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Abstract A-closure is the equivalent of path consistency for qualitative spatio-
temporal calculi with weak composition. We revisit existing attempts to character-
ize the question whether a-closure is a complete method for deciding consistency
of CSPs over such calculi. Renz and Ligozat’s characterization via closure under
constraints has been refuted by Westphal, Hué and Wölfl. However, for many
commonly used calculi, completeness of a-closure and closure under constraints
coincide. We show that it is unlikely to obtain an effective procedure to decide
closure under constraints by an enumeration process – and thus completeness of
a-closure if the characterization were true. We further provide a sufficient condition
for closure under constraints via properties of the automorphism group of the set
of relations in a calculus.

1 Introduction

Qualitative spatio-temporal reasoning (QSTR) is concerned with representing spatial
and/or temporal knowledge and drawing inferences. The decision to use a qualitative
representation allows to model relevant relations between spatial or temporal objects,
abstracting away from their concrete location in space or time, or from relations irrelevant
for the application at hand. Qualitative representations can also capture incomplete data,
which are commonly derived from sensor observations or are due to obstructions.

Constraint-based reasoning is a well-understood and frequently used approach to
QSTR. It relies on the central notion of a qualitative calculus, which provides symbols for
the relevant basic relations and for the standard operations of converse and composition.
Using a calculus, it is possible to express the known relations between a set of objects as a
set of constraints – called a (constraint) network – and to apply dedicated methods to draw
inferences. Inferences of interest include the question whether a given network describes
a valid constellation of objects – i.e., whether it is consistent – and the computation
of such a constellation (generating a model). Established techniques from the area of
constraint satisfaction problems (CSP) have been transferred to qualitative constraint-
based reasoning; however, due to the infinite nature of spatio-temporal domains, not all
CSP techniques are transferable, and dedicated QSTR methods are applied.

One convenient and frequently used method for deciding consistency is the enforce-
ment of algebraic closure, for short: a-closure. It is the equivalent of the well-established
path-consistency algorithm for CSPs, adapted to weak composition [4], a commonly
adopted weakening of the requirement that the set of relevant relations be closed under
composition. The decision procedure a-closure runs in polynomial time and is thus con-
sidered efficient. It is sound in the sense that it outputs “consistent” for every consistent
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network. However, it is in general not complete: depending on the calculus, there are
inconsistent networks where a-closure outputs “consistent”. Still, for a number of calculi
a-closure is known to be complete; these include “classical” calculi such as the Region
Connection Calculus (RCC-5, -8) [9,6,10] and Allen’s Interval Algebra [1,13], as well
as more recently developed calculi such as the connectivity variant of the dipole calculus
[14]. For a number of other calculi, a-closure is known to be incomplete. A complete
classification of calculi for which a-closure is complete is still open.

In this paper, we are concerned with the search for a characterization that allows to
decide whether a-closure is complete for a given calculus. An important step towards
such a characterization was made by Renz and Ligozat’s attempt in [11] to characterize
completeness of a-closure by a property of a calculus called “closure under constraints”,
which is the inability to refine a relation of the calculus to non-overlapping subrelations
via two networks. The most important gain from this characterization is a sufficient
condition for when a-closure is not complete: it is enough to find a pair of networks that
witnesses a violation of closure under constraints. If there were a known bound on such
networks, it would yield a decision procedure for closure under constraints.

Renz and Ligozat’s equivalence was refuted recently by Westphal et al. in [15],
giving examples of calculi violating each of the two implications. These calculi are based
on finite domains of size 2 and 3; thus they do not refute Renz and Ligozat’s observation
that, for existing calculi, completeness of a-closure seems to correlate with closure
under constraints [11]. It is therefore possible that the equivalence can be “rescued” by
imposing further assumptions that are typically satisfied by (most) existing calculi.

We pursue the question whether the claimed equivalence – provided that it holds
under some additional assumptions – provides an effective criterion for deciding whether
a-closure is complete for a given calculus. More precisely, we study possible ways to
establish (or refute) closure under constraints. The most obvious one is to enumerate all
refinements of all relations, and check whether two of them are non-overlapping, which
yields a semi-decision procedure. It is tempting to try and obtain a decision procedure
by bounding the size of networks that need to be compared, e.g., by some function of
the number of relations in the calculus. Indeed, for some calculi it is possible to obtain
non-overlapping refinements from very small sets of constraints. Our main contribution
is to show that there is no bound that depends only on the number of relations.

Another possible way to establish closure under constraints is to show that there is
no proper refinement at all. We provide a sufficient condition that involves a property
of the automorphism group of the set of relations in the calculus, called 2-transitivity.
Intuitively, this property means that different instances of a relation are indistinguishable.

The work reported here is work in progress that attempts to explore the possibilities
for characterizing completeness of a-closure. Our results show that further attempts to
rescue the correspondence with closure under constraints are unlikely to yield an effective
characterization. We find this insight worth sharing with the QSTR community and hope
to ignite the search for different ways of characterizing completeness of a-closure.

2 Preliminaries

Partition schemes. Commonly a qualitative spatio-temporal calculus is regarded as a set
equipped with relations meeting some minimal requirements, and with natural operations
on them. These requirements are captured by the notion of a partition scheme [7].
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Let U be a non-empty set called a universe (or domain). The elements of the universe
are called entities and we think of spatial or temporal objects e.g. represented by points,
intervals or regions in Rn. The set of relations is required to be JEPD (jointly exhaustive
and pairwise disjoint), that is, for every two elements x, y ∈ U there is exactly one
relation R s.t. xRy. So let B be a finite partition of U × U, that is, U × U =

⊎
R∈B R. The

elements of B are called atomic relations.
The notion of a partition scheme is now derived by imposing two further demands

on partitions, involving the identity relation id = {(x, x) : x ∈ U} ∈ B and the converse
of a relation R, defined by R^ = {(y, x) : (x, y) ∈ R}.

Definition 1. A partition scheme is a pair (U,B) where B is a partition of U × U, B
contains id and R ∈ B implies R^ ∈ B.

As a simple example, consider the point calculus (PC) [12], which is capable of repre-
senting the relative location of points on a line. Its underlying partition scheme has the
domain U = R and the atomic relations B = {<,=, >}. It can thus express the relations
2B = {∅, <,=, >,≤,≥,,,Q}, where = is id, and Q is the universal relation R × R.

Typical spatio-temporal calculi, including PC, have infinite domains and serial
relations; a relation R is serial if, for every x ∈ U, there is some y ∈ U with (x, y) ∈ R.
We call a calculus serial if all its relations are serial. However, the above definition does
not rule out finite domains and/or non-serial relations.

Constraint networks. Constellations of spatio-temporal objects are given by constraint
networks, which are defined as follows.

Definition 2. Let K = (U,B) be a partition scheme. A K-(constraint-)network is a pair
Θ = (V, ν) consisting of a finite set V, called variables, and a map ν : V × V → 2B such
that ν(v1, v2) = ν(v2, v1)^ and ν(v1, v1) = id for all v1, v2 ∈ V.
Θ is atomic if ν(v1, v2) ∈ B for all v1, v2 ∈ V; the size of Θ is defined by |Θ| := |V |.

Imagine the range of the variables to be the universe U, and for v1, v2 ∈ V the mapping
ν(v1, v2) is a constraint between v1 and v2.

A central decision problem in QSTR asks whether a given set of constraints is
consistent. This special case of a constraint satisfaction problem is defined as follows.

Definition 3. Let K = (U,B) be a partition scheme and Θ = (V, ν) a K-network.

1. A map φ : V → U is a solution of Θ if (φ(x), φ(y)) ∈ ν(x, y) for all x, y ∈ V.
2. Θ is consistent if it has a solution.

A constraint network (V, ν) can be visualized as a complete directed graph, whose nodes
are from V and whose edges are labeled by the corresponding ν(v1, v2). We can omit
loops at a node labeled with id and it is sufficient to draw only one of the two directed
edged between a pair of nodes.

We can furthermore omit edges between nodes v1 and v2 to represent the universal
relation, i.e., if ν(v1, v2) = B. This goes along with the idea of the edges being constraints:
if there is no edge between to variables, there is no constraint between them.

Weak composition. Constraints can be propagated using the composition operation ◦,
defined by R ◦ S = {(x, y) | (x, z) ∈ R and (z, y) ∈ S for some z ∈ U}. For an arbitrary
partition scheme (U,B), the set 2B of all possible relations is not necessarily closed
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under composition. Therefore weak composition � has been established as the best
approximation that is expressible in the “language” of (U,B) [7]. Weak composition is
defined for atomic relations r, s by

r � s =
⋃
{t ∈ B | (r ◦ s) ∩ t , ∅} (1)

and transferred to arbitrary relations R, S via R � S =
⋃

r∈R
⋃

s∈S r � s. The B in (1)
indicates that weak composition is relative to the partition scheme (U,B).

A calculus is a partition scheme with weak composition. Weak composition is usually
provided in the form of a composition table with |B|2 entries storing the composition
results r � s for all r, s ∈ B. For our purposes, the particular representation of � is not
relevant, and we abstractly define:

Definition 4. A (qualitative spatio-temporal) calculus is a triple (U,B, �) where (U,B)
is a partition scheme and � denotes weak composition relative to (U,B).

Algebraic Closure. Let K = (U,B, �) be a fixed calculus. We consider the consistency
problem for K, which receives as an input a K-network Θ = (V, ν) and answers the
question whether Θ is consistent. This problem is a constraint satisfaction problem
(CSP). However, due to the use of weak composition, standard CSP approaches cannot
be applied directly. Instead, for various calculi, dedicated algorithms deciding consistency
are known, but these usually cannot (easily) be generalized to other calculi. As a notable
exception, the a-closure algorithm (AC) can be applied to every calculus. AC is the result
of transferring standard path-consistency algorithms for CSPs [3] to the use of weak
composition; its runtime is O(|V |3) [3].

AC is given in pseudocode in Algorithm 1. For a given network Θ = (V, ν), AC
checks for every triangle x, y, z whether there are unnecessary atomic relations contained
in ν(x, z), i.e. relations that are not included in ν(x, y) � ν(y, z) and thus cannot occur in a
solution of Θ. Those will be removed until a fixpoint is reached. If the resulting network
contains an edge labelled by ∅, the algorithm answers inconsistent, otherwise consistent.

Algorithm 1: Algebraic closure
Input: Constraint network Θ = (V, ν)

repeat
foreach x, y, z ∈ V do

ν(x, z)← ν(x, z) ∩ (ν(x, y) � ν(y, z))

until ν(x, z) ⊆ ν(x, y) � ν(y, z) for all x, y, z ∈ V
if ν(x, y) = ∅ for some x, y ∈ V then return inconsistent else return consistent

If AC returns inconsistent, then the input network is actually inconsistent. However, the
opposite is not generally true, i.e., AC is not necessarily complete. For some calculi, AC
is known to be complete; for other calculi there are networks that witness incompleteness.
Given the general interest in efficient complete reasoning procedures, attempts have been
made to characterize the calculi where AC is complete [11,15]. It has to be noted that
choice of relations that are allowed on the labels of Θ is relevant. For example, AC is
complete for atomic networks in Allen’s Interval Relations, but for arbitrary networks
the problem is NP-hard [13], and the proof yields a minimal example for an a-closed
inconsistent network. Current attempts to characterize completeness of a-closure largely
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consider the restriction to networks with atomic relations plus the universal relation
[11,15]. We adopt this restriction.

Subatomic refinements. These underlie the notion of closure under constraints, which
has been linked with completeness of a-closure [11], and are defined as follows.

Definition 5. Let K = (U,B, �) be a calculus and R ∈ B a atomic relation. A subset
R′ ⊆ R is a subatomic refinement (SAR) of R (or of K), if there exists a constraint
network Θ = (V, ν) and a constraint ν(x, y) = {R}, s.t. a map φ : {x, y} → U can be
extended to a solution of Θ if and only if φ(x)R′φ(y).

Unlike in [11] we don’t define SARs via atomic, but via arbitrary networks. It will
become apparent further below that this doesn’t make a difference for the resulting
definition of closure under constraints.

Every atomic relation R has at least the SARs R and ∅. We call SARs other than R
and ∅ proper. If a calculus has proper SARs, then its actual expressiveness is stronger
than its atomic relations pretend. It is easily seen that SARs are closed under finite
intersections: Let R1 ⊆ R and R2 ⊆ R be SARs, then R1 ∩ R2 is generated by the union
of the two generating networks for R1 and R2, where the refined edges are merged and
all other nodes are kept distinct.

Definition 6. A calculus K is called closed under constraints (CUC) if, for every atomic
relation R, every two proper SARs R1 ⊆ R and R2 ⊆ R have a non-empty intersection.

The properties of closure under constraints and completeness of AC often appear together.
Their equivalence, as claimed in [11, Theorem 1], has been refuted, see [15, Proposition
2]. However, the given counterexamples are unusual calculi, they lack properties like
seriality or infiniteness of the domain, which the more common calculi retain. So for
many calculi the equivalence still holds and the relation between these two properties
should be examined. Therefore, we define the CUC-size of a calculus.

Definition 7. Let K = (U,B, �) be a calculus. If K is closed under constraints, we set
the CUC-size c(K) = ∞. Otherwise we define:

c(K,R) = min{max{|Θ1|, |Θ2|} : Θ1 and Θ2 generate two disjoint proper SARs of R}
c(K) = min{c(K,R) : R ∈ B}

In other words: c(K) is the smallest number n s.t. there exist two networks, each of size
at most n, which generate two disjoint proper SARs of a relation in B. Example 3 of
[11] shows that, for the interval-duration calculus INDU [8], we have c(INDU) = 3,
i.e., two triangles suffice to generate disjoint proper substomic refinements. Such low
CUC-sizes are common among existing calculi.

We will now see that CUC-size and closure under constraints would be untouched if
we had defined SARs via atomic instead of arbitrary networks.

Lemma 8. Let K be a calculus, that is not closed under constraints. Then there are
atomic networks Θ1 and Θ2, that refine an atomic relation R into two disjoint proper
SARs and max(|Θ1|, |Θ2|) = c(K).

Proof. By definition there exist Θ′ and Θ′′, that refine R into two disjoint proper SARs
R′ and R′′, while the larger network has size c(K). Especially, Θ′ and Θ′′ are consistent.
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Then there are consistent, atomic networks Θ1 and Θ2 that result from Θ′ and Θ′′ by
choosing an appropriate atomic relation from every labeled edge, guided by the solutions
leading to the refinements. Now Θ1 and Θ2 generate SARs R1 ⊆ R′ and R2 ⊆ R′′. Since
R′ ∩ R′′ = ∅ we also have R1 ∩ R2 = ∅. So Θ1 and Θ2 are the desired networks. o

The lemma allows us to restrict ourselves to atomic networks when investigating closure
under constraints of a calculus.

3 The Difficulty of Verifying Closure under Constraints

If there is a causal relation between closure under constraints and completeness of AC, it
would be useful to have a way to check a calculus for being closed under constraints.
One might hope that it is enough to enumerate only finitely many pairs of networks,
e.g., up to a size depending on the number of atomic relations, and check whether they
refine some relation into two disjoint proper SARs. Unfortunately, this hope is easy to
dash by a counterexample involving variants of the point calculus restricted to finite
domains: it can be shown that the relations {<,=, >} over the domain {1, . . . , 3n + 2}
cannot be refined via networks of size n but via networks of size 3n + 2 – i.e., this
calculus has a finite CUC-size ≥ n. We do not present the detailed proof here because it
is arguable whether this artificial example makes a statement about “real-world” calculi.
Featuring non-serial relations over finite domains, the calculi in our example violate two
properties shared by the majority of existing calculi (and even a third, which generalizes
seriality and is addressed in the following section). We are therefore concerned, in this
section, with establishing a stronger negative statement that is supported by more realistic
counterexamples. We proceed in two steps: we first argue about serial calculi with finite
domains (9), and then consider a general construction that turns these calculi into serial
calculi with infinite domains and an arbitrary finite number of relations (11).

Theorem 9. For every n ∈ N there exists a serial calculus K with 3 atomic relations
and n ≤ c(K) < ∞.

Proof. We consider the calculus Kk = (Uk,Bk, �) with Uk = {0, 1, . . . , 2k}. Besides the
identity Bk contains the relation R< = {(a, b) | ∃0 < c ≤ k with b − a ≡ c (mod 2k + 1)}
and its converse R> = {(a, b) | ∃k + 1 ≤ c ≤ 2k with b − a ≡ c (mod 2k + 1)}. Imagine
the points of the universe arranged in a circle, clockwise increasing. Then (a, b) ∈ R<

holds if and only if the path from a to b in clockwise direction is at most half of the
circle. Of course, Kk is always serial.

We notice that every SAR of Kk is a union of relations R j = {(a, b) | b − a ≡ j
(mod 2k + 1)}: Let (a, b) be contained in an SAR R′ ⊆ R. There exists j ∈ {0, . . . , 2k}
s.t. a − b ≡ j (mod 2k + 1). Then R j ⊆ R, since from the solution that instantiates the
refining edge with (a, b) we can increment all variables by the same number (mod 2k+1)
and obtain solutions where the same edge is instantiated with all pairs in R j. We have
R= = R0, R< =

⋃k
j=1 R j and R> =

⋃2k
j=k+1 R j. In particular, R= doesn’t have any proper

SARs and we can restrict ourselves to constraint networks that only use R< and R>.
We consider the canonical network Θ = (V, ν) for Kk, whose variables are just the

elements of Uk and where ν(x, y) = {R}, where R the unique atomic relation for which
xRy holds. Θ generates all R j as SARs. Hence, Kk is not closed under constraints for
k ≥ 2, since e.g. R1 and R2 are disjoint SARs of R<.
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Further we notice that a consistent atomic constraint network Θ = (V, ν) determines
a unique successor for every variable: We start with any variable x0 ∈ V and consider
the set N(x0) = {y ∈ V | ν(x, y) = {R<}}. (If this is empty, argue analoguosly with R>.)
Consider the sub-network of Θ restricted to N(x0), there exists a total order since any two
points are related by exactly one of the relations R<,R=,R>. (Transitivity follows from
the fact that all these points are inside a semicircle and Θ is consistent und atomic, i.e.
a-closed). We call the minimal element x1 and inductively define xi+1 as the minimum of
N(xi), up to x|V |−1.

Now we show that for every given n ∈ N in the calculus Kk with k = 2n2 the networks
of size at most n don’t generate disjoint SARs. Let Θ = (V, ν) be a consistent, atomic
constraint network with |Θ| ≤ n and let xR<y be an edge. We construct a solution φ with
φ(x) = 0 and φ(y) = n2, so the distance between x and y is a quarter of the circle. Then
(0, n2) will be contained in every SAR of R<.

For every v ∈ V the relations to x and y determine in which quarter v has to be put.

Set of variables We need to achieve
V1 = {v ∈ V | vR>x, vR<y} φ(V1) ⊆ [1, n2 − 1]
V2 = {v ∈ V | vR>x, vR>y} φ(V2) ⊆ [n2 + 1, 2n2]
V3 = {v ∈ V | vR<x, vR>y} φ(V3) ⊆ [2n2 + 1, 3n2]
V4 = {v ∈ V | vR<x, vR<y} φ(V4) ⊆ [3n2 + 1, 4n2 + 1]

Let Vi = {xi,1, . . . , xi,mi }, with the variables in increasing order. We set φ(x1, j) = n · j and
φ(x2, j) = n2 + n · j. The variables in V3 depend on V1: For every x3, j the possible values
are an interval of size n − 1 since the difference of any two variables in V1 is at least
n. Since |V3| ≤ n − 2, there is always such a solution, even if all x3, j fall into the same
interval. In the same way we instantiate the variables of V4, depending on V2. o

To lift the statement of Theorem 9 to calculi with infinite domains, we use a construction
that transforms any calculus into an infinite one, preserving seriality and the CUC-
size. The construction works as follows: Let K = (U,B, �) be a calculus. We define
KN := (U × N,B′, �′) with B′ consisting of id, a relation R′ for every R ∈ B \ {id} with
(x, n)R′(y,m) if xRy, and an additional relation ∼ with (x, n) ∼ (y,m) if x = y and n , m.

Lemma 10. Let K be a calculus. Then c(K) = c(KN).

Proof. We show this by translating atomic K-networks into atomic KN networks of the
same size and vice versa, preserving disjointness of SARs.

We first show c(K) ≥ c(KN). Let Θ = (V, ν) be a K-network. We define the KN-
network Θ′ = (V, ν′) by ν′(x, y) = {R′}, if ν(x, y) = {R} and ν′(x, y) = {id}, if ν(x, y) =

{id}. If two K-networks Θ1, Θ2 generate two disjoint proper SARs R1,R2 of an atomic
relation R, then either R , id and Θ′1, Θ

′
2 generate the SARs R′i = {((x, n), (y,m)) |

(x, y) ∈ Ri and n,m ∈ N}, which are disjoint again, or R = id and Θ′1, Θ
′
2 generate

R′i = {((x, n), (x, n)) | (x, x) ∈ Ri and n ∈ N}, which are disjoint too.
Next we show c(K) ≤ c(KN). For every KN-network Θ = (V, ν) we define the K-

network Θ′ = (V, ν′) by ν′(x, y) = {R} if ν(x, y) = {R′}, and ν′(x, y) = {id} if ν(x, y) = {id}
or ν(x, y) = {∼}. Then every solution of Θ gives a solution of Θ′ by forgetting the
second component. If two KN-networks Θ1, Θ2 generate disjoint proper SARs R1,R2 of
an atomic relation R , ∼, then Θ′1, Θ

′
2 generate disjoint proper SARs too. The relation

∼ doesn’t have proper SARs: in a consistent KN-network Θ = (V, ν) with an edge
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ν(x, y) = {∼} and a solution φ any permutation of N applied to the second component of
φ still yields a solution of Θ. o

By iteratively applying Lemma 10 to the calculus from Theorem 9, we can conclude:

Theorem 11. For every n ∈ N and every k ≥ 4 there exists a serial calculus K with an
infinite domain, k atomic relations, and n ≤ c(K) < ∞.

4 Sufficient Conditions for Closure under Constraints

In the previous chapter we gathered some evidence for the difficulty of the problem of
deciding whether a given calculus is closed under constraints. However, some of the
calculi that are closed under constraints don’t have any proper SARs at all and for those
there exists another approach to establish closure under constraints.

Definition 12. A calculus is called strongly closed under constraints, if no atomic
relation R has other SARs than ∅ and R.

Obviously, strong closure under constraints implies closure under constraints. The idea
for establishing strong closure under constraints is to show that for every atomic relation
R the calculus cannot differentiate (in a certain manner) between two pairs of points
wRx and yRz. For this purpose we adapt the notion of 2-transitivity from algebraic group
theory [2] to our calculi.

Definition 13. Let K = (U,B, �) be a calculus. A bijection h : U → U is called an
automorphism of K if for all R ∈ B and x, y ∈ U we have (x, y) ∈ R =⇒ (h(x), h(y)) ∈ R.

Let Aut(K) the set of all automorphisms of K. It is easily seen that Aut(K) forms a group.
Furthermore, this group acts on the universe in the following sense.

Definition 14. Let G be a group and M a set. A group action is a map ϕ : G × M → M
s.t.:

1. ϕ(e, x) = x for the neutral element e and all x ∈ M
2. ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G and all x ∈ M

We follow the convention and interpret the group elements as maps: Instead of ϕ(g, x) = y
we write g(x) = y.

Definition 15. 1. A group action ϕ : G × M → M is called transitive, if for every
x, y ∈ M there exists a g ∈ G with g(x) = y.

2. A group action ϕ : G × M → M is called 2-transitive, if for every x1, x2, y1, y2 ∈ M
with x1 , x2 and y1 , y2 there exists a g ∈ G with g(x1) = y1 and g(x2) = y2.

We carry these notions over to calculi, i.e. consider the transitivity of the group action of
Aut(K) on the universe of K. However we have to weaken 2-transitivity.

Definition 16. Let K = (U,B, �) be a calculus.

1. K is called transitive if Aut(K) acts transitively on U.
2. K is called 2-transitive if for every R ∈ B and all (x1, x2), (y1, y2) ∈ R there exists an

automorphism h s.t. h(x1) = y1 and h(x2) = y2.
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Transitivity of a calculus can be thought of as a kind of self-similarity of the universe:
The “neighborhoods” of two entities are indistinguishable. We expect that many of
the commonly used calculi are transitive. The group action of Aut(K) on U cannot be
2-transitive in the algebraic sense, since our automorphisms have to preserve atomic
relations. We can think of 2-transitivity for calculi like this: A calculus K is 2-transitive,
if it is “as 2-transitive as possible” in the algebraic sense.

Lemma 17. Every 2-transitive calculus is strongly closed under constraints.

Proof. Let K = (U,B, �) be a 2-transitive calculus. Let Θ = (V, ν) be a consistent,
atomic K-network. We show that Θ does not refine any relation. Let (v1, v2) ∈ V2

and R := ν(v1, v2) ∈ B an atomic relation. Since Θ is consistent, there is a solution
φ : V → U. Let x1 := φ(v1) and x2 := φ(v2). Since φ is a solution, we have x1Rx2.
Let (y1, y2) ∈ R be any other pair. Since K is 2-transitive, there exists an automorphism
h with h(x1) = y1 and h(x2) = y2. Then h ◦ φ is also a solution for Θ, but this time
the considered edge (v1, v2) is instantiated by (y1, y2). Since the pair (y1, y2) ∈ R was
arbitrary, there is a solution for every such pair. Hence, R doesn’t have any proper SARs.
Since R was arbitrary, K is strongly closed under constraints. o

Lemma 17 is indeed a viable method for establishing strong closure under constraints,
since for the commonly used calculi that are strongly closed under constraints, it is
usually not too difficult to explicitly give the set Aut(K) and show that it is 2-transitive.
Such calculi include Allen’s Interval Relations and the point calculus on R.

We exemplarily show that the point calculus on R is 2-transitive. It suffices to argue
for R< and R= because R> has the same witness automorphisms as R<. For R=, given two
pairs (y, y), (z, z), we find the automorphism h(x) = x − y + z that maps y to z. For R< let
x1 < x2 and y1 < y2. We define:

h(x) =


x − x1 + y1 if x ≤ x1

y1 + x−x1
x2−x1

· (y2 − y1) if x1 < x ≤ x2

x − x2 + y2 if x > x2

h is bijective and strictly increasing, so it preserves atomic relations. Also, h(x1) = y1
and h(x2) = y2. Hence h is the desired automorphism which can be constructed for every
two pairs (x1, x2), (y1, y2) ∈ R<. Thus, the point calculus is 2-transitive (and by Lemma
17 it is strongly closed under constraints).

5 Discussion

We have seen that, although existing calculi suggest a correlation between completeness
of a-closure and closure under constraints, it is unlikely to obtain an effective procedure
that decides whether a given calculus is closed under constraints by simply enumerating
pairs of networks. Our counterexample resulting from Theorems 9 and 11 is designed
to be close to existing calculi; in particular, it is infinite and serial, and even transitive
(though not 2-transitive). Of course our negative insight does not rule out the possibility
that there are other, effective, ways to decide closure under constraints, but we believe
that it is worthwhile to look for alternative characterizations of completeness of a-closure.
In this connection, Jeavons et al. [5] provide two characterizations for completeness
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of the more general r-consistency in the context of (finite- and infinite-domain) CSPs,
which might turn out to be useful when applied to qualitative spatio-temporal calculi.

The construction used in Section 3 to make a calculus infinite preserves not only CUC-
size but also completeness of a-closure. Hence it can also be applied to turn Westphal et
al.’s counterexamples for Renz and Ligozat’s conjecture (which our counterexamples do
not address!) into serial, infinite ones. Generalizing this construction and relating it with
existing methods for combining calculi [16] remains for future work.

We have furthermore seen that 2-transitivity is a sufficient condition for strong closure
under constraints. It is an open question whether 2-transitivity, possibly in disjunction
with other properties, is a necessary condition too.

Finally, since closure under constraints is an intuitive and appealing property, it is
promising to try and “rescue” the attempts to prove the equivalence with completeness
of a-closure by imposing additional assumptions typically satisfied by existing calculi.
We conjecture that these assumptions should include infinite domains, transitivity (which
implies seriality), and 2-transitivity.
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