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Abstract
In the context of ontology-based data access with de-
scription logics (DLs), we study ontology-mediated
queries in which selected predicates can be closed
(OMQCs). In particular, we contribute to the classifi-
cation of the data complexity of such queries in sev-
eral relevant DLs. For the case where only concept
names can be closed, we tightly link this question
to the complexity of surjective CSPs. When also
role names can be closed, we show that a full com-
plexity classification is equivalent to classifying the
complexity of all problems in CONP, thus currently
out of reach. We also identify a class of OMQCs
based on ontologies formulated in DL-LiteR that are
guaranteed to be tractable and even FO-rewritable.

1 Introduction
The aim of ontology-based data access (OBDA) is to facilitate
querying of data that is significantly incomplete and heteroge-
neous. To account for the incompleteness, OBDA formalisms
typically adopt the open world assumption (OWA). In some
applications, though, there are selected parts of the data for
which the closed world assumption (CWA) is more appropriate.
As an example, consider a large-scale data integration appli-
cation where parts of the data are extracted from the web and
are significantly incomplete, thus justifying the OWA, while
other parts of the data come from curated relational database
systems and are known to be complete, thus justifying the
CWA. Another example is given in [Lutz et al., 2013], namely
querying geo-databases such as OpenStreetMap in which the
geo-data is typically assumed to be complete, thus justifying
the CWA, while annotations are significantly incomplete and
thus require the OWA.

In this paper, we consider OBDA formalisms where the
ontology is formulated in a description logic (DL). Several
approaches have been proposed to implement a partial CWA in
OBDA and in other forms of DL reasoning [Calvanese et al.,
2007b; Donini et al., 2002; Grimm and Motik, 2005; Motik
and Rosati, 2010; Sengupta et al., 2011]. A particularly simple
and natural one is to distinguish between OWA predicates
and CWA predicates (a predicate is a concept name or a role
name) and to adopt the standard semantics from relational
databases for the latter: the interpretation of CWA predicates

is fixed to what is explicitly stated in the data while OWA
predicates can be interpreted as any extension thereof [Lutz et
al., 2013]. This semantics generalizes both ABoxes as used
in conventional OBDA (all predicates OWA) and so-called
DBoxes (all predicates CWA) [Seylan et al., 2009].

Closing predicates has a strong effect on the complexity
of query answering. In this paper, we concentrate on data
complexity, see [Ngo et al., 2015] for an analysis of com-
bined complexity in the presence of closed predicates. The
(data) complexity of answering conjunctive queries (CQs) be-
comes CONP-hard already when ontologies are formulated
in inexpressive DLs such as DL-Lite and EL [Franconi et al.,
2011] while CQ answering without closed predicates is in AC0

for DL-Lite and in PTIME for EL [Calvanese et al., 2007a;
Artale et al., 2009; Hustadt et al., 2005]. Since intractability
comes so quickly, from a user’s perspective it is not very help-
ful to analyze complexity on the level of logics, as in the com-
plexity statements just made; instead, one would like to know
whether adopting the CWA results in intractability for the con-
crete ontology and query used in an application. If it does
not, there can be considerable benefit in adopting the CWA
since it potentially results in additional (that is, more com-
plete) answers and allows to use full first-order (FO) queries
for the closed part of the vocabulary (which otherwise leads to
undecidability). If adopting the CWA results in intractability,
this is important information and the user can decide whether
(s)he wants to resort to OWA as an approximation semantics or
pay (in terms of complexity) for adopting the (partial) CWA.

Such a non-uniform analysis has been carried out in [Lutz
and Wolter, 2012] and in [Bienvenu et al., 2014] for clas-
sical OBDA (that is, no CWA predicates) with expressive
DLs such as ALC. The former reference aims to classify the
complexity of ontologies, quantifying over the actual query:
query answering for an ontology O is in PTIME if every CQ
can be answered in PTIME w.r.t. O and it is CONP-hard if
there is at least one Boolean CQ that is CONP-hard to answer
w.r.t. O. In the latter reference, an even more fine-grained
approach is taken where the query is not quantified away. It
aims to classify the complexity of ontology-mediated queries
(OMQs), that is, triples (O,ΣA, q) where O is an ontology,
ΣA a data vocabulary, and q an actual query. In both cases,
a close connection to the complexity of (fixed-template) con-
straint satisfaction problems (CSPs) is identified, an active
field of research that brings together algebra, graph theory,



and logic [Feder and Vardi, 1993; Kun and Szegedy, 2009;
Bulatov, 2011]. Such a connection is interesting for at least
two reasons. First, it clarifies how difficult it is to attain a
full complexity classification of relevant classes of ontolo-
gies/OMQs; in fact, there is a large body of literature on clas-
sifying the complexity of CSPs that revolves around the Feder-
Vardi conjecture which states that every CSP is in PTIME or
NP-hard [Feder and Vardi, 1993]. And second, it allows to
transfer the technically deep results that have been obtained
for CSPs in the last years to the world of OBDA.

For OBDA with closed predicates, the case of quantified
queries has been analyzed in [Lutz et al., 2013]. The main
finding is that there are transparent and PTIME decidable
syntactic conditions that separate the easy cases from the hard
cases for ontologies formulated in DL-Lite and in EL (thus
the complexity classification is much easier than for CSPs).
However, it is also shown that the PTIME cases are exactly
those where adopting the CWA does not result in returning
additional answers and thus being able to use FO queries on
the closed part of the vocabulary is the only benefit. This
suggests that an analysis which quantifies over the queries is
still too coarse to be practically useful. In the present paper,
we therefore consider a complexity analysis on the level of
ontology-mediated queries with closed predicates (OMQCs),
which are quadruples (O,ΣA,ΣC, q) where O, ΣA, and q are
as above and ΣC ⊆ ΣA is a set of closed predicates.

Our main finding is that while classifying the complexity
of OMQs with expressive ontologies corresponds to classify-
ing CSPs, classifying OMQCs is tightly linked to classifying
surjective CSPs. The latter are defined exactly like standard
CSPs (with fixed template) except that homomorphisms are
required to be surjective. What might sound like a minor
change actually makes complexity analyses dramatically more
difficult. In fact, there are concrete surjective CSPs of size 6
whose complexity is not understood [Bodirsky et al., 2012]
while there are no such open cases for standard CSPs. Like
standard CSPs, the complexity of surjective CSPs is currently
subject to significant research activities [Bodirsky et al., 2012;
Chen, 2014]. Unlike for standard CSPs, though, we are not
aware of dichotomy conjectures for surjective CSPs, this kind
of question appears to be wide open.

Our connection to surjective CSPs concerns OMQCs where
the ontology is formulated in any DL between DL-Litecore and
ALCHI or between EL and ALCHI, where only concept
names (unary predicates) can be closed, and where the actual
queries are tree-shaped unions of conjunctive queries (tUCQs).
We find it remarkable that there is no difference between
classifying OMQCs based on extremely simple DLs such as
DL-Litecore and rather expressive ones such as ALCHI. For
the case where also role names (binary predicates) can be
closed, we show that for every NP Turing machineM , there is
an OMQC that is polynomially equivalent to the complement
of M ’s word problem and where the ontology can either be
formulated in DL-Lite or in EL (and queries are tUCQs). In
the case of closed role names, there is thus no dichotomy
between PTIME and CONP (unless PTIME = NP) and a full
complexity classification does thus not appear feasible with
today’s knowledge in complexity theory.

We start in Sections 2 and 3 with formally introducing

our framework and establishing some preliminary results. In
Section 4, we identify a large and practically useful class of
OMQCs that are tractable and even FO-rewritable; ontologies
in these OMQCs are formulated in DL-LiteR, both concept
and role names can be closed, and queries are quantifier-free
UCQs. In Section 5, we establish the connection to surjective
CSPs for the case where only concept names can be closed
(and where quantifiers in the query are allowed) and in Sec-
tion 6 we establish the connection to Turing machines when
also role names can be closed.

Proof details can be found in the appendix which is available
at http://informatik.uni-bremen.de/tdki/p.html.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of concept, role,
and individual names. A DL-Lite concept is either a concept
name or a concept of the form ∃r or ∃r− with r ∈ NR. We
call r− an inverse role and set s− = r if s = r− and r ∈ NR.
A role is of the form r or r−, with r ∈ NR. A DL-Lite concept
inclusion is of the form B1 v B2 or B1 v ¬B2, where
B1, B2 are DL-Lite concepts. A role inclusion is of the form
r v s, where r, s are roles. A DL-Litecore TBox is a finite set
of DL-Lite concept inclusions and a DL-LiteR TBox might
additionally contain role inclusions [Calvanese et al., 2007a;
Artale et al., 2009]. As usual in DLs, we use the terms TBox
and ontology interchangeably.
EL concepts are constructed according to the rule C,D :=

> | A | C u D | ∃r.C, where A ∈ NC and r ∈ NR. ELI
concepts extend EL concepts by adding existential restrictions
∃r−.C, where r− is an inverse role, andALCI further allows
negation. For L ∈ {EL, ELI,ALCI}, an L concept inclu-
sion is of the form C v D, where C,D are L concepts. An
EL TBox is a finite set of EL concept inclusions, and ELI
TBoxes are defined accordingly. An ALCHI TBox consists
of ALCI concept inclusions and role inclusions. An ABox
is a finite set of concept assertions A(a) and role assertions
r(a, b) with A ∈ NC, r ∈ NR, and a, b ∈ NI. We use Ind(A)
to denote the set of individuals used in the ABox A.

An interpretation I (defined as usual) satisfies a concept
inclusion C v D if CI ⊆ DI , a role inclusion r v s if
rI ⊆ sI , a concept assertion A(a) if a ∈ AI and a role
assertion r(a, b) if (a, b) ∈ rI . Note that this interpretation of
ABox assertions adopts the standard names assumption (SNA)
which requires that aI = a for all a ∈ NI and implies the
unique name assumption (UNA). An interpretation is a model
of a TBox T if it satisfies all inclusions in T and a model of an
ABox A if it satisfies all assertions in A. As usual, we write
T |= r v s if every model of T satisfies the CI r v s (which
can be checked in polytime).

A predicate is a concept or role name. A signature Σ is a
finite set of predicates. The signature sig(C) of a concept C,
sig(r) of a role r, and sig(T ) of a TBox T , is the set of
predicates that occur in C, r, and T , respectively. An ABox is
a Σ-ABox if it only uses predicates from Σ.

In this paper, we combine ontologies (that is, TBoxes) with
database queries. A conjunctive query (CQ) takes the form
q(~x) = ∃~y ϕ(~x, ~y) where ϕ(~x, ~y) is a conjunction of atoms
of the form A(x) and r(x, y) with A ∈ NC and r ∈ NR. We



call ~x the answer variables of q(~x). A tree CQ (tCQ) is a CQ
that is a tree when viewed as a directed graph (multi-edges
disallowed) with the root the only answer variable. An atomic
query (AQ) is a CQ of the form A(x). A CQ is Boolean when
it has no answer variables. We use BtCQ to refer to Boolean
tCQs. A Boolean AQ (BAQ) has the form ∃xA(x). A union of
conjunctive queries (UCQ) is a disjunction of CQs. Additional
query classes such as tUCQ and BtUCQ are then defined in
the obvious way, demanding that every CQ in the UCQ is of
the expected form. The length |q| of a UCQ q is the number
of its variables.

In this paper, the general type of query that we are inter-
ested in are ontology-mediated queries with closed predicates
(OMQCs) that consist of a TBox T , a set ΣA of predicates that
can occur in the ABox, a set of closed predicates ΣC ⊆ ΣA,
and an actual query q (such as a UCQ) that is to be answered.
The semantics of such queries is as follows. A model I of
an ABox A respects closed predicates ΣC if the extension of
these predicates agrees with what is explicitly stated in the
ABox, that is,

AI = {a | A(a) ∈ A} for all A ∈ ΣC ∩ NC

rI = {(a, b) | r(a, b) ∈ A} for all r ∈ ΣC ∩ NR.

Let Q = (T ,ΣA,ΣC, q) be an OMQC and A a ΣA-ABox.
A tuple ~a ∈ Ind(A) is a certain answer to Q on A, written
T ,A |=c(ΣC) q(~a), if I |= q[~a] for all models I of T and A
that respect ΣC.
Example 1. Assume an automobile company (say Skoda)
wants to monitor the model ranges of international automobile
manufacturers. It integrates its company databases storing
information about its own products with information about
other manufacturers extracted from the web. An ontology is
used to provide a unifying vocabulary to be used in queries
and to add background knowledge such as

SkodaModel v ∃has engine.SkodaEngine
TeslaModel v ∃has engine.TeslaEngine

DieselEngine v ICEngine PetrolEngine v ICEngine

where IC stands for internal combustion. Assume that all data
is stored in an ABox, which contains information about Skoda
models:

SkodaModel(sm1),SkodaModel(sm2), . . .

SkodaEngine(se1),SkodaEngine(se2) . . .

has engine(sm1, se1), . . .

DieselEngine(se1),PetrolEngine(se2), . . .

and about models by other manufacturers:

TeslaModel(tm1), . . .

TeslaEngine(te1),ElectEngine(te1), . . .

Skoda is sure that its own models and engines are in the
database, therefore the concept names SkodaModel and
SkodaEngine are closed. As information about other manu-
facturers is taken from the web, it is assumed to be incomplete.
To illustrate the effect of closing these predicates, consider the
following query q1(x):

∃y(SkodaModel(x) ∧ has engine(x, y) ∧ ICEngine(y)).

Assume that sm17 is a new Skoda model for which an existing
engine will be used, but it is not yet decided which one. Thus
the data only contains SkodaModel(sm17), but no other as-
sertions mentioning sm17. Note that Skoda offers only petrol
and diesel engines and that Tesla offers only electric engines
which is both reflected in the data (e.g, for every assertion
TeslaEngine(tei), there is an assertion ElecEngine(tei)). Due
to the knowledge in the ontology and since SkodaEngine is
closed, sm17 is returned as an answer to q1. This is not the
case without closed predicates and it is in this sense that closed
predicates can result in more complete answers. In particular,
the query

∃y(TeslaModel(x) ∧ has engine(x, y) ∧ ElectEngine(y))

does not return tm4 if the ABox only contains
TeslaModel(tm4), but does not associate tm4 with
any specific engine.

An OBDA language is constituted by a triple (L,Σ,Q) that
consists of a TBox language (such as DL-Litecore, EL, or
ALCHI), a set of predicates Σ (such as NC ∪ NR or NC)
and a query language Q (such as UCQ or CQ). It comprises
all OMQCs (T ,ΣA,ΣC, q) such that T ∈ L, ΣC ⊆ Σ, and
q ∈ Q. Examples of OBDA languages considered in this
paper include, for example, (DL-LiteR,NC ∪ NR,BtUCQ)
and (ALCHI,NC,BtUCQ).

For an ABox A, we denote by IA the interpretation cor-
responding to A, which satisfies ∆IA = Ind(A) and is de-
fined in the obvious way. An OMQC Q = (T ,ΣA,ΣC, q) is
FO-rewritable if there is an FO-query ϕ(~x) such that for all
ΣA-ABoxesA and all tuples ~a of individuals from Ind(A), we
have IA |= ϕ(~a) iff T ,A |=c(ΣC) q(~a). Here and throughout
the paper, we assume that FO-queries use only atoms of the
form A(x), r(x, y), and x = y where A is a concept name
and r a role name.

In many applications, it is useful to identify and report
inconsistencies of the data with the ontology. An ABox A
is consistent w.r.t. T and closed ΣC if there is a model of T
and A that respects ΣC. We say that ABox consistency is FO-
rewritable for an OMQC (T ,ΣA,ΣC, q) if there is a Boolean
FO-query ϕ such that for all ΣA-ABoxes A, we have IA |= ϕ
iff A is consistent w.r.t. T and closed ΣC.

3 Basic Results
We establish some basic results that set the stage for the rest
of the paper. The first one is a general CONP upper bound
(in data complexity) that encompasses all OMQ languages
studied in this paper. Note that this bound is not a consequence
of results on OBDA querying with nominals [Ortiz et al.,
2008] because nominals are part of the TBox and thus their
number is a constant while closing a predicate corresponds
to considering a set of individuals whose number is bounded
by the size of the ABox (the input size). The proof uses a
decomposition of countermodels (models that demonstrate
query non-entailment) into mosaics and then relies on a guess-
and-check algorithm for finding such decompositions.

Theorem 2. Every OMQC in (ALCHI,NC ∪ NR,UCQ) is
in CONP.



Our next result concerns the relationship between ABox sig-
natures and closed predicates. In the cases relevant for us,
we can assume w.l.o.g. that the ABox signature and the set
of closed predicates coincide. This setup was called DBoxes
in [Seylan et al., 2009; Franconi et al., 2011]. In the remain-
der of the paper, we are thus free to assume that OMQCs
(T ,ΣA,ΣC, q) satisfy ΣA = ΣC whenever convenient. We de-
note such OMQCs as a triple (T ,Σ, q) meaning that Σ serves
both as ΣA and ΣC. Two Σ-queries Q1 and Q2 are equivalent
if Q1(A) = Q2(A) for all Σ-ABoxesA. A classQ of queries
is called canonical if it is closed under replacing a concept
or role atom in a query with an atom of the same kind. All
classes of queries considered in this paper are canonical.
Theorem 3. Let L ∈ {DL-LiteR,ALCHI} and Q be a
canonical class of UCQs, or let L ∈ {DL-Litecore, EL} and
Q be a canonical class of UCQs closed under forming unions
of queries. Then for every OMQC Q = (T ,ΣA,ΣC, q) from
(L,NC ∪ NR,Q), one can construct in polynomial time an
equivalent query OMQC Q′ = (T ′,ΣA,ΣA, q

′) with T ′ ∈ L
and q′ ∈ Q.
As noted in the introduction, full first-order queries can be used
for the closed predicates. This simple observation was already
made in [Lutz et al., 2013] in a related but slightly different
setup, and we repeat it here for the setup considered in the
present paper. Let ΣC be a signature that declares closed pred-
icates and let q = ∃~y ϕ(~x, ~y) be a CQ. An FO(ΣC)-extension
of q is a query of the form ∃~y∃~z ϕ(~x, ~y)∧ψ1(~z1), . . . , ψn(~zn)
where ψ1(~z1), . . . , ψn(~zn) are FO-queries with sig(ψi) ⊆ ΣC

and ~z1 ∪ · · · ∪ ~zn ⊆ ~x ∪ ~y ∪ ~z.
Theorem 4. If an OMQC (T ,ΣA,ΣC, q) is FO-rewritable
(in PTIME), then every (T ,ΣA,ΣC, q

′) with q′ an FO(ΣC)-
extension of q is also FO-rewritable (in PTIME).

4 Quantifier-Free UCQs and
FO-Rewritability

The aim of this section is to identify useful OBDA lan-
guages whose UCQs are guaranteed to be FO-rewritable. It
turns out that FO-rewritability can be achieved by combining
lightweight DLs with quantifier-free queries. We use qfUCQ
to denote the class of quantifier-free UCQs, that is, none of
the CQs is allowed to contain a quantified variable.

Our main result is that all OMQCs from the OBDA language
(DL-LiteR,NC ∪ NR, qfUCQ) are FO-rewritable under the
mild restriction that there is no role inclusion which requires
an open role to be contained in a closed one. We believe
that this class of queries is potentially relevant for practical
applications. In fact, DL-LiteR is very popular as an ontology
language in large-scale OBDA and, in practice, many queries
turn out to be quantifier-free. Note that the query language
SPARQL, which is used in many web applications, is closely
related to qfUCQs and, in fact, does not admit existential
quantification under its standard entailment regimes [Glimm
and Krötzsch, 2010]. We remark that our result also covers
the OBDA language (DL-Litecore,NC ∪ NR, qfUCQ) without
further restrictions.
Theorem 5. Every OMQC (T ,ΣA,ΣC, q) from
(DL-LiteR,NC ∪ NR, qfUCQ) such that T contains no

role inclusion of the form s v r with s 6∈ ΣC and r ∈ ΣC is
FO-rewritable.
We first show that ABox consistency is FO-rewritable for each
of the OMQCs (T ,ΣA,ΣC, q) covered by Theorem 5. On
inconcistent ABoxes, every query returns all possible answers,
but in most practical cases it is more useful to detect and
point out the inconsistency instead. We assume w.l.o.g. that
ΣA = ΣC and denote ΣA by Σ. Let sub(T ) be the set of all
concept names in T , their negations, and all concepts ∃r, ∃r−
such that r is a role name that occurs in T . A T -type is a set
t ⊆ sub(T ) such that for all B1, B2 ∈ sub(T ):
• if B1 ∈ t and T |= B1 v B2, then B2 ∈ t;
• if B1 ∈ t and T |= B1 v ¬B2, then B2 /∈ t.

A T -typing is a set T of T -types. A path in T is a sequence
t, r1, . . . , rn where t ∈ T , ∃r1, . . . ,∃rn ∈ sub(T ) use no
symbols from Σ, ∃r1 ∈ t and for i ∈ {1, . . . , n − 1}, T |=
∃r−i v ∃ri+1 and r−i 6= ri+1. The path is Σ-participating
if for all i ∈ {1, . . . , n − 1}, there is no B ∈ sub(T ) with
sig(B) ⊆ Σ and T |= ∃r−i v B while there is such a B
for i = n. A T -typing T is Σ-realizable if for every Σ-
participating path t, r1, . . . , rn in T , there is some u ∈ T such
that {B ∈ sub(T ) | T |= ∃r−n v B} ⊆ u.

A T -typing T provides an abstraction of a model of T and
a Σ-ABox A, where T contains the types that are realized by
ABox elements. Σ-realizability ensures that we can build from
T a model that respects the closed predicates in Σ. To make
this more precise, define a T -decoration of a Σ-ABoxA to be
a mapping f that assigns to each a ∈ Ind(A) a T -type f(a)
such that f(a)|Σ = taA|Σ where taA = {B ∈ sub(T ) | a ∈
BIA} and S|Σ denotes the restriction of the set S of concept
to those member that only use symbols from Σ. For brevity,
let RΣ = {s v r | T |= s v r and sig(s v r) ⊆ Σ}.
Lemma 6. A Σ-ABox A is consistent w.r.t. T and closed Σ iff

1. A has a T -decoration f whose image is a Σ-realizable
T -typing and

2. s(a, b) ∈ A and s v r ∈ RΣ implies r(a, b) ∈ A.
We now construct the required FO-query. For all role names r
and variables x, y, define ψr(x, y) = r(x, y) and ψr−(x, y) =
r(y, x). For all concept names A and roles r, define ψA(x) =
A(x) and ψ∃r(x) = ∃y ψr(x, y). For each T -type t, set

ψt(x) =
∧

B∈sub(T )\t with sig(B)⊆Σ

¬ψB(x) ∧
∧

B∈t with sig(B)⊆Σ

ψB(x)

and for each T -typing T = {t1, . . . , tn}, set

ψT = ∀x
∨
t∈T

ψt(x)∧∃x1 · · · ∃xn(
∧
i6=j

xi 6= xj ∧
∧
i

ψti(xi)).

LetR be the set of all Σ-realizable typings and set

ΨT ,Σ =
∨
T∈R

ψT ∧
∧

svr∈RΣ

∀x∀y(ψs(x, y)→ ψr(x, y)).

Note that the two conjuncts of ΨT ,Σ express exactly Points 1
and 2 of Lemma 6. We have thus shown FO-rewritability of
ABox consistency for Q.
Proposition 7. A Σ-ABox A is consistent w.r.t. T and closed
Σ iff IA |= ΨT ,Σ.



The next step is to construct an FO-rewriting ofQ over ABoxes
that are consistent w.r.t. T and closed Σ. If desired, this
rewriting can be combined with the one for ABox consistency
given above. Due to space limitations and the slightly intricate
details of the construction, we only give a rough intuition and
defer the details to the appendix.

Whereas the FO-query ΨT ,Σ above is Boolean and identi-
fies ABoxes that have a common model with T , we now aim
to construct an FO-formula ϕ(~x) (where ~x are the answer vari-
ables of the actual query q from Q) such that for all Σ-ABoxes
A and ~a ∈ Ind(A), we have IA |= ϕ[~a] iff there is a common
model I of A and T such that there is no homomorphism
from some CQ in q to I that takes ~x to ~a. The desired FO-
rewriting ΦQ(~x) of Q over consistent ABoxes is then simply
the negation of ϕ(~x). The construction of ϕ(~x) is based on an
extended notion of T -typing called T , q-typing that provides
an abstraction of a model of T and a Σ-ABox A that avoids a
homomorphism from ~x to certain individuals ~a. This finishes
the proof of Theorem 5.

We now show that without the restriction on role inclu-
sions adopted in Theorem 5, OMQCs from (DL-LiteR,NC ∪
NR, qfUCQ) are no longer FO-rewritable. In fact, we prove
the following, slightly stronger result by reduction from propo-
sitional satisfiability.

Theorem 8. There is a DL-LiteR TBox T and set of predi-
cates ΣC such that ABox consistency w.r.t. T and closed ΣC is
NP-complete.

We close this section with noting that, for the case of EL
and its extensions, quantifier-free queries are computationally
no more well-behaved than unrestricted queries; in fact, all
hardness results established in the remainder of this paper for
EL and its extensions can be adapted to the case of quantifier-
free queries.

5 Closing Concept Names: Connection to CSP
We consider OBDA languages that only allow to close concept
names, but not role names. Unlike in the previous section,
queries admit unrestricted existential quantification. Our main
contribution here is to establish a close connection between
such OBDA languages based on a wide range of DLs and
surjective constraint satisfaction problems. This result im-
plies that a full complexity classification of these two problem
classes is intimately related. In fact, a full complexity classifi-
cation of surjective CSPs is a very difficult, ongoing research
effort. As pointed out in the introduction, there are even con-
crete surjective CSPs whose complexity is unknown and, via
the established connection, these problems can be used to
derive concrete OMQCs whose computational properties are
currently not understood.

We start with introducing CSPs. An interpretation I is
a Σ-interpretation if it only interprets symbols in Σ, that
is, all other symbols are interpreted as empty. Every finite
Σ-interpretation I defines a constraint satisfaction problem
CSP(I) in signature Σ: given a finite Σ-interpretation I ′, de-
cide whether there is a homomorphism from I ′ to I, i.e.,
a mapping h : ∆I

′ → ∆I such that d ∈ AI
′

implies
h(d) ∈ AI and (d, e) ∈ rI′ implies (h(d), h(e)) ∈ rI . The

problem CSP(I)sur is the variant of CSP(I) where we require
h to be surjective. Note that we do not consider CSPs with
relations of arity larger than two.

We first show that for every problem CSP(I)sur, there is an
OMQC Q from (DL-Litecore,NC,BtUCQ) that has the same
complexity as the complement of CSP(I)sur, up to polynomial
time reductions. Here, the complexity of an OMQC Q =
(T ,ΣA,ΣC, q) is the complexity to decide, given a ΣA-ABox
A, whether T ,A |=c(ΣC) q.

Consider CSP(I)sur in signature Σ. We may assume w.l.o.g.
that there is at least one Σ-interpretation J that does not ho-
momorphically map to I.1 Define the OMQC (T ,ΣA,ΣC, q)
as follows:

T = {A v ∃val, ∃val− v V }∪
{A v ∃auxd, ∃aux−d v V u Vd | d ∈ ∆I}∪
{A v ∃forced, ∃force−d v A | d ∈ ∆I}

ΣC = {A, V } ∪ {Vd | d ∈ ∆I}
ΣA = Σ ∪ ΣC

q = q1 ∨ q2 ∨ q3

where

q1 =
∨

d,d′∈∆I |d6=d′
∃x∃y1∃y2A(x) ∧ val(x, y1) ∧

val(x, y2) ∧ Vd(y1) ∧ Vd′(y2)

q2 =
∨

d,d′∈∆I ,r∈Σ|(d,d′)/∈rI
∃x∃y∃x1∃y1A(x) ∧A(y) ∧ r(x, y) ∧

val(x, x1) ∧ val(y, y1) ∧
Vd(x1) ∧ Vd′(y1)

q3 =
∨

d,d′∈∆I |d6=d′
∃x∃y∃z A(x) ∧ forced(z, x) ∧

val(x, y) ∧ Vd′(y).

To understand the construction, it is useful to consider the
reduction of (the complement of) CSP(I)sur to (T ,ΣA,ΣC, q).
Given a Σ-interpretation J that is an input to CSP(I)sur, we
construct a ΣA-ABox A as an input to (T ,ΣA,ΣC, q) as

AJ ∪ {A(d) | d ∈ ∆J } ∪ {V (ad), Vd(ad) | d ∈ ∆I}

where AJ is J viewed as an ABox (with the elements of J
serving as ABox individuals) and where ad is a fresh individ-
ual name for each d ∈ ∆I . We show in the appendix that
J ∈ CSP(I)sur iff T ,A 6|=c(ΣC) q. For the “if” direction,
we extract a homomorphism h from a model I ′ of T and A
that respects ΣC and satisfies I 6|= q by setting h(d) = e

when (d, ae) ∈ valI
′
. The first line of T and the closing of

V thus ensure that h(d) is defined for every d ∈ ∆J and q1

ensures that the value of h(d) is unique; q2 ensures that h is a
homomorphism and Line 3 of T together with the closing of
A and q3 guarantees that it is surjective. Line 2 of T is only
needed for the converse reduction to go through, ensuring that
we always consider homomorphisms onto I. We say that two
decision problems P1 and P2 are polynomially equivalent if
P1 polynomially reduces to P2 and vice versa.

1Otherwise we can simply use as Q any OMQC (T ,Σ,ΣC, q)
such that T ,A 6|=c(ΣC) q for all Σ-ABoxes A. Then CSP(I)sur is
exactly the complement problem of Q.



Lemma 9. The complement of CSP(I)sur is polynomially
equivalent to (T ,ΣA,ΣC, q).

Note that the same reduction works when DL-Litecore is re-
placed with EL. For example, the first line of T then reads
A v ∃val.V . Since all disjuncts of q are tree-shaped, we can
view them as EL-concepts, extend T with q′ v A0 for every
disjunct q′ of q, and replace q with the BAQ ∃xA0(x). We
have thus established the following result.

Theorem 10. For every CSP(I)sur, there is an OMQC Q
from (DL-Litecore,NC,BtUCQ) such that the complement of
CSP(I)sur has the same complexity as Q, up to polytime re-
ductions. The same holds for (EL,NC,BAQ).

We remark that, as can easily be verified by checking the
constructions in the proof of Lemma 9, the complement of
CSP(I)sur and Q actually have the same complexity up to FO
reductions [Immerman, 1999]. This links the complexity of
the two problems even closer. For example, if one is complete
for LOGSPACE or in AC0, then so is the other.

We now establish (almost) a converse of Theo-
rem 10 by showing that for every OMQC Q from
(ALCHI,NC,BtUCQ), there is a generalized surjective CSP
that has the same complexity as the complement of Q, up to
polytime reductions. A generalized surjective CSP in signature
Σ is characterized by a finite set Γ of finite Σ-interpretations
instead of a single such interpretation, denoted CSP(Γ)sur.
The problem is to decide, given a Σ-interpretation I ′, whether
there is a homomorphism from I ′ to some interpretation in Γ.
Note that, in the non-surjective case, every generalized CSP
can be translated into an equivalent non-generalized CSP [Fo-
niok et al., 2008]. In the surjective case, such a translation is
not known, so there remains a gap in our analysis. Closing
this gap is primarily a (difficult!) CSP question rather than an
OBDA question.

Let Q = (T ,ΣA,ΣC, q) be an OMQC from
(ALCI,NC,BtUCQ). We assume w.l.o.g. that T con-
tains only a single concept inclusion > v CT (plus role
inclusions) where CT uses only the constructors ¬, u, and ∃,
and that q has the form ∃xA0(x) with A0 occurring in T .
The latter is possible since every tCQ q can be expressed
as an ALCI concept Cq in an obvious way, and thus when
the BtUCQ is q =

∨
i ∃xi qi, then we can add Cqi v A0 to

the TBox with A0 a fresh concept name and replace q with
∃xA0(x). We use cl(T ) to denote the set of subconcepts
of CT , extended with all concepts ∃s.C such that ∃r.C is a
subconcept of CT and r v s ∈ T , as well as the negations
of these concepts. A Q-type is a subset t ⊆ cl(T ) such
that for some model I of T and some d ∈ ∆I , we have
t = tpI(d) := {C ∈ cl(T ) | d ∈ CI}. Let TP(T ) denote
the set of all types for Q. For t, t′ ∈ TP(T ) and a role r, we
write t r t

′ if for all roles r with T |= r v s, we have

• C ∈ t′ implies ∃s.C ∈ t, for all ∃s.C ∈ cl(T ) and

• C ∈ t implies ∃s−.C ∈ t′, for all ∃s−.C ∈ cl(T ).

A subset T ⊆ TP(T ) is realizable in a countermodel if there
is a ΣA-ABox A and model I of T and A that respects closed
predicates ΣC such that I 6|= q and

T = {tpI(a) | a ∈ Ind(A)}.

We define the desired surjective generalized CSP by taking
one template for each T ⊆ TP(T ) that is realizable in a
countermodel. The signature Σ of the CSP comprises the
symbols in ΣA, one concept name A for each concept name
in ΣC, and the concept name A0 from q. We assume w.l.o.g.
that there is at least one concept name in ΣC and at least one
concept name Aopen ∈ ΣA \ ΣC.

Each T ⊆ TP(T ) realizable in a countermodel gives raise
to a template IT , defined as follows:

∆IT = T ] {dA | A ∈ ΣC}
AIT = {t ∈ T | A ∈ t} ∪ {dB | B 6= A}

A
IT

= {t ∈ T | A /∈ t} ∪ {dB | B 6= A}
rIT = {(t, t′) ∈ T × T | t r t

′}∪
{(d, d′) ∈ ∆IT ×∆IT | {d, d′} \ T 6= ∅}.

Note that, in IT restricted to domain T , A is interpreted as
the complement of A. At each element dA, all concept names
except A and A are true, and these elements are connected to
all elements with all roles. Intuitively, we need the concept
names A to ensure that when an assertion A(a) is missing in
an ABox A with A closed, then a can only be mapped to a
template element that does not make A true; this is done by
extending A with A(a) and exploiting that A is essentially
the complement of A in each IT . The elements dA are then
needed to deal with inputs to the CSP where some point satis-
fies neither A nor A. Let Γ be the set of all interpretations IT
obtained in the described way.
Lemma 11. (T ,ΣA,ΣC, q) is polynomially equivalent to the
complement of CSP(Γ)sur.
We have thus established the following result
Theorem 12. For every OMQC Q from
(ALCHI,NC,BtUCQ), there is a (generalized) CSP(Γ)sur in
binary signature such that Q has the same complexity as the
complement of CSP(Γ)sur, up to polytime reductions.
Again, the theorem can actually be strengthened to state the
same complexity up to FO reductions. Note that the DL
ALCHI used in Theorem 12 is a significant extension of
the DLs referred to in Theorem 10 and thus our results apply
to a remarkable range of DLs: all DLs between DL-Litecore
and ALCHI as well as all DLs between EL and ALCHI.

6 Closing Role Names: TM Equivalence
We generalize the setup from the previous section by allow-
ing also role names to be closed. Our main result is that
for every NP Turing machine M , there is an OMQC in
(DL-LiteR,NC ∪ NR,BtUCQ) that is polynomially equiva-
lent to the complement of M ’s word problem, and the same
is true for (EL,NC ∪ NR,BAQ). By Ladner’s theorem, it fol-
lows that there are CONP-intermediate OMQCs in both of the
mentioned OBDA languages (unless P = NP) and that a full
complexity classification of the queries in these languages is
currently far beyond reach.

To establish the above, we utilize a result from [Lutz and
Wolter, 2012; Bienvenu et al., 2014] which states that for every
NP Turing machine M , there is a monadic disjunctive datalog



program of a certain restricted shape that is polynomially
equivalent to the complement of M ’s word problem. It thus
suffices to show that for every such datalog program, there
is a polynomially equivalent OMQC of the required form.
The actual reduction then uses similar ideas as the proof of
Theorem 10.
Theorem 13. For every simple disjunctive datalog program Π,
there exists an OMQC in (EL,NC ∪ NR,BAQ) that is polyno-
mially equivalent to Π. The same is true for (DL-LiteR,NC ∪
NR,BtUCQ).
The computational status of (DL-Litecore,NC ∪ NR,BtUCQ)
remains open. In particular, it is open whether Theorem 13 can
be strengthened to this case. We are, however, able to clarify
the status of (DL-Litecore,NC ∪ NR,BtCQ), where BtUCQs
are replaced with BtCQs. In fact, we show that every OMQC
in this language is polynomially equivalent to an OMQC that is
formulated in the same language but does not use closed roles.
Via the results in Section 5, OMQCs in (DL-Litecore,NC ∪
NR,BtCQ) are thus linked to surjective CSPs.
Theorem 14. For every OMQC in (DL-Litecore,NC ∪
NR,BtCQ) there exists a polynomially equivalent OMCQ in
(DL-Litecore,NC,BtCQ).

Interestingly, Theorem 14 can be extended from BtCQs to
BtUCQs for the case of ABoxes in which there is at least one
assertion for each closed role name. The unrestricted case of
(DL-Litecore,NC ∪ NR,BtUCQ), though, remains open.

7 CONCLUSION
Admitting closed predicates in OBDA has significant advan-
tages as it can result in more complete answers and allows to
use FO queries for the closed part of the vocabulary. The main
results of this paper characterize the computational challenges:
for a wide range of DLs, closing concept names corresponds
to moving from CSPs to surjective CSPs, while closing role
names yields the full computational power of NP. As future
work, it would be interesting to exploit closed predicates in
OBDA practice. Our results on FO-rewritability of quantifier-
free UCQs provide a starting point.
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Appendix

A Proof of Theorem 2
We provide the proof of Theorem 2 for Boolean UCQs rather
than arbitrary UCQs as this makes the exposition more trans-
parent and intuitive. The extension of the proof to arbitrary
UCQs is straightforward.

A forest over an alphabet S is a prefix-closed set of words
over S∗ \ {ε}, where ε denotes the empty word. A successor
of w in F is a v ∈ F of the form v = w · x, where x ∈ S.
For a k ∈ N, F is called k-ary, if for all w ∈ F , we have that
the number of successors of w is at most k. A root of F is a
word in F of length one. A tree is a forest that has exactly one
root. We do not mention the alphabet of a forest if it is not
important.

Definition 15. An interpretation I = (∆I , ·I) is forest-
shaped if ∆I is a forest and for all (d, e) ∈ ∆I × ∆I and
r ∈ NR, if (d, e) ∈ rI , then

• d or e is a root of ∆I ,

• e is a successor of d, or

• d is a successor of e.

In the following proof we use cl(T ) to denote the set of sub-
concepts of concepts in a TBox T .

Lemma 16. Let A be a ΣA-ABox and (T ,ΣA,ΣC, q) ∈
(ALCHI,NC ∪ NR,BUCQ). Then the following are equiva-
lent:

1. T ,A |=c(ΣC) q

2. for all forest-shaped models I of T and A that respect
closed predicates ΣC, if ∆I is |T |-ary and its roots are
Ind(A), then we have I |= q.

Proof. (1⇒ 2) is trivial.
(2 ⇒ 1) The proof is indirect. Suppose T ,A 6|=c(ΣC) q.

Then there is some model J of T and A that respects closed
predicates ΣC such that J 6|= q. We construct, by induction, a
sequence of pairs (I0, h0), (I1, h1), . . ., where each Ii is an
interpretation and hi is a homomorphism from Ii to J such
that h(d) ∈ AJ implies d ∈ AIi for all d ∈ ∆Ii .

For i = 0, we define I0 as the restriction of J to Ind(A).
Moreover, we set h0(a) = a, for all a ∈ Ind(A). Clearly h0

is as required.
For i ≥ 0, assume (Ii, hi) is given. Let d ∈ ∆Ii and

∃r.C ∈ cl(T ) such that d 6∈ (∃r.C)Ii , hi(d) ∈ (∃r.C)
J ,

and for all roles s with T |= r v s, we have sig(s) 6⊆ ΣC.
hi(d) ∈ (∃r.C)

J implies that there is some e ∈ ∆J such that
(hi(d), e) ∈ rJ and e ∈ CJ . Assume first that e 6∈ Ind(A).
We extend Ii to Ii+1 by adding

• d · e to ∆Ii ;

• the tuple (d, d · e) to sIi , for every role s such that T |=
r v s;
• the individual d ·e toAIi , for everyA ∈ cl(T )∩NC with
e ∈ AJ .

Moreover, set hi+1 = hi ∪ {d · e 7→ e}.

Suppose now that e = a for some a ∈ Ind(A). In this case,
we extend Ii to Ii+1 by adding the tuple (d, a) to sIi , for
every role s such that T |= r v s. hi+1 is simply equal to hi.

In both of the cases hi+1 has the properties required. Now
define the interpretation I as follows:
• ∆I =

⋃
i≥0 ∆Ii ;

• P I =
⋃
i≥0 P

Ii , for all P ∈ NC ∪ NR.

Moreover, define h =
⋃
i≥0 hi.

Claim. I is a forest-shaped model of T and A that respects
closed predicates ΣC and such that ∆I is |T |-ary and its roots
are Ind(A).
Proof of claim. It is clear that I is a forest-shaped interpreta-
tion with ∆I a |T |-ary forest having precisely Ind(A) as its
roots. Thus, in the remainder of the proof, we show that I is a
model of T and A that respects closed predicates ΣC. That I
is a model of A is an easy consequence of the facts that the re-
strictions of I and J to Ind(A) are identical and J is a model
ofA. ThatP I = {~a | P (~a) ∈ A}, for allP ∈ (NC∪NR)∩ΣC,
is an easy consequence of the facts that J satisfies this prop-
erty (since it is a model of A that respects closed predicates
ΣC) and P I = PJ for all P ∈ (NC ∪ NR) ∩ ΣC. The latter
follows from the construction of I . So it remains to show that
I is a model of T . To this aim, we show (∗) for all d ∈ ∆I

and C ∈ cl(T ), d ∈ CI iff h(d) ∈ CJ . The proof is by struc-
tural induction. The base case follows immediately by the
construction of I and the boolean cases are trivial. Therefore,
we only consider the case where C = ∃r.D.

Suppose d ∈ (∃r.D)
I . Then there is some e ∈ ∆I such

that (d, e) ∈ rI and e ∈ DI . By the former and the con-
struction of I, we have (h(d), h(e)) ∈ rJ ; and by the latter
and the induction hypothesis, we have h(e) ∈ DJ . Hence
h(d) ∈ (∃r.D)

J , as required. For the other direction, sup-
pose h(d) ∈ (∃r.D)

J . Then there is some e ∈ ∆J such
that (h(d), e) ∈ rJ and e ∈ DJ . We distinguish between
the cases that there is some role s such that T |= r v s and
sig(s) ⊆ ΣC and its complement.

Suppose first the former holds. Since J satisfies r v s and
h(d) ∈ (∃r.D)

J , we have (h(d), e) ∈ rJ ∩ sJ and e ∈ DJ ,
for some e ∈ ∆J . By the fact that sJ = {(a, b) | s(a, b) ∈
A}, we then obtain h(d) = a and e = b, for some a, b ∈
Ind(A). By the construction of I, a is the only individual in
∆I with h(a) = a and thus, d = a. To summarize, we have
d = a, e = b, and (a, b) ∈ rJ . Since the restrictions of I and
J to Ind(A) are identical, we obtain (a, b) ∈ rI . Combining
this with the fact that b ∈ DI (by the induction hypothesis),
we obtain d ∈ (∃r.D)

I , as required.
Suppose now that there is no role s such that T |= r v s

and sig(s) ⊆ ΣC. Since ∃r.D ∈ cl(T ) and h(d) ∈ (∃r.D)
J ,

the construction of I guarantees that there are e ∈ ∆J and
e′ ∈ ∆I such that (h(d), e) ∈ rJ , e ∈ DJ , h(e′) = e, and
(d, e′) ∈ rI . The induction hypothesis then yields e′ ∈ DI
and thus by (d, e′) ∈ rI , we obtain d ∈ (∃r.D)

I , as required.
The fact that J is a model of T and condition (∗) imply that

I is a model of every concept inclusion in T . That I is a model
of every role inclusion in T is obvious by the construction of
I. Hence we conclude that I is a model of T . a



It remains to show that I 6|= q. For a proof by contradiction
suppose that I |= q. Then for some disjunct q′ of q, there
is a match π of q′ in I. Moreover, we know that h is a
homomorphism from I to J . But then the function h ◦ π′ is a
match of q′ in J and so J |= q, which is a contradiction.

o

Let T be an ALCHI-TBox. For an interpretation I and
d ∈ ∆I , let

tpI(d) = {C ∈ cl(T ) | d ∈ CI}.

A T -type is a set t ⊆ cl(T ) such that for some model I of
T and some d ∈ ∆I , we have t = tpI(d). For two T -types
t, t′ and a role r, we write t  r t

′ if there is some model I
of T and d, e ∈ ∆I such that (d, e) ∈ rI , t = tpI(d), and
t′ = tpI(e). By TP(T ), we denote the set of all types for T .
Note that these notions are also used in the investigation of the
relationship between OMQCs and surjective CSPs in the main
paper.
Definition 17. Let A be a ΣA-ABox and (T ,ΣA,ΣC, q) ∈
(ALCHI,NC∪NR,BUCQ). A mosaic for (T ,ΣA,ΣC, q) and
A is a pair (I, τ), where I is a forest-shaped interpretation
and τ : ∆I → TP(T ), satisfying the following properties:

1. ∆I ∩ NI = Ind(A);
2. ∆I \ Ind(A) is a |T |-ary tree of height at most |q|;
3. for all d ∈ ∆I \ Ind(A), the cardinality of {a ∈ Ind(A) |

(d, a) ∈ rI for some role r} is at most |T |;
4. for all d ∈ ∆I and A ∈ NC ∩ cl(T ), d ∈ AI iff A ∈
τ(d);

5. for all (d, e) ∈ ∆I ×∆I and roles r, if (d, e) ∈ rI then
τ(d) r τ(e);

6. for all d ∈ ∆I \ Ind(A) of depth at most |q| − 1, if
∃r.C ∈ τ(d), then there is some e ∈ ∆I such that
(d, e) ∈ rI and C ∈ τ(e);

7. I |= A
8. for all r v s ∈ T , rI ⊆ sI ;
9. for all A ∈ ΣC and all A that do not occur in T , AI =
{a | A(a) ∈ A} and for all r ∈ ΣC and all r that do not
occur in T , rI = {(a, b) | r(a, b) ∈ A}.

Two interpretations I,J are called isomorphic if there is a
bijective function f : ∆I → ∆J such that
• for all a ∈ ∆I ∩ NI, f(a) = a;
• for all d ∈ ∆I and A ∈ NC, d ∈ AI iff f(d) ∈ AJ ;
• for all (d, e) ∈ ∆I × ∆I and r ∈ NC, (d.e) ∈ rI iff

(f(d), f(e)) ∈ rJ .
In this case, f is called an isomorphism from I to J . Two
mosaics (I, τ) and (I ′, τ ′) for (T ,ΣA,ΣC, q) and A are iso-
morphic if there is an isomorphism f from I to I ′ such that
for all d ∈ ∆I , we have τ(d) = τ ′(f(d)).

For a forest F , a w ∈ F , and n ≥ 0, we denote by Fw,n
the set of all words w′ ∈ F such that w′ begins with w and
|w′| ≤ |w|+ n.
Definition 18. A set M of mosaics for (T ,ΣA,ΣC, q) and A
is coherent if the following conditions are satisfied:

• for all (I, τ), (I ′, τ ′) ∈M ,

(I, τ)|Ind(A) = (I ′, τ ′)|Ind(A);

• for all (I, τ) ∈ M , a ∈ Ind(A), and ∃r.C ∈ cl(T ),
if ∃r.C ∈ τ(a), then there is some (I ′, τ ′) ∈ M and
d ∈ ∆I

′
such that (a, d) ∈ rI′ and C ∈ τ ′(d), where d

is either the root of ∆I
′ \ Ind(A) or d ∈ Ind(A);

• for each (I, τ) ∈ M and each d ∈ ∆I that is a
successor of the root in ∆I \ Ind(A), there is some
(I ′, τ ′) ∈ M with e ∈ ∆I

′
the root of ∆I

′ \
Ind(A) such that (I, τ)|∆I

d,|q|−1
∪Ind(A) is isomorphic to

(I ′, τ ′)|∆I′
e,|q|−1

∪Ind(A).

We write M ` q if
⊎

(I,τ)∈M I |= q, where here and in
what follows

⊎
denotes a disjoint union that only makes the

elements that are not in Ind(A) disjoint.

Lemma 19. Let A be a ΣA-ABox and Q = (T ,ΣA,ΣC, q) ∈
(ALCHI,NC ∪ NR,BUCQ). Then the following are equiva-
lent:

1. T ,A |=c(ΣC) q;
2. M ` q, for all coherent sets M of mosaics for Q and A.

Proof. (2 ⇒ 1) Suppose T ,A 6|=c(ΣC) q. By Lemma 16,
there is a forest-shaped model I of T and A that respects
closed predicates ΣC such that ∆I is |T |-ary and its roots
are Ind(A), and I 6|= q. For each d ∈ ∆I \ Ind(A), let
Id = I|∆I

d,|q|∪Ind(A) and τd =
⋃
e∈∆Id{e 7→ tpI(e)}. Now

set M = {(Id, τd) | d ∈ ∆I \ Ind(A)} if ∆I 6= Ind(A);
and set M = {(I, τ)} with τ =

⋃
a∈Ind(A) a 7→ tpI(a) if

∆I = Ind(A). It is not hard to see that M is a coherent set of
mosaics for (T ,ΣA,ΣC, q) and A (to satisfy Condition 9 for
mosaics not only for concept names A ∈ ΣC and role names
r ∈ ΣC, we can clearly assume that AI = {a | A(a) ∈ A}
for all A that do not occur in T , and rI = {(a, b) | r(a, b) ∈
A} for all r that do not occur in T ). It remains to show
that M 6` q. The proof is by contradiction, so suppose that
M ` q. Then I ′ |= q, where I ′ =

⊎
(J ,τ)∈M J . Let π be

a match witnessing I ′ |= q. One can now easily construct a
homomorphism g from I ′ to I. But then g ◦ π is a match for
q in I. Thus I |= q, and we have obtained a contradiction.

(1⇒ 2) Suppose there is a coherent setM of mosaics forQ
and A with M 6` q. We construct, by induction, a sequence of
pairs (I0, τ0), (I1, , τ1), . . ., where every Ii is a forest-shaped
interpretation and τi : ∆Ii → TP(T ) such that every individ-
ual d ∈ ∆Ii \ Ind(A) of depth≤ i is associated with a mosaic
(Id, τd) = (Ii, τi)|∆Ii

d,|q|∪Ind(A)
that is isomorphic to a mosaic

in M .
For i = 0, let M0 be the set of all (J , τ) ∈ M such that

there are a ∈ Ind(A), d ∈ ∆J , and ∃r.C ∈ cl(T ) with
∃r.C ∈ τ(a), C ∈ τ(d), (a, d) ∈ rJ , and d is either the root
of ∆J \ Ind(A) or d ∈ Ind(A). Define

I0 =
⊎

(J ,τ)∈M0

J , τ0 =
⊎

(J ,τ)∈M0

τ

It is easy to see that (I0, τ0) satisfies the conditions above.



For i > 0, let d′ ∈ ∆Ii \ Ind(A) be of depth i and let d
be the unique individual in ∆Ii \ Ind(A) of depth i− 1 such
that d′ is the successor of d. By the induction hypothesis and
coherency of M , there is some (J , τ) ∈ M with e ∈ ∆J

the root of ∆J \ Ind(A) such that (Id, τd)|∆Id
d′,|q|−1

∪Ind(A)
is

isomorphic to (J , τ)|∆J
e,|q|−1

∪Ind(A). W.l.o.g. we assume that

∆Idd′,|q|−1 = ∆Je,|q|−1; if this is not the case, we can always
rename the individuals in the latter without destroying the
isomorphism. Set (Id′ , τd′) = (J , τ) and assume that the
points in ∆Id′ \∆Idd′,|q|−1 are fresh. Set

(Ii+1, τi+1) = (Ii, τi) ∪
⋃

d′∈∆Ii\Ind(A) of depth i

(Id′ , τd′)

Now define the interpretation I as follows:

• ∆I =
⋃
i≥0 ∆Ii ;

• P I =
⋃
i≥0 P

Ii , for all P ∈ NC ∪ NR.

Claim. I is a model of T and A that respects closed predi-
cates ΣC.

Proof of claim. The following conditions follow directly from
the construction of I and the conditions on mosaics:

• I is a model of A;

• I is a model of every role inclusion in T ;

• P I = {~a | P (~a) ∈ A}, for all P ∈ (NC ∪ NR) ∩ ΣC

It remains to show that I is a model of every concept inclusion
in T . Define for every d ∈ ∆I , a T -type td as follows.

• if d ∈ Ind(A), then let td = τ(d) for some (J , τ) ∈M ;

• if d ∈ ∆I \ Ind(A), then td = τd(d).

To prove the that I is a model of T it is now sufficient to show
the following: for all d ∈ ∆I and C ∈ cl(T ), d ∈ CI iff
C ∈ td. The proof is by structural induction.

Let C = A ∈ NC. If d ∈ Ind(A), let (J , τ) be any mosaic
in M ; and if d ∈ ∆I \ Ind(A), then let (J , τ) = (Id, τd). We
have (i) d ∈ BI iff d ∈ BJ for all B ∈ NC ∩ cl(T ) and (ii)
τ(d) = td. But then d ∈ AI iff d ∈ AJ (by (i)) iff A ∈ τ(d)
(by the definition of a mosaic) iff A ∈ td (by (ii)).

The boolean cases follow easily by the induction hypothesis
and the fact that td is a T -type.

Let C = ∃r.D. For the direction from left to right, suppose
d ∈ (∃r.D)

I . Then there is some e ∈ ∆I such that (d, e) ∈
rI and e ∈ DI . If d, e ∈ Ind(A), let (J , τ) be any mosaic
in M ; if d, e ∈ ∆I \ Ind(A), let (J , τ) = (Id′ , τd′), where
d′ is the individual in {d, e} that has the smaller depth in
∆I \ Ind(A); otherwise let (J , τ) = (Id′ , τd′), where d′ is
the only individual in (∆I \ Ind(A)) ∩ {d, e}. Observe that
(d, e) ∈ rJ , τ(d) = td, and τ(e) = te. By (d, e) ∈ rJ and
the definition of a mosaic, we obtain τ(d)  r τ(e) and by
the induction hypothesis and τ(e) = te, we obtain D ∈ τ(e).
But then ∃r.D ∈ τ(d) and thus, ∃r.D ∈ td, which is what we
wanted to show.

For the direction from right to left, suppose ∃r.D ∈ td.
We distinguish between d ∈ Ind(A) or not. For the former
case, we find by the coherency of M a (J , τ) ∈ M such

that for some e ∈ ∆J we have (d, e) ∈ rJ and C ∈ τ(e);
for the latter case, we have by the definition of a mosaic and
|q| ≥ 1 that there is some e ∈ ∆Id with (d, e) ∈ rId and
C ∈ τd(e). In both cases, we have by the construction of I
that (d, e) ∈ rI and by definition that C ∈ te. By the latter,
the induction hypothesis yields e ∈ CI . Hence, d ∈ (∃r.D)

I ,
as required.

a

It remains to show that I 6|= q. We proceed towards a
contradiction, thus, suppose that I |= q. Then for some
disjunct q′ of q, there is a match π of q′ in I . Let F = {π(x) |
π(x) 6∈ Ind(A)}. Observe that F is a forest and finite. Let
T1, . . . , Tn denote the set of all maximal and pairwise disjoint
trees in F . Fix an i ∈ {1, . . . , n}. Let d be the root of Ti. By
the construction of I , (Id, τd) is isomorphic to a (J , τ) ∈M .
Denote by fi this isomorphism, let πi be the restriction of π
to those variables that are mapped to Ti, and let πA be the
restriction of π to those variables that are mapped to Ind(A).
Define π′i = fi ◦ πi and then

π′ =

n⋃
i=1

πi ∪ πA.

π′ is a match for q′ in
⊎

(J ,τ)∈M J and so we have found a
contradiction. o

Lemma 20. Let A be a ΣA-ABox and Q = (T ,ΣA,ΣC, q) ∈
(ALCHI,NC ∪ NR,BUCQ). Then, up to isomorphisms, the
size of any coherent set M of mosaics for Q andA is bounded
by (2|A|)|T ||q|+3

.

Proof. The bound follows from Conditions 1, 2, 3, and 9 on
mosaics and the first condition on coherent sets of mosaics.
Note, in particular, that by the first condition on coherent
sets M of mosaics the restriction to Ind(A) coincides for all
mosaics in M and that by Condition 3 on mosaics for any
d ∈ ∆I \ Ind(A) the number of distinct a ∈ Ind(A) with
(d, a) ∈ rI for some role r is bounded by |T | for any mosaic
(I, τ). o

We are now in the position to prove Theorem 2 for Boolean
UCQs.

Theorem 2. Every OMQC in (ALCHI,NC ∪ NR,BUCQ) is
in coNP.

Proof. Fix an OMQCQ = (T ,ΣA,ΣC, q) in (ALCHI,NC∪
NR,BUCQ). We show that given a ΣA-ABox A, deciding
T ,A 6|=c(ΣC) q is in NP. Assume A is given. By Lemmas 19
and 20, T ,A 6|=c(ΣC) q iff there exists a coherent set M of
mosaics for Q and A such that |M | ≤ (2|A|)|T ||q|+3

and
M 6` q. Thus, it is sufficient to show that it can be decided in
polynomial time in the size |A| of A whether M is a coherent
set of mosaics for Q and A and whether M 6|= q. The first
condition is clear. For the second condition, observe that
J =

⊎
(I,τ)∈M I can be constructed in polynomial time (in

|A|) and that checking if J |= q is again in polynomial time
(in |A|). o



B Other Proofs for Section 3
We split the proof of Theorem 3 into two parts, its claim for
OMQCs with role inclusions and its claim for OMQCs without
role inclusions.
Proposition 21. Let L ∈ {DL-LiteR,ALCHI} and Q be
any canonical class of UCQs. For every OMQC Q =
(T ,ΣA,ΣC, q) from (L,NC ∪ NR,Q), one can construct
in polynomial time an equivalent query OMQC Q′ =
(T ′,ΣA,ΣA, q

′) with T ∈ L and q′ ∈ Q.
Proof. LetQ = (T ,ΣA,ΣC, q) be an OMQC with T ∈ L and
q ∈ Q. For every X ∈ ΣA \ ΣC, we take a fresh predicate X ′
of the same sort (if X is a concept name, then X ′ is a concept
name, and if X is a role name, then X ′ is a role name). Let
T ′ be the resulting TBox when all X ∈ ΣA \ ΣC are replaced
by X ′ and the (concept or role) inclusion X v X ′ is added,
for each X ∈ ΣA \ΣC. Denote by q′ the resulting query when
every X ∈ ΣA \ ΣC in q is replaced by X ′. We show that
Q′ = (T ′,ΣA,ΣA, q

′) is equivalent to Q.
(⇒) Let A be a ΣA-ABox with T ,A 6|=c(ΣC) q(~a). Then

there is a model I of T and A that respects closed predicates
ΣC and such that I 6|= q(~a). Define an interpretation I ′ by
setting

∆I
′
= ∆I

AI
′
= {a | A(a) ∈ A} for all A ∈ ΣA \ ΣC

rI
′
= {(a, b) | r(a, b) ∈ A} for all r ∈ ΣA \ ΣC

A′
I′

=AI for all A ∈ ΣA \ ΣC

r′
I′

= rI for all r ∈ ΣA \ ΣC

and leaving the interpretation of the remaining symbols un-
changed. It can be verified that I ′ is a model of T ′ and A that
respects closed predicates ΣA and such that I ′ 6|= q′(~a).
(⇐) Let A be a ΣA-ABox such that T ,A 6|=c(ΣA) q

′(~a). Let
I ′ be a model of T ′ and A that respects closed predicates ΣA

and such that I ′ 6|= q′(~a). Define an interpretation I by setting

∆I = ∆I
′

AI = A′I
′

for all concept names A ∈ ΣA \ ΣC

rI = r′I
′

for all roles names r ∈ ΣA \ ΣC

and leaving the interpretation of the remaining symbols un-
changed. It is readily checked that I is a model of T and A
that respects closed predicates ΣC and such that I 6|= q(~a).

o

Proposition 22. Let L ∈ {DL-Litecore, EL} and Q be any
canonical class of UCQs preserved under forming unions of
queries. For every OMQC Q = (T ,ΣA,ΣC, q) from (L,NC ∪
NR,Q), one can construct in polynomial time an equivalent
query OMQC Q′ = (T ′,ΣA, q

′) with T ∈ L and q′ ∈ Q.
Proof. LetQ = (T ,ΣA,ΣC, q) be an OMQC with T ∈ L and
q ∈ Q. As in the proof above, we take for every X ∈ ΣA \ΣC

a fresh predicate X ′ of the same arity as X . Concept names
A ∈ ΣA \ΣC are dealt with in the same way as before: replace
every concept name A ∈ ΣA \ ΣC in T by A′ and add the
inclusions A v A′, A a concept name in ΣA \ ΣC to T . Call

the resulting TBox T0. Next replace in T0 in every inclusion
C v D all occurences of roles r in D from ΣA \ ΣC by r′.
Call the resulting TBox T1. Finally, T ′ results from T1 by
replacing in any inclusion C v D ∈ T1 every subset of the set
of occurences of roles r ∈ ΣA \ ΣC in C by r′. For example,
∃r.Au∃r.B v E gives rise to the inclusions ∃r.Au∃r′.B v
E, ∃r′.A u ∃r.B v E, ∃r′.A u ∃r′.B v E. Let q′ be the
query that is obtained from q by taking the disjunction over
all queries that result from q when some subset of the set of
occurrences of role names r ∈ ΣA \ ΣC is replaced by r′ and
all occurences of concepts names A ∈ ΣA \ ΣC are replaced
by A′.

We show that Q′ = (T ′,ΣA, q
′) is equivalent to Q.

(⇒) The proof is the same as above. Assume a ΣA-ABox
A is given and that T ,A 6|=c(ΣC) q(~a). Let I be a model of A
and T that respects closed predicates ΣC such that I 6|= q(~a).
Define an interpretation I ′ by setting

∆I
′
= ∆I

AI
′
= {a | A(a) ∈ A} for all A ∈ ΣA \ ΣC

rI
′
= {(a, b) | r(a, b) ∈ A} for all r ∈ ΣA \ ΣC

A′
I′

=AI for all A ∈ ΣA \ ΣC

r′
I′

= rI for all r ∈ ΣA \ ΣC

and leaving the interpretation of the remaining symbols un-
changed. Using monotonicity of EL and DL-Lite concepts
(i.e., if I and J are interpretations such that XI ⊆ XJ for
all symbols X , then CI ⊆ CJ for all concepts C) it is read-
ily checked that I ′ is a model of A and and T ′ that respects
closed predicates ΣA such that I ′ 6|= q′(~a).

(⇐) Assume a ΣA-ABox A is given and that T ,A 6|=c(ΣA)

q′(~a). Let I ′ be a model of A and T ′ that respects closed
predicates ΣA such that I ′ 6|= q′(~a). Define an interpretation
I by setting ∆J = ∆I ,

∆I = ∆I
′

AI = A′I
′

for all concept names A ∈ ΣA \ ΣC

rI = r′I
′ ∪ rI for all roles names r ∈ ΣA \ ΣC

and leaving the interpretation of the remaining symbols un-
changed. It is readily checked that I is a model of A and T
that respects closed predicates ΣC such that I 6|= q(~a). o

Theorem 4. If an OMQC (T ,ΣA,ΣC, q) is FO-rewritable
(resp. in PTIME), then every (T ,ΣA,ΣC, q

′) with q′ an
FO(ΣC)-extension of q is also FO-rewritable (resp. in PTIME).

Proof. Let Q = (T ,ΣA,ΣC, q) be an FO-rewritable
OMQC and let q′ be the FO(ΣC)-extension ∃~y∃~z ϕ(~x, ~y) ∧
ψ1(~z1), . . . , ψn(~zn) of q. It is readily checked that if ϕq is
an FO-rewriting of Q, then ϕq ∧ ∃~z ψ1(~z1), . . . , ψn(~zn) is an
FO-rewriting of (T ,ΣA,ΣC, q

′). Likewise, Q being in PTIME
clearly implies that (T ,ΣA,ΣC, q

′) is in PTIME: given an
ABoxA, one can first compute the answers for Q and for each
FO-query ψi(~zi) in PTIME and then combine them together
into the answers for q′ in a straightforward way. o



C Proofs for Section 4
Lemma 6. A Σ-Box A is consistent w.r.t. T with closed Σ iff

1. A has a T -decoration f whose image is a Σ-realizable
T -typing and

2. s(a, b) ∈ A, sig(s v r) ⊆ Σ, and T |= s v r implies
r(a, b) ∈ A.

Proof. (⇒) Let I be a model of A and T that respects closed
predicates Σ. For each d ∈ ∆I , let tdI = {B ∈ sub(T ) | d ∈
BI} and let TI = {taI | a ∈ Ind(A)}. Since I is a model of
T , TI is a T -typing. We next show that it is Σ-realizable. Let
taI , r1, . . . , rn be a Σ-participating path in TI . Using I, we
find a mapping g : {0, . . . , n} → ∆I such that g(0) = a and
for each i ∈ {1, . . . , n}, we have

1. (g(i− 1), g(i)) ∈ riI ,

2. g(i) ∈ BI for all B ∈ sub(T ) with T |= ∃r−i v B.
By definition of Σ-participating paths, there is some B? ∈
sub(T ) with sig(B?) ⊆ Σ such that T |= ∃r−n v B?. By
Point 2, we obtain g(n) ∈ B?I . Since I is a model of A and
T that respects closed predicates Σ, we have g(n) = b for
some b ∈ Ind(A). By Point 2, T |= ∃r−n v B implies B ∈ tbI
for any B ∈ sub(T ). Thus, TI is Σ-realizable. Let f(a) = taI
for all a ∈ Ind(A). It is clear that f is a T -decoration of A.
The image of f is TI , thus a Σ-realizable T -typing. Hence
we conclude that A satisfies Point 1 from Lemma 6. Point 2
holds by the fact that I is a model of T and A that respects
closed predicates Σ.

(⇐) Suppose that A satisfies Points 1 and 2 from Lemma 6
and let f be a T -decoration of A whose image T is a Σ-
realizable T -typing. Our goal is to construct a model I of
T and A that respects closed predicates Σ as the limit of a
sequence of interpretations I0, I1, . . . . The domains of these
interpretations consist of the individuals from Ind(A) and of
paths in T that are not Σ-participating. The construction will
ensure that for all i, we have

1 for all a ∈ Ind(A), we have taIi ⊆ f(a);

2 for all p = t, r1, . . . , rn ∈ ∆Ii , we have tpIi ⊆ {B ∈
sub(T ) | T |= ∃r−n v B}.

Define I0 = (∆I0 , ·I0) where

∆I0 = Ind(A)

rI0 = {(a, b) | s(a, b) ∈ A and T |= s v r}
AI0 = {a | A ∈ f(a)}

To construct Ii+1 from Ii, choose d ∈ ∆Ii and ∃s ∈ sub(T )
such that sig(s) ∩ Σ = ∅, T |=

d
tdIi v ∃s and there is no

(d, e) ∈ sIi . Let q = f(a), s if d = a ∈ Ind(A) and q = d, s
otherwise. Using Conditions 1 and 2, it is easy to verify that q
is a path in T . If q is not Σ-participating, then define Ii+1 as
follows:

∆Ii+1 = ∆Ii ] {q}

rIi+1 =

{
rIi ∪ {(d, q)} if T |= s v r
rIi otherwise

AIi+1 =

{
AIi ∪ {q} if T |= ∃s− v A
AIi otherwise.

If q is Σ-participating, then by the fact that T is Σ-realizable,
there is some t ∈ T such that {B ∈ sub(T ) | T |= ∃s− v
B} ⊆ t. We find a b ∈ Ind(A) with t = f(b). Define Ii+1 as
follows:

∆Ii+1 = ∆Ii

rIi+1 =

{
rIi ∪ {(d, b)} if T |= s v r
rIi otherwise

AIi+1 = AIi .

Assume that the choice of d ∈ ∆Ii and ∃s ∈ sub(T ) is fair
so that every possible combination of d and ∃s is eventually
chosen. Let I =

⋃
i≥0 Ii be the limit of I0, I1, . . . (defined

in the obvious way). We claim that I is a model of T and A
that respects closed predicates Σ. By definition of I0 and of T -
decorations, it is straightforward to see that I |= A. Moreover,
the role inclusions in T are clearly satisfied. To show that the
concept inclusions are satisfied as well, it is straightforward
to first establish the following strengthenings of Conditions 1
and 2 above (details omitted):

1′ for all a ∈ Ind(A), we have taI = f(a);

2′ for all p = t, r1 . . . , rn ∈ ∆I , we have tpIi = {B ∈
sub(T ) | T |= ∃r−n v B}.

Let a ∈ Ind(A), a ∈ B1
I , and B1 v B2 ∈ T (or B1 v

¬B2 ∈ T ). Then by Condition 1′ and since f(a) is a T -type,
we have a ∈ B2

I (resp. a 6∈ B2
I). Now let d = t, r1, . . . , rn

be a path. First suppose d ∈ B1
I and B1 v B2 ∈ T . By

Condition 2′, we conclude that T |= ∃r−n v B1. Since
B1 v B2 ∈ T , it follows that T |= ∃r−n v B2 and thus again
by the property above, d ∈ B2

I . Finally, suppose d ∈ B1
I

and B1 v ¬B2 ∈ T . By Condition 2′ and B1 v ¬B2 ∈ T ,
we conclude T |= ∃r−n v ¬B2. For a proof by contradiction
assume that d ∈ B2

I and thus T |= ∃r−n v B2 and we
already have T |= ∃r−n v ¬B2. Hence T |= ∃r−n v ⊥. But
then T |= ∃rn v ⊥. It follows that T |= ∃r1 v ⊥. This
implies in particular T |= ∃r1 v ∃r1 and T |= ∃r1 v ¬∃r1.
By definition we have ∃r1 ∈ f(a) and by T |= ∃r1 v ¬∃r1

and the fact f(a) is a T -type, we obtain ∃r1 6∈ f(a), i.e., a
contradiction. Hence d 6∈ B2

I which finishes the proof that
I |= T .

What remains to be shown are the following properties:
• for all A ∈ Σ, AI = {a | A(a) ∈ A};
• for all r ∈ Σ, rI = {(a, b) | r(a, b) ∈ A}.

We show for each i ≥ 0 that Ii satisfies the properties above.
Suppose i = 0. First let A(a) ∈ A with A ∈ Σ. Then

a ∈ AI0 by definition of I0. For the other direction, let
a ∈ AI0 for an A ∈ Σ. Then A ∈ f(a). The definition of
T -decorations yields A ∈ taA, and thus A(a) ∈ A. Now let
r(a, b) ∈ A with r ∈ Σ. Then (a, b) ∈ rI0 by definition of I0.
For the other direction, let (a, b) ∈ rI0 for some r ∈ Σ. Then
there is some role s such that s(a, b) ∈ A and T |= s v r.
By the adopted restriction on the allowed role inclusions, it
follows that sig(s) ⊆ Σ. This yields r(a, b) ∈ A since A
satisfies Point 2 of Lemma 6.

For i > 0, we show that the extension of Σ-predicates is
not modified when constructing Ii+1 from Ii. Indeed, assume



that Ii+1 was obtained from Ii by choosing d ∈ ∆Ii and
∃s ∈ sub(T ) and let q = f(a), s if d = a ∈ Ind(A) and
q = d, s otherwise. Then sig(s)∩Σ = ∅ and by the restriction
on role inclusions, sig(r) ∩ Σ = ∅ for any role r with T |=
s v r. Consequently, none of the role names modified in
the construction of Ii+1 is from Σ (no matter whether q is
Σ-participating or not). In the case where q is Σ-participating,
there is nothing else to show. If q is not Σ-participating, then
each concept nameAwith T |= ∃s− v A is not from Σ. Thus
also none of the concept names modified in the construction
of Ii+1 is from Σ. o

We now complete the proof of Theorem 5. We show how
to construct an FO-rewriting of a Q over ABoxes that are
consistent w.r.t. T and closed Σ. Let q =

∨
i∈I qi with answer

variables ~x = x1, . . . , xn. A T , q-typing T is a quadruple
(∼, f0,Γ,∆) where

• ∼ is an equivalence relation on {x1, . . . , xn};

• f0 is a function that assigns a T -type f0(xi) to each xi,
1 ≤ i ≤ n, such that f0(xi) = f0(xj) when xi ∼ xj ;

• Γ is a T -typing;

• ∆ is a set of atoms s(xi, xj), s ∈ Σ, such that s(xi, xj) ∈
∆ iff s(x′i, x

′
j) ∈ ∆ when xi ∼ x′i and xj ∼ x′j .

Intuitively, ∼ describes the answer variables that are identified
by a match π of q in an ABox A, f0(xi) describes the T -
type of the ABox individual π(xi), Γ describes the T -types of
ABox individuals that are not in the range of π, and ∆ fixes
role relationships that do not hold between the π(xi). Let
X = {αi | i ∈ I} be a set of atoms with αi in qi for all i ∈ I .
Then T avoids X if the following conditions hold:

1. if A ∈ f0(x), then A(x) 6∈ X for any atom A(x);

2. if ∃s ∈ f0(x), then (i) S = {B ∈ sub(T ) | T |= ∃s− v
B} contains no predicate from Σ or (ii) there is a u ∈ Γ such
that S ⊆ u or (iii) there is a y such that S ⊆ f0(y) and
there are no x′ ∼ x and y′ ∼ y such that r(x′, y′) ∈ X or
r(y′, x′) ∈ X and T |= s v r or T |= s v r−, respectively;

3. if r(x, y) ∈ X , then ∆ contains all s(x, y) with s ∈ Σ and
T |= s v r and all s(y, x) with s ∈ Σ and T |= s− v r.

T avoids q if it avoids some set {αi | i ∈ I} with αi ∈ qi for
all i ∈ I . We use tp(T ) to denote the T -typing Γ extended
with all T -types in the range of f0. Let A be a Σ-ABox and
let π assign ABox individuals π(xi) to xi, 1 ≤ i ≤ n, such
that π(xi) = π(xj) iff xi ∼ xj . A T -decoration f of A
realizes T = (∼, f0,Γ,∆) using π iff tp(T ) is the range of f ,
f0(xi) = f(π(xi)) for 1 ≤ i ≤ n, and r(π(xi), π(xj)) 6∈ A
if r(xi, xj) ∈ ∆ for 1 ≤ i, j ≤ n and all r ∈ Σ. A realizes
T using π if there exists a T -decoration f that realizes T
using π.

Lemma 23. Let A be a Σ-ABox that is consistent w.r.t. T
and closed Σ. Then T ,A 6|=c(Σ) q[π(x1), . . . , π(xn)] iff A
realizes some T , q-typing T using π that avoids q and such
that tp(T ) is Σ-realizable.

Proof.(sketch) The proof is a modification of the proof of
Lemma 6. We only sketch the differences.

(⇒) Let T ,A 6|=c(Σ) q(π(x1), . . . , π(xn)). We start with a
model I of T and A that respects closed predicates Σ such
that I 6|= q(π(x1), . . . , π(xn)). Read off a T , q-typing

TI = (∼, f0,Γ,∆)

from I by setting
• xi ∼ xj iff π(xi) = π(xj);

• f0(xi) = t
π(xi)
I for all 1 ≤ i ≤ n;

• Γ = {taI | a ∈ Ind(A)} \ {π(x1), . . . , π(xn)};
• ∆ = {r(xi, xj) | r ∈ Σ, r(π(xi), π(xj)) 6∈ A}.

We show that TI avoids q =
∨
i∈I qi. Since I 6|=

q(π(x1), . . . , π(xn)) we find for every i ∈ I an atom αi ∈ qi
such that I 6|= αi(π(x1), . . . , π(xn)). We show that TI avoids
X = {αi | i ∈ I}. We distinguish the following cases:

• Let A(x) ∈ X . Then A 6∈ tπ(x)
I and so A 6∈ f0(x), as

required.

• Let ∃s ∈ f0(x). Then ∃s ∈ t
π(x)
I . Thus, there exists

d ∈ ∆I such that (π(x), d) ∈ sI . If d ∈ ∆I \ Ind(A),
then sig(B) ∩ Σ = ∅ for all B ∈ tdI . Thus (i) holds. If
d ∈ Ind(A) \ {π(x1), . . . , π(xn)}, then (ii) holds. Now
assume that d = π(y) for some y ∈ {π(x1), . . . , π(xn)}.
then y satisfies the conditions for (iii).
• Let r(x, y) ∈ X . Then (π(x), π(y)) 6∈ rI . Hence

(π(x), π(y)) 6∈ sI for any s ∈ Σ with T |= s v r. Thus
s(x, y) ∈ ∆ for any such s. Moreover, (π(y), π(x)) 6∈
sI for any s ∈ Σ with T |= s− v r. Thus s(y, x) ∈ ∆
for any such s.

(⇐) Assume that a Σ-Abox A that is consistent w.r.t. T
with closed Σ realizes some T , q-typing T = (∼, f0,Γ,∆)
using π that avoids q. Assume f is a T , q-decoration of
A that realizes T using π. Let X = {αi | i ∈ I} with
αi ∈ qi such that T avoids X using π. We construct a
model I of A and T that respects closed predicates Σ such
that I 6|= αi[π(x1), . . . , π(xn)] for i ∈ I . We build I as
in the proof of Lemma 6 based on tp(T ). Some care is
required in the construction of Ii+1. Assume Ii has been
constructed. Choose d ∈ ∆Ii and ∃s ∈ sub(T ) such that
sig(s) ∩ Σ = ∅, T |=

d
tdIi v ∃s and there is no (d, e) ∈ sIi .

If d 6∈ {π(x1), . . . , π(xn)} or {B ∈ sub(T ) | T |= ∃s− v
B} does not contain a B with sig(B) ⊆ Σ proceed as in
the proof of Lemma 6. Now assume that d = π(x). In
the proof of Lemma 6 we chose an arbitrary b ∈ Ind(A)
with {B ∈ sub(T ) | ∃s− v B} ⊆ t and t = f(b) and
added (a, b) to rIi+1 whenever T |= s v r. Since we
want to refute all atoms αi(π(x1), . . . , π(xn)) with i ∈ I ,
we now have to choose b more carefully. If there exists
b ∈ Ind(A) \ {π(x1), . . . , π(xn)} with {B ∈ sub(T ) |
∃s− v B} ⊆ t and t = f(b), then we choose such a b
and proceed as in Lemma 6. Otherwise, since f is a T , q-
decoration of A that realizes T using π and avoids X , there
is y such that {B ∈ sub(T ) | T |= ∃s− v B} ⊆ f0(y) such
that there is no αi ∈ X of the form t(x′, y′) or t(y′, x′) with



x′ ∼ x and y′ ∼ y such that T |= s v t or T |= s v t−,
respectively. We set b = π(y) and proceed as in the proof of
Lemma 6.

The resulting interpretation I is a model of T and
A that respects closed predicates Σ. Moreover I 6|=
αi(π(x1), . . . , π(xn)) for all i ∈ I . Thus, I 6|=
q(π(x1), . . . , π(xn)), as required. o

Proposition 24 Let A be a Σ-ABox that is consistent w.r.t. T
with closed Σ. Then T ,A |=c(Σ) q(a1, . . . , an) iff IA |=
ΦQ[a1, . . . , an].

Proof. Assume T ,A 6|=c(Σ) q(a1, . . . , an). Let π(xi) = ai
for 1 ≤ i ≤ n. By Lemma 23, A realizes some T , q-typing
T using π that avoids q such that tp(T ) is Σ-realizable. It
is readily checked that IA |= ΨT (π1(x1), . . . , π(xn)). Thus,
IA 6|= ΦQ[a1, . . . , an]

Conversely, assume that IA 6|= ΦQ[a1, . . . , an]. Let
π(xi) = ai for 1 ≤ i ≤ n. Take a T , q-typing T that avoids
q such that tp(T ) is Σ-realizable and IA |= ΨT [a1, . . . , an].
Let π(xi) = ai for 1 ≤ i ≤ n. It is readily checked that
A realizes T using π. Thus T ,A 6|=c(Σ) q(a1, . . . , an), by
Lemma 23. o

We now construct the actual rewriting ΦQ(~x). For every T , q-
typing T = (∼, f0,Γ,∆) with Γ = {t1, . . . , tk} let ΨT (~x)
be the conjunction of the following:∧

1≤i≤n

ψf0(xi)(xi) ∧
∧

xi∼xj

(xi = xj) ∧
∧

xi 6∼xj

(xi 6= xj)

∧
r(xi,xj)∈∆

¬r(xi, xj) ∧ ∀y(
∧

1≤i≤n

(y 6= xi)→
∨
t∈Γ

ψt(y))

∃y1 · · · ∃yk(
∧
j 6=i

yj 6= yi ∧
∧

j≤k,i≤n

xi 6= yj ∧
∧
j≤k

ψtj (yj))

Then ΦQ(~x) is the conjunction over all ¬ΨT (~x) such that T
avoids q and tp(T ) is Σ-realizable.
Proposition 24. LetA be a Σ-ABox that is consistent w.r.t. T
and closed Σ. Then T ,A |=c(Σ) q(~a) iff IA |= ΦQ[~a] for all
tuples ~a from Ind(A).

Theorem 8. There is a DL-LiteR TBox T and set of predi-
cats ΣC such that consistency w.r.t. T and closed ΣC is NP-
complete.
Proof. The proof is by reduction of the satisfiability problem
for propositional formulas in conjunctive normal form (CNF).
Consider a propositional formula in CNF ϕ = c1 ∧ · · · ∧ cn,
where each ci is a disjunction of literals. We write ` ∈ ci if ` is
a disjunct in ci. Let x1, . . . , xm be the propositional variables
in ϕ. Define an ABox Aϕ with individual names c1, . . . , cn
and x>i , x⊥i , xauxi for 1 ≤ i ≤ m, a concept name A, and role
names r, r′ as the following set of assertions:
• r(ci, x>j ), for all xj ∈ ci and 1 ≤ i ≤ n;

• r(ci, x⊥j ), for all ¬xj ∈ ci and 1 ≤ i ≤ n;

• r′(x>j , x⊥j ), r′(x⊥j , x
aux
j ), for 1 ≤ j ≤ m;

• A(ci), for 1 ≤ i ≤ n.

Let s and s′ be additional role names and let T consist of the
following inclusions:

• s v r and A v ∃s;

• ∃s− v ∃s′, s′ v r′, and ∃s′− u ∃s− v ⊥.

Let ΣC = {r, r′}. We show that Aϕ is consistent w.r.t. T
and closed ΣC iff ϕ is satisfiable. Assume first that Aϕ is
consistent w.r.t. T and closed ΣC. Let I be a model of T
and Aϕ that respects closed predicates ΣC. Define a propo-
sitional valuation v by setting v(xj) = 1 if there exists i
such that s(ci, x>j ) ∈ I and set v(xj) = 0 if there exists
i such that s(ci, x⊥j ) ∈ I. Observe that v is well-defined
since if s(ci, x>j ), s(ck, x

⊥
j ) ∈ I, then s′(x>j , x

⊥
j ) ∈ I and

so x⊥j ∈ (∃s′− u ∃s−)I which contradicts the assumption
that I satisfies ∃s′− u ∃s− v ⊥. Next observe that for every
ci there exists a disjunct ` ∈ ci such that s(ci, x>j ) ∈ I if
` = xj and s(ci, x⊥j ) ∈ I if ` = ¬xj . Thus, v(ϕ) = 1 and ϕ
is satisfiable.

Conversely, assume that ϕ is satisfiable and let v be an
assignment with v(ϕ) = 1. Define an interpretation I as
follows: ∆I is the set of indivdual names in Aϕ; define the
interpretation of r, r′ and Ai exactly as in Aϕ; set

sI = {(ci, x>j )} | xj ∈ ci, v(xj) = 1, i ≤ n} ∪
{(ci, x⊥j ) | ¬xj ∈ ci, v(xj) = 0, i ≤ n}

s′I = {(x>j , x⊥j ) | v(xj) = 1} ∪
{(x⊥j , xauxj ) | v(xj) = 0}

It is readily checked that I is a model of T and Aϕ that
respects closed predicates ΣC. o

D Proofs for Section 5

Lemma 25. The complement of CSP(I)sur can be reduced in
polynomial time to answering (T ,ΣA,ΣC, q).

Proof. Let J be a Σ-interpretation that is an input of
CSP(I)sur. Let AJ be the ABox that corresponds to J , that
is, AJ consists of the assertion A(d) for each d ∈ AJ and
r(d, e) for all (d, e) ∈ rJ where the elements of J serve
as ABox individuals. For each d ∈ ∆I , introduce a fresh
individual name ad and let the ABox A be defined as

AJ ∪ {A(d) | d ∈ ∆J } ∪ {V (ad), Vd(ad) | d ∈ ∆I}.

Obviously, A can be constructed in polynomial time. We
claim J ∈ CSP(I)sur iff T ,A 6|=c(ΣC) q.

(⇒) Suppose that there is a surjective homomorphism h



from J to I. Define the interpretation I ′ as follows:

∆I
′

= Ind(A)

AI
′

= Ind(AJ )

V I
′

= ∆I

V I
′

d = {ad}, for all d ∈ ∆I

valI
′

= {(a, ah(a)) | a ∈ Ind(AJ )}

auxI
′

d = {(a, ad) | a ∈ Ind(AJ )}, for all d ∈ ∆I

forceI
′

d = {(a, a′) ∈ Ind(AJ )× Ind(AJ ) | h(a′) = d}
P I
′

= PJ , for all P ∈ (NC ∪ NR) not in

({A, V, val} ∪ {Vd, auxd, forced | d ∈ ∆I})

One can now verify that I ′ is a model of T andA that respects
closed predicates ΣC, and that I ′ 6|= q.

(⇐) Suppose T ,A 6|=c(ΣC) q. Then there is a model I ′
of T and A that respects closed predicates ΣC and such that
I ′ 6|= q. Define h = {(d, ae) ∈ valI

′
| d ∈ ∆J }. We show

that h is a surjective homomorphism from J to I.
We first show that the relation h is a function. Assume that

this is not the case, that is, there are d ∈ ∆J and e1, e2 ∈ ∆I

such that e1 6= e2 and (d, aei) ∈ valI
′

for i ∈ {1, 2}. Note
that aei ∈ V I

′

ei . Thus we get I ′ |= q1, which is a contradiction
against our choice of I ′. To show that h is total, take some
d ∈ ∆J . Then d ∈ AI′ and thus the first line of T yields an
f ∈ V J with (d, f) ∈ valI

′
. Since V is closed, we must have

f = ae for some e, and thus h(ae) = f .
Now we show that h is a homomorphism. Thus assume for a

contradiction that there is (d, e) ∈ rJ with (h(d), h(e)) 6∈ rI .
The latter implies that the following is a disjunct of q2:

∃x∃y∃x1∃y1A(x) ∧A(y) ∧ r(x, y) ∧ val(x, x1) ∧
val(y, y1) ∧ Vh(d)(x1) ∧ Vh(e)(y1).

Note that d, e ∈ AI′ , (d, ah(a)), (e, ah(e)) ∈ valI
′
, ah(d) ∈

V I
′

h(d), and ah(e) ∈ V I
′

h(e). Thus the above disjunct of q2 has a
match in I ′, a contradiction to our choice of I ′.

It remains to show that h is surjective. Fix a d ∈ ∆I . We
have to show that there is an e ∈ ∆J with h(e) = d. Take
some f ∈ ∆J . Then by the third line of T and since A
is closed, there is some e ∈ ∆J such that (f, e) ∈ forceI

′

d .
We show that e is as required. Assume to the contrary that
h(e) 6= d. Then the following is a disjunct of q3:

A(x) ∧ forced(z, x) ∧ val(x, y) ∧ Vh(e)(y).

Note that f ∈ AI
′
, (e, ah(e)) ∈ valI

′
, and ah(e) ∈ V I

′

h(e).
Thus the above disjunct of q3 has a match in I ′, in contradic-
tion to our choice of I ′. o

Lemma 26. Answering (T ,ΣA,ΣC, q) can be reduced in
polynomial time to the complement of CSP(I)sur.

Proof. LetA be a ΣA-ABox that is an input to (T ,ΣA,ΣC, q).
We start with the following:

1. If A does not contain any assertion of the form A(a),
then T ,A 6|=c(ΣC) q. In fact, let IA be A viewed as an
interpretation in the obvious way. Then IA is a model
of A that respects closed predicates ΣC. Since A does
not contain any assertion of the form A(a), IA is also a
model of T and satisfies IA 6|= q (note that each disjunct
of q demands the existence of an instance of A). Thus
answer ‘no’.

2. Otherwise, if A does not contain for each d ∈ ∆I an
element a that satisfies V (a) and Vd(a), then A is incon-
sistent w.r.t. T and closed ΣC. Thus answer ‘yes’.

3. Otherwise, if A contains an element a that satisfies V (a)
but not Vd(a) for any d ∈ ∆I , then T ,A |=c(ΣC) q iff
IA |= q. In fact, Line 1 of T can be satisfied by linking
every element to a via val; Line 2 can be satisfied since
Case 2 above does not apply; Line 3 can be satisfied
since Case 1 above does not apply. If an interpretation I
is build in this way (taking all remaining choices in an
arbitrary way), then it can be verified that T ,A |=c(ΣC) q
iff I |= q iff IA |= q. Thus check in polynomial time
whether IA |= q and answer accordingly.

If none of the above cases applies, let A′ be the restriction of
A to all elements a such that A(a) ∈ A. Since Case 1 above
does not apply, A′ is non-empty.

Claim. A′ ∈ CSP(I)sur iff T ,A 6|=c(ΣC) q.

(⇐). Assume that T ,A 6|=c(ΣC) q. Then there is a model J
of T and A that respects closed predicates ΣC and such that
J 6|= q. By the first line of T , since V is closed, Case 3 does
not apply, and by the first line of q, for each a ∈ Ind(A) there
is exactly one d ∈ ∆I such that a ∈ (∃val.Vd)J . Define a
homomorphism h : A′ → I by mapping each a to the value
d ∈ ∆I thus determined. By the second line of q, h is indeed
a homomorphism. By the third line of T and the third line of
q and since A is closed, h must be surjective.

(⇒). Assume thatA′ ∈ CSP(I)sur, and let h be a surjective
homomorphism from A′ to I. Build an interpretation J as
follows. Start by setting J = IA. Since Case 2 above does
not apply, for each d ∈ ∆I we can select an element ad of
A such that V (a) and Vd(a) are in A. For each element a
in A′, extend J by adding (a, ah(a)) to valJ and (a, ad) to
auxJd for each d ∈ ∆I . Since h is surjective, for each d ∈ ∆I

there must be an element ad of A′ with h(ad) = d. Further
extend J by adding (a, ad) to forceJd for all a ∈ Ind(A) and
all d ∈ ∆I . It is readily checked that J is a model of T and
A that respects closed predicates ΣC, and that J 6|= q. o

Lemma 27. (T ,ΣA,ΣC, q) can be reduced in polynomial
time to the complement of CSP(Γ)sur.

Proof. LetA be a ΣA-ABox that is an input for (T ,ΣA,ΣC, q)
and let A′ be its extension with

• all assertions A(a) such that A ∈ ΣC and A(a) /∈ A;

• an assertion Aopen(aB) for each B ∈ ΣC.



We claim that T ,A 6|=c(ΣC) q iff there is an IT ∈ Γ such that
there exists a surjective homomorphism from A′ to IT .
(⇐). Let IT ∈ Γ and let h be a surjective homomorphism
from A′ to IT . Note that each element a of A is mapped by h
to some element t ∈ T of IT because A(a) ∈ A′ or A(a) ∈
A′ for every A ∈ ΣC (which is non-empty). Since IT ∈ Γ,
there is a ΣA-ABox B and model I of T and B that respects
closed predicates ΣC such that I 6|= q and T = {tpI(a) | a ∈
Ind(B)}. For each a ∈ Ind(A), set ta = h(a) ∈ T and for
each d ∈ ∆I , set td = tpI(d). Construct an interpretation J
as follows:

∆J = Ind(A) ∪ (∆I \ Ind(B))

AJ = {d ∈ ∆J | A ∈ td}
rJ = {(d, e) ∈ ∆J ×∆J | td  r te}.

First note that J is clearly a model of A that respects closed
predicates ΣC. Specifically, if A(a) ∈ A, then h(a) ∈ AIT ,
thus A ∈ h(a) = ta by construction of IT which yields a ∈
AJ by construction of J ; if r(a, b) ∈ A, then (h(a), h(b)) ∈
rIT , thus ta  r tb implying (a, b) ∈ rJ ; finally if A ∈ ΣC

and d ∈ AJ , then we must have d = a for some a ∈ Ind(A)
by definition of J and since d /∈ AI for all d ∈ ∆I \ Ind(B).
Thus, A ∈ ta = h(a) by construction of J . This implies
A(a) ∈ A since otherwise A(a) ∈ A′, which would imply
A ∈ h(a), in contradiction to A ∈ h(a).

It thus remains to show that J is a model of T and J 6|= q.
By definition, J satisfies all role inclusions in T . Satisfaction
of > v CT and J 6|= q follows from the subsequent claim
together with the fact that each type in IT contains CT but
not the concept name A0 from q, and that I is a model of T
with I 6|= q.

Claim. For all d ∈ ∆J and C ∈ cl(T ), we have d ∈ CJ iff
C ∈ td.

The proof is by induction on the structure of C, with the
induction start and the cases C = ¬D and C = D1 u D2

being trivial. Thus let C = ∃r.D and first assume d ∈ CJ .
Then there is an e ∈ DJ with (d, e) ∈ rJ . Thus td  r te by
definition of J , and IH yields D ∈ te. By definition of ‘ r’,
we must thus have C ∈ td as required. Now let C ∈ td. We
distinguish two cases:

• d = a ∈ Ind(A).
Let a′ ∈ Ind(B) be such that h(a) = tpI(a′). Since ta =
h(a), we must have a′ ∈ CI and thus there is some e ∈
DI with (a′, e) ∈ rI , which yields tpI(a′)  r tpI(e)
and D ∈ tpI(e). If e = b′ ∈ Ind(B), then since h is
surjective there is some b ∈ Ind(A) with h(b) = tpI(b′).
We have ta = tpI(a′) and tb = tpI(b′), thus ta  r tb
which yields (a, b) ∈ rJ by definition of J . We also
have D ∈ tb, which by IH yields b ∈ DJ .

• d /∈ Ind(A).
Then d ∈ ∆I \ Ind(B). Since C ∈ td, we thus have
C ∈ tpI(d). Thus, there is an e ∈ DI with (d, e) ∈ rI ,
which implies tpI(d)  r tpI(e) and D ∈ tpI(e). If
e /∈ Ind(B), then the definition of J and IH yields d ∈
CJ . Thus assume e = b′ ∈ Ind(B). Since h is surjective,

there is some b ∈ Ind(A) with h(b) = tpI(b′). Since
td = tpI(d) and tb = h(b), we have td  r tb, thus
(d, b) ∈ rJ . By IH, D ∈ tpI(b′) = h(b) yields b ∈ DJ .

(⇒). Assume that T ,A 6|=c(ΣC) q. Then there is a model
I of T and A that respects closed predicates ΣC and such
that I 6|= q. Let IT ∈ Γ be the corresponding template,
that is, T = {tpI(a) | a ∈ Ind(A)}. For each a ∈ Ind(A),
set h(a) = tpI(a); for each aB ∈ Ind(A′) \ Ind(A), set
h(aB) = dB . It is readily checked that h is a surjective
homomorphism from A′ to IT . In particular, A(a) ∈ A′
implies A(a) /∈ A′, thus A /∈ tpI(a) (since A is closed),
which yields h(a) = tpI(a) ∈ AIT by definition of IT .

o

Lemma 28. CSP(Γ)sur polynomially reduces to the comple-
ment of (T ,ΣA,ΣC, q).
Proof. Let A′ be an input for CSP(Γ)sur. An element of A′ is
special for A ∈ ΣC if A(a) /∈ A′ and A(a) /∈ A′; it is special
if it is special for some A ∈ ΣC. First perform the following
checks:

1. if there is a non-special element a ofA′ such thatA(a) ∈
A′ and A(a) ∈ A′ for some A ∈ ΣC, then return ‘no’
(there is no template in Γ that has any element to which
a can be mapped by a homomorphism);

2. if A′ does not contain a family of distinct elements
(aA)A∈ΣC

, such that each aA is special for A, then return
‘no’ (we cannot map surjectively to the elements dA of
the templates in Γ).

Note that, to check Condition 2, we can go through all candi-
date families in polytime since the size of ΣC is constant. If
none of the above checks succeeds, then let A be the ABox
obtained from A′ by
• deleting all assertions of the form A(a) and
• deleting all special elements.

We have to show that T ,A 6|=c(ΣC) q iff there exists an IT ∈ Γ
such that there is a surjective homomorphism from A′ to IT .
(⇐). Let IT ∈ Γ and let h be a surjective homomorphism
from A′ to IT . Note that each element a of A is mapped
by h to some element t ∈ T of IT because A(a) ∈ A′ or
A(a) ∈ A′ for every A ∈ ΣC (which is non-empty). Since
IT ∈ Γ, there is a ΣA-ABox B and model I of T and B
that respects closed predicates ΣC and such that I 6|= q and
T = {tpI(a) | a ∈ Ind(B)}. We can now proceed as in
the proof of Lemma 27 to build a model J of T and A that
respects closed predicates ΣC and such that J 6|= q.
(⇒). Assume that T ,A 6|=c(ΣC) q. Then there is a model
I of T and A that respects closed predicates ΣC and such
that I 6|= q. Let IT ∈ Γ be the corresponding template, that
is, T = {tpI(a) | a ∈ Ind(A)}. For each a ∈ Ind(A), set
h(a) = tpI(a); for each element a ∈ Ind(A′) \ Ind(A), we
can choose some A ∈ ΣC such that A(a) /∈ A′ and A /∈ A′,
and set h(a) = dA; by Check 2 above, these choices can be
made such that the resulting map h is surjective. Moreover,
it is readily checked that h is a homomorphism from A′ to
IT . In particular, A(a) ∈ A′ implies A(a) /∈ A′ by Check 1,



thus A /∈ tpI(a) (since A is closed), which yields h(a) =

tpI(a) ∈ AIT by definition of IT . o

E Proofs for Section 6
We refrain from introducing the formal details of monadic
disjunctive datalog and instead refer the reader to [Bienvenu et
al., 2014]. We allow only unary and binary relation symbols,
identifying unary EDB relations with concept names and bi-
nary EDB relations with role names; the only exception is the
goal predicate, which has arity zero. We say that a monadic
disjunctive datalog program Π is simple if there is a set F
of binary (EDB) relations (which we call functional) such
that Π consists of the following rules (where YF abbreviates∧
r∈F r(xr, yr)):

(a) a single disjunctive rule P1(x) ∨ · · · ∨ Pn(x)← >;

(b) for each r ∈ F , the rule

goal()← r(x, y) ∧ r(x, z) ∧ ¬(y = z) ∧ YF ;

(c) any number of rules of the form goal() ← A(x) ∧
r(x, y) ∧B(y) ∧ YF and goal()← A(x) ∧B(x) ∧ YF .

We use ΣEDB(Π) to denote the set of EDB relations used in
the monadic disjunctive datalog program Π, that is, ΣEDB(Π)
contains all relations in Π except P1, . . . , Pn and the goal
relation. For a ΣEDB(Π)-ABox A, we write A |= Π if every
model I ofA that respects closed predicates ΣEDB(Π) satisfies
I |= ∃~x q for some rule goal()← q in Π and where ~x are the
variables that occur in q (note that ∃~x q is a BCQ).

Theorem 13. For every simple disjunctive datalog pro-
gram Π, there exists an OMQC in (EL,NC ∪ NR,BAQ)
that is polynomially equivalent to Π. The same is true for
(DL-LiteR,NC ∪ NR,BtUCQ).

Proof. Assume a simple disjunctive datalog program Π is
given. Assume its set of functional roles is F and its dis-
junctive rule is P1(x) ∨ · · · ∨ Pn(x) ← ⊥. We define
a polynomially equivalent query QΠ = (TΠ,ΣΠ, qΠ) in
(EL,NC ∪ NR,BtUCQ) and then obtain the required queries
in (EL,NC∪NR,BAQ) and (DL-LiteR,NC∪NR,BtUCQ) by
slight modifications of QΠ.2 Define the set of closed predi-
cates of QΠ as

ΣΠ = F ∪ {True,False,Val}

where True,False,Val are fresh concept names. We use auxil-
iary role names s1, . . . , sn and, for each r ∈ F , a role name
sr and concept names Ar and Br (all fresh symbols). TΠ

contains the following inclusions:

True v Val

False v Val

> v ∃si.Val for 1 ≤ i ≤ n
> v ∃sr.(∃r.Ar u ∃r.Br) for all r ∈ F .

2Thus, ΣΠ serves both as the set of closed predicates and as the
ABox signature

Intuitively, we simulate the IDB predicate Pi(x) and its com-
plement using

P ti (x) := ∃yPi(x) (si(x, yPi(x)) ∧ True(yPi(x)))

P fi (x) := ∃yPi(x) (si(x, yPi(x)) ∧ False(yPi(x))).

Define qΠ as the union of the following BCQs, where for
brevity we omit the existential quantifiers:

1. qF ∧Xt, for all rules goal()← X in Π and
2. qF ∧

∧
1≤i≤n si(x, yPi(x)) ∧ False(yPi(x)),

where

qF =
∧
r∈F

(sr(x, xr) ∧ r(xr, yr) ∧Ar(yr) ∧Br(yr))

and Xt results from X by replacing every occurence of IDB
predicate Pi(z) with P ti (z) (without the existential quantifier
∃yPi(x)) and identifying the variable of the leftmost atom inX
with the variable x from qF . This renaming serves the purpose
of obtaining a tree-shaped query (with root x) as required
rather than a forest-shaped one.

The purpose of the (sub)queries qF is to ensure that all
relations in F are partial functions; in fact, one can show
that for any ΣΠ-ABox A such that TΠ and A have a com-
mon model which respects closed predicates F , we have
TΠ,A |=c(ΣΠ) ∃~x qF (where ~x are the variables in qF ) iff
all r ∈ F are non-empty partial functions in A, that is,
r(a, b1), r(a, b2) ∈ A implies b1 = b2. Consequently, the
answer to QΠ is trivially ‘no’ on ABoxes where some r ∈ F
is not a non-empty partial function. The query under Point 2
above ensures that ∀x(P1(x) ∨ · · · ∨ Pn(x)) holds and thus
that the disjunctive rule of Π is satisfied. Now one can prove:

Claim. Π and (TΠ,ΣΠ, qΠ) are polynomially equivalent.

(⇒) Assume a ΣEDB(Π)-ABox A is given as an input to Π.
If some r ∈ F is empty in A, then output ‘A 6|= Π’. This is
correct since all goal rules of Π contain YF in their body. If
no r ∈ F is empty in A and some r ∈ F is not functional,
then output ‘A |= Π’. This follows from the rules of type (b)
in Π. Now assume no r ∈ F is empty in A and all r ∈ F are
functional in A. Let

A′ = {True(a),False(b),Val(a),Val(b)},

where we asume w.l.o.g. that a, b occur in A. We show that
A |= Π iff TΠ,A′ |=c(ΣΠ) qΠ.

Assume first that A 6|= Π. Let I be a model of A that
respects closed predicates ΣEDB(Π) and satisfies no body of
a goal rule in Π. Define I ′ in the same way as I except
that TrueI

′
= {a}, FalseI

′
= {b}, ValI

′
= {a, b}, and the

extension of the fresh auxiliary predicates in TΠ and qΠ is
defined as follows:
• For all r ∈ F let

sI
′

r = ∆I × dom(rI), AI
′

r = BI
′

r = ∆I ,

where dom(rI) denotes the domain of rI .
• For all 1 ≤ i ≤ n, let

sI
′

i = (P Ii × {a}) ∪ ((∆I \ P Ii )× {b}).



It is straightforward to see that I ′ is a model of TΠ andA′ that
respects closed predicates ΣΠ and so it remains to show that
I ′ 6|= qΠ. To this end it is sufficient to show that

1. No Xt with goal()← X ∈ Π of type (c) is satisfiable in
I ′;

2. I ′ 6|= ∃x
∧

1≤i≤n P
f
i (x).

(1.) holds since P Ii = {d | I ′ |= P ti (d)} by definition of I ′
and since X is not satisfied in I for any goal()← X ∈ Π of
type (c). (2.) holds since P Ii = ∆I \ {d | I ′ |= P fi (d)} for
all 1 ≤ i ≤ n and ∆I = P I1 ∪ · · · ∪ P In .

Assume now that TΠ,A′ 6|=c(ΣΠ) qΠ. Take a model I of
A′ that respects closed predicates ΣΠ and such that I 6|= qΠ.
Define a model I ′ by setting

P I
′

i = {d | I |= P ti (d)}

for 1 ≤ i ≤ n. Since all r ∈ F are non-empty and functional
in A′ we have I |= ∀x∃xr · · · ∃yrqF . To prove this, observe
that

I |= > v ∃sr.(∃r.Ar u ∃r.Br),
for all r ∈ F . By functionality of all r ∈ F in A′, we obtain

I |= > v ∃sr.∃r.(Ar uBr),

for all r ∈ F , as required. Thus (i) no Xt is satisfiable
in I for any goal() ← X ∈ Π of type (c) and (ii) I 6|=
∃x
∧

1≤i≤n P
f
i (x). We show that I ′ satisfies the rule P1 ∨

· · · ∨ Pn ← > and no body of a goal rule in Π. The latter
condition follows from (i) and the definition of I ′. For the
first condition observe that since I |= > v ∃si.Val for 1 ≤
i ≤ n and since TrueI ,FalseI is a partition of ValI we have
I |= P ti (d) or I |= P fi (d) for all d ∈ ∆I and all 1 ≤ i ≤ n.
Thus P I

′

1 ∪ · · · ∪ P I
′

n = ∆I follows from (ii).

(⇐) Assume a ΣΠ-ABox A is given as an input to QΠ. There
exists a model of TΠ andA that respects closed predicates ΣΠ

iff (i) Val is nonempty inA, (ii) True,False are both contained
in Val in A, and (iii) all r ∈ F are nonempty in A. Thus,
output () ∈ QΠ(A) whenever (i), (ii), or (iii) is violated. Now
assume (i), (ii), and (iii) hold. If some r ∈ F is non-functional,
then TΠ,A 6|=c(ΣΠ) qF and so we output () 6∈ QΠ(A). Thus,
assume in addition to (i), (ii) and (iii) that all r ∈ F are
functional in A.

If True,False are not a partition of Val, then output () 6∈
QΠ(A) if True and False do not cover Val and output () ∈
QΠ(A) otherwise. It remains to consider the case in which (i),
(ii), and (iii) hold, all r ∈ F are functional, and True,False are
a partition of Val. In this case let A′ be the ΣEDB(Π)-reduct
ofA. Similarly to the proof of (⇒) one can show thatA′ |= Π
iff TΠ,A |=c(ΣΠ) qΠ.

The modification of QΠ to obtain an OMQC from
(EL,NC ∪ NR,BAQ) is straightforward, c.f. the proof of The-
orem 10. We now show how to modify QΠ to an equivalent
query QDL-Lite

Π from (DL-LiteR,NC ∪ NR,BtUCQ). First, to
eliminate > on the right-hand-side of TBox inclusions in TΠ,
we replace any inclusion > v C by the inclusions A v C,
∃r v C, and ∃r− v C for any concept nameA ∈ ΣΠ and role

name r ∈ ΣΠ. Secondly, we employ the standard encoding of
qualified existential restrictions in DL-LiteR by replacing ex-
haustively any B v ∃r.D by B v ∃s, ∃s− v AD, AD v D,
and s v r, where AD is a fresh concept name and s is a
fresh role name. Let T DL-Lite

Π be the resulting TBox. Then
(T DL-Lite

Π ,ΣΠ, qΠ) is as required. o

Theorem 14. For every OMQC in (DL-Litecore,NC ∪
NR,BtCQ) there exists a polynomially equivalent OMCQ in
(DL-Litecore,NC,BtCQ).
Proof. Assume an OMQC (T ,ΣA,ΣC, q) in
(DL-Litecore,NC ∪ NR,BtCQ) is given. The starting
point to constructing the desired OMQC (T ′,Σ′A,Σ′C, q′)
from (DL-Litecore,NC,BtCQ) is the observation that, when
a role name is not mentioned in the TBox, then declaring it
closed or open does not make a difference regarding query
entailment. We can thus eliminate a closed role name r by
making it open and removing it from the TBox. The latter is
achieved by replacing ∃r in the TBox with a fresh concept
name Ar and ∃r− with a fresh concept name Ar− . It remains
to ensure that Ar and Ar− represent the domain and range
of r, that is, we find Ar(a) in the ABox iff the ABox contains
some assertion r(a, b) and we find Ar−(a) in the ABox iff the
ABox contains some assertion r(b, a). This requires closing
Ar and Ar− and modifying both the TBox and the query.

Formally, denote byR the set of all r, r− with r a role name
in ΣC and take for every r ∈ R two fresh concept names Ar
and Ar− . Let

Σ′C = (ΣC\NR)∪{Ar | r ∈ R}, Σ′A = ΣA∪{Ar | r ∈ R}.
To define T ′, take fresh (open) role names sr and (open)
concept names Er for every r ∈ R and include in T ′ all
inclusions C v D ∈ T in which each ∃r with r ∈ R is
replaced by Ar together with the following inclusions for
every r ∈ R:

∃r v Ar, Ar v ∃sr, ∃s−r v Ar− , ∃s−r v Er− .
The first inclusion says that the domain and range of r is
included in Ar and Ar− , respectively. This achieves one half
of our aim. For the second half, we need the query, that
is, we will ensure that the domain and range of r is exactly
Ar and Ar− , respectively, unless our ABox A is such that
T ′,A 6|= q′. A first step is done by inclusions two and three in
the TBox, which axiomatize some basic behaviour of domains
and ranges, namely that Ar is empty iff Ar− is empty. Set

q′ = q ∧
∧

r∈R∩sig(q)

Er−(x1
r) ∧ r(y1

r , x
1
r) ∧ Er(x2

r) ∧ r(x2
r, y

2
r).

To see how inclusions two, three, and four of T ′ and the addi-
tional conjuncts in q′ play together, consider an ABox A that
contains Ar−(a), but no assertion of the form r(b, a). Then
we find a model of T ′ and A where the BCQ ∃x∃y r(y, x) ∧
Er−(x) has no match, thus T ′,A 6|= q′.

Claim. (T ,ΣA,ΣC, q) and (T ′,Σ′A,Σ′C, q′) are polynomially
equivalent.

(⇒) Assume a ΣA-ABox A is given as an input to
(T ,ΣA,ΣC, q). Define a Σ′A-ABox A′ by adding

{Ar(a) | r(a, b) ∈ A} ∪ {Ar−(a) | r(b, a) ∈ A}



to A. It is readily checked that T ,A |=c(ΣC) q iff
T ′,A′ |=c(ΣC) q

′.

(⇐) Assume a Σ′A-ABox A′ is given as an input to
(T ′,Σ′A,Σ′C, q′). Answer T ′,A′ |=c(ΣC) q

′ if A′ is not consis-
tent w.r.t. T ′ and closed Σ′C (this problem is in AC0 and,
therefore, in PTIME, by Theorem 5). Otherwise answer
T ′,A′ 6|=c(ΣC)′ q

′ if there exists a r ∈ R ∩ sig(q) and in-
dividual a such that Ar(a) ∈ A but there does not exist b
with r(a, b) ∈ A or Ar−(a) ∈ A but there does not exist b
with r(b, a) ∈ A. Otherwise, let A be obtained from A′ by
removing all assertions involving any Ar with r ∈ R from A′
and adding

{r(a, b) | r ∈ R \ sig(q), Ar(a) ∈ A, Ar−(b) ∈ A}

to A′. It can be shown that T ′,A′ |=c(Σ′C) q
′ iff T ,A |=c(ΣC)

q.

Note that the query q′ is not yet a tree UCQ. Let x be the root
of q′ andB(x) a conjunct of q, whereB is a basic concept. By
adding B v ∃sr to T ′ for every r ∈ R such that r ∈ sig(q) or
r− ∈ sig(q) and adding sr(x, x1

r) as well as sr−(x, x2
r) to q′

we obtain an OMQC of the required form. o


