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Abstract. By classical results of Abadi and Halpern, validity for probabilistic
first-order logic of type 2 (ProbFO) is Π2

1 -complete and thus not recursively
enumerable, and even small fragments of ProbFO are undecidable. In tempo-
ral first-order logic, which has similar computational properties, these problems
have been addressed by imposing monodicity, that is, by allowing temporal oper-
ators to be applied only to formulas with at most one free variable. In this paper,
we identify a monodic fragment of ProbFO and show that it enjoys favorable
computational properties. Specifically, the valid sentences of monodic ProbFO
are recursively enumerable and a slight variation of Halpern’s axiom system for
type-2 ProbFO on bounded domains is sound and complete for monodic ProbFO.
Moreover, decidability can be obtained by restricting the FO part of monodic
ProbFO to any decidable FO fragment. In some cases, which notably include the
guarded fragment, our general constructions result in tight complexity bounds.

1 Introduction

Both logic and probability theory are fundamental to the formalization and solution
of many important problems in computer science. While logic is a way to address the
combinatorics hidden in such problems, the main use of probabilities is to capture un-
certainty that arises from many different sources such as noisy or untrusted data (in
database systems), a high level of abstraction (in verification), or incomplete training
data (in machine learning). Unfortunately, the combination of logic and probability is
notoriously difficult and involves a large number of choices and trade-offs, which has
resulted in a broad spectrum of probabilistic logic formalisms to be proposed that vary
greatly in spirit, semantics, and expressive power.

A natural and fundamental way to combine logic and probabilities is to enrich clas-
sical first-order logic (FO) with a probabilistic component [12, 4, 5]. Although reason-
ing in the resulting probabilistic FO logics is, of course, undecidable, they are still useful
as a general and uniform ‘baseline formalism’ that encompasses many other probabilis-
tic logics, much in the same way that FO provides a baseline formalism for many other
logics used in computer science. However, it turns out that probabilistic FO logics are
not only undecidable, but tend to be computationally even less well-behaved than clas-
sical FO. They come in essentially two versions, called type-1 and type-2 [12]. While
type-1 is for reasoning about statistical probabilities, reflected in the semantics by a
probability distribution over the domain of the FO structure, the purpose of type-2 is
reasoning about subjective probabilities by adopting a possible worlds semantics. In
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this paper, we concentrate on the latter and use ‘ProbFO’ to refer to Halpern’s prob-
abilistic FO logic of type-2 [12]. The disastrous computational behaviour of ProbFO
was analyzed by Abadi and Halpern, who show that validity is Π2

1 -complete [1], thus
outside the arithmetic and analytic hierarchies and, in particular, far from being recur-
sively enumerable. This result holds up even when only unary predicates are admitted,
and we add in this work the observation that ProbFO is still Π1

1 -hard even with only
two (object) variables (and no quantification over real-valued variables, see below).

Our aim in the current work is to analyze how and how far the problematic com-
putational properties of ProbFO can be improved. We start by observing that there is a
clear semantic and computational similarity between ProbFO and temporal first-order
logic (TFO). Both logics use a possible worlds semantics, and although TFO is only
Π1

1 -complete, just like ProbFO it is not recursively enumerable. In the case of TFO,
Hodkinson, Wolter and Zakharyaschev have given an elegant explanation of why this is
the case and how better computational properties can be recovered, by introducing the
monodic fragment of TFO that restricts temporal operators to be applied only to formu-
las with at most one free variable [17]. In fact, monodic TFO turns out to be recursively
enumerable [23] and decidable fragments of monodic TFO can often be obtained by
restricting the FO part of monodic TFO to a decidable FO fragment [18, 14, 16, 15]. In
the present work, we identify a monodic fragment of ProbFO and show that, as in the
case of TFO, this recovers good computational properties. Note that the formulas of
unrestricted ProbFO are obtained by combining classical FO with the language of real
closed fields (including quantification over real numbers) via real-valued terms of the
form w(ϕ) denoting the probability that the formula ϕ is true. Atomic formulas in this
extended language of real closed fields are called weight formulas. In analogy to TFO,
a natural candidate for monodicity in ProbFO is to admit only weight terms w(ϕ) in
which ϕ has at most one free first-order variable. We show that this is not an effective
choice since the resulting fragment of ProbFO still fails to be recursively enumerable.

We thus have to adopt stronger restrictions and define a ProbFO formula to be
monodic if it contains no variables for real numbers (thus no quantification over the
reals) and every weight formula in it contains at most one free (object) variable. Under
this definition, we can establish a useful abstract representation of models of monodic
ProbFO formulas – so-called quasi-models – which are essentially a collection of
monadic formula types that satisfy certain integrity conditions and are associated with
a system of polynomial inequalities over the reals to capture probabilities. This repre-
sentation yields in a rather direct way that monodic ProbFO is recursively enumerable.
Moreover, we exploit quasi-models to establish a concrete axiomatization of monodic
ProbFO, a variation of a complete axiomatization of unrestricted ProbFO on finite
domains of fixed size by Halpern [12] (we use unrestricted domains). Finally, quasi-
models can be used to identify decidable fragments of monodic ProbFO. We show that
for any FO-fragment L such that a slightly generalized version of satisfiability in L
called realizability is decidable, monodic ProbL is decidable, too. In particular, we thus
obtain decidability for the case where L is the monadic fragment of FO, the guarded
fragment (GF), the two-variable fragment, and the guarded negation fragment. The fi-
nite model property transfers in the same way.
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We also analyze the computational complexity of some important decidable frag-
ments of monodic ProbFO. The naive version of our general algorithm yields a
2NEXPTIME∃R,C upper bound where superscripts denote access to oracles, ∃R is the
class of problems that reduce in polynomial time to solving systems of polynomial in-
equalities over the reals (recall NP ⊆ ∃R ⊆ PSPACE), and C is the complexity of decid-
ing realizability in the underlying FO fragment L. We then propose two improvements
to our algorithm. The first one consists of a more careful realizability check as known
from monodic TFO, and this modification sometimes allows removing the oracle for C.
For monodic ProbGF, in particular, we obtain in this way an improved 2NEXPTIME∃R

upper bound. The second improvement applies only when L satisfies a certain model-
theoretic property that we call closedness under unions of types, and it allows improving
the runtime by one exponential by reducing the size of quasi-models. GF satisfies the
mentioned property, and thus we obtain a tight 2EXPTIME upper bound for monodic
ProbGF. We also obtain a NEXPTIME∃R upper bound when the arity of predicates is
bounded, and a tight NEXPTIME upper bound for the case where only linear weight
formulas are admitted, that is, multiplication of probabilities is disallowed. Note that
the relatively high computational complexities are partly due to the fact that we aim at
identifying maximal decidable fragments of monodic ProbFO. In fact, monodic ProbFO
can be viewed as a natural generalization of the family of probabilistic description log-
ics introduced in [20, 11] and provides a principled explanation for why these logics
are computationally much more well-behaved than traditional ProbFO. Conversely, the
mentioned description logics can be viewed as fragments of monodic ProbFO with
lower computational complexity, typically EXPTIME-complete.

Proofs are generally omitted or only sketched; full proofs can be found in the ap-
pendix.

2 Preliminaries
Type-2 probabilistic first-order logic (ProbFO) [12] comprises two sorts: objects of the
domain of discourse and the real numbers R. Accordingly, there are object variables
and field variables, the latter being used to represent probabilities. Object terms are
object variables or object constants. ProbFO-formulas and field terms are defined by
mutual recursion:

ϕ,ψ ::= R(t1, . . . , tk) | ϕ ∧ ψ | ¬ϕ | ∀xϕ(x) | f1 ≤ f2
f1, f2 ::= 0 | 1 | w(ϕ) | f1 + f2 | f1 × f2

where R is a k-ary predicate symbol, t1, . . . , tk are object terms, and formulas of the
form f1 ≤ f2 are called weight formulas. Quantification is possible both over object
and field variables, with field variables ranging overR. We use ProbFO= to denote the
extension of ProbFO with equality on object terms. We could admit rational constants
in field terms to represent concrete probabilities, but as usual we refrain from doing so
because rational constants can be eliminated by clearing denominators.

Formulas of ProbFO are interpreted in probabilistic structures M = (D,W,µ, π)
that consist of a non-empty domain D, a set of worlds W , a discrete probability distri-
bution µ overW and a function π that maps each pair (R,w) to a subset ofDk and each
pair (c, w) to an element ofD for each k-ary predicate symbolR, w ∈W , and constant
symbol c. Intuitively, M can be viewed as a set of classical FO structures (over the same
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domain) with weights given by µ. A valuation for M is a function ν that maps object
variables to elements ofD and field variables to real numbers. Given M, ν, and a world
w ∈ W , the interpretation [f ](M,w,ν) ∈ R of a field term f is defined in the natural
way, with terms w(ϕ) interpreted as [w(ϕ)](M,w,ν) = µ({w′ ∈W | (M, w′, ν) |= ϕ}).
The semantics of formulas is standard. A ProbFO-sentence ϕ is satisfiable if there is a
probabilistic structure M = (D,W,µ, π) and a world w ∈ W such that (M, w) |= ϕ.
A sentence ϕ is valid if ¬ϕ is not satisfiable.

When we speak of (non-probabilistic) first-order logic (FO), we mean the FO frag-
ment of ProbFO as introduced above. In particular, we mean FO without equality unless
we write FO=. A classical FO-structure has the form A = (A, π) where A is a domain
and π is a function as above except that its second argument (the world) is omitted.

3 Monodic ProbFO
Abadi and Halpern have shown that validity in ProbFO isΠ2

1 -complete, and thus highly
undecidable and far from being recursively enumerable [1]. They also show that already
over vocabularies that contain only constants, validity is Π1

∞-complete when equality
is allowed. The lower bounds of these theorems are proved by reductions of suitable
higher-order theories of integer arithmetics. We give additional evidence of the compu-
tational difficulty of ProbFO by proving (in the full version) the following orthogonal
result by a reduction of recurring domino systems that is rather different in spirit from
the mentioned reductions from integer arithmetic.

Theorem 1. Validity in ProbFO is Π1
1 -hard even if quantification over field variables

is disallowed and only two object variables are admitted.

The mentioned previous results and Theorem 1 illustrate that several restrictions of
ProbFO that might at first sight seem promising fail to improve the computational prop-
erties of this logic. Inspired by the good computational properties of monodic fragments
of temporal first-order logic [17, 23], we aim to define monodic fragments of ProbFO
that are computationally well-behaved. In the context of temporal first-order logic, a
formula is monodic when temporal operators are applied only to formulas with at most
one free variable. We first show that one has to be careful when adapting this notion to
ProbFO; the following result is proved by a reduction of finite validity in FO.

Theorem 2. Validity in ProbFO is Π0
1 -hard even if only one free object variable is

allowed to occur in weight formulas.

Although a natural candidate for monodicity, the restriction formulated in Theorem 2
is thus not strong enough to regain recursive enumerability. Intuitively, this is because
it is still possible to compare the probabilities of different domain elements such as in
the formula ∀x∀r (w(A(x)) = r ⇒ ∃yw(A(y)) = r/2), which says that for each
object x, there is an object y that has half the probability of satisfying A. To avoid this,
we require a weight formula with a free object variable to have no other free variables
(object or field). This restriction makes field variables and quantification over them
mostly useless, so we disallow them altogether.

Definition 3 (Monodic ProbFO formula). A ProbFO formula is monodic if it contains
no field variables and every weight formula contains at most one free (object) variable.
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We will see that the above definition of monodicity indeed guarantees good computa-
tional properties such as recursive enumerability of validity. In the balance, of course,
we lose some expressive power, in particular the ability to relate different domain ele-
ments in terms of their probabilities. The following proposition gives explicit examples
of ProbFO-formulas that cannot be expressed in monodic ProbFO. Its proof relies on
Theorem 7 below, which states that every satisfiable monodic ProbFO sentence is sat-
isfiable in a model with only finitely many worlds. In the full version, we show how to
enforce infinitely many worlds using the formulas in Proposition 4.

Proposition 4. The following formulas are not expressible in monodic ProbFO:

1. w(P (x, y)) ∼ p with P binary, p ∈ (0, 1), and ∼ ∈ {<,≤,=,≥, >};
2. w(A(x)) > w(A(y)) with A unary.

Formulas as in Item 1 can be used to express that any two persons who show up at a
party together and both wear rings are probably married; with a formula as in Item 2,
we could say that children are more likely to use a smartphone than their parents. Note
that formulas such as w(∃y P (x, y)) ∼ p and w(∀y P (x, y)) ∼ p, which are similar to
the formulas in Item 1 but only have one free variable, do fall within monodic ProbFO.

The following theorem illustrates that the positive results for monodic ProbFO rely
on disallowing equality; it is again proved by reduction of finite validity in FO.

Theorem 5. Validity in monodic ProbFO= is Π0
1 -hard.

4 The Quasi-Model Machinery

We introduce quasi-models, an abstraction of probabilistic structures that underlies the
proofs of all positive results established in this paper. This requires some preliminaries.
In the following, fix a monodic ProbFO-sentence ϕ0. We denote by sub(ϕ0) the set of
all subformulas of ϕ0 and their negations, and by subn(ϕ0) the formulas from sub(ϕ0)
with precisely n free variables, for n ∈ {0, 1}. By con(ϕ0), we denote the set of all
constant symbols that occur in ϕ0. Reflecting monodicity, we concentrate on formulas
with at most one free variable when defining quasi-models. In particular, these formulas
are from the following set, where x is a distinguished variable:

subx(ϕ0) = sub0(ϕ0) ∪ {ψ(x), ψ(c) | ψ(y) ∈ sub1(ϕ0), c ∈ con(ϕ0)}.
We introduce a way to represent ProbFO formulas as FO formulas by replacing weight
formulas with new predicates. Introduce a fresh nullary predicate symbol Pψ for every
weight formula ψ ∈ sub0(ϕ0) and a fresh unary predicate symbol Pψ for every weight
formula ψ ∈ sub1(ϕ0). Denote by ϕ the FO formula that is obtained from the ProbFO
formula ϕ by replacing each weight formula ψ() (resp. ψ(x)) that is not within the
scope of another weight formula with Pψ() (resp. Pψ(x)). This notation is lifted to sets
of formulas in the obvious way.

A type is a subset t of subx(ϕ0) such that the set of FO formulas t is a maximal
satisfiable subset of subx(ϕ0). Intuitively, a type is a set of FO formulas with one free
variable that are satisfied by a domain element in a world of a probabilistic structure;
it also records the sentences true in that world, including the FO formulas with one



6

free variable that are satisfied by constants. Two types t1, t2 agree on sentences, written
t1 ≡0 t2, if for all sentences ψ ∈ subx(ϕ0), we have ψ ∈ t1 iff ψ ∈ t2.

A world type is a set of types that agree on sentences; it can be viewed as an abstract
representation of a world in a probabilistic structure, that is, of an FO structure. For an
FO structure A = (A, π) and an element d ∈ A, define

tp(A, d) = {ψ ∈ subx(ϕ0) | A |= ψ[d]} and tp(A) = {tp(A, d) | d ∈ A}.
Note that tp(A, d) is a type and tp(A) is a world type. A world type T is realizable
if there is an FO structure A such that tp(A) = T , that is, if the FO formula χ(T ) is
satisfiable, where we define

χ(T ) =
∧
t∈T ∃x

∧
t(x) ∧ ∀x

∨
t∈T

∧
t(x).

World types will play a central role in the definition of quasi-models, but need to be
suitably enriched with (i) runs that describe the types of a single domain element in all
worlds of a probabilistic structure and (ii) relevant conditions that have to be satisfied
by the probabilities of worlds. Note that runs and world types in a sense represent
orthogonal dimensions. Let Q be a set of world types. A run through Q is a function
r that assigns to each world type T ∈ Q a non-empty set r(T ) ⊆ T and is coherent,
that is, whenever some t ∈ r(T ) contains a weight formula θ, then for all T ′ ∈ Q and
t′ ∈ r(T ′), we have θ ∈ t′. Coherence allows us to write θ ∈ r to denote that for
all (equivalently: some) T ∈ Q and t ∈ r(T ), we have θ ∈ t. A run selects a set of
types for each world type instead of only a single type because each world type can
represent several actual worlds, and an element might have different types in each of
these worlds. A quasi-model candidate is a triple (T0, Q,R) with T0 a world type, Q a
set of world types, and R a set of runs through Q∪{T0} such that for all T ∈ Q∪{T0}
and t ∈ T , there is a run r ∈ R with t ∈ r(T ). Intuitively, T0 describes a (single)
world of probability 0 while each T ∈ Q describes worlds of positive probability. To
address Point (ii) above and obtain our final quasi-model representation, we augment
quasi-model candidates with a system of polynomial inequalities. It uses a variable xT
for each world type T to represent the probability of T (obtained by summing up the
probabilities of all worlds of world type T ) and a variable xr,t,T for each run r, world
type T , and type t ∈ T to describe the (summed up) probability of those worlds of
world type T in which the element described by run r has type t.

Definition 6 (Quasi-Model). A quasi-model candidate (T0, Q,R) is a quasi-model if
every T ∈ Q ∪ {T0} is realizable and the following system of polynomial inequalities
E(Q,R) has a positive solution over the reals:
1. distribution on world types:

∑
T∈Q xT = 1;

2. the probabilities of the types associated by a run r ∈ R to a quasi-world T ∈ Q
sum up to the probability of T : xT =

∑
t∈r(T ) xr,t,T ;

3. runs respect weight formulas, that is, for all f1 ∼ f2 ∈ r with ∼ ∈ {≤, >}3 we
include an equation [f1]r ∼ [f2]r where [f ]r is obtained from f by replacing each
outermost term w(ψ(x)) with the following expression describing its probability:∑

T∈Q

∑
t∈r(T ),ψ(x)∈t

xr,t,T .

3 We write f1 > f2 ∈ r in place of f1 ≤ f2 /∈ r.
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Note that the field terms f1, f2 in Item 3 of Definition 6 can contain addition and mul-
tiplication, thus the system E(Q,R) need not be linear.

We say that a quasi-model candidate (or quasi model) (T0, Q,R) satisfies a ProbFO
sentence ϕ0 if ϕ0 ∈ t for some t ∈ T0. The following provides the basis for our use of
quasi-models in subsequent sections.

Theorem 7. A monodic ProbFO sentence ϕ0 is satisfiable iff it is satisfied in some
quasi-model. Moreover, any satisfiable monodic ProbFO sentence is satisfied in a prob-
abilistic structure with finitely many worlds.

In the “⇒” direction, we read off a quasi-model satisfying ϕ0 from a probabilistic
structure that satisfies ϕ0. To show that the system E(Q,R) has a solution, the values
for the variables xT and xr,t,T are also read off in a straightforward way.

The “⇐” direction is more interesting. Let (T0, Q,R) be a quasi-model that satisfies
ϕ0. Hence, every T ∈ Q ∪ {T0} is realizable and E(Q,R) has a positive solution; we
use x∗T to denote the value of xT in this solution and likewise for x∗r,t,T . To construct a
probabilistic structure M that satisfies ϕ0, it would be convenient to use the world types
in Q as worlds. Since runs can associate more than one type with a world type, though,
this is not sufficient. We thus need to subdivide each T ∈ Q into several worlds, each
accommodating a single type that a given run assigns to T . This has to be done in a
careful way since we have to do this simultaneously for all runs while also ensuring
that all types in T are realized in each of the worlds that T is subdivided into.

Let r ∈ R and T ∈ Q. A subdivision of T for r is a tuple s = (b1, . . . , bn, ζ)
such that b1 < b2 < · · · < bn = x∗T , n = |r(T )| + 1, and ζ is a surjective func-
tion that assigns to every bi a type ζ(bi) ∈ r(T ) such that for all t ∈ r(T ) we have∑
i∈[1,n],ζ(bi)=t(bi − bi−1) = x∗r,t,T where, here and in what follows, b0 := 0. In-

tuitively, the interval [0, x∗T ] represents the probability covered by all worlds of type T
and we subdivide this range into the intervals (bi, bi+1], with i < n. Elements described
by the run r then have type ζ(bi+1) in the interval (bi, bi+1]. For easier reference, we
say for all p ∈ (0, x∗T ] that s has type t at p if ζ(bi) = t and p ∈ (bi−1, bi]. A subdi-
vided run is a pair (r, S) with r a run through Q and S a function that assigns to every
T ∈ Q a subdivision S(T ) of T for r. If we had only the single run r, we could use the
subintervals identified by a subdivided run (r, S) as worlds. Since this is not the case,
we first identify a sufficiently rich set of subdivisions which we then combine into a
finer ‘overall’ subdivision: in the full version, we show how to define a finite set Γ of
subdivided runs such that

(∗) for all T ∈ Q, t ∈ T , and p ∈ (0, x∗T ], there is some (r, S) ∈ Γ such that S(T )
has type t at p.

To define the worlds for a world type T , let z1 < · · · < zm be all numbers that occur
in a subdivision for T in (a subdivided run from) Γ . We introduce one world of type
T for every zi and assign to it the probability zi − zi−1, with z0 := 0. Note that the
probabilities of all worlds for T sum up to x∗T . Doing this for all world types T (and
adding one world with world type T0 and probability 0) gives us the set of worldsW for
the desired probabilistic structure M along with their probabilities µ(w). Since every
T ∈ Q∪{T0} is realizable, we find for eachw ∈W an FO structure Aw that realizes the
world type T associated with w. The domain of M is the disjoint union of the domains
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of all these Aw (recall that we do not allow equality), and the further construction of
M is detailed in the full version. Notably, (∗) guarantees that every t ∈ T is realized in
every world w associated with world type T .

5 Recursive Enumerability and Axiomatization

We now show that the set of valid monodic ProbFO sentences is recursively enumerable
and also provide a concrete axiomatization. For the former, it suffices to provide a semi-
decision procedure for unsatisfiability, based on Theorem 7. The crucial observation
is that, for any input sentence ϕ0, the number of quasi-model candidates (T0, Q,R)
that satisfy ϕ0 is bounded. It is thus possible to construct all quasi-model candidates
that satisfy ϕ0 and then eliminate those that do not satisfy the system of polynomial
inequalities E(Q,R) from Definition 6. Then, enumerate all unsatisfiable FO formulas.
For each such formula ψ, eliminate all quasi-model candidates (T0, Q,R) such that
χ(T ) = ψ for some T ∈ Q ∪ {T0} (since T is not realizable, (T0, Q,R) cannot be a
quasi-model). Once all quasi-model candidates have been eliminated, return with ‘ϕ0

is unsatisfiable’.

Theorem 8. The set of valid monodic ProbFO sentences is recursively enumerable.

Halpern gives an axiomatization of ProbFO for the case where probabilistic structures
are restricted to a domain of bounded size [12]. We propose a variation of this axiom-
atization that is sound and complete for monodic ProbFO (without assuming bounded
domains). Let AX2 be the set of the following axioms:

– PC: an axiomatization of FO [7];4

– OF : all instances of the axioms of ordered fields (formulated in terms of ≤) that
are well-formed formulas in monodic ProbFO;

– PW1: ϕ⇒ (w(ϕ) = 1) if all occurrences of predicate symbols in ϕ are inside the
scope of w();

– PW2: w(ϕ) ≥ 0;
– PW3: w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ);
– PW4: w(∃xϕ(x)) > 0⇒ ∃xw(ϕ(x)) > 0;
– RPW : from ϕ ≡ ψ infer w(ϕ) = w(ψ).

In comparison to Halpern’s axiomatization, we have removed the axiom FINN for
bounded domains of sizeN and added axiom PW4. This axiom follows from Halpern’s
axiomatization, but is independent of the axioms that remain when FINN is removed
– in a nutshell, its soundness over discrete measures depends on σ-additivity, while
PW3 captures only finite additivity. Moreover, as we exclude field variables, we no
longer need the full axiomatization of real-closed fields but, by the Artin-Schreier The-
orem [3], can make do with the axioms of ordered fields. These can be phrased as
quantifier-free open formulas (e.g. x ≥ 0 ∨ −x ≥ 0) and hence can be instantiated to
monodic ProbFO formulas (by replacing real variables with weight terms, observing
the monodicity restriction).

4 Since constants can be interpreted differently in different worlds, a slight adaptation of the def-
inition of when a term t is substitutable for x in the axiom ∀xϕ⇒ ϕ(x/t) is necessary [12].
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Theorem 9. AX2 axiomatizes validity in monodic ProbFO.

Soundness is proved essentially as in [12]. For showing completeness, we make use
of Theorem 7. We use AX2 ` ϕ to denote that ϕ can be derived in AX2, and call a
sentence ϕ consistent if AX2 ` ¬ϕ does not hold. By Theorem 7, it suffices to show
that if a monodic ProbFO sentence ϕ0 is consistent, then there is a quasi-model that
satisfies ϕ0. The strategy is to use consistency of ϕ0 to derive a consistent sentence ϕ′

that describes a quasi-model that satisfies ϕ0. The general structure of ϕ′ is

χ(T0) ∧
∑
T∈Q

w(χ(T )) = 1 ∧
∧
T∈Q

w(χ(T )) > 0 ∧ Ψ(x1, . . . , xk)

where T0 is a world type that contains some t with ϕ0 ∈ t, Q is a set of world types,
Ψ(x1, . . . , xk) is a quantifier-free formula in which each free variable xi identifies a
run ri through Q ∪ {T0}, and Ψ is a conjunction of weight formulas with weight terms
of the form w(χ(T )) and w(χ(T ) ∧ t(xi)) for some t ∈ T . Intuitively, these weight
terms correspond to the variables xT and xri,t,T , respectively, in E(Q,R); moreover,
Ψ(x1, . . . , xk) describes precisely E(Q,R) under this correspondence. Observe that ϕ′

is consistent relative to OF and thus has a solution which is also a solution to E(Q,R).

6 Decidability and Complexity

Theorem 7 reduces satisfiability in monodic ProbFO to satisfiability in FO and solvabil-
ity of systems of polynomial inequalities over the reals. In the following, we use this
observation to establish decidability results for fragments of monodic ProbFO that are
obtained by restricting its FO part to a decidable FO fragment such as the guarded frag-
ment or the two-variable fragment. We also derive complexity results, which in some
cases are tight. For a fragment L of FO, monodic ProbL is the fragment of monodic
ProbFO that consists of all formulas ϕ such that, for all ψ ∈ sub(ϕ), the FO formula ψ
belongs to L. To warm up, we start with considering the finite model property (FMP).
Recall that, by Theorem 7, even full monodic ProbFO has the FMP regarding the num-
ber of worlds. Here, we thus mean the number of domain elements.

Theorem 10. For an FO fragment L, monodic ProbL has the FMP iff L has the FMP.

Theorem 10 is a direct consequence of the proof of Theorem 7. In the “if”-direction of
that proof, we combine FO structures that witness realizability of world types. If L has
the finite model property, we can choose these structures to be finite. Then, the resulting
probabilistic structure is also finite.

Based on quasi-models, transfer of decidability is also easy to establish. We say that
realizability is decidable in L if it is decidable whether a given world type T formulated
in monodic ProbL is realizable, that is, whether the L formula χ(T ) is satisfiable.

Theorem 11. If realizability is decidable in the FO fragment L, then so is satisfiability
in monodic ProbL.

Theorem 11 is established by the following algorithm which decides satisfiability of a
given ProbL sentence ϕ0:
1. guess a quasi-model candidate (T0, Q,R) that satisfies ϕ0;
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2. verify that the system E(Q,R) has a positive solution inR;
3. verify that each world type T ∈ Q ∪ {T0} is realizable.

Step 1 is effective since the size of quasi-model candidates is bounded by a computable
function in the size of ϕ0 (analyzed in more detail below).
Theorem 11 applies for instance to the monadic fragment of FO (MonaFO), the guarded
fragment (GF) [2], the guarded negation fragment (GNFO) [6], and the two-variable
fragment FO2 [10]: In all these cases, the formulas χ(T ) for checking realizability re-
main within the fragment, and satisfiability in all the mentioned fragments is decidable.

Corollary 12. Let L be one of MonaFO, GF, GNFO, FO2. Then satisfiability in
monodic ProbL is decidable.

To analyze the complexity of the algorithm from the proof of Theorem 11, first note that
it suffices to guess a quasi-model candidate (T0, Q,R) of size at most double exponen-
tial in the size of ϕ0. In fact,Q contains at most double exponentially many world types
T , and each T contains at most exponentially many types. While R can in principle be
larger than double exponential, it suffices to include one run r for each T ∈ Q ∪ {T0}
and t ∈ T , such that t ∈ r(T ). Considering for example GF in which satisfiability is
2EXPTIME-complete, we thus obtain a 2NEXPTIME∃R,2EXPTIME upper bound for satis-
fiability in monodic ProbGF where the superscripts indicate access to two oracles: one
for solving systems of polynomial inequalities over the reals and one for realizability in
GF. Recall that ∃R denotes the class of all problems that are reducible in polynomial
time to solving the mentioned systems [22], and that NP ⊆ ∃R ⊆ PSPACE.

For many FO fragments L, though, we can improve on the upper bounds obtained
in this direct way. First, it is helpful to not consider satisfiability of the exponential size
realizability formula χ(T ) as a black box. In particular, the regular structure of χ(T )
implies that its satisfiability can be decided in time double exponential in the size of ϕ0

for GF and in space exponential in the size of ϕ0 for both MonaFO and FO2 [16]. This
yields a 2NEXPTIME∃R upper bound for monodic ProbGF, monodic ProbMonaFO,
and monodic ProbFO2. Second, for some FO fragments L the quasi-model machinery
can be refined so that each quasi-model candidate has at most exponential size. The
following is a sufficient condition for when this is possible.

Definition 13. An FO fragmentL is closed under unions of types if for eachL-sentence
ψ and any two structures A1 and A2 that satisfy the same sentences from subx(ψ), there
is a structure B such that tp(B) = tp(A1) ∪ tp(A2).

For GF without constant symbols, closure under unions of types can be shown easily
by taking disjoint unions. The following result is proved in the full version.

Theorem 14. If L is closed under unions of types, then for every satisfiable monodic
ProbL sentence ϕ0, there is a quasi-model (T0, Q,R) that satisfies ϕ0 and in which no
two distinct world types agree on sentences.

As a consequence of Theorem 14, we obtain the following improved complexity bounds
for monodic ProbGF.

Corollary 15. Satisfiability in monodic ProbGF is
(a) 2EXPTIME-complete;
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(b) in NEXPTIME∃R when the arity of predicates is bounded;
(c) NEXPTIME-complete when additionally only linear weight formulas are allowed.

For part (a), where our general machinery even yields a tight upper bound, it suffices
to guess a quasi-model candidate (T0, Q,R) of exponential size (Theorem 14); the as-
sociated system E(Q,R) is then also of exponential size and thus the existence of a
solution can thus be checked in space exponential in the size of the input formula ϕ0

since ∃R ⊆ PSPACE. It remains to verify that every world type is realizable, in time
double exponential in the size of ϕ0. The lower bound is inherited from satisfiability in
GF. For part (b), we can argue analogously with the difference that realizability can be
checked in exponential time. For part (c), observe that in this case E(Q,R) is a system
of linear inequalities and can thus be solved in polynomial time. The lower bound fol-
lows from the fact that the NEXPTIME-hard modal logic S5ALC [8] is contained in this
fragment.

Other FO fragments such as FO2 and MonaFO are not closed under unions of types.
Consider for example the FO2 sentence ψ = ∀x

(
∀y R(x, y) ∨ ∀y ¬R(y, x)

)
which

states that R is either the full relation or the empty relation. It does this in a slightly
unorthodox way to ensure that no sentence from subx(ψ) can distinguish the two cases.
But the cases are distinguished in types because if R is full, then every type contains
the formula ∀y R(x, y) and if R is empty, then every type contains its negation. It is
thus easy to show that closure under unions of types fails.

7 Conclusion
We have analyzed the reasons for the bad computational behaviour of ProbFO and we
have shown that, unlike other natural restrictions that fail to establish recursive enumer-
ability and decidability, monodicity is able to tame ProbFO computationally. We thus
believe that monodic ProbFO lays a promising foundation for identifying decidable and
useful probabilistic logics for computer science.

An interesting direction for further research is to enrich monodic ProbFO with addi-
tional expressive power that enables more complex and succinct statements about inde-
pendence and conditioning. Note that existing decidable probabilistic first-order logics
used in statistical relational learning such as Markov logic [9, 21] are largely orthogonal
to monodic ProbFO as they typically assume bounded domains and their main use is to
encode a fixed distribution for a propositional theory (over ground instances).

Another important extension to be investigated is to combine statistical and sub-
jective probabilities in a probabilistic FO logic. A basic version of ProbFO that com-
bines both kinds of probability was considered by Halpern [12] under the name type-3
ProbFO, and later refined to include stronger forms of independence and condition-
ing [19]. Adapting the quasi-model machinery to type-3 ProbFO and the mentioned
extensions is a challenging open research objective.

We have given a tight upper complexity bound for monodic ProbGF. An open prob-
lem that remains is to determine the exact computational complexity of other relevant
fragments of monodic ProbFO such as monodic ProbMonaFO, ProbFO2, and negation-
guarded monodic ProbFO.

Acknowledgments. This work was supported by the DFG project Probabilistic De-
scription Logics (LU1417/1-1, SCHR1118/6-1).
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6. V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In Automata, Languages and
Programming, ICALP 2011, vol. 6756 of LNCS, pp. 356–367. Springer, 2011.

7. H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
8. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics:

theory and applications, vol. 148 of Studies in Logic. Elsevier, 2003.
9. L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press, 2007.
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Appendix

Proofs for Section 3

Theorem 1. Validity in ProbFO is Π1
1 -hard even if quantification over field variables

is disallowed and only two object variables are admitted.

Proof. The following version of the tiling problem is known to be Σ1
1 -hard [13]. A

tiling problem is a quadruple P = (T,H, V, tr), where T is a finite set of tile types,
H,V ⊆ T × T are the horizontal and vertical matching conditions, and tr ∈ T is the
recurrent tile. A solution to P is a mapping τ : N×N→ T such that

– (τ(i, j), τ(i+ 1, j)) ∈ H for all i, j ≥ 0;
– (τ(i, j), τ(i, j + 1)) ∈ V for all i, j ≥ 0;
– there are infinitely many j ≥ 0 such that τ(0, j) = tr

Let P be a tiling problem as above. We use the FO dimension to represent the horizontal
dimension of the grid, and possible worlds for the vertical dimension. To represent
the successor relation in the horizontal direction, we introduce a binary relation R. Of
course, R should be unbounded and rigid, there should be exactly one domino tile at
every grid element, and the tiling should be compatible with horizontal successors:

w
(
∀x∃yR(x, y)

)
= 1 (1)

∀x∀y R(x, y)⇒ w(R(x, y)) = 1 (2)

w
(
∀x
( ∨
t∈T

Xt(x) ∧
∧

t,t′∈T,t 6=t′
¬(Xt(x) ∧Xt′(x))

))
= 1 (3)

w
(
∀x∀y

(
R(x, y)⇒

∨
(t,t′)∈H

Xt(x) ∧Xt′(y)
))

= 1. (4)

To represent the successor relation in the vertical direction, we use probabilities. More
precisely, a grid node in row i is represented by a domain element that satisfies A with
probability 1/2i. To make this work, we first enforce that the probability of any element
to satify A is 1/2i for some i ∈ N, and that all probabilities of this form are present:

∀x
(
w(A(x)) = 1 ∨ ∃y

(
w(A(y)) = 2w(A(x))

) )
(5)

∀x∃y 2w(A(y)) = w(A(x)) (6)

These probabilities, though, are still associated with the FO dimension. To transfer our
probability scheme to the dimension of possible worlds, we force that in every world,
there is at least one element that satisfies the unary predicate M and all elements that
satisfy M agree on the probability of satisfying A; moreover, every element is marked
in at least one world:

w(∃xM(x)) = 1∧ (7)

w
(
∀x∀y

(
(M(x) ∧M(y))⇒
w(A(x)) = w(A(y))

))
= 1 (8)

∀xw(M(x)) > 0. (9)
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In this way, every world is associated with a unique probability: the probability of the
M -marked elements to satisfy A; conversely, for each probability p = 1/2i, there is a
world associated with p.5 We can now enforce as follows that the tiling is compatible
also with vertical successors:

w
(
∀x∃y

∨
(t,t′)∈V

(
Xt(x) ∧M(y) ∧ w(ψt′(x, y)) = 1

))
= 1 (10)

where
ψt′(x, y) = ∃x

(
M(x) ∧ w(A(y)) = 2w(A(x))

)
⇒ Xt′(x).

It remains to enforce that the recurring tile tr occurs infinitely often. We first introduce a
new unary concept name C0 that marks the first column and ensure that, in this column,
the recurring tile tr occurs at least once:

∃x
(
w(C0(x)) = 1 ∧ w(Xtr (x)) > 0

)
. (11)

Now infinite occurrence of tr can be expressed as follows:

w
(
∀x
(
(C0(x) ∧Xtr (x))⇒

∃y
(
∃x (M(x) ∧ w(A(y)) < w(A(x)))∧

w(ϑ(x, y)) = 1
)))

= 1 (12)

where
ϑ(x, y) = ∃x

(
M(x) ∧ w(A(y)) = w(A(x))

)
⇒ Xtr (x).

Let ϕP be the conjunction of all ProbFO sentences above. It remains to show that P
has a solution iff ϕP is satisfiable.
“if”: Let M = (D,W,µ, π) be a probabilistic structure that satisfies ϕP . By (5), there
is some e ∈ D satisfying A with probability 1. By (9), there is some world w0 associ-
ated to this e, thus the probability associated to w0 is 1. Starting at w0, fix an infinite
sequence of worlds w0, w1, w2, . . . such that the associated probability of wi is 1/2i

(this is possible as, by (6), every such probability exists).
By (11), there is some d0 ∈ D that satisfies C0. Observe that due to (12) d0 satis-

fies Xtr in in infinitely many worlds among w0, w1, . . . ,. Starting at d0, fix an infinite
sequence of elements d0, d1, d2, . . . such that di is related to di+1 by R, for all i ≥ 0
and in all worlds w ∈ W (possible because of (1) and (2)). We can read off a mapping
τ : N×N→ T as follows:

τ(i, j) = t ⇔ di ∈ π(Xt, wj).

The mapping τ is well-defined because of (3) and the horizontal matching condition
is satisfied due to (4). Finally observe that the vertical matching condition is satisfied
because of (10).

5 Note that the probabilities associated with worlds in the described way are not the probability
that is assigned by the probabilistic structure to that world via its distribution over worlds; in
particular, the probabilities associated with worlds need not sum up to one.
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“only if”. Given a solution τ to P we define a probabilistic structure M = (D,W,µ, π)
by taking D =W = N and

i ∈ π(Xt, j) ⇔ τ(i, j) = t for all i, j ∈ N, t ∈ T.

That is, domain elements model the horizontal dimension and worlds the vertical di-
mension of the tiling. It remains to give the interpretation of the relations C0, R, A, and
M and ensure that world i is associated with probability 1/2i (in the sense explained
above).

– µ(i) = 1/2i+1;
– π(R, j) = {(i, i+ 1) | i ∈ N} for all j ∈ N;
– π(A, j) = {i | i ≤ j};
– π(M, i) = {i} for all i ∈ N;
– π(C0, i) = {0} for all i ∈ N.

It is now not hard to verify that M |= ϕP . ut

Theorem 2. Validity in ProbFO is Π0
1 -hard (i.e., not recursively enumerable) even if

only one free object variable is allowed to occur in weight formulas.

Proof. We reduce from finite validity in FO. Let ϕ be an FO sentence, take a fresh unary
predicate P and start with enforcing that for every domain element, the probability to
satisfy P is 1/2i for some i ∈ N:

∀x∀r
(
w(P (x)) = r ⇒ ∃y

(
r = 1 ∨ w(P (y)) = 2r

) )
.

Next, guarantee that there are no infinite decreasing chains and thus only finitely many
probabilities of satisfying P actually occur:

∃r
(
r > 0 ∧ ∀yw(P (y)) ≥ r

)
.

Note that there can still be infinitely many elements with identical probabilities of sat-
isfying P . We cannot prevent this, but we can force that ‘having the same probability of
satisfying P ’ is a congruence regarding all relations that occur in ϕ. We only illustrate
for a binary predicate R:

∀r1∀r2∀x1∀x2∀y1∀y2( (
R(x1, y1) ∧ w(P (x1)) = r1 ∧ w(P (x2)) = r1 ∧
w(P (y1)) = r2 ∧ w(P (y2)) = r2

)
⇒ R(x2, y2)

)
.

Let ψ be the conjunction of the above ProbFO formulas. It is now easy to see that ϕ is
finitely valid iff (ψ ⇒ ϕ) is a ProbFO validity. ut

Proposition 4. The following formulas are not expressible in monodic ProbFO:

1. w(P (x, y)) ∼ p for binary predicates P , 0 ≤ p ≤ 1, and ∼ ∈ {<,≤,=≥, >};
2. w(A(x)) > w(A(y)) for unary predicates A.
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Proof. For point 1, assume that ψ(x, y) is a formula expressing w(P (x, y)) ∼ p. Now,
consider the sentence ϕ = ∀x (ϕ1(x) ∧ ϕ2(x) ∧ ϕ3(x)) with

ϕ1(x) = ¬A(x)⇒ (w(A(x)) > 0)

ϕ2(x) = A(x)⇒ ∃y (ψ(x, y) ∧ ¬A(y))

ϕ3(x) = ¬A(x)⇒ ∀y (ψ(x, y)⇒ ¬A(y))

which was used before for showing the lack of a finite-world property [20]. It is not
hard to show that ϕ is only satisfiable in models comprising infinitely many worlds.

For point 2, let ψ(x, y) be a formula expressing w(A(x)) > w(A(y)) and assume a
model M = (D,W,µ, π) of ϕ = ∀x∃yψ(x, y). By Theorem 7, we can assume that W
is finite. Fix some d0 ∈ D and an arbitrary w ∈ W . As M is a model of ϕ, there is an
infinite sequence d0, d1, . . . such that w(A(di)) > w(A(di+1)) for all i ≥ 0. As W is
finite, each w(A(di)) is a finite sum

∑
w∈Wi

µ(w) for some Wi ⊆W . However, this is
a contradiction since there are only finitely many such subsets Wi. ut

Theorem 5. The valid sentences of monodic ProbFO= are Π0
1 -hard.

Proof. We again reduce finite validity in FO. Let ϕ be an FO sentence and take a fresh
unary predicate P and a fresh constant symbol c. We enforce that for every domain
element, the probability of satisfying P is at least as high as the probability that c
satisfies P . Moreover, in every world, at most one element satisfies P :

w(P (c)) > 0

∀xw(P (x)) ≥ w(P (c))

w
(
∀x∀y

(
(P (x) ∧ P (y))→ x = y)

))
= 1

It is easy to see that the above formulas guarantee that there are only finitely many
domain elements: by the last formula, the probabilities of all elements to satisfy P sum
up to at most one. By the first two lines, every probability in this sum is larger than
some fixed positive real number r. ut

Proofs for Section 4

Theorem 7. A monodic ProbFO sentence ϕ0 is satisfiable iff it is satisfied in some
quasi-model. Moreover, any satisfiable monodic ProbFO sentence is satisfied in a prob-
abilistic structure with finitely many worlds.

In the direction “⇐” of the proof for Theorem 7 we need the following lemma which
can be proved based on the fact that we consider FO without equality.

Lemma 16. If a world type T is realizable in a structure A = (A, π) such that every
type t ∈ T is realized by κt elements in A, then for any family of cardinals λt, t ∈ T ,
with λt ≥ κt for all t ∈ T , there is a structure A′ = (A′, π′) such that every type t ∈ T
is realized by precisely λt elements in A′.
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Proof (of Theorem 7). “⇒”: Let M = (D,W,µ, π) be a probabilistic structure that
satisfies ϕ0, that is (M, w0) |= ϕ0. We can w.l.o.g. assume that w0 is the unique world
with µ(w0) = 0: observe first, that all worlds with probability 0 (except for w0) can be
dropped without changing M being a model of ϕ0. If after this transformation µ(w0) >
0 we can add a world w′0 which is essentially a copy of w0 with probability µ(w′0) = 0.

We define a quasi-model (T0, Q,R) satisfying ϕ0. For this purpose, we lift the
definition of the functions tp(·) to probabilistic structures:

tp(M, d, w) = {ψ ∈ subx(ϕ0) |M, w |= ψ(d)}
tp(M, w) = {tp(M, d, w) | d ∈ D}.

Set T0 = tp(M, w0) and Q = {tp(M, w) | w ∈ W,µ(w) > 0}. Obviously, every
T ∈ Q ∪ {T0} is realizable. Next, define a set R = {rd | d ∈ D} where each function
rd is defined as

rd(T ) := {tp(M, d, w) | w ∈W, tp(M, w) = T}.

Obviously, each function rd is a run through Q. To show that E(Q,R) is positively
satisfiable, choose for each r ∈ R a domain element d(r) ∈ D such that rd(r) = r.
Then define values x∗T for every T ∈ Q and x∗r,t,T for every r ∈ R, T ∈ Q, and
t ∈ r(T ) by taking:

x∗T := µ(χ(T ))

x∗r,t,T := µ(χ(T ) ∧ t(d(r)))

It remains to check that the values x∗T , x∗r,t,T present a positive solution to E(Q,R) from
Definition 6. It should be clear that all values are positive. An important consequence of
maximality of the types is that they are pairwise contradictory, i.e., for any two distinct
types t1, t2 the formula t1(x) ∧ t2(x) is unsatisfiable.

– The equation under Item 1 is clearly satisfied as∑
T∈Q

x∗T =
∑
T∈Q

µ(χ(T )) = µ(
∨
T∈Q

χ(T )) = 1

where the second equality holds as χ(T ) and χ(T ′) are contradictory for any dis-
tinct T, T ′ ∈ Q and the last equality holds as any world w ∈ W satisfies χ(T ) for
some T ∈ Q.

– The equations under Item 2 are satisfied for every r ∈ R, T ∈ Q since∑
t∈r(T )

x∗r,t,T =
∑
t∈r(T )

µ(χ(T ) ∧ t(d(r)))

=
∑
t∈T

µ(χ(T ) ∧ t(d(r)))

= µ(χ(T ) ∧
∨
t∈T

t(d(r)))

= µ(χ(T )) = x∗T .
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The second equality holds since µ(χ(T ) ∧ t(d(r))) = 0 in case t /∈ r(T ). The
third equality holds as types are pairwise contradictory. The fourth equality holds
as M |= χ(T )⇒

∨
t∈T t(d(r)).

– For checking the equations under Item 3, let f1 ∼ f2 ∈ r for some r ∈ R. It suffices
to show that [fi]r = [fi(d(r))]M,w for allw ∈W and i ∈ {1, 2}. (Note that each fi
has at most one free variable, whose valuation we indicate by substituting d(r) into
the term fi, then dispensing with further mention of a valuation). This is shown by
induction on the structure of field terms f . The cases when f equals 0, 1, f ′ + f ′′,
or f ′ × f ′′ are clear. So it remains to consider the case f = w(ψ(x)). We have that
[w(ψ(d(r)))]M,w equals

µ({v | (M, v) |= ψ(d(r))})

= µ({v | (M, v) |=
∨
T∈Q

∨
t∈T,ψ(x)∈t

(χ(T ) ∧ t(d(r)))})

=
∑
T∈Q

∑
t∈T,ψ(x)∈t

µ(χ(T ) ∧ t(d(r)))

=
∑
T∈Q

∑
t∈r(T ),ψ(x)∈t

µ(χ(T ) ∧ t(d(r)))

=
∑
T∈Q

∑
t∈r(T ),ψ(x)∈t

x∗r,t,T

Note that the first equality holds as the big disjunction covers all possibilities. The
second equality holds as all the χ(T ) are pairwise contradictory and the types are
pairwise contradictory. The third holds as µ(χ(T )∧ t(d(r))) = 0 in case t /∈ r(T ).

It remains to remark that by assumption ϕ0 ∈ t for all t ∈ T0 and thus (T0, Q,R) is a
quasi-model satisfying ϕ0.

“⇐”: Let (T0, Q,R) be a quasi-model satisfying ϕ0. Hence, ϕ0 ∈ t for some t ∈
T0, every T ∈ Q ∪ {T0} is realizable and E(Q,R) has a positive solution x∗T , T ∈ Q,
x∗r,t,T , r ∈ R, T ∈ Q, t ∈ r(T ). Note that we can assume w.l.o.g. that r(T0) is a
singleton set for each r ∈ R: As the types in T0 do not contribute to the equation
system E(Q,R), we can replace a run r with r(T0) = {t1, . . . , tk} by k runs r1, . . . , rk
defined as ri(T0) = {ti} and ri(T ) = r(T ) for all T ∈ Q and i ∈ {1, . . . , k}.

For constructing a probabilistic structure M that satisfies ϕ0, it would be convenient
to use the world types in Q as worlds. Since runs can associate more than one type with
a world type, though, this is not sufficient. We thus need to subdivide each T ∈ Q into
several worlds, each accommodating a type that a given run assigns to T . This has to
be done in a careful way since we have to do this simultaneously for all runs while also
ensuring that all types in T are realized in each of the worlds T is subdivided into.

Let r ∈ R and T ∈ Q. A subdivision of T for r is a tuple s = (b1, . . . , bn, ζ)
such that b1 < b2 < · · · < bn = x∗T , n = |r(T )| + 1, and ζ is a surjective func-
tion that assigns to every bi a type ζ(bi) ∈ r(T ) such that for all t ∈ r(T ) we have∑
i∈[1,n],ζ(bi)=t(bi − bi−1) = x∗r,t,T where, here and in what follows, b0 := 0. In-

tuitively, the interval [0, x∗T ] represents the probability covered by all worlds of type T
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and we subdivide this range into the intervals (bi, bi+1], with i < n. Elements described
by the run r then have type ζ(bi+1) in the interval (bi, bi+1]. For easier reference, we
say for p ∈ (0, x∗T ] that s has type t at p if ζ(bi) = t and p ∈ (bi−1, bi].

A subdivided run is a pair (r, S) with r ∈ R a run and S a function that assigns with
every T ∈ Q a subdivision S(T ) of T for r. We could use the subintervals identified by
a subdivided run (r, S) as worlds if we had only the single run r. Since this is not the
case, though, worlds are defined by combining a sufficiently rich set of subdivisions in
an appropriate way. This set is identified by the next claim.

Claim 1. There is a finite set Γ of subdivided runs such that

(∗) for all T ∈ Q, t ∈ T , and p ∈ (0, x∗T ], there is some (r, S) ∈ Γ such that S(T ) has
type t at p.

Proof of Claim 1. It suffices to show the statement for each T ∈ Q, t ∈ T . So fix some
T ∈ Q and t ∈ T . By definition of (Q,R), there is some r ∈ R with t ∈ r(T ) and, by
assumption, x∗r,t,T > 0. Obviously, there is a finite set of intervals (y1, z1], . . . , (yk, zk]
each of length x∗r,t,T which cover (0, x∗T ]. For each such interval (yi, zi] we can find a
subdivision si = (b1, . . . , bn, ζ) of T for r such that si has type t at p for all p ∈ (yi, zi]:
for n > r(T ), we can always arrange the n intervals of a subdivision such that one
interval (bj−1, bj ] is precisely (yi, zi] and ζ(bj) = t.

Finally, note that for T ′ ∈ Q, T ′ 6= T we can trivially fix a subdivision sT ′ of
T ′ for r. Combining these with the subdivisions identified above yields a finite set of
subdivided runs satisfying (∗) for T, t. This finishes the proof of Claim 1.

Let Γ be the set of subdivided runs from Claim 1. For every T ∈ Q, let Z(T ) denote
the set of all values bi that occur in a subdivision s = (b1, . . . , bn, ζ) for T and r, for
some (r, S) ∈ Γ with S(T ) = s. Further assume that Z(T ) = {zT1 , . . . , zTmT

} with
zT1 < . . . < zTmT

. We now define a probabilistic structure M = (D,W, π, µ). First,
define

W = {(T, z) | T ∈ Q, z ∈ Z(T )} ∪ {(T0, 0)}
µ(T, zTi ) = zTi − zTi−1 for all T ∈ Q and 1 ≤ i ≤ mT

(where zT0 := 0).

Notice that every world (T, z) with T ∈ Q has positive probability and the additional
world (T0, 0) has probability 0. Next, we define the domain D of M. By assumption,
every T ∈ Q ∪ {T0} is realizable. Hence, for every world type T ∈ Q ∪ {T0} we can
fix an FO structure AT that realizes it. Let AT,z = (AT,z, πT,z), for (T, z) ∈ W , be
pairwise disjoint copies of AT . Then D is the disjoint union of all AT,z , (T, z) ∈W .

It remains to give the interpretation function π of M. For this purpose, we associate
with every d ∈ D a function σd that associates every world with a type as follows.

– If d ∈ AT,z for some T ∈ Q, then choose a (r, S) ∈ Γ that has type tp(AT,z, d) at
S(T ) (possible due to (∗));

– if d ∈ AT0,0, choose some (r, S) ∈ Γ with r(T0) = {tp(AT0,0, d)}.

Then, define σd(T ′, z′) as the type of S(T ′) at z′ for all (T ′, z′) ∈W and σd(T0, 0) =
t0 where {t0} = r(T0). Obviously, σd satisfies the following properties:
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– If d ∈ AT,z , then σd(T, z) = tp(AT,z, d);
– For all (T, z) ∈W , we have σd(T, z) ∈ T .

These properties imply that in every world (T, z) ∈ W the types t that occur (that is,
for some d we have σd(T, z) = t) are precisely the types from T . More formally, for
every (T, z) ∈W and t ∈ T define κt as the cardinality of {d ∈ D | σd(T, z) = t}. By
the first property above, we have for all t ∈ T :

κt ≥ |{d ∈ AT,z | tp(AT,z, d) = t}|.

Thus, Lemma 16 implies the existence of models BT,z = (D,π′T,z) that realize T and
such that for all d ∈ D we have

σd(T, z) = tp(BT,z, d).

To finish the definition of M, set for all predicate names P and all worlds (T, z) ∈W :

π(P, (T, z)) = π′T,z(P ).

In order to prove correctness of the construction we show the following claim.
There, it is convenient to write ψ(x) even if ψ is a sentence, i.e., x does not occur
freely in ψ.

Claim 2. For all valuations ν, all ψ(x) ∈ subx(ϕ0), and all (T, z) ∈W we have

(BT,z, ν) |= ψ(x) ⇐⇒ (M, (T, z), ν) |= ψ(x).

Proof of Claim 2. The induction base, i.e., ψ(x) = P (x1, . . . , xk), is clear since then
ψ(x) = ψ(x) and, by construction, π′T,z(P ) = π(P, (T, z)). The induction steps for ∧,
¬, ∀x follow immediately from induction hypothesis.

Now let ψ(x) = f1 ≤ f2 and thus ψ(x) = Pψ(x). Assume ν(x) = d and d ∈
AT∗,z∗ for some (T ∗, z∗) ∈ W and fix the subdivided run (r, S) used in the construc-
tion of σd. By definition of π, (BT,z, ν) |= Pψ(x) is equivalent to ψ(x) ∈ tp(BT,z, d).
As ψ(x) is a weight formula and r satisfies the coherence condition, this is equivalent
to the fact that ψ(x) ∈ r. By Item 3 of Definition 6 and maximality of types, this is the
case if, and only if, it holds [f1]r ≤ [f2]r (with the values x∗r,t,T from the fixed solu-
tion). By definition of subdivided runs and the construction of the set of worlds, this is
equivalent to [f1](M,w,ν) ≤ [f2](M,w,ν) for any w ∈W (in particular, a subdivision for
r – and thus a subdivided run – does not change the probability of some type t, it only
gives some arrangement). Finally, this is equivalent to (M, (T, z), ν) |= f1 ≤ f2. This
finishes the proof of Claim 2.

It remains to verify that (M, (T0, 0)) |= ϕ0. By definition of a quasi-model, we have
ϕ0 ∈ t for some t ∈ T0. By definition of M, there is some d ∈ D with BT0,0 |= t(d).
Hence, (BT0,0, ν) |= ϕ0 for any valuation ν. By the above claim, (M, (T0, 0), ν) |= ϕ0,
and thus (M, (T0, 0)) |= ϕ0. ut



21

Proofs for Section 5

In order to show completeness we first prove some auxiliary statements. We say that
ϕ1, . . . , ϕm are pairwise mutually exclusive if PC ` ϕi ⇒ ¬ϕj for i 6= j.

Lemma 17. (1) If ϕ1, . . . , ϕk are pairwise mutually exclusive, then AX2 ` w(ϕ1 ∨
. . . ∨ ϕk) = w(ϕ1) + . . .+ w(ϕk).

(2) If AX2 ` ϕ, then AX2 ` w(ϕ) = 1.
(3) AX2 ` w(ϕ) + w(¬ϕ) = 1.
(4) AX2 ` w(ϕ ∧ ψ) ≤ w(ϕ).
(5) AX2 ` w(ϕ ∧ θ) > 0 ⇒ θ provided that every predicate symbol in θ appears

inside a weight term w(ψ).

Proof. Claims (1)–(4) are shown in [12]. For claim (5), assume the contrary, i.e., w(ϕ∧
θ) > 0∧¬θ is consistent. By Axiom PW1, also w(ϕ∧θ) > 0∧w(¬θ) = 1 is consistent.
By claim (3) of this Lemma, also w(ϕ∧ θ) > 0∧w(θ) = 0 is consistent. By claim (4),
we get that w(θ) > 0 ∧ w(θ) = 0 is consistent, contradiction. ut

Lemma 18. If a monodic ProbFO sentence ϕ0 is consistent, then there is a quasi-
model satisfying ϕ0.

Proof. For a type t, let us denote with wf(t) the set of all weight formulas or their
negations contained in t. Moreover, we say that two types t, t′ agree on weight formulas
if wf(t) = wf(t′). Denote with Ŵ (resp.,W ) be the set of all (resp., all realizable) world
types for ϕ0. We begin with showing the following claim.

Claim 1. There is a realizable world type T0 and a type t ∈ T0 with ϕ0 ∈ t and a set Q
of realizable world types such that

(i) the formula

ϑ = χ(T0) ∧
( ∑
T∈Q

w(χ(T )) = 1
)
∧
( ∧
T∈Q

w(χ(T )) > 0
)

is consistent;
(ii) for each T ∈ Q, t ∈ T there is a t0 ∈ T agreeing on the weight formulas with t.

Proof of Claim 1. We begin by noting that, if ϕ0 is consistent, then also χ(T0) is con-
sistent for some realizable world type T0 containing some t ∈ T0 with ϕ0 ∈ t. Next,
observe that PC `

∨
T∈Ŵ χ(T ) and for any not realizable world type T ′ ∈ Ŵ we

have PC ` ¬χ(T ′). Thus, we obtain PC `
∨
T∈W χ(T ). Lemma 17(2) now yields

AX2 ` w(
∨
T∈W χ(T )) = 1. As for distinct world types T, T ′ we know that χ(T )

and χ(T ′) are mutually exclusive, Lemma 17(1) implies AX2 `
∑
T∈W w(χ(T )) = 1.

Hence, the formula χ(T0)∧
∑
T∈W w(χ(T )) = 1 is consistent. Reasoning by cases (in

OF ) yields that we can identify a subset Q ⊆W such that ϑ is consistent; thus, we are
finished with Item (i).

For Item (ii) assume some T ∗ ∈ Q, t∗ ∈ T that does not agree on the weight
formulas with any type from T0. Observe that AX2 ` χ(T0) ⇒ ∀x

∨
t∈T0

wf(t(x)).
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On the other hand, we have that AX2 ` ϑ ⇒ w(χ(T ∗)) > 0 and thus AX2 ` ϑ ⇒
w(∃x t∗(x)) > 0 by Lemma 17(4). By PW4, we obtainAX2 ` ϑ⇒ ∃x w(t∗(x)) > 0.
Applying Lemma 17(5) yields AX2 ` ϑ ⇒ ∃x wf(t∗(x)). Overall, consistency of ϑ
yields consistency of ∀x

∨
t∈T0

wf(t(x)) ∧ ∃x wf(t∗(x)) which is a contradiction by
PC, the assumption that t∗ does not agree on the weight formulas with any t ∈ T0, and
maximality of types. This finishes the proof of Claim 1.

Subsequently, we need some auxiliary formulas that can be derived in AX2.

Claim 2. The following formulas can be derived:

AX2 ` ϑ⇒ w(ψ(x)) =
∑
S∈Q

∑
s∈S,ψ(x)∈s

w(χ(S) ∧ s(x)); (13)

AX2 ` w(χ(S)) =
∑
s∈S

w(χ(S) ∧ s(x)) for all S ∈W. (14)

Proof of Claim 2. For deriving (13), note that we have PC ` ψ(x) ≡∨
S∈Ŵ

∨
s∈S,ψ(x)∈s(χ(S) ∧ s(x)); thus RPW and Lemma 17(1) lead to

AX2 ` w(ψ(x)) =
∑
S⊆Ŵ

∑
s∈S,ψ(x)∈s

w(χ(S) ∧ s(x)).

It remains to note that that AX2 ` ϑ⇒ w(χ(S)) = 0 for all S /∈ Q; by Lemma 17(4),
also AX2 ` ϑ⇒ w(χ(S) ∧ s(x)) = 0 for all s ∈ S.

For (14), observe that we have for all world types S ∈W :

PC ` χ(S) ≡ χ(S) ∧
∨
s∈S

s(x).

Hence,AX2 ` w(χ(S)) = w(χ(S)∧
∨
s∈S t(x)), and Lemma 17(1) leads to the result.

This finishes the proof of Claim 2.

The next step is to show how consistency of ϑ induces a run through every type
t ∈ T , T ∈ Q. For this purpose, fix some T ∈ Q, a type t ∈ T , and the set
wf(t) = {θ1, . . . , θm} of weight formulas (or their negations) in t. Obviously, we have
AX2 ` ϑ ⇒ w(χ(T )) > 0. As χ(T ) contains the conjunct ∃x t(x), we can derive
ϑ⇒ ∃xw(χ(T ) ∧ t(x)) > 0 using PW4. By applying Lemma 17(5) to θ1, . . . , θm we
can also derive

AX2 ` ϑ⇒ ∃xw(χ(T ) ∧ t(x)) > 0 ∧ θ1(x) ∧ . . . ∧ θm(x) (15)

By formula (13), we can replace each θj(x) in (15) by the formula θ′j(x) that is obtained
by substituting every w(ψ(x)) with

∑
S∈Q

∑
s∈S,ψ(x)∈s w(χ(S)∧s(x)). Moreover, we

can add formula (14) for every S ∈ Q as conjunct. We thus obtain the following:

AX2 ` ϑ⇒∃xw(χ(T ) ∧ t(x)) > 0 ∧ θ′1(x) ∧ . . . ∧ θ′m(x) ∧∧
S∈Q

w(χ(S)) =
∑
s∈S

w(χ(S) ∧ s(x))
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Recall that AX2 ` ϑ ⇒ w(χ(S)) > 0 for each S ∈ Q. Thus, in the sum in the last
line, w(χ(S)∧s(x)) has to be positive for at least one s ∈ S. Using reasoning by cases,
there exists a choice function selecting the set of all such s for each S. More precisely,
there is some function r such that t ∈ r(T ) (due to the conjunct w(χ(T ) ∧ t(x)) > 0),
r(S) 6= ∅ for all S ∈ Q, and the following is consistent:

ϑ ∧ ∃x
( m∧
j=1

θ′j(x) ∧
∧

S∈Q,s∈r(S)

w(χ(S) ∧ s(x)) > 0

∧
S∈Q

w(χ(S)) =
∑
s∈r(S)

w(χ(S) ∧ s(x))
)

Observe now that all types s ∈ r(S), S ∈ Q actually agree on the weight formulas; in
particular, for all such s we have that wf(s) = wf(t). Assume to the contrary, ¬θj(x) ∈
s for some s ∈ r(S). By Lemma 17(5), we haveAX2 ` w(ψ(S)∧s(x)) > 0⇒ ¬θj(x)
and thus AX2 ` w(ψ(S) ∧ s(x)) > 0⇒ ¬θ′j(x), which contradicts consistency of the
above. By Item (ii) of Claim 1, r can be extended to be a run through Q ∪ {T0} by
setting r(T0) = {t0} for some t0 ∈ T0 that agrees with t on weight formulas.

Repeating the above steps for each T ∈ Q, t ∈ T leaves us with a run rt,T for each
such pair t, T . Take R = {rt,T | t ∈ T, T ∈ Q}. We also obtain a consistent formula
of the form

∧
T∈Q

w(χ(T )) > 0 ∧
∑
T∈Q

w(χ(T )) = 1 ∧

∧
r∈R

( ∧
θ∈r

θ′(xr) ∧
∧

S∈Q,s∈r(S)

w(χ(S) ∧ s(xr)) > 0 ∧

∧
S∈Q

w(χ(S)) =
∑
s∈r(S)

w(χ(S) ∧ s(xr))
)

(16)

where χ(T0) and existential quantification of the variables xr, r ∈ R is omitted (can
be omitted as we study consistency). Let ϑ′ be obtained from (16) by replacing each
w(χ(T )) with xT and each w(χ(T ) ∧ t(x)) in some conjunct for r ∈ R with xr,t,T .
Note that ϑ′ is a formula in the language of ordered fields; in fact, ϑ′ is equivalent
to E(Q,R) when we explicitly add positivity of the solution to E(Q,R). Consistency
of (16) implies that ϑ′ is consistent in the theory of ordered fields (otherwise, being
quantifier free, its negation could, by Herbrand’s theorem, be proved using propositional
reasoning with instances of the ordered field axioms, and this proof would translate
into one of the negation of (16) using only the instances included in our axioms OF ).
Therefore, θ′ is satisfiable in some ordered field F , and hence by the Artin-Schreier
theorem in some real-closed field (the real-closure of F ), thus also in the real numbers.
This implies that E(Q,R) has a positive solution over the reals, i.e. (T0, Q,R) is a
quasi-model satisfying ϕ0. ut
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Proofs for Section 6

Theorem 14. If L is closed under union of types, then for every satisfiable monodic
ProbL sentence ϕ0, there is a quasi-model (T0, Q,R) satisfying ϕ0 such that any two
distinct world types do not agree on sentences.

Proof. Let ϕ0 be a satisfiable monodic ProbL sentence. By Theorem 7, there is a quasi-
model (T0, Q,R) satisfying ϕ0. Let us write T ≡0 T

′ if two sets of types T, T ′ agree
on sentences, that is, any for any t ∈ T , t′ ∈ T ′ we have that t ≡0 t

′. Define a new
quasi-model (T0, Q′, R′) as follows:

– Q′ = {
⋃
T ′∈Q,T≡0T ′

T ′ | T ∈ Q};
– for each r ∈ R define r′ ∈ R′ by taking r′(T0) = r(T0) and for each T ′ ∈ Q′:

r′(T ′) =
⋃

T∈Q,T≡0T ′

r(T ).

It should be clear that R′ is a set of runs through Q′ ∪ {T0} and that (T0, Q′, R′) is a
quasi-model candidate.

Observe first that each T ∈ Q′ is realizable as it is a finite union of realizable
T ′ ∈ Q and, by assumption, L is closed under union of types. Next, we show that
E(Q′, R′) has a positive solution. By assumption, we can fix a solution x∗T for every
T ∈ Q and x∗r,t,T for every r ∈ R, T ∈ Q, and t ∈ r(T ) of E(Q,R). For each r′ ∈ R′,
fix some (arbitrary) run r ∈ R such that r′ = r′ (in general, there might be different
runs r1, r2 ∈ R such that r′1 = r′2). Now, define values y∗T ′ and y∗r′,t,T ′ :

y∗T ′ :=
∑

T∈Q,T≡0T ′

x∗T

y∗r′,t,T ′ :=
∑

T∈Q,T≡0T ′

∑
t∈r(T )

x∗r,t,T .

We show that these values are a positive solution of E(Q′, R′).

– The equation under Item 1 of Definition 6 is satisfied as ≡0 partitions Q and it was
satisfied in E(Q,R).

– For the equations under Item 2 we have:

∑
t∈r′(T ′)

y∗r′,t,T ′ =
∑

t∈r′(T ′)

∑
T∈Q,T≡0T ′

∑
t∈r(T )

x∗r,t,T

=
∑

T∈Q,T≡0T ′

x∗T = y∗T ′ .
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– For seeing that the equations under Item 3 are satisfied it suffices to note that:

[w(χ(x))]r′ =
∑
T ′∈Q′

∑
t∈r′(T ′),ψ(x)∈t

y∗r′,t,T ′

=
∑
T ′∈Q′

∑
t∈r′(T ′),ψ(x)∈t

∑
T∈Q,T≡0T ′

∑
t∈r(T )

x∗r,t,T

=
∑
T∈Q

∑
t∈r(T ),ψ(x)∈t

x∗r,t,T

= [w(ψ(x))]r

The third equality is the most subtle one: observe that the sums in the second line
range over all T ∈ Q and do not count any T ∈ Q twice. Moreover, only types t
with ψ(x) ∈ t are considered. ut


