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We study the satisfiability problem of the logic K2 = K ×K, i.e., the two-dimensional variant of unimodal
logic, where models are restricted to asynchronous products of two Kripke frames. Gabbay and Shehtman
proved in 1998 that this problem is decidable in a tower of exponentials. So far the best known lower bound
is NEXP-hardness shown by Marx and Mikulás in 2001.

Our first main result closes this complexity gap: We show that satisfiability in K2 is nonelementary. More
precisely, we prove that it is k-NEXP-complete, where k is the switching depth (the minimal modal rank
among the two dimensions) of the input formula, hereby solving a conjecture of Marx and Mikulás. Using
our lower-bound technique allows us to derive also nonelementary lower bounds for the two-dimensional
modal logics K4 ×K and S52 ×K for which only elementary lower bounds were previously known.

Moreover, we apply our technique to prove nonelementary lower bounds for the sizes of Feferman-Vaught
decompositions with respect to product for any decomposable logic that is at least as expressive as unimodal
K, generalizing a recent result by the first author and Lin. For the three-variable fragment FO3 of first-
order logic, we obtain the following immediate corollaries: (i) the size of Feferman-Vaught decompositions
with respect to disjoint sum are inherently nonelementary and (ii) equivalent formulas in Gaifman normal
form are inherently nonelementary.

Our second main result consists in providing effective elementary (more precisely, doubly exponential) up-
per bounds for the two-variable fragment FO2 of first-order logic both for Feferman-Vaught decompositions
and for equivalent formulas in Gaifman normal form.
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1. INTRODUCTION
1.1. Modal logic and many-dimensional modal logic
Modal logic [1; 2] originated in philosophy and for a long time it was known as “the
logic of necessity and possibility”. Later, it has been discovered that modal logics are
well-suited to talk about relational structures, so called (Kripke) frames. Relational
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structures appear in many branches of computer science; consider for example tran-
sition systems in verification, semantic networks in knowledge representation, or at-
tribute value structures in linguistics. This has led to various applications of modal
logic in areas such as computer science, mathematics, and artificial intelligence.

Depending on the application, a lot of different modal operators have been intro-
duced in the past, each of them tailored towards expressing different features of the
domain. For instance there are modalities that talk about time, space, knowledge, be-
liefs, etc.

However, it turned out that recent application domains require to express properties
that combine different modalities, e.g., talk about the evolution of knowledge over time.
In order to reflect these requirements in theory, many-dimensional modal logics have
been studied intensively [3; 4]. A particular way of combining two logics L1 and L2

is building their product L1 × L2 [5]. For products, the semantics is given in terms
of structures, whose frames are restricted to be asynchronous products of the (one-
dimensional) component frames. The interpretation of the atomic propositions is done
in an uninterpreted way, i.e., it is independent from the component frames.

An important and well-studied problem in this context is satisfiability checking, i.e.,
to decide whether a given formula admits a model. When considering products of modal
logics, it has been shown that the computational complexity of satisfiability checking
often increases drastically in comparison to the well-behaved component logics. As an
example, consider the basic modal logic K and its variant K4 for reasoning over the
class of transitive frames. Satisfiability is PSPACE-complete for both K and K4 [6],
while for K ×K and K4 ×K only nonelementary upper bounds were known [5]. Even
worse, satisfiability becomes undecidable in K ×K ×K [7] and K4 ×K4 [8]. To some
extent, this can be explained by the grid-like shape of product structures.

1.2. Logical decomposition
Logical decomposition can concisely be summarized as follows: A logic L admits decom-
position w.r.t. some operation op on structures if all L-properties that are interpreted
on composed (with respect to the operation op) structures, are already determined by
the L-properties of the component structures. Logical decomposition dates back to the
work of Mostowski [9] and Feferman and Vaught [10], where it is shown that first-order
logic (FO) is decomposable w.r.t. a general product operation, which covers also disjoint
union and product. Later, both for more expressive logics and for more sophisticated
operations such decomposability results have been proven, see [11] for an excellent
survey.

When proving decomposability for a logic L, one often obtains an effective proce-
dure for computing such decompositions: Given a formula ϕ from L evaluated on com-
posed structures, one can effectively compute (i) a finite set of formulas {ϕ1, . . . , ϕn},
each being evaluated on some specific component, and (ii) a propositional formula β,
whose propositions are tests of the form Si ⊧ ϕj , such that for all composed structures
S = op(S1, . . . ,Sk): S ⊧ ϕ if and only if β evaluates to true. The size of the resulting
decomposition is typically nonelementary in the size of the original formula. Dawar et
al. proved that this is unavoidable if L = FO [12].

Decomposition theorems have powerful implications in computer science logic. Let
us mention only four of them.

Firstly, assume some decomposable logic L: Then decidability of the L-theory of some
composed structure, for instance a product structure, can be derived from the decid-
ability of the L-theories of its component structures.

Secondly, let us mention that model checking a fixed L-formula (i.e. the data com-
plexity) in a composed structure is not harder than model checking fixed L-formulas
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on the component structures: If the formula is fixed, also the decomposition is fixed
(although possibly large).

Moreover, decompositional methods can be applied for showing decidability of sat-
isfiability checking: Instead of asking whether a given formula ϕ is satisfiable in a
composed model, one computes a decomposition for ϕ, translates the decomposition
into disjunctive normal form, and finally checks satisfiability of a conjunction of for-
mulas in their corresponding components. Rabinovich proved that basic modal logic K
is decomposable w.r.t. interpreted products [13], i.e. where “interpreted” means that an
interpretation of the propositions on the respective component structures is applied.
It is worth noting that this, however, does not lead to decidability of K ×K w.r.t. the
classical (uninterpreted) products mentioned above. To the contrary, satisfiability w.r.t.
interpreted products is easily reducible to the uninterpreted version.

Finally, an important application of logical decomposition à la Feferman and Vaught
is the (original) proof of Gaifman’s locality theorem [14] stating that every first-order
sentence is equivalent to a boolean combination of basic local sentences, where a basic
local sentence admits quantification only relativized to finite neighbourhoods of ele-
ments. Gaifman’s locality theorem has important applications such as inexpressibility
results for first-order logic. For a further and more recent application of Gaifman’s lo-
cality theorem we mention algorithmic meta-theorems for first-order logic [15], stating
that first-order properties can be efficiently evaluated on numerous classes of struc-
tures.

1.3. Our contributions and related work
As our first main result we show that (even the interpreted variant of) the satisfia-
bility problem of two-dimensional modal logic K2 = K ×K has nonelementary com-
plexity, hereby solving a fundamental problem that has been open for more than 10
years. Gabbay and Shehtman proved in 1998 that satisfiability in K2 is decidable in a
tower of exponentials [5]. To the best of the authors’ knowledge, the best known lower
bound has been NEXP-hardness shown by Marx and Mikulás in 2001 [16]. In fact, we
prove that satisfiability in K2 restricted to formulas of switching depth k (the minimal
modal rank among the two dimensions) is k-NEXP-complete (where k-NEXP is the set
of all problems that can be solved on a nondeterministic Turing machine in k-fold ex-
ponential time), hereby confirming a conjecture of Marx and Mikulás [16]. We derive
nonelementary lower bounds for the two-dimensional modal logics K4×K and S52×K
for which only elementary lower bounds were known [3].

Our lower bound technique allows us to derive a nonelementary lower bound for
the size of Feferman-Vaught decompositions w.r.t. product for K. Such a result was
already shown in [17]. However, in contrast to [17], our proof technique implies that
the nonelementary lower bound carries over to all decomposable logics that are at least
as expressive as K. An instance of such a logic is the two-variable fragment FO2 of first-
order logic. Moreover, we prove that the same lower bound holds when relativized to
the class of finite trees, answering an open problem formulated in [17].

In the same fashion, we derive the following new results for the three-variable frag-
ment FO3 of first-order logic: (i) the sizes of Feferman-Vaught decompositions w.r.t.
disjoint sum are inherently nonelementary and (ii) equivalent formulas in Gaifman
normal form are inherently nonelementary. It is worth mentioning that (i) and (ii)
were shown in [12] for full FO. By inspecting the formulas in [12] it turns out that they
are in fact FO4-formulas. However, it seems to be unclear whether the construction
from [12] can be adapted so that it yields FO3-formulas.

Finally, we provide effective doubly exponential (and hence elementary) upper
bounds for the two-variable fragment FO2 of first-order logic both for Feferman-Vaught
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decompositions and for equivalent formulas in Gaifman normal form. This supports
former observations that in many aspects FO2 is better behaved than FO3. For in-
stance, in contrast to FO3 it has a finite model property and satisfiability is decidable
in NEXP [18]. We also prove (non-matching) lower bounds of the form cf(n) (for any
constant c and any function f(n) ∈ o(√n)) for both Feferman-Vaught decompositions
and equivalent formulas in Gaifman normal form for FO2.

An extended abstract of this paper appeared as [19].

2. PRELIMINARIES

For i, j ∈ Z let [i, j] be the interval [i, i + 1, . . . , j]. By N def= {0,1, . . .} we denote the
non-negative integers. For a set X we denote by bool(X) the set of boolean formulas
with variables ranging over X. Let u = u1⋯uk ∈ Σ∗ with ui ∈ Σ for each i ∈ [1, k]. By
∣u∣ def= k we denote the length of u. The tower function Tower ∶ N × N → N is defined as
Tower(0, n) def= n and Tower(` + 1, n) def= 2Tower(`,n) for each `, n ∈ N. A function f ∶ N → N
is elementary if it can be formed from the successor function, addition, subtraction,
and multiplication using compositions, projections, bounded additions and bounded
multiplications (of the form ∑z≤y g(x, z) and ∏z≤y g(x, z)). We will sometimes use the
fact that for each elementary function f ∶ N → N there exist some h0 ∈ N such that
f(h) < Tower(h,2) for each h ≥ h0.

2.1. Kripke frames and structures
Let us fix a countable set of action labels A and a countable set of propositional vari-
ables P. For a finite set A ⊆ A of action labels, an A-frame is a tuple F = (W,{ aÐ→∣ a ∈ A}),
where W is set of worlds and aÐ→ ⊆ W ×W is a binary (accessibility) relation over W
for each a ∈ A. Most of the time we write v aÐ→ w instead of (v,w) ∈ aÐ→. We say that F
is a tree if

—W ⊆ U∗ is a prefix-closed set of words for some set U ,
— aÐ→ ∩ bÐ→ = ∅ for each a, b ∈ A with a /= b, and
— for all v,w ∈ W , we have v aÐ→ w for some a ∈ A if and only if there exists u ∈ U with
w = vu.

We say that F is finite if W is finite. In case F is a finite tree, the height of F is defined
as max{∣w∣ ∣ w ∈W}.

An (A,P)-Kripke structure (or (A,P)-structure for short), for a finite set A ⊆ A of
action labels and a finite set P ⊆ P of propositional variables, is a tuple

S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}),

where (W,{ aÐ→∣ a ∈ A}) is an A-frame and Wp ⊆W is an interpretation for each propo-
sitional variable p ∈ P. By F(S) def= (W,{ aÐ→∣ a ∈ A}) we denote the underlying A-frame
of S. We say that S is a tree structure (or simply a tree) if F(S) is isomorphic to a tree.
By ∣S∣ = ∣W ∣ we denote the size of S. For s ∈W let

NS(s) def= {u ∈W ∣ ∃a ∈ A ∶ s aÐ→ u}
be the set of successors of s in S. A pointed (A,P)-structure is a pair (S, s) where S
is an (A,P)-structure and s is a world of S. We identify a tree structure S with the
pointed (A,P)-structure (S, r), where r is the root of S. An ({a},P)-structure is also
called unimodal and we write (W, aÐ→,{Wp ∣ p ∈ P}) instead of (W,{ aÐ→},{Wp ∣ p ∈ P}).
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2.2. Multimodal logic
Formulas of multimodal logic are defined by the following grammar, where a (resp., p)
ranges over A (resp., P):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◇a ϕ

We introduce the usual abbreviations ⊺ = p ∨ ¬p for some p ∈ P, � = ¬⊺, ϕ1 ∨ ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2), and ◻aϕ = ¬◇a ¬ϕ. We say that ϕ is over (A,P) if the set of action labels
(resp., the set of propositional variables) that appear in ϕ is a subset of A (resp., P).
For an (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}), w ∈ W , and a multimodal
logic formula ϕ over (A,P), we define the satisfaction relation (S,w) ⊧ ϕ by structural
induction on ϕ, where a ∈ A and p ∈ P:

(S,w) ⊧ p def⇔ w ∈Wp

(S,w) ⊧ ¬ϕ def⇔ (S,w) /⊧ ϕ

(S,w) ⊧ ϕ1 ∧ ϕ2
def⇔ (S,w) ⊧ ϕ1 and (S,w) ⊧ ϕ2

(S,w) ⊧◇aϕ
def⇔ ∃w′ ∶ w aÐ→ w′ and (S,w′) ⊧ ϕ

Let ϕ be a multimodal logic formula over (A,P). An (A,P)-structure S is a model of ϕ
if (S,w) ⊧ ϕ for some world w of S. We say that ϕ is satisfiable if ϕ has a model.

If ϕ is a boolean formula with propositional variables from P ⊆ P and α ∶ P → {0,1}
then we write α ⊧ ϕ if ϕ evaluates to 1 if every propositional variable p ∈ P is replaced
by the truth value α(p).

2.3. Asynchronous products
Fix non-empty, finite, and pairwise disjoint sets A1, . . . ,Ad ⊆ A of action labels and non-
empty, finite, and pairwise disjoint sets P1, . . . ,Pd ⊆ P of propositional variables. Let
A = ⋃i∈[1,d] Ai and P = ⋃i∈[1,d] Pi. For Ai-frames Fi = (Wi,{

aÐ→i∣ a ∈ Ai}) (i ∈ [1, d]) we
define the asynchronous product ∏i∈[1,d] Fi = (W,{ aÐ→∣ a ∈ A}) to be the A-frame, where

—W =∏i∈[1,d]Wi, and
— for each v = ⟨v1, . . . , vd⟩ ∈ W and w = ⟨w1, . . . ,wd⟩ ∈ W we have v aÐ→ w if and only if

there is some i ∈ [1, d] such that a ∈ Ai, vi
aÐ→i wi and vj = wj for each j ∈ [1, d] ∖ {i}.

An (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) is an uninterpreted product
structure if F(S) = ∏i∈[1,d] Fi, where each Fi is some Ai-frame. Thus, we do not make
any restrictions on how atomic propositions are interpreted.

Next, let us define interpretations of atomic propositions in products, as introduced
in [13]. A (product) interpretation is a mapping σ ∶ P→ bool(P), that is, a mapping from
the set of propositions to boolean formulas over that set. In our lower bound proofs in
Section 3, σ will be the identity interpretation id with id(p) = p for all p ∈ P. Let

Si = (Wi,{
aÐ→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi})

be an (Ai,Pi)-structure for i ∈ [1, d]. For an interpretation σ, their σ-product ∏σ
i∈[1,d]Si

is defined as the (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) such that

— F(S) =∏i∈[1,d] F(Si) and
— ⟨w1, . . . ,wd⟩ ∈Wp if and only if α ⊧ σ(p), where α(q) = 1 if and only if wi ∈Wq,i for each
i ∈ [1, d] and q ∈ Pi.
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If no interpretation is given, we define ∏i∈[1,d]Si
def= ∏id

i∈[1,d]Si. Since we mainly deal
with the case d = 2 and σ = id, let us repeat the above definition of the σ-product in this
case:∏id

i∈[1,2]Si is defined as the (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) such
that

— F(S) = F(S1) × F(S2) and
— ⟨w1,w2⟩ ∈Wp if and only if either p ∈ P1 and w1 ∈Wp,1 or p ∈ P2 and w2 ∈Wp,2.

In case (Si, si) is a pointed (Ai,Pi)-structure for each i ∈ [1, d], then by∏σ
i∈[1,d](Si, si)

we denote the pointed structure (∏σ
i∈[1,d]Si, ⟨s1, . . . , sd⟩).

2.4. Many-dimensional modal logic
Given (A,P) with A = ⊎i∈[1,d] Ai and P = ⊎i∈[1,d] Pi, a Kd(A,P)-formula is a multimodal
formula ϕ over the signature (A,P). For a Kd(A,P)-formula ϕ and i ∈ [1, d], we define
ranki(ϕ) inductively

ranki(p) def= 0 for p ∈ P

ranki(¬ϕ) def= ranki(ϕ)
ranki(ϕ1 ∧ ϕ2) def= max{ranki(ϕ1), ranki(ϕ)2}

ranki(◇aϕ) def= ranki(ϕ) if a ∉ Ai

ranki(◇aϕ) def= ranki(ϕ) + 1 if a ∈ Ai

and the switching depth of ϕ as min{ranki(ϕ) ∣ 1 ≤ i ≤ d} [16].
An uninterpreted product model of ϕ is an uninterpreted product structure S (in the

above sense) such that for some world w of S we have (S,w) ⊧ ϕ. For an interpretation
σ, a σ-model is a σ-product structure S such that (S,w) ⊧ ϕ for some world w of S. We
say ϕ is uninterpreted satisfiable (resp., σ-satisfiable) if ϕ has an uninterpreted (resp.,
σ-) product model. Let us introduce the following decision problems.

Kd-SAT
INPUT: A Kd(A,P)-formula ϕ.
QUESTION: Is ϕ uninterpreted satisfiable?

We introduce the corresponding variant in the presence of an interpretation σ of the
atomic propositions.

Kd
σ -SAT

INPUT: A Kd(A,P)-formula ϕ.
QUESTION: Is ϕ σ-satisfiable?

The first problem (and variants thereof) were intensively studied in the past, for
an overview consult [5]. In particular, it is well-known that K2-SAT is decidable in
nonelementary time.

The second problem, Kd
σ-SAT is less standard but is more useful for our purposes.

Indeed, it is not hard to show that Kd(A,P)-SAT is at least as difficult as Kd
σ(A,P)-SAT

as stated in the following proposition which be technically useful in Sections 3 and 4.
It can be shown for an arbitrary interpretation σ, but we will only need the case σ = id.

PROPOSITION 2.1. There is a polynomial time many-one reduction from Kd
id-SAT to

Kd-SAT which preserves the switching depth. The reduction still holds when restricted
to any frame class.
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PROOF. Let A = ⊎i∈[1,d] Ai be the set of action labels and let P = ⊎i∈[1,d] Pi be the set
of atomic propositions, and let ϕ be some formula over (A,P).

The idea is to give a formula χ that admits only models which are id-product struc-
tures, in particular, ϕ is id-satisfiable if and only if ϕ ∧ χ is satisfiable.

We need the following definition: The set of modal sequences ms(ψ) ⊆ A∗ of a formula
ψ is inductively defined as follows:

— ms(p) def= {ε} for each p ∈ P,
— ms(¬ψ) def= ms(ψ),
— ms(ψ1 ∧ ψ2) def= ms(ψ1) ∪ms(ψ2),
— ms(◇aψ) def= ({a}ms(ψ)) ∪ {ε}.

We note that ms(ψ) is prefix closed, that ∣ms(ϕ)∣ ≤ ∣ϕ∣, and that the maximal length of
an element of ms(ϕ) is the modal rank of ϕ. If w = a1⋯an ∈ A∗ we denote with ◻w the
sequence of boxes ◻a1⋯◻an . Particularly, ◻ε is the empty sequence of boxes. Moreover,
define the relation wÐ→ def= a1Ð→ ○ a2Ð→ ○⋯○ anÐ→.

For i ∈ [1, d] and a word s ∈ A∗ let s ∖ i ∈ (A ∖ Ai)∗ be the word that results from s
by removing all occurrences of all symbols from Ai and let s↾i ∈ A∗

i be the word that
results from s by removing all occurrences of all symbols from A ∖ Ai. We define the
following formula χ:

χ
def= ⋀

i∈[1,d]
⋀

s∈ms(ϕ)
⋀
p∈Pi

◻s↾i((p→ ◻s∖i p) ∧ (◇s∖i p→ p))

We define ϕ′ def= ϕ ∧ χ.
Note that ϕ′ has the same switching depth as ϕ and can be constructed in polynomial

time from ϕ. Therefore it suffices to show that ϕ is id-satisfiable if and only if ϕ′ is
uninterpreted satisfiable.

Since every id-product satisfies χ, it follows that ϕ′ is uninterpreted satisfiable if ϕ
is id-satisfiable. For the other direction let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) be an
(A,P)-structure such that F(S) = Πi∈[1,d]Fi where Fi = (Wi,{

aÐ→∣ a ∈ Ai}) is an Ai-frame
for each i ∈ [1, d] and assume that (S,w0) ⊧ ϕ ∧ χ for some w0 ∈ W . In particular, we
have W =∏i∈[1,d]Wi. Let

WR = {w ∈W ∣ ∃s ∈ ms(ϕ) ∶ w0
sÐ→ w}.

We define for each i ∈ [1, d] an (Ai,Pi)-structure Si = (Wi,{
aÐ→∣ a ∈ Ai},{Vp ∣ p ∈ Pi})

with F(Si) = Fi such that (∏id
i∈[1,d]Si,w0) ⊧ ϕ. For giving the interpretations Vp we

need the following statement:

Claim 1. For all v,w ∈WR, i ∈ [1, d], and p ∈ Pi, if v(i) = w(i) then (v ∈Wp⇔ w ∈Wp).
PROOF OF CLAIM 1. Since v,w ∈WR there exist s, t ∈ ms(ϕ) such that

w0
sÐ→ v and w0

tÐ→ w.

Since we have a product model and v(i) = w(i), there exists some u with

w0
t↾iÐ→ u, w0

s↾iÐ→ u, u
s∖iÐ→ v, u

t∖iÐ→ w.

Since (S,w0) ⊧ χ, we get v ∈Wp ⇒ u ∈Wp ⇒ w ∈Wp and analogously w ∈Wp ⇒ v ∈Wp,
which proves Claim 1.
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39:8 S. Göller et al.

Let us define for all p ∈ Pi

Vp = {w(i) ∈Wi ∣ w ∈WR ∩Wp}.
With Claim 1, we get for all w ∈WR:

w ∈Wp ⇔ w(i) ∈ Vp (1)

It remains to show that (∏id
i∈[1,d]Si,w0) ⊧ ϕ. For a sequence s ∈ ms(ϕ) let subs(ϕ) be the

set of all subformulas ψ of ϕ such that in the syntax tree for ϕ there exists a path to
an occurrence of ψ such that s is the sequence of modalities along this path. We prove
by induction on the structure of a subformula ψ ∈ subs(ϕ) that for all w ∈ WR with
w0

sÐ→ w:

(S,w) ⊧ ψ ⇔ (
id

∏
i∈[1,d]

Si,w) ⊧ ψ.

For the induction base consider a propositional variable p ∈ P and assume that p ∈ Pi
and let w ∈WR. We get:

(S,w) ⊧ p ⇔ w ∈Wp
(1)⇔ w(i) ∈ Vp ⇔ (

id

∏
i∈[1,d]

Si,w) ⊧ p

For the induction step, the operators ∧ and ¬ are straightforward. Finally, let ψ =◇aθ ∈
subs(ϕ) and assume that w0

sÐ→ w. Hence, θ ∈ subsa(ϕ). We have:

(S,w) ⊧◇aθ ⇔ ∃w′ ∶ w aÐ→ w′ ∧ (S,w′) ⊧ θ
hyp⇔ ∃w′ ∶ w aÐ→ w′ ∧ (

id

∏
i∈[1,d]

Si,w
′) ⊧ θ

⇔ (
id

∏
i∈[1,d]

Si,w) ⊧◇aθ

Since ϕ ∈ subε(ϕ), and w0
εÐ→ w0, this shows that (∏id

i∈[1,d]Si,w0) ⊧ ϕ.
Overall, we have given a reduction from Kd

id-SAT to Kd-SAT. Note that the con-
structed formula ϕ′ has the same switching depth as ϕ.

Note that the proof of Proposition 2.1 does not make any assumption about the un-
derlying structures. In particular, this implies that Proposition 2.1 holds also for re-
stricted frame classes, e.g., transitive frames.

2.5. Bisimulation equivalence

Let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) and S′ = (W ′,{ aÐ→′ ∣ a ∈ A},{W ′
p ∣ p ∈ P}) be two

(A,P)-structures. A bisimulation between S and S′ is a binary relation R ⊆ W ×W ′

such that for each (s, s′) ∈ R the following holds:

(1) s ∈Wp if and only if s′ ∈W ′
p for all p ∈ P,

(2) for each s
aÐ→ t there exists s′ aÐ→′ t′ such that (t, t′) ∈ R, and

(3) for each s′
aÐ→′ t′ there exists s aÐ→ t such that (t, t′) ∈ R.

In case there is a bisimulation R between S and S′ with (s, s′) ∈ R we say that (S, s)
is bisimilar to (S′, s′) and write (S, s) ∼ (S′, s′) or, in case S and S′ are clear from the
context, s ∼ s′. It is well-known that modal logic cannot distinguish between bisimilar
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structures, i.e., if (S, s) ∼ (S′, s′) then (S, s) ⊧ ϕ if and only if (S′, s′) ⊧ ϕ for all
modal logic formulas over (A,P), see for instance [1]. The following proposition (which
is straightforward to prove) lifts this statement to many-dimensional modal logics,
i.e., modal logic formulas cannot distinguish between interpreted products structures
whose components are bisimilar.

PROPOSITION 2.2. Let A = ⋃di=1 Ai, P = ⋃di=1 Pi and for each i ∈ [1, d] assume two
pointed (Ai,Pi)-structures (Si,wi) and (S′

i,w
′
i) with (Si,wi) ∼ (S′

i,w
′
i). Then for every

interpretation σ ∶ P→ bool(P) we have

(
σ

∏
i∈[1,d]

Si, ⟨w1, . . . ,wd⟩) ∼ (
σ

∏
i∈[1,d]

S′
i, ⟨w′

1, . . . ,w
′
d⟩).

In particular (∏σ
i∈[1,d]Si, ⟨w1, . . . ,wd⟩) and (∏σ

i∈[1,d]S
′
i, ⟨w′

1, . . . ,w
′
d⟩) satisfy the same

Kd(A,P)-formulas.

PROOF. Assume that

Si = (Wi,{
aÐ→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi}) and

S′
i = (W ′

i ,{
aÐ→i′ ∣ a ∈ Ai},{W ′

p,i ∣ p ∈ Pi}).

Let σ ∶ P → bool(P) be an interpretation, and let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) and
S′ = (W ′,{ aÐ→′ ∣ a ∈ A},{W ′

p ∣ p ∈ P}) be the σ-products of the Si and S′
i, respectively.

Assume Ri ⊆ Wi ×W ′
i is a bisimulation between Si and S′

i with (wi,w′
i) ∈ Ri for each

i ∈ [1, d]. We claim that

R = {(⟨u1, . . . , ud⟩, ⟨u′1, . . . , u′d⟩) ∣ ∀i ∈ [1, d] ∶ (ui, u′i) ∈ Ri}
is a bisimulation. For this, let u = ⟨u1, . . . , ud⟩ ∈ ∏i∈[1,d]Wi and u′ = ⟨u′1, . . . , u′d⟩ ∈
∏i∈[1,d]W

′
i with (u,u′) ∈ R. Hence ui ∼ u′i and thus ui ∈ Wp,i ⇔ u′i ∈ W ′

p,i for each p ∈ Pi
and each i ∈ [1, d]. By definition of interpreted product structures, we get u ∈Wp if and
only if u′ ∈ W ′

p for each p ∈ P. This establishes point (1) of R being a bisimulation. For
proving point (2), let us assume u aÐ→ v, where v = ⟨v1, . . . , vd⟩ ∈ ∏i∈[1,d]Wi. Then there
exists some i ∈ [1, d] such that a ∈ Ai, ui

aÐ→ vi and vj = uj for all j ∈ [1, d] ∖ {i}. Since
(ui, u′i) ∈ Ri and ui

aÐ→ vi there exists some v′i ∈W ′
i such that u′i

aÐ→′ v′i and (vi, v′i) ∈ Ri.
Choose v′ = ⟨v′1, . . . , v′d⟩, where v′j = vj for each j ∈ [1, d] ∖ {i} and v′i as mentioned above.
Hence from (vj , v′j) ∈ Rj for each j ∈ [1, d] it follows (u′, v′) ∈ R by definition of R. More-
over we have v aÐ→′ v′, thus point (2) follows. Point (3) can be proven analogously. In
particular, we have (S, ⟨w1, . . . ,wd⟩) ∼ (S′, ⟨w′

1, . . . ,w
′
d⟩) and, thus, (S, ⟨w1, . . . ,wd⟩) and

(S′, ⟨w′
1, . . . ,w

′
d⟩) satisfy the same Kd(A,P)-formulas.

3. K2-SAT IS HARD
The goal of this section is to show a nonelementary lower bound for K2-SAT. As a
nonelementary upper bound is already known, we close the complexity gap for this
problem. By Proposition 2.1 it suffices to show hardness for K2

id-SAT. As a necessary
preliminary step we show how to enforce (nonelementarily) big models in K2

id. Using
this, we prove via a standard reduction from an appropriate tiling problems that K2

id-
SAT is nonelementary.

In this section, we will only deal with id-products of two structures S and S (over
disjoint sets of propositions and actions). To simplify notation we write S×S for S×idS.
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Recall the tower function Tower ∶ N ×N→ N defined as

Tower(0, n) = n and Tower(` + 1, n) = 2Tower(`,n)

for each `, n ∈ N. In this section, we construct a family {ϕ`,n ∣ `, n ≥ 1} of K2(A,P)-
formulas (A and P are specified later) such that for each `, n ∈ N the following hold:

(i) P = Pn ⊎ Pn, where Pn is to be defined and Pn is a disjoint copy of Pn,
(ii) A = {a} ⊎ {a},

(iii) ∣ϕ`,n∣ ≤ exp(`) ⋅ poly(n), and
(iv) if (S ×S, ⟨s, s⟩) ⊧ ϕ`,n, then ∣S∣, ∣S∣ ≥ Tower(`, n).

Informally speaking, our intention is that if ` ≥ 1 and (S×S, ⟨s, s⟩) ⊧ ϕ`,n then (S, s)
(resp., (S, s)) will be bisimilar to a particular tree over ({a},Pn) (resp., ({a},Pn) that
will encode a value in the interval [0,Tower(`+ 1, n)− 1] and whose root has Tower(`, n)
children. When ` = 0 we will use single-node trees to encode values in the interval
[0,2n − 1] = [0,Tower(1, n) − 1].

Let us describe in detail how we encode values in the interval [0,Tower(` + 1, n) − 1]
by trees over the signature ({a},Pn), where

Pn
def= {b0, . . . ,bn−1,b,minb,min←b ,min¬b,min←¬b}.

Definition 3.1. In case ` = 0 we encode a value j from the interval [0,2n − 1] =
[0,Tower(1, n) − 1] by using the following single-node tree that we call Υ

(0)
0,n(j): It con-

sists of a single node v that is (only) labeled with the subset X of the propositions
{b0, . . . ,bn−1} such that j = ∑bi∈X 2i ∈ [0,2n − 1]. By Υ

(1)
0,n(j) we denote the single-node

tree that one obtains from Υ
(0)
0,n(j) by additionally labeling v with b.

For ` > 0 we inductively encode a value j from the interval [0,Tower(` + 1, n) − 1] by
the following tree Υ

(0)
`,n(j) that arises as follows:

(i) Let I ⊆ [0,Tower(`, n) − 1] be the unique set such that j = ∑i∈I 2i and take the
disjoint union of a root r and all trees from the set

U = {Υ
(1)
`−1,n(i) ∣ i ∈ I} ∪ {Υ

(0)
`−1,n(i) ∣ i /∈ I}.

(ii) Draw an a-transition from r to the root of each tree in U . Hence r has Tower(`, n)
children.

(iii) For the propositions minb and min←b , proceed as follows: If I /= ∅, then define mb =
min(I); otherwise set mb = Tower(`, n). If mb < Tower(`, n), then add the label
minb to the root of Υ

(1)
`−1,n(mb) ∈ U . Moreover, add the label min←b to the root of

Υ
(0)
`−1,n(m′) ∈ U for every m′ ∈ [0,mb − 1].

(iv) For the propositions min¬b and min←¬b, proceed as follows: If I ≠ [0,Tower(`, n) − 1],
define m¬b = min([0,Tower(`, n) − 1] ∖ I); otherwise set m¬b = Tower(`, n). If m¬b <
Tower(`, n), then add the label min¬b to the root of Υ

(0)
`−1,n(m¬b) ∈ U . Moreover, add

the label min←¬b to the root of Υ
(1)
`−1,n(m′) ∈ U for every m′ ∈ [0,m¬b − 1].

Let Υ
(1)
`,n(j) denote the tree that one obtains from Υ

(0)
`,n(j) by adding the label b to its

root.

Figure 1 shows the tree Υ
(0)
1,3(175). First observe that the root r has 8 = 23 =

Tower(1,3) successors v0, . . . , v7. Next note that in each vi the evaluation of the propo-
sitions bj (j ∈ [0,2]) gives a binary number equal to i. For instance, in v4 only b2 is true,
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r

v0

b

min←¬b
minb

v1

b0

b

min←¬b

v2

b1

b

min←¬b

v3

b0b1

b

min←¬b

v4

b2

min¬b

v5

b0b2

b

v6

b1b2

v7

b0b1b2

b

Fig. 1. The tree Υ
(0)
1,3(175) with root r.

r

v0

min¬b
min←b

v1

b0

min←b

v2

b1

min←b

v3

b0b1

min←b

v4

b2

b

minb

v5

b0b2

b

v6

b1b2

v7

b0b1b2

b

Fig. 2. The tree Υ
(0)
1,3(176) with root r.

hence the corresponding binary number encodes 4. As indicated, the evaluation of b at
the children of r gives rise to the binary number 11110101 (least significant bit to the
left) which equals 175. By definition, minb (resp., min¬b) holds in the minimal position
where b holds (resp., does not hold) and min←b (resp., min←¬b) holds in all positions left of
minb (resp., min¬b). These auxiliary propositions will be useful for enforcing the succes-
sor relation. For example, observe that the labelings of b in Υ

(0)
(1,3)(175) and Υ

(0)
(1,3)(176),

depicted in Figure 2, differ only on positions that were labeled with min¬b and min←¬b in
Figure 1.

It is worth mentioning that the defined trees Υ`,n(j) are similar to the trees T (j)
introduced in [20, Chapter 10] and used for example in [12]. In particular, they both
represent the number j and have small depth, but high outdegree. However, there
are some differences. Note first that the root of T (j) has a child for those numbers
i such that the i-th bit in j is 1. In contrast, the root of Υ`,n(j) has, independent of
j, Tower(` − 1, n) children each corresponding to one bit position and the bits set to 1
are marked with the proposition b. Moreover, as we use two-dimensional modal logic
instead of first-order logic as in [20] to enforce our trees, we face two problems: First,
we cannot enforce them up to isomorphism but only up to bisimulation equivalence.
Second, as the logic is much weaker, we need some auxiliary propositional variables (or
unary predicates). The particular difficulty is expressing a “less-than” or “successor”
predicate and it seems impossible to do this without the auxiliary propositions, already
for ` = 1.
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Conventions. In the following, let Υ
(β)
`,n (j) denote the corresponding copy of Υ

(β)
`,n (j) over

the signature ({a},Pn), i.e. the tree that one obtains from the tree Υ
(β)
`,n (j) by replacing

every action label a by a and every proposition p ∈ Pn by p ∈ Pn. For simplicity, we write
◇,◻,◇,◻ for the modalities ◇a,◻a,◇a,◻a, respectively.

We say that a tree T is an extension of Υ
(β)
`,n (j) if T evolves from Υ

(β)
`,n (j) by adding an

arbitrary subset (possibly empty) of {b,minb,min←b ,min¬b,min←¬b} to the root of T. Note
that in particular Υ

(1)
`,n(j) is an extension of Υ

(0)
`,n(j). Extensions of Υ

(b)
`,n(j) are defined

analogously.
Before we define the formulas ϕ`,n, we introduce auxiliary formulas eq`,n, first`,n,

last`,n, and succ`,n whose names indicate their meaning on the asynchronous
(id-)product of two trees that are extensions of Υ

(0)
`,n(j1) and Υ

(0)
`,n(j2), respectively,

where j1, j2 ∈ [0,Tower(` + 1, n) − 1].
For ` = 0 they are defined as follows:

eq0,n
def= ⋀

i∈[0,n−1]
bi ↔ bi

first0,n
def= ⋀

i∈[0,n−1]
¬bi ∧ ¬bi

last0,n
def= ⋀

i∈[0,n−1]
bi ∧ bi

succ0,n
def= ⋁

i∈[0,n−1]
(¬bi ∧ bi ∧ ⋀

j∈[0,i−1]
(bj ∧ ¬bj) ∧ ⋀

j∈[i+1,n−1]
bj ↔ bj)

For ` > 0 we define them as follows:

eq`,n
def= ◻◻ (eq`−1,n → (b↔ b))

first`,n
def= ◻¬b ∧ ◻¬b

last`,n
def= ◻b ∧ ◻b

succ`,n
def= ◇¬b ∧ ◻◻(eq`−1,n → ((min¬b ↔ minb) ∧ ((¬min←¬b ∧ ¬min¬b)→ (b↔ b))))

The following lemma shows that the formulas indeed express what they suggest to
express. Recall that we identify a tree T with the pointed structure (T, r), where r

is the root of T. Hence, in the following lemma T × T is identified with the pointed
structure (T ×T, ⟨r, r⟩), where r (resp., r) is the root of T (resp., T).

LEMMA 3.2. Let `, n ≥ 0, let j1, j2 ∈ [0,Tower(` + 1, n) − 1] and let T and T be an
extension of Υ

(0)
`,n(j1) and Υ

(0)
`,n(j2), respectively. Then the following holds:

(a) T ×T ⊧ eq`,n if and only if j1 = j2.
(b) T ×T ⊧ first`,n if and only if j1 = j2 = 0.
(c) T ×T ⊧ last`,n if and only if j1 = j2 = Tower(` + 1, n) − 1.
(d) T ×T ⊧ succ`,n if and only if j2 = j1 + 1.
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PROOF. We show the statement by induction on `. Let T and T be as in the lemma.
We assume w.l.o.g. that T = Υ

(0)
`,n(j1) and T = Υ

(0)
`,n(j2): Each of the formulas eq`,n, first`,n,

last`,n and succ`,n holds in Υ
(0)
`,n(j1) ×Υ

(0)
`,n(j2) if and only if it holds in T ×T.

In the following let r and r denote the root of Υ
(0)
`,n(j1) and of Υ

(0)
`,n(j2), respectively.

For the induction base let ` = 0. For (a) we have (Υ(0)
`,n(j1) × Υ

(0)
`,n(j2)) ⊧ eq0,n if and

only if (bi holds in r ⇔ bi holds in r) for all i ∈ [0, n − 1] if and only if j1 = j2. Both (b)
and (c) can be proven in analogy to (a). For (d) we have (Υ(0)

`,n(j1) × Υ
(0)
`,n(j2)) ⊧ succ0,n

if and only if there is some i ∈ [0, n − 1] such that r does not satisfy bi, r satisfies bi, r
satisfies bj and r does not satisfy bj for each j ∈ [0, i− 1] and moreover (r satisfies bj ⇔
r satisfies bj) for each j ∈ [i + 1, n − 1]. The latter is equivalent to j2 = j1 + 1.

For the induction step let ` > 0. The cases (a), (b) and (c) are straightforward. Let
us prove case (d). For j ∈ [0,Tower(`, n) − 1] let cj , dj ∈ {0,1} such that Υ

(cj)
`−1,n(j) (resp.,

Υ
(dj)
`−1,n(j)) is a subtree of T (resp., T). The formula succ`,n states the following:

— There is a j ∈ [0,Tower(`, n) − 1] such that cj = 0.
— If j0 is the minimal j ∈ [0,Tower(`, n) − 1] such that cj = 0, then j0 is also the minimal
j ∈ [0,Tower(`, n) − 1] such that dj = 1.

— For all j0 < j < Tower(`, n) we have cj = dj .

These conditions are equivalent to

1 +
Tower(`,n)−1

∑
j=0

cj2
j =

Tower(`,n)−1

∑
j=0

dj2
j ,

i.e., j2 = j1 + 1.

Now we give a family of formulas ϕ`,n with the idea that for every model (S×S, ⟨s, s⟩)
of ϕ`,n there exists some j ∈ [0,Tower(` + 1, n) − 1] such that (S, s) ∼ T and (S, s) ∼ T,
where T (resp. T) is an extension of Υ

(0)
`,n(j) (resp., Υ

(0)
`,n(j)).

Definition 3.3. Set ϕ0,n = eq0,n ∧ ◻� ∧ ◻� and for each ` ≥ 1 define ϕ`,n, by induction
on `, as the conjunction of the following formulas:

(1) ⋀
i∈[0,n−1]

¬bi ∧ ¬bi

(2) ◻◇ϕ`−1,n

(3) ◻◇ ϕ`−1,n

(4) ◇◇(ϕ`−1,n ∧ first`−1,n)
(5) ◻ (◻¬last`−1,n →◇succ`−1,n)
(6) ◻◻(eq`−1,n → ⋀

p∈Pn
(p↔ p))

(7) ◇(min¬b ∨min←¬b) ∧ ◇(minb ∨min←b )
(8) ◻(((min¬b ∨min←b )→ ¬b) ∧ ((min←¬b ∨minb)→ b)))
(9) ◻◻(succ`−1,n → ⋀

x∈{b,¬b}
((minx ∨min←x )↔ min←x )))
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We are now ready to present our main theorem. Roughly speaking, it states that ϕ`,n
enforces structures bisimilar to the product of extensions of Υ

(0)
`,n(j) and Υ

(0)
`,n(j) for

some j.

THEOREM 3.4. For every ` ≥ 0 the following holds:

(a) (S×S, ⟨s, s⟩) ⊧ ϕ`,n if and only if there exists j ∈ [0,Tower(`+1, n)−1] such that (S, s)
is bisimilar to some extension of Υ

(0)
`,n(j) and (S, s) is bisimilar to some extension of

Υ
(0)
`,n(j).

(b) ∣ϕ`,n∣ ≤ 3` ⋅ poly(`, n) and the formula ϕ`,n is computable in time 3` ⋅ poly(`, n).
(c) The switching depth of ϕ`,n is `.

Before giving the complete formal proof of Theorem 3.4, we want to give some intu-
ition. Parts (b) and (c) are straightforward consequences of the definition of ϕ`,n. For
Part (a) observe first that ϕ`,n is satisfiable: it is not hard to verify that the product
of (any extension of) Υ

(0)
`,n(j) and (any extension of) Υ

(0)
`,n(j) satisfies ϕ`,n. The difficult

part is to show that ϕ`,n enforces such models, i.e., each model of ϕ`,n is of the form
T × T, where T (resp., T) is bisimilar to an extension of Υ

(0)
`,n(j) (resp., an extension of

Υ
(0)
`,n(j)) for some j. Obviously, this is the case for ϕ0,n.
For ` > 0, let (S × S, ⟨s, s⟩) ⊧ ϕ`,n. By induction, formula (2) implies that for each

successor t of s it holds that (S, t) is bisimilar to an extension of Υ
(0)
`−1,n(i) for some i.

Formula (3) implies the analogous property for every successor t of s.
Given this, formulas (3)-(5) together with Lemma 3.2 imply that for every i ∈

[0,Tower(`, n) − 1] there is a child si of s such that (S, si) is bisimilar to an exten-
sion of Υ

(0)
`−1,n(i) and, analogously, there is a child si of s such that (S, si) is bisimilar

to an extension of Υ
(0)
`−1,n(i): By formula (4) and Lemma 3.2, there are such s0 and s0.

The existence of s0 and formula (5) imply the existence of s1. Formula (3) implies that
there is some s1, and we can repeat the argument using formulas (5) and (3).

Observe now that, in principle, there might be children si ≠ s′i of s such that (S, si)
and (S, s′i) are bisimilar to different extensions of Υ

(0)
`−1,n(i). This is ruled out by ap-

plying formula (6) twice: For any proposition p ∈ Pn we have: p is satisfied in (S, si) if
and only if p is satisfied in (S, si) if and only if p is satisfied in (S, s′i). Hence, we can
talk about the children si and si, respectively. Of course, children of s and s can appear
numerous times as copies.

The children si and si encode binary numbers N and N , respectively, in the natural
way: The i-th bit1 of N is 1 if and only if (S, si) satisfies b and analogously for N . Note
that formula (6) implies that N = N .

Finally, formulas (7)-(9) ensure that the children si and si are labeled with the propo-
sitions minb,min¬b,min←b ,min←¬b and minb,min¬b,min←b ,min←¬b, respectively, in a way such
that (S, s) is bisimilar to an extension of Υ

(0)
`,n(N) and (S, s) is bisimilar to an extension

of Υ
(0)
`,n(N). This is actually the most subtle part of the following proof of Theorem 3.4.

PROOF OF THEOREM 3.4. Part (c) is an immediate consequence of Definition 3.3.

1The least significant bit is the 0-th bit.
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We show Part (b) by induction on ` starting with ` = 0. For ϕ0,n = ⋀i∈[0,n−1] bi ↔ bi ∧
◻� ∧ ◻� the statement is trivial. Let now be ` > 0. The formula ϕ`−1,n occurs 3 times in
ϕ`,n. The auxiliary formulas succ`−1,n, eq`−1,n, last`−1,n, and first`−1,n are all polynomially
sized in ` and n. Thus, overall we get ∣ϕ`,n∣ = 3 ⋅ ∣ϕ`−1,n∣ + poly(`, n). Thus, we obtain by
induction hypothesis ∣ϕ`,n∣ = 3` ⋅ poly(`, n).

Let us finally prove Part (a). With (1), (2), . . . , (9) we refer to the formulas from Defini-
tion 3.3.

If: We prove the “if”-direction by induction on `.
For the induction base, assume ` = 0. Assume some j ∈ [0,Tower(1, n) − 1] = [0,2n − 1]

such that (S, s) is bisimilar to some extension of Υ
(0)
0,n(j) and (S, s) is bisimilar to some

extension of Υ
(0)
0,n(j). It is clear that (S ×S, ⟨s, s⟩) ⊧ ◻� ∧ ◻�. Moreover, Proposition 2.2

and point (a) of Lemma 3.2 imply that (S×S, ⟨s, s⟩) ⊧ eq0,n. Hence (S×S, ⟨s, s⟩) ⊧ ϕ0,n.
For the induction step, assume ` ≥ 1. Let j be arbitrary in [0,Tower(` + 1, n) − 1] and

assume (S, s) is bisimilar to some extension of Υ
(0)
`,n(j) and (S, s) is bisimilar to some

extension of Υ
(0)
`,n(j). By Proposition 2.2, it is sufficient to show that Υ

(0)
`,n(j) ×Υ

(0)
`,n(j) ⊧

ϕ`,n. Let r (resp., r) be the root of Υ
(0)
`,n(j) (resp., Υ

(0)
`,n(j)).

Clearly, formula (1) holds in Υ
(0)
`,n(j) ×Υ

(0)
`,n(j) as neither Υ

(0)
`,n(j) satisfies any bi nor

does Υ
(0)
`,n(j) satisfy any proposition bi.

For formula (2) let t be any child of r By Definition 3.1, the subtree T rooted in t is an
extension of Υ

(0)
`−1,n(i) for some i ∈ [0,Tower(`, n) − 1]. Also by Definition 3.1, there is a

child t of r such that the subtree T rooted in t is an extension of Υ
(0)
`−1,n(i). By induction

hypothesis, we have T ×T ⊧ ϕ`−1,n. Formula (3) holds for analogous reasons.
By Definition 3.1, there is a child t (resp., t) of r (resp., r) such that the subtree T

(resp., T) rooted in t (resp., t) is an extension of Υ
(0)
`−1,n(0) (resp., Υ

(0)
`−1,n(0)). Point (b) of

Lemma 3.2 implies T ×T ⊧ first`−1,n. Hence formula (4) is satisfied.
For formula (5) assume that t is an arbitrary child of r. By Definition 3.1, the subtree

T rooted in t is an extension of Υ
(0)
`−1,n(i) for some i ∈ [0,Tower(`, n) − 1]. We distinguish

the following cases on i.

— i = Tower(`, n) − 1. By Definition 3.1, there is a child t of r such that the subtree T

rooted in t is an extension of Υ
(0)
`−1,n(i). By Point (c) of Lemma 3.2, T ×T ⊧ last`−1,n.

— i < Tower(`, n) − 1. By Definition 3.1, there is a child t of r such that the subtree T

rooted in t is an extension of Υ
(0)
`−1,n(i+1). By Point (d) of Lemma 3.2, T×T ⊧ succ`−1,n.

For formula (6) let t and t be arbitrary successors of r and r, respectively. There are
k, i ∈ [0,Tower(`, n) − 1] such that the subtree T (resp., T) rooted in t (resp., t) is an
extension of Υ

(0)
`−1,n(k) (resp., Υ

(0)
`−1,n(i)). Now, assume that T × T ⊧ eq`−1,n. Point (a) of

Lemma 3.2 implies that k = i. Note that by Definition 3.1 the propositions that hold in
t and t are uniquely determined by k = i. Hence, a proposition p ∈ Pn holds in t if and
only if p holds in t.

For formula (7) observe that Point (iii) in Definition 3.1 implies that there is either
some child of r labeled with minb or some child of r labeled with min←b . Thus, Υ

(0)
`,n(j) ×
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Υ
(0)
`,n(j) ⊧◇(minb ∨min←b ). Similarly, Point (iv) implies that there is either some child of

r labeled with min¬b or some child of r is labeled with min←¬b. Hence, Υ
(0)
`,n(j) ×Υ

(0)
`,n(j) ⊧

◇(min¬b ∨min←¬b).
For formula (8) observe that, by Point (iii) and (iv) in Definition 3.1, every child of r

that satisfies min¬b or min←b does not satisfy b. Analogously, every child of r that satisfies
min←¬b or minb satisfies b.

For formula (9), let t and t be arbitrary successors of r and r, respectively. There
are i, i ∈ [0,Tower(`, n) − 1] such that the subtree T (resp., T) rooted in t (resp., t) is an
extension of Υ

(0)
`−1,n(i) (resp., Υ

(0)
`−1,n(i)). Now, assume that T × T ⊧ succ`−1,n. We need to

show that T × T ⊧ ⋀x∈{b,¬b}((minx ∨min←x )↔ min←x ). We only show it for x = ¬b, because
the case x = b can be proven analogously. By Point (d) of Lemma 3.2, we have i = i + 1.

If j = Tower(` + 1, n) − 1, then by Point (iv) of Definition 3.1, every child of r (resp., r)
is labelled with min←¬b (resp., min←¬b). Hence, T ×T ⊧ ((min¬b ∨min←¬b)↔ min←¬b) holds.

Now, assume that j < Tower(` + 1, n) − 1. Put M = Tower(`, n) − 1 and let t0, . . . , tM be
the successors of r such that the subtree Tk rooted in tk is an extension of Υ

(0)
`−1,n(k)

for all k ∈ [0,M]. Analogously, define t0, . . . , tM to be the successors of r such that the
subtree Tk rooted in tk is an extension of Υ

(0)
`−1,n(k) for all k ∈ [0,M]. We have that t = ti

and t = ti+1. By Point (iv) of Definition 3.1, there is some m ∈ [0,M] such that

— Tm ⊧ min¬b and Tm ⊧ min¬b,
— Tk ⊧ min←¬b and Tk ⊧ min←¬b for all k <m, and
— Tk ⊧ ¬min¬b ∧ ¬min←¬b and Tk ⊧ ¬min¬b ∧ ¬min←¬b for all k >m.

Now, it is easy to verify that T ×T = Ti ×Ti+1 ⊧ (min¬b ∨min←¬b)↔ min←¬b.

Only-if: Let us prove the “only-if” direction by induction on `.
For ` = 0 assume (S ×S, ⟨s, s⟩) ⊧ ϕ0,n. Thus, both s and s do not have any outgoing

transitions and due to Point (a) of Lemma 3.2 there exists some j ∈ [0,Tower(1, n) − 1]
such that (S, s) is bisimilar to some extension of Υ

(0)
0,n(j) and (S, s) is bisimilar to some

extension of Υ
(0)
0,n(j).

For the induction step, let us assume ` ≥ 1 and (S × S, ⟨s, s⟩) ⊧ ϕ`,n and put m =
Tower(`, n) − 1. For each i ∈ [0,m] let Ei denote the set of extensions of Υ

(0)
`−1,n(i) and by

E i the set of extensions of Υ
(0)
`−1,n(i).

Claim 1. For each successor t of s we have that (S, t) is bisimilar to some element from
Ei for some i ∈ [0,m] and, conversely, for each i ∈ [0,m] there is a successor si of s such
that (S, si) is bisimilar to some element from Ei. An analogous property holds for S.

PROOF OF CLAIM 1. Let t be an arbitrary successor of s. By formula (2), there is a
successor t of t such that (S ×S, ⟨t, t⟩) ⊧ ϕ`−1,n. By induction hypothesis, there is a i ∈
[0,m] such that (S, t) is bisimilar to some extension of Υ

(0)
`−1,n(i). Analogous reasoning

using formula (3) yields that for every successor t of s there is some i ∈ [0,m] such that
(S, t) is bisimilar to some extension of Υ

(0)
`−1,n(i).

Moreover, formulas (3),(4), and (5) imply that there are successors s0, . . . , sm of s and
s0, . . . , sm of s such that (S, si) is bisimilar to some element from Ei and (S, si) is bisim-
ilar to some some element from E i: By formula (4) and point (b) of Lemma 3.2, there
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are such s0, s0. By formula (5) and points (c) and (d) of Lemma 3.2, there is such an s1.
By formula (3) (and reasoning as above), there is such an s1. Inductively repeating the
argument yields the claimed s0, . . . , sm and s0, . . . , sm. This proves Claim 1.

Claim 2. For each i ∈ [0,m] there is a unique element Ei ∈ Ei with the following prop-
erty: for every successor t of s such that (S, t) is bisimilar to some element from Ei, we
have that (S, t) is bisimilar to Ei. In the same way, there are elements Ei ∈ E i.

PROOF OF CLAIM 2. Consider two successors t, t′ of s such that both are bisimilar
to elements from Ei. It suffices to prove that (S, si) and (S, s′i) satisfy the same proposi-
tions since both are bisimilar to extensions of Υ

(0)
`−1,n(i). By applying formula (6) twice,

we have for each proposition p ∈ Pn that (S, t) ⊧ p iff (S, si) ⊧ p iff (S, t′) ⊧ p. This
shows Claim 2.

Fix the elements Ei,Ei, i ∈ [0,m] that exist due to Claim 2. For each i ∈ [0,m] let xi = 1

if the tree Ei is an extension of Υ
(1)
`−1,n(i) and xi = 0 otherwise. Note that by formula (6)

the latter is equivalent to saying that for each i ∈ [0,m] we set xi = 1 if the tree Ei is an
extension of Υ

(1)
`−1,n(i) and xi = 0 otherwise. Let

j = ∑
i∈[0,m]

xi ⋅ 2i ∈ [0,Tower(` + 1, n) − 1].

Moreover, let X denote the set of atomic propositions that hold in (S ×S, ⟨s, s⟩). Let

Y = {b,minb,min←b ,min¬b,min←¬b} and Y = {b,minb,min←b ,min¬b,min←¬b}.

By formula (1), we have X = Q ∪Q for some Q ⊆ Y and some Q ⊆ Y .
Let us define the tree T as the unique extension of Υ

(0)
`,n(j) satisfying precisely the

propositionsQ in its root t. Analogously, we define the tree T as the extension of Υ
(0)
`,n(j)

that satisfies precisely the propositions Q in its root t. Moreover, for each i ∈ [0,m] let
Ti be the unique subtree of T that is an extension of Υ

(0)
`−1,n(i) and define Ti analogously.

Claim 3. (T, t) ∼ (S, s) and (T, t) ∼ (S, s).
PROOF OF CLAIM 3. We start with (T, t) ∼ (S, s). Note that s and t satisfy the same

atomic propositions (namely those from Q) by definition of T. Thus, it remains to show
the ‘back-and-forth’ condition of bisimulation. By Claim 2, for every u ∈ NS(s) there
exists i ∈ [0,m] such that (S, u) ∼ Ei, and every child of t is the root of a tree Tj .
Hence, it is sufficient to show that Ei ∼ Ti holds for each i ∈ [0,m]. But since both Ei
and Ti are extensions of Υ

(0)
`−1,n(i) it is sufficient to prove that Ei and Ti satisfy the

same set of atomic propositions in their roots. Note that the same arguments apply to
(T, t) ∼ (S, s), that is, it suffices to show that Ei and Ti satisfy the same propositions.
This is, however, an immediate consequence: Ei ⊧ p iff Ei ⊧ p iff Ti ⊧ p iff Ti ⊧ p, where
the first equivalence is due to formula (6) and the last follows from Definition 3.1.

Since T is an extension of Υ
(0)
`,n(j), where j = ∑i∈[0,m] xi ⋅ 2i ∈ [0,Tower(` + 1, n) − 1],

the roots of Ei and Ti agree on all atomic propositions from {b0, . . . ,bn−1,b}. Next, let
us prove that the roots of Ei and Ti are labelled with the same atomic propositions
from {min¬b,min←¬b}. That they are labelled with the same atomic propositions from
{minb,min←b } can be proven analogously.

First, note that we have the following:
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(a) For each i ∈ [0,m] we have that Ei does not satisfy both min¬b and min←¬b since
otherwise this would imply Ei ⊧ b ∧ ¬b by formula (8), a contradiction.

(b) If there exists some i0 ∈ [0,m] such that Ei0 ⊧ min¬b ∨ min←¬b, then Ei ⊧ min←¬b for all
i ∈ [0, i0 − 1]: By formula (6), we have Ei0 ⊧ min¬b ∨min←¬b. By formula (9), we obtain
Ei0−1 ⊧ min←¬b. This argument can be continued inductively.

Since (S ×S, ⟨s, s⟩) satisfies formula (7) we can distinguish two cases:

Case 1. There exists some i0 ∈ [0,m] such that Ei0 ⊧ min¬b. Then we proceed as follows:

(c) Ei0 ⊧ ¬b by formula (8).
(d) Ei ⊧ min←¬b for each i ∈ [0, i0 −1] by Point (b) above and hence Ei ⊧ b by formula (8) for

each i ∈ [0, i0 − 1].
(e) Ei /⊧ (min←¬b ∨min¬b) for each i ∈ [i0 +1,m]. Assume the contrary, namely Ei ⊧ (min←¬b ∨

min¬b) for some i ∈ [i0 + 1,m]. By Point (b) above, we get in particular Ei0 ⊧ min←¬b,
which is a contradiction due to Point (a).

By comparing the above Points (a) to (e) with Point (iv) of Definition 3.1, one sees that
Ei and Ti satisfy the same propositions from {min¬b,min←¬b} for each i ∈ [0,m].
Case 2. There does not exist any i ∈ [0,m] such that Ei ⊧ min¬b. Then we proceed as
follows:

(c’) There exists some i0 ∈ [0,m] such that Ei0 ⊧ min←¬b by formula (7) and hence Ei0 ⊧ b
by formula (8).

(d’) Ei ⊧ min←¬b for each i ∈ [0, i0 −1] by Point (b) above and hence Ei ⊧ b by formula (8) for
each i ∈ [0, i0 − 1].

(e’) Ei ⊧ min←¬b and thus Ei ⊧ b by formula (8) for each i ∈ [i0 + 1,m].
This is proven by applying the following three steps inductively:

(i) By formula (9), we have Ei0+1 ⊧ (min¬b ∨min←¬b).
(ii) Assume Ei0+1 ⊧ min¬b. By formula (6), we have Ei0+1 ⊧ min¬b, which is a contra-

diction. Thus, Ei0+1 ⊧ min←¬b.
(iii) By formula (6), we have Ei0+1 ⊧ min←¬b.

By comparing the above Points (a), (b), and (c’) to (e’) to Point (iv) of Definition 3.1 one
sees that Ei and Ti satisfy the same propositions from {min¬b,min←¬b} for each i ∈ [0,m].
This concludes the proof of Claim 3.

Claim 3 shows statement (a) from Theorem 3.4.

We are finally ready to proceed to the main result of this section. By making use of
the models that are enforced by the formulas ϕ`,n, we can encode big numbers. In the
proof of the following proposition we use these numbers to encode big tiling problems.
Let `-NEXP = NTIME(Tower(`,poly(n))) for ` ≥ 0.

PROPOSITION 3.5. The folowing holds:

— For each ` ≥ 1, K2
id-SAT restricted to formulas of switching depth ` is `-NEXP-hard

under polynomial time many-one reductions.
— In particular, K2

id-SAT is nonelementary.

For the proof of Proposition 3.5, we need to introduce tilings and the tiling problem.
A tiling system is a tuple S = (Θ,H,V), where Θ is a finite set of tile types, H ⊆ Θ × Θ
is a horizontal matching relation, and V ⊆ Θ × Θ is a vertical matching relation. A
mapping τ ∶ [0, k − 1] × [0, k − 1] → Θ (where k ≥ 0) is a k-solution for S if for all (x, y) ∈
[0, k − 1] × [0, k − 1] the following holds:
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— if x < k − 1, τ(x, y) = θ, and τ(x + 1, y) = θ′, then (θ, θ′) ∈ H, and
— if y < k − 1, τ(x, y) = θ, and τ(x, y + 1) = θ′, then (θ, θ′) ∈ V.

Let Solk(S) denote the set of all k-solutions for S. Let w = θ0⋯θn−1 ∈ Θn be a word and
let k ≥ n. With Solk(S,w) we denote the set of all τ ∈ Solk(S) such that τ(x,0) = θx for
all x ∈ [0, n − 1]. We denote with ∣S∣ the size of a tiling system S = (Θ,H,V), that is, the
number of elements in Θ ⊎H ⊎V. Now, we define tiling problems as follows:

`-EXP-TILING PROBLEM

INPUT: A tiling system S = (Θ,H,V), θ0 ∈ Θ.
QUESTION: Does SolTower(`,n)(S, θ0) ≠ ∅ hold, where n = ∣S∣?

The following result is folklore. It is based on the fact that, in general, from a non-
deterministic t(n)-time bounded Turing machine M and an input word w one can con-
struct a (polynomially sized) tiling system SM and an initial tile type t0 which simu-
late M on input w (see e.g. [21; 22]) in the following sense: M accepts w if and only if
Solt(n)(SM , θ0) ≠ ∅.

THEOREM 3.6 (FOLKLORE). For each ` ≥ 1, the `-EXP-TILING PROBLEM is hard
for `-NEXP under polynomial time many-one reductions.

We can finally prove Proposition 3.5.

PROOF OF PROPOSITION 3.5. Due to technical reasons, we do the proof only for
` ≥ 3. The proof is via a polynomial time many-one reduction from the `-EXP-TILING
PROBLEM K2

id-SAT restricted to formulas of switching depth `. Let S` = (Θ,H,V) be
some tiling system of size n = ∣S∣ and set m = Tower(` − 1, n) − 1.

We add to the set of propositions Pn from the previous section all tile types from Θ
and two additional propositions x and y. To Pn we add copies θ (θ ∈ Θ), x, and y of these
propositions. For β ∈ {0,1} and z ∈ {x, y} we define Υ

(β,z)
`−1,n(j) (resp., Υ

(β,z)
`−1,n(j)) as the

tree that is obtained from Υ
(β)
`−1,n(j) (resp., Υ

(β)
`−1,n(j)) by adding the label z (resp., z) to

the root.
We first define for all X,Y ∈ [0,Tower(`, n) − 1] and all θ ∈ Θ the grid element tree

G(X,Y, θ) as follows: Define the subsets Ix, Iy ⊆ [0,m] uniquely by

X = ∑
i∈Ix

2i and Y = ∑
i∈Iy

2i.

Then G(X,Y, θ) is obtained as follows:

— Take the disjoint union of a root node r and all trees from the set

U = {Υ
(1,x)
`−2,n(i) ∣ i ∈ Ix} ∪ {Υ

(0,x)
`−2,n(i) ∣ i ∉ Ix} ∪

{Υ
(1,y)
`−2,n(i) ∣ i ∈ Iy} ∪ {Υ

(0,y)
`−2,n(i) ∣ i ∉ Iy}.

— Add an edge from the root r to the root of each tree from U .
— Label the root r with θ.

The tree G(X,Y, θ) is obtained from G(X,Y, θ) by replacing every action label a by a
and every proposition p by p.

In order to enforce grid element trees, we need to slightly modify the formulas used
in the proof of Theorem 3.4. For this purpose, it is useful to have for z ∈ {x, y} the
abbreviations ◇zψ = ◇(z ∧ ψ), ◻zψ = ◇(z → ψ), ◇zψ = ◇(z ∧ ψ), and ◻zψ = ◇(z → ψ).
Then, for z ∈ {x, y} we can define relativized formulas ϕz`−1,n, eqz`−1,n, firstz`−1,n, lastz`−1,n,
and succz`−1,n by replacing in the definitions of the formulas ϕ`−1,n, eq`−1,n, first`−1,n,
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last`−1,n, and succ`−1,n every modality ◇ (resp., ◻, ◇, ◻) by ◇z (resp., ◻z, ◇z, ◻z). All
occurrences of ϕ`−2,n, eq`−2,n, first`−2,n, last`−2,n, and succ`−2,n are not changed, i.e., we
do not replace modalities within these formulas. The following claim can be verified
along the lines of the proof of Lemma 3.2.

Claim 1. Let Nx,Ny,Nx,Ny ∈ [0,Tower(`, n) − 1] and θ, θ′ ∈ Θ and let T = G(Nx,Ny, θ)
and T = G(Nx,Ny, θ′) be grid element trees. Then the following holds for all z ∈ {x, y}:

(a) T ×T ⊧ eqz`−1,n if and only if Nz = Nz.
(b) T ×T ⊧ firstz`−1,n if and only if Nz = Nz = 0.
(c) T ×T ⊧ lastz`−1,n if and only if Nz = Nz = Tower(`, n) − 1.
(d) T ×T ⊧ succz`−1,n if and only if Nz = Nz + 1.

Using the relativized version of ϕ`−1,n we can enforce grid element trees. We define
gridel as the conjunction of

⋁
θ∈Θ

(θ ∧ θ ∧ ⋀
κ∈Θ∖{θ}

(¬κ ∧ ¬κ)) ∧ ◻◻((x⊕ y) ∧ (x⊕ y)) ∧ ϕx`−1,n ∧ ϕy`−1,n,

and

⋀
p∈Pn∖Θ

(¬p ∧ ¬p) ∧ ⋀
2≤i≤`−1

⋀
p∈Θ∪{x,y}

◻i◻i(¬p ∧ ¬p)

where ⊕ denotes “exclusive or” and ◻i denotes the sequence of i boxes ◻. Intuitively,
the first formula expresses that (i) the root is labeled with precisely one symbol θ ∈ Θ
and (ii) we can associate precisely two values with the grid element structure: the value
enforced by ϕx`−1,n (in analogy to Theorem 3.4) and the value enforced by ϕy`−1,n. The
second formula is just an auxiliary formula restricting the newly introduced proposi-
tions appropriately, similar to formula (1) of Definition 3.3. The following claim makes
this property of gridel explicit.

Claim 2. For all structures (S, s) and (S, s) we have that (S ×S, ⟨s, s⟩) ⊧ gridel if and
only if there are X,Y ∈ [0,Tower(`, n) − 1] and θ ∈ Θ such that (S, s) and (S, s) are
bisimilar to grid element structures G(X,Y, θ) and G(X,Y, θ), respectively.

Next, let τ ∶ [0,Tower(`, n) − 1]2 → Θ be a mapping. We define the tiling tree T(τ) as
follows:

— Take the disjoint union of a root node r and all trees from the set

U = {G(X,Y, τ(X,Y )) ∣X,Y ∈ [0,Tower(`, n) − 1]}.
— Add an edge from the root r to the root of each tree from U .

Intuitively, a tiling tree T(τ) represents the mapping τ as follows: for every X,Y in
the domain of τ it has a successor that is a grid element tree encoding the triple
(X,Y, τ(X,Y )). Again, the copy T(τ) is defined as usual. The following claim states
the existence of a formula that enforces tiling trees.

Claim 3. There is a formula tiling of switching depth ` such that for all pointed struc-
tures (S, s) and (S, s) we have (S×S, ⟨s, s⟩) ⊧ tiling if and only if there is a Tower(`, n)-
solution τ of S` such that (S, s) is bisimilar to the tiling tree T(τ) and (S, s) is bisimilar
to T(τ)

PROOF OF CLAIM 3. We take for tiling the conjunction of the following formulas,
where recall that Pn ∪ Pn is the set of all atomic propositions:
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(1) ⋀
p∈Pn

(¬p ∧ ¬p)

(2) ◇◇(gridel ∧ firstx`−1,n ∧ firsty`−1,n)
(3) ◻◇gridel
(4) ◻◇ gridel
(5) ◻ ◻ ((eqx`−1,n ∧ eqy`−1,n)→ ⋀θ∈Θ(θ↔ θ))
(6) ◻(◻¬lastx`−1,n →◇(succx`−1,n ∧ eqy`−1,n ∧ ⋁

(θ1,θ2)∈H
(θ1 ∧ θ2)))

(7) ◻(◻¬lasty`−1,n →◇(succy`−1,n ∧ eqx`−1,n ∧ ⋁
(θ1,θ2)∈V

(θ1 ∧ θ2)))

To show that the formula tiling satisfies the statements from the Claim we proceed
similarly as in the proof of Theorem 3.4. Observe first that tiling has switching depth `.
For the “if”-direction of the statement assume a Tower(`, n)-solution τ and structures
(S, s) and (S, s) that are bisimilar to T(τ) and T(τ), respectively. It is routine to verify
that (S ×S, ⟨s, s⟩) satisfies all the formulas (1)-(7) given above.

For the “only-if”-direction assume that (S × S, ⟨s, s⟩) ⊧ tiling. Formulas (3) and (4)
enforce that for all successors t and t of s and s, respectively, we have that (S, t) is
bisimilar to some grid element tree and (S, t) is bisimilar to some grid element tree.
Formula (2) enforces the existence of successors t and t such that (S, t) is bisimilar to
the grid element tree G(0,0, θ) and (S, t) is bisimilar to the grid element tree G(0,0, θ)
for some θ ∈ Θ. Formulas (6) and (7) inductively enforce the remaining grid element
trees as successors: Assume a successor t of s such that (S, t) is bisimilar to the grid
element tree G(i, j, θ). If i < Tower(`, n) − 1, then formula (6) enforces the existence of
a successor t of s such that (S, t) is bisimilar to a grid element tree G(i + 1, j, θ′) with
(θ, θ′) ∈ H. By formula (4), there is some successor s′ of s such that (S, s′) is bisimilar to
G(i + 1, j, θ′). Similarly, if j < Tower(`, n) − 1, then formula (7) together with formula (3)
enforces the existence of a successor s′ of s such that (S, s′) is bisimilar to a grid
element tree G(i, j + 1, θ′) with (θ, θ′) ∈ V. Thus, for each i, j ∈ [0,Tower(`, n) − 1] there
are states t, t, and a tile type θ, θ ∈ Θ such that

— t is a successor of s and t is a successor of s;
— (S, t) is bisimilar to the grid element tree G(i, j, θ);
— (S, t) is bisimilar to the grid element tree G(i, j, θ).

Note first that, if two successors t and t of s and s, respectively, are bisimilar to G(i, j, θ)
and G(i, j, θ), then we have (S×S, ⟨t, t⟩) ⊧ eqx`−1,n∧eqy`−1,n by Claim 1. By formula (5), we
obtain θ = θ. Assume now that there are successors t, t′ of s such that (S, t) is bisimilar
to G(i, j, θ1) and (S, t′) is bisimilar to G(i, j, θ2). By the above, there is a successor t
of s such that (S, t) is bisimilar to some G(i, j, θ′). By Claim 1 and formula (5), we
obtain θ′ = θ1. Analogously, we get θ′ = θ2 and thus θ1 = θ2. Hence, for every i, j ∈
[0,Tower(`, n) − 1] there is a unique θij such that for all successors t of s with (S, t)
bisimilar to G(i, j, θ′) we have θ′ = θij (and analogously, for all successors t of s). Thus,
the mapping τ defined by τ(i, j) = θij is well-defined. By what was said above, it is easy
to verify that it is a Tower(`, n)-solution for S`.

It remains to verify that (S, s) and (S, s) are bisimilar to the tiling trees T(τ) and
T(τ), respectively. In order to do this, it suffices to note that the labels in the points
s and s are the same as in a tiling tree, by formula (1). Together with the properties
observed above, this yields the bisimulation and finishes the proof of Claim 3.
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Finally, define a formula ϕθ0 expressing that the tile type at position (0,0) is pre-
cisely the input tile type θ0:

ϕθ0 =◇◇(gridel ∧ firstx`−1,n ∧ firsty`−1,n ∧ θ0).

It is not hard to see that SolTower(`,n)(S`, θ0) ≠ ∅ if and only if tiling∧ϕθ0 is id-satisfiable.
It remains to note that the size of the formula tiling∧ϕθ0 is polynomial in the size n of S.
By Theorem 3.4(b), the size of ϕ`−1,n (and thus of ϕz`−1,n) is polynomial in n. Hence, also
the size of gridel is polynomial in n. Moreover, all the auxiliary formulas like firstx`−1,n

are clearly polynomial in n. Overall, we get that tiling ∧ ϕθ0 is polynomially sized in
n = ∣S∣. This concludes the proof.

The following corollary is an immediate consequence of Proposition 2.1 and Proposi-
tion 3.5.

COROLLARY 3.7. The following holds:

— For each ` ≥ 1, K2-SAT restricted to formulas of switching depth ` is `-NEXP-hard
under polynomial time many-one reductions.

— In particular, K2-SAT is nonelementary.

4. HARDNESS RESULTS FOR K4 ×K AND S52 ×K

In this section, we prove further nonelementary lower bound results for the satisfi-
ability problem of two-dimensional modal logics on restricted classes of frames. We
hereby close nonelementary complexity gaps that were stated as open problems in [8].
Although in [8] uninterpreted product models for these logics are of interest, we prove
our lower bounds for the id-interpretation only: For each of the logics studied here, the
id-interpretation case can be reduced in polynomial time to the uninterpreted case by
Proposition 2.1.

We define the following logics:

— K4 ×K: Two-dimensional logic restricted to product models S1 ×S2 where F(S1) is
a frame (W,Ð→a) such that Ð→a is transitive.

— S5×K: Two-dimensional logic restricted to product models S1 ×S2 where F(S1) is a
frame (W,≡) with an equivalence relation ≡.

— S52 ×K: Two-dimensional modal logic restricted to models S1 ×S2 where F(S1) is a
frame (W,≡,≈) with equivalence relations ≡ and ≈.

Note that the lower bounds from the last section already hold for formulas having only
one action label ai in every component i ∈ {1,2}. Hence, throughout this section we fix
A = {a1, a2} and some countable set P = P1∪P2 of propositons. As in the previous section
we will abbreviate ◇a1 with ◇ and ◇a2 with ◇.

Let us start with K4 ×K. We adapt in a straightforward way the reduction from K-
satisfiability to K4-satisfiability to the two-dimensional case. When following a tran-
sition in a K4-frame one has no control over how far one is actually going due to
transitivity of the frame. The idea for the reduction is to introduce additional proposi-
tions h0, . . . , hn and enforce levels in the models. Intuitively, hi is true in w′ precisely
when w′ is in level i seen from the world w where the formula is evaluated. Following
a transition is then restricted to increase the level only by 1.

Let ϕ be a K2-formula with rank1(ϕ) = r and let h0, . . . , hr be fresh propositions. For
every 0 ≤ k ≤ r, we specify by structural induction a translation function tk such that
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tk is defined for an input formula ψ whenever rank1(ψ) + k ≤ r. More precisely, we set

tk(p) def= Hk ∧ p
tk(¬ψ) def= Hk ∧ ¬tk(ψ)

tk(ψ1 ∧ ψ2) def= tk(ψ1) ∧ tk(ψ2)
tk(◇ψ) def= ◇tk(ψ)
tk(◇ψ) def= Hk ∧◇(Hk+1 ∧ tk+1(ψ)),

where Hk
def= hk ∧ ⋀i≠k ¬hi and k < r in the definition of tk(◇ψ). We show that the

translation is satisfiability preserving. More precisely, we prove the following lemma.

LEMMA 4.1. For every K2(A,P)-formula ϕ we have: ϕ is id-satisfiable in K2 if and
only if t0(ϕ) is id-satisfiable in K4 ×K.

PROOF. We assume that ϕ is defined over P = P1∪P2 for disjoint P1 and P2. Moreover
set r def= rank1(ϕ). As in Section 3 we will write S1 ×S2 for ∏id

i∈[1,2]Si.
Assume first that ϕ is id-satisfiable in K ×K. Thus, there are structures

Si = (Wi,Ð→i,{Wi,p ∣ p ∈ Pi})

(i ∈ {1,2}) and w = ⟨w1,w2⟩ ∈ W1 ×W2 such that (S1 × S2,w) ⊧ ϕ. Without loss of
generality we assume that S1 is a tree with root w1. Define

S′
1 = (W1,Ð→+

1 ,{W ′
1,p ∣ p ∈ P1 ∪ {h0, . . . , hr}}),

where

—Ð→+
1 is the transitive closure of Ð→1,

—W ′
1,p

def= W1,p for all p ∈ P1, and

—W ′
1,hi

def= Vi, where Vi is defined to be the set of worlds w′ such that the (unique) path
in S1 from w1 to w′ has length i, i.e., consists of i transitions.

We prove by induction on the structure of ϕ that for each subformula ψ it holds: for all
i ∈ [0, r] we have

rank1(ψ) ≤ i ⇒ ((S1 ×S2, x) ⊧ ψ ⇔ (S′
1 ×S2, x) ⊧ tr−i(ψ))

for each x ∈ Vr−i ×W2.
For the induction base, assume ψ = p for some atomic proposition p ∈ P1 ∪ P2, i

arbitrary in [0, r], and fix an arbitrary x = ⟨x1, x2⟩ ∈ Vr−i ×W2. By definition of S′
1, we

have x ∈W ′
1,hr−i ×W2 and x ∉W ′

1,hj
×W2 for j ≠ r−i; hence, (S′

1×S2, x) ⊧Hr. Finally, the
following equivalences hold, where we assume that p ∈ Pj (j ∈ {1,2}): (S1 ×S2, x) ⊧ ψ if
and only if xj ∈Wj,p if and only if (S′

1 ×S2, x) ⊧Hr ∧ p = tr(ψ).

For the induction step, assume ψ is not atomic and i ∈ [0, r] such that i ≥ rank1(ψ), and
let us fix some x ∈ Vr−i×W2. Note that (S′

1×S2, x) ⊧Hr−i by definition of S′
1. We make a

case distinction on the structure of ψ. For the cases ¬χ, χ1∧χ2, and ◇χ the equivalence
follows straightforwardly from the induction hypothesis since rank1(ψ) = rank1(χ) and
rank1(χi) ≤ rank1(ψ) for i ∈ {1,2}.
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39:24 S. Göller et al.

It remains to consider the case ψ = ◇χ. Then rank1(χ) = rank1(ψ) − 1 ≤ i − 1 and we
have

(S1 ×S2, x) ⊧ ψ ⇔ ∃y ∈ Vr−(i−1) ×W2 ∶ xÐ→1 y and (S1 ×S2, y) ⊧ χ
IH⇔ ∃y ∈ Vr−i+1 ×W2 ∶ xÐ→1 y and (S′

1 ×S2, y) ⊧ tr−i+1(χ)
y∈Vr−i+1×W2⇔ ∃y ∈ Vr−i+1 ×W2 ∶ xÐ→+

1 y and
(S′

1 ×S2, y) ⊧Hr−i+1 ∧ tr−i+1(χ)
⇔ (S′

1 ×S2, x) ⊧◇(Hr−i+1 ∧ tr−i+1(χ))
x∈Vr−i×W2⇔ (S′

1 ×S2, x) ⊧Hr−i ∧◇(Hr−i+1 ∧ tr−i+1(χ))
⇔ (S′

1 ×S2, x) ⊧ tr−i(ψ).

Since rank1(ϕ) = r, (S1 × S2,w) ⊧ ϕ, and w ∈ V0 ×W2 we get (S′
1 × S2,w) ⊧ t0(ϕ).

Hence t0(ϕ) is id-satisfiable in K4 ×K.

For the other direction assume that t0(ϕ) is id-satisfiable in K4 × K. Thus, there
are a transitive structure S1 = (W1,Ð→1,{W1,p ∣ p ∈ P1 ∪ {h0, . . . , hr}}) and a structure
S2 = (W2,Ð→2,{W2,p ∣ p ∈ P2}) and w = ⟨w1,w2⟩ ∈W1×W2 such that (S1×S2,w) ⊧ t0(ϕ).
For each 0 ≤ i ≤ r we set

Ti
def= W1,hi ∖ (⋃

j≠i
W1,hj),

which corresponds to the formulas Hi in S1.
Now, define the structure S′

1 = (W ′
1,Ð→

′
1,{W ′

1,p ∣ p ∈ P1) by taking

—W ′
1 = ⋃0≤i≤r Ti,

—Ð→′
1 =Ð→1 ∩ (⋃0≤i<r Ti × Ti+1), and

—W ′
1,p =W1,p ∩W ′

1 for all p ∈ P1.

We prove by structural induction that for each subformula ψ of ϕ we have: for all
i ∈ [0, r] it holds

rank1(ψ) ≤ i ⇒ ((S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S′
1 ×S2, x) ⊧ ψ)

for each x ∈ Tr−i ×W2.
For the induction base assume ψ = p for some atomic proposition p ∈ P1 ∪ P2 and

i ≥ rank1(ψ) = 0. By definition, we have tr−i(ψ) =Hr−i ∧ p. Take an arbitrary x ∈ Tr ×W2.
By definition of Tr−i, we have (S1 × S2, x) ⊧ hr−i and (S1 × S2, x) /⊧ hj for each j ∈
[0, r] ∖ {r − i}. Thus, (S1 ×S2, x) ⊧ Hr−i. Moreover we have (S1 ×S2, x) ⊧ p if and only
if (S′

1 ×S2, x) ⊧ p by definition of W ′
1,p. Thus,

(S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S1 ×S2, x) ⊧Hr−i ∧ ψ ⇔ (S′
1 ×S2, x) ⊧ ψ.

For the induction step assume that ψ is not atomic, let i ∈ [0, r] be such that
rank1(ψ) ≤ i and fix an arbitrary x = ⟨x1, x2⟩ ∈ Tr−i×W2. Note that we have (S1×S2, x) ⊧
Hr−i, by definition of Tr−i. We make a case distinction on the structure of ψ. For the
cases ¬χ, χ1 ∧ χ2, and ◇χ the equivalence follows directly from the induction hypothe-
sis.
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For the remaining case ψ =◇χ we have rank1(χ) = rank1(ψ) − 1 ≤ i − 1 and

(S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S1 ×S2, x) ⊧Hr−i ∧◇(Hr−i+1 ∧ tr−i+1(χ))
x1∈Tr−i⇔ (S1 ×S2, x) ⊧◇(Hr−i+1 ∧ tr−i+1(χ))

Def. Tr−i+1⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→1 y and
(S1 ×S2, y) ⊧Hr−i+1 ∧ tr−i+1(χ)

y∈Tr−i+1×W2⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→1 y and
(S1 ×S2, y) ⊧ tr−i+1(χ)

Def. Ð→′
1⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→′

1 y and
(S1 ×S2, y) ⊧ tr−i+1(χ)

rank1(χ)≤i−1,hyp
⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→′

1 y and (S′
1 ×S2, y) ⊧ χ

⇔ (S′
1 ×S2, x) ⊧◇χ

⇔ (S′
1 ×S2, x) ⊧ ψ.

By assumption we have (S1 ×S2,w) ⊧ t0(ϕ), w ∈ T0 ×W2, and rank1(ϕ) = r. Thus, the
above equivalence implies (S′

1 ×S2,w) ⊧ ϕ and thus, ϕ is id-satisfiable in K ×K.

Lemma 4.1 provides a reduction of K2
id-SAT to id-satisfiability in K4×K. Finally, Propo-

sition 2.1 together with Proposition 3.5 yields the following result.

THEOREM 4.2. Satisfiability in K4 ×K is nonelementary.

Next, we study combinations of K with S5 and S52. It is well-known that the complex-
ity for checking satisfiability jumps from NP for S5 to PSPACE for S52. We will show
that also the complexity for deciding satisfiability in the product logics S5 × K and
S52 ×K, respectively, differs. In particular, we will again reduce from K2

id-SAT in order
to show a nonelementary lower bound for the latter logic, which is in sharp contrast to
the following result by Marx [23].

THEOREM 4.3 ([23]). Satisfiability in S5 ×K is NEXP-complete.

PSPACE-hardness for satisfiability in S52 can be shown via a straightforward reduc-
tion from K [3]. We adapt this reduction to the two-dimensional case by defining a
translation † by

q† def= p∗ ∧ q
(ϕ1 ∧ ϕ2)† def= p∗ ∧ ϕ†

1 ∧ ϕ
†
2

(¬ϕ)† def= p∗ ∧ ¬(ϕ†)
(◇ϕ)† def= p∗ ∧◇ϕ†

(◇ϕ)† def= p∗ ∧◇≡(¬p∗ ∧◇≈(p∗ ∧ ϕ†))
where ◇≡ and ◇≈ refer to the two modalities in S52 and p∗ is a fresh propositional
variable in the signature of the first component. Intuitively, one transition in K is sim-
ulated by two transitions in S52. This is possible since the composition of two equiv-
alence relations is neither symmetric nor transitive in general and using the fresh
variable p∗ we can enforce a non-trivial transition, i.e., no loops. It can be proven along
the lines of the proof in [3] that † preserves id-satisfiability.

LEMMA 4.4. For every K2(A,P)-formula ϕ we have: ϕ is id-satisfiable in K2 if and
only if ϕ† is id-satisfiable in S52 ×K.
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PROOF. We assume that ϕ is defined over P = P1 ∪ P2 for disjoint P1 and P2 with
p∗ /∈ P1 ∪ P2. Again, we write S1 ×S2 for ∏id

i∈[1,2]Si.
Assume first that ϕ is id-satisfiable in K ×K. Thus, there are S1 = (W1,

aÐ→,{W1,p ∣
p ∈ P1}), S2 = (W2,

bÐ→,{W2,p ∣ p ∈ P2}), and s ∈ W1 ×W2 such that (S1 × S2, s) ⊧ ϕ.
Define an S52-structure S′

1 = (W ′
1,≡,≈,{W ′

1,p ∣ p ∈ P1 ∪ {p∗}}) as follows:

—W ′
1

def= W1⊎
aÐ→,

— ≡ is the reflexive, transitive, and symmetric closure of {(w, (w,w′)) ∣ w aÐ→ w′},
— ≈ is the reflexive, transitive, and symmetric closure of {((w,w′),w′) ∣ w aÐ→ w′},
—W ′

1,p
def= W1,p for p ∈ P1,

—W ′
1,p∗

def= W1.

Now, one can prove by induction on the structure of a formula ψ that for every world
w ∈W1 ×W2 we have:

(S1 ×S2,w) ⊧ ψ ⇔ (S′
1 ×S2,w) ⊧ ψ†.

For the induction base, i.e., when ψ is a propositional variable, the statement is
immediately true, by definition of the structure S′

1. For the cases ¬χ, χ1 ∧ χ2 and ◇χ,
the statement follows directly from the induction hypothesis.

So assume ψ is of the form ◇χ. Suppose first that (S1 × S2, ⟨w1,w2⟩) ⊧ ◇χ. Thus,
there is some world w′

1 such that w1
aÐ→ w′

1 and (S1 × S2, ⟨w′
1,w2⟩) ⊧ χ. By in-

duction hypothesis, we have (S′
1 × S2, ⟨w′

1,w2⟩) ⊧ χ†. By definition of S′
1, we have

w1 ≡ (w1,w
′
1), (w1,w

′
1) ≈ w′

1, w1,w
′
1 ∈ W ′

1,p∗ , and (w1,w
′
1) ∉ W ′

1,p∗ . Obviously, this
yields (S′

1 × S2, ⟨w1,w2⟩) ⊧ p∗ ∧ ◇≡(¬p∗ ∧ ◇≈(p∗ ∧ χ†)). For the other direction sup-
pose (S′

1 ×S2, ⟨w1,w2⟩) ⊧ p∗ ∧◇≡(¬p∗ ∧◇≈(p∗ ∧ χ†)). Thus, there are worlds v,w′
1 ∈W ′

1

with w1 ≡ v, v ≈ w′
1, w1,w

′
1 ∈ W ′

1,p∗ , and v ∉ W ′
1,p∗ such that (S′

1 ×S2, ⟨w′
1,w2⟩) ⊧ χ†. By

definition of S′
1, we know that w′

1 ∈ W1, v = (w1,w
′
1), and w1

aÐ→ w′
1. As w′

1 ∈ W1, the
induction hypothesis implies (S1 ×S2, ⟨w′

1,w2⟩) ⊧ χ. Hence, (S1 ×S2, ⟨w1,w2⟩) ⊧◇χ.
In particular, we obtain (S′

1 ×S2, s) ⊧ ϕ†, thus, ϕ† is id-satisfiable in S52 ×K.
Assume now that ϕ† is id-satisfiable in S52 ×K. Hence, there is an S52-structure

S1 = (W1,≡,≈,{W1,p ∣ p ∈ P1 ∪ {p∗}}),

a structure S2 = (W2,
bÐ→,{W2,p ∣ p ∈ P2}), and s ∈W1 ×W2 such that (S1 ×S2, s) ⊧ ϕ†.

Define a structure S′
1 = (W ′

1,
aÐ→,{W ′

1,p ∣ p ∈ P1}) as follows:

—W ′
1

def= W1,p∗

— aÐ→ def= {(u, v) ∣ ∃w ∈W1 ∖W1,p∗ ∶ u ≡ w ≈ v}
—W ′

1,p
def= W1,p ∩W1,p∗ for all p ∈ P1

One can prove by induction on the structure of a formula ψ that for every world w ∈
W ′

1 ×W2 we have:

(S1 ×S2,w) ⊧ ψ† ⇔ (S′
1 ×S2,w) ⊧ ψ

Again, the case when ψ is a propositional variable is immediately clear from the def-
inition of S′

1. Also the cases ¬χ, χ1 ∧ χ2, and ◇χ are direct consequences from the
induction hypothesis.
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For the case ψ = ◇χ assume first that (S1 ×S2, ⟨w1,w2⟩) ⊧ (◇χ)†. By the semantics,
there is some world v with w1 ≡ v and v ≈ w2 such that w1,w2 ∈ W1,p∗ , v ∉ W1,p∗ , and
(S1 ×S2, ⟨w′

1,w2⟩) ⊧ χ†. By induction, we have that (S′
1 ×S2, ⟨w′

1,w2⟩) ⊧ χ. Moreover,
the definition of S′

1 yields w1
aÐ→ w′

1. By the semantics, we get (S′
1×S2, ⟨w1,w2⟩) ⊧◇χ.

For the other direction assume (S′
1 ×S2, ⟨w1,w2⟩) ⊧◇χ. Hence, there is some world w′

1

such that w1
aÐ→ w′

1 and (S′
1 ×S2, ⟨w′

1,w2⟩) ⊧ χ. By induction, (S1 ×S2, ⟨w′
1,w2⟩) ⊧ χ†.

By definition of aÐ→, there is some v ∈W1 ∖W1,p∗ such that w1 ≡ v ≈ w′
1. By definition of

S′
1, we have w1,w

′
1 ∈W1,p∗ . Thus, the semantics yields (S1 ×S2, ⟨w1,w2⟩) ⊧ (◇χ)†.

Observe now that (S1×S2, s) ⊧ ϕ† implies s ∈W ′
1×W2 by the definition of †. Therefore,

we get (S′
1 ×S2, s) ⊧ ϕ and ϕ is id-satisfiable in K ×K.

The following theorem is an immediate consequence of Lemma 4.4, Proposition 3.5,
and Proposition 2.1.

THEOREM 4.5. Satisfiability in S52 ×K is nonelementary.

5. FEFERMAN-VAUGHT DECOMPOSITIONS FOR PRODUCTS
The Feferman-Vaught decomposition theorem for many-dimensional modal logic Kd

can be formulated as follows, and was proven in [13]. Recall the notion of an interpre-
tation σ from Section 2.3.

THEOREM 5.1 ([13]). From an interpretation σ and a Kd(A,P)-formula ϕ with A =
⊎i∈[1,d] Ai, P = ⊎i∈[1,d] Pi, one can compute a tuple (Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji}
a finite set of multimodal formulas over (Ai,Pi) and β a positive boolean formula with
variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for every (Ai,Pi)-structure Si and
every world wi of Si (i ∈ [1, d]):

(
σ

∏
i∈[1,d]

Si, ⟨w1, . . . ,wn⟩) ⊧ ϕ ⇔ µ ⊧ β

Here, µ ∶X → {0,1} is defined by µ(xji ) = 1 if and only if (Si,wi) ⊧ ψji .

We call D
def= (Ψ1, . . . ,Ψd, β) the decomposition of ϕ and define ∣D∣ def= ∣β∣ +∑i,j ∣ψji ∣ to be

its size.
Note that Theorem 5.1 only holds in the presence of an interpretation σ for the

atomic propositions since interpretations establish the connection between the product
and component structures. We also mention that Theorem 5.1 has been proven in [13]
for much more elaborated notions of interpretations. However, note that not every logic
admits decomposition: An example for this is the temporal logic CTL. More precisely, it
has been shown in [13, Theorem 11] that decomposition with respect to asynchronous
products and a particular interpretation for the atomic proposition (in the sense of
Section 2.3) fails for every logic that can express the property EGp meaning “there is a
maximal path (a path is maximal if it is either infinite or ends in a dead-end) on which
every world satisfies p”.

An analogous theorem can be stated for first-order sentences, see [11] for a survey.
We assume standard definitions concerning first-order logic. We will consider only re-
lational signatures τ . For a finite set A of action labels and a finite set of propositions
P we identify the pair (A,P) with the signature, where every a ∈ A has arity 2 and ev-
ery p ∈ P has arity 1. This allows to consider Kripke structures as ordinary relational
structures. In the following we consider decomposition theorems for finite variable
fragments FOk of first-order logic. A formula ϕ is in FOk if at most k different variables
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occur in ϕ. Note that a formula, in which every subformula has at most k free variables
is equivalent to an FOk-formula.

THEOREM 5.2 ([10]). From an interpretation σ and an FOk-sentence ϕ over the sig-
nature (A,P) with A = ⊎i∈[1,d] Ai, P = ⊎i∈[1,d] Pi, one can compute a tuple (Ψ1, . . . ,Ψd, β)
with Ψi = {ψji ∣ j ∈ Ji} a finite set of FOk-sentences over the signature (Ai,Pi) and β a
positive boolean formula with variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for
every (Ai,Pi)-structure Si (i ∈ [1, d]):

σ

∏
i∈[1,d]

Si ⊧ ϕ ⇔ µ ⊧ β.

Here, µ ∶X → {0,1} is defined by µ(xji ) = 1 if and only if Si ⊧ ψji .

Note that the proofs of both Theorem 5.1 and Theorem 5.2 yield decompositions of
nonelementary size. In this section we provide matching lower bounds for Feferman-
Vaught decompositions for Kd and FOk for k ≥ 2. Having enforced nonelementarily
branching trees with small formulas (Theorem 3.4) allows us to prove a nonelemen-
tary lower bound for the sizes of Feferman-Vaught decompositions for 2-dimensional
modal logic. Without making this explicit in the statement, our lower bound is more
general than the nonelementary lower bound for 2-dimensional modal logic from [17]
in the following sense. We provide a family of small formulas which are “inherently
hard to decompose”: When assuming, by contradiction, the existence of small decom-
positions for our formulas, any model for them can be used to deduce the desired con-
tradiction, whereas in [17] appropriately chosen models had to be defined for this. Our
proof strategy is similar to the proof of Theorem 5.1 in [12].

THEOREM 5.3. Feferman-Vaught decompositions for many-dimensional modal
logic w.r.t. asynchronous product are inherently nonelementary. More precisely, for every
elementary function f(n) there exists ` ≥ 1 such that the K2-formula ϕ`,2 from Defini-
tion 3.3 has no decomposition D` in the sense of Theorem 5.1 with ∣D`∣ ≤ f(∣ϕ`,2∣). The
same lower bound holds when relativized to product structures T × T′, where F(T) and
F(T′) are finite trees.

PROOF. Assume by contradiction that there were an elementary function f ∶ N → N
such that for each ` ≥ 1 there is a decomposition D` = (Ψ(`),Ψ

(`)
, β`) of ϕ`,2 in the sense

of Theorem 5.1 with ∣D`∣ ≤ f(∣ϕ`,2∣). In particular, ∣β`∣ ≤ f(∣ϕ`,2∣). Since ∣ϕ`,2∣ ≤ exp(`) by
Theorem 3.4(b), there exists an elementary function g such that ∣β`∣ ≤ g(`) for all ` ≥ 0.
Thus, there exists an h0 ≥ 0 with 2g(h−1) < Tower(h,2) for all h ≥ h0; let us fix such an
h0.

By Theorem 3.4(a), ϕh0,2 is id-satisfiable. Assume that (S×S, ⟨s, s⟩) ⊧ ϕh0,2 for some
pointed structure (S, s) over ({a},Pn) and some pointed structure (S, s) over ({a},Pn).
By Theorem 3.4(a) there exists some k ∈ [0,Tower(h0+1, n)] such that (S, s) is bisimilar
to some extension of Υ

(0)
h0,n

(k) and (S, s) is bisimilar to some extension of Υ
(0)
h0,n(k).

By Definition 3.1, for each i ∈ [0,Tower(h0,2) − 1] there exist successors si of s and si
of s such that (S, si) is bisimilar to some extension of Υ

(0)
h0−1,2(i) and (S, si) is bisimilar

to some extension of Υ
(0)
h0−1,2(i). Also note that

(S ×S, ⟨si, sj⟩) ⊧ ϕh0−1,2 ⇔ i = j (2)
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for all i, j ∈ [0,Tower(h0,2) − 1]. Consider our decomposition Dh0−1 =
(Ψ(h0−1),Ψ

(h0−1)
, βh0−1) of ϕh0−1,2 where Ψ(h0−1) = {ψj ∣ j ∈ J} and Ψ

(h0−1) = {ψj ∣ j ∈ J}
for some indexed sets J, J , and βh0−1 is a positive boolean formula with variables from
X = {xj ∣ j ∈ J} ∪ {xj ∣ j ∈ J}. By assumption, we have ∣βh0−1∣ ≤ g(h0 − 1) and hence,
∣X ∣ ≤ g(h0 − 1).

For each r ∈ [0,Tower(h0,2) − 1] we define a truth assignment µr ∶ X → {0,1} as
follows:

µr(xj) = 1 ⇔ (S, sr) ⊧ ψj
µr(xj) = 1 ⇔ (S, sr) ⊧ ψj

Since for βh0−1 there are 2∣X ∣ ≤ 2g(h0−1) < Tower(h0,2) many truth assignments, by the
pigeonhole principle there exist 0 ≤ a < b < Tower(h0,2) with µa = µb. In other words,
(S, sa) ⊧ ψj if and only if (S, sb) ⊧ ψj and (S, sa) ⊧ ψj if and only if (S, sb) ⊧ ψj . By
the definition of a Feferman-Vaught decomposition and the fact that (S ×S, ⟨sa, sa⟩) ⊧
ϕh0−1,2, we obtain (S ×S, ⟨sa, sb⟩) ⊧ ϕh0−1,2. But this contradicts (2).

Note that the lower bound also holds when restricting models to products of finite
trees, since every pointed structure (S, s) (resp., (S, s)) that is bisimilar to an exten-
sion of Υ

(0)
`,n(j) (resp., to an extension of Υ

(0)
`,n(j)) is bisimilar to a finite tree.

Note that the lower bound from Theorem 5.3 would even hold if we defined the size
of a decomposition (Ψ1, . . . ,Ψd, β) as the size of the boolean formula β only (and not
accounting for the sizes of the Ψi); the same proof works for this variant. In contrast
to [17] the proof of Theorem 5.3 allows to derive nonelementary lower bounds on de-
compositions for any decomposable logic (in the sense of Theorem 5.1) that is at least
as expressive as modal logic and only elementarily less succinct than modal logic.

COROLLARY 5.4. Every logic that is at least as expressive as and at most elemen-
tary less succinct than modal logic does not have elementary sized Feferman-Vaught
decompositions with respect to asynchronous product.

PROOF. We exemplarily provide the proof for FO2 sentences. The proof for any other
logic that satisfies the properties from Corollary 5.4 works analogously. It is well
known that a modal logic formula ϕ can be translated (in polynomial time) into an
equivalent FO2-formula ϕ̂(x) with one free variable, see for instance [1, Section 2.4].
The family of FO2-sentences that witnesses that there are no elementarily-sized de-
compositions is simply {∃x ∶ ϕ̂`,2(x) ∣ ` ≥ 1}.

6. FEFERMAN-VAUGHT DECOMPOSITIONS FOR SUM
So far, we only considered Feferman-Vaught decompositions for asynchronous prod-
ucts. Another important and natural operation on structures is the disjoint sum. Let
us fix a relational signature τ and for i ∈ [1, d] let Si = (Di,{Pi,a ∣ a ∈ τ}) be a τ -structure
such that Di ∩Dj = ∅ for i ≠ j. Let Ai /∈ τ be a fresh unary predicate symbol for each
i ∈ [1, d]. The the disjoint sum ∑di=1 Si is the following structure over the signature
τ ∪ {A1, . . . ,Ad}:

d

∑
i=1

Si
def= ( ⋃

i∈[1,d]
Di,{ ⋃

i∈[1,d]
Pi,a ∣ a ∈ τ} ∪ {Di ∣ i ∈ [1, d]}).

Here, ⋃i∈[1,d] Pi,a is the interpretation for a ∈ τ andDi is the interpretation for the fresh
symbol Ai. Note that the fresh symbol Ai allows to recover the component structure

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:30 S. Göller et al.

Si. In other words, we can express in FO over ∑di=1 Si that Si satisfied a certain FO-
sentence. The following result is again classical [10; 11].

THEOREM 6.1. For every FOk-sentence ϕ over the signature τ ⊎ {A1, . . . ,Ad} one can
compute a tuple (Ψ1, . . . ,Ψd, β), where each Ψi = {ψji ∣ j ∈ Ji} is a finite set of FOk-
sentences over the signature τ and where β is a positive boolean formula with variables
from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji ) = 1 if and only if Si ⊧ ψji .

The following result is a simple corollary of Corollary 5.4.

COROLLARY 6.2. For every k ≥ 3, there is no elementary function f such that every
FOk-formula ϕ has a Feferman-Vaught decomposition w.r.t. disjoint sum of size f(∣ϕ∣).

PROOF. Recall that ϕ`,2 is an K2(A,P)-formula with (A,P) def= ({a, a},P2 ∪ P2). For
a structure S over ({a},P2) let S̃ be the corresponding structure over ({a},P2). We
translate the formula ϕ`,2 from above (see the proof of Theorem 5.3) into an FO3-
formula ϕ∗`,2(x,x′) with two free variables over the signature τ = {a} ∪ P2 ∪ {A1,A2}
inductively as follows:

— p∗(x,x′) def= p(x) for each p ∈ P2

— p∗(x,x′) def= p(x′) for each p ∈ P2

— (¬ψ)∗(x,x′) def= ¬ψ∗(x,x′)
— (ψ1 ∧ ψ2)∗(x,x′) def= ψ∗1(x,x′) ∧ ψ∗2(x,x′)
— (◇ψ)∗(x,x′) def= ∃y ∶ (A1(y) ∧ a(x, y) ∧ ψ∗(y, x′))
— (◇ψ)∗(x,x′) def= ∃y′ ∶ (A2(y′) ∧ a(x′, y′) ∧ ψ∗(x, y′))

Note that this translation indeed yields an FO3-formula because every subformula has
at most three free variables.

The reader can easily verify by induction that for every pointed structure (S, s)
over ({a},P2) and every pointed structure (S, s) over ({a},P2) and every K2(A,P)-
formula ϕ we have (S × S, ⟨s, s⟩) ⊧ ϕ if and only if S + S̃ ⊧ ϕ∗(s, s). The family of
FO3-sentences that witnesses that there are no elementarily-sized decompositions is
thus simply {∃x∃x′ ∶ A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′) ∣ ` ≥ 1} – the proof is analogous to the
proof of Theorem 5.3.

Corollary 6.2 raises the question whether even Feferman-Vaught decompositions for
FO2 w.r.t. disjoint sum become nonelementary. We give a negative answer to this ques-
tion.

THEOREM 6.3. The following is computable in doubly exponential time:
INPUT: An FO2-sentence ϕ over τ ⊎ {A1, . . . ,Ad}.
OUTPUT: A decomposition (Ψ1, . . . ,Ψd, β), where Ψi = {ψji ∣ j ∈ Ji} is a finite set of
FO2-sentences over τ and β is a positive boolean formula with variables from X = {xji ∣
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i ∈ [1, d], j ∈ Ji} such that for all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji ) = 1 if and only if Si ⊧ ψji .
We will prove Theorem 6.3 only for the case d = 2; the general case can be shown

in the same way. Hence, let us fix a signature τ of relational symbols and let A1,A2 /∈
τ be two additional unary symbols. Let S1 and S2 be relational structures over the
signature τ .

We define a partial order ⪯ on the set of all first-order formulas by setting ψ1 ⪯ ψ2 if
ψ1 is a subformula of ψ2. For a formula ϕ we denote with Qϕ the set of all subformulas
of ϕ that start with a quantifier. With Qcl

ϕ we denote the set of those formulas in Qϕ
that are closed, i.e., do not have free variables. In a formula ∃x ∶ Ai(x) ∧ ψ (resp. ∀x ∶
Ai(x)→ ψ), where i ∈ {1,2}, we say that x is relativized to Ai, and for better readability
we write ∃x ∈ Ai ∶ ψ (resp. ∀x ∈ Ai ∶ ψ) for that formula.

A formula ϕ over the signature τ∪{A1,A2} is called pure if ϕ is a boolean combination
of formulas ϕ1, . . . , ϕn such that for every 1 ≤ i ≤ n there exists j ∈ {1,2} such that for
every (Qx ∶ ψ) ∈ Qϕi (where Q ∈ {∃,∀}), x is relativized to Aj in Qx ∶ ψ. Equivalently, ϕ
is pure, if the following two conditions hold:

— For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in (Qx ∶ ψ) to either A1 or A2.
— For all (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), x is relativized in

(Q1x ∶ ψ1) to the same Ai as y in (Q2y ∶ ψ2).

To prove Theorem 6.3 (for d = 2), it suffices to transform an FO2-sentence over the
signature τ ∪{A1,A2} in doubly exponential time into an equivalent pure FO2-sentence
over the signature τ ∪ {A1,A2}; this will be shown as Theorem 6.6 below.

A formula ϕ over the signature τ ∪ {A1,A2} is called almost pure if it satisfies the
following conditions:

— For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in (Qx ∶ ψ) to either A1 or A2.
— If (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), then x is relativized in

(Q1x ∶ ψ1) to the same Ai as y in (Q2y ∶ ψ2), or there exists θ ∈ Qcl
ϕ with (Q1x ∶ ψ1) ⪯

θ ⪯ ψ2.

In other words, whenever a chain of subformulas (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2) ⪯ ϕ does not
satisfy the pureness condition, then (Q1x ∶ ψ1) occurs within a proper subsentence of
(Q2y ∶ ψ2) that moreover starts with a quantifier. Clearly, every pure formula is almost
pure. Vice versa, we have:

LEMMA 6.4. From a given almost pure formula ϕ over the signature τ ∪ {A1,A2}
one can compute a logically equivalent pure formula ϕ′ of size 2∣Qcl

ϕ∣ ⋅ O(∣ϕ∣). If ϕ is an
FO2-formula then ϕ′ is an FO2-formula as well.

PROOF. The idea is to replace the topmost occurrences of sentences from the set
Qcl
ϕ by truth values in all possible ways in a big disjunction over all possible truth

assignments. Since sentences from Qcl
ϕ may also violate the pureness condition, we

have to iterate this replacement step.
Let ϕ be almost pure and let F be the set of all mappings fromQcl

ϕ∖{ϕ} to {true, false}.
For f ∈ F and a formula θ let θ[f] be the formula that results from θ by replacing every
⪯-maximal formula ψ from the set Qcl

ϕ ∖{θ} by the truth value f(ψ). Then, we define ϕ′
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as the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ)↔ ψ[f])).

Let us first show that ϕ′ is pure: Since ϕ is almost pure, in every subformula (Qx ∶
ψ) ∈ Qϕ, x is either relativized to A1 or A2. Hence, the same holds for ϕ′. Now, let
(Q1x ∶ ψ′1), (Q2y ∶ ψ′2) ∈ Qϕ′ with (Q1x ∶ ψ′1) ⪯ (Q2y ∶ ψ′2). In order to get a contradiction,
assume that x is relativized in (Q1x ∶ ψ′1) to A1 and y is relativized in (Q2y ∶ ψ′2) to A2.
The two subformulas (Q1x ∶ ψ′1) and (Q2y ∶ ψ′2) must be of the form (Q1x ∶ ψ1[f]) and
(Q2y ∶ ψ2[f]), respectively, where (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶
ψ2). Since ϕ is almost pure, there exists a closed formula θ ∈ Qcl

ϕ with (Q1x ∶ ψ1) ⪯ θ ⪯ ψ2.
But then, by construction of ϕ′ we cannot have (Q1x ∶ ψ1[f]) ⪯ (Q2y ∶ ψ2[f]) in ϕ′, since
the whole subformula θ (which contains Q1x ∶ ψ1) is replaced by a truth value within
Q2y ∶ ψ2[f].

Next, let us argue that ϕ′ is equivalent to ϕ. For this, let us fix a τ -structure S. First,
assume that S ⊧ ϕ(a) (where a is a tuple of values for the free variables in ϕ; note that
we do not assume that ϕ is closed). We define the mapping f ∶ Qcl

ϕ ∖ {ϕ} → {true, false}
by f(ψ) = true if and only if S ⊧ ψ. Since S ⊧ ϕ(a) we get

S ⊧ ϕ[f](a) ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ)↔ ψ[f]).

On the other hand, if there is a mapping f ∶ Qcl
ϕ ∖ {ϕ}→ {true, false} with

S ⊧ ϕ[f](a) ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ)↔ ψ[f]),

then an induction on the formula size shows that for every ψ ∈ Qcl
ϕ ∖ {ϕ}, f(ψ) is the

truth value of the closed formula ψ in the structure S. Since moreover S ⊧ ϕ[f](a), we
get S ⊧ ϕ(a).

Finally, the size of the formula

ϕ[f] ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ)↔ ψ[f])

is in O(∣ϕ∣) since the formulas ϕ[f], ψ[f] (for ψ ∈ Qcl
ϕ ∖ {ϕ}) form a kind of partition of

the whole formula ψ. Hence, the size of ϕ′ is bounded by 2∣Qcl
ϕ∣ ⋅O(∣ϕ∣).

LEMMA 6.5. From a given FO2-formula ϕ(x) over the signature τ ∪ {A1,A2} with
at most one free variable x, one can compute FO2-formulas ϕ′(x) and ϕ′′(x) over the
signature τ ∪ {A1,A2} of size 2O(∣ϕ∣2) such that the following holds for all structures S1

and S2 over the signature τ .

—Qx ∈ A1 ∶ ϕ′(x) and Qx ∈ A2 ∶ ϕ′′(x) are almost pure (where Q ∈ {∀,∃}).
— For all a ∈S1, S1 +S2 ⊧ ϕ(a) if and only if S1 +S2 ⊧ ϕ′(a).
— For all a ∈S2, S1 +S2 ⊧ ϕ(a) if and only if S1 +S2 ⊧ ϕ′′(a).

Moreover, ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) and ∣Qcl

ϕ′′(x)∣ ∈ 2O(∣ϕ∣).

PROOF. Let us construct the formula ϕ′(x) (ϕ′′(x) is constructed analogously) by
induction over the structure of the formula ϕ(x). For this, we assume that ϕ(x) is in
negation normal form, i.e., negations appear only in front of atomic formulas. The case
when ϕ(x) is quantifier-free is easy: simply replace every occurrence of A1(x) by true
and every occurrence of A2(x) by false.
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The case that the top-most operator in ϕ(x) is a boolean operator is clear, e.g., set
(ϕ1 ∧ ϕ2)′ = ϕ′1 ∧ ϕ′2.

Let us now assume that ϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is an FO2-formula, the formula
ψ(x, y) can be obtained from a positive boolean formulaB(p1, . . . , pk) by replacing every
propositonal variable pi by

(a) some α(x) ∈ Qϕ, where only x may occur freely, or by
(b) some β(y) ∈ Qϕ, where only y may occur freely, or by
(c) a possibly negated atomic formula (i.e., a literal) that involves a subset of the vari-

ables {x, y}.

Let ψ′(x, y) be the formula that results from ψ(x, y) by replacing every subformula
α(x) (resp., β(y)) of type (a) (resp., (b)) by α′(x) (resp., β′(y)). Since by induction, every
formula ∃x ∈ A1 ∶ α′(x) and every formula ∃y ∈ A1 ∶ β′(y) is almost pure, also ∃x ∈ A1∃y ∈
A1 ∶ ψ′(x, y) is almost pure.

By transforming B into DNF, we can write ψ(x, y) as ⋁ri=1 ψi, where every ψi is a
conjunction of formulas of the types (a)–(c). Hence, we can write ψi as

ψi = αi(x) ∧ βi(y) ∧ γi(x, y),
where αi is a conjunction of type-(a) formulas, βi is a conjunction of type-(b) formulas,
and γi(x, y) is a conjunction of type-(c) formulas. Note that r ≤ 2∣B∣ ≤ 2∣ϕ(x)∣.

Clearly, over a structure S1 +S2, the formula ∃y ∶ ψ(x, y) is equivalent to ∃y ∈ A1 ∶
ψ(x, y) ∨ ∃y ∈ A2 ∶ ψ(x, y), i.e., to

∃y ∈ A1 ∶ ψ(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (αi(x) ∧ βi(y) ∧ γi(x, y)).

By induction, for all x ∈S1, this formula is equivalent to

∃y ∈ A1 ∶ ψ′(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (α′i(x) ∧ β′′i (y) ∧ γi(x, y)).

In this formula, every occurrence of a literal in γi(x, y), in which both x and y occur,
can be replaced either by true (if the literal is negative) or false (if the literal is positive).
The reason for this is that no atomic relations of S1 +S2 involve both elements of S1

and S2. Clearly, if a literal in γi(x, y) is replaced by false then we can remove the whole
disjunct ∃y ∈ A2 ∶ (α′i(x)∧β′′i (y)∧γi(x, y)); let us assume that this occurs for q+1 ≤ i ≤ r.
We therefore obtain an equivalent formula of the form

∃y ∈ A1 ∶ ψ′(x, y) ∨
q

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))).

Here δi,1(x) (resp., δi,2(y)) is the conjunction of all literals in γi(x, y) that only involve
the variable x (resp., y). Let ϕ′(x) be the above formula. We have to show that the
formula

∃x ∈ A1 (∃y ∈ A1 ∶ ψ′(x, y) ∨
q

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))))

is almost pure. This follows inductively from the fact that ∃x ∈ A1∃y ∈ A1 ∶ ψ′(x, y),
∃x ∈ A1 ∶ α′i(x), and ∃y ∈ A2 ∶ β′′i (y) are almost pure, and the fact that ∃y ∈ A2 ∶ (β′′i (y) ∧
δi,2(y)) is closed. This concludes the case ϕ(x) = ∃y ∶ ψ(x, y). The case ϕ(x) = ∀y ∶ ψ(x, y)
can be treated analogously.

If we allow ∧’s and ∨’s of arbitrary width, then the depth (i.e., the height of the syntax
tree) of ϕ′(x) is bounded by O(∣ϕ∣). Due to forming CNFs and DNFs, the width of ∧’s
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and ∨’s can be bounded by 2∣ϕ(x)∣. Hence, the syntax tree of ϕ′(x) has height O(∣ϕ∣)
and branching degree 2∣ϕ(x)∣, and therefore has 2O(∣ϕ∣2) nodes. Replacing ∧’s and ∨’s of
arbitrary width ≤ 2∣ϕ(x)∣ by 2-ary ∧’s and ∨’s only multiplies the number of nodes by
2∣ϕ(x)∣. Hence, ϕ′(x) is of size 2O(∣ϕ∣2).

For the bound ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) note that in the above construction, the number of

closed subformulas that start with a quantifier is increased by at most q+1 ≤ r+1 (due
to the formulas ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)) for i ∈ [1, q] and possibly ∃y ∈ A1 ∶ ψ′(x, y)).
Since r is exponential in the size of the boolean formula B, the bound ∣Qcl

ϕ′(x)∣ ∈ 2O(∣ϕ∣)

follows.

THEOREM 6.6. From a given closed FO2-formula ϕ over the signature τ ∪ {A1,A2}
one can compute a pure closed FO2-formula ψ of size 22O(∣ϕ∣) such that for all structures
S1 and S2 over the signature τ , S1 +S2 ⊧ ϕ if and only if S1 +S2 ⊧ ψ.

PROOF. We first apply Lemma 6.5 to ϕ and obtain a closed almost pure FO2-formula
θ such that S1 +S2 ⊧ ϕ if and only if S1 +S2 ⊧ θ. The size of θ is bounded by 2O(∣ϕ∣2).
Finally, we apply Lemma 6.4 to θ and obtain an equivalent pure FO2-formula ψ of size
2∣Qcl

θ ∣ ⋅O(∣θ∣). Since ∣θ∣ ∈ 2O(∣ϕ∣2) and ∣Qcl
θ ∣ ∈ 2O(∣ϕ∣) this yields the upper bound 22O(∣ϕ∣) for

the size of ψ.

Let us conclude this section with a (non-matching) lower bound on Feferman-Vaught
decompositions for FO2.

PROPOSITION 6.7. There is no function f(n) ∈ o(√n) and c > 1 such that every
FO2-formula ϕ has a Feferman-Vaught decompositions w.r.t. disjoint sum of size cf(∣ϕ∣).

PROOF. Let us define the family of unary predicate symbols Pn = {p0, . . . , pn−1, pb}
and τn = Pn ∪ {A1,A2} for each n ≥ 0.

One can define a family of FO2-sentences {ϕn ∣ n ≥ 0}, where each formula ϕn is
defined over the signature τn that has precisely models of the form S1 +S2, where

— S1 and S2 are both Pn-structures,
— S1 has precisely 2n elements u0, . . . , u2n−1,
— S1 ⊧ pj(ui) if and only if the jth least significant bit of the binary representation of i

is 1 (where j ∈ [0, n − 1]),
— S2 has precisely 2n elements v0, . . . , v2n−1,
— S2 ⊧ pj(vi) if and only if the jth least significant bit of the binary representation of i

is 1, and
— for every i ∈ [0,2n − 1], S1 ⊧ pb(ui) if and only if S2 ⊧ pb(vi).
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By a standard argument, one can construct FO2-formulas ϕn of size O(n2) that realize
the above-mentioned properties:

ϕn
def= ∀x ∶ x ∈ A1 ↔ x /∈ A2

∧ ⋀
i∈{1,2}

∃x ∈ Ai ∶ ⋀
j∈[0,n−1]

¬pj(x)

∧ ⋀
i∈{1,2}

∀x, y ∈ Ai ∶ ⋀
j∈[0,n−1]

(pj(x)↔ pj(y))→ x = y

∧ ⋀
i∈{1,2}

∀x ∈ Ai ∶ ⋀
j∈[0,n−1]

∃y ∈ Ai ∶ pj(x)↔ ¬pj(y) ∧ ⋀
k∈[0,n−1]∖{j}

(pk(x)↔ pk(y))

∧ ∀x ∈ A1, y ∈ A2 ∶ ⋀
j∈[0,n−1]

(pj(x)↔ pj(y))→ (pb(x)↔ pb(y))

We can assign both to S1 and to S2 a number in [0,22n − 1] by simply interpreting
the 2n worlds as positions of a binary string of length 2n. Formally, let bi ∈ {0,1} for
i ∈ [0,2n − 1], where bi = 1 if and only if S1 ⊧ pb(ui) (resp., S2 ⊧ pb(vi)). We define

val(Sj) def=
2n−1

∑
i=0

bi2
i ∈ [0,22n − 1].

for each j ∈ {1,2}. Recall that formula ϕn enforces val(S1) = val(S2). Also note that
conversely for each i ∈ [0,22n − 1] there is a unique Pn-structure S

(n)
1,i and a unique

Pn-structure S
(n)
2,i such that S

(n)
1,i +S

(n)
2,i ⊧ ϕn and val(S(n)

1,i ) = val(S(n)
2,i ) = i. In fact, we

have

S
(n)
1,i +S

(n)
2,j ⊧ ϕn ⇔ i = j. (3)

Assume by contradiction that there were some c > 1, a function f(n) ∈ o(√n), and for
every n ≥ 1 a decomposition

Dn = (Ψ(n),Θ(n), βn)
where

— each Ψ(n) = {ψ(n)
j ∣ j ∈ Jn} is a finite set of FO2 sentences over the signature Pn,

— each Θ(n) = {θ(n)h ∣ h ∈Hn} is a finite set of FO2 sentences over the signature Pn,
— βn is a positive boolean formula with variables {x(n)j ∣ j ∈ Jn} ∪ {y(n)h ∣ h ∈Hn}, and
— ∣Dn∣ ≤ cf(∣ϕn∣) ≤ cf(O(n2)).

such that for every two Pn-structure S1 and S2 we have

S1 +S2 ⊧ ϕn ⇔ µ ⊧ βn.
Here, µ assigns variables of βn as follows:

— µ(x(n)j ) = 1 if and only if S1 ⊧ ψ(n)
j and

— µ(y(n)h ) = 1 if and only if S2 ⊧ θ(n)h .

Note that the number of variables of βn is bounded by cf(O(n2)). Since f(n) ∈ o(√n)
(and thus f(dn2) ∈ o(n) for every constant d) there exists an n such that the number of
variables of βn is strictly smaller than 2n. Let us fix this n in the following considera-
tion.

For i ∈ [0,22n − 1] define the truth assignment µ(n)
i as follows:
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— µ
(n)
i (x(n)j ) def= 1 if and only if S(n)

1,i ⊧ ψ
(n)
j and

— µ
(n)
i (y(n)h ) def= 1 if and only if S(n)

2,i ⊧ θ
(n)
h .

Since there are strictly less than 22n truth assignments for βn (by the choice of n), there
exist i < j such that µ(n)

i = µ(n)
j . Since S

(n)
1,i +S

(n)
2,i ⊧ ϕn we must have S

(n)
1,i +S

(n)
2,j ⊧ ϕn

as well. Hence i = j by (3), which is a contradiction.

7. GAIFMAN NORMAL FORM
Our technique from the proof of Theorem 6.3 can be used to prove a doubly exponential
upper bound on the size (and construction) of Gaifman normal forms [14]. Let us start
with a few definitions.

Let S = (D,{Pa ∣ a ∈ τ}) be a structure over a finite relational signature τ . The
Gaifman graph of S is the undirected graph G(S) = (D,E), where the edge relation E
contains a pair (u, v) ∈ D ×D with u ≠ v if and only if there exists a relation Pa (a ∈ τ )
of arity say n and a tuple (u1, . . . , un) ∈ Pa such that u, v ∈ {u1, . . . , un}. For u, v ∈ D, the
distance dS(u, v) is the length (number of edges) of a shortest path from u to v in G(S).
For a tuple u = (u1, . . . , un) ∈ Dn and v ∈ D, let dS(u, v) = min{dS(ui, v) ∣ 1 ≤ i ≤ n}. For
n ∈ N, the n-sphere around u is SS,n(u) = {v ∈ D ∣ dS(u, v) ≤ n}. We write Sn(u) for
SS,n(u), if S is clear from the context.

Note that for every n ∈ N, there exists a first-order formula dn(x, y) such that for
all τ -structures S and all elements u, v of S, S ⊧ dn(u, v) if and only if dS(u, v) ≤ n.
For better readability, we write d(x, y) ≤ n instead of dn(x, y). The formula d(x, y) > n
should be understood similarly. In a formula of the form ∃y ∶ d(x, y) ≤ r ∧ ψ or ∀y ∶
d(x, y) ≤ r → ψ, we say that the variable y is relativized to Sr(x). A formula ϕ is called
r-local around x if for every subformula (Qy ∶ ψ) ∈ Qϕ, the variable y is relativized in
(Qy ∶ ψ) to a sphere Sq(x) for some q ≤ r. A sentence ψ is called an r-local Gaifman-
sentence if it is of the form

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕ(xi),

where ϕ(xi) is q-local around (the single variable) xi for some q ≤ r.

THEOREM 7.1 (GAIFMAN’S THEOREM [14]). Every first-order formula ϕ(x) is
equivalent to a boolean combination ψ(x) of r-local formulas around x and q-local
Gaifman-sentences for suitable r and q (that are exponential in the size of ϕ(x)).

We call the formula ψ(x) from Theorem 7.1 a Gaifman normal form for ϕ(x). In [12] it
was shown that (for FO4-formulas already) the size of equivalent formulas in Gaifman
normal form cannot be bounded elementarily. By using our formulas ϕ`,n from Section
3 and analogous ideas as in [12], we can strengthen the latter result to FO3.

PROPOSITION 7.2. There is no elementary function f such that every FO3-formula
ϕ has an equivalent formula in Gaifman normal form of size f(∣ϕ∣).

PROOF (SKETCH). We only give a sketch of the proof because the overall proof strat-
egy is very similar to the proof of Theorem 4.2 in [12].

Recall that the K2-formula ϕ`,2 was defined over ({a, a},P2 ∪P2). Recall the transla-
tion of the K2-formula ϕ`,2 into the FO3-formula ϕ∗`,2 over the signature τ = {a} ∪ P2 ∪
{A1,A2} from the proof of Corollary 6.2.
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For each i ∈ {1,2} and each j ∈ [0,Tower(`+1,2)−1] we define the τ -tree T
(i)
`,2(j) with root

r
(i)
`,2(j) as the tree that evolves from Υ

(0)
`,2 (j) (see Definition 3.1) by adding the unary

predicate Ai everywhere.
Consider the structure

F`
def= ⊎

j∈[0,Tower(`+1,2)−1]
T

(1)
`,2 (j) ⊎T

(2)
`,2 (j),

where ⊎ denotes disjoint union. For each ` ≥ 1 let us define the FO3-formula ϕ` as the
conjunction of the following two formulas:

— ∃x,x′ ∶ A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′) ∧ first∗`,2(x,x′)

— ∀x,x′ ∶ (A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′)→

last∗`,2(x,x′) ∨ ∃x′ ∶ (succ∗`,2(x,x′) ∧ ∃x ∶ ϕ∗`,2(x,x′)))

Let us interpret the formula ϕ` on the structure F`. The two trees Υ
(1)
`,2 (0) and Υ

(2)
`,2 (0)

witness the first conjunct of the formula ϕ`. The second conjunct of ϕ` holds in F`
since for each j ∈ [0,Tower(` + 1,2) − 1] either j = Tower(` + 1,2) − 1 and hence F` ⊧
last∗`,2(r

(1)
`,2 (j), r(2)`,2 (j)) or j < Tower(` + 1,2) − 1 and hence F` ⊧ succ∗(r(1)`,2 (j), r(2)`,2 (j + 1))

and moreover we have F` ⊧ ϕ∗`,2(r
(1)
`,2 (j + 1), r(2)`,2 (j + 1)).

For each j ∈ [0,Tower(` + 1,2) − 1] let F−j` be the τ -structure that one obtains from
F` by entirely removing T

(2)
`,2 (j) from it. Note that F` ⊧ ϕ`, but F−j` /⊧ ϕ` for every

j ∈ [0,Tower(` + 1,2) − 1].
Assume now that there were an elementary function f such that every formula ϕ`

has an equivalent formula ψ` in Gaifman normal form of size at most f(∣ϕ`∣). Note
that f(∣ϕ`∣) is elementarily bounded in `. Hence, there exists ` such that f(∣ϕ`∣) <
Tower(`+1,2). Since F` ⊧ ϕ`, we also have F` ⊧ ψ`. We can now prove in exactly the same
way as in the proof of Theorem 4.2 in [12] that there must exist j ∈ [0,Tower(`+1,2)−1]
with F−j` ⊧ ψ`, i.e., F−j` ⊧ ϕ`, which is a contradiction.

Next, we show that for the fragment FO2 such an elementary (in fact, doubly exponen-
tial) bound is possible: The quantifier rank of a first-order formula ϕ is the maximal
nesting depth of quantifiers in ϕ; it is denoted by qr(ϕ).

THEOREM 7.3. Every FO2-formula ϕ(x) is equivalent to a boolean combination
ψ(x) of r-local formulas around x and q-local Gaifman-sentences with r ≤ 3qr(ϕ),
q ≤ 6qr(ϕ), and ∣ψ∣ ≤ 22O(∣ϕ∣) .

In Theorem 7.3, x is a single variable. This is no restriction, since every FO2-formula
can be written as a boolean combination of atomic formulas a(x) (which are r-local
around x for every r) and formulas that (i) start with a quantifier, and (ii) that have
at most one free variable. In the rest of this section, all r-local formulas will be r-
local around a single variable x. For the proof of Theorem 7.3 it is useful to define
almost r-local formulas around x and almost r-local Gaifman-sentences. We do this by
simultaneous induction:

— Every formula that is built up from atomic formulas and almost p-local Gaifman-
sentences (for arbitrary p) using boolean operators and quantifiers relativized to
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Sq(x) for arbitrary q ≤ r is an almost r-local formula around x (hence, every r-local
formula around x is almost r-local around x).

— If the formula ϕ(xi) is almost q-local around xi (1 ≤ i ≤ n) for some q ≤ r, then the
sentence

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕ(xi) (4)

is an almost r-local Gaifman-sentence.

For a formula ϕ, let G(ϕ) be the set of all almost p-local Gaifman-sentences ψ (for
arbitrary p) with ψ ⪯ ϕ.

LEMMA 7.4. From an almost r-local formula ϕ(x) (around x) one can compute a
logically equivalent Boolean combination ϕ′(x) of r-local formulas around x and q-
local Gaifman sentences. Here, the size of ϕ′(x) is bounded by 2∣G(ϕ)∣ ⋅O(∣ϕ∣) and q is the
maximum of all p such that G(ϕ) contains an almost p-local Gaifman sentence.

PROOF. Let ϕ(x) be almost r-local around x and let F be the set of all mappings
from G(ϕ) to {true, false}. For f ∈ F and a formula θ let θ[f] be the formula that results
from θ by replacing every ⪯-maximal formula ψ from the set G(ϕ) ∖ {θ} by the truth
value f(ψ). Then, we define ϕ′ as the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈G(ϕ)

(f(ψ)↔ ψ[f])).

The proof that ϕ′ is equivalent to ϕ and that ϕ′ is r-local around x is analogous to the
proof of Lemma 6.4. The size of the formula

ϕ[f] ∧ ⋀
ψ∈G(ϕ)

(f(ψ)↔ ψ[f])

is in O(∣ϕ∣) since the formulas ϕ[f], ψ[f] (for ψ ∈ G(ϕ)) form a kind of partition of the
whole formula ψ. Hence, the size of ϕ′ is bounded by 2∣G(ϕ)∣ ⋅O(∣ϕ∣).

LEMMA 7.5. From an FO2-formula ϕ(x) with at most one free variable x, one can
compute an equivalent almost r-local formula ϕ`(x) of size 2O(∣ϕ∣2) with r ≤ 3qr(ϕ),
∣G(ϕ`)∣ ≤ 2O(∣ϕ∣), and every ψ ∈ G(ϕ`) is an almost 2r-local Gaifman sentence.

PROOF. We prove the lemma by induction over the structure of the formula ϕ(x).
The case that the top-most operator in ϕ(x) is a boolean operator is clear, e.g., set
(ϕ1 ∧ ϕ2)` = ϕ`1 ∧ ϕ`2.

Now, assume that ϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is an FO2-formula, the formula
ψ(x, y) can be obtained from a positive boolean formulaB(p1, . . . , pk) by replacing every
propositonal variable pi by

(a) a formula α(x) ∈ Qϕ, which may only contain x freely, or by
(b) a formula β(y) ∈ Qϕ, which may only contain y freely, or by
(c) a possibly negated atomic formula (i.e., a literal) that involves a subset of the vari-

ables {x, y}.

Inductively, we replace each of the formulas α(x) and β(y) in (a) and (b), respectively,
by α`(x) and β`(y), respectively. These formulas are almost r-local with r ≤ 3qr(ψ). Let
us denote the resulting formula by ∃y ∶ ψ`(x, y) It is clearly equivalent to

∃y ∶ (d(x, y) ≤ 1 ∧ ψ`(x, y)) ∨ ∃y ∶ (d(x, y) ≥ 2 ∧ ψ`(x, y)).
The formula ∃y ∶ (d(x, y) ≤ 1 ∧ ψ`(x, y)) can be transformed into an almost (r + 1)-local
formula around x. To see this, note that d(x, y) ≤ 1 implies that every quantification
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that is relativized to Sr(y) can be replaced by a quantification that is relativized to
Sr+1(x), see also [14]. We will use this argument several times below.

So, let us concentrate on the second formula ∃y ∶ (d(x, y) ≥ 2∧ψ`(x, y)). We transform
the boolean formulaB(p1, . . . , pk) into disjunctive normal form. Hence, for ∃y ∶ (d(x, y) ≥
2 ∧ ψ`(x, y)) we obtain an equivalent formula of the form

∃y ∶ (d(x, y) ≥ 2 ∧
p

⋁
i=1

(αi(x) ∧ βi(y) ∧ γi(x, y))),

where

— αi(x) is a conjunction of formulas α`(x), where α(x) is of type (a),
— βi(y) is a conjunction of formulas β`(y), where β(y) is of type (b), and
— γi(x, y) is a conjunction of literals in the free variables x and y.

Note that all αi(x) and βi(y) are almost r-local with r ≤ 3qr(ψ). Since we assume that
d(x, y) ≥ 2, every occurrence of an atomic formula in γi(x, y), in which both x and y
occur, can be replaced by false. We thus obtain an equivalent formula of the form

∃y ∶ (d(x, y) ≥ 2 ∧
p

⋁
i=1

(αi(x) ∧ βi(y) ∧ δi,1(x) ∧ δi,2(y))).

Here δi,1(x) (resp., δi,2(y)) is the conjunction of all literals in γi(x, y) that only involve
the variable x (resp., y). The above formula is equivalent to

p

⋁
i=1

(αi(x) ∧ δi,1(x) ∧ ∃y ∶ (d(x, y) ≥ 2 ∧ βi(y) ∧ δi,2(y))).

The formulas αi(x) ∧ δi,1(x) are almost r-local around x. So, let us concentrate on the
formulas ∃y ∶ (d(x, y) ≥ 2 ∧ βi(y) ∧ δi,2(y)). Let us consider a specific such formula and
let us just write

∃y ∶ (d(x, y) ≥ 2 ∧ θ(y)) (5)

for it, where θ(y) is almost r-local around y. Consider the sentence

ρ = ∃x1, x2 ∶ (d(x1, x2) > 2r ∧ θ(x1) ∧ θ(x2)) ∧
∃x1, x2 ∶ (3 ≤ d(x1, x2) ≤ 2r ∧ θ(x1) ∧ θ(x2)).

The part in the first line is an almost r-local Gaifman-sentence. The part in the second
line can be rewritten as

∃z ∶ (∃x1, x2 ∈ Sr(z) ∶ d(x1, x2) ≥ 3 ∧ θ(x1) ∧ θ(x2)). (6)

This sentence is an almost 2r-local Gaifman-sentence (with n = 1 in (4)): Since θ(y)
is almost r-local around y, the formula ∃x1, x2 ∈ Sr(z) ∶ d(x1, x2) ≥ 3 ∧ θ(x1) ∧ θ(x2) is
almost 2r-local around z.

Hence, ρ is the conjunction of an almost r-local Gaifman-sentence and an almost 2r-
local Gaifman-sentence, which states that there exist two elements with distance at
least 3 that satisfy θ.

We claim that the formula in (5) is equivalent to the following almost (r + 3)-local
formula around x:

(∃z ∶ θ(z)) ∧ (¬(∃z ∈ S1(x) ∶ θ(z)) ∨ ρ ∨ (∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y))).

Let us first assume that there exists y with d(x, y) ≥ 2 and θ(y). Hence, ∃z ∶ θ(z)
holds. Moreover, assume that ∃z ∈ S1(x) ∶ θ(z) and ¬ρ hold. We have to show that
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∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y) holds. Since we have ¬ρ, all elements that satisfy the
formula θ have pairwise distance at most 2. Since there is an element of distance at
most 1 from x that satisfies θ, the element y with d(x, y) ≥ 2 and θ(y) has distance at
most 3 from x.

For the other direction, assume that ∃z ∶ θ(z) and one of ¬(∃z ∈ S1(x) ∶ θ(z)), ρ, or
∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y) holds. We have to show that there exists y with d(x, y) ≥ 2
and θ(y). The case that ¬(∃z ∈ S1(x) ∶ θ(z)) or ∃y ∈ S3(x) ∶ d(x, y) ≥ 2∧θ(y) holds is clear.
If ρ holds, then there exist two elements with distance at least 3 that satisfy θ. Since
two elements in S1(x) have distance at most 2, there must exist y /∈ S1(x) satisfying θ.

We have shown that ϕ(x) = ∃y ∶ ψ(x, y) is equivalent to an almost (r+3)-local formula
around x (with r ≤ qr(ψ)), which we can take for ϕ`(x). Hence, ϕ`(x) is indeed almost
r′-local for some r′ ≤ 3qr(ϕ). Moreover, every sentence inG(ϕ`(x)) is an almost 2r′-local
Gaifman sentence (the factor 2 comes from the formula (6)).

In order to bound the size of ϕ`(x), note that the depth of ϕ`(x) is bounded by O(∣ϕ∣)
if we allow ∧’s and ∨’s of arbitrary width. Since the width can be bounded by 2∣ϕ(x)∣, the
size of ϕ`(x) can be bounded by 2O(∣ϕ∣2), see the proof of Lemma 6.5 for an analogous
argument.

For the bound ∣G(ϕ`)∣ ≤ 2O(∣ϕ∣) note that in the above construction, the number of
almost local Gaifman sentences that are introduced is bounded by O(p). Since p is
exponential in the size of the boolean formula B, the bound ∣G(ϕ`)∣ ≤ 2O(∣ϕ∣) follows.
Again, see the proof of Lemma 6.5 for an analogous argument.

Let us finally prove Theorem 7.3. We first apply Lemma 7.5 to ϕ(x) and obtain an
equivalent almost r-local formula θ(x) with ∣θ∣ ≤ 2O(∣ϕ∣2). Moreover r ≤ 3qr(ϕ) and every
sentence in G(θ) is an almost 2r-local Gaifman sentence. Finally, we apply Lemma 7.4
to θ and obtain an equivalent Boolean combination ψ(x) of r-local formulas around x

and 2r-local Gaifman sentences. The size of ψ(x) is bounded by 2∣G(θ)∣ ⋅O(∣θ∣). Since ∣θ∣ ≤
2O(∣ϕ∣2) and ∣G(θ)∣ ≤ 2O(∣ϕ∣), this yields the upper bound 22O(∣ϕ∣) for the size of ψ(x).

Finally, we give a (non-matching) lower bound on the size of equivalent formulas in
Gaifman normal form for FO2; the proof is again based on techniques from [12].

PROPOSITION 7.6. There is no function f(n) ∈ o(√n) and c > 1 such that every
FO2-formula ϕ has an equivalent formula in Gaifman normal form of size cf(∣ϕ∣).

PROOF. This proof uses a very similar strategy as in [12]. Let us define the signa-
ture τn = {p0, . . . , pn−1} of solely unary predicate symbols for each n ≥ 1. For each n ≥ 1

it is standard to define an FO2-sentence ϕn of size O(n2) such that there is a unique
τn-structure Sn with Sn ⊧ ϕn, where Sn satisfies the following properties:

— Sn has 2n elements u0, . . . , u2n−1 and
— Sn ⊧ pj(ui) if and only if the jth least significant bit of the binary representation of i

is 1 (where j ∈ [0, n − 1]).

Assume by contradiction that there is a function f(n) ∈ o(√n) and c > 1 such that for
every n ≥ 1, ϕn has an equivalent sentence ψn in Gaifman normal form with ∣ψn∣ ≤
cf(∣ϕn∣) = cf(O(n2)). Hence, we have Sn ⊧ ψn. Since f(n) ∈ o(√n) there is an n such that
∣ψn∣ < 2n. Let us fix such an n in the following.

The sentence ψn is a boolean combination of sentences χ1, . . . , χ`, where each sen-
tence

χi = ∃x1, . . . , xni ∶ χ′i

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.



The Complexity of Decomposing Modal and First-Order Theories 39:41

is an ri-local Gaifman-sentence. Without loss of generality, we can assume that there
is some h ∈ [1, `] such that

(1) Sn ⊧ χi for each i ∈ [1, h] and
(2) Sn /⊧ χi for each i ∈ [h + 1, `].
Recall that Sn consists precisely of the elements u0, . . . , u2n−1. By (1) we have that for
each i ∈ [1, h], we can fix elements w(i)

1 , . . . ,w
(i)
ni ∈ {u0, . . . , u2n−1} that witness Sn ⊧ χi,

i.e. Sn ⊧ χ′i(w
(i)
1 , . . . ,w

(i)
ni ). Let d def= ∑hi=1 ni ≤ ∑`i=1 ni ≤ ∣ψn∣ < 2n. For each j ∈ [0,2n − 1],

let the τn-structure S−j
n be obtained from Sn by removing the element uj . Note that

obviously S−j
n /⊧ ϕn for every j ∈ [0,2n − 1]. Since d < 2n, by the pigeonhole principle,

there exists some j ∈ [0,2n − 1] such that

— uj /∈ {w(i)
k ∣ i ∈ [1, h], k ∈ [1, ni]} and thus

— S−j
n ⊧ χi (since χi is an ri-local Gaifman-sentence) for each i ∈ [1, h].

Recall that by (2) we have Sn /⊧ χi, or equivalently

Sn ⊧ ¬∃x1, . . . , xni ∶ χ′i
for each i ∈ [h + 1, `]. Also, note that since each formula χi is an ri-local Gaifman-
sentence it follows S−j

n ⊧ ¬χi for each i ∈ [h + 1, `]. In total we have

— S−j
n ⊧ χi for each i ∈ [1, h] and

— S−j
n /⊧ χi for each i ∈ [h + 1, `].

and hence S−j
n ⊧ ψn, contradicting S−j

n /⊧ ϕn.

8. CONCLUSIONS AND OPEN PROBLEMS
We have defined a class of trees that can be enforced in two-dimensional modal logic
K ×K. Using these trees we were able to show nonelementary lower bounds for satis-
fiability in K ×K and, via reductions from this, for K4 ×K and S52 ×K. As our trees
have very large outdegree, we believe that it is not possible to adapt our techniques to
the case when the frames in one dimension are restricted to be some kind of ‘linear’,
e.g., the frame (N,<) or transitive, weakly connected frames, so called K4.3-frames.
However, it would be interesting to study the precise complexity of such logics as well.
Note that there have been results in this direction. For example, it is known that sat-
isfiability in PTL ×K and PTL × S52 is hard for nonelementary time [3; 24], where
PTL is propositional linear temporal logic including the ‘until’-operator, which is not
available in our setting.

Fusions are another way to combine two modal logics; intuitively, they are the in-
dependent join of the two participating logics. For example, the fusion of K and K is
just the bimodal logic K2. While it is well-known that satisfiability in K2 is PSPACE-
complete [6], nothing is known for combinations that lie between fusions and products.
In particular, K2 can be axiomatized by taking two copies of the well-known K-axiom,
one for each modal operator; an axiomatization for K×K can be obtained from the ax-
iomatization for the fusion by adding axioms postulating that the two modal operators
commute and have the Church-Rosser property. Thus, combinations between fusion
and product can be obtained by dropping either Church-Rosser or half of commutativ-
ity, and it would be interesting to see which of the additional axioms suffice to prove
the nonelementary lower bound.

An open problem from the second part of the paper concerns the size of Feferman-
Vaught decompositions (w.r.t. disjoint sum) and equivalent formulas in Gaifman nor-
mal form for FO2. For both formalisms, we proved a doubly exponential upper bound
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and a lower bound of the form co(
√
n) (for any constant c > 1). We conjecture that the

upper bound can be improved to a singly exponential bound.
The Łoś-Tarski theorem gives another normal form: the first-order sentences that

are preserved under extensions coincide with the ones that are equivalent to an exis-
tential sentence. It has been shown in [12, Theorem 6.1] that the size of this normal
form is also inherently nonelementary, however the used formulas had at least four
free variables. Of course one might ask whether our technique yields formulas in FO3.

A further potential question could be to study logics for which Feferman-Vaught
decompositions do not exist in general (like CTL) and to find a (possibly decidable)
characterization of those formulas which are decomposable.
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