the construction. In case this
happens via an application of R5, we have that L′ = L′1 uA and

(i) K v ∃r.L′1 ∈ (T if )K

(ii) K v ∀r.A ∈ (T if )K

Applying the induction hypothesis to (i), we obtain

(i′) there is some K̂ ′1 ∈ KON(T̂ ) with

(a′′′) K̂ ′1 `T̂ L
′
1

(b′′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v ∃r.K̂ ′1.

From (ii), we obtain L v ∀r.A ∈ T if for some L with T if |= K v L because axioms with ∀-
restrictions never enter (T if )K in Step 2 of the construction. Since such axioms are not generated
by closing cycles either, we even have L v ∀r.A ∈ T ; hence

(ii′) L v ∀r.A ∈ T̂ with T if |= K v L.

We now observe that T if |= K v L and K̂ `T̂ K imply K̂ `T̂ L (again by consulting the domain
element of Î created for K̂). Hence, application of R3 to (ii′) yields

(ii′′) K̂ v ∀r.A ∈ T̂ for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K.

Now K̂ ′ := K̂ ′1 uA is as required:

• K̂ ′ ∈ KON(T̂ ).

Since K is active in T̂ , there is some K̂ ∈ KON(T̂ ) with K̂ `T̂ K. By (b′′′), we thus
have K̂ v ∃r.K̂ ′1 ∈ T̂ . Applying R5 to this and (ii′) yields K̂ v ∃r.(K̂ ′1 u A) ∈ T̂ . Hence
K̂ ′1 uA ∈ KON(T̂ ).

• (a′′) is satisfied, that is, K̂ ′1 uA `T̂ L
′
1 uA.

For every A′ ∈ L′1, we have K̂ ′1 u A v A′ ∈ T̂ because of (a′′′), R1, R3. Furthermore,
K̂ ′1 uA v A ∈ T̂ due to R1.
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• (b′′) is satisfied.

Let K̂ ∈ KON(T̂ ) such that K̂ `T̂ K. Then R5 applied to (b′′′) and (ii′′) implies K̂ v
∃r.(K̂ ′1 uA) ∈ T̂ .

In case K v ∃r.L′ enters (T if )K via an application of R7′, we have that L′ = L′1 u L′2 and

(i) K v ∃r.L′j ∈ (T if )K , j = 1, 2

(ii) K v (6 1 r L′3) ∈ (T if )K for some L′3 with

(iii) T if |= L′j v L′3, j = 1, 2.

Applying the induction hypothesis to (i), we obtain

(i′) there is some K̂ ′j ∈ KON(T̂ ), j = 1, 2, with

(a′′′) K̂ ′j `T̂ L
′
j

(b′′′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v ∃r.K̂ ′j .

Regarding (ii), we observe that axioms with functionality restrictions never enter (T if )K in Step 2.
Hence, there is some L v (6 1 r L′3) ∈ T if with T if |= K v L, and the same observation as in
the previous case yields K̂ `T̂ L whenever K̂ `T̂ K. We thus obtain from Point 2 that

(ii′) there is some A with

(a4) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ L
′
3, then K̃ ′ v A ∈ T̂ .

(b4) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v (6 1 r A).

Furthermore (iii) and (a′′′) yield

(iii′) K̂ ′j `T̂ L
′
3 for i = 1, 2,

and with (a4) we get

(iii′′) K̂ ′j v A ∈ T̂ for i = 1, 2.

Now K̂ ′ = K̂ ′1 u K̂ ′2 is as required:

• K̂ ′ ∈ KON(T̂ ).

Since K is active in T̂ , there is some K̂ ∈ KON(T̂ ) with K̂ `T̂ K. By (b′′′) and (b4), we
thus have K̂ v ∃r.K̂ ′j ∈ T̂ and K̂ v (6 1 r A) ∈ T̂ . Applying R7 to these and (iii′′) yields
K̂ v ∃r.(K̂ ′1 u K̂ ′2) ∈ T̂ . Hence K̂ ′1 u K̂ ′2 ∈ KON(T̂ ).

• (a′′) is satisfied, that is, K̂ ′1 u K̂ ′2 `T̂ L
′
1 u L′2.

For every i = 1, 2 and A′ ∈ L′i, we have K̂ ′1 u K̂ ′2 v A ∈ T̂ because of (a′′′), R1, and R3.
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• (b′′) is satisfied.

Let K̂ ∈ KON(T̂ ) such that K̂ `T̂ K. Then R7 applied to (b′′′), (b4), (iii′′) implies
K̂ v ∃r.(K̂ ′1 u K̂ ′2) ∈ T̂ .

For Point 5, we will show that, for every i ≥ 0, Point 5 follows from Points 1–3.
Assume that T if |= K v (6 1 r K ′), T if |= K ′ v ∃r−.K, K is maximal with this property,

and K ′ is active in T̂ . We have to show that there is an A such that

(a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ K
′, then K̃ ′ v A ∈ T̂ .

(b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ K, we have T̂ 3 K̂ v (6 1 r A).

Since K ′ is active in T̂ and Î |= T if by Point 3, we also have that K ′ is satisfiable w.r.t. T if . By
Lemma 4.4 (2), there is some L v (6 1 r L′) ∈ T if with

(i) T if |= K v L and

(ii) T if |= K ′ v L′.

We apply Point 2 and conclude that there is some A with

(a′) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ L
′, then K̃ ′ v A ∈ T̂ ;

(b′) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ L, we have T̂ 3 K̂ v (6 1 r A).

It remains to show that A is the required conjunction. For (a), take some K̃ ′ ∈ KON(T̂ ) and
assume that K̃ ′ `T̂ K

′. Then (ii) and Point 3 (Î |= T if ) imply that K̃ ′ `T̂ L
′. Now (a′) implies

that K̃ ′ v A ∈ T̂ .
For (b), take some K̂ ∈ KON(T̂ ) with K̂ `T̂ K. Then (i) and Î |= T if imply that K̂ `T̂ L.

Now (b′) implies that T̂ 3 K̂ v (6 1 r A).

For Points 1–2 of the induction step, we prove both points simultaneously. If any of the
CIs K v ∃r.K ′ and K v (6 1 r K ′) is in T i−1

f , then we can use the induction hypothesis for
it. Otherwise, the respective CI has been introduced by closing a cycle K1, r1,K2, . . . , rn−1,Kn

in T i−1
f with K = Kj for some j ∈ {1, . . . , n − 1}, and thus Kj is active in T̂ . Take some

K̃ ∈ KON(T̂ ) with K̃ `T̂ Kj . Applying Point 4 of the induction hypothesis to T i−1
f |= Kj v

∃rj .Kj+1, we find a K̂j+1 ∈ KON(T̂ ) such that

(i) K̂j+1 `T̂ Kj+1, and

(ii) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj , we have T̂ 3 K̂ v ∃rj .K̂j+1.

By Point (i), Kj+1 is active in T̂ and thus we can iterate the argument to find

K̂j+2, . . . , K̂n = K̂1, K̂2, . . . , K̂j

with the following properties, for 1 ≤ j < n.
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(iii) K̂j `T̂ Kj and K̂j ∈ KON(T̂ );

(iv) T̂ 3 K̂j v ∃rj .K̂j+1.

Let 1 < j ≤ n. Applying Point 5 of the induction hypothesis to T i−1
f |= Kj+1 v (6 1 r−j Kj),

we find an Aj such that

(v) for all K̃j ∈ KON(T̂ ): if K̃j `T̂ Kj , then K̃j v Aj ∈ T̂ ;

(vi) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1, we have T̂ 3 K̂ v (6 1 r−j Aj).

From (vi) and (i), in particular we obtain:

(vii) T̂ 3 K̂j+1 v (6 1 r−j Aj).

From (iii) and (v), we obtain:

(viii) K̂j v Aj ∈ T̂ .

We can now apply the cycle rule R9 to the CIs in (iv), (vii) and (viii), obtaining

(ix) T̂ 3 K̂j+1 v ∃r−j .K̂j

(x) T̂ 3 K̂j v (6 1 rj Aj+1)

To establish both Points 1 and 2, we set K̂ ′ = K̂j and A = Aj+1, and we have to show

(1a) K̂j `T̂ K
′;

(1b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1, we have T̂ 3 K̂ v ∃r−j .K̂j ;

(2a) for all K̃ ′ ∈ KON(T̂ ): if K̃ ′ `T̂ Kj+1 then K̃ ′ v Aj+1 ∈ T̂ ;

(2b) for all K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj , we have T̂ 3 K̂ v (6 1 rj Aj+1).

Now (1a) and (2a) are just (iii) and (v); hence it remains to show (1b) and (2b). We first claim
that

(xi) For every j ≥ 1, we have K̂ v A ∈ T̂ for all A ∈ K̂j .

To show (xi), let K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj . From (ii) and (v), we get that

(xii) K̂ v ∃rj .K̂j+1 ∈ T̂ .

From (viii), and from (v) with K̂ `T̂ Kj , we obtain:

(xiii) K̂j v A, K̂ v Aj ∈ T̂ .
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Applying R8 to (xii), (ix), (xiii), (vi) yields (xi).
For showing (1b), take a K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj+1. With (xi), we get K̂ v A ∈ T̂

for every A ∈ K̂j+1. Hence, R3 and (ix) give us that K̂ v ∃r−j .K̂j ∈ T̂ . For showing (2b), take
K̂ ∈ KON(T̂ ) with K̂ `T̂ Kj . Again with (xi), we get that K̂ v A ∈ T̂ for every A ∈ K̂j which,
by R3 and (x), yields K̂ v (6 1 rj Aj+1) ∈ T̂ as required.

For Point 3 of the induction step. For every K v C ∈ T if , if K is realized in Î, then in
the form of a supertype from KON(T̂ ). Thus it is easy to show that Î is a model of every
K v C ∈ T if , using Points 1 and 2 for the cases C = ∃r.K ′ and C = (6 1 r K ′), and deriving
the remaining cases from Î |= T̂ .

Finally, Point 1 of Lemma 4.5 implies the required statement

Lemma 4.6. Î |= T max
f .

4.3 Finite Model Subsumption and ABox Consistency

The statement from Theorem 4.1 is formulated only for finite concept satisfiability. However,
our consequence driven approach can also be used to decide finite subsumption via the usual
reduction to finite satisfiability. Specifically, T |=fin A v B iff A0 is finitely unsatisfiable w.r.t.
the TBox T ∪ {A0 v A,A0 uB v ⊥}, where A0 is a fresh concept name.

Let us consider the following Example 9.

Example 10. Consider the TBox T1 from Example 9 and, let T2 be the union of T1 and the
following axioms:

A v ∃r.(A uB1), (4.13)
A v ∃r.(A uB2), (4.14)

B1 uB2 v ⊥ (4.15)

The calculus derives A v ⊥, thus A is finitely unsatisfiable w.r.t. T2: 2

AuBi v A from R1 (4.16)
A v ∃r.(AuB1uB2) from (4.12)–(4.14), (4.16),R7 (4.17)
A v ⊥ from (4.15), (4.17),R6 (4.18)

Z

2A is obviously satisfiable w.r.t. T ′ in unrestricted models.
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R10 K(a) K v A

A(a) R11 K(a) r(a, b) K v ∀r.K′

K′(b)

R12

K1(a) K2(a) r(a, b) K(b) K1 v (6 1 r A)
K2 v ∃r.K′ K v A K′ v A

K′(b)

Table 4.2: Inference rules for ABox reasoning

Actually, from Theorem 3.14, and Theorems 3.15 and 4.1 we can conclude the following.

Theorem 4.7. Let T be a Horn-ALCFI TBox, T̂ the result of saturating T using the rules
R1–R9, and K v C a Horn-ALCFI axiom. The following are equivalent:

1. T |=fin K v C

2. Tf |= K v C

3. T̂ |= K v C

In order to extend our algorithm to ABox consistency we propose the additional rules shown
in Figure 4.2. Instead of starting with only a TBox T , the algorithm now takes as input an
ontology (T ,A), where A is an ABox, and then exhaustively applies rules R1 to R12. Essentially,
R10 to R12 saturate the ABox A w.r.t. the inclusions in the (saturated) TBox T . In rules R10 to
R12, K(a) is an abbreviation for A1(a) · · · Ak(a) when K = {A1, . . . , Ak}. Recall that rules R1
and R2 only apply when the conjunction in their precondition occurs in the partially completed
TBox. For the extension with ABoxes, an additional way for K to occur is that, for some ABox
individal a, K = {A | A(a) is in the partial completion}. It is easy to see that rule application
still terminates after exponentially many steps. Let (T̂ , Â) be the ontology generated after the
saturation step. The algorithm is sound and complete in the following sense.

Lemma 4.8. A is finitely consistent w.r.t. T iff for every K(a) ∈ Â, K v ⊥ 6∈ T̂ .

Proof. To prove this, one updates the construction of Î by starting with an initial interpretation
defined by setting ∆Î = Ind(A), rÎ = {(a, b) | r(a, b) ∈ A}, and AÎ = { a ∈ Ind(A) | A(a) ∈ Â }.
The rest of the construction of Î is as before. It is not hard to adapt the proof of Lemma 4.2 to
show that Î satisfies all inclusions and assertions in T̂ and Â, respectively. Finally, the proof to
show that Î is a model of Tf goes through without modification.

Apart from providing a basis for practical implementations, our algorithm also yields an
ExpTime upper bound for finite model reasoning in Horn-ALCFI. This result is known from
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[94], where it is shown that ABox consistency in the non-Horn version of ALCFI is in ExpTime.
A matching lower bound can be derived from [15] where an ExpTime lower bound is established
for unrestricted subsumption in the ELI fragment of Horn-ALCFI; the proof can easily be
adapted to finite satisfiability.

Theorem 4.9. Finite satisfiability and finite ABox consistency in Horn-ALCFI are ExpTime-
complete.

Conclusions

The procedure presented in this Chapter establishes a promising foundation for actual imple-
mentations of finite-model reasoning on Horn-ALCQI and, via the reduction in Section 3.5, in
Horn-ALCFI. Indeed, Proposition 3.29 enables the use of our consequence-based procedure for
deciding finite satisfiability (and subsumption) in Horn-ALCQI.

However, it is not immediately obvious how to extend the translation (3.24) in page 78 and
Proposition 3.29 to ABox consistency and instance checking. We believe, though, that it is not
too hard to modify the proof of Theorem 3.24 for Horn-ALCQI, to adapt the consequence-
based procedure to allow a direct treatment of Horn-ALCQI TBoxes without prior reduction
to Horn-ALCFI.
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Chapter

5
Query Answering under the Finite
Model Assumption

In this chapter, we study ontological query answering under the finite model assumption in the
case where queries are positive existential queries (PEQs) and TBoxes are formulated in Horn-
ALCFI. The plan is as follows. In Section 5.1, we describe a general strategy for showing that
finite PEQ answering can be reduced to unrestricted PEQ answering by reversing finmod-cycles
in the TBox. This result enables to use algorithms for unrestricted PEQ answering also in the
finite case. Since the proof that this reduction is as required turned out to be quite challenging,
we devote Sections 5.2 and 5.3 to present the technical results that allow to show the correctness
the reduction. Establishing the correctness of the reduction also allows us to provide complexity
boundaries for the problem of ontological query answer under the finite model assumption.
In particular, we show that finite PEQ answering w.r.t. Horn-ALCFI TBoxes is ExpTime-
complete regarding combined complexity, and PTime-complete regarding data complexity, we
present the discussion on complexity results in Section 5.4.

5.1 Reducing Finite OQA to Unrestricted OQA in Horn-ALCFI

In this section, our main objective is to prove that using cycle reversion we can also reduce
ontological query answering on finite models to ontological query answering on unrestricted
models. More precisely, for a given ontology (T ,A) and PEQ q, we show that deciding whether
(T ,A) |=fin q is equivalent to decide whether (Tf ,A) |= q, where Tf = finClosure(T ) is defined as
in Section 3.3.

Note that this result is not a direct consequence of Theorem 3.15 (cf. Chapter 3) since PEQs
are more expressive than Horn-ALCFI axioms. We aim then to prove the following theorem.

Theorem 5.1. Let T be a Horn-ALCFI TBox and A an ABox that is finitely consistent w.r.t.
T . We have that, for any PEQ q, the following holds

(T ,A) |=fin q iff (Tf ,A) |= q
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We begin by proving the easy direction:“⇐”.

Proof of Theorem 5.1 “⇐:” We actually prove the equivalent statement: (T ,A) 6|=fin q implies
(Tf ,A) 6|= q. Indeed, assume (T ,A) 6|=fin q, then there is a finite model I of (T ,A) such that
I 6|= q. Since by Theorem 3.14, every finite model of T is also a model of Tf , then I is also a
witness for (Tf ,A) 6|= q.

We now concentrate on the proof of the “⇒” direction. In particular, we use the so-called
(possibly infinite) canonical model of (T ,A).

Definition 5.1. Let (T ,A) be a satisfiable Horn-ALCFI ontology. The canonical initial inter-
pretation U0 = (∆U0 , ·U0) of (T ,A) is defined a follows:

∆U0 = Ind(A)

AU0 = {a ∈ Ind(A) | (T ,A) |= A(a)}

rU0 = {(a, b) | r(a, b) ∈ A}

The canonical model U of (T ,A) is then the result of exhaustively applying the following
completion rule starting from U = U0:

(can) for all d ∈ ∆U , and for each role r ∈ role(T ) such that tpU (d) →r t
′ and d /∈ (∃r.t′)U

proceed as follows.

1. Add a fresh element d′ to ∆U ;

2. extend ·U in such a way that (d, d′) ∈ rU and d′ ∈ AU , for all concept names A ∈ t′.

4

The following properties of U are well-known, indeed these are the reason why U is called
canonical [51, 88, 104].

Lemma 5.2. Let (T ,A) be a satisfiable Horn-ALCFI ontology, and U the canonical model of
(T ,A), then the following hold.

1. U is indeed a model of (T ,A);

2. for any PEQ q, we have that (T ,A) |= q iff U |=π q.
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Before we proceed with our proof, we introduce the notions of homomorphism and simulation
between interpretations.

Definition 5.2. Let I1 = (∆I1 , ·I1), and I2 = (∆I2 , ·I2) be interpretations over the same
vocabulary.
A homomorphism from I1 to I2 is a function h : ∆I1 → ∆I2 such that

1. h(a) = a for all a ∈ NI;

2. d ∈ AI1 implies h(d) ∈ AI2 for all concept names A;

3. (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for all (possibly inverse) roles r.

A simulation of I1 in I2 is a relation ρ ⊆ ∆I1 ×∆I2 such that for all (d, e) ∈ ρ the following
conditions are satisfied:

1. for each a ∈ NI ∩∆I1 , we have (a, a) ∈ ρ.

2. if d ∈ AI1 , then e ∈ AI2 ;

3. if (d, d′) ∈ rI1 for some (possibly inverse) role r, then there is an e′ ∈ ∆I2 with (e, e′) ∈ rI2

and (d′, e′) ∈ ρ.

We write (I1, d) � (I2, e) if there is a simulation ρ of I1 in I2 such that (d, e) ∈ ρ. 4

We will use Point 2 of Lemma 5.2 to establish the “⇒” direction of Theorem 5.1. More precisely,
we will prove that (T ,A) |=fin q implies U |= q, where U is the canonical model of (Tf ,A).
Consider the contraposition of the statement. Let us assume, for a fixed query q, that U does
not have a match for q. We aim at the following.

(∗) We construct a finite model J ′ of (T ,A) such that every substructure of J ′ that is
sufficiently large to contain a match for the query q can be homomorphically embedded
into U .

Since PEQs are preserved under homomorphisms, we obtain that J ′ does not have a match
for q, and hence we can conclude that (T ,A) 6|=fin q as required. We now work towards the
construction of such finite model. We start by formalizing the notion of the substructure described
above.

Definition 5.3. Let I = (∆I , ·I) be an interpretation, and let ∆′ ⊆ ∆I be a subset of the
domain of I. The sub-interpretation I ′ of I induced by ∆′ is the interpretation I ′ = (∆′, ·I′)
such that (·I′) is the restriction of (·I) to ∆′.
For n > 0, an n-substructure of I is the sub-interpretation I ′ of I induced by a set ∆I′ ⊆ ∆I

such that #∆I′ ≤ n.
4

We actually show the following that in particular will provide the finite model from (∗).
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Proposition 5.3. For every n > 0, there is a finite model J ′ of (T ,A) such that there is a
homomorphism from any n-substructure J ′n of J ′ to the canonical model U of (Tf ,A).

Recall that we aim to show that (T ,A) |=fin q implies U |= q. Indeed, assume (T ,A) |=fin q and
let n0 be the number of variables in q. Now, by Proposition 5.3, there is a finite model J ′ such
that there is a homomorphism from any n0-substructure J ′n0

of J ′ to the canonical model U of
(Tf ,A). By assumption, J ′ |= q. In particular, the latter implies that there is a match π of q in
an n0-substructure J ′n0

of J ′. Thus a match of q in U can be found by composing π with the
homomorphism h from J ′n0

to U granted by Proposition 5.3. This would conclude the proof of
the “⇒" direction of Theorem 5.1.

From the discussion above, one can see that the proof of the “⇒” direction of Theorem 5.1
relies on the construction of the finite model J ′ from Proposition 5.3 for a particular n0 that
depends on q. Therefore, in what follows, we concentrate on the construction of such J ′. To this
aim, we modify the construction of finite models in Definition 3.12 (summarized in Table 5.1
for convenience), which in turn is an extension of the construction detailed in Section 3.3.1.

Note that the finite model construction in Table 5.1 needs not satisfy the condition formulated
for J ′ in Proposition 5.3. Let I be the finite model of (Tf ,A) constructed as in Table 5.1. We
encounter then the following two problems:

Problem 1. I can contain paths of length ≤ n0 that do not exist in U .

Problem 2. I can contain cycles that do not exclusively consist of ABox elements, while no
such cycles are present in U .

Let us start by discussing Problem 1. Indeed, if such a path exists, then one cannot find
the homomorphism required in Proposition 5.3 from the substructure containing that path to
U . In other words, there is a query q that can distinguish between I and U . There are two
sources for such paths in I: applications of rules (c2) and (c3) (cf. Table 5.1 above). Indeed,
these completion rules can introduce paths of the form

d1, r1, . . . , rn, d, s
−
m, em−1, . . . , s

−
1 , e1

with n,m ≥ 1 and such that

tpI(d1)→r1 tpI(d2) . . .→rn
tpI(d); and

tpI(e1)→s1 tpI(e2) . . .→sm
tpI(d).

Recall that completion rule (c2) is responsible for handling ∃-requirements of the form t 1↔1
r,

by adding the necessary instances of the types in the class P of t (and t′), so as to keep them
equal in number and respecting the functionality of roles; while (c3) ensures that ∃-requirements
of the form t →r t

′ are satisfied, by reusing the existing instance of type t′ introduced at the
beginning of the construction.

Now, let us consider an example to illustrate both Problems 1 and 2.
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The initial interpretation I is defined as follows:

∆I = Ind(A) ∪ { dt | t ∈ TP(Tf) }
AI = { a ∈ Ind(A) | A ∈ tpA(a) } ∪ {dt | A ∈ t }
rI = { (a, b) | r(a, b) ∈ A }

(5.1)

The finite completion of A w.r.t. Tf is the finite interpretation obtained by applying ex-
haustively the following rules to I, and giving preference to applications of a rule (ci) over
those of (cj), whenever i < j.

(c1) Choose an element d ∈ ∆I such that tpI(d) →1
r t, t 6→1

r− tpI(d), and d /∈ (∃r.t)I ,
then

– add a fresh element e to ∆, and
– modify the extension of concept and role names such that tpI(e) = t and (d, e) ∈
rI .

(c2) Choose a type class P that is minimal w.r.t. the order ≺+, a λ = t 1↔1
r t
′ with t ∈ P ,

and an element d ∈ ∆I with ∃-requirement t 1↔1
r t
′; and let nmax = max{#sI | s ∈

P}, for each s ∈ P , take a fresh set of domain elements

∆s := {ds,i | #sI < i ≤ nmax}.

For each λ = s 1↔1
r s
′ with s ∈ P , let

XIλ,1 = sI \ (∃r.s′)I and XIλ,2 = s′
I \ (∃r−.s)I .

and choose a bijection πλ between XIλ,1 ∪∆s and XIλ,2 ∪∆s′ , then

– add the elements
⊎
s∈P ∆s to ∆;

– for each λ = s 1↔1
r s
′ with s, s′ ∈ P , extend rI with πλ, and

– interpret concept names so that tpI(d) = s for each d ∈ ∆s, and s ∈ P .

(c3) Choose an element d ∈ ∆I such that tpI(d)→r t, tpI(d) 6→1
r t, and d /∈ (∃r.t)I . Let

dt ∈ ∆I be the element introduced for type t in the initialization step (5.1), then,
add (d, dt) to rI .

Table 5.1: Finite model construction for Horn-ALCFI ontologies from Definition 3.12
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5. Query Answering under the Finite Model Assumption

Example 11. Assume A is the following ABox:

A = { B1(a), D1(a), B2(b), D2(b) };

and that T is the TBox containing the following axioms:

B1 v ∃r.A, B2 v ∃r.A,

B1 v ∃r.B2, B2 v (6 1 r− B1),

B2 v ∃r.B1, B1 v (6 1 r− B2).

Observe that TP(Tf) ⊇ { {B1, D1}, {B2, D2, }, {B1}, {B2}, {A} }. Further, we have the following
relations among the types for Tf :

{B1, D1} →r {A},

{B2, D2} →r {A},

{Bi} →r {A}, for i ∈ {1, 2} and

{B1} 1↔1
r {B2}.

When constructing the finite model I of T ,A as in Table 5.1, the initial interpretation contains
one object for each individual name in A, and one object for each type for Tf . After some
applications of the completion steps, we get the following:

a b
r r

r r r r

r

{B1, D1} {B2, D2}

d1 : {B2}
r

d : {A}

e1 : {B1}
e2 : {B1}d2 : {B2}

Note that one problematic path in I is a, r, d, r−, b, which is introduced by two (distinct) appli-
cations of (c3) to a and b respectively. Other problematic path is, for example, a, r, d2, r, e2, r, b,
in this case the edge (d2, e2) ∈ rI is introduced by an application of (c2).
Now, consider the following queries:

q1 = ∃x1, x2, x3.r(x1, x2, ) ∧ r(x3, x2) and

q2 = ∃y1, y2, y3, y4.D1(y1) ∧ r(y1, y2) ∧ r(y2, y3) ∧ r(y3, y4) ∧D2(y4).

We have that I |= q1 and I |= q2, while U 6|= q1 and U 6|= q2, where U is the canonical model of
Tf and A depicted below.
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5.1. Reducing Finite OQA to Unrestricted OQA in Horn-ALCFI

a b

r r

r r r r

{B1, D1} {B2, D2}

d1 : {B2}

{B1}{B1}
r r r r

A :

d2 : {B2}

d0 : {A}

e1 : {B1} e2 : {B1}

{B2}{B2}

d : {A}

Furthermore, observe that I (as well as every other finite model of T ) contains cycles that cannot
be avoided at all. Then for example the following cyclic query can also distinguish between I
and U

q3 = ∃y1, y2, y3, y4, y5, y6.r(y1, y2) ∧ r(y2, y3) ∧ r(y3, y4) ∧ r(y4, y5), r(y5, y6), r(y6, y1)

Z

We solve separately Problems 1 and 2 to obtain the desired model J ′ from Proposition 5.3,
as follows:

• To solve Problem 1. We will modify the definitions of the completions steps (c2) and
(c3).

• To solve Problem 2. We eliminate ‘small’ cycles in the model obtained using these
modified completion steps.

To characterize the presence of the ‘problematic paths’ related with Problem 1, (illustrated in
the example above), we introduce the notion of bounded simulations which can be understood
as a weakening of simulations.

Definition 5.4. Let I1 = (∆I1 , ·I1) and I2 = (∆I2 , ·I2) be interpretations. A bounded simu-
lation of I1 in I2 is a relation ρ ⊆ ∆I1 × N ×∆I2 such that for all (d, i, e) ∈ ρ, the following
conditions are satisfied:

1. if d ∈ AI1 , then e ∈ AI2 ;

2. if i > 0 and (d, d′) ∈ rI1 for some (possibly inverse) role r, then there is an e′ ∈ ∆I2 with
(e, e′) ∈ rI2 and (d′, i− 1, e′) ∈ ρ.

We write (I1, d) �k (I2, e), for d ∈ ∆I1 and e ∈ ∆I2 , if there is a bounded simulation of I1 in
I2 such that (d, k, e) ∈ ρ and for all a ∈ NI ∩∆I1 , we have (a, k, a) ∈ ρ. Then I1 �k I2 denotes
that for every d ∈ ∆I1 , there is an e ∈ ∆I2 with (I1, d) �k (I2, e). We write (I1, d) ∼k (I2, e) if
(I1, d) �k (I2, e) and vice versa.

4
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5. Query Answering under the Finite Model Assumption

Then, “eliminating the problematic paths" (thus solving Problem 1) means that we can show
the following.

Proposition 5.4. Let (T ,A) be a finitely satisfiable ontology, and let U be the canonical model
of (Tf ,A). For every n0 > 0, there is a finite model In0 of A and T such that In0 �n0 U .

To remove the undesired paths illustrated by query q1 in Example 11 above, we will modify
the construction of I, as presented in Table 5.1, by replacing the elements dt, t ∈ TP(Tf) that
are introduced at the beginning of the construction of I and used as ‘targets’ for role edges
introduced by applications of (c3). In the modified construction, we instead introduce one
(c3)-target for each n0-simulation type. An n0-simulation type is an equivalence class of ∼n0

on the set of all pointed interpretations (I1, d). The effect of this modification in Example 11
is that the two ∃-requirements handled by (c3) would no longer be witnessed by the same d
because the 1-simulation type of the witnesses are different (one has an r-predecessor in B1uD1

and the other in B2 uD2). Since simulations need only to consider symbols that occur in the
(fixed) ABox A and (fixed) TBox T , there are only finitely many n0-simulation types and thus
finiteness of I is not compromised.

Further, as mentioned in the strategy above, we also need to modify rule (c2). In particular,
we modify it so that the sequences

tpI(e0) 1↔1
r1
· · · 1↔1

rk−1
tpI(ek) (5.2)

are of length exceeding n0 and thus the problem illustrated by query q2 in Example 11, which
involves both ends of the sequence, is not ‘visible’ in n0-substructures. We also include an initial
piece of the canonical model U of (Tf , A) of depth n0 in the initial version of I to avoid the
undesired ‘shortcuts’ between ABox elements, illustrated also in Example 11. We will address
the construction of finite models complying with Proposition 5.4 in Section 5.2.

To solve Problem 2 and thus obtain the desired J ′ from Proposition 5.3, we have to
eliminate all non-ABox-cycles of size at most n0 in the model In0 delivered by Proposition 5.4,
that is, the model solving Problem 1. Therefore, after such elimination, any PEQ q with at most
n0 variables cannot distinguish between J ′ and the canonical model U of (Tf ,A). We will obtain
J ′ by taking the product of In0 with a suitable finite group of large girth, a technique championed
by Otto [106]. We will explain in more detail in Section 5.3 how this technique is implemented,
and provide the specific construction of finite models required to prove Proposition 5.3.

5.2 Constructing n-similar Finite Models

In this section, we describe the construction of a finite interpretation satisfying the conditions
in Proposition 5.4, and thus solving Problem 1.

Let us start by fixing, for the remaining of this section, a finitely satisfiable TBox T , and
ABox A and n0 > 0. We construct a finite model of (T ,A) by modifying the construction from
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5.2. Constructing n-similar Finite Models

Section 3.3 (cf. Table 5.1 above). In particular, as previously discussed, we modify the initial
interpretation and the completion rules (c2) and (c3). In more detail, we proceed as follows:

(I) We eliminate from the initial interpretation the set of elements {dt | t ∈ TP(Tf)}; and
instead, we include the initial portion of the canonical model U of (Tf ,A) corresponding
to the truncation of U at depth n0.

(II) We then apply only the completion rules (c1) and (c2′) described below.

(III) To provide targets for applications of the new completion rule (c3′), we determine all
relevant n0-simulation types and add them to the interpretation constructed so far.

(IV) Steps (II) and (III) are iterated until no new n0-simulation types are added.

(V) Lastly, we apply the completion rule (c3′) that reuses the latter elements to satisfy the
remaining ∃-requirements that were not satisfied after the applications of (c1) and (c2′).

We start by defining a finite interpretation I0 as follows:

• First, consider the interpretation obtained from the canonical interpretation U of Tf and
A after applying the rule (can) to elements of U up to depth n0-1. Let us denote with
Un0 such an initial interpretation.

• I0 is then the result of exhaustively applying the completion rules (c1) and the new (c2′)
starting from Un0 , and giving more preference to applications of rule (c1) over those of
(c2′) —as in Section 3.3.1, see Table 5.1.

In the construction of I0 above, note that the ABox A is a substructure of Un0 , and that Un0

contains all those elements from ∆U that can be reached from an ABox individual by traveling
at most n0 role edges.

The new completion rule (c2′) handles an ∃-requirement t 1↔1
r t
′ with P the type class of t

in two steps:

1. in the first stage, I0 is extended by a partial unraveling following only the ∃-requirements
λ = s 1↔1

r s
′, where s, s′ ∈ P .

2. Then, in the second stage the necessary objects are added as to keep the instances of types
from P equal in number and respect the functionality of roles.

Note that the second stage amounts to an application of the completion rule (c2) from Defini-
tion 3.10 to the partially unravelled interpretation I0.

We formally introduce rule (c2′) in Table 5.2. Moreover, rule (c2′) guarantees two desirable
properties: We call an element d in I0 old if it existed before the application of (c2′) and new
otherwise. A path in I0 is a sequence d1r1d2 · · · dkrkdk+1, with d1, . . . , dk+1 ∈ ∆I0 , r1, . . . , rk
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5. Query Answering under the Finite Model Assumption

(c2′) Choose a type class P that is minimal w.r.t. the order ≺+ and such that there is a
λ = s 1↔1

r s
′ with s ∈ P , and an element d ∈ ∆I0 with tpI0(d) = s and d 6∈ (∃r.s′)I0 .

First, extend I0 by applying the following rule at most n0 times to each element in I0:

(c2′.1) For every element e ∈ ∆I0 and λ = s 1↔1
r s
′ with s, s′ ∈ P and r such that

tpI0(d) = s and e 6∈ (∃r.s′)I0 add a new element e′; and extend (·I0) such that
tpI0(e′) = s′, and (d, e′) ∈ rI0 .

Second, apply the following rule to the resulting interpretation:

(c2′.2) Let nmax = max{#(sI0) | s ∈ P}, for each s ∈ P , take a fresh set of domain
elements

∆s := {ds,i | #(sI0) < i ≤ nmax}.

For each λ = s 1↔1
r s
′ with s ∈ P , let

XIλ,1 = sI0 \ (∃r.s′)I0 and XIλ,2 = s′
I0 \ (∃r−.s)I0 .

and choose a bijection πλ between XIλ,1 ∪∆s and XIλ,2 ∪∆s′ , then

– extend ∆I0 by adding the elements in
⊎
s∈P ∆s;

– for each λ = s 1↔1
r s
′ with s, s′ ∈ P , extend rI0 with πλ, and

– extend (·I0) in such a way that tpI0(d) = s for each d ∈ ∆s.

Table 5.2: Completion rule (c2′)

(potentially inverse) roles and (di, di+1) ∈ rI0
i for 1 ≤ i ≤ k. A path is simple if there are no

multiple occurrences of the same object di. The definition of (c2′) then ensures that:

(edge) no edge (d1, d2) ∈ rI0 is introduced with both d1, d2 old;

(path) for each new element d1 ∈
⊎
s ∆s, there is at most one simple path

d1r1d2 · · · dkrkdk+1

of length at most n0 such that d1, . . . , dk are new and dk+1 is old.

We have now all the required ingredients to define rule (c2′) (see Table 5.2). Indeed, (edge)
and (path) follow from the observation that the application of (c2′.1) results in tree-shaped
substructures of depth n0 attached to old elements of I0, and that all edges (d, d′) ∈ rI0 for
some role r added in this step, contain at most one old element. Further, all the edges added
by (c2′.2) contain only new elements from the sets ∆s or new elements at level n0 (i.e., leaves)
in the trees introduced by (c2′.1).

We now argue that applications of these rules preserve the invariants (i1), (i2′), and (i3)
from Section 3.3.1 (see Table 5.3).
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(i1) tpI(d) ∈ TP(Tf) for all d ∈ ∆I ;

(i2′) if (d, d′) ∈ rI \ (Ind(A) × Ind(A)), then we have tpI(d)→r tpI(d′) or tpI(d′) →r−

tpI(d);

(i3) if Tf |= K v (6 1 r K ′), then I |= K v (6 1 r K ′).

Table 5.3: Invariants satisfied by the finite model construction

• The initial interpretation Un0 satisfies the invariants: (i1), (i2′) are satisfied by construction,
and (i3) holds because U |= Tf (Lemma 5.2).

• To show that all the invariants are preserved by applications of (c1) and (c2′) the same
arguments as for Lemma 3.17 go through.

Furthermore, Proposition 3.21 also holds for I0, therefore we can prove that the construction
of I0 terminates, and ∆I0 is finite.

In the following three lemmas, we will show that bounded simulations of I0 (and extensions
thereof) in U exist, and therefore provide the arguments for Proposition 5.4 (solving then
Problem 1). In fact, as we will see, it suffices to consider sub-interpretations of I0 induced by
n0-neighborhoods.

Definition 5.5. Let J = (∆J , ·J ) be an interpretation, and let d ∈ ∆J . The n0-neighborhood
of d in J is the subset NJn0

(d) ⊆ ∆J such that

NJn0
(d) := {d′ ∈ ∆J | there is a path from d to d′in J of length at most n0}.

We denote by J |n0
d the sub-interpretation of J induced by NJn0

(d).
4

We show now the announced result.

Lemma 5.5. I0 �n0 U .

Proof. Let d∗ ∈ ∆I0 . We show that (I0|n0
d∗ , d

∗) � (U , e) for some e ∈ ∆U . Let ∆ denote the
domain of I0|n0

d∗ . An element d ∈ ∆ is an initial element if d ∈ ∆Un0 . A forward path is a
sequence d0r0d1 · · · dk−1rk−1dk such that

(a) (di, di+1) ∈ rI0|
n0
d∗

i for all i < k.

(b) tpI0(di)→ri
tpI0(di+1) for all i < k.
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(c) (r−i , di+1) 6= (ri−1, di−1) for 0 < i < k;

(d) d1, . . . , dk are not initial.

An element d ∈ ∆ is a root if the following two conditions are satisfied:

(r1) if (d, e) ∈ rI0|
n0
d∗ , then both d and e are initial or tpI0(d)→r tpI0(e);

(r2) for every forward path d = d0r0d1 · · · rk−1dk and each (dk, e) ∈ rI0|
n0
d∗ , we have that

tpI0(dk)→r tpI0(e) or e = dk−1 and r = r−k−1.

Let us define an order over the elements in ∆. We write d < e if the rule application that created
d happened before the one that created e; and we write d 5 e if (i) d < e or (ii) d and e are
initial elements or (iii) d and e have been created in the same application (thus of (c2′)).

Take some element dr ∈ ∆ that is minimal w.r.t. 5, i.e., whenever d 5 dr, we also have dr 5 d.
We will now show that:

(1) dr is a root, and

(2) d∗ is reachable from dr on a forward path.

We proceed to show (1) and (2).

• To prove (1), we have to show that dr satisfies Conditions (r1) and (r2) of roots. Let
us start with (r1). Take some arbitrary element e with (dr, e) ∈ rI0|

n0
d∗ . The choice of dr

yields three cases:

case 1: both dr, e are initial. Then (r1) is satisfied trivially.

case 2: dr was created by an application of a completion rule prior to the creation of
e. By the construction of I0, we get that tpI0(dr)→r tpI0(e) since (dr, e) ∈ rI0|

n0
d∗ .

case 3: dr, e were introduced by the same application of a completion rule. By the
construction of I0, we have that dr, e were introduced by an application of (c2′)
Hence, we have tpI0(dr) 1↔1

r tpI0(e).

To show that dr satisfies (r2), let dr = d0r0d1 · · · rk−1dk be a forward path and (dk, e) ∈
rI0|

n0
d∗ . In case the edge (dk, e) ∈ rI0|

n0
d∗ was created in an application of (c2′), we have

tpI0(dk) 1↔1
r tpI0(e) and we are done. Otherwise, this edge was created in an application of

(c1), and either tpI0(dk)→r tpI0(e) (in which case we are done) or tpI0(e)→r− tpI0(dk).
Then the edge (dk−1, dk) ∈ rI0|

n0
d∗

k−1 was created in an application of (c1) (in which case we
must have e = dk−1 and r = r−k−1 and are done) or of (c2′).

In the latter case, we trace that (c2′) application backwards on the path. If all elements
dr = d0, . . . , dk have been created by the same application, we have that e < d0, which
contradicts dr being 5-minimal. Otherwise, d0 is an old element of that application, and
we consider a simple path d0 = d′0r

′
0d
′
1 · · · r′`−1d

′
` = dk of length ≤ 2n0 from dr = d0 = d′0
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to dk = d′`. Due to its construction, I0|n0
d∗ has to contain such a path. Then some edge

on this new path must have been created in an application of (c2′): otherwise, we would
have d′0 < d′1 < · · · < d′j > · · · > d′`−1 > d′`, that is, d′j would have been created in two
different (c1) rule applications.

Consider the latest such (c2′) application in the construction of I0 and observe that
d′` = dk is old for it (we reuse the argument from above). If d′0 = d0 is old for it as well,
then we get a contradiction as follows. Take the maximal index f such that d′0, . . . , d′f
are all old and the minimal index g such that d′g, . . . , d′` are all old. Since f < g due
to Condition (edge) of (c2′), there is a middle element d′j′ with j′ = b f+g

2 c, which has
simple paths of length ≤ n0 to both old elements d′f and d′g. These paths coincide due
to Condition (path) of (c2′), which contradicts the assumption that d′0r′0d′1 · · · r′`−1d

′
` is

simple.

Otherwise, if d′0 had been created in the same (c2′) application, then we would get dk < d′0
which contradicts dr being 5-minimal. Finally, if d′0 had been created after that (c2′)
application, we would get d′1 < d′0, again contradicting 5-minimality of dr.

• To prove (2), we observe that, by construction of I0|n0
d∗ , there is a simple path

dr = d0r0d1 . . . rk−1dk = d∗

in I0|n0
d∗ with k ≤ n0 such that no element other than possibly d0 is initial. We pick such

a path, and our choice ensures Conditions (a), (c) and (d) of forward paths. This leaves
us with showing Condition (b).

Since (di, di+1) ∈ r
I0|

n0
d∗

i for all i < k, we have that either tpI0(di) →ri tpI0(di+1) or
tpI0(di+1) →r−

i
tpI0(di) for all i < k. Assume that there is some i with tpI0(di+1) →r−

i

tpI0(di) but tpI0(di) 6→ri
tpI0(di+1), and take the smallest such i. Then the edge (di, di+1) ∈

rI0
i has been introduced in some application of (c1), and the previous edge (di−1, di) ∈ rI0

i−1
has been introduced in some application of (c2′) (otherwise, we would have di+1 = di−1

and ri = r−i−1, contradicting Condition (d) of forward paths). We can now reuse the above
argument, tracing back that application of (c2′), and derive a contradiction.

Since every initial element is 5-minimal, (1) and (2) above establish the following:

Claim 3.

• every initial element is a root;

• ∆ contains at least one root dr such that d∗ is reachable from dr on a forward path.
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Then, we will define the required (bounded) simulation starting from the roots in ∆. Observe
that, by definition (in general) there is no unique root in ∆. We use the following notion to ease
the definition of the required simulation.

We say that a relation ρ ⊆ ∆×∆U is rooted if for every (d, e) ∈ ρ, there is a forward path
d0r0d1 · · · rk−1dk and elements e0, . . . , ek ∈ ∆U such that d0 is a root, dk = d, ek = e, (di, ei) ∈ ρ
for all i ≤ k and (ei, ei+1) ∈ rUi for all i < k.

We define a sequence of relations

ρ0 ⊆ ρ1 ⊆ · · · ⊆ ∆×∆U

such that

(†) if (d, e) ∈ ρi, then tpI0(d) = tpU (e);

(‡) ρi is rooted.

Choose a root dr such that d∗ is reachable from dr by a forward path, whose existence is
guaranteed by Point 2 above. Also choose an er ∈ ∆U with tpU (er) = tpI0(dr), which exists by
invariant (i1). Then

• set
ρ0 = {(d, d) | d ∈ ∆ is initial} ∪ {(dr, er)}

Note that (†) and (‡) are trivially satisfied since by definition all initial elements belong
to ∆Un0 ⊆ ∆U .

• ρi+1 is obtained from ρi by doing the following for each (d, e) ∈ ρi and (d, d′) ∈ rI0|
n0
d∗ .

By (‡), there is a forward path d0r0d1 · · · rk−1dk and elements e0, . . . , ek ∈ ∆U such that
d0 is a root, dk = d, ek = e, (di, ei) ∈ ρ for all i ≤ k and (ei, ei+1) ∈ rUi for all i < k. By
Point 2 above, we can distinguish two cases:

– tpI0(dk)→r tpI0(d′) and it is not true that d′ = dk−1 and r = r−k−1.
Then tpI0(d) →r tpI0(d′). By (†), we have tpU (e) →r tpI0(d′) and thus we find an
e′ ∈ ∆U with (e, e′) ∈ rU and tpU (e′) = tpI0(d′). Include (d′, e′) in ρi+1. Clearly,
(†) is still satisfied. Using that it is not true that d′ = dk−1 and r = r−k−1, it is also
straightforward to show that (‡) is still satisfied.

– d′ = dk−1 and r = r−k−1.
Then we do not need to add an extra tuple to ρi since there already is a (d′, e′) ∈ ρi
such that (e, e′) ∈ rU . To see this, recall that ek−1 and ek are such that (dk−1, ek−1) ∈
ρi, (dk, ek) ∈ ρi, and (ek−1, ek) ∈ rUk−1. Since d′ = dk−1 and r = r−k−1, ek−1 can serve
as the required e′.

Set ρ =
⋃
i≥0 ρi. By construction, ρ is a simulation. Since there is a forward path from dr to d∗,

by construction of ρ, there must be some (d∗, e) ∈ ρ. Thus we have shown (I0|n0
d∗ , d

∗) � (U , e).
Note that tpI0(d∗) = tpU (e) as required. This finalizes the proof of Lemma 5.5.
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However, I0 is not yet a model of (T ,A) since some ∃-requirements might not be satisfied because
completion step (c3′) (defined below) has not been applied. Our next step for completing the
interpretation I0 as to obtain the required finite model of T and A, is to introduce the objects
that will be used by (c3′) to satisfy the remaining ∃-requirements in I0.

Generating Witnesses for (c3′). We need to introduce fresh elements to the interpretation
I0 that can be used by (c3′) to satisfy ∃-requirements t →r t

′ for some role r, and such that
it does not hold that t →1

r t
′, which means that we can safely reuse such witnesses without

violating the functionality of r−. Further, recall that we also need to ensure that no ‘problematic
path’ is introduced after the application of (c3′). The latter, means that if I is the obtained
interpretation after every possible application of (c3′) to I0, then it holds that I �n0 U .

As discussed at the beginning of this Section, we first need to identify the relevant n0-
simulation types that need to be realized by the witnesses. In order to identify those types, we
extend the finite model I0 constructed so far to an infinite interpretation I+

0 . While I+
0 will

of course not be part of the finite model that we aim to construct, it will guide the further
construction.

We obtain I+
0 from I0 by starting with I+

0 = I0, and then exhaustively applying the
completion rule (can) from Definition 5.1, repeated and rephrased here for convenience:

(∗) for all d ∈ ∆I+
0 and role r such that tpI+

0
(d)→t′ , w.r.t. Tf , and d /∈ (∃r.t′)I+

0 , add a fresh
element d′ to ∆I+

0 , the edge (d, d′) to rI+
0 , and d′ to the interpretation AI+

0 of all concept
names A ∈ t′.

The desired result presented next follows from Lemma 5.5 and from the construction of I+
0 .

Lemma 5.6. I+
0 �n0 U .

Proof. Let d∗ ∈ ∆I+
0 . We show that (I+

0 |
n0
d∗ , d

∗) � (U , e) for some e ∈ ∆U . For brevity, we use
∆ to denote the domain of I+

0 |
n0
d∗ . We distinguish three cases:

case 1: d∗ is from ∆I0 .

Then Lemma 5.5 gives us an n0-bounded simulation ρ of (I0, d
∗) in (U , e) for some e. We

can extend ρ to the desired n0-bounded simulation of (I+
0 , d

∗) in (U , e) by following the
applications of the completion rule applied to construct I+

0 from I0, and exploiting that
U is constructed by applying the same rule.

case 2: d∗ is not from ∆I0 and ∆ contains elements from ∆I0 .

Let d0 be the unique element from ∆ that is in ∆I0 and can be reached from d∗ in I+
0 |
n0
d∗

on a path of minimal length.1 Start with a n0-bounded simulation ρ of (I0, d0) in (U , e)
for some e (given by Lemma 5.5), restricted to the elements of ∆. Then proceed as in
case 1.

1This element d0 is unique since I+
0 extends I0 by attaching tree-shaped structures to existing elements.
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5. Query Answering under the Finite Model Assumption

case 3: ∆ contains no elements from ∆I0 .

Exploiting Invariant (i1), it is easy to show by induction on the number of rule applications
used to construct I+

0 that for every d ∈ ∆I+
0 , there is an e ∈ ∆U with tpI+

0
(d) = tpU (e).

For d, d′ ∈ ∆, we write d ≺ d′ if d′ was created by a later rule appliction than d during
the construction of I+

0 from I0. Let d0 be the unique element of ∆ that is minimal
w.r.t. ≺. We start with the initial bounded simulation ρ = {(d0, n0, e)} for some e with
tpI+

0
(d0) = tpU (e) and then proceed as in case 1 above.

We now choose one representative (J , d) ∈ S of each n0-simulation type S realized in I+
0 ,

i.e., such that there is some d ∈ ∆I+
0 with (I+

0 , d) ∈ S. Then extend I0 with pairwise disjoint
copies of all the chosen representatives. By Lemma 5.6, the resulting interpretation I1 satisfies
I1 �n0 U . We treat I1 as an initial interpretation in the same way as we have treated U0 as an
initial intepretation for constructing I0 and repeat the application of (c1) and (c2′) as described
above, which results in a completed version of the interpretation I1. Lemmas 5.5 and 5.6 apply
also to I1 in place of I0, with the proofs going through without modification. The same is true
for the invariants (i1) to (i3). Since I+

1 might realize n0-simulation types that are not realized in
I+

0 , we then add copies of the new simulation types. Repeating this process leads to a sequence
of finite interpretations I0, I1, . . . . Since there are only finitely many n0-simulation types and
since the simulation type of added representatives does not change by applying the rules (c1)
and (c2′), this process eventually stabilizes. Call the resulting finite interpretation Iω. By what
was said above, we have the following.

Lemma 5.7. Iω �n0 U and I+
ω �n0 U .

The disjoint copies just added will serve as the desired ‘targets’ for applying (a modified version)
of the completion rule (c3). Indeed, to construct the desired finite interpretation I, it remains
to start with the infinite model I = I+

ω and exhaustively apply a modified version (c3′) below
of the completion rule (c3).

(c3′) If d ∈ ∆I , tpI(d) →r t, and d /∈ (∃r.t)I , then by construction of I+
ω , we find an

element e ∈ ∆I+
ω such that (d, e) ∈ rI+

ω and tpI+
ω

(e) = t. By construction of Iω, there
is an element e′ ∈ ∆Iω such that (I+

ω |n0
e , e) and (Iω|n0

e′ , e
′) have the same simulation

type. Include in rI the edge (d, e′).

Note that the modified version (c3′) of the old (c3) preserves all invariants because the same
arguments as for the latter rule go through in Lemma 3.17.

Lemma 5.8. I is a model of (Tf ,A).

118



5.2. Constructing n-similar Finite Models

Proof. It is easy to see that the proof of Proposition 3.19 goes through also for the modified
version of I: the essential ingredients of that proof are the invariants (i1)–(i3), which hold for
I as argued above, plus the argument after the case distinction (1)–(3) for axioms of the form
K v ∃r.K ′, which is unaffected by our modification of the rules.

We can now establish the main property that is satisfied by the finite model I just constructed.

Lemma 5.9. For every n0-substructure I ′ of I, I ′ � U .

Proof. By Lemma 5.7, it suffices to show that I �n0 I+
ω . We call an edge (d, e) ∈ rI special if it

was added in the construction of I from Iω, that is, by applying (c3′). The source of the special
edge (d, e) ∈ rI is the element from {d, e} that plays the role of d in the formulation of (c3′).

Let d∗ ∈ ∆I . In the following, we construct an n0-bounded simulation ρ of (I, d∗) in
(I+
ω , d

∗). To assist with the construction of ρ, we associate with every tuple (d, i, e) in the
partially constructed ρ an i-bounded simulation ρd,i,e of (I+

ω , d) in (I+
ω , e) whose purpose is to

guide the further construction.
We start with setting ρ = {(d∗, n0, d

∗)}. As the required n0-bounded simulation ρd∗,n0,d∗ of
(I+
ω , d

∗) in (I+
ω , d

∗), we use the identity, that is, the set of all triples (d, i, d) with d ∈ ∆I+
ω and

i ≤ n0. To extend the initial ρ just defined, we distingush three cases.
Assume that (d, i, e) ∈ ρ with i > 0 and (d, d′) ∈ rI is non-special. Then (d, d′) ∈ rIω ⊆ rI+

ω

and thus we find a triple (d′, i− 1, e′) ∈ ρd,i,e with (e, e′) ∈ rI+
ω . Add (d′, i− 1, e′) to ρ and set

ρd′,i−1,e′ = ρd,i,e.
Now assume that (d, i, e) ∈ ρ with i > 0, (d, d′) ∈ rI is special, and d is the source of this

edge. Then there is a d′′ ∈ ∆I+
ω such that (d, d′′) ∈ rI+

ω and (I+
ω , d

′′) has the same n0-simulation
type as (Iω, d′). Then (I+

ω , d
′′) must also have the same n0-simulation type as (I+

ω , d
′). We

can thus find an (i − 1)-bounded simulation ν of (I+
ω , d

′) in (I+
ω , d

′′). Since (d, i, e) ∈ ρd,i,e,
there must be an e′′ ∈ ∆I+

ω with (d′′, i− 1, e′′) ∈ ρd,i,e and (e, e′′) ∈ rI+
ω . We add (d′, i− 1, e′′)

to ρ. The required (i − 1)-bounded simulation ρd′,i−1,e′′ of (I+
ω , d

′) in (I+
ω , e

′′) is obtained by
composing ν with ρd,i,e.

Finally assume that (d, i, e) ∈ ρ with i > 0, (d, d′) ∈ rI is special, and e is the source of this
edge. Then there is a d̂ ∈ ∆I+

ω such that (d̂, d′) ∈ rI+
ω and (I+

ω , d̂) has the same n0-simulation
type as (Iω, d). Then (I+

ω , d̂) must also have the same n0-simulation type as (I+
ω , d). We can

thus find an i-bounded simulation ν of (I+
ω , d̂) in (I+

ω , d). Composing ν with ρd,i,e, we find an
i-bounded simulation η of (I+

ω , d̂) in (I+
ω , e). Since (d̂, d′) ∈ rI+

ω , there must be some ê ∈ ∆I+
ω

such that (d′, i− 1, ê) ∈ η and (e, ê) ∈ rI+
ω . Add (d′, i− 1, ê) to ρ. The required (i− 1)-bounded

simulation ρ
d′,i−1,̂e of (I+

ω , d
′) in (I+

ω , ê) is provided by η.

Finally, we have reached our goal, the construction of the interpretation I described through
this section and Lemmata 5.8 and 5.9 provide the arguments to show Proposition 5.4. We have
thus solved Problem 1.
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5. Query Answering under the Finite Model Assumption

5.3 Constructing Locally Acyclic Finite Models

In this section, we focus on solving Problem 2, and thus reach our final goal, that is, to
construct a finite model of a satisfiable (Tf ,A) such that every n0-substructure of this model
homomorphically embeds into U . Note that the model I from the previous section (solving
Problem 1) is still not as required since it may contain (non-ABox) cycles that are not present
in U , and thus the existence of Problem 2. In particular, we will see that such cycles cannot
be completely avoided, but they can be made large enough so that they are not ‘visible’ in
n0-substructures.

In order to construct the desired finite model, we will use a technique introduced by Otto [105]
to obtain locally acyclic bisimilar covers of finite labelled transition systems, which can also
be seen as Kripke structures or relational structures with unary and binary predicates. A
homomorphism ρ : Î → I is bisimilar cover of I by Î, if {(d̂, d) | d = ρ(d̂)} is a bisimulation
between Î and I. Very informally, a bisimulation, is a relation σ : ∆Î ×∆I that satisfies “both
directions" of conditions 1, 2, and 3 of simulations (see Definition 5.2).

It is well known that the tree unravelling of a (finite) relational structure provides a bisimilar
cover. However, note that the unravelling is infinite if the original relational structure does have
cycles. Otto [105] shows how to obtain a locally acyclic bisimilar cover of a finite relational
structure I from the product of I with a finite group of high girth. A more detailed explanation
will follow, but let us first introduce some basic notions of group theory.

Definition 5.6. A group is a set, G, together with an operation ◦ that combines any two
elements g1 and g2 to form another element g1 ◦ g2. (G, ◦) must satisfy the following group
axioms:

Closure. For all g1, g2 ∈ G, g1 ◦ g2 ∈ G.

Associativity. For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Identity element. There exists a unique element h ∈ G, such that for every element g ∈ G,
the equation h ◦ g = g ◦ h = g holds. h is called the identity element of G, and is denoted
by 1G.

Inverse element. For each g ∈ G, there exists exactly one element g′ ∈ G such that g ◦ g′ =
g′ ◦ g = 1G. g′ is called the inverse of g and is usually denoted by g−1.

A group g element is called involutive if g ◦ g = 1G, i.e., g = g−1. A finite group is a group (G, ◦)
such that G is a finite set. A generating set of a group (G, ◦) is a subset H ⊆ G such that every
element g ∈ G can be expressed as some finite combination h1 ◦ · · · ◦ hn where each hi is such
that either hi ∈ H or hi = h−1 for some h ∈ H. For an arbitrary set H ⊆ G, we write 〈H〉 to
denote the group generated by H (which might not coincide with (G, ◦)). A nonempty subset
H of a group G is said to be symmetric if h−1 ∈ H whenever h ∈ H.

4
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(d, g)

d0d
h1

h2
h3

(d0, g � h1)

(d00, g � h1 � h2)

(d00, g � h1 � h2 � h3)

d00

I

I ⌦ G

Figure 5.1: Product Construction

Notably, the structure of a group is made explicit by its so-called Cayley Graph.

Definition 5.7. Let (G, ◦) be a finite group generated by a symmetric set H. The Cayley graph
of G w.r.t. H is the undirected graph Γ = (G,H) with set of vertices G and the edges defined
as follows: {g, g′} is an edge if g′ = g ◦ h, for some h ∈ H. The girth of a graph is the length of
a shortest cycle contained in that graph. The girth of a group G is then the girth of its Cayley
graph.

4

The construction conceived by Otto [105] uses a product I ⊗ G of a given structure I with a
finite group G generated by a symmetric set H that has an element ge for every R-edge e in I,
with R a binary predicate. Intuitively, in the product I⊗G there is then an R- edge from (d, g)
to (d′, g′) if (d, d′) ∈ rI and g′ = g ◦ h1, where h1 is the group element assigned to the R-edge
(d, d′); e.g., see Figure 5.1 for a graphical reference. In this fashion, any cycle in the product
projects to a cycle in the graph of G w.r.t. H, and hence its length is bounded from below by
the girth of G. This means that, if the girth of G is sufficiently large one avoids the occurrence
of “short cycles" in J⊗G. Note also that the out-degree of every node in the required Cayley
graph should be exactly k, with k the number of edges in J. That means that the graph (G,H)
should be k-regular.

For any k and m, explicit constructions of k-regular graphs with girth greater than m have
been studied in the literature. The following is a known result, c.f. [4] for a full discussion of the
construction.

Theorem 5.10.
For every k,m > 0 there exists a finite group G which is generated by a set of k involutive
generators, and whose Cayley graph has regular degree k and girth at least m.
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From the observation that the relational structures considered by Otto correspond also
to interpretations in DLs, the described product construction seems a good candidate to solve
Problem 2. However, there are a number of technical challenges disallowing a direct application
of this construction to our interpretations:

• Challenge 1. The presence of distinguished elements in our interpretations, that is, the
ABox individuals. Indeed, by applying the previous construction to a model I of an ontol-
ogy (T ,A) such that there is cycle in A, we would obtain an interpretation I ⊗G (think
of I as a structure) that no longer satisfies A.

• Challenge 2. The construction described above assumes that the relational structures
are simple. Translated to our case an interpretation I is simple if for every pair of roles
r, s, rI ∩ sI = ∅; and there is no role r with r(d, d) ∈ I. Both of these conditions cannot
be guaranteed for any of our constructions of finite models described so far.

Before we proceed to solve Challenge 1 and 2, we formally define the product interpretation.
Let J be an interpretation. We use EJ to denote the set of all edges of J , that is, all sets
{d, e} such that (d, e) ∈ rJ for some role r. Let (G, ◦) be a finite group generated by a set
H = {gS | S ∈ EJ }: that is, the set of edges EJ can be embedded via an injection into H.
The existence of such a group G is granted by Theorem 5.10. We use J ⊗ G to denote the
interpretation with domain ∆J ×G defined as follows:

AJ⊗G = {〈d, h〉 ∈ ∆J ×G | d ∈ AJ }

rJ⊗G = {(〈d, h〉, 〈d′, h ◦ g{d,d′}〉) | (d, d′) ∈ rJ }.

We are now ready to start solving Challenge 1 and 2. We proceed in the opposite order:
we start solving Challenge 2. More precisely, we show that given an interpretation I we can
transform it into a simple interpretation, i.e., an interpretation without self loops or elements
related by more that one role outside the ABox.

5.3.1 Reduction to Simple Interpretations

As a preliminary, we first transform I to rule out cycles of length 1 (reflexive loops) or 2. We
make more precise this notion in the following.

Definition 5.8. An interpretation J is called simple if it satisfies the following conditions for
all objects d, e ∈ ∆J and (possibly inverse) roles r, s:

1. If d /∈ Ind(A), then (d, d) /∈ rJ .

2. If (d, e) /∈ Ind(A)× Ind(A) and (d, e) ∈ rJ ∩ sJ , then r = s.
4
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5.3. Constructing Locally Acyclic Finite Models

The following construction shows how to transform I into a simple interpretation I ′. Let
r1, . . . , rR be the role names occurring in A and Tf . We take 2R+ 2 disjoint copies of ∆I , and
interpret ABox elements in the last copy and concept names in every copy the same way as in
∆I . In the model to be constructed, rk-edges between non-ABox elements jump over k copies
(modulo 2R+ 2), and rk-edges between ABox elements remain in the last copy if they originate
there, or otherwise jump over k copies (modulo 2R+ 1 this time). This way, we leave the ABox
structure intact in the last copy, and break up all other cycles of length 1 and 2. More precisely,

∆I
′

= ∆I × {0, . . . , 2R+ 1}

AI
′

= {〈d, i〉 | d ∈ AI , 0 ≤ i ≤ 2R+ 1}

rI
′

k = {(〈d, i〉, 〈e, i⊕2R+2 k〉) | (d, e) ∈ rIk \ Ind(A)2}

∪ {(〈d, i〉, 〈e, i⊕2R+1 k〉) | (d, e) ∈ rIk ∩ Ind(A)2, i ≤ 2R}

∪ {(〈d, 2R+ 1〉, 〈e, 2R+ 1〉) | (d, e) ∈ rIk ∩ Ind(A)2}

ABox individuals are interpreted in the first copy, that is, we identify a with 〈a, 2R+ 1〉. Note
that the last line preserves the structure of the ABox, and the preceding lines ensure simpleness
(but do not generally rule out cycles of length 3).

We next show that I ′ is indeed simple:

1. Whenever (〈d, i〉, 〈d, i〉) ∈ rI′k , the construction ensures that i = 2R+ 1 and d is an ABox
element.

2. Let (〈d, i〉, 〈e, j〉) ∈ (rI′ ∩ sI′) \ Ind(A)2. We distinguish three cases.

• case1: Both r, s are role names: r = rk, s = r`. Then the above pair has been added
in the first or second line of the constructions of both rI′k and rI′` . If it was added in
the second line, then we have j = i⊕2R+1 k = i⊕2R+1 ` which, due to 0 < k, ` ≤ R,
implies k = ` and hence rk = r`. The case for the first line is analogous.

• case 2: One of r, s is a role name; the other is not: r = rk, s = r−` . As in the
previous case, the above pair must have been added in the first or second line of the
constructions of both role interpretations. If it was added in the second line, then we
have j = i ⊕2R+1 k and i = j ⊕2R+1 `. Inserting the first equation into the second,
we get i = i⊕2R+1 k ⊕2R+1 `, which is impossible because 0 < k + ` ≤ 2R. The case
for the first line is analogous.

• case 3: None of r, s are role names: r = r−k , s = r−` . This case reduces to the first
case if we swap 〈d, i〉 and 〈e, j〉.

It is an easy exercise to show that I ′ is a model of A and Tf , and that I ′ � I. From Lemma 5.9,
we thus get I ′ �n0 U .

In what follows we concentrate on the solution of Challenge 1, and thus finally solving
Problem 2.
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5.3.2 Products of Simple Interpretations.

Now, consider the finite model I of (Tf ,A) constructed in the Section 5.2, that is, the model
constructed to solve Problem 1. By the reduction above, we may assume that I is simple.
Moreover, by Theorem 5.10, we can take a finite group G generated by an involutive set H =
{gS | S ∈ EI} of cardinality k = |EI |, such that the girth of G is greater than n0 and its Cayley
graph w.r.t. H is k-regular.

To obtain an interpretation that satisfies the ABox (and then solving Challenge 1), we consider
the interpretation Ĵ that can be obtained as follows:

• start with I− ⊗ G, where I− is obtained from I by removing, for each r(a, b) ∈ A, the
pair (a, b) from rI ;

• then take an arbitrary but fixed hA ∈ G, for every a ∈ Ind(A) and identify each ABox
element a with (a, hA);

• finally, for each r(a, b) ∈ A, add (〈a, h〉, 〈b, h〉) to rĴ , for every pair 〈a, h〉, 〈b, h〉 ∈ ∆Ĵ .

Note that all copies of the ABox in Ĵ , not just the ‘main’ one identified by hA, inherit the
relational structure of the ABox. We first observe that Ĵ is still a (finite!) model of Tf and A.
This essentially follows from the observations by Otto [105].

Lemma 5.11. Ĵ is a model of Tf and A.

Proof. To show that Ĵ is a model of Tf , we use the fact that I is a model of Tf and the
construction of Ĵ . CIs of the form K v A, K v ⊥, K v ∃r.K ′, and K v ∀r.K ′ are easy
to deal with. We thus concentrate on CIs K v (6 1 r K ′). Assume that 〈d, h〉 ∈ KĴ . By
construction of Ĵ , this means d ∈ KI . Assume to the contrary of what is to be shown that
there are (〈d, h〉, 〈ei, hi〉) ∈ rĴ for i = 1, 2 such that 〈ei, hi〉 ∈ K ′Ĵ and 〈e1, h1〉 6= 〈e2, h2〉. Then
(d, ei) ∈ rI and since I is a model of Tf , we obtain e1 = e2 =: e. Now the construction of Ĵ
yields that, if both d, e interpret ABox elements in I, then h1 = h2 = h, and that otherwise
hi = h ◦ g{d,e} for both i = 1, 2. Finally, using the construction of Ĵ , it is easy to observe that
Ĵ is a model of A.

After solving Challenge 1 and 2, we can show that indeed Ĵ does not contain ‘small’
cycles, and hence solving Problem 2. Before we proceed with the proof, we need some auxiliary
notions. A cycle in Ĵ (of length n) is a path p1, r1, . . . , rn, pn+1, where n > 2, pi ∈ ∆Ĵ , each ri
is a (possibly inverse) role such that (pi, pi+1) ∈ rĴi , and p1 = pn+1. Further, a cycle is simple
if, for 1 ≤ i < j ≤ n, we have pi 6= pj . An element p = 〈d, h〉 ∈ ∆Ĵ is an ABox element if
d ∈ Ind(A). Note that this definition includes all “copies” of ABox elements from I, not just
those that interpret ABox individuals. We say that Ĵ is n-acyclic relative to A if every simple
cycle in Ĵ of length at most n contains exclusively ABox individuals.

Lemma 5.12. Ĵ is n0-acyclic relative to A.
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Proof. We start with the following observation:

Observation: If (p1, p2) ∈ rĴ with pi = 〈di, hi〉, i ∈ {1, 2}, and at least one of d, e is not an ABox
element, then h2 = h1 ◦ g{d1,d2}.

In fact, this is immediate if r is a role name. If r = s−, then h1 = h2 ◦ g{d1,d2}, which by
multiplication with g{d1,d2} and due to the generators being involutive yields h1 ◦ g{d1,d2} = h2.

Let α = p1, r1, . . . , rn, pn+1 be a simple cycle in Ĵ , with pi = 〈di, hi〉 for 1 ≤ i ≤ n, such
that for some i, pi is not an ABox element. Assume to the contrary of what is to be shown that
n ≤ n0. We show that hi−1, hi, and hi+1 are all different. Consequently, α gives rise to a cycle
of length between three and n0 in the Cayley graph of G (even if some of the other elements on
α should coincide), which contradicts the non-existence of such cycles. We have hi−1 6= hi since
otherwise hi−1 = hi−1 ◦ gi−1, which is not possible due to n0-regularity of the Cayley graph of
G; for the same reason, hi 6= hi+1. Finally, assume to the contrary of what we want to show
that hi−1 = hi+1. Then hi−1 ◦ gi−1 ◦ gi = hi−1. Combining with gi yields hi−1 ◦ gi−1 = hi−1 ◦ gi,
which gives gi−1 = gi by k-regularity of G. Since gi−1 = g{di−1,di} and gi = g{di,di+1}, this yields
di−1 = di+1, thus pi−1 = pi in contrast to α being simple.

Finally, we show that indeed the constructed Ĵ avoids the Problems 1 and 2, and there-
fore it can be used as the J ′ of Proposition 5.3. Recall that with Proposition 5.3 we can
straightforwardly proof the “⇒: ” of our main result: Theorem 5.1.

Lemma 5.13. Every n0-substructure J ′n0
of Ĵ homomorphically embeds into the canonical

model U of (Tf ,A).

Proof. We may assume w.l.o.g. that J ′n0
is connected. We start with making a useful observation.

Claim 4. For each p1 ∈ ∆Ĵ that is not an ABox element, there is at most one simple path
p1r1p2 · · · pkrkpk+1 in J ′n0

such that p1, . . . , pk are not ABox elements and pk+1 is an ABox
element.

Assume there is a p1 ∈ ∆Ĵ that is not an ABox element and such that there are two simple paths
in J ′n0

of the described form. Each such path p1r1p2 · · · pkrkpk+1 gives rise to a corresponding
path d1r1d2 · · · dkrkdk+1 in I such that d1, . . . , dk are not ABox individuals, but dk+1 is. Note
that the initial version of the modified finite interpretation I contains U0, which takes the form
of the ABox A extended with a tree of depth n0 below each ABox individual, and that later
steps in the construction of I only add successors to leaves in these trees. Therefore, and since
the length of all mentioned paths is clearly bounded by n0, both paths in I must be inside the
same tree of U0. But then they must be identical since they start and end at the same element
and are simple.

Choose an arbitrary p0 = (d0, h0) ∈ ∆J
′
n0 . By Lemma 5.9, we know that (I, d0) �n0 U ,

witnessed by an n0-bounded simulation ρ. We use ρ to construct the desired homomorphism η

from J ′n0
to U .
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5. Query Answering under the Finite Model Assumption

In what follows, let π be the projection on the first component of elements in ∆Ĵ . We define
a sequence of partial homomorphisms ηi, i ≥ 0, that is, partial functions ηi : ∆J

′
n0 ×∆U that

satisfy Conditions 1 to 3 of homomorphisms. The desired homomorphism η is then obtained in
the limit. We will make sure that all ηi satisfy the following properties:

(a) (π(p), n0 − i, ηi(p)) ∈ ρ for all p ∈ ∆J
′
n0 ;

(b) if J ′n0
contains a path of length ≤ i from an initial element to p, then ηi(p) is defined,

where an element q is initial if η0(q) is defined.

We start by defining η0 as follows.

• If ∆J
′
n0 contains ABox elements, then set η0(p) = a for all p = 〈a, h〉 ∈ ∆J

′
n0 with

a ∈ Ind(A).

• If ∆J
′
n0 does not contain ABox elements, then choose an e ∈ ∆U with (π(p0), n0, e) ∈ ρ

and set η0(p0) = e.

Clearly, η0 satisfies (a) and (b) and Condition 1 of homomorphisms. Satisfaction of Condition 2
follows from (∗). Finally, satisfaction of Condition 3 follows from the existence of ρ and the fact
that, by definition of bounded simulations, ρ preserves all edges between ABox elements.

In the induction step, ηi+1 is obtained from ηi by defining a value for all p2 ∈ ∆J
′
n0 such that

there is some edge (p1, p2) ∈ rĴ with ηi(p1) defined and ηi(p2) undefined. To define ηi+1(p2),
we observe that (π(p1), π(p2)) ∈ rI follows from (p1, p2) ∈ rĴ and (π(p1), n0 − i, ηi(p1)) ∈ ρ
holds by (a). Moreover, we have i < n0 by (b) and since any two elements in J ′n0

reach each
other by a path of length ≤ n0, thus i = n0 contradicts ηi(p2) being undefined. Consequently
there must be some e such that (π(p2), ni − i− 1, e) ∈ ρ and (ηi(p1), e) ∈ rU . Set ηi+1(p2) = e.

We next show that ηi+1 is well-defined, that is, if (p1, p) ∈ rĴ and (p2, p) ∈ sĴ with ηi(p1)
and ηi(p2) defined and ηi(p) undefined, then (p1, r) = (p2, s). Assume to the contrary that this
is not the case. We distinguish three cases:

• p ∈ {p1, p2}. Then (p1, p1) ∈ rĴ or (p2, p) ∈ sĴ . We address the fomer case, the latter
is analogous. Let p1 = 〈d1, h1〉. Then (p1, p1) ∈ rĴ yields (d, d) ∈ rI . Since I is simple,
d ∈ Ind(A), thus p is an an ABox element. This is a contradiction to ηi(p) being undefined

• p /∈ {p1, p2}, p1 = p2, and r 6= s. Let p1 = 〈d1, h1〉 and p = 〈d, h〉. Then we have (d1, d) ∈ rI

and (d1, d) ∈ sI . Since I is simple and d /∈ Ind(A) (because p cannot be an ABox element),
this yields r = s as required.

• p /∈ {p1, p2} and p1 6= p2. Since ηi(p1) and ηi(p2) are defined and ηi+1(p) is not, pj is
reachable from some initial element p̂j on a path Pj of length i and this is the shortest
path from any initial element to pj , for j ∈ {1, 2}. If ∆J

′
n0 contains no ABox elements,

then p̂1 = p̂2 = p0. Otherwise, p̂1 and p̂2 are ABox elements and we obtain from Claim 1
and the fact that both p̂1 and p̂2 are reachable from p that p̂1 = p̂2. For readability, we
from now on use p̂ to denote p̂1(= p̂2).
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Let p′ be the element on the path P1 that also occurs on the path P2 and is furthest away
from p̂ (such an element always exists since p̂ is on both paths). Consider the following
cycle in Ĵ :

1. from p′ to p1 along P1;

2. from p1 to p along r;

3. from p to p2 along s−;

4. from p2 to p′ backwards along P2.

Since p /∈ {p1, p2} and p1 6= p2, this cycle has length > 2 as required. Moreover, the cycle
is simple: by choice, the two travelled subpaths of P1 and P2 do not share any elements,
including p1 and p2. Moreover, p does not occur on these subpaths because ηi must be
defined for all elements on the subpaths whereas it is not defined for p. Since p occurs
on a simple cycle, p must be an ABox element. This yields a contradiction to ηi(p) being
undefined.

To finish the proof, we note that it is clear that ηi+1 satisfies (a), (b), and all three conditions
of homomorphisms.

5.4 Complexity Boundaries

Apart from enabling the use of algorithms for unrestricted PEQ answering to decide finite
model PEQ entailment, the result shown in Theorem 5.1 yields tight complexity bounds for
finite model PEQ entailment. Note that decidability of PEQ entailment in Horn-ALCFI was
expected given a result by Pratt-Hartmann [112]. That result states that finite CQ answering
for the two-variable guarded fragment of first-order logic extended with counting quantifiers GC2

– which is a proper superset of ALCQI– is decidable. We assume that his proof can be extended
to unions of conjunctive queries (UCQs), and thus to PEQs. The complexity results obtained by
Pratt-Hartmann concern only data complexity of finite CQ entailment in GC2, which he finds
to be coNP-complete.

Theorem 5.14. Finite PEQ entailment in Horn-ALCFI is decidable, ExpTime-complete in
combined complexity, and PTime-complete in data complexity.

Proof. For the unrestricted case, an ExpTime lower bound is in Baader et al. [15] and a PTime
one in [39]. Both results can easily be adapted to the finite case. The upper bounds can be
proved using the following straightforward algorithm for PEQ entailment, which resembles
existing algorithms such as those presented in [28, 51, 88, 104]. Assume that an input ABox A,
TBox T , and PEQ q are given, and let n0 be the number of variables in q. As a consequence
of Theorem 3.24, finite satisfiability w.r.t. T coincides with unrestricted satisfiability w.r.t. Tf .
Using our algorithm for computing finite satisfiability in Horn-ALCFI in ExpTime, we can
thus compute the set TP(Tf) of types for Tf without computing Tf or explicitly reasoning w.r.t.
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5. Query Answering under the Finite Model Assumption

this exponentially large TBox. Let A′ be the extension of A with assertions {A(at) | A ∈ t} for
each t ∈ TP(A). Now compute an initial piece U ′ of the canonical model U of A′ and Tf , namely
its restriction to depth n0. Similar to the computation of TP(Tf) above, we can do this by using
finite subsumption w.r.t. T instead of unrestricted subsumption w.r.t. Tf . It is not difficult to
prove that U ′ |= q iff U |= q. To check whether U ′ |= q within the desired time bounds, we can
simply enumerate all possible maps of variables in q to elements of U ′ and check whether any
such map is a match.

Theorem 5.14 states that PEQ entailment in Horn-ALCFI has the same complexity in finite
and in unrestricted models. For the unrestricted case, PTime-completeness in data complexity
follows from the results in [72], and ExpTime-completeness in combined complexity is proved
in [51] for UCQs. We assume that the techniques in that paper extend to PEQs.
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Chapter

6
Queries with Negation and
Inequality over Horn Ontologies

In classical database theory, conjunctive queries (CQs) have played a key role due to their
desirable theoretical properties. In the light of this precedent, a vast amount of research on
answering CQs in the context of OBDA has been conducted in the last decade, so that now we
have a fairly clear landscape of the computational complexity of answering CQs over Horn and
expressive DL languages.

Conjunctive queries belong to the positive existential fragment of first-order logic, and
therefore lack means to express ‘complementation’ or ‘difference’. Unfortunately, some natural
queries require to express either of these; for example, to retrieve ‘all members of the staff
that do not belong to a union’ or ‘all students whose month of birth is (different from) not
September’. A well-known fact from database theory is that answering CQs with negation is
harder than answering CQs. Rosati [116] showed that in the case of ontological query answering
in DL-Lite the increase in the complexity is dramatic: in striking contrast to the highly tractable
AC0 bound for data complexity in the case of unions of CQs, the problems of answering unions
of CQs with inequalities (CQs 6=) and unions of CQs with safe negation (CQs¬s) were shown to
be undecidable over the simplest language of DL-Lite. Further, for EL the situation is similar
for safe negation: answering UCQs¬s is undecidable. Remarkably, Klenke [82] showed that
answering single CQs 6= is also undecidable.

Extending CQs and UCQs with negated atoms has an effect not witnessed before in onto-
logical query answering over Horn ontologies. In particular, there might be a difference between
considering union of CQs or a single CQ: by the fact that answering UCQs¬s and UCQs 6= is
undecidable we cannot straightforwardly conclude that this is the case for CQs¬s and CQs 6=. A
reason to draw that conclusion is that the proofs used so far to show the results reported above
rely on reductions of undecidable problems (e.g., N×N-tiling problem) to answering UCQs 6=

(UCQs¬s) over Horn DLs where each disjunct of the UCQ 6= takes care of properly encoding a
‘restriction’ present in the reduced problem (e.g., coloring condition, matching condition, etc),
and how to obtain a similar behavior with a single query is far from obvious.
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The addition of negated atoms to CQs brings not only an increase in the computational
complexity, but it also introduces further technical difficulties for the development of algorithmic
approaches since negated atoms are not preserved under homomorphisms [49]. As a consequence,
to potentially devise algorithms for answering CQs 6= and CQs¬s over Horn DLs we cannot directly
use techniques based on the construction of the canonical model of the ontology. Due to these
difficulties, up to now, the only known results are coNP-hardness for answering CQs 6= and
CQs¬s over DL-LiteHcore [116], and undecidability of answering CQs 6= in EL [82].

In this Chapter, we aim to sharpen the panorama of answering CQs with safe negation and
inequalities over Horn ontologies. We investigate different syntactic restrictions to CQs¬s or
CQs 6= proposed in the literature. A notorious way of attaining decidability for undecidable logics
is to allow only guarded quantifications; see e.g., [5, 18, 61]. In particular, it has been recently
shown that open world answering of first-order queries with guarded negation is decidable [19].
Taking into account the latter, we investigate the impact of this restriction on answering CQs
with negated atoms over Horn DLs. Another prominent syntactic restriction is to constraint the
number of negated atoms allowed to occur in a query [6, 19, 54, 83]. Throughout this chapter,
we study the influence of this parameter on the complexity of answering CQs with negated
atoms over Horn DLs.

6.1 Answering CQs with Safe and Guarded Negation

In this section, we analyze answering queries with safe negations. It is known [116] that, answering
union of CQs with safe negation (UCQ¬s) over DL-Litecore and EL is undecidable. These results
regard both the ontology (TBox and ABox) and the query as part of the problem input. We begin
this section (Theorem 6.2) by a transparent reduction of the undecidable halting problem to
answering a single fixed Boolean CQ¬s over ELI⊥ (that is ELI extended with ⊥) ontologies with
a fixed TBox. Then (in Lemma 6.3) we establish a close correspondence between ELI TBoxes
and unions of CQ¬ss over DL-Litecore TBoxes, which automatically implies undecidability of
answering UCQ¬s over DL-Litecore when the TBox and query are fixed (Corollary 6.4).

We then proceed to show (in Lemma 6.5) that the union of tree-shaped CQ¬ss from the
proof of Corollary 6.4 can be replaced by a single CQ¬s and a number of role inclusions. Thus,
we extend the undecidability result to the problem of answering CQs with safe negation in
DL-LiteHcore. We point out that the transformation of Lemma 6.5 is general (in particular, it is
applicable to plain CQs and CQs with inequalities) and may be of wider interest.

In Theorem 6.7, we explore the limits of undecidability and prove that answering unions
of three CQ¬ss over DL-Litecore, which does not contain role inclusions, is undecidable. The
problem for unions with one or two disjuncts remains open.

Finally, we turn to CQs with guarded negation (GNCQs), which are known [19] to be
decidable over Horn DLs and establish matching lower bounds for data complexity: coNP for
GNCQs and P-complete for GNCQs with a single negated atom.
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6.1. Answering CQs with Safe and Guarded Negation

To ease the presentation and the proofs in what follows, we will consider a restricted form of
ELI TBoxes. A primitive ELI TBox is a finite set of axioms of the form:

B v C,

where C is an ELI concept, and B is either a concept name or a concept of the form ∃r, i.e.,
a basic DL-Lite concept. Notably, primitive ELI TBoxes have the same expressive power as
DL-LiteHcore TBoxes. This is justified by the following observation.

Proposition 6.1. For every concept inclusion α of the form

A v C,

where A is a concept name and C an ELI concept, we can construct a DL-LiteHcore TBox T
which is a model conservative extension of α: every model of T is a model of α and, conversely,
every model of α can be extended to a model of T by giving an interpretation to the fresh symbols
of T .

Proof. Indeed, a concept inclusion of the form B v C1 u C2 is equivalent to two concept
inclusions B v Ci, for i = 1, 2; and a concept inclusion of the form B v ∃r.C can be replaced
by two concept inclusions B v ∃rC , ∃r−C v C and a role inclusion rC v r; for more details see,
e.g., [9]. q

However, such a shortcut is not available in DL-Litecore because it contains no role inclusions.

For simplicity, we will consider Boolean (U)CQs with safe negation, and the problem of query
entailment w.r.t. an ontology of such queries. Recall that deciding whether a satisfiable ontology
O entails a query q is equivalent to decide whether O ∧ ¬q is satisfiable, i.e., whether there is
a counter model of q. With that equivalence in mind, in the following, we will often prefer to
represent Boolean (U)CQs with safe negation in their negated form. Given a Boolean query

q = ∃~yϕ(y) ∧ ψ(~y)

where ψ(~y) is the conjunction of all the negated atoms in q, the negated form of q is the sentence:

∀~y.ϕ(~y)→ ψ(~y),

which is logically equivalent to ¬q. To simplify notation, we will usually omit the universal
quantification.

6.1.1 Safe Negation: Undecidability over ELI⊥

Our proofs of the undecidability results in this section are by reduction of the halting problem for
deterministic Turing machines. We note at this point that the choice of our reduction differs from
the usual reduction of the unbounded tiling problem (see e.g., [116]). Indeed, the latter reduction
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Figure 6.1: Completing the square with the Boolean CQ¬s (6.1).

is usually easier to describe, however it requires the use of disjunction (or a UCQ), which is not
available in our setting. A key observation to achieve our reduction is that a configuration of a
Turing machine (that is, the contents of the tape and the current state with the position of the
head at a particular step of the computation) can be written down on a sequence of domain
elements with a role, tape, pointing to the representation of the next cell of the tape. Then a
computation of the Turing machine can be thought of as a two-dimensional grid, where another
role, next, points to the representation of each cell in the successive configuration.

In order to establish the required two-dimensional grid, we are going to use the following
Boolean CQ¬s q1:

∃x1, y1, z1, u1
(
next(x1, y1) ∧ tape(x1, z1) ∧ next(z1, u1) ∧ ¬tape(y1, u1)

)
. (6.1)

It can be readily seen that in any counter model I of q1, for every four elements forming the
three sides of a square, there is a T -edge that completes the square, as shown in Fig. 6.1. Or
more precisely, I satisfies the negated form of q1:

next(x1, y1) ∧ tape(x1, z1) ∧ next(z1, u1)→ tape(y1, u1) (6.2)

Once the grid has been established, we can use ELI⊥ axioms to ensure that the elements
of the grid encode successive configurations of a given deterministic Turing machine. This
observation leads us to our first undecidability result.

Theorem 6.2. There are a Boolean CQ¬s and an ELI⊥ TBox such that query answering is
undecidable.

Proof. The proof is by reduction of the halting problem for deterministic Turing machines (see
e.g., [107]). In particular, given a Turing machine M , we construct a TBox T and a query q

such that M does not accept an input ~w encoded as an ABox A~w iff (T ,A~w) 6|= q (T and
q depend on M but not on ~w). Applying this construction to a fixed deterministic universal
Turing machine, i.e., a machine that accepts its input ~w iff the Turing machine encoded by ~w

accepts the empty input, we obtain the required undecidability result.

Let M = (Γ, Q, q0, q1, δ) be a deterministic Turing machine, where Γ is an alphabet (contain-
ing the blank symbol ␣), Q a set of states, q0 ∈ Q and q1 ∈ Q are an initial and an accepting
state, respectively, and δ : Q× Γ→ Q× Γ× {−1,+1} is a transition function. Computations of
M can be thought of as sequences of configurations, with each configuration determined by the
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Figure 6.2: Encoding computations of a Turing machine as a grid.

contents of all (infinitely many) cells of the tape, the state and the head position. We encode a
computation by domain elements arranged, roughly speaking, into a two-dimensional grid: one
dimension is the tape and the other is time. See Fig. 6.2, where the nodes are domain elements
and the grey rectangle illustrates an initial configuration, in which the tape contains the input
a1a2a3 . . . and the head is positioned over the first cell in state q0.

More precisely, we use a role tape to point to the representation of the next cell on the tape
(within the same configuration) and a role next to point to the representation of the same cell in
a successive configuration. Concepts Ca, for a ∈ Γ, encode the contents of cells in the sense that
a domain element belongs to the interpretation of Ca if the respective cell contains symbol a.
We use concepts Hq, for q ∈ Q, to indicate both the position of the head and the current state:
a domain element belongs to the interpretation of Hq if the respective cell is under the head
and the machine is in state q. We also use a concept E to mark all other cells on the tape (that
is, cells that are not under the head of the machine) and concepts Dq

σ and Dσ, for q ∈ Q and
σ ∈ {−1,+1}, to propagate the head and no-head markers backwards and forwards along the
tape, respectively. Finally, concept I is required to ensure that the tape is initially blank beyond
the input word.

Let q be a Boolean CQ¬s with the following negated form:

next(x, y) ∧ tape(x, z) ∧ next(z, u)→ tape(y, u). (6.3)

Let TM be an ELI⊥ TBox containing the following concept inclusions:

Hq u Ca v ∃next.(Ca′ uDq′

σ ), for δ(q, a) = (q′, a′, σ), (6.4)

E u Ca v ∃next.Ca, for a ∈ Γ, (6.5)
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Hq v D−1 uD+1, for q ∈ Q, (6.6)

∃tape.Dq
−1 v Hq, for q ∈ Q, (6.7)

∃tape.D−1 v E uD−1, (6.8)

∃tape−.Dq
+1 v Hq, for q ∈ Q, (6.9)

∃tape−.D+1 v E uD+1, (6.10)

I v ∃tape.(I u C␣), (6.11)

Hq1 v ⊥. (6.12)

Let us explain briefly the intuition behind the CIs above.

• CIs described in (6.4) encode each transition δ(q, a) = (q′, a′, σ): if the symbol under the
head is a and the current state is q ( Hq uCa), then the symbol under the head is changed
to a′ ( using Ca′) and the new head position and state are recorded in the next step (i.e.,
in its next-succesor) using Dq′

σ , that information is then propagated by the CIs described
in (6.7) and (6.9).

• On the other hand, CIs described in (6.5) are used to process the symbols in cells not
under the head (i.e., those marked with the concept E) each such symbol is copied to the
next configuration (using its next-successor).

• CIs described in (6.6), (6.10), (6.8) mark all the cells that are not under the head (using
concept E). Recall that the cell under the head and the current state are marked using
Hq, then by (6.6) such cell is also marked with D+1 (and D−1), then all the cells after
(and before) the one under the head will be marked with E by (6.10) (and by (6.8)).

• The CI in (6.11) (together with the ABox below A~w) is used for encoding that the tape
initially contains blanks (C␣) in all the cells beyond the input.

• Finally, the CI in (6.12) serves to encode that the accepting state is never reached.

For every input ~w = a1 . . . an ∈ Γ∗,we take the following ABox A~w with individual names
c1, . . . , cn:

Hq0(c1), Cai(ci) and tape(ci, ci+1), for 1 ≤ i < n, I(cn).

It remains to show the following: (TM ,A~w) 6|= q iff M does not accept ~w.

(⇒) Consider a model I of (TM ,A~w) with I 6|= q. Then, by the definition of the ABox
and (6.11), there exists an infinite sequence of (not necessarily distinct) domain elements
d1, d2, . . . that encode the initial configuration in a sense that (di, di+1) ∈ tapeI for all
i ≥ 1, d1 ∈ HIq0

, di ∈ HI∅ for all i > 1, di ∈ CIai
, for each 1 ≤ i ≤ n, and di ∈ CI␣ for

all i > n. By (6.4) and (6.5), there exist elements d′1, d′2, . . . such that (di, d′i) ∈ nextI .
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By (6.3), they form another tape-connected sequence, that is, (d′i, d′i+1) ∈ tapeI for all i,
which represents the second configuration of M . Indeed, by (6.4), the symbol in the cell
under the head is changed according to the transition function δ of M , and the new head
position and state are recorded in the concept Dq′

σ . By (6.7) and (6.9), the recorded head
position and the state are passed onto the correct cell. Then, by (6.6), the domain element
representing the head, say, d′k, belongs to DI+1, whence, by (6.10), all d′i with i > k belong
to DI+1 and EI . Similarly, by (6.6) and (6.8), d′i ∈ EI , for all i < k. Therefore, all cells
but the one under the head belong to EI , whence, by (6.5), the symbols they contain are
preserved by the transition. By the same reasoning, there exists a respective sequence of
elements for each configuration of the computation of M . Finally, (6.12) guarantees that
the accepting state never occurs in the computation, i.e., M does not accept ~w.

(⇐) If M has a non-accepting computation on ~w then we can encode it by an infinite
two-dimensional grid interpretation satisfying (TM ,A~w) but not q.

Since the problem of deciding whether a given deterministic machine accepts a given input is
undecidable, we obtain the claim of the Theorem q

The use of ⊥ seems to be crucial to achieve the result in 6.2. Indeed, CQ¬s over ELI
ontologies is PTime-complete in data complexity (see saturated models by [116]).

We now aim to show that even when considering the simple description language DL-Litecore

answering UCQ¬s becomes undecidable. Let us illustrate the main idea for the proof by means
of the following two examples. Consider first the following Boolean CQ¬s q2 (in its negated
form):

tape(x2, y2)→ r(y2, x2). (6.13)

It can be easily seen that I 6|= q2 if and only if I |= tape− v r, for any interpretation I. Thus, one
can think of a role inclusion as the negation of a CQ¬s. It the follows from Proposition 6.1 that
we can encode any ELI⊥ CI of the form A v C, where A is a concept name, as a DL-Litecore

TBox and a Boolean UCQ¬s q, such that a set of role inclusions encoded by q is satisfied by
an interpretation I if and only if one of the corresponding queries has a positive answer in I.

We can give the same treatment to ELI CIs of the form B1 u ∃r.B2 v A. It is not difficult
to see that this CI is satisfied in an interpretation I if an only the following Boolean CQ¬s has
a negative answer in I:

∃x, y
(
B1(x) ∧ r(x, y) ∧B2(y) ∧ ¬A(x)

)
.

Then basically, we can think of concept inclusions of the form C u A, where A is a concept
name and C an ELI concept, simply as queries with one safe negation. Summing up, any ELI⊥
concept inclusion can be encoded as a DL-Litecore TBox and a Boolean UCQ¬s. We then can
show the following lemma.
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Lemma 6.3. For any ELI⊥ TBox T , one can construct a DL-Litecore TBox T ′ and a Boolean
UCQ¬s q′ such that

– every model I of T ′ with I 6|= q′ is also a model of T and

– every model of T can be extended to a model I of T ′ with I 6|= q′ by interpreting fresh
symbols of T ′.

As a corollary of Theorem 6.2 and Lemma 6.3 we immediately obtain undecidability of
answering unions of CQ¬ss over DL-Litecore ontologies.

Corollary 6.4. There is a Boolean UCQ¬s, such that each disjunct has one safe negation, and
a DL-Litecore TBox such that answering UCQs¬s is undecidable.

A similar result was shown in [116, Theorem 15]. However, we observe that the result we
present here is somewhat stronger in the sense that each disjunct of the UCQ¬s has one safe
negation, in contrast to the reduction in [116], where the number of negations depend on the
tiling problem instance encoded.

6.1.2 From UCQs to CQs: the Case of DL-LiteHcore

We now proceed to show that under rather mild restrictions on the TBox, any union of tree-
shaped Boolean CQ¬ss can be transformed into a single Boolean CQ¬s that has the same
answers over ontologies with TBoxes extended by a number of concept and role inclusions. This
will allow us to obtain undecidability of answering a single CQ¬s over DL-LiteHcore using a similar
reduction that the one used in Section 6.1.1. Observe that in contrast to what we showed in
Corollary 6.4 we consider a single CQ¬, but we require role inclusions in the encoding.

We illustrate the transformation by considering a Boolean UCQ¬s q comprised of the two queries
from Section 6.1.1 q1 and q2 given in negated form in (6.2) and (6.13):

q1 = ∃x1, y1, z1, u1
(
next(x1, y1) ∧ tape(x1, z1) ∧ next(z1, u1) ∧ ¬tape(y1, u1)

)
,

q2 = ∃x2, y2
(
tape(x2, y2) ∧ ¬r(y2, x2)

)
Using a fresh variable x and fresh roles g1 and g2, we can merge these two queries into a single
Boolean CQ¬s q′, that consists of all the atoms of q1 and q2 together with the atoms g1(x, x1)
and g2(x, x2) (see the right side of Figure 6.3). Note that the sets of variables in q1 and q2 are
disjoint, and hence no connection between the primal graphs of the constituents is introduced
with the merge.

The resulting CQ¬s q′ in general is not equivalent to q. However, we can guarantee that for
any TBox T the union q has the same answers over (T ,A) as q′ over an extended ontology
(T ∪T ′,A), for some suitable TBox T ′. This TBox is constructed in such a way that every model
J of (T ∪ T ′,A) is obtained from a model I of (T ,A) and satisfies the following properties:
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q′I

q2 q1
x1

next

tape

next

tape

x2

taper

x

g
2 g 1

d

d′

tape

g
2

Q1

g
1

¬∃tape

N1

next

tape

next

g 1

Q2, N2¬∃R−

g 2

tape

Figure 6.3: Matching CQ¬s q′ obtained from q1 ∨ q2 in the extended model.

1. every domain element in I is in the extension of a special concept name D introduced in
T ′, which can be achieved by adding the following CIs, for every concept name A and role
name p in T :

A v D ∃P v D ∃P− v D (6.14)

2. every element d in the extension of D has attached the following tree:

d

g
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g
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which can be achieved by adding the following CIs to T ′:

D v ∃g−2 .∃g1.Q1,

Q1 v ∃tape.∃next u ∃next.N1,

D v ∃g−1 .∃g2.Q2,

Q2 v ∃tape uN2,

N1 u ∃tape v ⊥ (6.15)

N2 u ∃r− v ⊥. (6.16)
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where Q1, N1, Q2 and N2 are fresh concept names and g1, g2 fresh role names. Intuitively,
each branch of the tree above encodes one query qi, i ∈ {1, 2}.

Observe that point 2 above ensures that in every model (satisfying D) of T ′ there is a match of
all the atoms in q′ except for those in q2 on the left brach of the tree above; similarly, there is
a match of all the atoms in q′ except for those in q1 on the right branch. The CIs in (6.15) and
(6.16) ensure that the negative atoms of q1 and q2 can be matched by the respective parts of
the model of T ′.

To see why the TBox T ′ above serves our purpose, assume that there is a model I of T
with a single tape-edge between domain elements d and d′ (see the left side of Figure 6.3). Then
in a extension of I to a model of T ∪ T ′, d would be an instance of concept D and we we
would also have that d has a dark-grey fragment attached to it to match all atoms of q′ but q2
and a light-grey fragment to match all atoms of q′ but q1. (actually, d′ should also be in the
interpretation of D and, hence, have similar fragments in the extended interpretation, but they
are not depicted to reduce clutter). Observe that in the extended model, there is a match for
q′. Indeed, the atoms in q2 are matched in the original I and the rest of q′ is matched to the
dark-gray fragment in the extension of I.

Following the latter observation, it should not be difficult to see that there is a match of
q in a model I of T if and only if there is a match of q′ in the interpretation J obtained by
extending I to a model of T ∪ T ′. Indeed, if there is a match q in I, then there is a match
of qi, for some i ∈ {1, 2}. Then, (i) there is a match of q1 over the interpretation of D in J
and the rest of q′ is matched by the dark-grey fragment or (ii) there is a match of q2 over the
interpretation of D and the rest of q′ is matched by the dark-grey fragment. But then, there is
a match of q′ in J .

We now generalize the construction above, and show that we can apply transform a UCQ¬s

with an arbitrary number of tree-shaped disjuncts into a CQ 6=s and a TBox.

Lemma 6.5. Let T be a DL-LiteHcore TBox and q a Boolean UCQ¬s such that each disjunct qi
of q is tree-shaped. Then there exist a DL-LiteHcore TBox T ′ and a CQ¬s q′ such that

(T ,A) |= q iff (T ∪ T ′,A) |= q′, for every ABox A.

Proof. We assume that each negative atom in each qi contains a loose variable, that is a variable
z such that T 6|= B1 v B2, for each positive atom B1(z) and each negative atom ¬B2(z) in qi (to
simplify notation, Bi refer here to basic concepts and we assume that q contains unary ‘atoms’
∃r(z1) and ∃r−(z2) if it contains a binary atom r(z1, z2) and similarly for negative binary atoms).
This assumption can be made without loss of generality, because every qi with a negative atom
without a loose variable always gives a negative answer on any interpretations satisfying T and
hence, can be removed from q without affecting its answers.

Let qi be of the form ∃~yi ϕi(~yi), for 1 ≤ i ≤ n. Since tree-shaped queries contain no
individuals, each ~yi is non-empty and we can fix a variable, say, yi1, in each ~yi. Let y be a fresh
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variable and, for each 1 ≤ i ≤ n, let gi be a fresh role name. Define ϕ′i(y, ~yi) = gi(y, yi1)∧ ϕ̂i(~yi),
where ϕ̂i is the result of replacing each concept name A with a fresh Â and each role name p
with a fresh p̂ in ϕi. Consider

q′ = ∃y ~y1 . . . ~yn
∧

1≤i≤n
ϕ′i(y, ~yi).

Let D be a fresh concept name. Let TD consist of A v Â and A v D, for each concept name A
occurring in T or q, and p v p̂, ∃p v D and ∃p− v D, for each role name P occurring in T or
q. So, in any model of TD, the interpretation of D contains the interpretations of all concepts
of T and q including domains and ranges of its roles.

Since the positive part of each ϕ′i(y, ~yi) is tree-shaped, we can assume that its primal graph is
a rooted tree with root y (so each edge has a natural orientation away from the root); moreover,
that root has a single successor, yi1. We write z ≺ z′ if z is a (unique) immediate predecessor
of z′ in such a tree from the corresponding ϕ′i(y, ~yi). For each edge (z, z′) with z ≺ z′, we take
a fresh role ezz′ . Let TG contain the following inclusions, for all 1 ≤ i ≤ n:

D v ∃g−i,0, (6.17)

∃gi,0 v ∃gj,1, for 1 ≤ j ≤ n with j 6= i, (6.18)

gi,k v gi, for k = 0, 1, (6.19)

gi,1 v eyyi1 , (6.20)

∃e−zz′ v ∃ez′z′′ , for z ≺ z′ ≺ z′′, (6.21)

∃e−zz′ v Â, for all Â(z′) in ϕ̂i, (6.22)

ezz′ v r̂, for all r̂(z, z′) in ϕ̂i, (6.23)

∃e−zz′ u Â v ⊥, for all ¬Â(z′) in ϕ̂i, (6.24)

∃e−zz′ u ∃r̂ v ⊥, for all ¬r̂(z′, z′′) in ϕ̂i with loose z′, (6.25)

where gi,0 and gi,1 are fresh role names. Let T ′ = TD ∪TG. Note that it is crucial that z′ is loose
in both (6.24) and (6.25)—for otherwise T ∪ T ′ would imply emptiness of any interpretation of
D. It remains to show that (T ,A) |= q if and only if (T ∪ T ′,A) |= q′.

Suppose that (T ,A) |= q and let I be a model of (T ∪ T ′,A). As I |= (T ,A), we have
I |= q. Then, there exists a match π for some disjunct qi (1 ≤ i ≤ n) of q in I. Since q is
UCQ¬s, π(yi1) belongs to AI , for some concept name A of T , or to (∃r)I , for some role r of
T ; whence, π(yi1) ∈ DI . Let q∗ consist of all atoms of q′ that are not in ϕ̂i(~yi). Since I |= TG,
there exists a match π∗ for q∗ in I with π∗(yi1) = π(yi1). Indeed, by (6.20)–(6.22), the tree
of positive atoms of q∗ is matched by the tree rooted in the g−i,0-successor of π(yi1); by (6.24)
and (6.25), the negative atoms are also satisfied by π∗. Hence, π ∪ π∗ is a match for q′ in I.

Conversely, let I be a model of (T ,A) with I 6|= q. Denote by I0 an interpretation that
coincides with I on all individuals and concept and role names of T or q and, additionally,
interprets D by ∆I , Â by AI , for each concept name A in T or q, and p̂ by pI , for each role
name p in T or q. By construction, I0 |= (T ∪ TD,A) and I0 6|= q. Denote by Igd the canonical
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interpretation of (TG, {D(d)}), for d ∈ ∆I0 (we slightly abuse notation here and treat domain
elements as fresh individual names assuming that dI

g
d = d). By definition, each Igd is finite

and their domains are pairwise disjoint. Let I ′ be the union of I0 with all Igd , d ∈ ∆I0 . Since
each negative atom of q contains a loose variable, I ′ does not violate any negative inclusions
of TG, that is, (6.24) and (6.25). Thus, I ′ |= (T ∪ T ′,A). Finally, for the sake of contradiction,
suppose I ′ |= q′. Then there is a match π for q′ in I ′. By the definition of q′, π(y) must be
the element in one of IGd introduced to witness the existential quantifier in (6.17). By (6.18),
atoms corresponding to one of the components, say qi, of q must be matched in the part of the
original model I0, contrary to I0 6|= qi, for all i, 1 ≤ i ≤ n. q

It can be easily verified that the UCQ¬s and the TBox obtained in the proof of Corollary 6.4
from the proofs of Theorem 6.2 and Lemma 6.3 satisfy the conditions of Lemma 6.5. Thus, we
obtain undecidability of answering CQ¬s over DL-LiteHcore ontologies.

Theorem 6.6. There is a Boolean CQ¬s and a DL-LiteHcore TBox such that answering CQs¬s

is undecidable.

This solves the open problem of decidability of CQ¬s answering over DL-LiteHcore [116].
However, since role inclusions are required in the transformation of unions of CQ¬ss to a single
CQ¬s, the decidability of the query answering problem over DL-Litecore ontologies remains open.
On the other hand, by Corollary 6.4, answering unions of CQ¬s over DL-Litecore is undecidable.
However, the number of CQ¬ss in the union constructed in the proof of Corollary 6.4 depends
on the number of states and the size of the alphabet of the universal Turing machine (more
precisely, it is 4 + (2 · |Q|+ 1) · |Γ|). We can slightly improve the result to a UCQ¬s with only
three disjuncts.

Theorem 6.7. There is a union of three CQ¬s and a DL-Litecore TBox, such that answering
UCQs¬s is undecidable.

Proof. The proof again is by reduction of the halting problem for deterministic Turing machines.
Let M = (Γ, Q, q0, q1, δ) be a deterministic Turing machine, where Γ is an alphabet (containing
the blank symbol ␣), Q is a set of states, q0 ∈ Q and q1 ∈ Q are an initial and an accepting state,
respectively, and δ : Q×Γ→ Q×Γ×{−1,+1} is a transition function. We use ∅ for the no-head
marker, ∗ for the special tape initialisation marker and abbreviate pairs (q, a) ∈ (Q∪{∅, ∗})×Γ
simply as qa.

We represent computations of M in a two-dimensional grid, where role tape points to the
representation of the next cell on the tape and role next to the representation of the same
cell in the successor configuration. To describe the contents of a cell, current state and head’s
position, we use a role content, which relates the representation of a cell containing a ∈ Γ in
a configuration with state q ∈ Q with a head over the cell to an individual eqa; if the head is
not positioned over the cell then the representation of this cell is content-related to e∅a; the
representation of the cells in the initial configuration beyond the input word is content-related
to a special individual e∗␣.
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q−a−
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q+a+

q′a′

ta
pe

computation

Figure 6.4: Quadruples τ of the form (q+a+, qa, q−a−, q′a′).

Consider quadruples of the form (q+a+, qa, q−a−, q′a′) that are possible in a computation
of M (the superscript ‘−’ refers to the previous cell on the tape, ‘+’ to the next cell on the
tape and ′ to the same cell in the successor configuration; see Fig. 6.4). Such quadruples clearly
satisfy one of the following conditions:

q 6= ∅, δ(q, a) = (q′, a′, σ) and q′ = ∅;

q+ 6= ∅, δ(q+, a+) = (q′′, a′′,+1), q′ = ∅ and a′ = a;

q+ 6= ∅, δ(q+, a+) = (q′, a′′,−1) and a′ = a;

q− 6= ∅, δ(q−, a−) = (q′′, a′′,−1), q′ = ∅ and a′ = a;

q− 6= ∅, δ(q−, a−) = (q′, a′′,+1) and a′ = a;

q− = q = q+ = q′ = ∅ and a′ = a.

On the other hand, in each computation, the pair q′a′ assigned to a cell in any configuration
but initial is determined by three pairs from the preceding configuration: the pair qa for the
same cell, the pair q+a+ for the next cell and the pair q−a− for the previous cell on the tape
(since the machine is deterministic, the pair q′a′ is defined uniquely). We will also need special
quadruples for initialisation of the tape of the Turing machine beyond the input word:

(∗␣, ∅a, ∅a′, ∅a), for a, a′ ∈ Γ,

(∗␣, ∗␣, ∅a, ∅␣), for a ∈ Γ,

(∗␣, ∗␣, ∗␣, ∅␣).

We assume that the input word contains more than two symbols and therefore ∗␣ does not
appear in the first three cells.

Take an individual name eqa for each pair qa and an individual name eτ for each of the
quadruples τ , satisfying the conditions above. Let p, p+, p− and p′ be role names and let ABox

141



6. Queries with Negation and Inequality over Horn Ontologies

x

x′

x−

x+

y z
y′

y+

y−

next
cont.

p p′

p
+

p−

tape

tape

cont.

cont.

cont.

Figure 6.5: Second query in the proof of Theorem 6.7.

AM contain the following assertions

p(eqa, eτ ), p+(eq+a+ , eτ ), p−(eq−a− , eτ ), p′(eτ , eq′a′),

for each τ of the form (q+a+, qa, q−a−, q′a′) satisfying the conditions above and for each of the
tape initialization quadruples.

Another ABox, A~w, encodes the input ~w = a1, . . . , an ∈ Γ∗ on the tape as follows, where
c1, . . . , cn are fresh individual names, corresponding to the cells of the input, c0 is a new special
individual ‘before’ the start of the tape, and I is a new concept name for initialisation of the
tape beyond the input:

tape(c0, c0), content(c0, e∅␣), tape(c0, c1), content(c1, eq0a1),

tape(ci−1, ci), content(ci, e∅ai
), for 1 < i ≤ n,

tape(cn, cn+1), content(cn+1, e∗␣), I(e∗␣).

The third part of the ABox, AA, contains ¬A(eq1a), for a ∈ Γ.
Consider now the UCQ¬s q with the following negated form of its three CQ¬ss (see Fig. 6.5

for the second query):

next(x, y) ∧ tape(x, z) ∧ next(z, u)→ tape(y, u),

next(x, x′) ∧ content(x, y) ∧ p(y, z) ∧

tape(x, x+) ∧ content(x+, y+) ∧ p+(y+, z) ∧

tape(x−, x) ∧ content(x−, y−) ∧ p−(y−, z) ∧

p′(z, y′)→ content(x′, y′),

tape(y, x) ∧ content(y, v) ∧ I(v)→ content(x, v).

Let TBox TM contain

∃tape v ∃next, ∃tape− v ∃tape, ∃content− v A.
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It remains to show the following:

(TM ,AM ∪ A~w ∪ AA) 6|= q iff M does not accept ~w.

(⇒) Consider a model I of (TM ,AM ∪ A~w ∪ AA) with I 6|= q. Then there exists an infinite
sequence of (not necessarily distinct) domain elements d0, d1, d2, . . . that encodes the initial
configuration in a sense that (di, di+1) ∈ tapeI for all i ≥ 0, and each element is connected
by the interpretation of content to the element of the corresponding pair, that is, contentI

contains (d0, e
I
∅␣), (d1, e

I
q0a1

), all (di, eI∅ai
), for 1 < i ≤ n, and all (di, eI∗␣), for i > n. Note

that d0 = cI0 is an auxiliary element before the tape, whose role is to match the (positive
part of the) second query for the representation of the first cell, and e∗␣ serves as a substitute
for e∅␣, which is necessary, along with concept I and the third query, to initialise the tape
beyond the input. By the first TBox inclusion, there exists a sequence of elements d′0, d′1, d′2, . . .
such that (di, d′i) ∈ nextI . By the first disjunct of the query, they form another tape-connected
sequence, that is, (d′i, d′i+1) ∈ tapeI for all i. By AM and the second disjunct of the query, the
sequence represents the second configuration of M in the same way, except that now e∗␣ is not
used; instead, by the tape initialization quadruples, all the cells beyond the working space are
content-connected to e∅␣. By the same reasoning, there exists a sequence of elements for each
configuration of the computation of M . Finally, AA guarantees that the accepting state never
occurs in the computation, and so, M does not accept ~w.

(⇐) If M has a non-accepting computation on ~w then it is routine to construct an infinite
two-dimensional grid-like interpretation I satisfying (TM ,AM ∪A~w ∪AA) but not q (note that
all domain elements of the bottom row of the grid have a tapeI-loop).

This finishes the proof of Theorem 6.7. q

We note in passing that the query q in the proof of Theorem 6.7 is not tree-shaped and
therefore Lemma 6.5 is not applicable.

6.1.3 Queries with Guarded Negation

In this section, we narrow the class of CQs with safe negation and concentrate on CQs with
guarded negation. As follows from the results of Bárány et al. [19], answering unions of GNCQs
over ontologies expressed with so-called frontier-guarded tgds [16] is decidable in coNP in data
complexity and, moreover, is in P in data complexity if the query contains one negated atom.
Since frontier-guarded tgds subsume ELI concept and role inclusions, and since negative concept
inclusions can be viewed as GNCQs, the upper bounds also apply to ELI andDL-LiteHcore TBoxes.
We next prove that the lower bounds match these results even with a TBox containing a single
negative concept inclusion.

Lemma 6.8. There is a Boolean GNCQ with one negated atom and a DL-LitecoreTBox such
that query answering answering is P-hard.
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Proof. The proof is by reduction of the complement of Horn-3SAT, the satisfiability problem
for Horn clauses with at most 3 literals, which is known to be P-complete; see e.g., [107]. Suppose
we are given a conjunction ψ of clauses of the form p, ¬p, and p1∧p2 → p. Consider the following
Boolean GNCQ q in the negated form:

p1(x1, y) ∧ V (x1) ∧ p2(x2, y) ∧ V (x2) ∧ p(y, z)→ V (z).

Note that q does not depend on ψ. Let T0 be the TBox containing a single negative concept
inclusion: V uF v ⊥. Next, we construct an ABox Aψ such that ψ is satisfiable iff (T0,Aψ) 6|= q.
The ABox Aψ uses an individual name cp, for each variable p in ψ, and an individual name cγ
for each clause γ of the form p1 ∧ p2 → p in ψ. For each clause γ, the ABox Aψ contains the
following assertions:

V (cp), if γ = p,

F (cp), if γ = ¬p,

p1(cp1 , cγ), p2(cp2 , cγ), p(cγ , cp), if γ = p1 ∧ p2 → p.

Suppose first there is a model I of (T0,Aψ) with I 6|= q. It can be easily shown that ψ is
satisfiable: for each clause γ of ψ of the form p1 ∧ p2 → p (the other two cases are trivial), if
cIp1
∈ V I and cIp2

∈ V I then cp ∈ V I . Thus, we can define a satisfying assignment a for ψ by
taking a(p) true iff cIp ∈ V I .

Conversely, if ψ is satisfiable then we can construct a model I of (T0,Aψ) with I 6|= q. q

Lemma 6.9. There is a Boolean GNCQ with two negated atoms and a DL-LitecoreTBox such
that query answering is coNP-hard.

Proof. The proof is by reduction of the complement of 2+2CNF, the satisfiability problem for
clauses with two positive and two negative literals, which is known to be NP-complete [120].
Suppose we are given a conjunction ψ of clauses of the form p1 ∨ p2 ∨ ¬p3 ∨ ¬p4, where each pi
is either a propositional variable or one of the two truth constants, true and false. Consider the
following Boolean GNCQ q in the negated form:

n1(x, y3) ∧ V (y3) ∧ n2(x, y4) ∧ V (y4) ∧ p1(x, y1) ∧ p2(x, y2) → V (y1) ∨ V (y2).

Note that q does not depend on ψ. Let T0 be the TBox with the single axiom V u F v ⊥. We
construct an ABox Aψ such that ψ is satisfiable iff (T0,Aψ) 6|= q. The ABox Aψ uses individual
names ctrue and cfalse for the truth values, an individual name cp, for each variable p in ψ, and
an individual name cγ for each clause γ in ψ. For each clause γ of the form p1 ∨ p2 ∨¬p3 ∨¬p4,
the ABox Aψ contains the following assertions:

p1(cp1 , cγ), p2(cp2 , cγ), n1(cp3 , cγ), n2(cp4 , cγ).

Also, Aψ contains V (ctrue) and F (cfalse).
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6.2. Answering CQs with Inequalities

Suppose first there is a model I of (T0,Aψ) with I 6|= q. It can be easily shown that ψ is
satisfiable: indeed, for each clause of ψ of the form p1 ∨ p2 ∨ ¬p3 ∨ ¬p4, if both cIp3

∈ V I and
cIp4
∈ V I then we have either cIp1

∈ V I or cIp2
∈ V I . Since cItrue ∈ V I and cIfalse /∈ V I , we can

define a satisfying assignment a for ψ by taking a(p) true iff cIp ∈ V I .
Conversely, if ψ is satisfiable then we can construct a model I of (∅,Aψ) with I 6|= q. q

From Lemmata 6.8 and 6.9 and the upper bounds provided by [19] we obtain the following
result.

Theorem 6.10. Answering GNCQs over DL-Litecore, DL-LiteHcore, EL, ELI ontologies is coNP-
complete in data complexity, and even ontologies with the empty TBox. It is P-complete if the
query has at most one negation.

6.2 Answering CQs with Inequalities

We start by analyzing the case of unions of conjunctive queries and show that query answering
with inequalities is undecidable even in the simplest of DL-Lite languages. In fact, the following
proof will demonstrate that even though the ontology language is quite unexpressive, undecidable
problems can still be encoded by means of (mostly) UCQs.

Similarly to what we did in the previous section, we will take advantage to the expressive
power of Boolean UCQs6= in negated form. In a nutshell, the proof uses the existential quantifiers
in the TBox to create an unbounded supply of elements, whereas the UCQ 6= in negated form
allows one to express universal constraints of the form:

ϕ(~y)→ (t11 = t12 ∨ · · · ∨ t1n = t2n)

Constraints of the form above have been called disjunctive EGDs in the literature [54]. The
following result was first stated as Theorem 8 in [116], however no proof is provided there.
For didactical reasons we provide a proof here, that will also illustrate the expressive power of
UCQs6=.

Theorem 6.11. Answering UCQs6= is undecidable over DL-Litecore ontologies.

Proof. The proof is by reduction of the (complement of) N× N-tiling problem, which is known
to be undecidable [65]. The N×N tiling problem is formulated as follows: given a set T of square
tile types with the four sides of each tile t ∈ T coloured by top(t), right(t), bottom(t), left(t),
respectively, and a tile t0 ∈ T, decide whether N × N can be tiled by T with t0 placed at the
origin, i.e., whether there is a function τ : N× N→ T such that τ(0, 0) = t0 and top(τ(i, j)) =
bottom(τ(i, j + 1)) and left(τ(i, j)) = right(τ(i+ 1, j)), for all (i, j) ∈ N× N.

Given an instance of the N×N-tiling problem, we construct a DL-Litecore ontology (T ,A) that
encodes the tiling problem by placing tiles over objects in its model. The top and right neighbours
of a tile are referred to by roles horizontal and vertical, respectively (from the horizontal and
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6. Queries with Negation and Inequality over Horn Ontologies

vertical successor). To represent the type of each tile we take ABox individuals ti, for ti ∈ T,
and a role ttype that connects a tile to its type. So, the TBox T contains the following concept
inclusions:

∃ttype v ∃horizontal, ∃horizontal− v ∃ttype, ∃ttype v ∃vertical, ∃vertical− v ∃ttype.

We also require two roles, Nhorizontal and Nvertical, that define impossible horizontal and vertical
tile neighbors: let AT contain

Nhorizontal(ti, tj), for each ti, tj ∈ T with right(ti) 6= left(tj),

Nvertical(ti, tj), for each ti, tj ∈ T with top(ti) 6= bottom(tj).

Consider now the Boolean UCQ 6= q, whose negation is equivalent to the conjunction of the
following sentences:

∀x, y
(
ttype(x, y)→

∨
i(y = ti)

)
,

∀x, y, z, v, u
(
horizontal(x, y) ∧ vertical(y, v) ∧ vertical(x, z) ∧ horizontal(z, u)→ (u = v)

)
,

∀x, y, x′, y′
(
horizontal(x, y) ∧ ttype(x, x′) ∧ ttype(y, y′) ∧ Nhorizontal(x′, y′)→ ⊥

)
,

∀x, y, x′, y′
(
vertical(x, y) ∧ ttype(x, x′) ∧ ttype(y, y′) ∧ Nvertical(x′, y′)→ ⊥

)
.

It can be shown that (T ,AT ∪ {T (a, t0)}) 6|= q iff T tiles N × N with t0 placed at the origin.
Indeed, if q has a counter model then the above formulas guarantee that each tile object is
related to one of the ti, that the horizontal- and vertical-successors from a proper N × N-grid
and, finally, that the adjacent colors match. q

6.2.1 Answering CQs 6= in DL-LiteHcore

In this section, we prove that CQ 6= answering over DL-LiteHcore is undecidable. In principle, the
technique of Lemma 6.5 can be adapted to queries with inequalities, and by modifying the proof
of Theorem 6.11 one could prove the claim. The resulting CQ 6= would, however, contain many
inequalities. Instead, we substantially rework some ideas of the undecidability proof for CQ 6=

answering over EL [82] and show that even one inequality suffices for DL-LiteHcore.

Theorem 6.12. There is a Boolean CQ 6= with one inequality and a DL-LiteHcore TBox such that
query answering is undecidable.

Proof. The proof is by reduction of the halting problem for deterministic Turing machines (see
Theorem 6.2). In this proof we use a two-dimensional grid of similar structure. The grid is
established by means of a CQ 6= q with the following negated form:

next(x, y) ∧ tape(x, z) ∧ next(z, v) ∧ tape(y, u) ∧

tape(u,w) ∧ tape(u′, w) ∧ r(t, v) ∧ r(t, v′)→ (u′ = v′).
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Figure 6.6: Query in the proof of Theorem 6.12.
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Figure 6.7: Grid structure in the proof of Theorem 6.12.

Note that this formula, in fact, implies v = v′ = u′ = u; see the dotted shape in Fig. 6.6.

We present the construction of a TBox TM encoding the problem in a series of smaller
TBoxes. As before, we aim to design TM in such way that if it has a model I, then it is a counter
model of q, that is I 6|= q. For each of the building blocks of TM we then show that if I is a
model of that “block” then I enjoys certain structural properties. We say that an interpretation
nextI of a role next is functional in d ∈ ∆I if d′ = d′′ whenever both (d, d′) and (d, d′′) are in
nextI . We also denote composition of binary relations by ◦:

nextI ◦ tapeI = {(d, d′′) | (d, d′) ∈ nextI , (d′, d′′) ∈ tapeI}.

Let TBox TG contain the following concept inclusions:

∃next− v ∃tape, ∃tape− v ∃tape, ∃next− v ∃r−.

We claim that if I |= TG and I |= ∃tape v ∃next then the fragment of I rooted in d00 ∈ (∃tape)I

has a grid-like structure depicted in Fig. 6.7 (each domain element in (∃next−)I also has an
rI-predecessor, which is not shown).

More formally, the domain elements in the shaded area enjoy the following property.

Claim 5. If I |= TG and I 6|= q then, for every d with an (next−)I ◦ tapeI ◦ nextI-predecessor,
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6. Queries with Negation and Inequality over Horn Ontologies

– both nextI and tapeI are functional in d,

– the nextI ◦ tapeI- and tapeI ◦ nextI-successors of d coincide,

– (tape−)I is functional in the tapeI-successor of d,

– rI is functional in any rI-predecessor of d.

So, nextI and tapeI are functional in all domain elements in the shaded area. However, nextI

does not have to be functional in the bottom row, and the same holds for tapeI in the left column
(see Fig. 6.7); (tape−)I does not have to be functional outside the shaded area and in the first
row of the shaded area; rI does not have to be functional anywhere but in rI-predecessors of the
domain elements in the shaded area; (next−)I and (r−)I do not have to be functional anywhere.
For our purposes, however, it suffices that I has a grid structure starting from d11; moreover,
as we will see, the non-functionality of (next−)I plays a crucial role in the construction.

In addition to the grid-like structure of nextI and tapeI , we also need functionality of nextI

in points outside the grid.

Claim 6. If I satisfies TG and the following concept inclusion

E v ∃tape−.∃next (6.26)

and I 6|= q then nextI is functional in every d ∈ EI .

Proof of claim. Since d ∈ EI and I satisfies TG and (6.26), if d has an nextI-successor d1 then
the point d occurs in the fragment depicted below.

d: E

d4
d3

ta
pe

next

d5

d1

ta
pe

next

r

r

d6

ta
pe

ta
pe

d2

r ta
pe

In particular, d1 has an rI-predecessor d2; d also has a tapeI-predecessor d3, which has an
nextI-successor d4; and d4, in its turn has a tapeI-successor d5, which has a tapeI-successor d6.
But then, since I 6|= q, we obtain d5 = d1 and in fact, any nextI-successor of d will coincide
with d5 and d1. q

We also require role r to be functional not only in rI-predecessors of the grid points but
also in the grid points themselves.
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Claim 7. If I satisfies TG and the following concept inclusion

D v ∃r.∃next−.∃tape−.∃next (6.27)

and I 6|= q then rI is functional in every d ∈ DI .

Proof of claim. The argument is essentially the same as in the proof of Claim 6. q

We now describe a TBox that encodes computations of a given Turing machine. Let M =
(Γ, Q, q0, q1, δ) be a deterministic Turing machine, where Γ = {1, ␣} is a two-symbol tape alphabet,
Q a set of states, q0 ∈ Q an initial and q1 ∈ Q an accepting state, and δ : Q×Γ→ Q×Γ×{−1,+1}
a deterministic transition function.

We use concept Hq, for q ∈ Q, that contains the representations of all tape cells observed by the
head of M (in state q); concept H∅ represents the cells not observed by the head of M . Role
next has two sub-roles, s␣ and s1, for the two symbols of the alphabet Γ to encode cell contents:
all cells represented by the range of sa contain a ∈ Γ.

The most natural way of encoding a transition δ(q, a) = (q′, a′, σ) ofM would be to use a concept
inclusion of the form Hq u∃s−a v ∃sa′ u∃sq′σ, where sq′σ is also a sub-role of role next, which is
functional in the grid. Unfortunately, DL-LiteHcore does not have conjunction on the left-hand side
of concept inclusions. The following construction allows us to simulate the required inclusions by
using functionality of just two roles, r and next. Let TF contain (6.26), (6.27) and the following
concept and role inclusions with fresh role names pq, qa and pqa, for each q ∈ Q∪{∅} and a ∈ Γ:

Hq v D, Hq v ∃pq, ∃s−a v ∃qa,

pq v r, qa v r,

∃p−q v E, ∃p−q v ∃pq␣, ∃p−q v ∃pq1,

pq␣ v r, pq1 v next,

q−␣ v r, q−1 v next.

Claim 8. If I |= TG ∪ TF and I 6|= q then, for each a ∈ Γ and q ∈ Q ∪ {∅}, we have

d ∈ (∃p−qa)I whenever d ∈ HIq ∩ (∃s−a )I ,

for every d with an (next−)I ◦ tapeI ◦ nextI-predecessor.
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Proof of claim. Let d ∈ HIq ∩ (∃s−a )I . Then d has a pIq -successor and a qIa -successor, which
coincide because, by Claim 7, rI is functional in d ∈ DI . Let d′ be the rI-successor of d.

If a = 1 then the inverse of q1 is a sub-role of next, and thus, (d′, d) ∈ nextI . On the other hand,
d′ has a pIq1-successor d′′, whence (d′, d′′) ∈ nextI . Since d′ ∈ EI , by Claim 6, nextI is functional
in d′, whence d = d′′. Therefore, d ∈ (∃p−q1)I .

If a = ␣ then the argument is similar with r replacing next as a super-role of both q−␣ and pq␣.
By Claim 5, rI is functional in any rI-predecessor of d, in particular in d′. Therefore, we obtain
d ∈ (∃p−q␣)I . q

We are now in a position to define the encoding of Turing machine computations. Using the
roles pqa from TF , we can encode transitions:

∃p−qa v ∃sa′ u ∃sq′σ, for δ(q, a) = (q′, a′, σ), (6.28)

sa v next, for a ∈ Γ, (6.29)

sqσ v next, for q ∈ Q and σ ∈ {−1,+1}, (6.30)

where sq,−1 and sq,+1 are fresh role names used to propagate the new state to the next configu-
ration. Recall now that the ranges of roles p∅a identify cells that are not observed by the head
of M ; the symbols contained in such cells are then preserved with the help of concept inclusions

∃p−∅a v ∃sa, for a ∈ Γ. (6.31)

The location of the head in the next configuration is ensured by the following inclusions:

∃s−qσ v ∃tqσ, for q ∈ Q and σ ∈ {−1,+1}, (6.32)

∃t−qσ v Hq, for q ∈ Q and σ ∈ {−1,+1}, (6.33)

tq,+1 v tape and tq,−1 v tape−, or q ∈ Q, (6.34)

where the roles tq,+1 and tq,−1 are used to propagate the head in the state q along the tape
(both tape and tape− are functional in the grid); finally, the following concept inclusions are
required to propagate the no-head marker H∅:

Hq v ∃t∅,+1 u ∃t∅,−1, for q ∈ Q, (6.35)

t∅,+1 v tape and t∅,−1 v tape−, (6.36)

∃t−∅σ v ∃t∅σ uH∅, for σ ∈ {−1,+1}. (6.37)
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Next, the ABox A~w that encodes an input ~w = a1, . . . , an ∈ Γ∗ of M is as follows:

bottom(c00, c10), tape(c10, c11), Hq0(c11),

tape(c0(i−1), c0i) and sai(c0i, c1i), for 1 ≤ i ≤ n,

t0(c0n, c0(n+1)),

where bottom is a fresh role name to create the bottom row of the grid and t0 is a fresh role
name to fill the rest of the tape by blanks:

∃bottom− v ∃bottom, bottom v next, (6.38)

∃t−0 v ∃next␣ u ∃t0, t0 v tape. (6.39)

Finally, the following ensures that the accepting state q1 never occurs in a computation:

Hq1 v ⊥. (6.40)

Let TM contain (6.28)–(6.40) encoding computations of M and let T = TG ∪ TF ∪ TM . If
(T ,A~w) 6|= q then there is a model I of (T ,A~w) with I 6|= q. It should then be clear that in this
case we can extract a computation of M encoded by I and that computation does not accept
~w. Conversely, if M does not accept ~w then we can construct a model I of (T ,A~w) such that
I 6|= q. First, consider a model J of TG with

∆J = { dij | i, j ≥ 0 } ∪ { d′ij , d′′ij | i > 0 and j ≥ 0 } ∪ { bi | i > 0 }

such that the dij form a grid structure on roles next and tape, each d′ij is an rJ -predecessor
of dij and each d′′ij is an nextJ -predecessor of dij (note that dij has another nextJ -predecessor,
d(i−1)j). Next, we choose the interpretation of concepts and roles in TM on the domain of J
in such a way that the part of J rooted in d11 encodes a unique computation of M on ~w

and J |= (TM ,A~w). In particular, the computation determines the interpretation of Hq, sa
and sqσ, for q ∈ Q, a ∈ Γ and σ ∈ {−1,+1}. To interpret H∅ and tqσ, for q ∈ Q ∪ {∅} and
σ ∈ {−1,+1}: the only non-trivial case is t∅,−1, where, in order to satisfy (6.35), we take bi
to be a tJ∅,−1-successor (and so, a tapeJ -predecessor) of both di1 and bi, for each i > 0 (as we
noted, (tape−)J does not have to be functional in any di1; tapeJ , however, must be functional
in each di0 and cannot have a tapeJ -loop). As the final step of the construction of J , we set

(d′ij , dij) ∈ pJq␣ and (dij , d′ij) ∈ rJ if dij ∈ HJq ∩ (∃s−␣ )J ,

(d′′ij , dij) ∈ pJq1 and (dij , d′′ij) ∈ rJ if dij ∈ HJq ∩ (∃s−1 )J .

It remains to show that J can be extended to satisfy TF . Observe that only concept names Hq

and role names r, next, tape, sa and pqa, for q ∈ Q ∪ {∅} and a ∈ Γ, are shared between TF
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Figure 6.8: Extending I to J : the case of pq␣.

d : D,H
q

s1

ta
pe

d′′:Ed′

r

q1 , pq , r
p
q1 , next

next

tape

next

tape

ta
pe

pq␣, r

ta
penext

ta
pe

Figure 6.9: Extending I to J : the case of pq1.

and TG ∪ TM ; all other concept and roles names in TF are fresh in TF . We show that J can be
extended (by fresh domain elements) to a model of TF without changing concepts and roles on
grid, i.e., the domain elements of J .

Claim 9. If J |= TG and J 6|= q then J can be extended to a model I of TF so that
(a) d ∈ HIq ∩ (∃s−a )I whenever d ∈ (∃p−qa)I , for every d ∈ ∆J with an (next−)J ◦ tapeJ ◦ nextJ -
predecessor, an rJ -predecessor d′ and another nextJ -predecessor d′′, and
(b) AI ∩∆J = AJ and pI ∩ (∆J ×∆J ) = pJ , for all concept names A and role names p that
are not fresh in TF .

Proof of claim. The cases of pq␣ and pq1 are illustrated in Figs. 6.8 and 6.9, respectively; some
edges are not shown to avoid clutter: each domain element in (∃next−)I also has an incoming
rI-edge and each tapeI-edge starts an infinite chain of tapeI-edges.
The three black (solid, dashed and dotted) patterns of edges in Fig. 6.8 correspond to the three
sets of positive atoms of q so that the inequality atom, (u′ = v′), ‘identifies’ certain domain
elements of the pattern.
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Similarly, the two black (dashed and dotted) patterns of edges in Fig. 6.9 correspond to the two
sets of positive atoms of q that ‘identify’ certain domain elements.

Black nodes are in the domain of J , while white nodes are in the domain of I proper. It can
be seen that d is added only to D, and (d, d′) or (d, d′′), depending on the (∃s−a )J , are added
only to roles pq and qa (which are all fresh in TF ). q

So, (T ,A~w) 6|= q iff M does not accept ~w. Take M to be a fixed deterministic universal
Turing machine, i.e., a machine that accepts ~w iff the empty input is accepted by the Turing
machine encoded by ~w. This finishes the proof of Theorem 6.12. q

6.2.2 Two Lower Bounds for CQs6= Answering in DL-Litecore

In the previous sections, we established undecidability of CQ¬s and CQ 6= answering over DL-
LiteHcore. However, all the proofs make use of role inclusions either explicitly in the TBox, or
UCQs 6= and UCQ¬s. Leaving the problems of decidability of CQ¬s and CQ 6= answering over
DL-Litecore open. We establish lower complexity bounds for the second case, which make it clear
that even if CQ 6= answering in DL-Litecore is decidable the problem is computationally hard.

Theorem 6.13. There is a Boolean CQ6= q with one inequality and a DL-Litecore TBox such
that query answering is P-hard.

Proof. The proof is by reduction of the complement of Horn-3SAT, the satisfiability problem
for Horn clauses with at most 3 literals, which is known to be P-complete (see e.g., [107]).
Suppose we are given a conjunction ψ of clauses of the form p, ¬p, and p1 ∧ p2 → p. Fix a TBox
T containing the following concept inclusions:

G v ∃t, ∃t− v ∃t u V,

and a Boolean CQ6= q which is the existential closure of the negation of the following:

V (x) ∧ s(x, y) ∧ r(y, z1) ∧ t(y, z2)→ (z1 = z2).

Note that T and q do not depend on ψ. Next, we construct an ABox Aψ such that ψ is
satisfiable iff (T ,Aψ) 6|= q. The ABox Aψ uses an individual name cp, for each variable p in
ψ, and individual names cγ1 and cγ2 for each clause γ of the form p1 ∧ p2 → p in ψ. For each
clause γ, the ABox Aψ contains the following assertions:

V (cp), if γ = p,

F (cp), if γ = ¬p,

s(cp1 , cγ1), G(cγ1), r(cγ1, cγ2),

s(cp2 , cγ2), r(cγ2, cp), if γ = p1 ∧ p2 → p.
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Figure 6.10: Proof of Theorem 6.13.

Suppose first there is a model I of (T ,Aψ) with I 6|= q. We show that ψ is satisfiable.
For each clause γ of ψ of the form p1 ∧ p2 → p (the other two cases are trivial), I contains a
configuration depicted in Fig. 6.10 (the black nodes represent ABox individuals and the white
ones—anonymous individuals generated by the TBox).

If cIp1
∈ V I then the tI- and rI-successors of cIγ1 coincide, whence cIγ2 ∈ (∃t)I , which triggers

the second ‘application’ of the query to identify cIp with the tI-successor of cIγ2 resulting in
cIp ∈ V I but only if cIp2

∈ V I . So, as follows from the argument above, we can define a satisfying
assignment a for ψ by taking a(p) true iff cIp ∈ V I .

Conversely, if ψ is satisfiable then we can construct a model I of (T ,Aψ) with I 6|= q. q

Theorem 6.14. There is a Boolean CQ 6= q with two inequalities and a TBox such that query
answering is coNP-hard.

Proof. The proof is by reduction of the complement of 3SAT, which is known to be coNP-
complete (see e.g., [107]). Suppose we are given a conjunction ψ of clauses of the form `1∨`2∨`3,
where the `k are literals (we can assume that all literals in each clause are distinct). Fix a TBox
T containing the following concept inclusions:

V v ∃t u ∃f, ∃t− v V, ∃t− u ∃f− v ⊥, A1 uA2 v ⊥,

and a Boolean CQ6= q which is the existential closure of the negation of the following:

V (x) ∧ p(x, y) ∧ t(x, y1) ∧ f(x, y2) → (y = y1) ∨ (y = y2).

Claim 10. Let I be a model of T with I 6|= q. If d ∈ V I and (d, dk) ∈ pI with dk ∈ AIk , for
k = 1, 2, then

– either (d, d1) ∈ fI and (d, d2) ∈ tI

– or (d, d1) ∈ tI and (d, d2) ∈ fI .

Proof of claim. Clearly, each pair (d, dk) belongs either to tI or fI . Suppose to the contrary
that (d, dk) ∈ tI . Consider q with x 7→ d, y 7→ d1, y1 7→ d2 and any fI-successor of d as y2. By
disjointness of the Ak, d1 6= d2, and so, we can only choose y = y2, whence (d, d1) ∈ fI contrary
to disjointness of ∃t− and ∃f−. q
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ckp

Ak

f : A1 vp: A2

ck¬p

Ak

t : A1

p, f p p, tp

t f

Figure 6.11: Proof of Theorem 6.14.

Again, T and q do not depend on ψ. The ABox Aψ is constructed as follows. Let t and t
be two individuals with A1(t) and A1(f) in Aψ. For each propositional variable p of ψ, take the
following assertions, for k = 1, 2, with 5 individuals vp, ck¬p and ckp:

A2(vp), p(ckp, vp), p(ckp, f), f(ckp, f), Ak(ckp),

p(ck¬p, vp), p(ck¬p, t), t(ck¬p, t), Ak(ck¬p)

where the ckp and ck¬p represent the literals p and ¬p, respectively, see Fig. 6.11.
Observe that, by Claim 10, if (ck¬p)I ∈ V I in a model I of (T ,Aψ) with I 6|= q then

vIp ∈ (∃f−)I , that is, if the literal ¬p is chosen (by means of V ) then p must be false; on the
other hand, if ¬p is not chosen (that is, (ck¬p)I /∈ V I) then vIp does not have to be in (∃f−)I

and p can be anything; and similarly for (ckp)I with vIp ∈ (∃t−)I .
Next, Aψ contains, for each clause γ of the form `1 ∨ `2 ∨ `3 in ψ, the following assertions,

where cγ1 and cγ2 are two fresh individuals:

V (cγ1), p(cγ1, c
1
`1

), p(cγ1, cγ2), A2(cγ2), p(cγ2, c
1
`2

), p(cγ2, c
2
`3

).

It should be clear that ψ is satisfiable iff (T ,Aψ) 6|= q. Indeed, if there is a model I of (T ,Aψ)
with I 6|= q then, by Claim 10 and the observation above, we can construct a satisfying assignment
a for ψ by taking a(p) true iff vIp ∈ V I . The converse direction is straightforward. q

Related Work and Conclusions

The first investigation to consider inequalities in the OBDA framework is the work by [41]
which shows that, opposite to answering CQs, answering CQs 6= over the very expressive DL
DLR is undecidable. Later on, [116] showed undecidability of answering CQs with safe negation
and inequalities over the fairly unexpressive DL AL. As discussed above, Horn DLs were also
considered by Rosati [116]. In the context of the Datalog± ontology languages allowing for
equalities in the head of the rules have been considered. Notably, [30] investigate a restriction on
the interaction of equalities (EGDs) with Datalog± constraints that guarantees decidability of
the query-answering problem. Recently, extensions of Datalog± languages with non-monotonic
negation using well-founded semantics for normal logic programs have been also investigated [67].

Adding to our results to those already know from the literature, we can conclude that
attaining decidability of ontological query answering with negations is rather unfeasible. And
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6. Queries with Negation and Inequality over Horn Ontologies

DL-Litecore DL-LiteHcore EL ELI⊥

UCQ¬s undec.
Cor. 6.4

undec. undec.
[116] undec.

CQ¬s coNP-hard undec.
Thm. 6.6

coNP-hard undec.
Thm. 6.2

1 guarded neg PTime
Thm. 6.10

≥ 2 guarded negs coNP
Thm. 6.10

UCQ 6= undec. undec. undec. undec.

≥ 2-CQ 6= coNP-hard
Thm. 6.14

undec. undec.
[82] undec.

1-CQ 6= PTime-hard
Thm. 6.13

undec.
Thm. 6.12

undec.
[82] undec.

Table 6.1: Panorama of the complexity of query answering with negation

even for the decidable cases, the complexity of ontological query answering with some form of
negation is high. We summarize the results in Table 6.1.

The complexity in the case of DL-Litecore ontologies remains open; and only 2 lower bounds
we provided, which demonstrate that even for such unexpressive ontology languages the problem
becomes intractable when the query has at least two inequalities (or two guarded negations).
The major challenge to provide an algorithmic approach to that problem (and thus an upper
bound for the complexity) is that since CQs with any form of negations are not preserved under
homomorphisms, one cannot rely on techniques using the canonical model of the ontology.

Finally, observe that from the fact that (U)CQs 6= (in negated form) can express role func-
tionality (e.g., consider the query r(x, y1), r(x, y2) → y1 = y2), we can then conclude that
(U)CQs 6= is not finitely controllable for ontology languages that contain inverse roles, and cyclic
CIs. Indeed, there is a query q and an ontology O such that O |= q but O 6|=fin q. Moreover, note
that our undecidability proofs rely on the encoding of infinite structures (e.g., infinite grid), and
therefore do not hold for the finite case.
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Chapter

7
Reasoning in Conceptual Models

One of the prominent applications of description logics is in providing deductive capabilities
to conceptual models such as ER or UML diagrams (see Section 1.3). Unfortunately, some of
the semantic assumptions in conceptual modeling are not fully matched on the DLs side. For
example, in database applications is normally assumed that the intended models (i.e., database
instances) are finite. However, to faithfully capture some aspects of conceptual models we indeed
need to use DLs lacking the finite model property; for example, to reason on the ER model one
needs to use the expressive ALCQI. Hence one actually should regard finite model reasoning
in such DLs instead of the unrestricted one. It is also worth noticing that using ALCQI to
describe the semantics of conceptual modeling languages allows to unify various specifications
of conceptual models in different formalisms in a single specification in DLs. Another important
assumption regarding the application of conceptual diagrams (e.g., in configuration management)
is that of full satisfiability, that is, it is required the existence of an instantiation (model) of the
diagram where all the classes have at least one instance. The notion of full satisfiability clearly
does not coincide with the standard notion of satisfiability in DLs and therefore it needs to be
explicitly considered.

In this Chapter, we take a closer look at the use of description logics to reason on conceptual
models. We specifically show how to reason under some of the semantic assumptions described
above. Interestingly, we discuss how to apply to reasoning in conceptual models some of the
results on finite reasoning obtained in previous chapters. In the remaining of this Chapter we
will investigate the complexity of reasoning in CDs under the finite model assumption as well
as the complexity of deciding full satisfiability of CDs. Table 7.1 summarizes the results.

7.1 Complexity of Reasoning in CDs

Recall that ALCQI lacks the finite model property due to the presence of cyclic inclusions,
inverse roles and functionality, and that the translation of CDs into ALCQI TBoxes makes
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Class Diagrams Finite Satisfiability Full Satisfiability

Dfull ExpTime Thm. 7.2 ExpTime Thm. 7.9

Dbool in ExpTime NP Thm. 7.12

D−Horn ExpTime Thm. 7.4 ExpTime

lite–D−Horn PTime PTime

Dref in ExpTime NLogSpace Thm. 7.14

D−ref NLogSpace Thm 7.3 PTime

Table 7.1: Complexity of reasoning in CDs

use of both inverse roles and number restrictions to capture the semantics of Dfull diagrams
(see Table 7.2). This means that for reducing reasoning in Dfull to finite model reasoning in
ALCQI one needs to define a mapping between finite instantiations corresponding to a CD D
and finite interpretations of the TBox TD derived from D. However, due to the possible presence
of relations with arity greater than two this mapping is not one-one. Recall that n-ary relations
are encoded in DLs by reification, using a concept name to represent the set of ‘tuples’ in the
relation, and using one role to connect each component of the relation to the corresponding
‘tuple’. For class diagrams, the extension of a relation in an instantiation is a set of tuples.
Therefore, it is implicit that there cannot be two tuples connected through all components of
the relation to exactly the same elements in the domain. But this is not a condition that can
be enforced in the TBox TD. More precisely, one would need to ensure that TD is such that
there is exactly one instance of the concept AR representing exactly one tuple in the relation R.
Nevertheless, by the model theoretical properties of ALCQI it can be shown that this condition
can be assumed [35], and reasoning in CDs can be reduced to finite model reasoning in ALCQI.

Theorem 7.1. [35] Let D be a Dfull diagram, C1, C2 be two classes in D, and TD be the ALCQI
TBox encoding D. Restricting to finite models the following holds:

1. C1 is satisfiable in D if and only if TD 6|=fin AC1 v ⊥.

2. C1 isa C2 holds in D if and only if TD |=fin AC1 v AC2 .

The previous results states that given a diagram D, deciding subsumption between two
classes C1, C2 amounts to decide finite subsumption between the concepts formalizing C1 and
C2, i.e, whether for the DL concepts AC1 , AC2 , in every finite model of TD every instance of
AC1 is also an instance of AC2 . Analogously, deciding the satisfiability of a class C1 amounts to
verifying the existence of a finite model of TD where the set of instances of AC1 is not empty,
i.e, AC1 is not finitely subsumed by ⊥ w.r.t. TD.

On the other hand, satisfiability of a diagram D does not correspond directly to finite
satisfiability of the TBox TD. Indeed, due to the requirement of the ‘witnessing’ instantiation
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CD construct ALCQI axioms

isa between classes C1 and C2 AC1 v AC2

isa between n-ary relations R1 and R2 AR1 v AR2

Relation R with C as the component R[i] AR v ∀pR[i].AC u ∃pR[i].AC u (6 1 pR[i] AC)

Cardinality constraint (m..n) on C as R[i] AC v (> m p−
R[i] AR) u (6 n p−

R[i] AR)

Table 7.2: ALCQI axioms derived from an Dfull CD

not to be the empty one, i.e., the trivial (finite) instantiation where the set of instances of each
class C in D is empty. Instead, satisfiability of D amounts to verifying, e.g., whether the ontology

(TD, {AC(a)})

is finitely satisfiable, for some class C encoded by AC . Note that in the latter the ABox A =
{AC(a)} forces that in every (finite) model of TD satisfying A, the concept AC has at least one
instance. Analogously, deciding whether there is an instantiation of D where the set of instances
of each class is non-empty could be reduced to the problem of deciding whether (TD,A′) is
satisfiable, where A′ is the set of assertions:

{ AC1(a1), . . . ACn
(an) },

where C1, . . . , Cn are all the classes occurring in D. As we show in the following, it is also
possible to reduce full satisfiability –which additionally requires all the relations to be nonempty–
to (finite model) reasoning in ALCQI. Observe that verifying full satisfiability is of importance
to detect the presence of an unsatisfiable class or relation. The latter means that either the
diagram contains unnecessary information that should be removed, or there is some modeling
error.

The reduction provided by Theorem 7.1 and the complexity of finite model reasoning in
ALCQI [94] imply that deciding (class) satisfiability and subsumption in Dfull can be done in
ExpTime on the size of D. Moreover, this complexity bound is tight, as shown in [21], reasoning
in ALC can be reduced to reasoning in a fragment of UML class diagrams that correspond to
our Dfull diagrams. Hence the following complexity result is implied.

Theorem 7.2. Deciding subsumption, and (class) satisfiability of Dfull diagrams w.r.t. finite
models is ExpTime-complete.

The previous result indicates that for rather expressive CDs the complexity of reasoning is
high. However, it has been shown that for the restricted Dbool and Dref diagrams the complexity
of verifying class subsumption and satisfiability decreases in comparison to Dfull. Verifying
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CD construct ALCQI axioms

isa between classes C1 and C2 AC1 v AC2

disjoint constraint among C1 . . . , Cn ACi uACj v ⊥, 1 ≤ i < j ≤ n

complete constraint on C isa {C1, . . . , Cn} Ci v C,

C v C1 t · · · t Cn

Relation R with C as the component R[i] AR v ∃pR[i], (> 2 pR[i]) v ⊥,

∃pR[i] v AR,

∃p−
R[i] v AC .

Cardinality constraint [m..n] on C as R[i] AC v (> m p−
R[i])

AC v (6 n p−R[i])

Table 7.3: DL-LiteNBool axioms derived from an Dbool CD

subsumption in Dbool CDs in NP-complete; and for Dref diagrams is NLogSpace-complete.
Artale et al. [8] provide the upper complexity bound using the following reduction:

• every Dbool diagram can be encoded into a DL-LiteNBool TBox T , in which every class and
relation is encoded by an atomic concept. The encoding is such that a class (relation) C
is satisfiable if and only if the corresponding concept AC (AR) is satisfiable w.r.t. T ;

• similarly, every Dref diagram can be encoded into a DL-LiteNcore TBox.

In Table 7.3, we present the encoding of Dbool diagrams into DL-LiteNBool. Observe that for
diagrams in Dref, i.e., those without complete constraints on class hierarchies, the encoding ac-
cording to Table 7.3 corresponds to a DL-LiteNcore TBox. The matching lower complexity bounds
are proven in [8] by direct reduction to well-known problems complete for the corresponding
complexity classes. However, the complexity results apply only for the unrestricted model case.
Nonetheless, using the reduction and the results of complexity of finite model reasoning in
DL-LiteFcore the following can be shown.

Theorem 7.3. Deciding (finite) class subsumption and (class) satisfiability for D−ref diagrams
is NLogSpace-complete.

Observe that for the case of D−bool the best known complexity upper bound for finite class
subsumption and (class) satisfiability is ExpTime, that is, the same as forDfull. Indeed, although
satisfiability in DL-LiteNBool in NP-complete, this logic lacks the finite model property.

Our results on finite model reasoning in these logics (see Chapter 4) imply the following
result:

Theorem 7.4. Deciding finite subsumption and (class) satisfiability for D−Horn is ExpTime-
complete. Further, it is PTime-complete for lite-D−Horn diagrams.

160



7.2. Full Satisfiability of CDs

Although the complexity of finite model reasoning in Horn-ALCQI is high (ExpTime-complete),
our results from Chapter 4 show a promising way to realize an implementation for a finite
model reasoner via the calculus from Section 4.1. Such a reasoner would provide as well an
implementation for reasoning in DHorn diagrams.

7.2 Full Satisfiability of CDs

As discussed above, full satisfiability of a class diagram amounts to verifying whether there is
an instantiation of the diagram in which all the classes (and relations) have at least one in-
stance. Thus, a class diagram is not fully satisfiable even if it admits an instantiation satisfying
all constraints, but where a particular class can never be populated (due to over-restrictive
constraints). The rationale is that such a ‘permanently empty’ class constitutes a specification
error and hence should be reported to the user. Full satisfiability of CDs that support cardi-
nality constraints is relevant for example in configuration management. A configuration is an
arrangement of functional units according to their nature, number and chief characteristics [26].
Functional units may be a software or hardware component (e.g, electronic circuits, or parts of
a machine). In configuration management, is paramount to specify admissible arrangements in
a natural way, to set up according to certain criteria of optimality and to maintain them when
requirements change. In this context, a CD is a specification describing the component types,
their properties and interrelations; and the collection of concrete instances together with their
relations forms a configuration.

Example 12. Consider the following diagram specifying that Cars come with three or four
wheels each requiring a tire; and that Cars have to be delivered with four or five tires (including
the spare tire).

Car

  
Wheel

3..4
Tyre

 

4..5

1..1 1..1

11 ThreeWheeler

*..3
*..4

Observe that according to this specification in every proper instantiation of the diagram the
class ThreeWheeler is empty. Indeed, every instantiation admits only four wheeled cars without
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a spare tire, since the at-least constraint 3 and the at-most constraint 5 cannot be satisfied in
proper instances (e.g., in finite instances). Thus, the diagram is not fully satisfiable.

For this small example, it can be seen that the problem rises from mixing two incompatible view
on tires: those delivered with the car versus those attached to wheels. Such mistakes however
are natural in specifications developed by several people, and more difficult to detect in complex
diagrams. Z

In this section, we will show results on the computational complexity of deciding (finite) full
satisfiability of CDs. More precisely, we show that deciding full satisfiability is

• ExpTime-complete for Dfull diagrams;

• NP-complete for Dbool diagrams w.r.t. possibly infinite instantiations and

• NLogSpace-complete for Dref.

These results build on the formalization of CDs in terms of DLs (Tables 7.2 and 7.3). The upper
bounds are derived from reducing full satisfiability to class satisfiability on CDs—or equivalently
to (concept) satisfiability on DL ontologies. Showing that the complexity bound obtained from
such reduction are tight requires slightly more involved proofs.

Full Satisfiability of TBoxes

We start by proving results on the complexity of full satisfiability of TBoxes, and we then transfer
these results to CDs. We first define that notion for TBoxes.

Definition 7.1 (TBox Full Satisfiability). Let L be a description language. An L TBox T
is fully satisfiable iff there exists a model I of T such that AI 6= ∅, for every atomic concept
A ∈ CN(T ). We say that I is a full model of T . 4

We provide the following lower bound on the complexity of deciding full satisfiability of ALC
TBoxes is ExpTime-hard.

Lemma 7.5. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to full satisfiability
of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. A well known result (see e.g., [27]) is
that, C is satisfiable w.r.t. T if and only if C uAT is satisfiable w.r.t. the TBox T1 consisting
of the single assertion,

AT v
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n
∀pi.AT ,

where AT is a fresh atomic concept and p1, . . . , pn are all the role names occurring in T and C. In
order to reduce the latter problem to full satisfiability, we extend T1 to T2 = T1∪{AC v CuAT },
with AC a fresh atomic concept. We will now show that:
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7.2. Full Satisfiability of CDs

(†) C uAT is satisfiable w.r.t. T1 if and only if T2 is fully satisfiable.

For the ‘⇒’ direction of (†). Let I be a model of T1 such that (C uAT )I 6= ∅. We construct an
interpretation of T2, J = (∆I ∪ {dtop}, ·J ), with dtop 6∈ ∆I , such that:

AJT = AIT , AJC = (C uAT )I ,
AJ = AI ∪ {dtop}, for each concept name A in T and C,
pJ = pI , for each role name p in T and C.

Clearly, the extension of every atomic concept is non-empty in J . Next, we show that J is a
model of T2, by relying on the fact (easily proved by structural induction) that DI ⊆ DJ , for
each subconcept D of concepts in T1 or of C. Then, it is easy to show that J satisfies the two
assertions in T2.

The ‘⇐’ direction follows from the observation that every full model J of T2 is also a model of
T1 with (C uAT )J 6= ∅, as AJC ⊆ (C uAT )J .

q

We can now prove the following easily.

Theorem 7.6. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward since full satisfiability of an ALC TBox
T can be reduced to satisfiability of the TBox T ∪

⋃
1≤i≤n{> v ∃p′.Ai}, where A1, . . . , An are

all the atomic concepts in T , and p′ is a fresh role name. The ExpTime-hardness follows from
Lemma 7.5.

q

Next, we show that the same result holds for syntactically simpler ALC TBoxes. A primitive
ALC TBox, is an ALC TBox that contains only assertions of the form:

A v B, A v ¬B, A v B tB′, A v ∀p.B, A v ∃p.B,

where A, B, B′ are concept names, and p is a role name. We now modify the reduction of
Lemma 7.5 so that it applies also to primitive ALC TBoxes.

Theorem 7.7. Full satisfiability of primitive ALC TBoxes is ExpTime-complete.
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Proof. The ExpTime membership follows from Theorem 7.6. For proving the ExpTime-hardness,
we use a result in [21] showing that concept satisfiability in ALC can be reduced to atomic
concept satisfiability w.r.t. primitive ALC TBoxes. Let T = {Aj v Dj | 1 ≤ j ≤ m} be a
primitive ALC TBox, and A0 an atomic concept. By the proof of Lemma 7.5, we have that A0

is satisfiable w.r.t. T if and only if the TBox T ′2 consisting of the assertions

AT − v
l

AjvDj∈T

(¬Aj tDj) u
l

1≤i≤n
∀pi.AT , (7.1)

A′0 v A0 uAT , (7.2)

is fully satisfiable, with AT , A′0 fresh atomic concepts.
Although T ′2 is not a primitive ALC TBox, it is indeed equivalent to the TBox containing

the assertions:

A′0 v AT

A′0 v A0

AT v ¬A1 tD1
...

AT v ¬Am tDm

AT v ∀p1. AT
...

AT v ∀pn. AT ,

Finally, to get a primitive ALC TBox, T2, we replace each assertion of the form AT v ¬Aj tDj

by
AT v B1

j tB2
j , B1

j v ¬Aj ,

and B2
j v Dj , with B1

j and B2
j fresh atomic concepts, for j ∈ {1, . . . ,m}.

We show now that T ′2 is fully satisfiable iff T2 is fully satisfiable:

(⇒) Let I = (∆I , ·I) be a full model of T ′2 . We extend I to a model J of T2. Let ∆J =
∆I ∪ {d+, d−}, with {d+, d−} ∩∆I = ∅, and define (·J ) as follows:

AJT − = AIT , A′0
J = A′0

I
,

AJ = AI ∪ {d+}, for every other atomic concept A in T ′2 ,

B1
j
J = (¬Aj)J and B2

j
J = DJj , for each AT v B1

j tB2
j ∈ T2,

pJ = pI ∪ {(d+, d+)}, for each role name p in T2.

It is easy to see that J is a full model of T2.

(⇐) Trivial since every model of T2 is a model of T ′2 .

q

Full Satisfiability of CDs

We now address the complexity of full satisfiability of Dfull. We reduce full satisfiability of
primitive ALC TBoxes to full satisfiability of Dfull.
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{disjoint}

O

A B

(a) Encoding of A v ¬B

        

        

{complete}

A B

B1 B2

(b) Encoding of A v B1 tB2

    

        

            

    

    

    

{disjoint}

{complete}

1..1

P1

1..1

P2

1..1

PAB1

PĀB1

1..1

PAB2

1..1

O

B

A APB ĀPB

CPAB CPAB

CP

(c) Encoding of A v ∀p.B

   

      

    

      

1..1

PAB1

1..1

1..*

PAB2 P2P1

1..1 1..1O

A B

CP

CPAB

(d) Encoding of A v ∃p.B

Figure 7.1: Reducing ALC TBox full satisfiability to Dfull
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Given a primitive ALC TBox T , construct an CD Σ(T ) as follows: for each atomic concept
A in T , introduce a class A in Σ(T ). Additionally, introduce a class O that generalizes (possibly
indirectly) all the classes in Σ(T ) that encode an atomic concept in T . For each role name
p ∈ role(T ), introduce a class CP , which reifies p. Further, introduce two functional relations
P1, and P2 that represent, respectively, the first and second component of p. The assertions in
T are encoded as follows:

• For each assertion of the form A v B, introduce a generalization between the classes A
and B.

• For each assertion of the form A v ¬B, construct the hierarchy in Fig. 7.1a.

• For each assertion of the form A v B1 tB2, introduce an auxiliary class B, and construct
the diagram shown in in Fig. 7.1b.

• For each assertion of the form A v ∀p.B, add the auxiliary classes CPAB
, CPAB

, APB
,

and APB
, and the relations PAB1, PAB1, and PAB2, and construct the diagram shown in

Fig. 7.1c.

• For each assertion of the form A v ∃p.B, add the auxiliary class CPAB
and the relations

PAB1 and PAB2, and construct the diagram shown in Fig. 7.1d.

Lemma 7.8. A primitive ALC TBox T is fully satisfiable if and only if the Dfull diagram Σ(T ),
constructed as above, is fully satisfiable.

Proof.
“⇐” Let J = (∆J , ·J ) be a full model of Σ(T ). We construct a full model I = (∆I ·I) of T
by taking ∆I = ∆J . Further, for every concept name A and for every role name p in T , we
define respectively AI = AJ and pI = (P−1 )J ◦ PJ2 (R1 ◦ R2 denotes the composition of two
binary relations R1 and R2). Let us show that I satisfies every assertion in T . We distinguish
the following cases:

• For assertions of the form A v B, A v ¬B, and A v B1 tB2, the statement easily follows
from the construction of I.

• For assertions of the form A v ∀p.B. Let d ∈ AI = AJ and d′ ∈ ∆I = ∆J , such that
(d, d′) ∈ rI . Since pI = (P−1 )J ◦ PJ2 , there is d′′ ∈ ∆J such that (d, d′′) ∈ (P−1 )J , and
(d′′, d′) ∈ PJ2 . Then, d′′ ∈ CJp , and by the completeness constraint, d′′ ∈ CJPAB

∪ CJPAB
.

We claim that d′′ ∈ CJPAB
. Suppose otherwise, then there is a unique d1 ∈ ∆J , such

that (d′′, d1) ∈ PJ
AB1

and d1 ∈ A
J
PB

. It follows from PJ
AB1
⊆ PJ1 and by the multiplicity

constraint over CP , that d1 = d. This gives rise to a contradiction,because d ∈ AJ ⊆ AJPB

and, AJPB
and AJPB

are disjoint. Then d′′ ∈ CJPAB
. Further, there is a unique d2 ∈ ∆J with

(d′′, d2) ∈ PJAB2 and d2 ∈ BJ . From PJAB2 ⊆ P
J
2 and the multiplicity constraint on CP , it

follows that d2 = d′. Thus, we have that d′ ∈ BJ = BI , and therefore, d ∈ (∀p.B)I .
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• For each assertion of the form A v ∃p.B. Let d ∈ AI = AJ . Then, there is d′ ∈ ∆J such
that (d′, d) ∈ PJAB1 and d′ ∈ CJPAB

. Since d′ ∈ CJPAB
, there is d′′ ∈ ∆J with (d′, d′′) ∈ PJAB2

and d′′ ∈ BJ = BI . Then we can conclude that (d, d′′) ∈ pI since PJAB2 ⊆ P
J
2 ,PJAB1 ⊆ P

J
1

and P I = (P−1 )J ◦ PJ2 . Therefore, d ∈ (∃p.B)I as required.

“⇒” Let I = (∆I , ·I) be a full model of T . We extend I to an instantiation J = (∆J , ·J )
of Σ(T ), by assigning suitable extensions to the auxiliary classes and relations in Σ(T ). Let
∆J = ∆I ∪ Γ ∪ Λ, where:

Λ =
⊎

Av∀p.B∈T

{aAPB
, aAPB

},

such that ∆I ∩ Λ = ∅, and

Γ =
⊎

p∈role(T )

∆P , with ∆p = pI ∪
⋃

Av∀p.B∈T

{(aAPB
, b), (aAPB

, o)},

where b is an arbitrary instance of B, and o an arbitrary element of ∆I . We set OJ = ∆I ∪ Λ,
AJ = AI for each class A corresponding to an atomic concept in T , and CJP = ∆p for each
p ∈ role(T ). Additionally, the extensions of the relations P1 and P2 are defined as follows:
PJ1 = {((o1, o2), o1) | (o1, o2) ∈ CJP }, PJ2 = {((o1, o2), o2) | (o1, o2) ∈ CJP }. We now show that
J is a full model of Σ(T ).

• For the portions of Σ(T ) due to TBox assertions of the form A v B, A v ¬B, and
A v B1 tB2, the statement follows from the construction of J .

• For each TBox assertion in T of the form A v ∀p.B, let us define the extensions for the
auxiliary classes and relations as follows:

AJPB
= AI ∪ {aAPB

}, A
J
PB

= OJ \AJPB
,

CJPAB
= {(o, o′) ∈ CJP | o ∈ A

J
PB
}, C

J
PAB

= {(o, o′) ∈ CJP | o ∈ A
J
PB
},

PJAB1 = {((o, o′), o) ∈ PJ1 | o ∈ AJPB
}, PJ

AB1
= {((o, o′), o) ∈ PJ1 | o ∈ A

J
PB
},

PJAB2 = {((o, o′), o′) ∈ PJ2 | o ∈ AJPB
} .

It is not difficult to see that J satisfies the fragment of Σ(T ) as shown in Fig. 7.1c. It
remains to show that each class and each relation has a non-empty extension. This is
clearly the case for classes that encode atomic concepts in T . For the classes APB

, APB
,

CPAB
, and CPAB

we have that

aAPB
∈ AJPB

, aAPB
∈ AJPB

, (aAPB
, b) ∈ CJPAB

, (aAPB
, o) ∈ CJPAB

.

For the relations P1, P2, PAB1, PAB2, and PAB1 we have that ((aAPB
, b), aAPB

) ∈ PJAB1 ⊆
PJ1 , ((aAPB

, o), aAPB
) ∈ PJ

AB1
, ((aAPB

, b), b) ∈ PJAB2 ⊆ P
J
2 .

• For each TBox assertion in T of the form A v ∃p.B, let us define:
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      C> Ci1..*Ri

    

           Ci CP Cj

C>

1..1 1..1

1..*

P1 P2

Rp

Figure 7.2: Reducing Dfull full satisfiability to class satisfiability

CJPAB
= {(o, o′) ∈ CJP | o ∈ AI and o′ ∈ BI},

PJAB1 = {((o, o′), o) ∈ PJ1 | (o, o′) ∈ CJPAB
},

PJAB2 = {((o, o′), o′) ∈ PJ2 | (o, o′) ∈ CJPAB
} .

We have that CJPAB
6= ∅ as there exists a pair (a, b) ∈ ∆p with a ∈ AI , and b ∈ BI . Since

CJPAB
6= ∅, we have that PJAB1 6= ∅ and P

J
AB2 6= ∅.

q

We can now establish the following.

Theorem 7.9. Full satisfiability of Dfull diagrams is ExpTime-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in Dfull CDs, which
is known to be ExpTime-complete by Theorem 7.2. Given a Dfull diagram D, with classes
C1, . . . , Cn, we construct a Dfull diagram D′ by adding to D a new class C> and new relations
Ri, for i ∈ {1, . . . , n}, as shown in the left part of Fig. 7.2. Furthermore, to check that every
relation is populated we use reification, i.e., we replace each relation P in the diagram D between
the classes Ci and Cj (such that neither Ci nor Cj is constrained to participate at least once to
P ) with a class CP and two functional relations P1 and P2 to represent each component of P .
Finally, we add the constraints shown in the right part of Fig. 7.2. Intuitively, we have that if
there is an instantiation I of the extended diagram D′ in which CI> 6= ∅, then the multiplicity
constraint 1..∗ on the relation RP forces the existence of at least one instance o of CP . By the
functionality of P1 and P2 there are at least two elements oi and oj , such that oi ∈ CIi , oj ∈ CIj ,
(o, oi) ∈ P I1 and (o, oj) ∈ P I2 . Then, one instance of P can be the pair (oi, oj). Conversely, if
there is a full model J of D, it is easy to extend it to a model I of D′ that satisfies C>.

The ExpTime-hardness follows from Lemma 7.8 and Theorem 7.7.
q

Note that the proof for the lower bound (Lemma 7.8) being based on ALC holds also for
the finite model case. Hence we have the following.

Corollary 7.10. Full satisfiability of Dfull diagrams is ExpTime-complete under the finite
model assumption.
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We now move forward to showing the complexity of deciding full satisfiability for the two
sub-languages Dbool and Dref. By building on the techniques used for the satisfiability proofs
in [8], we show that also in this case checking for full satisfiability has the same complexity as
for satisfiability.

We consider first Dbool diagrams, and show that deciding full satisfiability is NP-complete.
For the lower bound, we provide a polynomial reduction of the 3sat problem (which is known
to be NP-complete) to full satisfiability of Dbool CDs.

Let an instance of 3sat be given by a set φ = {c1, . . . , cm} of 3-clauses over a finite set Π
of propositional variables. Each clause is such that ci = `1

i ∨ `2
i ∨ `3

i , for i ∈ {1, . . . ,m}, where
each `kj is a literal, i.e., a variable or its negation. We construct an Dbool diagram Dφ as follows:
Dφ contains the classes Cφ, C>, one class Ci for each clause ci ∈ φ, and two classes Cp and C¬p
for each variable p ∈ Π.

To describe the constraints imposed by Dφ, we provide the corresponding CIs since they are
more compact and concise than drawing the diagram. For every i ∈ {1, . . . ,m}, j ∈ {1, 2, 3},
and p ∈ Π, we have the assertions

Cφ v C>

Cp v C>

C¬p v C>

Ci v C>

Cφ v Ci

C> v Cp t C¬p

Clj
i
v Ci

Ci v C`1
i
t C`2

i
t C`3

i

C¬p v ¬Cp

Clearly, the size of Dφ is polynomial in the size of φ.

Lemma 7.11. A set φ of 3-clauses is satisfiable if and only if the Dbool class diagram Dφ,
constructed as above, is fully satisfiable.

Proof.
“⇒” Let J |= φ. Define an interpretation I = ({0, 1}, ·I), with

CI> = {0, 1}

CI` =

{1}, if J |= `

{0}, otherwise

CIi = CI
`1

i
∪ CI

`2
i
∪ CI

`3
i
, for ci = `1

i ∨ `2
i ∨ `3

i

CIφ = CI1 ∩ · · · ∩ CIm.

Clearly, CI 6= ∅ for every class C representing a clause or a literal, and for C = C>. Moreover,
as at least one literal `ji in each clause is such that J |= `ji , then 1 ∈ CIi for every i ∈ {1, . . . ,m},
and therefore 1 ∈ CIφ . It is straightforward to check that I satisfies T .

“⇐” Let I = (∆I , ·I) be a full model of Dφ. We construct a model J of φ by taking an element
o ∈ CIφ , and setting, for every variable p ∈ Π, J |= p if and only if o ∈ CIp . Let us show that
J |= φ. Indeed, for each i ∈ {1, . . . ,m} since o ∈ CIφ and by the generalization Cφ v Ci, we have
that o ∈ CIi , and by the completeness constraint Ci v C`1

i
tC`2

i
tC`3

i
, there is some ji ∈ {1, 2, 3}

such that o ∈ C
`

ji
i

. If `ji

i is a variable, then J |= `ji

i by construction, and thus J |= ci. Otherwise,
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if `ji

i = ¬p for some variable p, then, by the disjointness constraint C¬p v ¬Cp, we have that
o /∈ CIp . Thus, J |= ¬p, and therefore, J |= ci.

q

Theorem 7.12. Full satisfiability of Dbool is NP-complete

Proof. To prove the NP upper bound, we reduce full satisfiability to class satisfiability, which,
for the case of Dbool, is known to be in NP. We use an encoding similar to the one used in the
proof of Theorem 7.9 (see Fig. 7.2).

q

We turn now toDref class diagrams and show that full satisfiability in this case is NLogSpace-
complete. We provide a reduction of the reachability problem on (acyclic) directed graphs,
which is known to be NLogSpace-complete (see e.g., [107]) to the complement of full satisfia-
bility of Dref diagrams.

Let G = (V,E, s, t) be an instance of reachability, where V is a set of vertices, E ⊆ V ×V
is a set of directed edges, s is the start vertex, and t the terminal vertex. We construct an Dref

diagram DG from G as follows:

• DG has two classes C1
v and C2

v , for each vertex v ∈ V \{s}, and one class Cs corresponding
to the start vertex s.

• For each edge (u, v) ∈ E with u 6= s and v 6= s, DG contains the following constraints
(again expressed as DL inclusion assertions):

C1
u v C1

v , C2
u v C2

v .

• For each edge (s, v) ∈ E, DG contains the following constraints: Cs v C1
v , Cs v C2

v .

• For each edge (u, s) ∈ E, DG contains the following constraints:

C1
u v Cs, C2

u v Cs.

• The classes C1
t and C2

t are constrained to be disjoint in D, expressed by:

C1
t v ¬C2

t .

The following lemma establishes the correctness of the reduction.

Lemma 7.13. t is reachable from s in G iff DG is not fully satisfiable.
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7.2. Full Satisfiability of CDs

Proof. “⇒” Let π = v1, . . . , vn be a path in G with v1 = s and vn = t. We claim that the class
Cs in the constructed diagram DG is unsatisfiable. Suppose otherwise that there is a model
I of DG with o ∈ CIs , for some o ∈ ∆I . From π, a number of generalization constraints hold
in DG, i.e., CIs ⊆ C1

t
I and CIs ⊆ C2

t
I . Thus, we obtain that o ∈ (C1

t )I and o ∈ (C2
t )I , which

violates the disjointness between the classes C1
t and C2

t , in contradiction to I being a model of
DG. Hence, Cs is unsatisfiable, and therefore DG is not fully satisfiable.

“⇐” Let us consider the contrapositive. Assume that t is not reachable from s in G. We
construct a full model I of DG. Let ∆I = {ds}∪

⋃
v∈V \{s}{d1

v, d
2
v}. Define inductively a sequence

of interpretations as follows:

I0 = (∆I , ·I0), such that: CI0

s = {ds}, Civ
I0

= {div},∀i ∈ {1, 2}, v ∈ V \ {s},

In+1 = (∆I , ·In+1), such that: CIn+1

s = CI
n

s ∪
⋃

(u,s)∈E(C1
u
In

∪C2
u
In

), Civ
In+1

= Civ
In

∪⋃
(u,v)∈E, u 6=s C

i
u
In

∪
⋃

(s,v)∈E C
In

s .

The definition induces a monotone operator over a complete lattice, and hence it has a fixed
point. Let I be defined by such a fixed point. It is easy to check that I is such that for all
i ∈ {1, 2}, and u, v ∈ V \ {s} the following holds:

1. For each class Civ, we have that div ∈ CivI .

2. ds ∈ CIs .

3. For all d ∈ ∆I , d ∈ CiuI implies d ∈ CivI iff v is reachable from u in G.

4. For all diu ∈ ∆I , diu ∈ CjvI for i 6= j iff s is reachable from u in G, and v is reachable from
s in G.

5. ds ∈ CivI iff v is reachable from s in G.

From (1) and (2) we have that all classes in DG are populated in I. It remains to show that I
satisfies DG. A generalization between the classes Ciu and Civ corresponds to the edge (u, v) ∈ E.
This means that v is reachable from u in G, and therefore, by (3) we have that CiuI ⊆ Civ

I .
A similar argument holds for generalizations involving the class Cs. Furthermore, the classes
C1
t and C2

t are disjoint under I. To show this, suppose that there is an element d ∈ ∆I such
that d ∈ C1

t
I ∩ C2

t
I . Then by (5), d 6= ds, as t is not reachable from s. Moreover, d 6= div for

all i ∈ {1, 2} and v ∈ V \ {s}. Indeed, suppose w.l.o.g. that i = 1. Then, by (4), d1
v ∈ C2

t
I

iff s is reachable from v, and t is reachable from s, which leads to a contradiction. Hence,
C1
t
I ∩ C2

t
I = ∅. q

Theorem 7.14. Full satisfiability of Dref class diagrams is NLogSpace-complete.
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Proof. The NLogSpace membership follows from the NLogSpace membership of class sat-
isfiability [8], and a reduction similar to the one used in Theorem 7.12. Since NLogSpace =
coNLogSpace (by the Immerman-Szelepcsényi theorem; see, e.g., [107]), and as the above
reduction is logspace bounded, it follows that full satisfiability of Dref diagrams is NLogSpace-
hard. q

Finite Model Assumption

Finally, we can argue that the complexity boundaries for full satisfiability of Dfull and Dref are
tight also under the finite model assumption. More precisely, we say that a class diagram D is
full satisfiable under the finite model assumption iff there is an instantiation I of D such that
the domain of I is finite and every class has at least one instance.

Theorem 7.15. Full satisfiability under the finite model assumption of Dfull diagrams is Exp-
Time complete.

Proof. For the case of Dfull diagrams, the ExpTime-hardness follows from Lemma 7.8, Theo-
rem 7.7 and the fact that ALC has the finite model property. The upper bound, on the other
hand follows from a reduction of full satisfiability on Dfull to finite satisfiability on ALCQI
(which is ExpTime complete). Indeed, let D be a Dfull diagram, and let TD the corresponding
ALCQI TBox. We can show the following: D is fully-satisfiable by a finite instantiation iff the
ontology (TD,AD) is finitely satisfiable, where AD := {AC(aC) | C is a class in D}∪ {AR(aR) |
R is a relation in D}. Note that the ABox AD forces the existence of at least one object aC
from each class C, and a ‘tuple’ aR for each relation R. q

Analogous results can be obtained for restricted class diagrams that are formalized by the
tractable DLs from the DL-Lite family.

Theorem 7.16. Full satisfiability under the finite model assumption is decidable in PTime for
lite–D−Horn and, is NLogSpace-complete for D−ref diagrams.

Proof. In both cases, the upper complexity bound follows from the encoding of these classes
of diagrams in DLs. Recall that a lite–D−Horn diagram D can be encoded into a DL-LiteFHorn
TBox TD, is such a way that a class C in D is finitely satisfiable iff the concept AC (encoding
C) is finitely satisfiable w.r.t. TD, and that finite (concept) satisfiability is PTime-complete for
DL-LiteFHorn. Analogously, D−ref diagrams can be encoded using DL-LiteFcore, for which deciding
finite satisfiability is NLogSpace-complete.

The lower bound for the case of D−ref follows from the reduction in Lemma 7.13. q
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Chapter

8
Conclusions

In this thesis, we have investigated the complexity of ontological reasoning under assumptions
that are relevant for database applications.

Finite Models

In Chapter 3, we established the computational complexity of the standard reasoning (satis-
fiability, subsumption and ABox consistency) under the finite model assumption in DLs that
lack the finite model property. The study on that Chapter focused on so-called Horn DLs,
including the lightweight logics of the DL-Lite family with functional roles [38], and the more
expressive logics Horn-ALCFI and Horn-ALCQI [71]. We have shown that the cycle reversion
technique, originally introduced to axiomatize finite implication of functional dependencies and
inclusion dependencies by Cosmadakis et al. [45] in the context of databases, and later extended
to DL-LiteFcore by Rosati [117], extends all the way to the Horn-ALCQI description logic. From
our results on this extension, we can conclude the following.

• For the Horn DLs considered, the cycle reversion technique provides a complete axiomati-
zation of finite model entailment; and as a consequence,

• finite model reasoning in these logics can be reduced to unrestricted reasoning w.r.t. the
ontology obtained after cycle reversion (Theorems 3.10, 3.24 and 3.28).

• For the case of DL-LiteFHorn, the previous Theorem 3.10 implies that the complexity of
finite model reasoning coincides with that of reasoning over unrestricted models, and
therefore it is PTime-complete.

• For the case of Horn-ALCQI, on the other hand, the cycle reversion defined in Section 3.3
produces an exponential blow up in the input TBox, hence a double exponential decision
procedure for finite model reasoning in Horn-ALCQI, which is far from optimal since
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complexity of that problem was known to be in ExpTime since finite model reasoning in
ALCQI is ExpTime complete.

Consequence driven Finite Model Reasoning. Since the cycle reversion technique devel-
oped in Chapter 3 does not provides an optimal decision procedure for finite model reasoning
in Horn-ALCQI, we devised in Chapter 4 an algorithmic approach to finite model reasoning
in Horn DLs. We adapted and extend a well known consequence driven algorithm for deciding
subsumption in Horn-SHIQ. The obtained method provides a sound and complete decision
procedure to realize finite model reasoning in Horn-ALCFI. In fact, our procedure can be used
to compute all subsumptions A v B between concept names holding on finite models of the
input ontology. The cycle reversion technique implemented by our rule R9 avoids the exponen-
tial blow-up on the input TBox and ensures that the procedure is computationally optimal
(Theorem 4.9). Moreover, the addition of rules R10 to R12 enables ABox reasoning in Horn-
ALCFI. Completeness of the approach follows from the reduction of finite ABox consistency in
HornALCFI to the unrestricted model case provided by Theorem 3.28. Finally, we have shown
that a Horn-ALCQI T TBox can be transformed into a Horn-ALCFI TBox T ′, that is, “at
least” number restrictions for n > 1 present in a Horn-ALCQI can be coded out in such a way
that finite model reasoning in T and T ′ coincides. However, it is not obvious how to adapt the
transformation to account also for a Horn-ALCQI ABox.

Ontological Query Answering under the Finite Model Assumption. The finite model
assumption is also relevant for ontological query answering, when the ontology is expressed in
a logic that lacks the finite model property. Indeed, the finite model version of that problem is
different to the unrestricted case since ontological query answering amounts to entailment. In
Chapter 5, we have shown that we can actually reduce finite query entailment w.r.t. an ontology
to unrestricted (model) query entailment, provided that the TBox has been extended using cycle
reversion (Theorem 5.1).

Our reduction allows us to establish the computational complexity of finite model query
entailment w.r.t. an ontology. As for the standard reasoning tasks, the complexity of finite
ontological query answering coincides with that of query answering w.r.t. unrestricted models
on the ontology.

• Finite PEQ entailment in Horn-ALCFI is decidable;

• ExpTime-complete in combined complexity;

• and PTime-complete in data complexity.

The reduction of finite query entailment to unrestricted entailment from Theorem 5.1 covers
also the fragments ELIF and DL-LiteFHorn of Horn-ALCFI. Indeed, the properties of the finite
models established in Propositions 5.3 and 5.4 hold also for these fragments. For the case of
ELIF the complexity of finite query entailment coincides with that of Horn-ALCFI since this
also holds for the unrestricted case. On the other hand, since the size of the finClosure(T ) of a
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DL-LiteFHorn TBox T is bounded by a polynomial on the size of T and it does not depend on
the size of the ABox, the complexity of query entailment in DL-LiteFHorn for the unrestricted
case and Theorem 5.1 imply that:

• Finite query entailment in DL-LiteFHorn is PTime-complete in combined complexity;

• and AC0 in data complexity.

Expressive Query Languages

In Chapter 6, we studied ontological query answering on Horn DLs, in the scenario where queries
contain some form of negation. In classical database theory, positive queries have played a key
role due to their desirable theoretical properties (e.g., they are invariant under homomorphisms),
unfortunately, they do not allow to express e.g., complementation and difference, which might
be of interest in practice. While it is well-known in database theory that conjunctive query
answering with negation is harder that answering positive queries, some interest has risen to
provide more expressive means to query ontologies [6, 19, 116].

The results in this thesis regarding ontological query answering confirm that the exten-
sion with negations on queries is unfeasible even on fairly restricted scenarios. Indeed, it was
known from the results by Rosati that answering both UCQs 6= and UCQs¬s in DL-LiteHcore is
undecidable [116]. Rosati also showed that the situation is similar for EL: answering unions of
CQs¬ undecidable. Moreover, the result by Klenke showed that (single) CQ 6= answering in EL
is also undecidable [82]. However, from those results it was not clear whether for DL-Lite the
source of undecidability was to consider unions of queries with negation. Notably, this kind of
queries amount to very expressive constraints. Indeed, recall that entailment of a query q over
an ontology O is equivalent to decide whether O∧¬q is satisfiable (i.e., to find a counter model).
Then, the negation of a union of CQs 6= can express, for example, a set of complex functionality
constraints (the so-called disjunctive EGDs).

Safe Negation. For the case of queries with negation, we have shown that answering CQs¬s

over ELI⊥ ontologies is undecidable. It turns out that a single query with safe negation is enough
to encode undecidable problems if the ontology is expressed in DL-Lite with role inclusion
axioms. In particular, we have shown that answering CQs¬s in DL-LiteHcore is undecidable. This
result indicates that safe negation is not a condition strong enough to retain decidability of
ontological query answering, although, the decidability of answering CQs¬s in DL-Lite without
role inclusions remains open. Even if decidability can be attained for the case without role
inclusions, our results on guarded negation indicate that the problem is not tractable.

Guarded Negation. We considered queries with guarded negation, a restriction that was
proposed to provide decidability of ontological query answering [19]. We have shown that
answering GNCQs over DL-Litecore,DL-LiteHcore, EL⊥ and ELI⊥ is coNP-complete in data
complexity. Further, if we restrict the number of negations to only one, the problem becomes
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PTime-complete. One possible explanation for the latter comes from the observation that such
restriction disallows expressing disjunctive knowledge in O∧¬q, which is one of the characteristics
of Horn DLs and the reason why ontological positive query answering is tractable in those DLs.
The restriction on the number of guarded negations is tight. Indeed, the proof to show coNP-
hardness required only two guarded negations.

Inequalities. For the case of conjunctive queries with inequalities, it is known that the number
of inequalities in the query may have an impact on the complexity of ontological query answer-
ing [83, 96]. We have shown that for DL-Lite, the presence of role inclusions makes irrelevant the
number of inequalities. In particular, that answering CQs 6= with one inequality in DL-LiteHcore
is undecidable.

The decidability of CQ 6= answering in DL-Litecore remains open, although in case that
problem is decidable, tractability cannot be expected even for restricted queries with at most 2
inequalities. We provided a coNP lower bound for that scenario.

Future Work

More Expressive DLs

As future research, it would be interesting to extend the results in this thesis to Horn-SHIQ [71],
that is, to add role hierarchies and transitive roles. Actually, transitive roles can be “reduced
out" is such a way that TBox finite reasoning and finite ABox consistency is preserved. On
the other hand, role hierarchies need to be explicitly taken into account when defining the
cycle reversion technique and would have to be built directly into our construction of finite
models. Reducing out role hierarchies does not seem easily possible in the finite1. It would also
be interesting to provide a transparent reduction that does not require to eliminate at least
number restrictions for n > 1. Recall that the transformation from Horn-ALCQI TBoxes to
Horn-ALCFI in Section 3.4 does not preserve ABox consistency, and therefore is useful only
for TBox reasoning.

For query entailment, we expect transitive roles to cause significant additional challenges,
see for example [52, 100]. In particular, transitive roles result in an additional way in which the
finite model property is lost. Consider for example the TBox T containing the axioms:

A v ∃r.A, trans(r)

and the conjunctive query
q = ∃x r(x, x).

For the ABox A = {A(a)}, we have (T ,A) 6|= q, but (T ,A) |=fin q although neither counting
nor inverse roles are present in T , which is formulated in the extension of EL with transitive
roles. Finite model reasoning in versions of Datalog± [28] that extend ELtrans has recently been
studied in [57, 58].

1In contrast to what we have claimed in [74].
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Size of Finite Models

In this thesis, we have not analyzed the size of finite models. It is, however, easy to prove a
double exponential lower bound on the size of finite models for satisfiability in Horn-ALCFI
by enforcing a tree of exponential depth in which no two elements can be identical. A matching
upper bound follows from Pratt-Hartmann’s result that every finitely satisfiable formula in first-
order logic with two variables and counting quantifiers has a model of at most double exponential
size [111]. Nonetheless, analyzing the size of finite (counter)models for query entailment seems
a promising line for future work.

Expressive Query Languages

Regarding ontological query answering with expressive query languages, the most promising
line for future work could be the study of syntactical restrictions of CQs 6=. In fact, not only the
number of inequalities affects the complexity of query answering, but also restrictions on the
way variables occurring on inequalities can be bound in a match of the query do. Remarkably,
Arenas et al. [6] have investigated such restriction in the context of data exchange.
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