
Efficient Query Rewriting in the Description Logic EL and Beyond

Peter Hansen and Carsten Lutz and İnanç Seylan
University of Bremen, Germany

{hansen, clu, seylan}@informatik.uni-bremen.de

Frank Wolter
University of Liverpool, UK

frank@csc.liv.ac.uk

Abstract
We propose a new type of algorithm for computing
first-order (FO) rewritings of concept queries under
ELHdr-TBoxes. The algorithm is tailored towards
efficient implementation, yet complete. It outputs
a succinct non-recursive datalog rewriting if the in-
put is FO-rewritable and otherwise reports non-FO-
rewritability. We carry out experiments with real-
world ontologies which demonstrate excellent per-
formance in practice and show that TBoxes orig-
inating from applications admit FO-rewritings of
reasonable size in almost all cases, even when in
theory such rewritings are not guaranteed to exist.

1 Introduction
Ontology-based data access (OBDA) with Description Log-
ics (DLs) is a very active topic of research, which has re-
sulted in various approaches to implementing OBDA in prac-
tice [Poggi et al., 2008; Lutz et al., 2009; Pérez-Urbina
et al., 2010; Eiter et al., 2012]. A particularly promising
such approach is query rewriting, which enables implemen-
tations based on conventional relational database systems
(RDBMSs), thus taking advantage of those systems’ effi-
ciency and maturity [Poggi et al., 2008; Kontchakov et al.,
2013]. The general idea is to transform the original query q
and the relevant TBox T into a first-order (FO) query qT that
is then handed over to the RDBMS for execution. One limi-
tation of this approach is that, for the majority of description
logics that are used as ontology languages, the query qT is
not guaranteed to exist. In fact, this is the case already for
the members of the popular EL family of lightweight DLs
[Baader et al., 2005; Lutz et al., 2009], which underly the EL
profile of the OWL2 ontology language and are frequently
used in health care and biology ontologies. This observation,
however, does not rule out the possibility that FO-rewritings
still exist in many practically relevant cases. In fact, TBoxes
that emerge from practical applications tend to have a rather
simple structure and one might thus speculate that, indeed,
FO-rewritings under EL-TBoxes tend to exist in practice.

In this paper, we consider the construction of FO-rewri-
tings of concept queries under TBoxes that are formulated
in the description logic ELHdr. The latter is a logical core

of OWL2 EL that extends basic EL with role inclusions and
domain/range restrictions on roles [Lutz et al., 2009] while
concept queries take the form C(x) with C an EL-concept.
Constructing the desired rewritings is computationally hard:
it follows from results in [Bienvenu et al., 2013] that deciding
whether a given concept query C(x) is FO-rewritable under a
given TBox T is PSPACE-complete both in EL and in ELHdr,
and it even becomes EXPTIME-complete when the vocabu-
lary of the admitted database instances (i. e., ABoxes) is an
additional input—a feature that we allow in the current paper.

Existing approaches to query rewriting under DL TBoxes
can be summarized as follows: (i) approaches that target
rewritings into the more expressive query language datalog
and which are incomplete in the sense that existing datalog-
rewritings are not guaranteed to be found and, moreover,
the generated datalog-rewritings are not necessarily non-
recursive even if there is an FO-rewriting [Rosati, 2007;
Pérez-Urbina et al., 2010; Kaminski and Grau, 2013; Mora
and Corcho, 2013]; (ii) backwards chaining approaches for
existential rules (a strict generalization of ELHdr) which are
complete in the sense that they find an FO-rewriting if there
is one, but need not terminate otherwise [König et al., 2012];
(iii) complete and terminating approaches which aim to prove
upper complexity bounds, but which are not practically feasi-
ble [Bienvenu et al., 2013; 2014].

The aim of this paper is to design, for the first time, algo-
rithms for computing FO-rewritings of concept queries un-
der EL- and ELHdr-TBoxes that are complete, terminating,
and feasible in practice. We start with a marriage of ap-
proaches (ii) and (iii) above to get the best of both worlds;
in particular, (ii) appears to be practically much more feasi-
ble than (iii) while (iii) provides a way to achieve termina-
tion. The resulting backwards chaining algorithm is concep-
tually simple and constitutes a significant step towards our
goal. However, it produces FO-rewritings that are unions
of conjunctive queries (UCQs), which has two significant
drawbacks: first, recent experiments [Lutz et al., 2013] have
shown that executing UCQ-rewritings on RDBMSs is pro-
hibitively expensive while executing equivalent rewritings
that take the form of non-recursive datalog programs is much
more feasible; and second, UCQ-rewritings can be of exces-
sive size even in practically relevant cases [Rosati and Al-
matelli, 2010].

To address these shortcomings, the main contribution of

this paper is to refine our initial backwards chaining algorithm
to what we call a decomposed algorithm. While the initial al-
gorithm uses tree-shaped conjunctive queries (CQs) as an in-
ternal data structure, the new algorithm only represents single
nodes of tree-shaped CQs together with information of how to
reassemble these nodes into full queries. This can be seen as a
way to implement structure sharing and allows us to directly
produce rewritings that are non-recursive datalog programs,
avoiding UCQ-rewritings altogether. The algorithm runs in
exponential time, is capable of deciding the existence of FO-
rewritings in EXPTIME (which is optimal), and is capable of
producing monadic non-recursive datalog rewritings that are
of at most exponential size (but much smaller in practice). We
also show that an exponential blowup is unavoidable when
rewriting into monadic non-recursive datalog. Technically,
the decomposed algorithm is much more subtle than the ini-
tial one.

We then evaluate the decomposed algorithm by carrying
out experiments with seven ontologies from practical appli-
cations. We ask for an FO-rewriting of every concept query
A(x) with A a concept name from the ontology under con-
sideration. Out of 10989 inputs in total and with a timeout of
30 seconds, the decomposed algorithm terminates on all but
127 inputs and on average needs less than 0.5 seconds per in-
put. We also analyse the size of the generated non-recursive
datalog rewritings, with extremely encouraging results. Our
experiments show that the decomposed algorithm performs
very well on ontologies from practical applications and also
confirm our initial belief that such ontologies very often ad-
mit FO-rewritings. In particular, only 74 of 10989 inputs turn
out to be not FO-rewritable.

Proof details are deferred to the appendix, available at
http://www.informatik.uni-bremen.de/tdki/p.html.

2 Preliminaries
We use NC and NR to denote mutually disjoint countably
infinite sets of concept and role names, respectively. An
EL-concept is formed according to the syntax rule C ::=
A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR.
Let C,D be EL-concepts and r, s be role names. Then
C v D is a concept inclusion (CI), r v s is a role in-
clusion (RI), dom(r) v C is a domain restriction, and
ran(r) v C is a range restriction. An ELH-TBox is a fi-
nite set of CIs and RIs and an ELHdr-TBox additionally ad-
mits domain and range restrictions. The semantics of con-
cepts and TBoxes is defined as usual [Baader et al., 2007;
2005]. For a CI or RI α, we write T |= α if every model of
T satisfies α; when T is empty, we write |= α.

An ABox A is a set of assertions of the form A(a) and
r(a, b) withA a concept name, r a role name, and a, b individ-
ual names from a countably infinite set NI. We use ind(A) to
denote the set of individual names that occur inA. A concept
query is an expression C(x) with C an EL-concept. We write
A, T |= C(a) and say that a is a certain answer to C given
the ABox A and TBox T if a ∈ ind(A) and aI ∈ CI for all
models I of T andA. A signature is a finite set Σ ⊆ NC∪NR.
An ABox is a Σ-ABox if it only uses concept and role names
from Σ.

For an FO-formula q(x) with one free variable x, we write
A |= q(a) if A (viewed as an interpretation) satisfies q under
the assignment that maps x to a. A concept query C(x) is
FO-rewritable under a TBox T and signature Σ if there is an
FO-formula ϕ(x) such that for all Σ-ABoxes A and individ-
uals a, we have A, T |= C(a) iff A |= ϕ(a). In this case,
we call ϕ(x) an FO-rewriting of C(x) under T and Σ. When
studying FO-rewritability of concept queries C(x), we can
assume w. l. o. g. that C is a concept name since C(x) is FO-
rewritable under a TBox T and Σ iff A(x) is FO-rewritable
under T ∪ {C v A} and Σ, where A is a fresh concept name
[Bienvenu et al., 2013].

We will also consider other forms of rewritings, in par-
ticular into unions of conjunctive queries (UCQs) and non-
recursive datalog programs. Although, strictly speaking,
non-recursive datalog rewritings are not FO-rewritings, the
existence of either kind of rewriting coincides with the exis-
tence of an FO-rewriting [Bienvenu et al., 2014]. In particu-
lar, non-recursive datalog rewritings can be viewed as a com-
pact representation of a UCQ-rewriting. We will also con-
sider monadic datalog as a special case, where all intensional
(IDB) predicates are unary.

For any of these rewritings, if Σ is the set of all concept
and role names in T and C, then C(x) is rewritable under T
and Σ iff it is rewritable under T and any signature. If this is
the case, we say that C(x) is rewritable under T and the full
signature.

For our technical constructions, it will be convenient to
view EL-concepts as conjunctive queries (CQs) that take the
form of a directed tree. We will represent such queries as
sets of atoms of the form A(x) and r(x, y) with A a con-
cept name, r a role name and x, y variables. Tree-shapedness
of a conjunctive query q then means that the directed graph
(V, {(x, y) | r(x, y) ∈ q}) is a tree, where V is the set of
variables in q, and that r(x, y), s(x, y) ∈ q implies r = s.
We will not distinguish explicitly between an EL-concept C
and its query representation. We thus use var(C) to denote
the set of variables that occur in C and xε to denote the root
variable in C. For an x ∈ var(C), we use C|x to denote the
EL-concept represented by (the subtree rooted at) x. When
we speak of a top-level conjunct (tlc) of an EL-concept C, we
mean a concept name A such that A(xε) ∈ C or a concept
∃r.D such that r(xε, y) ∈ C and D = C|y . We use tlc(C) to
denote the set of all top-level conjuncts of C. For any syntac-
tic object (such as a concept or a TBox), we define its size to
be the number of symbols used to write it.

We show that we can remove domain and range restric-
tions from ELHdr-TBoxes and work with ELH-TBoxes when
developing algorithms that decide rewritability or compute
rewritings.
Lemma 1. For every ELHdr-TBox T , signature Σ, and con-
cept query A0(x), one can construct in polynomial time an
ELH-TBox T ′ and signature Σ′ such that A0(x) is FO-
rewritable under T and Σ iff it is FO-rewritable under T ′
and Σ′.

Moreover, every UCQ and non-recursive datalog rewriting
ofA0(x) under T ′ and Σ′ can be converted in linear time into
a UCQ and, respectively, non-recursive datalog rewriting of
A0 under T and Σ.

3 A Backwards Chaining Algorithm
The algorithm presented in this section constructs a set of
UCQ-rewritings of A0(x) under an ELH-TBox T by start-
ing from {A0} and then exhaustively applying the axioms
in T as rules in a backwards chaining manner. It terminates
by either constructing a UCQ-rewriting or returning ‘not FO-
rewritable’. For simplicity and since the purpose of the algo-
rithm presented here is mainly to prepare for the subsequent,
more refined one, we consider rewritability for the full signa-
ture only.

Let A0 and T be an input to the algorithm. We start with
introducing the central backwards chaining steps. Let C and
D be EL-concepts and let α be a (concept or role) inclusion
from T . The notion of D being obtained from C by applying
α is defined as follows.
(CI) Let α = E v F be a CI, x ∈ var(C), and let there be at
least one tlc G of C|x with |= F v G. Then D is obtained
from C by applying α at x if D can be obtained from C by
• removing A(x) for all concept names A with |= F v A;
• removing the subtree rooted at y whenever r(x, y) ∈ C

and |= F v ∃r.(C|y) (including the edge r(x, y));
• adding A(x) for all concept names A that are a tlc of E;
• adding the subtree ∃r.H to x for each ∃r.H that is a tlc

of E.
(RI) Let α = r v s be an RI and let s(x, y) ∈ C . Then
D is obtained from C by applying α at s(x, y) if D can be
obtained from C by replacing s(x, y) by r(x, y).
The following is immediate.
Lemma 2. If T |= C v A0 and D can be obtained from C
by applying some inclusion in T , then T |= D v A0.

Apart from applying backwards chaining, our algorithm
also minimises the generated concepts to attain completeness
and termination. To make this precise, we introduce some no-
tation. Let C and D be EL-concepts and x ∈ var(C). Then
C \ C|x denotes the concept obtained by removing from C
the subtree rooted at x, and we write C ≺ D if there exists
x ∈ var(D) such that C = D \ D|x. We use ≺∗ to denote
the reflexive and transitive closure of ≺ and say that C is ≺-
minimal with T |= C v A0 if T |= C v A0 and there is no
C ′ ≺ C with T |= C ′ v A0. Note that if T |= C v A0,
then it is possible to find in polynomial time a C ′ ≺∗ C that
is ≺-minimal with T |= C ′ v A0.

The constructions in [Bienvenu et al., 2013] suggest that,
to achieve termination, we can use a certain form of block-
ing, similar to the blocking used in DL tableau algorithms.
Let sub(T) denote the set of subconcepts of (concepts that
occur in) T . For each EL-concept C and x ∈ var(C), we set
conCT (x) := {D ∈ sub(T) | T |= C|x v D}. We say that C
is blocked if there are x1, x2, x3 ∈ var(C) such that

1. x1 is a proper ancestor of x2 is an ancestor of x3 and
2. conDT (x1) = conDT (x2) for D ∈ {C,C \ C|x3

}.
The algorithm is formulated in Figure 1. Note that, by
Lemma 2, the concept D considered in the condition of the
while loop satisfies T |= D v A0 and thus we are guaranteed
to find the desired D′. Also note that each of the potentially
many candidates for D′ will work.

procedure find-rewriting(A0(x), T)
M := {A0}
while there is a C ∈M and a concept D such that

1. D can be obtained from C by applying some
axiom in T and

2. there is no D′ ≺ D with D′ ∈M then
find a D′ ≺∗ D that is ≺-minimal with T |= D′ v A0

if D′ is blocked then return ‘not FO-rewritable’
else add D′ to M

return the UCQ
∨
M .

Figure 1: The backwards chaining algorithm

Example 3. Let T = { ∃r.(B1 uB2) v A0,∃s.B2 v B2 }.
Starting with M = {A0} and applying the first CI to A0, we
get M = {A0,∃r.(B1 uB2)}. The second CI can be applied
repeatedly, starting with ∃r.(B1 uB2), and yields concepts

D1 = ∃r.(B1 u ∃s.B2),

D2 = ∃r.(B1 u ∃s.∃s.B2),

D3 = ∃r.(B1 u ∃s.∃s.∃s.B2), . . . ,

all of which are ≺-minimal with T |= Di v A0. D3

is blocked and the algorithm will classify A0 as ‘not FO-
rewritable’ under T .

Now consider the TBox T ′ = T ∪{B1 v B2}. Already the
concept D1 is not ≺-minimal with T ′ |= D1 v A0 and in-
stead ofD1, ∃r.B1 is added toM . At this point, rule applica-
tion stops and the UCQ

∨
M is returned as an FO-rewriting

of A0 under T ′.
T ′ illustrates that the algorithm is incomplete without the

minimization step since this step prevents generation of the
blocked concept D3.

We now establish correctness and termination.
Theorem 4. The algorithm in Figure 1 returns a UCQ-
rewriting

∨
M if A0 is FO-rewritable under T and the full

signature and ‘not FO-rewritable’ otherwise.
The generated UCQ-rewritings are not necessarily of min-

imal size. It is possible to attain minimal-size rewritings by
using a stronger form of minimality when constructing the
concept D′, namely by redefining the relation “≺” so that
C � D if there is a root-preserving homomorphism from C
toD (c.f. most-general rewritings in [König et al., 2012]). As
a consequence, the≺-minimal conceptD′ with T |= D′ v A
can then be of size exponential in the size of D. However, D′
can still be constructed in output-polynomial time.

We prove in the appendix that all concepts in M have out-
degree at most n and depth at most 22n, n the size of T .
As remarked in [Bienvenu et al., 2013], the size of UCQ-
rewritings can be triple exponential in the size of T , and thus
the same is true for the runtime of the presented algorithm.
While this worst case is probably not encountered in practice,
the size of M can become prohibitively large for realistic in-
puts. For this reason, we propose an improved algorithm in
the subsequent section, which produces non-recursive data-
log rewritings instead of UCQ-rewritings and whose runtime
is at most single exponential.

4 A Decomposed Algorithm
The algorithm presented in this section consists of three
phases. In Phase 1, a set Γ is computed that can be viewed as
a decomposed representation of the set M from Section 3 in
the sense that we store only single nodes of the tree-shaped
concepts inM , rather than entire concepts. In many cases, we
can already construct a non-recursive datalog rewriting after
Phase 1. If this is not possible, we compute in Phase 2 a set Ω
that enriches the node representation provided by Γ with sets
of logical consequences that are relevant for Point 2 of the
definition of blocked concepts. In Phase 3, we first execute a
certain cycle check on Ω, which corresponds to checking the
existence of a blocked concept in M . If no cycle is found, we
then construct a non-recursive datalog rewriting.

Phase 1. Assume that T is a TBox, Σ an ABox-signature,
and A0 a concept name for which we want to compute an
FO-rewriting under T and Σ. To present the algorithm, it
is convenient to decompose conjunctions on the right-hand
side of CIs, that is, to assume that T consists, apart from RIs,
only of CIs of the form C v A with A a concept name and
C v ∃r.D. We start with describing the construction of a set
Γ, whose elements we call node pairs. A node pair has the
form (C, S), where C ∈ sub(T), and S ⊆ sub(T) is a set
of concept names and concepts of the form ∃r.C. Intuitively,
a node pair (C, S) describes a set of concepts D such that
T |= D v C and the following conditions are satisfied:

(i) the concept names that are tlcs of D are S ∩ NC;

(ii) the existential restrictions that are the tlcs of D are ob-
tained from the existential restrictions in S by replacing
each ∃r.E ∈ S with some ∃s.E′ such that T |= ∃s.E′ v
∃r.E.

The computation of Γ starts with {(A0, {A0})} and proceeds
by exhaustively applying the following two rules:

(r1) if (C, S) ∈ Γ, D v A ∈ T and A ∈ S, then extend Γ
with (C, (S \ {A}) ∪ tlc(D)).

(r2) if (C, S) ∈ Γ,D v ∃r.F ∈ T , and there is an ∃s.G ∈ S
with T |= F v G and T |= r v s, then extend Γ with

(C, (S\{∃s.G | T |= F v G and T |= r v s})∪tlc(D)).

After applying either rule, we also have to add the pair
(G, tlc(G)) for every subconcept ∃r.G of D to trigger further
derivation.

Example 5. Let T = {∃r.(B1 u B2) v A0, ∃s.B2 v B2},
and Σ the full signature. Starting with the pair (A0, {A0})
and applying (r1), we extend Γ by (A0, {∃r.(B1 uB2)}) and
((B1 u B2), {B1, B2}). (r1) is now applicable to the lat-
ter, yielding ((B1 u B2), {B1,∃s.B2}) and (B2, {B2}). An-
other application of (r1) results in e. g. (B2, {∃s.B2}) being
added.

From Γ we can extract a (potentially infinitary) UCQ-re-
writing of A0 under T and Σ, as follows. Start with defining
ΓΣ to be the set of all (C, S) ∈ Γ such that S∩NC ⊆ Σ. Then
Γ̂Σ is obtained as the limit of the sequence of sets Γ̂0

Σ, Γ̂
1
Σ, . . .

defined as follows:

• Γ̂0
Σ := {(C,uS) | (C, S) ∈ ΓΣ and S ⊆ NC}.

• Γ̂i+1
Σ is Γ̂iΣ extended with all pairs (C,D) such that there

is (C, S) ∈ ΓΣ with the following property: for each
∃r.G ∈ S there are (G,Cr,G) ∈ Γ̂iΣ and sr,G ∈ Σ such
that T |= sr,G v r and

D = u
A∈S∩NC

A u u
∃r.G∈S

∃sr,G.Cr,G.

Note that if (C,D) ∈ Γ̂Σ, then D uses only symbols from Σ.
The set Γ̂Σ represents a UCQ-rewriting as follows.

Proposition 6 (Soundness and Completeness of Γ̂Σ). For all
Σ-ABoxes A and a ∈ ind(A), we have A, T |= A0(a) iff
there is an (A0, D) ∈ Γ̂Σ with A |= D(a).

ΓΣ provides us with a sufficient condition for FO-rewrita-
bility ofA0 under T and Σ and suggests a way to (sometimes)
produce a non-recursive datalog rewriting. In fact, if ΓΣ is
acyclic in the sense that the directed graph

G = (ΓΣ, {((C, S), (C ′, S′)) | S contains ∃r.C ′ with
T |= s v r for some s ∈ Σ})

contains no cycle, then Γ̂Σ is finite and we obtain a non-
recursive datalog program ΠΓΣ

that is a rewriting ofA0 under
T and Σ by taking the rule

PC(x)←
∧
A∈S

A(x) ∧∧
∃r.D∈S

∨
T |=svr,s∈Σ

(
s(x, yr,D) ∧ PD(yr,D)

)
for each (C, S) ∈ ΓΣ and using PA0

as the goal predicate.
Note that the disjunctions can be removed by introducing
auxiliary (monadic) IDB predicates, without causing a signif-
icant blowup. If ΓΣ is acyclic, we output the above rewriting.
Note that it is potentially much smaller than a UCQ-rewriting
since it implements structure sharing. However, if ΓΣ is not
acyclic, then A0 could still be FO-rewritable under T and Σ,
but the above program will be recursive.
Example 5 (continued). ΓΣ contains the node pairs
(A0, {∃r.(B1 u B2}), (B1 u B2, {B1, B2}), (B2, {∃s.B2})
and is thus cyclic. This is the expected outcome since, as ar-
gued in Example 3, A0 is not FO-rewritable under T and Σ

Now, let T ′ := T ∪ {B1 v B2} as in the second part of
Example 3. The resulting ΓΣ still contains the above node
pairs and is thus cyclic. To find out that A0 is FO-rewritable
under T ′ and Σ, the algorithm enters Phase 2.

Phase 2. In the second phase of the algorithm, we con-
struct a set of node tuples ΩΣ by further annotating (and du-
plicating) the pairs in ΓΣ. A node tuple takes the form t =
(Ct, St, cont, Et, xcont) whereCt and St have the same form
as the components of node pairs in ΓΣ, Ct ∈ cont ⊆ sub(T),
Et is the special symbol “−” or of the form ∃s.C such that
∃r.C ∈ St for some r with T |= s v r, and xcont is a subset
of cont or “−”. Intuitively, a node tuple t ∈ ΩΣ describes
a set of concepts D such that (Ct, D) ∈ Γ̂Σ and apart from
(i) and (ii) above the following additional conditions are sat-
isfied:

(iii) T |= D v E iff E ∈ cont, for each E ∈ sub(T);
(iv) if Et = ∃s.C, then there is a tlc ∃s.E in D and a leaf

node in E such that (C,E) ∈ Γ̂Σ and for the conceptD′
obtained from D by dropping this node, we have T |=
D′ v E iff E ∈ xcont, for each E ∈ sub(T).

When St contains no existential restrictions, we use “−”
for Et and xcont. To understand Et, it is useful to think of D
as a tree and of Et as a selected successor of the root of that
tree. We start the construction of ΩΣ with setting

ΩΣ = {(C, S ∩ NC, conT (S ∩ NC),−,−) | (C, S) ∈ ΓΣ},

where for a set of concepts M , conT (M) denotes the set of
concepts D ∈ sub(T) such that T |= uM v D. We call
the tuples in the set above leaf tuples. The final set ΩΣ is
constructed by exhaustively applying the following rule:
(rΩ) If t = (Ct, St, cont, Et, xcont) is a node tuple with
∃r0.D0, . . . ,∃rn.Dn the existential restrictions in St (n ≥ 0)
and there are role names s0, . . . , sn ∈ Σ and node tuples
t0, . . . , tn ∈ ΩΣ and an ` ∈ {0, . . . , n} such that the follow-
ing conditions are satisfied, then add t to ΩΣ:

1. T |= si v ri and Cti = Di for 0 ≤ i ≤ n;
2. Et = ∃s`.D`;
3. there is a node pair (Ct, S) ∈ ΓΣ with St ⊆ S and
S ∩ NC = St ∩ NC;

4. cont = conT (M), where

M = (St ∩ NC) ∪ {∃si.u conti | i ≤ n};

5. xcont = conT (M ′), where

M ′ = (St ∩ NC) ∪ {∃s`.u xcont`} ∪
{∃si.u conti | ` 6= i ≤ n}.

In Point 5, ∃r.− is identified with >. For t, t′ ∈ ΩΣ, we
write t ΩΣ t′ if there are t0, . . . , tn ∈ ΩΣ that satisfy the
conditions listed in (rΩ) and such that t′ = t`, that is, t′ is the
tuple that was chosen for the selected successor.
Example 5 (continued). For the TBox T , ΩΣ is initialized to

{ (A0, {A0}, {A0},−,−), (ta)
(A0, ∅, ∅,−,−), (tb)
(B1 uB2, {B1, B2}, {B1, B2},−,−), . . . }. (tc)

(rΩ) can be applied using (A0, {∃r.(B1 u B2)}) ∈ ΓΣ for
(Ct, S) in Point 3, with n = ` = 0, s0 = r, and t0 = tc,
adding to ΩΣ the following node tuple t:

(A0, {∃r.(B1uB2)}, {∃r.(B1uB2), A0},∃r.(B1uB2), ∅).

We now have t ΩΣ tc. Note that M = {∃r.B1 u B2} in
Point 4 and that M ′ = ∅ in Point 5, resulting in xcont = ∅.

Phase 3. The third and last phase of the algorithm first
checks whether an FO-rewriting exists at all and, if so, pro-
duces a rewriting that takes the form of a non-recursive
monadic datalog program.

We start with introducing the relevant notion of a cycle. A
tuple t ∈ ΩΣ is a root tuple if Ct = A0, A0 ∈ cont and

A0 /∈ xcont. A path through ΩΣ is a finite sequence of node
tuples t1, . . . , tk from ΩΣ such that ti ΩΣ ti+1 for 1 ≤
i < k. A tuple t ∈ ΩΣ is looping if there is a path t1, . . . , tk
through ΩΣ such that k > 1, t = t1, cont = contk , and
xcont = xcontk . We say that ΩΣ contains a root cycle if
there are tuples t, t′ ∈ ΩΣ such that t is a root tuple, t′ is a
looping tuple, and t′ is reachable from t along ΩΣ

.

Theorem 7. A0 is not FO-rewritable under T and Σ if and
only if ΩΣ contains a root cycle.

Example 5 (continued). After completing Phase 2 for T , the
algorithm checks ΩΣ for cyclicity and finds a root cycle:

(A0, {∃r.(B1 uB2)}, {∃r.(B1 uB2), A0}, ∃r.(B1 uB2), ∅),

(B1uB2, {B1, ∃s.B2}, {B1uB2, B1, B2, ∃s.B2},∃s.B2, {B1}),

(B2, {∃s.B2}, {∃s.B2, B2}, ∃s.B2, ∅).

The last node tuple possesses a reflexive ΩΣ
edge and leads

to the root cycle.
For the TBox T ′, the second tuple in this path will have

{B1uB2, B1, B2} as xcont (we do not need the selected suc-
cessor to infer B2 here), and the first tuple above will contain
A0 in xcont and will therefore not be a root tuple. Indeed, for
T ′ the resulting set ΩΣ does not contain a root cycle.

As suggested by Theorem 7, our algorithm first checks
whether ΩΣ contains a root cycle and, if so, returns ‘not
FO-rewritable’. Otherwise, it constructs a datalog program
ΠA0,T that is a rewriting of A0 under T and non-recursive iff
A0 is FO-rewritable under T and Σ (which is guaranteed at
this point by Theorem 7).

The IDB relations of ΠA0,T take the form PC,con,XCON

where C ∈ sub(T), con is a subset of sub(T) and XCON
is a set of such subsets or the special set {−}. We start with
rules

PCt,cont,{−}(x)←
∧
A∈St

A(x)

for all t ∈ Ω with St ⊆ NC (which are of the form
(Ct, St, cont,−,−)) and then exhaustively add a rule

PCt,cont,XCON(x)←
∧

A∈St∩NC

A(x) ∧∧
i≤n

(
si(x, yi) ∧ PCti

,conti ,XCONi(yi)
)

for all t ∈ Ω with existential restrictions ∃r0.D0, . . . ,∃rn.Dn

the existential restrictions in St, tuples t0, . . . , tn ∈ Ω,
role names s0, . . . , sn ∈ Σ, ` ∈ {0, . . . , n}, and sets
XCON0, . . . ,XCONn such that

1. Conditions 1 to 5 from the rule (rΩ) hold;

2. PCti
,conti ,XCONi

already occurs in ΠA0,T , for all i ≤ n;

3. XCON consists of all sets conT (M ′) such that there is
an `′ ≤ n and an xcon ∈ XCON`′ with

M ′ = (St ∩ NC) ∪ {∃s`′ .u xcon} ∪
{∃si.u conti | `′ 6= i ≤ n}.

In Point 3 above, we again identify ∃r.− with >. The
goal predicates of ΠA0,T are the predicates of the form
PA0,con,XCON with A0 ∈ con and A0 /∈ xcon for all xcon ∈
XCON. To eliminate ‘accidental’ recursiveness from ΠA0,T ,
remove all rules that contain a predicate which is not reach-
able from a goal predicate (defined in the obvious way).

Theorem 8.
1. The program ΠA0,T is a rewriting of A0 under T .

2. If A0 is FO-rewritable under T and Σ, then ΠA0,T is
non-recursive.

Note that ΠA0,T is of double exponential size in the worst
case. It is possible to find a (monadic) program that is only
single exponential in the worst case, but unlike the program
ΠA0,T it is also best-case exponential. This cannot be signif-
icantly improved without giving up monadicity.

Theorem 9. If A0 is FO-rewritable under T and Σ, then it
has a monadic non-recursive datalog rewriting of size at most
2p(n), n the size of T and p() a polynomial.

There is a family of TBoxes T1, T2, . . . such that for all
n ≥ 1, Tn is of size O(n2), the concept name A0 is FO-
rewritable under Tn, and the smallest non-recursive monadic
datalog rewriting has size at least 2n.

Let us briefly analyze the complexity of the decomposed
algorithm. It is easy to verify that the number of Γ-pairs and
Ω-tuples is singly exponential in the size of T and that all
required operations for building Γ and Ω and for determining
the existence of a root cycle require only polynomial time.
By Theorem 7, we have thus found an EXPTIME algorithm
for deciding FO-rewritability of concept queries under EL-
TBoxes and ABox signatures, which is optimal [Bienvenu et
al., 2013].

5 Experiments
We have implemented the decomposed algorithm in the
Grind system and conducted a number of experiments. The
system can be downloaded from http://www.informatik.uni-
bremen.de/∼hansen/grind, and is released under GPL. In the
following, we point out some selected aspects of the imple-
mentation. We use numbers to represent subconcepts in T ,
store the S-component of each pair (C, S) ∈ Γ, which is a
set of subconcepts of T , as an ordered set, and use tries as a
data structure to store Γ. We remove pairs (C, S) ∈ Γ where
S is not minimal, that is, for which there is a (C, S′) ∈ Γ
with S′ (S. It can be verified that this optimization does not
compromise correctness. We eagerly check for cycles in Γ
without waiting for Phase 1 to complete and immediate start
Phase 2 once a cycle is found to check whether it gives raise
to non-FO-rewritability. If this is not the case, we return to
Phase 1.

The experiments were carried out on a Linux (3.2.0) ma-
chine with a 3.5 GHz quad-core processor and 8 GB of RAM.
Although a large number of ELHdr -TBoxes is available on
the web and from various repositories, most of them are
acyclic TBoxes in the traditional DL sense, that is, the left-
hand sides of all CIs are concept names, there are no two CIs
with the same left-hand side, and there are no syntactic cycles.

TBox CI CN RN no stop time RQ stop RQ time
ENVO 1942 1558 7 7 100% 2s 92.6% 2m52s
FBbi 567 517 1 0 100% 3s 86.1% 19m25s
MOHSE 3665 2203 71 1 99.6% 6m35s 58.7% 7h17m
NBO 1468 962 8 6 100% 3s 61.5% 3h05m
not-galen 4636 2748 159 44 95.9% 1h15m 48.9% 11h43m
SO 3160 2095 12 15 99.8% 4m28s 77.9% 3h53m
XP 1046 906 27 1 100% 27s 0.0% 7h33m

Table 1: TBoxes used in the experiments.

Since concept queries are always FO-rewritable under such
TBoxes [Bienvenu et al., 2012a], they are not useful for our
experiments. We have identified seven TBoxes that do not fall
into this class, listed in Table 1 together with the number of
concept inclusions (CI), concept names (CN), and role names
(RN) that they contain. Role inclusions occur in MOHSE,
not-galen, and SO. All TBoxes together with information
about their origin are available at http://www.informatik.uni-
bremen.de/∼hansen/grind. All experiments conducted were
using the full ABox signature (which in practice is the most
difficult case since smaller signatures result in fewer node
pairs and node tuples).

For each of these TBoxes, we have applied the decomposed
algorithm to every concept name in the TBox. In some rare
cases, either the set Γ has reached excessive size or calcu-
lation of Ω took too long, resulting in non-termination. We
have thus established a 30 second timeout which results in
termination in almost all cases; the “stop” column of Table 1
shows the fraction of inputs on which the algorithm success-
fully terminated, and the “time” column lists the overall run-
time needed to process all concept names from the ontology
(including timeouts). The generated non-recursive datalog-
rewritings are typically of very reasonable size. The number
of rules in the rewriting is displayed in the upper part of Fig-
ure 2; for example, for NBO, about 55% of all rewritings
consist of a single rule, about 18% have two or three rules,
about 10% have 4–7 rules, and so on. Note that the x-axis
has exponential scale. The size of the rule bodies is typically
very small, between one and two atoms in the vast majority
of cases, and we have never encountered a rule with more
than ten body atoms. It is also interesting to consider the
number of IDB predicates in a rewriting, as intuitively these
correspond to views that have to be generated by a database
system that executes the query. As shown in the lower part of
Figure 2, this number is rather small, and considerably lower
than the number of rules in the produced programs (we again
use exponential scale on the x-axis).

The experiments also confirm our initial belief that ontolo-
gies which are used in practical applications have a simple
structure. As shown in the “no” column of Table 1, the num-
ber of concept names that are not FO-rewritable is extremely
small. Moreover, if a concept name was FO-rewritable, then
we were always able to find a rewriting already in Phase 1 of
our algorithm. Note, though, that for those cases that turned
out to be not FO-rewritable, we had to go through Phases 2
and 3.

We have also compared the performance of Grind with that
of REQUIEM, which implements an incomplete resolution-

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
0

20

40

60

80

Number of rules

%
of

co
nc

ep
tn

am
es

ENVO
FBbi

MOHSE
NBO

not-galen
SO
XP

1 2 4 8 16 32 64
0

50

100

Number of IDB predicates

%
of

co
nc

ep
tn

am
es

ENVO
FBbi

MOHSE
NBO

not-galen
SO
XP

Figure 2: Number of rules and IDB predicates in the rewriting

based approach to computing FO-rewritings for ontology lan-
guages up to ELHI [Pérez-Urbina et al., 2010]. We use the
same 30s timeout, which resulted in the termination rate and
overall runtime (again including timeouts) displayed in the
columns of Table 1 marked with “RQ”. The termination cases
correspond to positive answers, as REQUIEM cannot deter-
mine that an input is not FO-rewritable. Since REQUIEM
tends to terminate only on relatively simple inputs, the con-
structed rewritings of the two tools are often identical. When
they are not, either tool may produce a shorter rewriting.

6 Outlook
As future work, we plan to extend the algorithm and imple-
mentation from concept queries to conjunctive queries and to
more expressive Horn-DLs such as ELHI and Horn-SHIQ.
This is non-trivial for several reasons; for example, with
inverse roles the computation of the con and xcon sets in
Phase 2 is no longer as straightforward as for ELHdr.

References
[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz.

Pushing the EL envelope. In IJCAI, pages 364–369, 2005.

[Baader et al., 2007] F. Baader, D. Calvanese, D.L. McGuin-
ness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2007.

[Baget et al., 2011] J.-F. Baget, M. Leclère, M.-L. Mugnier,
and E. Salvat. On rules with existential variables: Walking
the decidability line. In AI, 175(9-10):1620–1654, 2011.

[Bienvenu et al., 2012a] M. Bienvenu, C. Lutz, and
F. Wolter. Deciding FO-rewritability in EL. In DL, pages
70–80, 2012.

[Bienvenu et al., 2012b] M. Bienvenu, C. Lutz, and
F. Wolter. Query containment in description logics
reconsidered. In KR, pages 221–231, 2012.

[Bienvenu et al., 2013] M. Bienvenu, C. Lutz, and F. Wolter.
First order-rewritability of atomic queries in Horn descrip-
tion logics. In IJCAI, pages 754–760, 2013.

[Bienvenu et al., 2014] M. Bienvenu, B. ten Cate, C. Lutz,
and F. Wolter. Ontology-based data access: a study
through Disjunctive Datalog, CSP, and MMSNP. In
TODS, 39, 2014.

[Eiter et al., 2012] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran,
G. Xiao. Query rewriting for Horn-SHIQ plus rules. In
AAAI, 2012.

[Kaminski and Grau, 2013] M. Kaminski and B. Cuenca
Grau. Sufficient conditions for first-order and datalog
rewritability in ELU . In DL, pages 271–293, 2013.

[König et al., 2012] M. König, M. Leclère, M.-L. Mugnier,
and M. Thomazo. A sound and complete backward chain-
ing algorithm for existential rules. In RR, pages 122–138,
2012.

[Kontchakov et al., 2013] R. Kontchakov, M. Rodriguez-
Muro, and M. Zakharyaschev. Ontology-based data access
with databases: A short course. In Reasoning Web, pages
194–229, 2013.

[Lutz et al., 2009] C. Lutz, D. Toman, and F. Wolter. Con-
junctive query answering in the description logic EL using
a relational database system. In IJCAI, pages 2070–2075,
2009.

[Lutz et al., 2013] C. Lutz, İ. Seylan, D. Toman, and
F. Wolter. The combined approach to OBDA: Taming role
hierarchies using filters. In ISWC, pages 314–330, 2013.

[Mora and Corcho, 2013] J. Mora and Ó. Corcho. Engineer-
ing optimisations in query rewriting for OBDA. In I-
SEMANTICS, pages 41–48, 2013.

[Pérez-Urbina et al., 2010] H. Pérez-Urbina, B. Motik, and
I. Horrocks. Tractable query answering and rewriting un-
der description logic constraints. In J. of Applied Logic,
8(2):186–209, 2010.

[Poggi et al., 2008] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. In J. on Data Semantics, 10:133–173,
2008.

[Rosati and Almatelli, 2010] R. Rosati and A. Almatelli. Im-
proving query answering over DL-Lite ontologies. In KR,
pages 290–300, 2010.

[Rosati, 2007] R. Rosati. On conjunctive query answering in
EL. In DL, pages 451–458, 2007.

Appendix

A Proofs for Section 2

Lemma 1. For every ELHdr-TBox T , signature Σ, and con-
cept query A0(x), one can construct in polynomial time an
ELH-TBox T ′ and signature Σ′ such that A0(x) is FO-
rewritable under T and Σ iff it is FO-rewritable under T ′
and Σ′.

Moreover, every UCQ and non-recursive datalog rewriting
ofA0(x) under T ′ and Σ′ can be converted in linear time into
a UCQ and, respectively, non-recursive datalog rewriting of
A0 under T and Σ.

Proof. We recall the definition of T ′ and Σ′. Assume w.l.o.g.
that T contains exactly one range restriction per role and no
domain restrictions. Construct an ELH-TBox T ′ as follows:
• replace every ran(r) v Cr ∈ T by Ar v Cr with Ar a

fresh concept name;
• add Ar v As for every r v s ∈ T ;
• replace every subconcept ∃r.C in T with ∃r.(Ar u C).

Let Σ′ be Σ extended with all fresh concept names Ar.
We begin with the ‘if’ direction. Recall that FO-rewritabi-

lity, UCQ-rewritability, and non-recursive datalog rewritabil-
ity coincide. Thus, it is sufficient to show that one can convert
in linear time any UCQ and non-recursive datalog rewriting
of A0(x) under T ′ and Σ′ into a UCQ and, respectively, non-
recursive datalog rewriting of A0(x) under T and Σ.

Let Π′ be a non-recursive datalog rewriting ofA0(x) under
T ′ and Σ′ (the case of UCQ-rewritings is similar and omit-
ted). Note that all symbols in Σ′ are EDBs in Π′ and so do
not occur in the head of any rule in Π′. Construct Π from
Π′ by replacing in all rules of Π′ all Ar(x) with r ∈ Σ
by r(y, x) where y is a fresh variable. We show that Π is
a non-recursive datalog rewriting of A0(x) under T and Σ,
that is, for all Σ-ABoxes A and individuals a ∈ ind(A),
a ∈ Π(A) ⇔ A, T |= A0(a). For any Σ-ABox A, we can
construct a Σ′-ABox A′ by adding Ar(a) for each assertion
r(b, a) in A. Below, we show that for all Σ-ABoxes A, the
following holds:

1. a ∈ Π(A) iff a ∈ Π′(A′) and
2. A, T |= A0(a) iff A′, T ′ |= A0(a).

This yields the desired result since we obtain a ∈ Π(A) iff
a ∈ Π′(A′) (by Point 1) iff A′, T ′ |= A0(a) (since Π′ is a
rewriting) iff A, T |= A0(a) (by Point 2).

In fact, Point 1 is an immediate consequence of the con-
struction of Π and A′. We thus concentrate on Point 2. First
assume that A, T 6|= A0(a). Then there is a model I of A
and T such that a /∈ AI0 . Let I ′ be obtained from I by setting
AI

′

r = {d′ ∈ ∆I | ∃d′ (d, d′) ∈ rI} for all Ar ∈ Σ′. It is
easy to verify that I ′ is a model of A′ and T ′. Consequently,
A′, T ′ 6|= A0(a). Conversely, assume that A′, T ′ 6|= A0(a)

and let I ′ be a model of A′ and T ′ such that a /∈ AI′0 . Let I
be obtained from I ′ by setting rI = rI

′ ∩ (∆I
′ × AI′r) for

all Ar ∈ Σ′. It can be verified that I is a model of A, in par-
ticular r(b, c) ∈ A implies Ar(c) ∈ A′, and thus (b, c) ∈ rI .

By construction of I, we have CI = C ′
I′ whenever C is

an EL-concept and C ′ is obtained from C by replacing every
subconcept ∃r.D with ∃r.(Ar uD) whenever Ar ∈ Σ′. Con-
sequently and since I ′ is a model of T ′, I is a model of T .

For the ‘only if’ direction, assume that A0(x) is FO-
rewritable under T and Σ. Then there exists a UCQ ϕ(x)
that is a rewriting of A0(x) under T and Σ. We can assume
that ϕ(x) uses symbols from Σ only. From ϕ(x), construct
ϕ′(x) by doing the following for all disjuncts ψ(x) of ϕ(x):

(a) for all r(y, z) ∈ ψ(x) add
∨
T |=svr,s∈ΣAs(z);

(b) delete all atoms r(y, z) ∈ ψ(x) where y 6= x and y does
not appear in any other atom.

We now show that ϕ′(x) is an FO-rewriting of A0 under T ′
and Σ′, that is, for all Σ′-ABoxes A′ and individuals a ∈
ind(A′), A′ |= ϕ′[a] ⇔ A′, T ′ |= A0(a). For any Σ′-ABox
A′, we construct a Σ-ABox A as follows:

(c) remove all assertions r(b, c) such thatAs(c) 6∈ A′ when-
ever T |= s v r;

(d) for all assertions Ar(b), add r(c, b) with c a fresh indi-
vidual;

(e) delete all atoms Ar(b).

Below, we show that for all Σ′-ABoxes A′, the following
holds:

1. A′ |= ϕ′[a] iff A |= ϕ[a] and

2. A′, T ′ |= A0(a) iff A, T |= A0(a).

This yields the desired result since we obtain A′ |= ϕ′[a]
iff A |= ϕ[a] (by Point 1) iff A, T |= A0(a) (since ϕ is a
rewriting) iff A′, T ′ |= A0(a) (by Point 2).

Point 1 holds by construction of ϕ′ and of A. In fact, a
match of (some disjunct of) ϕ′ in A′ gives rise to a match of
(the corresponding disjunct of) ϕ in A and, conversely, every
match of ϕ in A is also a match of ϕ′ in A′. For the former,
note that the removal of assertions in Step (c) of the construc-
tion ofA is safe since every atom r(x, y) in ϕ′ is ‘guarded’ by
an atomAr(y). Also, the original match needs to be extended
to cover the atoms deleted in Step (b) of the construction of
ϕ′ which is possible by Step (d) of the construction ofA. For
the latter, note that for any match of ϕ in A, the match also
satisfies the disjunctions added in Step (a) of the construc-
tion of ϕ′ because there is an accompanying atom r(x, y) and
Step (c) of the construction of A.

For Point 2, we start with the ‘only if’ direction. Thus
assume thatA, T 6|= A0(a). Then there is a model I ofA and
T such that a /∈ AI0 . Assume w.l.o.g. that (†) (d, c) ∈ rI with
c ∈ Ind(A) implies d = b for some b ∈ Ind(A) and s(b, c) ∈
A for some s with T |= s v r. Construct an interpretation I ′
by starting with I and then doing the following:

(f) set AI
′

r = {d | (e, d) ∈ rI};
(g) add (b, c) to the extension of r whenever s(b, c) ∈ A′

and T |= s v r.

We verify that I ′ is a model of A′ and T ′, which shows that
A′, T ′ 6|= A0(a). The assertions in A′ removed in Step (c)

of the construction of A are satisfied by (g) and the asser-
tions removed in Step (e) are satisfied because (d) ensures
that Ar(b) ∈ A′ implies r(c, b) ∈ A for some c and by
(f). The role hierarchy statements in T ′ as well as the CIs
Ar v Cr and Ar v As are satisfied by construction of I ′
and all remaining CIs (obtained from CIs in T by adding the
concepts Ar inside existential restrictions) are satisfied be-
cause for each role name r, rI = rI

′ ∩ (∆I
′ × AI

′

r). To
see this, note that when an edge (b, c) is a added to rI

′
in (g),

then we cannot have c ∈ AI′r ; if we had, by (f) and (†) there
would be an s(d, c) ∈ A with T |= s v r. Since s(d, c)
was not removed in (c), we have At(c) ∈ A′ for some t with
T |= t v s. Consequently, s(b, c) ∈ A′ was also not re-
moved in (c) and we have (b, c) ∈ sI , in contradiction to this
edge being added in (g).

For the ‘if’ direction of Point 2, assume that A′, T ′ 6|=
A0(a) and thus there is a model I ′ of A′ and T ′ such that
a /∈ AI0 . By the finite model property of ALCH [Baader
et al., 2007], we can assume I ′ to be finite. Let AI′ be I ′
viewed as an ABox in the obvious way. Construct a model I
by starting with I ′ and doing the following:

(h) for each assertion r(c, b) added to A in Step (d), choose
a model J of AI′ ∪ {r(c, b)} and T (which exists since
any ABox is satisfiable under any TBox); by renam-
ing elements, we can assume w.l.o.g. that c ∈ ∆J and
that ∆J is disjoint from the model constructed thus far
(which contains the element b since I ′ does); then take
the disjoint union of the model constructed thus far with
J and further add (c, b) to the extension of s whenever
T |= r v s.

We show that I is a model ofA and T , which provesA, T 6|=
A0(a). I satisfies all assertions in A ∩ A′ since I ′ does. By
construction, it clearly also satisfies all assertions added in
Step (d) of the construction ofA. I satisfies all role hierarchy
statements in T since I ′ and all of the models of T added
in (h) do, and the additional edges added in (h) respect role
hierarchy statements. It thus remains to prove that all CIs
C v D in T are satisfied. Let d ∈ CI . First note that, by
construction of I, we have d ∈ EI iff d ∈ EI

′
for all EL-

concepts E and all d ∈ ∆I
′
. Consequently, d ∈ CI ∩ ∆I

′

implies d ∈ DI . Now let d ∈ CI with d ∈ ∆J , J a model
added for an assertion r(c, b) in (h). By construction of I and
choice of J , it follows that d ∈ CJ . Consequently d ∈ DJ ,
implying d ∈ DI as required. o

B Proofs for Section 3
To prove Theorem 4, we first prove soundness of the algo-
rithm in Figure 1, then its completeness, and finally termina-
tion for all inputs.

For the proof of soundness, we remind the reader of the
standard chase procedure. The chase is a forward chaining
procedure that exhaustively applies the CIs of a TBox to an
ABox in a rule-like fashion. Its final result is a (potentially in-
finite) ABox in which all consequences of T are materialised.
To describe the procedure in detail and in the following proof
it is helpful to regard EL-concepts C as tree-shaped ABoxes

AC . AC can be obtained from the concept query correspond-
ing toC by identifying its individual variables with individual
names. Now let T be an EL-TBox and A an ABox. A chase
step consists in choosing

• a CI C v D ∈ T and an individual a ∈ ind(A) such
that A |= C(a), and then extending A by taking a copy
AD of D viewed as an ABox with root a and such that
all non-roots are fresh individuals, and then settingA :=
A ∪AD;

• an RI r v s ∈ T and individuals a, b ∈ ind(A) such
that A |= r(a, b) and then adding s(a, b) to A.

The result of chasing A with T , denoted with chaseT (A), is
the ABox obtained by exhaustively applying chase steps toA
in a fair way. It is standard to show that for all EL-concepts
C, we have A, T |= C(a) iff chaseT (A) |= C(a).

Theorem 10 (Soundness). If the algorithm in Figure 1 re-
turns

∨
M , then

∨
M is an FO-rewriting of A0 under T and

the full signature.

Proof. Let A be an ABox. We have to show:

1. if A |=
∨
M(a0), then A, T |= A0(a0);

2. if A, T |= A0(a0), then A |=
∨
M(a0).

For Point 1, assume that A |=
∨
M(a0). Then there is a

C ∈ M with A |= C(a0). Consequently A, T |= C(a0). By
construction of M , all its elements C satisfy T |= C v A0,
thus A, T |= A0(a0) as required.

For Point 2, we essentially follow the proof strategy from
[Baget et al., 2011], based on the chase procedure. IfA, T |=
A0(a0), then A0(a0) ∈ chaseT (A) and consequently, there
is a sequence of ABoxes A = A0,A1, . . . ,Ak that demon-
strates A0(a) ∈ chaseT (A), that is, each Ai+1 is obtained
from Ai by a single chase step and A0(a) ∈ Ak. It thus
suffices to prove by induction on k that

(∗) if A = A0, . . . ,Ak is a chase sequence that demon-
strates A0(a0) ∈ chaseT (A), then A |=

∨
M(a0).

The induction start is trivial: for k = 0,A0(a0) ∈ Ak implies
A0(a0) ∈ A. Since A0 ∈ M , we have A |=

∨
M(a0).

For the induction step, assume that A = A0, . . . ,Ak is a
chase sequence that demonstratesA0(a0) ∈ chaseT (A), with
k > 0. Applying IH to the subsequence A1, . . . ,Ak, we
obtain that A1 |=

∨
M(a0). Thus there is a C ∈ M with

A1 |= C(a0). Next we look at the two possibilities for the
chase step that led from A0 to A1.

(Application of a CI) Assume thatA1 is obtained fromA0 by
choosing E v F ∈ T and b ∈ ind(A0) with A0 |= E(b),
and adding a copy of the ABox AF to A0:

• A(b) for each concept name A that occurs as a top-level
conjunct in F ;

• the sub-ABox A∃r.G rooted at b for each ∃r.G that is a
top-level conjunct of F .

We might or might not have A0 |= C(a0), depending on
whether or not the truth of C at a0 depends on the addi-
tions due to applying E v F as a (forward) rule at b. If
A0 |= C(a0) does hold, then we are done. Otherwise, let h

be a homomorphism from C to A1 with h(xε) = a0, and let
x1, . . . , xn be all elements of var(C) such that h(xi) = b and
there is at least one tlc Gi of C|xi with |= F v Gi. There
must be at least one such xi since, otherwise, h does not de-
pend on any assertions added in the construction of A1 from
A0 and thus witnesses A0 |= C(a0), a contradiction. Let
the concepts C0, . . . , Cn be such that C0 = C and Ci+1 can
be obtained from Ci by doing the following if xi ∈ var(Ci)
(otherwise, just set Ci+1 := Ci):

1. remove A(xi) for all concept names A with |= F v A;
2. remove the subtree rooted at y whenever r(xi, y) ∈ C

and |= F v ∃r.(C|y);
3. add A(xi) for all concept names A that are a top-level

conjuncts of E;
4. add the subtree ∃r.H to xi for each ∃r.H that is a top-

level conjunct of E;
5. minimise the resulting C ′i, that is, choose Ci+1 ≺∗ C ′i

such that Ci+1 is ≺-minimal with T |= Ci+1 v A0.
It is easy to prove by induction on i thatCi ∈M for all i ≤ n.

It thus remains to argue that A0 |= Cn(a0). To do this, we
produce maps h0, . . . , hn such that hi is a homomorphism
from Ci to A1 with hi(xε) = a0 and such that hi(xj) = b
if xj ∈ var(Ci), for all i ≤ n. Start with h0 = h. To pro-
duce hi+1 from hi, first restrict hi to the ‘remainder’ of Ci
after the removals in Steps 1 and 2 were carried out. Then ex-
tend hi to cover all fresh elements introduced via the subtrees
∃r.H in Step 4. Note that, since A0 |= E(b) and hi(xi) = b,
this is possible. For the same reason, the resulting homomor-
phism h′i respects all the concept assertions added in Step 3.
Finally, to deal with the minimization in Step 5, restrict h′i to
var(Ci+1).

By construction of the concepts C0, . . . , Cn and the homo-
morphisms h0, . . . , hn, there is no atom in Cn such that the
image of the atom under hn was added by applying E v F
as a (forward) rule at b. To show this, assume to the contrary
that there is such an atom A(x) in Cn. There are two cases:

1. h(x) = b.
Then x = xi for some i. Since A(h(x)) = A(b) was
added by the application of E v F , A is a top-level
conjunct of F . Consequently, A(x) was removed in
Step 1 when constructing Ci+1 from Ci, in contradic-
tion to A(x) being in Cn.

2. h(x) 6= b.
Then h(x) is a non-root node of the sub-ABox A∃r.G of
A1, where ∃r.G is a top-level conjunct of F . Consider
the unique path in C from xε to x, that is, the sequence
of individuals y0, . . . , y` with y0 = xε and y` = x such
that ri(yi, yi+1) ∈ C for some ri, for all i < `. We find
a corresponding path h(y0), . . . , h(y`) in A1, and since
A1 is tree-shaped, b must be on that second path. Let
yp be such that h(yp) = b. We must have yp = xi for
some i. Then rp = r and A∃r.G |= ∃r.(C|yp+1)(b).
Hence |= F v ∃r.(C|yp+1) since ∃r.G is a top-level
conjunct of F . Consequently, the subtree of C rooted at
yp+1 was removed in Step 2 when constructing Ci+1, in
contradiction to A(x) being in Cn.

The case of role atoms is similar to subcase 2 above, but sim-
pler. We have thus shown that there is no atom in Cn such
that the image of this atom under hn was added by applying
E v F as a (forward) rule at b. Consequently A0 |= Cn(a0)
via hn.

(Application of an RI) Assume that A1 is obtained from A0

by choosing r v s ∈ T and b, c ∈ ind(A) withA0 |= r(b, c),
and adding s(b, c) to A0. It might be that A0 |= C(a0), re-
gardless of the application of the RI. In this case we are done.
Otherwise, let h be a homomorphism from C to A1 with
h(xε) = a0, and let s(x1, x

′
1), . . . , s(xn, x

′
n) be all atoms of

C with h(xi) = b and h(x′i) = c. There must be at least one
such s(xi, x′i), since otherwise h would not depend on any
assertions added in the construction of A1 from A0 and thus
witnesses A0 |= C(a0), a contradiction. Let the concepts
C0, . . . , Cn be such that C0 = C, and Ci+1 can be obtained
from Ci by doing the following if s(xi, x′i) ∈ Ci (otherwise,
just set Ci+1 := Ci):

1. replace the atom s(xi, x
′
i) by r(xi, x′i);

2. minimise the resulting C ′i, that is, choose Ci+1 ≺∗ C ′i
such that Ci+1 is ≺-minimal with T |= Ci+1 v A0.

It is easy to prove by induction on i thatCi ∈M for all i ≤ n.
It thus remains to argue that A0 |= Cn(a0). To do this, we
produce maps h0, . . . , hn such that hi is a homomorphism
from Ci to A1 with hi(xε) = a0 and such that hi(xj) = b
if xj ∈ var(Ci) and hi(x

′
j) = c if x′j ∈ var(Ci), for all

i ≤ n. Start with h0 = h. To produce hi+1 from hi and to
deal with the minimization in Step 2, restrict h′i to var(Ci+1).
This is possible since A0 (and therefore A1) |= r(b, c), and
hi(xi) = b and hi(x′i) = c if xi, x′i ∈ Ci.

By construction of the concepts C0, . . . , Cn and the ho-
momorphisms h0, . . . , hn, there is no atom s(x, x′) ∈ Cn
such that the image of the atom under hn was added by ap-
plying r v s as a (forward) rule at r(b, c). Consequently
A0 |= Cn(a0) via hn. o

In order to show completeness of our algorithm, we need
some notation. For a tree-shaped ABox A with root ρA,
let A|k denote the restriction of A to individuals whose dis-
tance from ρA does not exceed k. In what follows we use
the same notation for EL-concepts C corresponding to tree-
shaped ABoxes. The following can be proved in the same
way as Theorem 7 and 9 in [Bienvenu et al., 2013].1

Lemma 11. Let T be an ELH-TBox and Σ an ABox sig-
nature. The instance query A0(x) is not FO-rewritable un-
der T and Σ iff for every k > 0, there exists a tree-shaped
Σ-ABox A of depth exceeding k with root ρA such that
A, T |= A0(ρA) and A|k, T 6|= A0(ρA). This is still true
if “for every k > 0” is replaced with “for k = 23n2

”.

We are in the position now to prove the completeness re-
sult.

Theorem 12 (Completeness). If the algorithm in Figure 1 re-
turns ‘not FO-rewritable’, then A0 has no FO-rewriting un-
der T and the full signature.

1The theorems in [Bienvenu et al., 2013] do not cover role hier-
archies; however, adding them to the proofs is straightforward.

Proof. It suffices to show that if the algorithm returns ‘not
FO-rewritable’, then the condition of Lemma 11 holds. We
use the EL-concept corresponding to a tree-shaped ABox
rather that the ABox itself to formulate the condition of
Lemma 11, namely:

(∗) for every k > 0, there is a conceptC whose depth exceeds
k and such that T |= C v A0 and T 6|= C|−k v A0.

We show the following
Claim 1. If there is a concept C that is blocked with variables
x1, x2, x3 ∈ var(C), T |= C v A0, and T 6|= C\C|x3

v A0,
then (∗) holds.

If Claim 1 is proved, completeness of the algorithm follows:
assume the algorithm returns ‘not FO-rewritable’. Then there
is a concept D that is ≺-minimal with T |= D v A0 and that
is blocked with variables x1, x2, x3. By ≺-minimality of D,
T 6|= (D \D|x3) v A0 and so (∗) follows.

It thus remains to prove Claim 1. Consider a conceptC that
is blocked with variables x1, x2, x3 ∈ var(C), T |= C v A0,
and T 6|= C \ C|x3

v A0 (otherwise it would not be in M).
So the following conditions are satisfied:

1. x1 is a proper ancestor of x2, which is an ancestor of x3,

2. conCT (x1) = conCT (x2) and con
C\C|x3

T (x1) =

con
C\C|x3

T (x2).
Let G be obtained from C by replacing the subconcept C|x2

with a copy of C|x1
in which every variable x has been re-

named to x′. It can be proved that
1. conCT (x1) = conGT (x′1) = conGT (x1);

2. con
C\C|x3

T (x1) = con
G\G|x′

3

T (x′1) = con
G\G|x′

3

T (x1);

3. conCT (xε) = conGT (xε);

4. con
C\C|x3

T (xε) = con
G\G|x′

3

T (xε).
In particular, we have thatG is blocked with variables x1, x′1,
and x′3, T |= G v A0 and T 6|= G \ G|x′

3
v A0. Also note

that the depth of x′3 in G is larger than the depth of x3 in C.
We now apply the same construction toG again until the copy
of x3 has depth exceeding k. For the resulting concept G′ we
have T |= G′ v A0 and T 6|= G′|−k v A0, as required.

o

It remains to prove termination of the algorithm in Figure 1.
Let T be of size n. Every concept of depth larger than 22n

must be blocked. For this reason, M can only contain con-
cepts of depth at most 22n. Since every round of the while
loop adds a fresh concept to M , it thus suffices to show that
each concept in M has outdegree at most n. This is in fact a
consequence of minimization. Assume that D′ is ≺-minimal
with T |= D′ v A0 and that, to the contrary of what we
aim to show, there is some x ∈ var(D′) that has successors
r1(x, x1), . . . , rn+1(x, xn+1). For each existential restriction
∃r.C in sub(T) such that T |= D′|x v ∃r.C, choose a
successor xi such that ri = r and T |= D′|xi

v C. Let
D′′ be obtained from D′ by dropping all subtrees rooted at
nodes xi that were not chosen in this way. Then we have
T |= D′′ v A0. Since at least one xi-rooted subtree was

dropped in the construction of D′′ from D′, this contradicts
the ≺-minimality of D′.

C Proofs for Section 4
We first observe that Γ̂Σ coincides with the set of pairs (C,D)

in Γ̂ such that D only uses symbols from Σ, where Γ̂ is ob-
tained from Γ in the same way as Γ̂Σ is obtained from ΓΣ

except that all conditions pertaining to the signature Σ are
disregarded. Formally, define Γ̂ as the limit of the sequence
of Γ̂0, Γ̂1, . . . , where:

• Γ̂0 := {(C,uS) | (C, S) ∈ Γ and S ⊆ NC}.

• Γ̂i+1 is Γ̂i extended with all pairs (C,D) such that there
is (C, S) ∈ Γ with the following property: for each
∃r.G ∈ S there are (G,Cr,G) ∈ Γ̂i and sr,G such that
T |= sr,G v r andD = u

A∈S∩NC

Au u
∃r.G∈S

∃sr,G.Cr,G.

Thus, Proposition 6 follows if for all ABoxes A and a ∈
ind(A), the following are equivalent:

• there is an (A0, D) ∈ Γ̂ with A |= D(a),

• A, T |= A0(a).

We split the proof into a soundness and a completeness part.

Lemma 13 (Soundness of Γ̂). For all ABoxes A and a ∈
ind(A), if there is a (A0, D) ∈ Γ̂ with A |= D(a), then
A, T |= A0(a).

Proof. We first show the following

Claim 1. For all (C, S) ∈ Γ we have T |=uS v C.

Proof of Claim 1. Let Γ0, . . . ,Γk = Γ be the sets of pairs
obtained by repeatedly applying rules (r1) and (r2) to the ini-
tial set Γ0 = {(A0, {A0})}. We show by induction on i that
for all (C, S) ∈ Γi we have T |= uS v C. The induction
start is trivial. For the inductive step, first suppose that Γi+1

is obtained from Γi by applying Rule (r1). Then there are
(C, S) ∈ Γi and D v A ∈ T with A ∈ S such that Γi+1 is
Γi extended with the following tuples:

(a) (C, (S \ {A}) ∪ tlc(D));

(b) for every ∃r.G ∈ sub(D), the pair (G, tlc(G)).

The claim is trivially true for tuples added in (b). For the
tuple in (a), let S′ = (S \ {A}) ∪ tlc(D). We have T |=
uS′ v uS by D v A ∈ T . From this, the claim follows
as a consequence of IH.

Now assume that Γi+1 is obtained from Γi by applying
Rule (r2). Then there are (C, S) ∈ Γi and D v ∃r.F ∈ T
such that Γi+1 is Γi extended with the following tuples:

(a) (C, (S \ {∃s.G | T |= F v G and T |= r v s}) ∪
tlc(D);

(b) for every ∃r.G ∈ sub(D), the pair (G, tlc(G)).

Again, the claim is trivially true for tuples added in (b). For
the tuple in (a), let S′ = (S \ {∃s.G | T |= F v G and T |=
r v s}) ∪ tlc(D). We have T |= uS′ v uS since for
each ∃s.G ∈ S with T |= F v G and T |= r v s, it

holds that T |= D v ∃s.G. From this, the claim follows as a
consequence of IH.

This finishes the proof of the claim.

Using Claim 1, one can now prove the corresponding result
for Γ̂, which is as follows.

Claim 2. For all (C,D) ∈ Γ̂ we have T |= D v C.

The proof proceeds by induction on i to establish that for all
(C,D) ∈ Γ̂i, we have T |= D v C. Both the induction start
and step are straightforward and essentially only require an
appropriate invocation of Claim 1. Details are omitted.

Claim 2 directly implies Lemma 13: assume there is an
(A0, D) ∈ Γ̂ with A |= D(a). By Claim 2, T |= D v A0.
Thus A, T |= A0(a), as required. o

For the completeness part of Proposition 6, we require some
preparation. First, for every (C,D) ∈ Γ̂ and variable x ∈
var(D), we denote by µC,D(x) the element of Γ used in the
construction of D at variable x. Thus, for every (C, S) ∈ Γ
with S ⊆ NC we set µC,uS(xε) = (C, S). Assume that
(C,D) ∈ Γ̂i+1 is constructed from some (C, S) ∈ Γ and, for
every ∃r.G ∈ S, some (G,Cr,G) ∈ Γ̂i and sr,G with T |=
sr,G v r by putting D = u(S ∩ NC) u u

∃r.G∈S
∃sr,G.Cr,G.

Then we let µC,D(xε) = (C, S) and µC,D(x) = µG,Cr,G
(x)

for x ∈ var(Cr,G).
We also need a suitable version of the chase procedure that

reflects our rules (r1) and (r2) for constructing Γ. This chase
introduces new ABox elements that are called nulls. It applies
the following three rules:

(Ch0) If A |= r(a, b), a, b are not nulls, r v s ∈ T , and
s(a, b) 6∈ A, then add s(a, b) to A;

(Ch1) If A |= C(a), a is not a null, C v A ∈ T , and A a
concept name, and A(a) /∈ A, then add A(a) to A;

(Ch2) If A |= C(a), a is not a null, and C v ∃r.F ∈ T , and
A 6|= ∃r.F (a), then add {s(a, b) | T |= r v s} to A
with b a fresh null; further add the sub-ABox AE (using
only fresh nulls) rooted at b for every ∃s.E ∈ sub(T)
such that T |= F v E and T |= r v s.

We set A0(a) ∈ chaseT (A) if there exists a sequence of
ABoxes A = A0, . . . ,Ak such that each Ai+1 is obtained
fromAi by a single application of rules (Ch0), (Ch1) or (Ch2)
and A0(a) ∈ Ak. We then say that the sequence A0, . . . ,Ak
demonstrates that A0(a) ∈ chaseT (A).

Lemma 14. Let T be a TBox and A an ABox with a ∈
ind(A). Then A, T |= A0(a) iff A0(a) ∈ chaseT (A).

We are now in the position to prove the completeness part
of Proposition 6.

Lemma 15 (Completeness of Γ̂). For all ABoxes A and a ∈
ind(A), if A, T |= A0(a), then there is an (A0, D) ∈ Γ̂ with
A |= D(a).

Proof. Assume that A, T |= A0(a). Then A0(a) ∈
chaseT (A) and consequently there is a sequence of
ABoxes A = A0,A1, . . . ,Ak that demonstrates A0(a) ∈
chaseT (A). It thus suffices to prove by induction on k that

(∗) if A = A0, . . . ,Ak is a sequence that demonstrates
A0(a) ∈ chaseT (A), then A |= D(a) for some
(A0, D) ∈ Γ̂.

The induction start is trivial: for k = 0, A0(a) ∈ Ak
implies A0(a) ∈ A, and clearly we have (A0, A0) ∈ Γ̂
since (A0, {A0}) ∈ Γ. For the induction step, assume that
A = A0, . . . ,Ak is a chase sequence that demonstrates
A0(a) ∈ chaseT (A), with k > 0. Applying IH to the
subsequence A1, . . . ,Ak, we find an (A0, C) ∈ Γ̂ with
A1 |= C(a). We consider each chase rule separately.

(Ch0) Assume first that A1 is obtained from A0 by
rule (Ch0), i. e. by choosing r v s ∈ T , and individuals
a0, a1 ∈ ind(A0) withA0 |= r(a0, a1), and adding s(a0, a1).
Let h be a homomorphism from C to A1 with h(xε) = a,
and let (x1, y1), . . . , (xk, yk) be all pairs in var(C) such that
s(xi, yi) ∈ C, h(xi) = a0, and h(yi) = a1. If this list of
elements is empty, then A0 |= C(a) and we are done. Oth-
erwise, let the concept C ′ be obtained from C by replacing
all s(xi, yi) with r(xi, yi). Clearly A0 |= C ′(a). We show
that (A0, C

′) ∈ Γ̂. Fix some (xi, yi) and consider the pair
µA0,C(xi) = (Fi, Si) ∈ Γ. By construction of Γ̂ and since
s(xi, yi) ∈ C, there must exist ∃t.G ∈ Si such that C was
constructed using the role st,G = s with T |= st,G v t and
using (G,Ct,G) ∈ Γ̂ such that µA0,C(yi) = µG,Ct,G

(yi). We
have T |= r v t. Thus, instead of using s (as st,G) in the
construction of C one can use r (as st,G). By doing this for
every s(xi, yi) ∈ C, we obtain that (A0, C

′) ∈ Γ̂.

(Ch1) Assume first that A1 is obtained from A0 by
rule (Ch1), i. e. by choosing a CI D v A ∈ T , A a con-
cept name, and an individual b ∈ ind(A0) with A0 |= D(b),
and adding A(b). Let h be a homomorphism from C to A1

with h(xε) = a, and let x1, . . . , xk be all elements of var(C)
such that A(xi) ∈ C and h(xi) = b. If this list of elements
is empty, then A0 |= C(a) and we are done. Otherwise, let
the concept C ′ be obtained from C by replacing A with the
concept D at every xi, that is:

1. remove A(xi);
2. add B(xi) for each concept name B ∈ tlc(D);
3. add the subconcept ∃r.F rooted at xi for each ∃r.F that

is a tlc in D.
We show that (A0, C

′) ∈ Γ̂ and A0 |= C ′(a), starting with
the former. Fix some xi and consider the pair µA0,C(xi) =

(Fi, Si) ∈ Γ. By construction of Γ̂ and since A(xi) ∈ C, we
must haveA ∈ Si. Therefore, Rule (r1) from the construction
of Γ is applicable to (Fi, Si) and yields the pair

pi = (Fi, Si \ {A} ∪ tlc(D)) ∈ Γ.

When building up the pair (A0, C) ∈ Γ̂ and dealing with
node xi, we can use the pair pi in place of (Fi, Si). Using the
fact that all pairs (G, tlc(G)) with ∃r.G ∈ sub(D) have been
added to Γ, we can then reconstruct D and obtain (A0, C

′) ∈
Γ̂, as required.

Now we show A0 |= C ′(a). Since A0 |= D(b), there is a
homomorphism h′ fromD toA0 that maps xε to b. We obtain

a homomorphism from C ′ toA0 that maps xε to a by starting
with the homomorphism h and ‘plugging in’ h′ at every node
xi to cover the subtrees generated by the subconcepts ∃r.F
of D added in Step 3 above.

(Ch2) Assume now that A1 is obtained from A0 by an ap-
plication of the rule (Ch2), i. e. by choosing a CID v ∃r.F ∈
T and an individual b ∈ ind(A0) with A0 |= D(b), letting R
be the set of all roles s with T |= r v s, and adding s(b, c)
for all s ∈ R and the sub-ABox AE rooted at c for every
∃s.E ∈ sub(T) such that T |= F v E and s ∈ R. Let
h be a homomorphism from C to A1 with h(xε) = a, and
let x1, . . . , xk be all elements of var(C) such that h(xi) = b
and there is an x′i with s(xi, x′i) ∈ C for some s ∈ R and
h(x′i) = c. If this list of elements is empty, then A0 |= C(a)
and we are done. Otherwise, let the concept C ′ be obtained
from C by replacing certain ∃s.G with T |= F v G and
s ∈ R with D at every xi, that is:

1. if s(xi, x′i) ∈ C, T |= F v C|x′
i

and s ∈ R, then
remove from C the edge s(xi, x′i) and the subtree rooted
at x′i;

2. add B(xi) for each concept name B ∈ tlc(D);

3. add the subconcept ∃t.E rooted at xi for each ∃t.E that
is a tlc in D.

We show that there is a concept C ′′ such that (i) there is
a homomorphism from C ′′ to C ′ and (A0, C

′′) ∈ Γ̂ and
(ii) A0 |= C ′(a), starting with (i). Fix some xi and consider
the pair µA0,C(xi) = (Fi, Si) ∈ Γ and let

pi = (Fi, (Si \ {∃s.G | T |= F v G, s ∈ R})) ∪ tlc(D).

To construct C ′′, we use the pair pi in place of (Fi, Si) at xi.
The following two claims ensure that this possible and yields
a concept C ′′ such that there is a homomorphism from C ′′ to
C ′ (in fact, with tlc(C ′′|xi) ⊆ tlc(C ′|xi)):

1. pi ∈ Γ̂.

2. If ∃s0.G0 ∈ (Si \ {∃s.G | T |= F v G, s ∈ R}), then
there exists s(xi, y) ∈ C ′ ∩ C with T |= s v s0 and
µA0,C(y) = (G0, S

′) for some S′.

For Point 1, we show that rule (r2) is applicable to (Fi, Si).
To this end, we have to find ∃s.G ∈ Si such that T |= F v G
and s ∈ R. We find x′i such that s′(xi, x′i) ∈ C for some
s′ ∈ R and h(x′i) = c. By construction of A1 we must have
T |= F v C|x′

i
. By construction of Γ̂ and since (A0, C) ∈ Γ̂

and s′(xi, x′i) ∈ C, there must be an s with T |= s′ v s and
an ∃s.G ∈ Si such that (G,C|x′

i
) ∈ Γ̂. By Claim 1 from

the proof of Lemma 13, this yields T |= C|x′
i
v G. Together

with T |= F v C|x′
i

we obtain T |= F v G and from s′ ∈ R
and T |= s′ v s we obtain s ∈ R. This finishes the proof of
Point 1.

For Point 2, assume ∃s0.G0 ∈ Si. There exists s(xi, y) ∈
C with T |= s v s0 and µA0,C(y) = (G0, S

′) for some S′.
Assume that s(xi, y) 6∈ C ′. We show that then we obtain
T |= F v G0 and s0 ∈ R, from which Point 2 follows.
From s(xi, y) ∈ C \C ′ and the construction ofA1 we obtain
T |= F v C|y . By Claim 1 from the proof of Lemma 13,

T |= C|y v G0. Thus T |= F v G0. From s(xi, y) ∈ C\C ′
we obtain s ∈ R. Combined with T |= s v s0 we obtain
s0 ∈ R, as required.

It follows that when constructing the pair (A0, C
′′) ∈ Γ̂

we can follow the construction of (A0, C) and when dealing
with node xi use the pair pi in place of (Fi, Si) and then
proceed in a way such that the subtree rooted at xi in C ′′ is
the conjunction of tlc(D) and a subset of tlc(C ′|xi).

For (ii), we have to show that A0 |= C ′(a). Since A0 |=
D(b), there is a homomorphism h′ fromD toA0 that maps xε
to b. We obtain a homomorphism of from C ′ toA0 that maps
xε to a by starting with the homomorphism h and ‘plugging
in’ h′ at every node xi to cover the subtrees generated by the
subconcepts ∃t.E of D added in Step 3 above.

o

We split the proof of Theorem 7 into a soundness and com-
pleteness part.

Lemma 16 (Soundness). If ΩΣ contains a root cycle, then
A0 is not FO-rewritable under T and Σ.

Proof. Assume that ΩΣ contains a root cycle. We show that
there exists a blocked Σ-concept C such that T |= C v A0

and T 6|= (C \ C|x3
) v A0, where x3 is as in the definition

of blocked concepts. Once we have constructed such a con-
cept C, non-FO-rewritability can be proved in the same way
as Theorem 12.

We will construct the desired concept C as the limit of
a finite sequence of concepts C0, . . . , Cm. Along with this
concept sequence, we construct a sequence of mappings
µ0, . . . , µm where µi associates with each variable in var(Ci)
a tuple from ΩΣ. To start the construction, choose a root tu-
ple tε ∈ ΩΣ and a looping tuple tloop ∈ ΩΣ that is reachable
from tε along ΩΣ

. Set C0 = u{A ∈ NC | A ∈ Stε}, and
µ0(xε) = tε.

Now assume that C` is already defined. To con-
struct C`+1, choose an x ∈ var(C`) with µ`(x) =
(Cx, Sx, conx, Ex, xconx) such that the set of existential re-
strictions in Sx is non-empty but x does not yet have any
successors in C`. Since the set of existential restrictions
in Sx is non-empty, the tuple µ`(x) is not a leaf tuple and
by the construction of ΩΣ this implies that there are tu-
ples t0, . . . , tn ∈ Ω such that Rule (rΩ) can be applied to
t0, . . . , tn using roles s0, . . . , sn ∈ Σ and selected succes-
sor j ≤ n to generate µ`(x); i.e., for t = µ`(x) such that
∃r0.D0, . . . ,∃rn.Dn are the existential restrictions in St and
we have
• T |= si v ri and Cti = Di for 0 ≤ i ≤ n;
• Et = ∃sj .Dj ;
• there is a node pair (Ct, S) ∈ Γ with St ⊆ S and S ∩
NC = St ∩ NC;
• cont = conT (M), where

M =
⋃

(St ∩ NC) ∪ {∃si.G | i ≤ n and G ∈ conti};

• xcont = conT (M ′), where

M ′ =
⋃

(St ∩ NC) ∪ {∃sj .G | G ∈ xcontj}∪

{∃si.G | j 6= i ≤ n and G ∈ conti}.

To construct C`+1, add si(x, yi) to C`, for fresh individual
variables yi and all i ≤ n. Further add the assertion A(yi) for
each A ∈ Sti ∩ NC. The resulting concept is C`+1. Finally,
µ`+1 is µ` extended by setting µ`+1(yi) = ti for all i ≤ n.

Unless guided in an appropriate way, the above construc-
tion need not terminate and will not result in a concept that
has the desired properties. Let Ω0

Σ,Ω
1
Σ, . . .Ω

k
Σ with ΩkΣ =

ΩΣ be the sequence of sets generated by repeated application
of Rule (rΩ). For each t ∈ ΩΣ, let rank(t) denote the smallest
i such that t ∈ ΩiΣ. We guide, in the above construction, the
selection of the tuples from ΩΣ in the following way.
Step 1. We construct C0, C1, . . . , Cm1 such that µm1(x1) =
tloop for some leaf variable x1 of Cm1 . We know that tloop
is reachable from tε along ΩΣ . We start with tε as before
but at each step `, we choose t0, . . . , tn such that Rule (rΩ)
can be applied to t0, . . . , tn using roles s0, . . . , sn and se-
lected successor j ≤ n to generate µ`(x) so that tj brings us
closer to tloop, that is, the shortest ΩΣ

-path from tj to tloop
is shorter than the shortest such path from µ`(x) to tloop. Let
yj be the individual that we introduced as a successor of x
with µ`+1(yj) = tj . In step `+ 1, we continue from yj .
Step 2. Step 1 guarantees that we have C0, C1, . . . , Cm1

with µm1
(x1) = tloop for some leaf variable x1 of Cm1

.
In Step 2 we extend the sequence C0, C1, . . . , Cm1

by
Cm1+1, . . . , Cm2

in such a way that µm2
(x2) = t′ for some

leaf variable x2 of Cm2
such that the con and xcon compo-

nents of tloop and t′ coincide. Since tloop is looping, there
is a tuple t′ ∈ ΩΣ such that t′ is reachable from tloop on a
 ΩΣ -path and the con and xcon components of tloop agree
with those of t′. To construct Cm1+1, . . . , Cm2 , we start with
x1 and follow the same strategy as in Step 1, but this time to
reach t′ instead of tloop.
Step 3. Let C0, C1, . . . , Cm2 be the sequence constructed
in Step 2. To finish the construction of C, we expand this
sequence as follows. Assume n ≥ m2, Cn has been con-
structed, and x ∈ var(Cn) is such that x does not have
any successors in Cn but there is some ∃r.D ∈ Sx. Then
we choose t0, . . . , tn such that Rule (rΩ) can be applied
to t0, . . . , tn using roles s0, . . . , sn and selected successor
j ≤ n to generate µ`(x) so that t0, . . . , tn brings us closer to a
leaf tuple, i.e., rank(ti) < rank(µ`(x)) for all i ∈ {0, . . . , n}.
Note that, by construction of ΩΣ, this is always possible.

It should be clear that this way of guiding tuple selection
guarantees termination. Call the concept and mapping ob-
tained in the limit C and µ, respectively. For each x ∈
var(C), px is defined as the (unique) path x0, . . . , xk such
that x0 = x, xk is a leaf of C, and for all i ∈ {0, . . . , k − 1},
if t0, . . . , tn are the tuples that we picked in the inductive con-
struction above while adding successors of xi using Rule (rΩ)
with selected successor j ≤ n, then we have µ(xi+1) = tj .

Claim. For all x ∈ var(C) we have

1. conµ(x) = conCT (x);

2. if y 6= x is the last element of px, then xconµ(x) =

con
C\C|y
T (x).

Proof of claim. The proof is by induction on the length of the
path px. As the base case, px is of length one and thus, µ(x)
is a leaf tuple. By definition, this implies that Sx consists of

concept names. Let Sµ(x) = {A1, . . . , Ak}. By our construc-
tion, C|x = A1 u · · · u Ak. Let D ∈ sub(T). By definition,
D ∈ conµ(x) iff T |= A1 u . . . u Ak v D, which is Point 1
in the claim. Since µ(x) is a leaf, we have y = x for the last
element y of px. Hence Point 2 in the claim holds trivially
and the base case is proved.

For the inductive step, suppose px is of length i > 1.
Let t0, . . . , tn be the tuples that we picked in the inductive
construction of C while adding successors y0, . . . , yn of x
using Rule (rΩ) with roles s0, . . . , sn and selected succes-
sor ` ≤ n. Assume the existential restrictions in Sµ(x) are
∃r0.D0, . . . ,∃rn.Dn and we have

• sk(x, yk) ∈ C and Cµ(yk) = Dk for 0 ≤ k ≤ n.

• conµ(x) = conT (M), where

M =
⋃

(Sµ(x) ∩ NC) ∪ {∃sk.u conµ(yk) | k ≤ n}

• xconµ(x) = conT (M ′), where

M ′ =
⋃

(Sµ(x) ∩ NC) ∪ {∃s`.u xconµ(y`)} ∪

{∃sk.u conµ(yk) | ` 6= k ≤ n}.

Observe that

C|x =u(Sµ(x) ∩ NC) u ∃s0.C|y0
u · · · ∃sn.C|yn .

The IH implies

• conµ(yk) = conCT (yk) for all k ≤ n;

• xconµ(y`) = con
C\C|y
T (y`) for the last element y of px.

Hence we obtain by the semantics that conµ(x) = conCT (x)

and xconµ(x) = con
C\C|y
T (x), as required. a

Recall that there is a path x0, . . . , xk ∈ var(C) such that
x0 is the root of C, xk is a leaf of C, for all i < k, xi+1 rep-
resents the selected successor of µ(xi), and there are nodes
xp and xq on the path such that p < q, µ(xp) = tloop, and
µ(xq) = t′. By the claim we have

• conCT (xp) = conµ(xp) = conµ(xq) = conCT (xq);

• con
C\C|xk

T (xp) = xconµ(xp) = xconµ(xq) =

con
C\C|xk

T (xq).

It follows that C is blocked and T |= C v A0 but T 6|=
C \ C|xk

v A0, as required. o

Lemma 17 (Completeness). If A0 is not FO-rewritable un-
der T and Σ, then ΩΣ contains a root cycle.

Proof.We show the contrapositive and assume that ΩΣ con-
tains no root cycle. Let

ΛΣ := {C | (A0, C
′) ∈ Γ̂Σ, C ≺∗ C ′, and C is ≺-minimal

with T |= C v A0}.

By Proposition 6,
∨

ΛΣ is a (potentially infinite) FO-rewri-
ting of A0 under T and Σ, thus it suffices to show that ΛΣ

is finite. Since the outdegree of concepts in ΛΣ is bounded

by |T |, it remains to show that the depth of concepts in ΛΣ is
bounded by 22|T |.

Assume to the contrary that there is aC ∈ ΛΣ that contains
a path x0, . . . , xm (starting at the root x0) with m > 22|T |.
By definition of ΛΣ, there is a (A0, C

′) ∈ Γ̂Σ with C ≺∗ C ′.
Note that C can be obtained from C ′ by removing subtrees.
Thus, each node in C is in the domain of the function µA0,C′

from the completeness proof for Γ̂. Associate with each node
x ∈ var(C) a node tuple ζ(a) ∈ ΩΣ in a bottom-up way as
follows:

(a) for each leaf x of C with µA0,C′(x) = (D,S) set

ζ(x) = (D,S ∩ NC, conT (S ∩ NC),−,−).

(b) for each non-leaf node x of C with µA0,C′(x) = (D,S)
set

ζ(x) = (D,S′, conT (M), E, conT (M ′))

where
• S′ = (S ∩ NC) ∪ {∃r.F ∈ S | s(x, y) ∈ C for some s

with T |= s v r and µA0,C(y) = (F, S′′)};
• M = (S ∩ NC) ∪ {∃r.u conζ(y) | r(x, y) ∈ C};
• choose some ∃r.F ∈ S′ and s(x, y) ∈ C such that T |=
s v r, µA0,C(y) = (F, S′′), and if x = xi is on the path
x0, . . . , xm, then y = xi+1.2 Then set

– E = ∃s.F and
– M ′ = (S ∩ NC) ∪ {∃s.u xconζ(y)}∪
{∃r.conζ(y′) | r(x, y′) ∈ C and y′ 6= y}.

One can show by induction on the co-depth of nodes x ∈
var(C) that ζ(x) ∈ ΩΣ and that

1. conCT (x) = conζ(x), for all x ∈ var(C);

2. con
C\C|xm

T (xi) = xconζ(xi), for all i < m.

By Point 1 above and since C, T |= A0(x0), we have A0 ∈
conζ(x0). Since C is ≺-minimal with T |= C v A0, we have
T 6|= C \ C|xm v A0 and so A0 /∈ xconζ(x0) by Point 2
above. By construction of ζ, ζ(xi) ΩΣ

ζ(xi+1) for all i <
m. Since m > 22|T |, among the x0, . . . , xm there must be xi
and xj such that i 6= j and the con and xcon components of
ζ(xi) and ζ(xj) are identical. We have thus shown that ΩΣ

contains a root cycle, which contradicts our assumption that
there is no such cycle. o

We fix some notation for the semantics of datalog pro-
grams. Assume Π is a monadic datalog program with goal
predicate G(x). For an ABox A, we define a sequence of
ABoxes Π0(A),Π1(A), . . . by setting:
• Π0(A) = A;
• Πn+1(A) is defined by adding to Πn(A) the set of all
P (a) with a ∈ ind(A) and P an IDB of Π such that there
exists a rule P (x)← ϕ in Π and a variable assigment π
with π(x) = a and Πn(A) |=π ϕ.

2Note that the required ∃r.F and s(x, y) indeed exist. In partic-
ular, when x = xi then by definition of Γ̂Σ we find an ∃r.F ∈ S
and s(x, xi+1) ∈ C′ such that T |= s v r and µA0,C = (F, S′′);
since s(x, xi+1) ∈ C, by definition of S′ we also have ∃r.F ∈ S.

Set Π(A) =
⋃
n≥0 Πn(A). We use conAT (a) to denote {D ∈

sub(T) | A, T |= D(a)}.
Theorem 8.

1. The program ΠA0,T is a rewriting of A0 under T .

2. If A0 is FO-rewritable under T and Σ, then ΠA0,T is
non-recursive.

Proof. For Point 1, first assume PA0,con0,XCON0
(a0) ∈

ΠA0,T (A) for a goal predicate PA0,con0,XCON0
of ΠA0,T . We

have to show that A, T |= A0(a0). The following claim can
be proved by induction on n using the construction of ΠA0,T :

Claim. For all n ≥ 0, PC,con,XCON(a) ∈ Πn(A) implies
con ⊆ conAT (a).

We leave details to the reader, but note that in the induction
step, it is crucial to use Condition 4 of the rule (rΩ).

Now, since PA0,con0,XCON0
(a0) ∈ ΠA0,T (A) and A0 ∈

con0 (by the definition of goal predicates in ΠT ,A0
), we ob-

tain A0 ∈ conAT (a0), as required.

Conversely, assume thatA, T |= A0(a0). We have to show
that G(a0) ∈ ΠT ,A0

(A) for a goal predicate G of ΠA0,T . By
Proposition 6, there is an (A0, C

′) ∈ Γ̂Σ with A |= C ′(a0).
Let C ≺∗ C ′ be minimal with T |= C v A0. Since C
homomorphically maps toA, it suffices to show thatG(xε) ∈
ΠA0,T (C) for some goal predicate G and with xε the root
of C (where C is viewed as an ABox).

In what follows, we will make use of the function µA0,C′

from the completeness proof for Γ̂Σ, which associates each
x ∈ var(C ′) with a tuple µA0,C′(x) from ΓΣ. For brevity,
when µA0,C′(x) = (D,S), we use Cx to denote D and
Sx to denote S. Note that C can be obtained from C ′ by
removing subtrees and thus, each node in C is in the do-
main of the function µA0,C′ . For each s(x, y) ∈ C ′, we
use ex(y) to denote the existential restriction ∃r.D ∈ Sx for
which the successor y was generated during the construction
of (A0, C

′) ∈ Γ̂Σ.
For each x ∈ var(C), let XCONCT (x) = {−} if x is a leaf

in C and otherwise let XCONCT (x) denote the set of all sets
con

C\C|y
T (x) where y is a leaf node of C that is in the subtree

rooted at x, but distinct from x. We aim to show that for each
x ∈ var(C), the following rule Rx is in ΠA0,T :

PCx,conCT (x),XCONC
T (x)(v)←

∧
A(x)∈C

A(v) ∧

∧
s(x,y)∈C

(s(v, wy) ∧ PCy,conCT (y),XCONC
T (y)(wy)).

It is then easy to prove by induction on the co-depth of x
that for all x ∈ var(C), we have PCx,conCT (x),XCONC

T (x)(x) ∈
ΠT ,A0

(C). From C, T |= A0(xε), we obtain A0 ∈
conCT (xε); moreover, the definition of µA0,C′ yields Cxε =
A0; and finally, the minimality of C ensures that A0 /∈
xcon for all xcon ∈ XCONCT (xε). Consequently,
PCxε ,con

C
T (xε),XCONC

T (xε) is a goal predicate of ΠA0,T and we
are done.

The proof thatRx is a rule in ΠA0,T for each x ∈ var(C) is
by induction on the co-depth of x. Along with the induction,
we associate a tuple tx ∈ Ω with each x ∈ var(C) such that
Ctx = Cx and contx = conCT (x).

Start with x being a leaf node. We first show that there
is a tx ∈ Ω with Ctx = Cx and contx = conCT (x). By
construction of (A0, C

′) ∈ Γ̂Σ, we have (Cx, Sx) ∈ ΓΣ

and Sx ∩ NC = {A | A(x) ∈ C ′}. By construction of
C from C ′, this yields Sx ∩ NC = {A | A(x) ∈ C}.
Consequently, conCT (x) = conT (Sx ∩ NC). Thus tx =
(Cx, Sx ∩NC, conT (Sx ∩NC),−,−) is one of the tuples ini-
tially added to Ω, and is as required. It now suffices to note
that, By definition of ΠA0,T (rules added initially), tx ∈ Ω
results in the rule Rx to be included in ΠA0,T .

Assume now that x ∈ var(C) is a non-leaf. As in the
induction start, (Cx, Sx) ∈ ΓΣ. Let S be obtained from
Sx by removing all existential restrictions ex(y) such that
r(x, y) ∈ C ′ \ C and let the existential restrictions in S be
∃r0.D0, . . . ,∃rn.Dn. By construction of Γ̂Σ and of C from
C ′, for each i ≤ n we find an si(x, yi) ∈ C ′ with si ∈ Σ,
T |= si v ri, and Cyi = Di. Let ` ≤ n be arbitrary. We aim
to show that ty0

, . . . , tyn together with s0, . . . , sn and ` result
in the rule (rΩ) to add a tuple tx to Ω such that Ctx = Cx,
St = S, and contx = conCT (x). This can actually be verified
by checking Conditions 1 to 5 of (rΩ), recalling from above
that
• (for Condition 1) T |= si v ri and Cyi = Di,
• (for Condition 3) (Cx, Sx) ∈ ΓΣ, S ⊆ Sx, and Sx ∩
NC = S ∩ NC;
• (for Condition 4) contyi = conCT (yi) and conCT (x) =

conT (M) where

M = (S ∩ NC) ∪ {∃si.u conCT (yi) | i ≤ n}.
It remains to show that Rx is added as a rule in ΠA0,T
(in the second step). This is witnessed by the tuples
tx, ty0 , . . . , tyn ∈ Ω, the role names s0, . . . , sn, and the ` ≤ n
chosen above. In fact, we have already shown that Condi-
tions 1 to 5 of (rΩ) are satisfied. It remains to verify that
Conditions 2 and 3 from the second step of the construction
of ΠA0,T are satisfied. In fact, Condition 2 is implied by
Ry0

, . . . , Ryn being rules in ΠA0,T . For Condition 3, we have
to show that XCONCT (x) consists of all sets conT (M ′) such
that there is an `′ ≤ n and an xcon ∈ XCONCT (y`′) with

M ′ = (S ∩ NC) ∪ {∃s`′ .u xcon} ∪
{∃si.u conCT (yi) | `′ 6= i ≤ n}.

This, however, is straightforward by the definition of XCONCT
and the semantics.

Now for Point 2 of the theorem. Assume that A0 is FO-
rewritable under T and Σ and that, to the contrary of what we
aim to show, ΠA0,T is recursive. Due to the elimination of
accidental recursiveness, we find rules

PC0,con0,XCON0
(x) ← ϕ0(x)

· · ·
PCm,conm,XCONm

(x) ← ϕm(x)

such that

(i) PC0,con0,XCON0 is a goal predicate,
(ii) PCiconi,XCONi

occurs in ϕi−1 for 1 ≤ i ≤ m and
(iii) PCm,conm,XCONm

= PCp,conp,XCONp
for some p < m.

We show that this situation gives raise to a ΩΣ
-path through

ΩΣ that starts at a root tuple and has length exceeding 22|T |.
Since any such path must contain a root cycle, by Theorem 7
we have derived a contradiction to the FO-rewritability of A0

under T and Σ. We first establish a technical claim that is
easily proved by considering the construction of ΠA0,T (and
ΩΣ).

Claim. If the predicate PC,con,XCON occurs in ΠA0,T , then
for every xcon ∈ XCON, there is a tuple t ∈ ΩΣ that is of the
form (C, St, Et, con, xcon).

We now construct the ΩΣ
-path through ΩΣ by travel-

ing backwards along “ ΩΣ”. With each tuple t ∈ ΩΣ on
the path, we associate one of the rules PCi,coni,XCONi(x) ←
ϕi(x) from above such that Ct = Ci, cont = coni and
xcont ∈ XCONi. To start the path, we choose a tuple t ∈ ΩΣ

such that Ct = Cm, cont = conm, and xcont ∈ XCONm,
which exists by the claim above.

Assume that an initial piece t̂k ΩΣ
· · · ΩΣ

t̂0 of
the path has already been constructed. To extend it, let
the rule associated with t̂k be the j-th one from the list
above. Since PCj ,conj ,XCONj occurs in ϕj−1, the presence
of the j − 1-st rule in ΠA0,T yields tuples t, t0, . . . , tn,
role names s0, . . . , sn ∈ Σ, `, `′ ∈ {0, . . . , n}, and sets
XCON0, . . . ,XCONn such that
(a) Cj−1 = Ct and conj−1 = cont;
(b) Ct`′ = Cj = Ct̂k , cont`′ = conj = cont̂k , and

XCON`′ = XCONj ;
(c) Conditions 1 to 3 from the construction of ΠA0,T are

satisfied.
We can assume w.l.o.g. that ` = `′ and t`′ = t̂k. In fact,
let t′ be as t, but with Et the `′-th existential restriction in
place of the `-th one and with the xcon-component obtained
as in Condition 5 of (rΩ) but with the new ` and by using t̂k
in place of t`′ as the `′-th successor tuple. It can be verified
that t′, t0, . . . , t̂k, . . . , tn, s0, . . . , sn, and `′ still satisfy Con-
ditions 1 to 5 from (rΩ); in particular, the con-component of
t is unaffected by replacing t`′ with t̂k due to Point (b) above.
Thus, t′ ∈ Ω. Moreover, it can be verified that the rule in
ΠA0,T generated by t′, t0, . . . , t̂k, . . . , tn, s0, . . . , sn, and `′
is stilly exactly the j − 1-st one above.

We want to use t as the next tuple on the path and associate
it with the j−1-st rule above. We have to show that t ΩΣ

tk
and that xcont ∈ XCONj−1. The former is immediate due to
Condition 1 of the construction of ΠA0,T . This condition also
implies, via Point 5 of the rule (rΩ), that xcont = conT (M ′)
where

M ′ = (St ∩ NC) ∪ {∃s`.u xcont`} ∪
{∃si.u conti | ` 6= i ≤ n}.

Since t` = t̂k and xcont̂k ∈ XCONj = XCON`, it is thus an
immediate consequence of Condition 3 from the construction
of ΠA0,T that xcont ∈ XCONj−1 as required.

Proceeding in this way, we can continue to build up a back-
wards path through ΩΣ. When we treat a tuple tk associated
with the p-th rule, we can choose either to go to the p − 1-st
rule or to the m − 1-st rule. We choose the second alterna-
tive sufficiently often so that the length of the path exceeds
22|T |. Eventually: we choose the first alternative to make
sure that the constructed path starts with tuple t ∈ Ω that is
associated with the 0-th rule above. Since PC0,con0,XCON0

is
a goal predicate, we have A0 ∈ con0 and A0 /∈ xcon for all
xcon ∈ XCON0. Consequently, t must be a root tuple and
thus the constructed path is a root cycle, as desired. o

Theorem 9. If A0 is FO-rewritable under T and Σ, then it
has a monadic non-recursive datalog rewriting of size at most
2p(n), n the size of T and p() a polynomial.

There is a family of TBoxes T1, T2, . . . such that for all
n ≥ 1, Tn is of size O(n2), the concept name A0 is FO-
rewritable under Tn, and the smallest non-recursive monadic
datalog rewriting has size at least 2n.

Proof. For the first part of the theorem, assume thatA0 is FO-
rewritable under T and Σ. Let n be the size of T . Consider
the datalog rewriting ΠΓΣ constructed after Proposition 6.
ΠΓΣ is guaranteed to be a rewriting of A0 under T and Σ,
but it might be recursive even if A0 is FO-rewritable under T
and Σ. Moreover, ΠΓΣ is of size single exponential in n and
every rule body contains at most n atoms. We establish the
following central claim.

Claim 1. If A is a Σ-ABox and a ∈ ΠΓΣ(A), then there is a
tree-shaped Σ-ABoxA′ with root a and of depth at most 23n2

such that a ∈ ΠΓΣ
(A′) and there is a homomorphism from

A′ to A that is the identity on a.

To prove Claim 1, let a ∈ ΠΓΣ
(A). Then A, T |= A0(a).

It follows from results on unraveling tolerance in [Bienvenu
et al., 2012b] that then also Au, T |= A0(a), where Au is
the unraveling of A into a (potentially infinite) tree-shaped
ABox with root a. There is a homomorphism from Au to A
that is the identity on a. From Au, T |= A0(a), we obtain
a ∈ ΠΓΣ(Au) and thus there is a proof tree for A0(a) from
Au and ΠΓΣ(a). We show that there is such a proof tree that
only uses individuals in A′u whose distance from the root is
at most 23n2

. Then the restriction of Au to depth 23n2

is the
desired ABox A′. Assume to the contrary that there is no
proof tree of the required form. Then the restrictionA′ ofAu
to depth 23n2

satisfies a /∈ ΠΓΣ
(A′), thus A′, T 6|= A0(a).

Moreover, since a ∈ ΠΓΣ
(Au) there is a finite subset A′′

of Au (which w.l.o.g. can be assumed to be tree-shaped and
contain A′) such that a ∈ ΠΓΣ(A′′), thus A′′, T |= A0(a).
By Lemma 11, we obtain a contradiction to A0 being FO-
rewritable under T and Σ. This finishes the proof of Claim 1.

By Claim 1, for any Σ-ABox A with a ∈ ΠΓΣ(A), there
is a proof tree for A0(a) from Au and ΠΓΣ(a) iff there is
such a proof tree of depth at most 23n2

. To see this, note
that IDB predicates occur in the bodies of the rules in ΠΓΣ

in a very restricted way: when the variable in the head is x,
then the only occurrences of IDB predicates in the rule body
are of the form r(x, y) ∧ P (y) where P is the IDB predicate

and r is EDB. Consequently, the depth of a proof tree for a
tree-shaped ABox cannot exceed the depth of that ABox and
the homomorphism mentioned in Claim 1 allows us to trans-
fer proof trees from the tree-shaped ABox A′ to the original
ABox A.

We are now ready to establish the first part of the theorem.
Given that ΠΓΣ

is a (potentially cyclic) rewriting of A0 and
T and that we only need to worry about proof trees of depth
at most 23n2

, we can break the cycles in ΠΓΣ
in a straightfor-

ward way:

• replace each IDB predicate P with Pi, i ≤ 23n2

;

• each rule P (x) ← ϕ is replaced by the set of all rules
Pi(x) ← ϕ′ where ϕ′ is obtained from ϕ by replac-
ing each occurrence of an IDB predicate P ′ with P ′j , for
some j < i.

For the second part of the theorem, we first observe that
one can assume w.l.o.g. that the monadic datalog programs
are connected. We call a rule P (x) ← ϕ connected if the
graph whose vertices are x and the remaining variables in ϕ
and whose edges are {x1, x2} for r(x1, x2) ∈ ϕ is connected.
A monadic datalog program is connected if all its rules are
connected.

Claim 2. If Π is a non-recursive monadic datalog rewriting of
A0 relative to T , then there exists a connected non-recursive
monadic datalog rewriting Π′ of A0 relative to T whose size
does not exceed the size of Π.

To prove Claim 2, assume that Π is given. Define Π′ by
replacing each rule P (x) ← ϕ with the rule P (x) ← ϕ′,
where ϕ′ is obtained from ϕ by removing all atoms A(y)
and r(x1, x2) whose variables are not connected to x in ϕ
(thus, if x does not occur in ϕ then P (x) ← ϕ is replaced
by P (x) ← true. We show that Π′ is a datalog rewriting of
A0 relative to T . Clearly Π(A) ⊆ Π′(A) for any ABox A.
Thus, it remains to show that if G(a) ∈ Π′(A) for an ABox
A, a ∈ ind(A), and goal predicateG, then G′(a) ∈ Π(A) for
some goal predicate G′. Assume this is not the case. Take A,
a ∈ ind(A), and goal predicate G such that G(a) ∈ Π′(A)
butG′(a) 6∈ Π(A) for any goal predicateG′. Define an ABox
A′ by adding to A the assertions A(c) and r(c, c) for every
concept name A and role name r in Π and a fresh individ-
ual name c. Clearly G(a) ∈ Π(A′) since the atoms removed
from Π can all be satisfied in c. Hence A′, T |= A0(a) since
Π is a rewriting of A0 relative to T . But then A, T |= A0(a)
since T is an EL-TBox and c is disconnected from the indi-
viduals in A. We have derived a contradiction to the assump-
tion that Π is a rewriting ofA0 relative to T . This finishes the
proof of Claim 2.

We now provide a reformulation of (the second part of)
Theorem 9. A tree-UCQ-rewriting of A0 relative to T is a
disjunction

∨
M , where M is a finite set of EL-concepts.

Claim 3. The second part of Theorem 9 follows if there is a
family of TBoxes T1, T2, . . . such that for all n ≥ 1, Tn is of
size O(n2), the concept name A0 is tree-UCQ-rewritable un-
der Tn, but any tree-UCQ-rewriting of A0 under Tn contains
a concept C of depth at least 2n.

To prove Claim 3, let Tn be one of the TBoxes from the
claim. Let Π be a non-recursive monadic datalog rewriting
of A0 under T . We have to show that Π has size at least
2n. By Claim 2, we may assume that Π is connected. Let∨
M be a tree-UCQ-rewriting of A0 under Tn. We may as-

sume that each C ∈ M is ≺-minimal (i.e., if C ′ ≺ C, then
T 6|= C ′ v A0). Since Tn is a TBox from the claim, we
find a C ∈ M whose depth is at least 2n. We now have
G(xε) ∈ Π(AC) for the root xε of the ABoxAC correspond-
ing to C. Using the assumptions that Π is connected and
non-recursive and that C is ≺-minimal with T |= C v A0 it
follows immediately that there is a sequence of distinct rules
P0(x) ← ϕ0, . . . , Pm(x) ← ϕm in Π with Pi+1 in ϕi for
i < m and

∑m
i=1 |ϕi| ≥ 2n, as required. This finishes the

proof of Claim 3.

It thus remains to identify TBoxes T1, T2, . . . with the
properties of Claim 3. As an abbreviation, define C0 := B0

and Ci := Bi u ∃r.Ci−1. Let n ≥ 1. Then Tn consists of the
following CIs, for all i < n:

∃r.(A0 uBi) v A0

∃r.(A0 uBi) v A0

Bi u ∃r.Bj v A0 for 1 ≤ j < n
with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n
with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n
with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n
with i 6= j + 1

Bi u ∃rn+1.(Bi u ∃r.Ci−1) v A0

Bi u ∃rn+1.(Bi u ∃r.Ci−1) v A0

Bi u ∃rn+1.(Bi u ∃rj .Bi−j) v A0 for 1 ≤ j < i

Bi u ∃rn+1.(Bi u ∃rj .Bi−j) v A0 for 1 ≤ j < i

Cn−1 v A0.

Note that the concept names B0, . . . , Bn−1 and B0, . . . ,
Bn−1 are trivially FO-rewritable because they do not occur
on the right-hand side of any CI. Because of the first two
CIs, the concept name A0 propagates ‘backwards’ along r-
chains in an ABox, which in principle gives raise to non-FO-
rewritability of A0. FO-rewritability is regained, though, by
enforcing the existence of a binary counter in the ABox via
the concept names B0, . . . , Bn−1 and B0, . . . , Bn−1, which
represent positive and negative bits, respectively. The counter
is ‘spaced out’ in the sense that every individual on a back-
wards r-chain stores only a single bit of the counter. Con-
cept inclusions 3-6 ensure that the bits appear in the right or-
der and CIs 7-10 make sure that the counter is incremented
properly, by otherwise entailing A0, thus disrupting the un-
bounded propagation. The last concept inclusion entails A0

if the counter value has reached maximum, thus stopping un-
bounded propagation after at most 2n · n steps.

A concrete tree-UCQ-rewriting for A0 under T is as fol-
lows. For any concept C and i ≥ 0, define a set of con-
cepts S[C] as follows: S0[C] = {C} and Si+1[C] :=

{∃r.(Bi u D),∃r.(Bi u D) | i ≤ n and D ∈ Si[C]}. Let
M be the set of all left-hand sides of concept inclusions 3-11.
Now the tree UCQ-rewriting is

ϕ =
∨

i≤2n+1

∨
C∈M∪{A0}

∨
D∈Si[C]

D.

Clearly, ϕ is a tree-UCQ of depth exceeding 2n. It re-
mains to note that every tree-UCQ-rewriting of A0 under
T must comprise a concept C of depth at least 2n. Let
X1, . . . , Xm, m = 2n+1 − n, be the sequence of concept
names from the set {B0, . . . , Bn−1, B0, . . . , Bn−1} that rep-
resent the counter sequence 0, 1, . . . , 2n − 1, let D0 := A0

and Di+1 := Bi+1 u ∃r.Di for all i < 2n − 1. Then every
tree-UCQ-rewriting of A0 under T must comprise the tree-
UCQ D2n−1, which is of depth 2n. o

