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Abstract. Schema.org is an initiative by the major search engine providers Bing,
Google, Yahoo!, and Yandex that provides a collection of ontologies which web-
masters can use to mark up their pages. Schema.org comes without a formal
language definition and without a clear semantics. We formalize the language of
Schema.org as a Description Logic (DL) and study the complexity of querying
data using (unions of) conjunctive queries in the presence of ontologies formulated
in this DL. In particular, we consider rewritability into FO queries and into datalog
programs and investigate the possibility of classifying the data complexity of
ontology-mediated queries.

1 Introduction

The Schema.org initiative was launched in 2011 and is supported today by Bing, Google,
Yahoo!, and Yandex. In the spirit of the Semantic Web, it provides a collection of
ontologies that establish a standard vocabulary to mark up website content with metadata
about itself (https://schema.org/). In particular, web content that is generated from
structured data as found in relational databases is often difficult to recover for search
engines and Schema.org markup elegantly solves this problem. The markup is used by
search engines to more precisely identify relevant pages, to provide richer search results,
and to enable new applications. Schema.org is experiencing very rapid adoption and is
used today by more than 15 million webpages including all major ones Guha [2013].

Schema.org does neither formally specify the language in which its ontologies are
formulated nor does it provide a formal semantics for the published ontologies. However,
the provided ontologies are extended and updated frequently and follow an underlying
language pattern. This pattern and its meaning is described informally in natural language.
Schema.org adopts a class-centric representation enriched with binary relations and
datatypes, similar in spirit to description logics (DLs) and to the OWL family of ontology
languages; the current version includes 622 classes and 891 binary relations. Partial
translations into RDF and into OWL are provided by the linked data community. Based
on the informal descriptions at https://schema.org/ and on the mentioned translations,
Patel-Schneider [2014] develops an ontology language for Schema.org with a formal
syntax and semantics that, apart from some details, can be regarded as a fragment of
OWL DL.

In this paper, we abstract slightly further and view the Schema.org ontology language
as a description logic, in line with the formalization by Patel-Schneider. Thus, what
Schema.org calls a type becomes a concept name and a property becomes a role name.
The main characteristics of the resulting ‘Schema.org DL’ are that (i) the language is very



restricted, allowing only inclusions between concept and role names, domain and range
restrictions, nominals, and datatypes; (ii) ranges and domains of roles can be restricted to
disjunctions of concept names (possibly mixed with datatypes in range restrictions) and
nominals are used in ‘one-of enumerations’ whose semantics also involves disjunction.
While Point (i) suggests that the Schema.org DL is closely related to the tractable profiles
of OWL2, because of Point (ii) it does actually not fall into any of them. There is also a
close connection to the DL-Lite family of DLs Calvanese et al. [2007], and in particular
to the DL-LiteHbool variant Artale et al. [2009]. However, DL-LiteHbool admits existential
restriction, negation, conjunction, and free use of disjunction whereas the Schema.org
DL allows no existential quantification and includes nominals and datatypes. We use the
term schema.org-ontology to refer to ontologies formulated in the Schema.org language;
in contrast, ‘Schema.org 2015’ refers to the concrete collection of ontologies provided at
https://schema.org/ as of end of April, 2015.

Our main aim is to investigate the complexity of querying data in the presence
of schema.org-ontologies, where the data is the markup that was extracted from web-
pages. While answering queries over such data is the main reasoning task that arises in
Schema.org applications and the Schema.org initiative specifies a format for the data
in terms of so-called items, no information at all is given on how the data is queried
(or used otherwise). We consider conjunctive queries (CQs) and unions of conjunctive
queries (UCQ), a basic querying mechanism that is ubiquitous in relational database
systems and research, and that also can be viewed as a core of the Semantic Web query
language SPARQL. In particular, we also consider CQs and UCQs without quantified
variables since these are not allowed in the relevant SPARQL entailment regimes Glimm
and Krötzsch [2010]. We view a pair (O, q) that consists of a schema.org-ontology and
an actual query as a compound query called an ontology-mediated query (OMQ).

We start with the observation that evaluating OMQs is intractable in general, namely
Πp

2 -complete in combined complexity and CONP-complete in data complexity. In the
main part of the paper, we therefore aim (i) to identify large and practically useful classes
of OMQs with lower computational complexity (both combined and data complexity),
and (ii) to explore the situation in much more detail to see whether we can obtain a full
classification of each schema.org ontology or each OMQ according to its data complexity.
While the utility of aim (i) is obvious, we note that aim (ii) is also most useful from a
user’s perspective as it clarifies the complexity of every concrete ontology or OMQ that
might be used in an actual application. Apart from classical tractability (that is, PTIME),
we are particularly interested in the rewritability of OMQs into first-order (FO) queries
(actually: UCQs) and into datalog programs. One reason is that this allows to implement
querying based on relational database systems and datalog engines, taking advantage
of those systems’ efficiency and maturity. Another reason is that there is significant
research on how to efficiently answer UCQs and datalog queries in cluster computing
models such as MapReduce Afrati and Ullman [2011, 2012], which is rather natural
when processing web-scale data.

For both aims (i) and (ii) above, we start with analyzing basic schema.org ontologies
in which enumeration definitions (‘one of’ expressions) and datatypes are disallowed.
Regarding aim (i), we show that all OMQs which consist of a basic schema.org-ontology
and a CQ of qvar-size two (the connected components that consist exclusively of quanti-
fied variables have size at most two) are datalog-rewritable in polynomial time and can



be evaluated in PTime in combined complexity. This result complements results about
datalog-rewritability of OMQs for DLs with disjunction in Grau et al. [2013]; Kaminski
et al. [2014b,a]. We establish the same results for OMQs that consist of an unrestricted
schema.org-ontology and CQs without quantified variables.

Regarding aim (ii), we start with classifying each single schema.org-ontology O
according to the data complexity of all OMQs (O, q) with q a UCQ. We establish a
dichotomy between AC0 and CONP in the sense that for each ontologyO either all these
OMQs are in AC0 or there is one OMQ that is CONP-hard. The dichotomy comes with
a transparent syntactic characterization and is decidable in PTIME. Though beautiful,
the dichotomy is of limited use in practice since most interesting ontologies are of the
intractable kind.

Therefore, we also consider an even more fine-grained classification on the level of
OMQs, establishing a useful connection to constraint satisfaction problems (CSPs) in the
spirit of Bienvenu et al. [2014b]. It turns out that even for basic schema.org-ontologies
and for ontologies that consist exclusively of enumeration definitions, a complexity
classification of OMQs implies a solution to the dichotomy conjecture for CSPs, which
is a famous open problem Feder and Vardi [1998]; Bulatov [2011]. However, the CSP
connection can also be used to obtain powerful positive results. In particular, we show
that it is decidable in NEXPTIME whether an OMQ based on a schema.org-ontology
and a restricted form of UCQ is FO-rewritable and, respectively, datalog-rewritable. We
also establish a PSpace lower bound for this problem.

2 Preliminaries

Let NC, NR, and NI be countably infinite and mutually disjoint sets of concept names,
role names, and individual names. Throughout the paper, concepts names will be denoted
by A,B,C, . . ., role names by r, s, t, . . ., and individual names by a, b, c, . . ..

A schema.org-ontology consists of concept inclusions of different forms, role inclu-
sions, and enumeration definitions. A concept inclusion takes the form A v B (atomic
concept inclusion), ran(r) v A1t· · ·tAn (range restriction), or dom(r) v A1t· · ·tAn
(domain restriction). A role inclusion takes the form r v s.

Example 1. The following are examples of concept inclusions and role inclusions (last
line) in Schema.org 2015:

MovievCreativeWork

ran(musicBy)vPerson tMusicGroup

dom(musicBy)vEpisode tMovie t RadioSeries t TVSeries

siblingv relatedTo

We now define enumeration definitions. Fix a set NE ⊆ NI of enumeration individuals
such that both NE and NI \ NE are infinite. An enumeration definition takes the form
A ≡ {a1, . . . , an} with A ∈ NC and a1, . . . , an ∈ NE.

Example 2. An example of an enumeration definition in Schema.org 2015 is
Booktype ≡ {ebook, hardcover, paperback}.



A datatype D = (D,∆D) consists of a datatype name D and a non-empty set of
data values ∆D. Examples of datatypes in Schema.org 2015 are Boolean, Integer, and
Text. We assume that datatype names and data values are distinct from the symbols
in NC ∪ NR ∪ NI and that there is an arbitrary but fixed set DT of datatypes such that
∆D1 ∩∆D2 = ∅ for all D1 6= D2 ∈ DT.

To accommodate datatypes in ontologies, we generalize range restrictions to range
restrictions with datatypes, which are inclusions of the form ran(r) v A1 t · · · t An
with A1, . . . , An concept names or datatype names from DT.

Example 3. An example of a range restriction with datatypes in Schema.org 2015 is

ran(acceptsReservation) v Boolean t Text

A schema.org-ontology O is a finite set of concept inclusions (including range
restrictions with datatypes), role inclusions, and enumeration definitions. We denote by
NC(O) the set of concept names in O, by NR(O) the set of role names in O, and by
NE(O) the set of enumeration individuals in O.

A data instance A is a finite set of concept assertions A(a) where A ∈ NC and
a ∈ NI; and role assertions r(a, b) where r ∈ NR, a ∈ NI and b ∈ NI∪

⋃
D∈DT∆

D. We
say thatA is a data instance for the ontologyO ifA contains no enumeration individuals
except those in NE(O). We use Ind(A) to denote the set of all individuals (including
datatype elements) in A.

Example 4. Examples for assertions are Movie(a), name(a, ‘avatar’), director(a, b),
name(b, ‘Cam’).

Let O be a schema.org-ontology and A a data instance for O. An interpretation I =
(∆I , ·I) for O consists of a non-empty set ∆I disjoint from

⋃
D∈DT∆

D and with
∆I ∩ NE = NE(O), and a function ·I that maps

– every concept name A to a subset AI of ∆I ,
– every role name r to a subset rI of∆I×∆I,DT, where∆I,DT = ∆I∪

⋃
D∈DT∆

D;
– every individual name a ∈ (NI \ NE) ∪ NE(O) to some aI ∈ ∆I such that aI = a

for all a ∈ NE(O).
Note that we make the standard name assumption (and, therefore, unique name assump-
tion) for individuals in NE. Individual names from NE that do not occur in O (and thus
not in A) are not interpreted by I to avoid enforcing infinite domains.

For an interpretation I, set dom(r)I = {d | (d, d′) ∈ rI} and ran(r)I = {d′ |
(d, d′) ∈ rI}. To achieve uniform notation, setDI = ∆D for every datatype (D,∆D) in
DT and dI = d for every d ∈ ∆D,D ∈ DT. For concept or datatype namesA1, . . . , An,
set (A1 t · · · tAn)I = AI1 ∪ · · · ∪AIn. An interpretation I for an ontology O satisfies
a (concept or role) inclusion X1 v X2 ∈ O if XI1 ⊆ XI2 , an enumeration definition
A ≡ {a1, . . . , an} if AI = {aI1 , . . . , aIn}, a concept assertion A(a) if aI ∈ AI , and a
role assertion r(a, b) if (aI , bI) ∈ rI . Satisfaction of any of these objects is denoted
with “|=”, as in I |= X1 v X2 or I |= A(a).

An interpretation I for O is a model of O if it satisfies all inclusions and definitions
in O and a model of a data instance A if it satisfies all assertions in A. We say that
A is satisfiable w.r.t. O if O and A have a common model. Let α be a concept or
role inclusion, or an enumeration definition. We say that α follows from O, in symbols
O |= α, if every model of O satisfies α.



We introduce the query languages considered in this paper. A term t is either a
member of NI ∪

⋃
D∈DT∆

D or an individual variable taken from an infinite set NV

of such variables. A first-order query (FOQ) consist of a (domain-independent) first-
order formula ϕ(x) that uses unary predicates from NC ∪ {D | (D,D) ∈ DT}, binary
predicates from NR, and only terms as introduced above. The unary datatype predicates
are built-ins that identify the elements of the respective datatype. We call x the answer
variables of ϕ(x), the remaining variables are called quantified. A query without answer
variables is Boolean. A conjunctive query (CQ) is a FOQ of the form ∃y ϕ(x,y) where
ϕ(x,y) is a conjunction of atoms such that every answer variable x occurs in an atom
that uses a symbol from NC ∪ NR, that is, an answer variable x is not allowed to occur
exclusively in atoms of the form D(x) with D a datatype name (to ensure domain
independence). A union of conjunctive queries (UCQ) is a disjunction of CQs. A CQ
q can be regarded as a directed graph Gq with vertices {t | t term in q} and edges
{(t, t′) | r(t, t′) in q}. If Gq is acyclic and r(t1, t2), s(t1, t2) ∈ q implies r = s, then q
is an acyclic CQ. A UCQ is acyclic if all CQs in it are.

We are interested in querying data instancesA using a UCQ q(x) taking into account
the knowledge provided by an ontology O. A certain answer to q(x) in A under O is a
tuple a of elements of Ind(A) of the same length as x such that for every model I of O
and A, we have I |= q[a]. In this case, we write O,A |= q(a).

Query evaluation is the problem to decide whether O,A |= q(a). For the combined
complexity of this problem, all of O,A, q, and a are the input. For the data complexity,
only A and a are the input. It often makes sense to combine the ontology O and actual
query q(x) into an ontology-mediated query (OMQ) Q = (O, q(x)), which can be
thought of as a compound overall query. The following can be shown using techniques
similar to those in Eiter et al. [1997]; Bienvenu et al. [2014b].

Theorem 1. Query evaluation of CQs and UCQs under schema.org-ontologies is Πp
2 -

complete in combined complexity. In data complexity, each OMQ (O, q) from this class
can be evaluated in CONP; moreover, there is such a OMQ (with q a CQ) that is
CONP-complete in data complexity.

An OMQ (O, q(x)) is FO-rewritable if there exists a FOQQ(x) (called an FO-rewriting
of (O, q(x))) such that for every data instance A for O and all a ∈ Ind(A), we have
O,A |= q(a) iff IA |= Q(a) where IA is the interpretation that corresponds to A (in
the obvious way).

We also consider datalog-rewritability, defined in the same way as FO-rewritability,
but using datalog programs in place of FOQs. Using Rossman’s homomorphism preser-
vation theorem Rossman [2008], one can show that an OMQ (O, q(x)) with O a
schema.org-ontology and q(x) a UCQ is FO-rewritable iff it has a UCQ-rewriting
iff it has a non-recursive datalog rewriting, see Bienvenu et al. [2014b] for more details
(in a slightly different context). Since non-recursive datalog-rewritings can be more
succinct than UCQ-rewritings, we will generally prefer the former.

3 Basic schema.org-Ontologies

We start with considering basic schema.org-ontologies, which are not allowed to contain
enumeration definitions and datatypes. The results obtained here can be easily extended
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Fig. 1: ABoxes used in Example 5 and the paragraph below Theorem 10.

to basic schema.org-ontologies with datatypes but do not hold for ontologies with
enumeration definitions (as will be shown in the next section). In Schema.org 2015, 45
concept names from a total of 622 are defined using enumeration definitions, and hence
are not covered by the results presented in this section.

We start with noting that the entailment problem for basic schema.org-ontologies is
decidable in polynomial time. This problem is to check whetherO |= α for a given basic
schema.org-ontology O and a given inclusion α of the form allowed in such ontologies.
In fact, the algorithm is straightforward. For example, O |= ran(r) v A1 t · · · tAn if
there is a role name s and a range restriction ran(s) v B1 t · · · t Bm ∈ O such that
OR |= r v s and OC |= Bj v A1 t · · · t An for all 1 ≤ j ≤ m, where OR and OC
denote the set of role inclusions and atomic concept inclusions in O.

Theorem 2. The entailment problem for basic schema.org-ontologies is in PTIME.

The hardness results reported in Theorem 5 crucially rely on existential quantification
in the actual query. In fact, it follows from results in Grau et al. [2013]; Kaminski et al.
[2014b] that given an OMQ Q = (O, q(x)) with O a basic schema.org-ontology and
q(x) a CQ without quantified variables, it is possible to construct a non-recursive datalog
rewriting of Q in polynomial time, and that such OMQs can be evaluated in PTIME in
combined complexity. We aim to push this bound further by admitting restricted forms
of quantification.

A CQ q has qvar-size n if all connected components of quantified variables in the
undirected graph underlying Gq have size at most n. For example, quantifier-free CQs
have qvar-size 0 and the following query q(x, y) has qvar-size 1:

∃z1∃z2

∧
v∈{x,y}

(producedBy(z1, v) ∧musicBy(v, z2))

The above consequences of the work by Grau, Kaminski, et al. can easily be extended
to OMQs where queries have qvar-size one. In what follows, we consider qvar-size
two, which is more subtle and where, in contrast to qvar-size one, reasoning by case
distinction is required. The following example shows that there are CQs of qvar-size
two for which no non-recursive datalog rewriting exists.

Example 5. Let O = {ran(s) v A t B} and consider the following CQ of qvar-size
two: q(x) = ∃x1∃x2(s(x, x1) ∧ A(x1) ∧ r(x1, x2) ∧ B(x2)). It is easy to see that
O,Am |= q(a) for every data instance Am with m ≥ 2 as defined in Figure 1a.

By applying locality arguments and using the data instances Am, one can in fact show
that (O, q(x)) is not FO-rewritable (note that removing one r(bi, bi+1) from Am results
in q(a) no longer being entailed).



Theorem 3. For every OMQ (O, q(x)) with O a basic schema.org-ontology and q(x)
a CQ of qvar-size at most two, one can construct a datalog-rewriting in polynomial time.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity.

Applied to Example 5, the proof of Theorem 3 yields a datalog rewriting that consists of
the rules

P (x1, x2, x)← s(x, x1) ∧X1(x1) ∧ r(x1, x2) ∧X2(x2)

where the Xi range over A, B, and ∃y r(y, ·), plus

IA(x1, x)← P (x1, x2, x) ∧A(x1) IB(x2, x)← P (x1, x2, x) ∧B(x2)

IA(x2, x)← P (x1, x2, x) ∧ IA(x1, x) IB(x1, x)← P (x1, x2, x) ∧ IB(x2, x)

goal(x)← s(x, x1) ∧ IA(x1, x) ∧ r(x1, x2) ∧ IB(x2, x).

The recursive rule for IA (the one for IB is dual) says that if the only option to possibly
avoid a match for (x1, x2, x) is to color (x1, x) with IA, then the only way to possibly
avoid a match for (x1, x2, x) is to color (x2, x) with IA (otherwise, since ran(s) v
A tB ∈ O, it would have to be colored with IB which gives a match).

The rewriting presented in Theorem 3 can easily be extended to accommodate
datatypes. For schema.org-ontologies O that are not basic, the rewriting is sound but not
necessarily complete, and can thus be used to compute approximate query answers.

Interestingly, Theorem 3 cannot be generalized to UCQs. This follows from the
result in the full version that for basic schema.org-ontologies O and quantifier-free
UCQs q(x) (even without role atoms), the problemO,A |= q(a) is coNP-hard regarding
combined complexity for data instances A with a single individual a. Since evaluating
datalog programs in such data instances is in PTIME, datalog rewritings of UCQ-based
OMQs can thus not be constructed in polynomial time (unless PTIME equals NP).
We note that it is not difficult to show (and follows from FO-rewritability of instance
queries in DL-LiteHbool Artale et al. [2009]) that given an OMQ (O, q(x)) with O a basic
schema.org-ontology and q(x) a quantifier-free UCQ, one can construct an FO-rewriting
in exponential time, and thus query evaluation is in AC0 in data complexity.

We now classify basic schema.org-ontologies O according to the data complexity of
evaluating OMQs (O, q) with q a UCQ (or CQ). It is convenient to work with minimized
ontologies where for all inclusions F v A1 t · · · t An ∈ O and all i ≤ n, there is a
model I of O and a d ∈ ∆Isuch that d satisfies F uAi u u

j 6=i
¬Aj (defined in the usual

way). Every schema.org-ontology can be rewritten in polynomial time into an equivalent
minimized one. We establish the following dichotomy theorem.

Theorem 4. Let O be a minimized basic schema.org-ontology. If there exists F v
A1 t · · · tAn ∈ O with n ≥ 2, then there is a Boolean CQ q that uses only concept and
role names from O and such that (O, q) is CONP-hard in data complexity. Otherwise, a
given OMQ (O, q) with q a UCQ can be rewritten into a non-recursive datalog-program
in polynomial time (and is thus in AC0 in data complexity).

The proof of the second part of Theorem 4 is easy: if there are no F v A1t· · ·tAn ∈ O
with n ≥ 2, then O essentially is already a non-recursive datalog program and the
construction is straightforward. The proof of the hardness part is obtained by extending



the corresponding part of a dichotomy theorem for ALC-ontologies of depth one Lutz
and Wolter [2012]. The main differences between the two theorems are that (i) for basic
schema.org-ontologies, the dichotomy is decidable in PTIME (whereas decidability is
open for ALC), (ii) the CQs in CONP-hard OMQs use only concept and role names
from O (this is not possible in ALC), and (iii) the dichotomy is between AC0 and CONP
whereas for ALC OMQs can be complete for PTIME, NL, etc.

By Theorem 4, disjunctions in domain and range restrictions are the only reason that
query answering is non-tractable for basic schema.org-ontologies. In Schema.org 2015,
14% of all range restrictions and 20% of all domain restrictions contain disjunctions.

In Theorem 4, we have classified the data complexity of ontologies, quantifying over
the actual queries. In what follows, we aim to classify the data complexity of every OMQ.
This problem turns out to be much harder and, in fact, we show that a classification of
the data complexity of OMQs based on basic schema.org-ontologies and UCQs implies
a classification of constraint satisfaction problems according to their complexity (up
to FO-reductions), a famous open problem that is the subject of significant ongoing
research Feder and Vardi [1998]; Bulatov [2011].

A signature is a set of concept and role names (also called symbols). Let B be a finite
interpretation that interprets only the symbols from a finite signature Σ. The constraint
satisfaction problem CSP(B) is to decide, given a data instance A over Σ, whether there
is a homomorphism from A to B. In this context, B is called the template of CSP(B).

Theorem 5. For every template B, one can construct in polynomial time an OMQ (O, q)
where O is a basic schema.org-ontology and q a Boolean acyclic UCQ such that the
complement of CSP(B) and (O, q) are mutually FO-reducible.

Theorem 13 below establishes the converse direction of Theorem 5 for unrestricted
schema.org-ontologies and a large class of (acyclic) UCQs. From Theorem 13, we obtain
a NEXPTIME-upper bound for deciding FO-rewritability and datalog-rewritability of
a large class of OMQs. It remains open whether this bound is tight, but we can show
a PSPACE lower bound for FO-rewritable using a reduction of the word problem of
PSPACE Turing machines. The proof uses the ontology O and data instances Am
from Example 5 and is similar to a PSPACE lower bound proof for FO-rewritability
in consistent query answering Lutz and Wolter [2015] which is, in turn, based on a
construction from Cosmadakis et al. [1988].

Theorem 6. It is PSPACE-hard to decide whether a given OMQ (O, q) with O a basic
schema.org-ontology and q a Boolean acyclic UCQ is FO-rewritable.

4 Incoherence and Unsatisfiability

In the subsequent section, we consider unrestricted schema.org ontologies instead of
basic ones, that is, we add back enumeration definitions and datatypes. The purpose of
this section is to deal with a complication that arises from this step, namely the potential
presence of inconsistencies. We start with inconsistencies that concern the ontology
alone and then consider inconsistencies that arise from combining an ontology with a
data instance.

An ontology O is incoherent if there exists X ∈ NC ∪ NR such that XI = ∅ for
all models I of O. Incoherent ontologies can result from the UNA for enumeration



individuals such as in the ontology {A ≡ {a}, B ≡ {b}, A v B}, which has no model
if a 6= b; they can also arise from interactions between concept names and datatypes
such as in the ontology {ran(r) v Integer, ran(s) v A, r v s} with A ∈ NC which has
no model I with rI 6= ∅ since ∆I ∩∆Integer = ∅. Using Theorem 2, one can show:

Theorem 7. Incoherence of schema.org-ontologies can be decided in PTime.

We now turn to inconsistencies that arise from combining an ontology O with a data
instance A for O. As an example, consider O = {A ≡ {a}, B ≡ {b}} and A =
{A(c), B(c)}. Although O is coherent, A is unsatisfiable w.r.t. O. Like incoherence,
unsatisfiability is decidable in polynomial time. In fact, we can even show the following
stronger result.

Theorem 8. Given a schema.org-ontology O, one can compute in polynomial time
a non-recursive datalog program Π such that for any data instance A for O, A is
unsatisfiable w.r.t. O iff Π(A) 6= ∅.

In typical schema.org applications, the data is collected from the web and it is usually
not acceptable to simply report back an inconsistency and stop processing the query.
Instead, one would like to take maximum advantage of the data despite the presence of
an inconsistency. There are many semantics for inconsistent query answering that can be
used for this purpose. As efficiency is paramount in schema.org applications, our choice
is the pragmatic intersection repair (IAR) semantics which avoids CONP-hardness in
data complexity Lembo et al. [2010]; Rosati [2011]; Bienvenu et al. [2014a]. A repair
of a data instance A w.r.t. an ontology O is a maximal subset A′ ⊆ A that is satisfiable
w.r.t. O. We use repO(A) to denote the set of all repairs of A w.r.t. O. The idea of IAR
semantics is then to replace A with

⋂
A′∈repO(A)A′. In other words, we have to remove

from A all assertions that occur in some minimal subset A′ ⊆ A that is unsatisfiable
w.r.t. O. We call such an assertion a conflict assertion.

Theorem 9. Given a schema.org-ontology O and concept name A (resp. role name r),
one can compute a non-recursive datalog program Π such that for any data instance A
for O, Π(A) is the set of all a ∈ Ind(A) (resp. (a, b) ∈ Ind(A)2) such that A(a) (resp.
r(a, b)) is a conflict assertion in A.

By Theorem 9, we can adopt the IAR semantics by simply removing all conflict assertions
from the data instance before processing the query. Programs from Theorem 9 become
exponential in the worst case, but can be expected to be very small in practical cases.
In the remainder of the paper, we assume that ontologies are coherent and that A is
satisfiable w.r.t. O if we query a data instance A using an ontology O.

5 Unrestricted schema.org-Ontologies

We aim to lift the results from Section 3 to unrestricted schema.org-ontologies. Regarding
Theorem 3, it turns out that quantified variables in CQs are computationally much
more problematic when there are enumeration definitions in the ontology. In fact, one
can expect positive results only for quantifier-free CQs, and even then the required
constructions are quite subtle.



Theorem 10. Given an OMQ Q = (O, q) with O a schema.org-ontology and q a
quantifier-free CQ, one can construct in polynomial time a datalog-rewriting of Q.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity. The
rewriting is non-recursive if q = A(x).

The following example illustrates the construction of the datalog program. Let O =
{A ≡ {a1, a2}} and q() = r(a1, a2). Observe thatO,A′m |= q() for every data instance
A′m defined in Figure 1b. Similarly to Example 5, one can use the data instances A′m to
show that (O, q()) is not FO-rewritable.

A datalog-rewriting of (O, q()) is given by the program Πa1,a2 which contains

goal()← r(a1, a2)

goal()← r(a1, x) ∧ pathA(x, y) ∧ r(y, a2)

pathA(x, y)← r(x, y) ∧A(x) ∧A(y)

pathA(x, y)← pathA(x, z) ∧ pathA(z, y).

It is also instructive to check thatO′,A′m 6|= q() withO′ = {A ≡ {a1, a2, a3}} because
in models of O′, a3 can be identified with some bi, a1 with b1, . . . , bi−1 and a2 with
bi+1, . . . , bm, 1 ≤ i ≤ m.

We now modify the datalog program above to obtain a rewriting of the OMQ
(O, q′(x, y)) with q(x, y) = r(x, y). First, we include in Πr the rules A(a1) ← true
and A(a2)← true. Then we add the following rules:

goal(x, y)← r(x, y), goal(x, y)← A(x) ∧A(y) ∧
∧

1≤i,j≤2

Rai,aj (x, y).

We want to use the latter rule to check that x, y have to be mapped to {a1, a2}, and
that for every possible assignment ai, aj to x, y that is consistent (i.e., we do not have
x ∈ {a1, a2} and x 6= ai, and similarly for y), r(ai, aj) is true. To this end, we add the
rules:

Rai,aj (x, y) ← neq(x, ai) Rai,aj (x, y) ← neq(y, aj)

Rai,aj (x, y) ← goal(ai, aj)

neq(a1, a2) ← true neq(a2, a1) ← true.

It remains to add rules 3 and 4 from Πa1,a2 and

goal(ai, aj)← r(ai, x) ∧ pathA(x, y) ∧ r(y, aj)

for 1 ≤ i, j ≤ 2 and i 6= j.
Theorem 10 is tight in the sense that evaluating CQs with a single atom and a single

existentially quantified variable, as well as quantifier-free UCQs, is coNP-hard in data
complexity. For instance, letO = {dom(e) v A, ran(e) v A, A ≡ {r, g, b}}. Then, an
undirected graph G = (V,E) is 3-colorable iffO, {e(v, w) | (v, w) ∈ E} 6|= ∃x e(x, x).
Alternatively, one may replace the query by r(r, r) ∨ r(g, g) ∨ r(b, b). In fact, one can
prove the following variant of Theorem 5 which shows that classifying OMQs with
ontologies using only enumeration definitions and quantifier-free UCQs according to
their complexity is as hard as CSP.



Theorem 11. Given a template B, one can construct in polynomial time an OMQ (O, q)
where O only contains enumeration definitions and q is a Boolean variable-free UCQ
such that the complement of CSP(B) and (O, q) are mutually FO-reducible.

We now turn to classifying the complexity of ontologies and of OMQs, starting with a
generalization of Theorem 4 to unrestricted schema.org-ontologies.

Theorem 12. Let O be a coherent and minimized schema.org-ontology. If O contains
an enumeration definition A ≡ {a1, . . . , an} with n ≥ 2 or contains an inclusion
F v A1 t · · · tAn such that there are at least two concept names in {A1, . . . , An} and
O 6|= F v A t t

(D,∆D)∈DT
D for any A with A ≡ {a} ∈ O, then (O, q) is coNP-hard

for some Boolean CQ q. Otherwise every (O, q) with q a UCQ is FO-rewritable (and
thus in AC0 in data complexity).

Note that, in contrast to Theorem 4, being in AC0 does not mean that no ‘real disjunction’
is available. For example, for O = {ran(r) v A t B,A v C,B v C,C ≡ {c}} and
A = {r(a, b)} we have O,A |= A(b) ∨ B(b) and neither A(b) nor B(b) are entailed.
This type of choice does not affect FO-rewritability, however, since it is restricted to
individuals that must be identified with a unique individual in NE(O). Note that, for
the hardness proof, we now need to use a role name that possibly does not occur in O.
For example, for O = {A ≡ {a1, a2}} there exists a Boolean CQ q such that (O, q) is
NP-hard, but constructing q requires a fresh role name.

We now consider the complexity of single OMQs and show a converse of Theorems 5
and 11 for schema.org-ontologies and UCQs that are qvar-acyclic, that is, when all atoms
r(t, t′) with neither of t, t′ a quantified variable are dropped, then all CQs in it are acyclic.
We use generalized CSPs with marked elements in which instead of a single template B,
one considers a finite set Γ of templates whose signature contains, in addition to concept
and role names, a finite set of individual names. Homomorphisms have to respect also
the individual names and the problem is to decide whether there is a homomorphism
from the input interpretation to some B ∈ Γ . Every such CSP is mutually FO-reducible
with some standard CSP and FO-definability and datalog definability of the complement
of generalized CSPs with marked elements are NP-complete Bienvenu et al. [2014b].

Theorem 13. Given an OMQ (O, q) withO a schema.org-ontology and q a qvar-acyclic
UCQ, one can compute in exponential time a generalized CSP with marked elements Γ
such that (O, q) and the complement of CSP(Γ ) are mutually FO-reducible.

The proof uses an encoding of qvar-acyclic queries into concepts in the description
logic ALCIUO that extends ALC by inverse roles, the universal role, and nominals. It
extends the the template constructions of Bienvenu et al. [2014b] to description logics
with nominals. As a particularly interesting consequence of Theorem 13, we obtain:

Theorem 14. FO-rewritability and datalog-rewritability of OMQs (O, q) with O a
schema.org-ontology and q a qvar-acyclic UCQ are decidable in NEXPTIME.

6 Conclusion
The work presented in this paper lays a solid foundation for attacking many interesting
and practically relevant questions that can be asked about querying in the presence of
schema.org-ontologies. Topics of interest include different forms of queries such as
SPARQL and regular path queries as well as uncertainty in the data that accounts for
varying levels of trust in different data sources.
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Appendix

A Proofs for Section 2

Theorem 1 Query evaluation of CQs and UCQs under schema.org-ontologies is Πp
2 -

complete in combined complexity. In data complexity, each OMQ (O, q) from this
class can be evaluated in CONP; moreover, there is such a OMQ (with q a CQ) that is
CONP-complete in data complexity.

Proof. The upper bounds are straightforward. For example, for the Πp
2 -upper bound

regarding combined complexity, given a data instance A for O and q(a), guess a model
I with domain Ind(A), check in polynomial time whether I is a model of O and A and
call an NP-oracle to check I 6|= q(a).

For the Πp
2 -lower bound, we give a reduction from 2QBF validity. Consider a

2QBF ∀x1 . . . xm∃y1 . . . yn ϕ, where ϕ is a 3CNF over clauses c1, . . . , ck. We construct
a schema.org-ontology O and Boolean CQ q with concept names X1, . . . , Xm, and
C1, . . . , Ck, role names V1, V2, V3, r1, . . . , rm, and enumeration individuals {0, 1}. For
each clause ci, we denote by vji (1 ≤ j ≤ 3) the variable appearing in the jth literal of ci,
and we let Si denote the set of tuples in {0, 1}3 representing the seven truth assignments
for (v1

i , v
2
i , v

3
i ) which satisfy ci. Define the ontology O by setting

O = {ran(ri) v E,E ≡ {0, 1} | 1 ≤ i ≤ m} ∪
{ran(ri) v Xi | 1 ≤ i ≤ m}

The ontology ensures that for any data instance A containing ri(fi, di) in any model
I of O and A we have 0 ∈ XIi or 1 ∈ XIi . Thus, intuitively, O ensures that a truth
assignment is selected for variable xi. We encode ϕ using the data instance Aϕ defined
as follows:

Aϕ = {Vj(abi , bj) | b = (b1, b2, b3) ∈ Si, j = 1, 2, 3} ∪
{Ci(abi ) | b = (b1, b2, b3) ∈ Si} ∪
{ri(fi, di) | 1 ≤ i ≤ m}

Now the CQ q checks whether the selected truth assignment can be extended to a model
of ϕ. q is defined as the conjunction of∧

1≤i≤k

(Ci(zi) ∧ V1(zi, v
1
i ) ∧ V2(zi, v

2
i ) ∧ V3(zi, v

3
i ))

and ∧
1≤`≤m

X`(x`)

It is straightforward to show that ∀x1 . . . xm∃y1 . . . yn ϕ is valid iff O,A |= q. The NP
lower bound regarding data complexity is proved, for example, in the CSP encoding of
Theorem 5. o



B Proofs for Section 3

Theorem 2 The entailment problem for basic schema.org-ontologies is in PTIME.

Proof. We show that O |= ran(r) v A1 t · · · t An iff (∗) there exists a role name s
such that OR |= r v s and a range restriction ran(s) v B1 t · · · tBm ∈ O such that
OC |= Bj v A1 t · · · tAn for all 1 ≤ j ≤ m, where OC is the set of atomic concept
inclusions in O. Other basic schema.org-inclusions are consider similarly.

Clear, if (∗) holds, then O |= ran(r) v A1 t · · · tAn. Conversely, assume that (∗)
does not hold. Define an interpretation I with ∆I = {a, b} by setting

– (c, d) ∈ sI iff c = a and d = b and OR |= r v s;
– c ∈ AI for all concept names A;
– for every s with OR |= r v s and ran(s) v B1 t · · · t Bm ∈ O pick Bj such

that OC 6|= Bj v A1 t · · · t An. Let b ∈ BI for all concept names B with
OC |= Bj v B.

It is readily checked that I is a model of O with b ∈ ran(r)I and b 6∈ AI1 ∪ · · · ∪AIn.
o

We use the following notation. A match π for a quantifier-free CQ q = q(x,a) in an
interpretation I is a mapping from the set of terms term(q) of q to ∆I such that the
following holds:

– π(a) = aI for all a ∈ NI;
– If A(t) ∈ q, then π(t) ∈ AI ;
– If r(t, t′) ∈ q, then (π(t), π(t′) ∈ rI .

If this is the case, we write I |=π q.
Given a data instance A and datalog program Π , we denote by IΠ,A the minimal

interpretation that is a model of A and satisfies all rules in Π . Note that ∆IΠ ,A =
Ind(A).

We prove the following result as a preparation for the proof of Theorem 3.

Proposition 1. For every ontology-mediated query (O, q(x)) withO a basic schema.org-
ontology and q a CQ of qvar-size at most one, one can construct in polynomial time a
non-recursive datalog-rewriting of (O, q(x)).

Proof. Let q(x) = ∃yq0(x,y, b), Let x = x1 . . . xk, y = y1, . . . , ym, and b =
b1, . . . , bn. Let IA and Ir be IDB predicates for any concept name A and role name r in
q, and include in ΠO,basic the following rules:

– IA(x)← B(x), for all B with OC |= B v A;
– IA(x)← r(y, x), for all r with O |= ran(r) v A;
– IA(x)← r(x, y), for all r with O |= dom(r) v A;
– Ir(x, y)← s(x, y), for all s with OR |= s v r.



Now let q′0(x,y) result from q0(x,y) by replacing every A(t) in q0 by IA(t) and every
r(t, t′) in q0 by Ir(t, t′). Define Π by adding to ΠO,basic the rule goal(x)← q′0(x,y).
We show that Π is a rewriting of (O, q(x)).

To prove this, we require some preparation. Let O be a basic schema.org-ontology
andΠ be a datalog program containing allΠO,basic. LetA be a data instance and consider
IΠ,A. Then we consider the following variant JΠ,A of IΠ,A in which we transfer the
extensions of IA and Ir to the concept names A and role names r, respectively:

– ∆JΠ,A = ∆IΠ,A ;
– rJΠ,A = I

IΠ,A
r for all role names r;

– AJΠ,A = I
IΠ,A
A for all concept names A.

Observation 1 Let O be a basic schema.org-ontology and Π be a program containing
ΠO,basic. Let A be a data instance. For a set X ⊆ Ind(A) let Aa, a ∈ X , be concept
names such that a 6∈ AJΠ,A for all a ∈ X . Then there exists a model J ofO andA with

– ∆J = ∆JΠ,A ;
– rJ = rJΠ,A for all role names r;
– AJ ⊇ AJΠ,A for all concept names A;

such that a 6∈ AJa for all a ∈ X .

Using Observation 1, we now show that Π is a rewriting of (O, q(x)).
Clearly, if a ∈ Π(A), then O,A |= q(a). Conversely, assume that a 6∈ Π(A). Let

a = a1, . . . , ak. Consider the minimal model IΠ,A of A. We have IΠ,A 6|= goal(a).
Let q−0 be the result of removing from q0 all atoms A(t) with A a concept name. Let H
be the set of all matches π of q−0 in JΠ,A with π(xi) = ai for 1 ≤ i ≤ k.

If H is empty then expand JΠ,A to a model J of O by leaving the interpretation
of role names fixed and setting AJ = Ind(A) for all concept names A. Then J 6|=
∃y q−0 (a, b) and so J 6|= q(a). Thus, O,A 6|= q(a), as required.

If H is not empty, let H(t) = {π(t) | π ∈ H} for any term t in q. Note that H(t) is
a singleton {tI} if t = ai or t = bi.

Claim 1. There exists a term t in q such that for all a ∈ H(t) there exists a concept name
A with A(t) ∈ q0 and a 6∈ AJΠ,A .

Proof of Claim 1. Assume no such t exists. Then choose for every term t in q a member
at of H(t) such that at ∈ AJΠ,A for all A(t) in q0. Define a mapping π0 from the set
of terms of t to JΠ,A by setting π0(t) = at. Using the condition that q has qvar-size
at most 1, it is readily checked that π0 is a match for q in JΠ,A with π(xi) = ai for
1 ≤ i ≤ k. It follows that IΠ,A |= q′0(a) and so IΠ,A |= goal(a). We have derived a
contradiction.

Consider now a term t from q0 such that for every a ∈ H(t) there exists a concept name
Aa with Aa(t) ∈ q0 and a 6∈ AJΠ,Aa . By Observation 1 there exists a model J of O and
A with

– ∆J = ∆JΠ,A ;
– rJ = rJΠ,A for all role names r;



– AJ ⊇ AJΠ,A for all concept names A;

such that a 6∈ AJa for all a ∈ X . It follows that J 6|= q(a) and so O,A 6|= q(a), as
required. o

Theorem 3 For every ontology-mediated query (O, q(x)) with O a basic schema.org-
ontology and q a CQ of qvar-size at most 2 one can construct in polynomial time a
datalog-rewriting of (O, q(x)).

Proof. Assume O and q(x) = ∃yq0(x,y, b). We employ the program ΠO,basic from
the proof of Proposition 1. Also, for two sets X1 and X2 of concept names we use a
program ΠX1tX2

with intensional predicate IX1tX2
(x) such that for any data instance

A and a ∈ Ind(A),

O,A |=
∧

A∈X1

A(a) ∨
∧

A∈X2

A(a)⇔ ΠX1tX2
|= IX1tX2

(a).

Denote by mCC the set of maximal connected components {v, w} of quantified variables
v 6= w in q. We assume a fixed ordering v, w of any member of mCC. For any quantified
variable v in q we set Xv = {A | A(v) ∈ q0}. Let zv,w be the variable in x∪ y without
v, w and take, for each {v, w} ∈ mCC, the IDBs Pv,w(v, w, zv,w, b), Xv,w(v,zv,w, b),
and Yv,w(w, zv,w, b). Insert in the rewriting Π the program ΠO,basic as well as all rules

Pv,w(v, w,zv,w, b)← q′0 ∧ IXvtXw(v) ∧ IXvtXw(w)

where q′0 results from q0 by removing all unary atoms A(t) from q0, replacing all
r(t, t′) by Ir(t, t′), and where {v, w} ∈ mCC. Intuitively, Pv,w(v, w, zv,w, b) collects
the potential matches for v, w. If, in addition, Xv(v,zv,w, b) and Yv,w(w, zv,w, b) hold,
then one has actually found a match for v, w. We model the propagation of the ‘colors’
Xv,w(v, zv,w, b) and Yv,w(w, zv,w, b) by inserting in Π for any {v, w} ∈ mCC

Xv,w(v,zv,w, b)← Pv,w(v, w, zv,w, b) ∧
∧

A∈Xv

IO,A(v)

Yv,w(w, zv,w, b)← Pv,w(v, w, zv,w, b) ∧
∧

A∈Xw

IO,A(w)

Xv,w(w, zv,w, b)← Pv,w(v, w, zv,w, b) ∧Xv,w(v,zv,w, b)

Yv,w(v,zv,w, b)← Pv,w(v, w, zv,w, b) ∧ Yv,w(w, zv,w, b)

The first of the two recursive rules says that if the only option to possibly avoid a match
for v, w is to color (v,zv,w, b) with Xv,w, then the only way to possibly avoid a match
for v, w is to color (w, zv,w, b) with Xv,w (because otherwise one would have to color
(w,xv,w, b) with Yv,w). The second recursive rule can be understood analogously with
X and Y swapped. Finally we insert in Π the following goal-rule goal(x)← q′′0 , where
q′′0 is obtained from q0 by replacing all r(t, t′) by Ir(t, t′), allA(t) that do not participate
in any {v, w} ∈ mCC by IA(t), and for all {v, w} ∈ mCC all A(v) by Xv,w(v,zv,w, b)
and all A(w) by Yv,w(w, zv,w, b), respectively.



The program Π is as required. Assume q(x) = ∃y q0(x,y, b). Let x = x1 . . . xk,
y = y1, . . . , ym, and b = b1, . . . , bn. It is straightforward to show that if a ∈ Π(A),
then O,A |= q(a).

Conversely, assume that a 6∈ Π(A). Then IΠ,A 6|= ∃yq′′0 (a,y, b). Let H be the set
of all matches π of q′0 in JΠ,A with π(xi) = ai for 1 ≤ i ≤ k and such that for any
{v, w} ∈ mCC we have (π(v), π(w), π(x), b) ∈ P IΠ,Av,w . If H is empty then one can
show similarly to the proof of Proposition 1 that O,A 6|= q(a), as required.

If H is not empty, let for any connected component {v, w} ∈ mCC, H(v, w) =
{(π(v), π(w) | π ∈ H} and let for any term t that does not participate in any {v, w} ∈
mCC, H(t) = {π(t) | π ∈ H}.

Claim 1. (a) there exists a term t in q that does not participate in any {v, w} ∈ mCC such
that for all a ∈ H(t) there exists a concept name A with A(t) ∈ q0 and a 6∈ IIΠ,AA or (b)
there exists {v, w} ∈ mCC such that for all (a, b) ∈ H(v, w) either (a,a, b) 6∈ XIΠ,Av,w

or (b,a, b) 6∈ Y IΠ,Av,w .

The proof is similar of Claim 1 is similar to the proof of Claim 1 in Proposition 1.

Now, if (a) holds we can proceed similarly to the proof of Proposition 1 and construct
a model I of O and A such that I 6|= q(a). If (b) holds, then we can construct a
model I of O and A with I 6|= q(a) by picking {v, w} ∈ mCC such that for all
(a, b) ∈ H(v, w) either (a,a, b) 6∈ XIΠ,Av,w or (b,a, b) 6∈ Y IΠ,Av,w and ensuring that for
every (a, b) ∈ H(v, w) we either have a 6∈ AI for some A ∈ Xv or b 6∈ AI for some
A ∈ Xw. o

B.1 Proofs for Rewritings of UCQs

Proposition 2. For basic schema.org-ontologies O and quantifier-free UCQs q(x) with
one variable it is coNP-hard to decide O,A |= q(a) even for instance data A with only
one individual a.

Proof. The proof is by reduction of satisfiability of propositional formulas in CNF. Let
ϕ =

∧
i≤n ci be a conjunction of propositional clauses in variables v1, . . . , vm. We

represent the formula ϕ in a basic schema.org-ontology O as follows:

– the concept names Aj and Aj , j ≤ m, are used to encode a positive or a negative
literal, respectively, on variable vj ;

– to represent the clauses c1, . . . , cn we use role names r1, . . . , rn and define a range
restriction for each role with the concept names corresponding to the literals of the
clause. For example, if c1 = v1 ∨ ¬v2 then we define ran(r1) v A1 tA2.

Then, for a data instance A = {r1(a, a), . . . , rn(a, a)} and q(x) = (A1(x) ∧A1(x)) ∨
· · ·∨ (Am(x)∧Am(x)) we have thatO,A |= q(a) iff ϕ is unsatisfiable. We constructed
O and q over a single variable x such that, on data instances with a single individual a,
deciding O,A |= q(a) is coNP-hard. o



Evaluating a datalog rewriting over a data instance with a single individual is tractable.
Thus, if there is a datalog rewriting of (O, q(x)), then it cannot be constructed in
polynomial time.

B.2 Proof of Theorem 4

We show the following result.

Theorem 4 Let O be a basic minimized schema.org-ontology. Then there exists a
Boolean CQ q in the language of O such that (O, q) is coNP-hard in data complexity iff
there exists F v A1 t · · · tAn ∈ O with n ≥ 2. Otherwise every (O, q) with q a UCQ
is FO-rewritable in polynomial time.

Observe that if there exists no F v A1t· · ·tAn ∈ O with n ≥ 2, when we can rewrite
every (O, q) with q a UCQ using the rewriting given in Proposition 1.

In the converse direction we modify a hardness proof given in Lutz and Wolter
[2012]. The modification is required since we want to show that q can be chosen in such
a way that only concept and role names in O are used. This is not the case in the proof
given in Lutz and Wolter [2012].

Assume O is minimized and there exists F v A0 t · · · tAk ∈ O with k ≥ 1. Then
F ∈ {dom(r), ran(r)} and we assume w.l.o.g. that F = ran(r). We want to construct a
Boolean CQ q in the language of O such that (O, q) is coNP-hard in data complexity.
To this end, we first construct a Boolean UCQ with these properties and then discuss the
modifications required to obtain a Boolean CQ.

The construction of the queries is based on a reduction of the complement of 2 + 2-
SAT, a variant of propositional satisfiability introduced by Schaerf Schaerf [1993]. A
2 + 2 clause is of the form c = (u0 ∨ u1 ∨ ¬u2 ∨ ¬u3), where each of ul, l ≤ 3, is a
propositional letter or a truth constant 0, 1. A 2 + 2 formula is a finite conjunction of
2 + 2 clauses. Now, 2 + 2-SAT is the problem of deciding whether a given 2 + 2 formula
is satisfiable. It is shown in Schaerf [1993] that 2 + 2-SAT is an NP-complete problem.

Assume ϕ = c0 ∧ · · · ∧ cn is a 2+2-formula in propositional letters v0, . . . , vm and
let ci = ui0 ∨ ui1 ∨ ¬ui2 ∨ ¬ui3 for i ≤ n. Our first aim is to define a data instance Aϕ
and a Boolean UCQ q such that ϕ is unsatisfiable iff O,Aϕ |= q. To start we represent
the formula ϕ in the data instance Aϕ as follows:

– the individual names v0, . . . , vm represent variables and the individual names 0, 1
represent truth constants;

– the individual names cil and bil are used to encode the four literals of each 2 + 2
clause ci, where i ≤ n and l ≤ 3;

– for i ≤ n and l ≤ 3 we use the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the variable/truth constant uil .



We further extend Aϕ to enforce a truth value for each variable vi, i ≤ m. To this end,
add to Aϕ the data instances Ai = {r(fi, ai)} for i ≤ m. Intuitively, Ai is used to
generate a truth value for the variable vi, where we interpret vi as true if the queryA0(ai)
is satisfied and as false if any of the queries Aj(ai), 1 ≤ j ≤ k, is satisfied. Finally we
extend Aϕ by

– linking variables vi to ai by adding assertions r(vi, ai) for all i ≤ m;
– to ensure that 0 and 1 have the expected truth values, add the individuals 0′ and 1′

with the assertions A0(0′) and A1(1′). Also, add to Aϕ the assertions r(1, 1′) and
r(0, 0′).

bi0 bi1 bi2 bi3

ci0 ci1 ci2 ci3

1′0′a1a0

v0 v1 0 1

A0 A1

A0 A1

Fig. 2: Encoding of a clause ci = v0 ∨ v1 ∨ ¬0 ∨ ¬1.

Figure 2 illustrates the encoding of a clause ci = v0 ∨ v1 ∨ ¬0 ∨ ¬1. Consider the
Boolean UCQ (we omit existential quantifiers and do not distribute conjunctions over
disjunctions)

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where

– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ ffi(yi) for i = 0, 1 and
– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ tti(yi) for i = 2, 3 and

where

tti(yi) = r(yi, wi) ∧A0(wi)

ffi(yi) = r(yi, wi) ∧ (
∨

1≤j≤k

Aj(wi))

Then O,Aϕ |= q0 iff q0 is not satisfiable, as required. Note that the ‘triangles’ using
bil in Aϕ and using zi in q0 are used to ensure that in a match for q0 in Aϕ the only
possible matches for (w0, w1, w2, w3) are (ai0, a

i
1, a

i
2, a

i
3) with r(uij , a

i
j) ∈ Aϕ, j ≤ 3,

i ≤ n. In the equivalence proof this is required since we can have inclusions such as



dom(r) v Ai ∈ O for i ≤ n in O which force all Ai to be true in every individual in
the domain of Ai.

We now show how to improve the result from Boolean UCQs to CQs. To this end
we change the encoding of ‘false’ from ffi(yi) to

ff ′i(yi) =
∧

1≤l≤k

r(yi, y
′
i) ∧ r(y′i, wil) ∧Al(wil)

To ensure the match condition discussed above we also modify tti(yi) to

tt′i(yi) = r(yi, y
′
i) ∧ r(y′i, wi) ∧A0(wi)

We modify Aϕ correspondingly:

– for i ≤ m, remove from Aϕ the assertions r(vi, ai);
– remove from Aϕ the assertions A0(0′) and A1(1′);
– add to Aϕ the assertions r(0′, 0′′), r(1′, 1′′), A0(0′′) and A1(1′′);
– for 1 ≤ j ≤ k, add to Aϕ the assertion Aj(ej) for fresh individual names ej ;
– for i ≤ m and j ≤ k, add to Aϕ the assertions r(vi, dij) for fresh individual names
dij ;

– for i ≤ m and 1 ≤ j ≤ k, add to Aϕ the assertions r(di0, ai), r(dij , ai) and

r(dij , e1), . . . , r(dij , ej−1), r(dij , ej+1), . . . , r(dij , ek).

v0

A0

a0

d01 d0j d0k

ekeje1
A1 Aj Ak

. . . . . .

. . . . . .
d00

Fig. 3: Modified encoding of v0 occurring in a clause ci = v0 ∨ v1 ∨ ¬0 ∨ ¬1.

This finishes the modified construction. Figure 3 illustrates the modified encoding of
v0 in a clause ci = v0 ∨ v1 ∨ ¬0 ∨ ¬1.

B.3 Proof of Theorem 5

When studying the complexity of CSP(B) one can assume w.l.o.g. that B is a core, that
is, every automorphism is an isomorphism. It is useful to further assume that the template



B admits precoloring, that is, for each b ∈ ∆B there is a concept name Pb such that
d ∈ PBb iff d = b Cohen and Jeavons [2006]. It is known that for every template B, there
is a template B′ that admits precoloring such that CSP(B) and CSP(B) are mutually
FO-reducible Larose and Tesson [2009].

Theorem 5 For every template B there exists a OMQ (O, q) where O is a basic
schema.org-ontology O and q a Boolean acyclic UCQ such that the complement of
CSP(B) and (O, q) are mutually FO-reducible.

Proof. Assume a template B over signature Σ of concept and role names is given such
that for each b ∈ ∆B there is a concept name Pb such that d ∈ PBb iff d = b. Take a
fresh role name s and the concept names Pb, b ∈ ∆B, and set

O = {ran(s) v t
b∈∆B

Pb}

Define a UCQ q as the disjunction of (we omit existential quantifiers)

– Pa(x) ∧ r(x, y) ∧ Pb(y) for all r ∈ Σ such that (a, b) 6∈ rB;
– Pa(x) ∧B(x) for all B ∈ Σ such that a 6∈ BB;
– Pa(x) ∧ Pb(x) for all a 6= b.

We show that (O, q) and coCSP(B) (the complement of CSP(B)) are mutually FO-
reducible.

(⇒) Assume a data instance A containing assertions using symbols in Σ only is given.
Let A′ be the union of A and all s(a, b) such that a, b ∈ Ind(A). We show:

Claim 1. A → B iff O,A′ 6|= q.

Assume h is a homomorphism from A to B. Define a model I by setting

– ∆I = Ind(A);
– a ∈ P Ib iff h(a) = b;
– (a, b) ∈ rI iff r(a, b) ∈ A, for all r ∈ Σ;
– a ∈ BI iff B(a) ∈ A, for all B ∈ Σ \ {Pb | b ∈ ∆B};
– (a, b) ∈ sI for all a, b ∈ Ind(A).

It is readily checked that I is a model of O and A′ such that I 6|= q. Thus, O,A′ 6|= q,
as required.

Now assume that O,A′ 6|= q. Let I be a model of O and A′ such that I 6|= q. Define
h(a) = b if a ∈ P Ib . Using the condition that I 6|= q one can show that h is well defined
and a Σ-homomorphism from A to B.

(⇐) Assume a data instance A for O is given. Remove from A all assertions involving
individuals a such that neither Pb(a) ∈ A for any b ∈ ∆B nor s(a′, a) ∈ A for any a′

and add the assertions s(a, a) for the remaining individuals a. Clearly we haveO,A |= q
iff O,A′ |= q for the resulting data instance A′. Let A′′ be the restriction of A′ to Σ.
One can show that O,A′ |= q iff A′′ 6→ B, as required. o



B.4 Proof of Theorem 6

We show the PSPACE lower bound for FO-rewritability in basic schema.org-ontologies
using a reduction of the word problem of polynomially space-bounded Turing machines.
Similar reductions have been used to establish PSPACE-hardness of boundedness in
linear monadic datalog Cosmadakis et al. [1988], of certain FO-rewritability problems
in ontology-based data access Bienvenu et al. [2013], and of FO-rewritability problems
in consistent query answering Lutz and Wolter [2015]. Let

M = (Q,Ω, Γ, δ, q0, qacc, qrej)

be a DTM that solves a PSPACE-complete problem and p(·) its polynomial space bound.
Here, Q is the set of states, Ω is the input alphabet, Γ the tape alphabet, δ : (Q× Γ )→
{L,N,R} × Q × Γ the transition function, q0 ∈ Q the initial state, and qacc qrej the
accepting and rejecting state, respectively. We assume that the transition function is total
except on qacc and qrej where it is undefined for every tape symbol. The tape is assumed
to be two-side infinite. We make the following additional assumptions on M . We assume
that M never writes the blank symbol and with the left (resp. right) end of the tape we
mean the first tape cell to the left (resp. right) of the head labeled with a blank. We also
assume that M always terminates with the head on the right-most tape cell and that it
never attempts to move left on the left-most end of the tape. Finally and most importantly,
we assume that, when started in any (not necessarily initial) configuration C, then the
computation of M terminates (this assumption is justified in Lutz and Wolter [2015]).

Now let M be a TM that satisfies the conditions above and let x ∈ Ω∗ be an input
to M of length n. Our aim is to construct a basic schema.org-ontology O and Boolean
UCQ q such that (O, q) is not FO-rewritable iff M accepts x.

A fundamental idea of the reduction is that when M accepts x, then (O, q) is not
FO-rewritable because any FO-rewriting would have to query for longer and longer paths
that represent the accepting computation of M on x, repeated over and over again; this
clearly contradicts the locality of an FO-query. In the reduction, we use a very simple
ontology

O = {ran(s0) v B tB′}

where B,B′ are concept names. To understand the source for non-FO-rewritability that
we build on, consider the OMQ (O, q) with q̂ = B(x) ∧ r(x, y) ∧ B′(y) (see also
Example 5). Non-FO-rewritability is witnessed by path-shaped data instances of the
form

Am := {r(b1, b0), r(b2, b1), . . . , r(bm, bm−1)} ∪
{B′(b0), B(bm)} ∪
{s0(ai, bi) | 0 < i < m}.

In fact, it can be verified that T ,Am |= q̂ for all m > 0, but whenever we drop an
assertion from Am resulting in data instance A′m, then T ,A′m 6|= q̂. We are going to
modify the above paths so that they describe a (repeated) accepting computation ofM on
x. To this end, the tape contents, the current state, and the head position are represented
using the elements of Γ ∪ (Γ ×Q) as monadic relation symbols. Each constant on the



path represents one tape cell of one configuration, the binary relation R is used to move
between consecutive tape cells, the binary relation S is used to move between successor
configurations inside the same computation, and the binary relation T is used to separate
computations. To illustrate, suppose the computation of M on x = ab consists of the
two configurations qab and aq′b.3 The corresponding path of length m that describes
this computation (repeatedly) is

B′(b0), r(b1, b0), s(b2, b1), r(b3, b2), t(b4, b3),
r(b5, b4), . . . , r(bm, bm−1), B(bm)

with the additional assertions (a, q)(c) for c = b0, b4, b8, . . . , b(c) for c = b1, b5, b9,
. . . , a(c) for c = b2, b6, b10, . . . , and (b, q′)(c) for c = b3, b7, b11, . . . . We now assemble
the UCQ q. To ensure that every individual on the path is labeled with at least one symbol
from Γ ∪ (Γ ×Q) (and since we now have three relations r, s, t instead of only a single
one), we modify the query q̂ from above. While doing this, we also ensure that t-steps can
only occur exactly after the accepting state was reached (we omit existential quantifiers):

(r-pr) B(x) ∧ A(x) ∧ r(x, y) ∧ A′(y) ∧ B′(y), for all A ∈ Γ ∪ (Γ × Q) and all
A′ ∈ Γ ∪ (Γ × (Q \ {qacc, qrej}));

(s-pr) B(x) ∧ A(x) ∧ s(s, y) ∧ A′(y) ∧ B′(y), for all A ∈ Γ ∪ (Γ × Q) and all
A′ ∈ Γ ∪ (Γ × (Q \ {qacc, qrej}));

(t-pr) B(x) ∧ A(x) ∧ t(x, y) ∧ A′(y) ∧ B′(y) for all A ∈ Γ ∪ (Γ × Q) and all
A′ ∈ Γ × {qacc}.

If we simply use the disjunction of the above three queries as the UCQ in our query
evaluation problem, then that problem is not FO-rewritable. This is witnessed by paths
as above in which every element is labeled with some role symbol from Γ ∪ (Γ ×Q).
However, these labeled witness paths need not represent proper computations of M on x
since the transition relation need not be satisfied, there need not be any state, etc. We
fix these problems by including additional CQs in the UCQ q that discover ‘defects’
in the computation. These queries rule out labeled path that do not describe proper
computations as witnesses for non-FO-rewritability of the defined query evaluation
problem: paths with defects are ‘yes’-instances, but can be identified by an FO-query. In
fact, the following queries do not mention B and B′ and thus are derived from O ∪A if
and only if they have a match in A. They thus do not require any rewriting. The first set
of additional CQs ensures that every tape cell has a unique label.

(uni) A(x) ∧A′(x) for all distinct A,A′ ∈ Γ ∪ (Γ ×Q).

The next CQ enforces that there is not more than one head position per configuration:

(h1)
∧

0≤l<i{r(xl, xl+1)} ∧ (a, q)(xi) ∧
∧

0≤l<j r(yl, yl+1) ∧ (a′, q′)(yj), for all i <
j < p(n), (a, q), (a′, q′) ∈ Γ ×Q, and x0 = y0.

3 uqv ∈ Γ ∗QΓ ∗ means that M is in state q, the tape left of the head is labeled with u, and
starting from the head position, the remaining tape is labeled with v.



and that there is at least one head position per configuration:

(h2) r(x0, x1) ∧ . . . ∧ r(xp(n)−2, xp(n)−1) ∧ a1(x0) ∧ . . . ∧ ap(n)−1(xp(n)−1), for all
sequences a0, . . . , ap(n)−1 ∈ Γ .

We ensure that configurations have at most length p(n) using the CQ

(l1) r(x0, x1) ∧ . . . ∧ r(xp(n)−1, xp(n)).

We also ensure that configurations are not shorter than p(n) (with the possible exception
of the first configuration, which can be shorter):

(l2) ρ(x0, x1)∧ r(x1, x2)∧ . . .∧ r(xi, xi+1)∧ ρ′(xi+1, xi+2) for all i < p(n)− 1 and
ρ, ρ′ ∈ {s, t}.

We now enforce that the transition function is respected and that the content of tape cells
which are not under the head does not change. Let forbid denote the set of all tuples
(A1, A2, A3, A) with Ai ∈ Γ ∪ (Γ ×Q) such that whenever three consecutive tape cells
in a configuration c are labeled with A1, A2, A3, then in the successor configuration c′

of c, the tape cell corresponding to the middle cell cannot be labeled with A:

(con) r(x0) ∧ r(x0, x1) ∧ . . . ∧ r(xi−1, xi) ∧ s(xi, y0) ∧ t(y0, y1) ∧ . . .∧
r(yp(n)−i−3, yp(n)−i−2) ∧A3(yp(n)−i−2) ∧ r(yp(n)−i−2, yp(n)−i−1)∧
A2(yp(n)−i−1) ∧ r(yp(n)−i−1, yp(n)−i) ∧A1(yp(n)−i)

for all 0 ≤ i < p(n) and (A1, A2, A3, A) ∈ forbid.

It remains to set up the initial configuration. Recall that witness instances consist of
repeated computations of M , which ideally we would all like to start in the initial
configuration for input x. It does not seem possible to enforce this for the first com-
putation in the instance, so we live with this computation starting in some unknown
configuration, relying on our assumption that M terminates also when started in an
arbitrary configuration. Then, we utilize the final states qacc and qrej to enforce that all
computations in the instance except the first one must start with the initial configuration
for x. Let A(0)

0 , . . . , A
(0)
p(n)−1 be the monadic relation symbols that describe the initial

configuration, i.e., when the input x is x0 · · ·xn−1, then A(0)
0 = (x0, q0), A(0)

i = xi for
1 ≤ i < n, and A(0)

i = xi is the blank symbol for n ≤ i < p(n). Now take

(in)
∧

0≤l<i r(xl, xl+1) ∧ t(xi, xi+1) ∧A(x0) for all 0 ≤ i < p(n) and A 6= A
(0)
i .

The query q is the UCQ defined by taking the union of all Boolean CQs given above.
The following lemma establishes the correctness of our reduction.

Lemma 1. (O, q) is not FO-rewritable iff M accepts x.

Proof. “if”. Assume that M accepts x. By using standard locality arguments (e.g.,
Hanf’s Theorem), it is enough to show that there exist arbitrary large k and instances Ak
with domain {a0, b0, . . . , ak, bk} such that



– for all i, j ≤ k: if ρ(bi, bj) ∈ Ik for some ρ ∈ {r, s, t}, then i = j + 1 or j = i+ 1;
– The assertions involving s0 in Ak are exactly s0(ai, bi) for 0 < i < m;
– O,Ak |= q;
– O,A 6|= q, where A is the disjoint union of the data instances A0

k and Akk, where
A0
k is obtained from Ak by removing all facts involving b0 and Akk is obtained from
Ak by removing all facts involving bk.

Assume k > 0 is given. Let C1, . . . , Cm be a sequence of configurations of length p(n)
obtained by sufficiently often repeating the accepting computation of M on x so that
|C1|+· · ·+|Cm| ≥ k. We can convertC1, . . . , Cm into the desired witness data instance
Ak in a straightforward way: introduce one individual name for each tape cell in each
configuration and computation, use r to connect cells within the same configuration, s to
connect configurations, and t to connect computations, and the symbols from Γ∪(Γ×Q)
to indicate the tape inscription, current state, and head position. We obtain instance data
satisfying the conditions above by identifying the individuals with b0, . . . , bk assuming
that b0 stands for the first cell of the first configuration of C1. Finally add the assertions
{B′(b0)} ∪ {B(bk))} ∪ {s0(ai, bi) | 0 < i < k} to obtain Ak. It can be verified that
Ak is as required. To see that O,Ak |= q observe that in any model I ′k of Ak there is
some i with 0 ≤ i < k such that B′(bi) ∈ I ′k and B(bi+1) ∈ I ′k. To see that O,A 6|= q
for the disjoint union A of A0

k and Akk, observe that one obtains a model of A by
satisfying B′ everywhere in the interpretation corresponding to A0

k and B everywhere
in the interpretation corresponding to Akk.

“only if”. Assume that (O, q) is not FO-rewritable. Note that all CQs in q that are
distinct from (r-pr), (s-pr), and (t-pr) have a match in A iff they they are entailed by
O,A. Thus, they are FO-rewritable. Now consider the following

Observation. Assume A is a data instance such that no CQ in q distinct from the CQs
(r-pr), (s-pr), and (t-pr) has a match in A. Then O,A |= q iff there exists k > 0 such
that the following condition (∗k) holds: there are

ρ0(b1, b0), . . . , ρk−1(bk, bk−1), A0(b0), . . . , Ak(bk) ∈ A

with ρi ∈ {r, s, t} for all i < k and Ai ∈ Γ ∪ (Γ ×Q) for all i ≤ k such that

– B′(b0) ∈ A, B(b0) 6∈ A,
– B(bk) ∈ Ak, B′(bk) 6∈ A,
– for all 0 < i < k there exists a such that s0(a, bi) ∈ A,
– if ρi+1 ∈ {r, s}, then Ai ∈ Γ ∪ (Γ × (Q \ {qacc, qrej})),
– if ρi+1 = t, then Ai ∈ Γ ∪ (Γ × {qacc}).

Clearly, for every k > 0 condition (∗k) can be expressed in FO. Thus, if (O, q) is not
FO-rewritable, then for every k > 0 there exists a data instance A satisfying (∗k). Now
let m0 be the maximum number of steps M makes starting from any configuration
of length p(n) before entering the final state. One can prove that any A satifying (∗k)
for k ≥ 2m0(p(n) + 1) + 1 encodes an accepting computation of M for input x, as
required. o



C Proofs for Section 4

In this section, we provide proofs of Theorems 7–9 from Section 4. Some of the results
presented here also form the basis for the next section.

LetO be a schema.org-ontology. ByObasic we denote the basic schema.org-ontology
obtained fromO by dropping all enumeration definitions and viewing all datatype names
as concept names.

A basic concept B is a concept name, an expression of the form dom(r) or ran(r)
with r a role name, or a datatype name in DT. Let BC(O) be the set of all basic concepts
constructed from concept names and role names in O, and datatype names in DT.

An item type over O (or item type if O is understood) is

– an enumeration individual in NE(O),
– a datatype in DT, or
– the symbol ?.

Given an interpretation I, an a ∈ ∆I,DT, and an item type t over O, we say that a has
type t (alternatively, t is the type of a, or a realizes t) if

– t ∈ NE(O) and a = t,
– t ∈ DT and a ∈ ∆t, or
– t = ? and a ∈ ∆I \ NE.

For all B ∈ BC(O), let ITO(B) be the set of all item types t over O that satisfy the
following conditions:

– if B ∈ NC, then t /∈ DT, and t ∈ X for all C ≡ X ∈ O with Obasic |= B v C;
– if B is the name of a datatype D ∈ DT, then t = D;
– if B = f(r) for some r ∈ NR and f ∈ {dom, ran}, then the following are true:

• if f = dom, then t /∈ DT; and
• for all f(s) v C1 t · · · t Ck ∈ O with Obasic |= r v s there is i ∈ {1, . . . , k}

with t ∈ ITO(Ci).

It is straightforward to check that ITO(B) can be computed in polynomial time from O
and B. For this, recall from Section 3 that the entailment problem for basic schema.org-
ontologies is decidable in polynomial time.

We are now ready to prove Theorem 7.

Theorem 7 (restated). Incoherence of schema.org-ontologies can be decided in PTime.

Proof. Observe thatO is incoherent iff ITO(B) = ∅ for someB ∈ BC(O). Furthermore,
ITO(B) can be computed in polynomial time for each basic concept B. o



Let A be a data instance for O. For each a ∈ Ind(A), let ITO,A(a) be the set of all
item types t over O such that

– for all B ∈ BC(O) with IA |= B(a) we have t ∈ ITO(B); and
– if a ∈ NE, then t = a.

The following lemma shows that ITO,A(a) consists of precisely those item types that
are realizable by aI in some model I of O ∪A.

Lemma 2. Let O be a schema.org-ontology, and let A be a data instance for O.

1. Let I be a model of O ∪A, let a ∈ Ind(A), and let t be the item type of aI . Then,
t ∈ ITO,A(a).

2. Let ta ∈ ITO,A(a) for each a ∈ Ind(A). Then, there is a model I of O ∪ A such
that ta is the item type of aI for each a ∈ Ind(A). Furthermore, if ta = ?, then
aI 6= bI for all b ∈ Ind(A) with a 6= b.

Proof. Ad 1: To prove t ∈ ITO,A(a), we have to show that for all B ∈ BC(O) with
IA |= B(a) we have t ∈ ITO(B); and if a ∈ NE, then t = a.

First of all, since aI has the item type t, we have that a ∈ NE implies t = aI = a.
Next, let B ∈ BC(O) be such that IA |= B(a). We have to show that t ∈ ITO(B).

To this end, we distinguish the following three cases:

– Case 1: B ∈ NC. Since IA |= B(a) and datatype values are not allowed to occur
in concepts, we have a /∈

⋃
D∈DT ∆

D and hence t /∈ DT. Now, let C ≡ X ∈ O be
such that Obasic |= B v C. Since I is a model of O ∪A and IA |= B(a), we have
I |= C(a). Hence, aI ∈ X , which implies t = aI ∈ X .

– Case 2:B is a datatype name in DT. LetD ∈ DT be such thatD = (B,∆D). Since
IA |= B(a), we have that a ∈ ∆D. Hence, t = D.

– Case 3: B = f(r) for some r ∈ NR, f ∈ {dom, ran}. First of all, if f = dom, then
by IA |= B(a) and the definition of interpretation, we have a /∈

⋃
D∈DT∆

D and
hence t /∈ DT. Next, let f(s) v C1 t · · · t Ck ∈ O be such that Obasic |= r v s.
From IA |= B(a) and Obasic |= r v s, we obtain aI ∈ f(s)I . Hence, there is an
i ∈ {1, . . . , k} with I |= Ci(a). We can now prove t ∈ ITO(Ci) similarly to cases
1 and 2 above.

Ad 2: For all a ∈ Ind(A), let θa be the smallest set of basic concepts over O such that
for all B ∈ BC(O),

– if IA |= B(a), then B ∈ θa;
– if B ∈ θa and Obasic |= B v C1 t · · · t Ck, then θa contains all Ci with ta ∈

ITO(Ci).

Since t ∈ ITO,A(a), we have t ∈ X for all B ≡ X ∈ O with B ∈ θa, and t ∈ DT iff
t = (B,∆t) and B ∈ θa. It is straightforward to construct a model I ofO∪A such that
for each a ∈ Ind(A),

– aI = ta if ta ∈ NE, aI ∈ ∆ta if ta ∈ DT, and aI = a if ta = ?;
– for all B ∈ BC(O), we have I |= B(a) iff B ∈ θa.

In particular, ta is the item type of aI . Furthermore, if ta = ?, then aI 6= bI for all
b ∈ Ind(A) with a 6= b. o



It follows that A is unsatisfiable w.r.t O iff ITO,A(a) is empty for some a ∈ Ind(A).
Since for each B ∈ BC(O), ITO(B) is computable in polynomial time fromO, we have
that ITO,A(a) is computable in polynomial time from O and A for each a ∈ Ind(A).
Hence, unsatisfiability of A w.r.t. O is decidable in PTime. Even stronger, the following
lemma implies that unsatisfiability is definable in non-recursive datalog. For every
concept B ∈ BC(O), define a relational atom atB(x) as follows: if B = A ∈ NC,
then atB(x) = A(x); if B = dom(r), then atB(x) = r(x, z); and if B = ran(r), then
atB(x) = r(z, x).

Lemma 3. For any schema.org-ontology O and item type t over O, one can compute in
polynomial time a non-recursive datalog program Πt such that for any data instance A
for O, Πt(A) is the set of all a ∈ Ind(A) with t /∈ ITO,A(a).

Proof. Let Πt be the datalog program containing the rules

– goal(x)← atB(x) for B ∈ BC(O) with t /∈ ITO(B);
– goal(x)← x = a for all a ∈ NE(O) with t 6= a;
– goal(x)← r(y, x) ∧D(x) for all D = (D,∆D) ∈ DT with D 6= t.

It it easy to verify that if b ∈ Ind(A) satisfies the body of a rule in Πt, then t /∈ ITO,A(b).
Hence, Πt(A) has the desired property. Since ITO(·) can be computed in polynomial
time, Πt can be computed in polynomial time. o

It is now easy to prove Theorem 8 using Lemma 3.

Theorem 8 (restated). Given a schema.org-ontologyO, one can compute in polynomial
time a non-recursive datalog program Π such that for any data instance A for O, A is
unsatisfiable w.r.t. O iff Π(A) 6= ∅.

Proof. The program Π can be obtained from the programs Πt in Lemma 3 as follows.
Let goalt(x) be the goal predicate of Πt. Then, Π contains the program Πt for each
item type t, and the following additional rule

goal()←
∧
t

goalt(x),

where t ranges over all the items types overO. Then,Π(A) is non-empty iff ITO,A(a) =
∅ for some a ∈ Ind(A). The latter holds precisely if A is unsatisfiable w.r.t. O. o

We conclude this section by proving Theorem 9. Recall the notion of a conflict
assertion from Section 4.

Theorem 9 (restated). Given a schema.org-ontology O and concept name A (resp. role
name r), one can compute a non-recursive datalog program Π such that for any data
instance A for O, Π(A) is the set of all a ∈ Ind(A) (resp. (a, b) ∈ Ind(A)2) such that
A(a) (resp. r(a, b)) is a conflict assertion in A.

Proof. For concept names A, Π contains the following rules:

– for all minimal S ⊆ BC(O) such that A ∈ S and
⋂
C∈S ITO(C) = ∅, the rule

goal(x)←
∧
C∈S atC(x);



– goal(x)← A(x) ∧ x = a for all a ∈ NE(O) with a /∈ ITO(A).

For role names r, Π contains the following rules:

– for all minimal S ⊆ BC(O) such that dom(r) ∈ S and
⋂
C∈S ITO(C) = ∅, the rule

goal(x, y)← r(x, y) ∧
∧
C∈S atC(x);

– for all minimal S ⊆ BC(O) such that ran(r) ∈ S and
⋂
C∈S ITO(C) = ∅, the rule

goal(x, y)← r(x, y) ∧
∧
C∈S atC(y);

– goal(x, y)← r(x, y) ∧ x = a for all a ∈ NE(O) with a /∈ ITO(dom(r));
– goal(x, y)← r(x, y) ∧ y = a for all a ∈ NE(O) with a /∈ ITO(ran(r));
– goal(x, y)← r(x, y) ∧D(y) if D = (D,∆D) ∈ DT and D /∈ ITO(ran(r)).

It is easy to verify that Π has the desired properties. o

D Proof of Theorem 10

This section provides a detailed proof of Theorem 10. We first show that over schema.org-
ontologies, quantifier-free CQs can be polynomially rewritten into datalog-programs.
Then, polynomial time combined complexity of answering quantifier-free CQs q w.r.t.
schema.org-ontologies O will follow from the structure of the rewriting of (O, q).

To simplify technical constructions, we assume that NE(O) ⊆ ∆IA and ai ∈
AIA whenever A ≡ {a1, . . . , an} ∈ O, 1 ≤ i ≤ n. All results in this section also
hold without this assumption. For instance, in the datalog programs constructed in
Lemmas 5 and 7 below, we can “simulate” this by adding rules A(ai) ← true for all
A ≡ {a1, . . . , ak} ∈ O and 1 ≤ i ≤ k; the resulting programs are non-recursive iff the
original programs are. For the definitions of Obasic, the set BC(O) of basic concepts of a
schema.org-ontology O, the concept of an item type, and the set ITO,A(·), we refer the
reader to Section C.

We start by considering queries of the form A(x). Note that rewritings as constructed
in Section 3 do not work here, because enumeration types in the ontology might force
us to map an individual to an enumeration individual for which we can derive A. For
example, let O = {B ≡ {b1, b2}} and A = {B(a), A(b1), A(b2)}. Then, O,A |=
A(a) holds, although A(a) is not true in A (i.e., A(a) is not true after removing the
enumeration definition from O). Nevertheless, there is a simple non-recursive datalog
rewriting of A(x):4

goal(x)← A(x),

goal(x)← B(x) ∧ goal1(x) ∧ goal2(x),

goali(x)← neq(x, bi)

goali(x)← A(bi).

Here, goali(a) checks that if a can have the item type bi (i.e., if it is not the case that
a ∈ {b1, b2} and a 6= bi), then A(bi) holds. Thus, goal(a) is true iff the data instance

4 To simplify the presentation, we omit the straightforward rules for deriving neq(b1, b2),
neq(b2, b1) as well as B(b1) and B(b2).



contains A(a), or a cannot have the item type ? and for the remaining item types
t ∈ {b1, b2} that are possible for a the data instance contains A(t). It is easy to check
that the latter is equivalent to O,A |= A(a).

We now describe the construction for arbitrary schema.org-ontologies. Before doing
this, we show under which conditions one can derive an atom A(a) from a data instance
A and a schema.org-ontology O.

Lemma 4. Let A be a data instance for O, A ∈ NC, and a ∈ NI. Suppose that O ∪A
is satisfiable. Then, O,A |= A(a) iff one of the following applies:

1. Obasic,A |= A(a); or
2. ? /∈ ITO,A(a), and for all t ∈ ITO,A(a) there exists a b ∈ Ind(A) with Obasic,A |=
A(b) and ITO,A(b) ⊆ {t}.

Proof. “Only if” We prove the contrapositive. Suppose that Obasic,A 6|= A(a), and that
one of the following applies:

1. ? ∈ ITO,A(a); or
2. there exists a t ∈ ITO,A(a) such that for all b ∈ Ind(A) with Obasic,A |= A(b) we

have ITO,A(b) 6⊆ {t}.

We show that O,A 6|= A(a). To this end, we show that there is a model I of O∪A with
I 6|= A(a).

First, assume that ? ∈ ITO,A(a). Since O ∪A is satisfiable, we can pick an element
tb ∈ ITO,A(b) for each b ∈ Ind(A). By Lemma 2, there is a model I of O ∪ A such
that aI 6= bI for all b ∈ Ind(A) \ {a}. Together with Obasic,A 6|= A(a), this implies
I 6|= A(a).

Next, assume that there exists a t ∈ ITO,A(a) such that for all b ∈ Ind(A) with
Obasic,A |= A(b) we have ITO,A(b) 6⊆ {t}. By Lemma 2, there is a model I of O ∪A
such that aI has item type t, and each b ∈ Ind(A) with Obasic,A |= A(b) has an item
type distinct from t. In particular, each b ∈ Ind(A) with Obasic,A |= A(b) is assigned to
an individual distinct from aI . Together with Obasic,A 6|= A(a), this implies I 6|= A(a).

“If” Clearly, Obasic,A |= A(a) implies O,A |= A(a). Assume now that ? /∈ ITO,A(a),
and that for all t ∈ ITO,A(a) there exists a b ∈ Ind(A) with Obasic,A |= A(b) and
ITO,A(b) ⊆ {t}. We show that O,A |= A(a). To this end, let I be a model of O ∪A,
and let t be the item type of aI . By Lemma 2, we have t ∈ ITO,A(a). Hence, by our
assumption, there is a b ∈ Ind(A) with Obasic,A |= A(b) and ITO,A(b) ⊆ {t}. Fix such
a b. Since ITO,A(b) ⊆ {t} and t 6= ?, we have aI = bI . Together withObasic,A |= A(b),
this implies I |= A(a). o

We are now ready for giving the construction of a non-recursive datalog rewriting of
atomic queries A(x) w.r.t. arbitrary schema.org-ontologies.

Lemma 5. For every schema.org-ontology O and every A ∈ NC, one can construct in
polynomial time a non-recursive datalog-rewriting of (O, A(x)).

Proof. As mentioned at the end of Section 4 it suffices to construct a rewriting that
works for data instances A such that O ∪A is satisfiable. Let A be a data instance for O
and a ∈ Ind(A). By Lemma 4 we have O,A |= A(a) iff one of the following applies:



1. Obasic,A |= A(a); or
2. ? /∈ ITO,A(a), and for all t ∈ ITO,A(a) there exists a b ∈ Ind(A) with Obasic,A |=
A(b) and ITO,A(b) ⊆ {t}.

The datalog program constructed below implements the above checks.
By Proposition 1, we can compute in polynomial time a non-recursive datalog

rewriting ΠA of (Obasic, A(x)). Let certainA be the goal predicate of ΠA. Furthermore,
by Lemma 3, for every item type t over O we can compute in polynomial time a non-
recursive datalog program Πt such that for any data instance A for O, Πt(A) is the set
of all a ∈ Ind(A) with t /∈ ITO,A(a). Let itt be the goal predicate of Πt.

Now, consider the non-recursive datalog program Π containing ΠA and Πt, for
every item type t over O, and the following additional rules:

1. goal(x)← certainA(x);
2. goal(x)←

∧
t∈NE(O)∪{?}Rt(x);

3. Rt(x)← itt(x) for all item types t over O;
4. Rt(x)← certainA(y) ∧

∧
t′∈NE(O)\{t} itt′(y) for all item types t ∈ NE(O).5

Here, goal and Rt, for each item type t over O, are fresh unary IDB predicates. Clearly,
Π can be computed in polynomial time from O. The characterisation of O,A |= A(a)
at the beginning of the proof implies that for every data instance A for O and every
a ∈ Ind(A), we have a ∈ Π(A) iff O,A |= A(a). o

Next, we deal with atomic role queries. We first prove an auxiliary lemma, Lemma 6,
which states under which conditions one can derive an atom r(a, b) from a data instance
A and a schema.org-ontology O. The lemma is based on the following notion of path.

Definition 1. Let O be a schema.org-ontology, A a data instance for O, a, b ∈ Ind(A),
and ta, tb item types overO. An (r, a, b, ta, tb)-path inO,A is a sequence c0, c1, . . . , cn ∈
Ind(A), for some n ≥ 1, such that

– Obasic,A |= r(ci−1, ci) for each i ∈ {1, . . . , n},
– IT′O,A(c0) ⊆ {ta},
– IT′O,A(ci) ⊆ {ta, tb} for each i ∈ {1, . . . , n− 1}, and
– IT′O,A(cn) ⊆ {tb}.

Here, we let IT′O,A(c) := ITO,A(c) for c ∈ Ind(A) \ {a, b}, and IT′O,A(c) := {tc} for
c ∈ {a, b}.

Lemma 6. Let A be a data instance for O such that O ∪A is satisfiable. Let r ∈ NR,
a ∈ NI, and b ∈ NI ∪

⋃
D∈DT∆

D. Then,O,A |= r(a, b) iff one of the following applies:

1. Obasic,A |= r(a, b); or
2. ITO,A(a) ⊆ NE(O), ITO,A(b) ⊆ NE(O), and for all ta ∈ ITO,A(a) and tb ∈

ITO,A(b) there exists an (r, a, b, ta, tb)-path in O,A.

5 Technically, we would have to add atoms to the body to “cover” the variable x. We can easily
do this by first adding rules that define the unary predicate of all individual names in A, and
then using this unary predicate to “cover” x.



Proof. “If” If Obasic,A |= r(a, b), then O,A |= r(a, b). In the following, we assume
that ITO,A(a), ITO,A(b) ⊆ NE(O), and that for all ta ∈ ITO,A(a) and tb ∈ ITO,A(b)
there exists an (r, a, b, ta, tb)-path in O,A.

To show that O,A |= r(a, b), let I be a model of O ∪A. For each c ∈ Ind(A), let
tc be the item type realized by cI . By Lemma 2, we have tc ∈ ITO,A(c).

Now, let c0, c1, . . . , cn be an (r, a, b, ta, tb)-path in O,A. Then, I |= r(ci, ci+1) for
all i < n, IT′O,A(c0) ⊆ {ta}, IT′O,A(cn) ⊆ {tb}, and IT′O,A(ci) ⊆ {ta, tb} for each
i ≤ n. Let i be the smallest index ≤ n with tci = tb. Then, tci−1

= ta, and hence
(aI , bI) = (ta, tb) = (cIi−1, c

I
i ). Since I |= r(ci−1, ci), this implies I |= r(a, b).

This shows that r(a, b) is true in every model of O ∪A, hence O,A |= r(a, b).

“Only if” We prove the contrapositive. Suppose that Obasic,A 6|= r(a, b), and that one of
the following applies:

– Case 1: ITO,A(a) * NE(O).
– Case 2: ITO,A(b) * NE(O).
– Case 3: Cases 1 and 2 do not apply, and there are ta ∈ ITO,A(a) and tb ∈ ITO,A(b)

such that there is no (r, a, b, ta, tb)-path in O,A.

Case 1: In this case, there is a ta ∈ ITO,A(a) with ta /∈ NE. Note that this implies
ta = ?. Since O ∪ A is satisfiable, we can pick an element tc ∈ ITO,A(c) for each
c ∈ Ind(A) \ {a}. By Lemma 2, there is a model I of O ∪A such that

1. aI realizes t, and
2. if ta = ?, then aI 6= cI for all c ∈ Ind(A) with a 6= c.

Without loss of generality, we may assume that I is an inclusion-minimal model. In
such a model, we have I |= r(a, b) iff Obasic,A |= r(c, d) for c, d ∈ Ind(A) with
(aI , bI) = (cI , dI). Since ta = ?, and by the properties of I stated above, there is no
c ∈ Ind(A) with cI = aI , and therefore I 6|= r(a, b). As I is a model of O ∪ A, this
implies O,A 6|= r(a, b).

Case 2: Similar to case 1.

Case 3: Let ta ∈ ITO,A(a) ⊆ NE(O) and tb ∈ ITO,A(b) ⊆ NE(O) such that there is no
(r, a, b, ta, tb)-path in O,A. Consider the directed graph G = (V,E) defined as follows:

– the vertex set V consists of all the elements c ∈ Ind(A) with IT′O,A(c) ⊆ {ta, tb};
– the edge set E consists of all pairs (c, d) ∈ V × V with Obasic,A |= r(c, d).

Here, IT′O,A(c) is defined as in Definition 1. Let S ⊆ V consist of all those c ∈ V with
IT′O,A(c) ⊆ {ta}, and let S∗ be the set of all c ∈ V that are reachable from S in G.
Since there is no (r, a, b, ta, tb)-path in O,A, we have

ta ∈ IT′O,A(c) for all c ∈ S∗. (1)

Since all those c ∈ V with tb /∈ IT′O,A(c) occur in S ⊆ S∗, we also have

tb ∈ IT′O,A(c) for all c ∈ V \ S∗. (2)



Also note that a ∈ S ⊆ S∗ and b ∈ V \ S∗ (for the latter, recall that IT′O,A(b) = {tb},
hence the presence of b in S∗ would imply an (r, a, b, ta, tb)-path in O,A, contradicting
our assumption). For each c ∈ Ind(A), let

– tc = ta if c ∈ S∗,
– tc = tb if c ∈ V \ S∗,
– tc ∈ ITO,A(c) \ {ta, tb} if c ∈ Ind(A) \ V .

Notice that there is no edge (c, d) in G with (tc, td) = (ta, tb), because by the definition
of the tc every such edge (c, d) must have the property that c ∈ S∗ and d ∈ V \ S∗, but
by the definition of S∗ there is no edge from S∗ to V \ S∗.

By Lemma 2, there is a model I of O ∪A such that for each c ∈ Ind(A),

– cI realizes tc, and
– if tc = ?, then cI 6= dI for all d ∈ Ind(A) with c 6= d.

Without loss of generality, we may assume that I is an inclusion-minimal such model.
In such a model, we have I |= r(a, b) iff there is an edge (c, d) in G with (cI , dI) =
(aI , bI) = (ta, tb). But from our construction of the tc and the properties of I it follows
that there is no edge (c, d) in G with (cI , dI) = (ta, tb). Consequently, I 6|= r(a, b),
which implies O,A 6|= r(a, b), as desired. o

Lemma 7. For every schema.org-ontology O and every r ∈ NR, one can construct in
polynomial time a datalog-rewriting of (O, r(x, y)).

Proof. As mentioned at the end of Section 4 it suffices to construct a rewriting that
works for data instances A such that O ∪A is satisfiable. Clearly, if Obasic,A |= r(a, b)
for a data instance A for O and a, b ∈ Ind(A), then O,A |= r(a, b). On the other
hand, if Obasic,A 6|= r(a, b), then we need to check that there always exists an assertion
r(c, d) ∈ A such that c and d are forced onto the same individuals as a and b, respectively.
By Lemma 6 we have that O,A |= r(a, b) iff one of the following applies:

1. Obasic,A |= r(a, b); or
2. ITO,A(a) ⊆ NE(O), ITO,A(b) ⊆ NE(O), and for all ta ∈ ITO,A(a) and tb ∈

ITO,A(b) there exists an (r, a, b, ta, tb)-path in O,A.

We now construct a datalog program implementing these checks. As in Lemma 5, we start
by computing a non-recursive datalog rewriting of (Obasic, r(x, y)), and non-recursive
datalog programs Πt, for each item type t over O, as guaranteed by Lemma 3. By
Proposition 1 and Lemma 3, this is possible in polynomial time. Let certainr and itt be
the goal predicates of ΠA and Πt, respectively.

Now, let Π be the datalog program containing Πr and Πt, for each item type t over
O, and the following additional sets of rules. First, for all t, t′ ∈ NE(O), we include the
following rules to check the existence of an (r, x, y, t, t′)-path in O,A:6

6 To simplify the presentation, we sometimes omit covering variables that occur in the head of
a rule, but as before we can easily do this by first adding rules that define the unary predicate
of all individual names in A, and then using this unary predicate to “cover” the variables that
occur in the head but not in the body of a rule.



1. St,t′(x, u)←
∧
t′′ 6=t itt′′(u);

St,t′(x, u)← x = u;
2. Vt,t′(x, y, u)←

∧
t′′ /∈{t,t′} itt′′(u);

Vt,t′(x, y, u)← x = u;
Vt,t′(x, y, u)← y = u;

3. Pt,t′(x, y, u)← St,t′(x, v) ∧ certainr(v, u) ∧ Vt,t′(x, y, u);
4. Pt,t′(x, y, u)← Pt,t′(x, y, v) ∧ certainr(v, u) ∧ Vt,t′(x, y, u);
5. goalt,t′(x, y)← Pt,t′(x, y, u) ∧

∧
t′′ 6=t′ itt′′(u);

6. goalt,t′(x, y)← Pt,t′(x, y, u) ∧ u = y.

The rules in 1 add to St,t′(x, ·) all u with IT′O,A(u) ⊆ {t} (i.e., ITO,A(u) ⊆ {t} or
u = x). Similarly, the rules in 2 add to Vt,t′(x, y, ·) all u with IT′O,A(u) ⊆ {t, t′} (i.e.,
ITO,A(u) ⊆ {t, t′} or u ∈ {x, y}). The rules in 3 and 4 add to Pt,t′(x, y, ·) all u such
that there is an r-path starting in an element in St,t′(x, ·), ending in u, and having all its
intermediate vertices in Vt,t′(x, y, ·). Finally, rules 5 and 6 check whether some element
in Pt,t′(x, y, ·) is the endpoint of a (r, x, y, t, t′)-path. In particular, goalt,t′(x, y) is true
iff there is an (r, x, y, t, t′)-path in O,A.

We now use the above rules to construct the final rewriting. To this end, we add the
following rules:

– goal(x, y)← certainr(x, y);
– goal(x, y)←

∧
t,t′∈NE(O)Rt,t′(x, y);

– Rt,t′(x, y)← itt(x) and Rt,t′(x, y)← itt′(y) for all item types t, t′ over O;
– Rt,t′(x, y)← goalt,t′(x, y) for all t, t′ ∈ NE(O).

This finishes the construction of the program. Clearly, Π can be computed in polynomial
time. The characterization of O,A |= r(a, b) at the beginning of the proof implies that
(a, b) ∈ Π(A) iff O,A |= r(a, b). o

We obtain Theorem 10 as a corollary of Lemmas 5 and 7.

Theorem 10 (restated). Given an OMQ Q = (O, q) withO a schema.org-ontology and
q a quantifier-free CQ, one can construct in polynomial time a datalog-rewriting of Q;
the rewriting is non-recursive if q = A(x). Moreover, evaluating OMQs from this class
is in PTIME in combined complexity.

Proof. LetO be a schema.org-ontology, and q(x̄) a quantifier-free CQ. For each concept
name A and role name r in q(x̄), let ΠA and Πr be datalog rewritings of A(x) and
r(x, y) with goal predicates goalA and goalr, respectively. By Lemmas 5 and 7, such
rewritings can be computed in polynomial time. Now, a datalog rewriting of (O, q) is
obtained as the datalog program containing ΠA and Πr for each concept name A and
role name r in q(x̄), and the rule

goal(x̄)← φ, (3)

where φ is obtained from q(x̄) by replacing each concept name A by goalA, and each
role name r by goalr.



Next, we argue that evaluating OMQs (O, q) with O a schema.org-ontology and q a
quantifier-free query has PTime combined complexity. Given a schema.org-ontology O,
a data instance A for O, a quantifier-free query q, and a tuple ā, we first construct the
datalog program Π as described above. We then construct a new program Πā obtained
fromΠ by substituting ā for x̄ in (3), and replacing goal(ā) with the unary goal predicate
goal(). Then,O,A |= q(ā) iff Πā(A) 6= ∅. Inspecting the constructions of the programs
ΠA and Πr, we observe that each rule in Πā has at most three variables. It follows that
Πā can be evaluated in polynomial time.

Note that, if q = A(x), then Lemma 5 states that a non-recursive datalog rewriting
of (O, q) can be computed in polynomial time. o

E Proof of Theorem 11

Theorem 11 For every template B one can construct in polynomial time an OMQ (O, q)
where O only contains enumeration definitions and q is a Boolean variable-free UCQ
such that the complement of CSP(B) and (O, q) are mutually FO-reducible.

Proof. As in the proof of Theorem 5, assume a template B over signature Σ of concept
and role names is given such that for each b ∈ ∆B there is a concept name Pb such that
d ∈ PBb iff d = b.

Take a fresh concept name A, set O = {A ≡ {b | b ∈ ∆B}}, and define the UCQ q
as the disjunction of

– r(b, b′) for all r ∈ Σ and (b, b′) 6∈ rB;
– B(b) for all B ∈ Σ and b 6∈ BB.

We show that the complement of CSP(B) and (O, q) are mutually FO-reducible.

(⇒) Assume a data instance A over Σ is given. We may assume that the individuals
b, b ∈ ∆B, do not occur in A. If there exist Pb(a), Pb′(a) ∈ A with b 6= b′ then output
A 6→ B. Otherwise replace exhaustively

– B(a) by B(b) if Pb(a) ∈ A and B ∈ Σ \ {Pb | b ∈ ∆B};
– r(a1, a2) by r(b, a2) if Pb(a1) ∈ A;
– r(a1, a2) by r(a1, b) if Pb(a2) ∈ A;

and remove all assertions involving some Pb from A and add A(a) for all remaining
individuals a. Denote byA′ the resulting data instance. It is readily checked thatO,A′ |=
q iff A 6→ B.

(⇐) Assume a data instance A is given. Remove from A all assertions involving
individuals a distinct from b with b ∈ ∆B such that A(a) 6∈ A. Clearly O,A |= q iff
O,A′ |= q for the resulting data instance A′. Now add Pb(b) to A′ for all b ∈ ∆B and
remove all assertions with concept or role names not in Σ. Denote the resulting data
instance by A′′. One can show that O,A′ |= q iff A′′ 6→ B. o



F Proof of Theorem 12

Theorem 12 Let O be a coherent and minimized schema.org-ontology. If O contains
an enumeration definition A ≡ {a1, . . . , an} with n ≥ 2 or contains an inclusion
F v A1 t · · · tAn such that there are at least two concept names in {A1, . . . , An} and
O 6|= F v A t t

(D,∆D)∈DT
D for any A with A ≡ {a} ∈ O, then (O, q) is coNP-hard

for some Boolean CQ q. Otherwise every (O, q) with q a UCQ is FO-rewritable (and
thus in AC0 in data complexity).

Proof. Assume O is coherent and minimized and the conditions for NP-hardness are
satisfied. If O contains an enumeration definition A ≡ {a1, . . . , an} with n ≥ 2 we
prove NP-hardness similarly to the hardness proof in Theorem 4. Differences are that in
this case we do not attempt to work within the language of the given ontologyO and that
we use enumeration individuals in the query instead of existentially quantified variables.

For simplicity, we consider the case in which A ≡ {a0, a1} ∈ O. The generalization
to arbitrarily many enumeration individuals is straightforward using the ideas from the
proof of Theorem 4.

Assume ϕ = c0 ∧ · · · ∧ cn is a 2+2-formula in propositional letters v0, . . . , vm and
let ci = ui0 ∨ ui1 ∨ ¬ui2 ∨ ¬ui3 for i ≤ n. Our aim is to define an data instance Aϕ and
a Boolean CQ q such that ϕ is unsatisfiable iff O,Aϕ |= q. We represent the formula
ϕ in the data instance Aϕ as follows. We use two enumeration individuals, a0, a1, all
remaining individual names are from NI \ NE. In addition we use one fresh role name r.
Now we take as in the proof of Theorem 4

– the individual names v0, . . . , vm represent variables and the individual names 0, 1
represent truth constants;

– the individual names cil and bil are used to encode the four literals of each 2 + 2
clause ci, where i ≤ n and l ≤ 3;

– for i ≤ n and l ≤ 3, the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the variable/truth constant uil .

We further extend Aϕ to enforce a truth value for each variable vi, i ≤ m. Intuitively,
assertions A(a′i) are used to generate a truth value (a0 or a1) for vi, where we identify
a0 with true and a1 with false. Thus add to Aϕ the assertions A(a′0), . . . , A(a′k) and

– to link variables vi to a′i the assertions r(vi, a′i) for all i ≤ m;
– to ensure that 0 and 1 have the expected truth values, add to Aϕ the assertions
r(1, a0) and r(0, a1).

Consider the Boolean UCQ (we omit existential quantifiers):

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where



– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ ff(yi) for i = 0, 1 and
– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ tt(yi) for i = 2, 3 and

where

tt(yi) = r(yi, a1)

ff(yi) = r(yi, a0)

Then one can show that O,Aϕ |= q0 iff q0 is not satisfiable.

Assume now that no enumeration definition A ≡ {a1, . . . , an} with n ≥ 2 is in O.

Set NE
C(O) = {C | C ≡ {c} ∈ O} and set D0 =t(D,∆D)∈DT D. We prove the

following

Claim 1. There exist F0 ∈ {dom(r), ran(r)} and C1, . . . , Ck ∈ NE
C(O) ∪ NC(O),

k ≥ 2, such thatO |= F0 v C1t· · ·tCktD0 and forA = {r(a1, b1), . . . , r(ak, bk)},
where ai, bi ∈ NI \ NE there exists a model I of A and O such that

– if F0 = ran(r), then bi ∈ CIi \
⋃
i6=j C

I
j for 1 ≤ i ≤ k and

– if F0 = dom(r), then ai ∈ CIi \
⋃
i6=j C

I
j for 1 ≤ i ≤ k.

Proof of Claim 1. Consider the following Condition (∗): there existF ′ ∈ {dom(s), ran(s)}
and X ⊆ NE

C(O) of cardinality at least two, such that

– O |= F ′ v (tC∈X C) tD0 and
– F ′ u C is satisfiable relative to O for all C ∈ X .

Clearly, if (∗) holds, then Claim 1 follows immediately. Now assume (∗) does not hold.
Consider F v A1 t · · · t An ∈ O such that there are at least two concept names in
{A1, . . . , An} and O 6|= F v {a} t D0 for any enumeration individual a. Assume
w.l.o.g. that F = ran(r) and that A1, . . . , Ak are concept names and Ak+1, . . . , An are
datatype names. We have

O |= F v ( t
C∈NE

C(O)
C) tA1 t · · · tAk tD0

By removing ‘redundant’ concepts starting with Ak and moving C ∈ NE
C(O) vie A1

we find X1 ⊆ NE
C(O) and X2 ⊆ {A1, . . . , Ak} such that

– O |= F v (tC∈X1 C) t (tA∈X2 A) tD0;

– ran(r) uA u ¬(tC∈NE
C(O) C) u ¬(tB∈X2,B 6=AB) is satisfiable relative to O

for all A ∈ X2;
– ran(r) u C u ¬(tA∈X2 A) is satisfiable relative to O for all C ∈ X1.

It follows from the conditions for NP-hardness in Theorem 12 that we have |X1 ∪X2| ≥
2: if |X1| = 1 and X2 = ∅, then we have found an enumeration individual a with O 6|=
F v {a}tt(D,∆D)∈DT D. If |X2| = 1 andX1 = ∅, thenO |= Aitt(D,∆D)∈DT D



which contradicts the condition that O is minimized, and that F v A1 t · · · tAn ∈ O
with at least two concept names in {A1, . . . , An}.

Next observe that we cannot have both, O |= dom(r) v C for some C ∈ X1

and O |= dom(r) vtA∈X2
A. Moreover, since (∗) does not hold, O 6|= dom(r) v

(tC∈X1
C) does not hold unless O |= dom(r) v C for some C ∈ X1. Thus, we

find models IA, A ∈ X1 ∪ X2, of O and AA = {rA(aA, bA)} such that ∆IA ⊆
{aIAA , bIAA } ∪ NE(O) and

– sIA = ∅ for all roles s with O 6|= r v s and all A ∈ X1 ∪X2;
– rIA = sIA = {(aIAA , bIAA )}, for all s with O |= r v s and all A ∈ X1 ∪X2;
– aIAA ∈ AIA \ (

⋃
C∈NE

C(O) C
IA ∪

⋃
B 6=A,B∈X2

BIA), for all A ∈ X2.
– aIAA ∈ AIA \

⋃
B∈X2

BIA), for all A ∈ X1;
– For all C ∈ X1, CIB∩ ∈ AIB = ∅ for all A,B ∈ X2.

It follows that we can take the union I of the models IA, A ∈ X1 ∪X2, and factorize
through the equivalence relation ∼ defined by d1 ∼ d2 if d1 = d2 or there exists
C ∈ NE

C(O) such that d1, d2 ∈ CI . The resulting model I/ ∼ is as required. This
finishes the proof of Claim 1.

Using Claim 1 we prove NP-hardness similarly to the hardness proof in Theorem 4
and above. Again we do not attempt to work within the language of the given ontology
O. For simplicity, we consider the following case:

(∗) There are C1, C2 ∈ NE
C(O) ∪ NC(O) such that O |= F0 v C1 t C2 and for

A = {r(a1, b1), r(a2, b2)}, where ai, bi ∈ NI \ NE there exists a model I of A and O
such that bi ∈ CIi \

⋃
i 6=j C

I
j for i = 1, 2.

The generalization to arbitrarily many disjuncts and datatype names as disjuncts is
straightforward using the ideas from the proof of Theorem 4.

Assume ϕ = c0 ∧ · · · ∧ cn is a 2+2-formula in propositional letters v0, . . . , vm and
let ci = ui0 ∨ ui1 ∨ ¬ui2 ∨ ¬ui3 for i ≤ n. Our aim is to define an data instance Aϕ and a
Boolean CQ q such that ϕ is unsatisfiable iff O,Aϕ |= q. We represent the formula ϕ in
the data instance Aϕ as follows. We use only two enumeration individuals, a0, a1, all
remaining individual names are from NI \ NE. In addition we use one fresh role name r.
Now we take

– the individual names v0, . . . , vm represent variables and the individual names 0, 1
represent truth constants;

– the individual names cil and bil are used to encode the four literals of each 2 + 2
clause ci, where i ≤ n and l ≤ 3;

– for i ≤ n and l ≤ 3, the assertions

r(cil, b
i
l), r(b

i
l, u

i
l), r(c

i
l, u

i
l)

and
r(ci0, c

i
1), r(ci1, c

i
2), r(ci2, c

i
3)

to associate the literals cil of a clause ci to the variable/truth constant uil .



We further extend Aϕ to enforce a truth value for each variable vi, i ≤ m. Now C1(a)
stands for true and C2(a) stands for false. We thus add to Aϕ the assertions r(fi, ai) for
i ≤ m and

– to link variables vi to ai we add the assertions r(vi, ai) for all i ≤ m;
– to ensure that 0 and 1 have the expected truth values, add to Aϕ the assertions
r(1, 1′), C1(1′) and r(0, 0′), C2(0′).

Consider the Boolean UCQ (we omit existential quantifiers):

q0 =
∧

0≤i≤2

r(xi, xi+1) ∧
∧

0≤i≤3

ψi

where

– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ ffi(yi) for i = 0, 1 and
– ψi = r(xi, zi) ∧ r(zi, yi) ∧ r(xi, yi) ∧ tti(yi) for i = 2, 3 and

where

tti(yi) = r(yi, wi) ∧ C1(wi)

ffi(yi) = r(yi, w1) ∧ C2(wi)

Then O,Aϕ |= q0 iff q0 is not satisfiable.

Now assume that the conditions for non-tractability are not satisfied. Assume a UCQ
q =

∨
i∈I qi is given and assume w.l.o.g. that q does not contain any individual names.

We assume that quantified variables in q are all distinct. Letm be the number of variables
in q and letX be the set of all pairs (A, π) of data instancesAwith at mostm individuals
and mappings π from answer variables of q into Ind(A) such that O,A |= q(π(x)). We
can regard every such A as a quantifier-free CQ qA.

We again use the following notation. Set NE
C(O) = {Cc | Cc ≡ {c} ∈ O} and set

D0 =t(D,∆D)∈DT D. Let for c ∈ NE(O),

ϕc(x) = (x = c) ∨
∨

O|=AvCc

A(x) ∨

∨
O|=ran(r)vCctD0

∃y r(y, x)

∨
O|=dom(r)vCc

∃y r(x, y)

and
ϕ∼(x, x′) = (x = x′) ∨

∨
c∈NE(O)

ϕc(x) ∧ ϕc(x′)

Obtain from qA the query q′A by replacing

– every atom A(y) by ∃y′(ϕ∼(y, y′) ∧A(y′)) and



– every r(y1, y2) by

∃y′1∃y′2(ϕ∼(y1, y
′
1) ∧ ϕ∼(y2, y

′
2) ∧ r(y′1, y′2))

Now let Q be the disjunction over all

QA,π =
∧

π(xi)=y

(xi = y) ∧ qA′

with (A, π) ∈ X . It is readily checked that Q is a rewriting of q. o

G Proof of Theorem 13

Theorem 13 Given an OMQ (O, q) with O a schema.org-ontology and q a qvar-acyclic
UCQ, one can compute in exponential time a generalized CSP with marked elements Γ
such that (O, q) and the complement of CSP(Γ ) are mutually FO-reducible.

Proof. We consider O without datatypes. The extension required to include datatypes is
straightforward. Let Σ be a finite signature of concept names, role names, and individual
names. A Σ-interpretation I is an interpretation in which XI = ∅ for all concept and
role names not in Σ and in which exactly the individuals a in Σ are interpreted as
aI ∈ ∆I . Given Σ-interpretations I and J we say that a mapping h from ∆I to ∆J is
a homomorphism if

– h(aI) = aJ for all a ∈ Σ;
– d ∈ AI implies h(d) ∈ AJ for all A ∈ Σ;
– (d, d′) ∈ rI implies (h(a), h(b)) ∈ rJ , for all r ∈ Σ.

We write I → J iff there exists a homomorphism from I to J .
Now assume O and q(x, b) are given, where x = x1, . . . , xk. Let a = a1 · · · ak.

Let Σ be the set of all concept and role names in O and q together with the individuals
in a, b and all {c} for c ∈ NE(O). In what follows we assume w.l.o.g. that data instance
A contain the individuals in Σ.

Since q is qvar-acyclic we can construct in polynomial time a concept Cq in the
description logic ALCIUO which extends ALC with inverse roles, the universal role u
and nominals {a1}, . . . , {ak}, {b1}, . . . , bk}, and {c} for c ∈ NE(O) such that for every
data instance A for O (and with a, b, and c in Ind(A) for c ∈ NE(O)), O,A |= q(a, b)
iff CI 6= ∅ for all models I of O and A. In what follows we regard ran(r) and dom(r)
as the ALCI concepts ∃r.> and ∃r−.>, respectively. We are going to construct a set
Γ of templates B as follows: denote by sub(O, q) the closure under single negation of
the set of (subconcepts of) concepts that occur in O or Cq. A O-type t is a subset of
sub(O, q) such that there exists a model I ofO (in particular, cI = c for all c ∈ NE(O))
and d ∈ ∆I such that

t = tpI(d) := {D ∈ sub(O, q) | d ∈ DI}



We call tpI(d) the O-type of d. For O-types t1, t2 and role r we set t1  r t2 iff there
exists a model I of O such that tpI(d1) = t1, tpI(d2) = t2, and (d1, d2) ∈ rI . A set T
of O-types is complete if there exists a model I of O such that

T = {tpI(d) | d ∈ ∆I}.

From each complete set T of O-types T we construct a Σ-template BT as follows: let
∆BT = T and

– aBT = t for the unique t with a ∈ t, for all a ∈ Σ;
– t ∈ ABT if A ∈ t, for all A ∈ Σ;
– (t, t′) ∈ rBT if t r t

′, for all r ∈ Σ.

Now let Γ be the set of all BT with T a maximal complete T such that CBTq = ∅. Γ
contains at most exponentially many distinct templates of at most exponential size and
can be constructed in exponential time. Thus, it remains to prove that (O, q(x)) and the
complement of CSP(Γ ) are mutually FO-reducible. For a data instance A with a, b, and
c in Ind(A) for all c ∈ NE(O) we denote by JA the Σ-interpretation with

– ∆JA = Ind(A);
– aJA = a, for all a ∈ Σ;
– AJA = {a ∈ Ind(A) | A(a) ∈ A}, for A ∈ Σ;
– rJA = {(a, b) ∈ Ind(A)2 | r(a, b) ∈ A}, for r ∈ Σ.

Now one can show the following.

Claim 1. For any data instance A for O: O,A |= q(a) iff JA 6→ B for any B ∈ Γ .

For a Σ-interpretation I , we denote by AI the ABox corresponding to I . One can show
the following:

Claim 2. For any Σ-interpretation I, I 6→ B for any B ∈ Γ iff O,AI |= q(a). o


