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Abstract

We study query containment in three closely related for-
malisms: monadic disjunctive Datalog (MDDLog), MMSNP
(a logical generalization of constraint satisfaction problems),
and ontology-mediated queries (OMQs) based on expressive
description logics and unions of conjunctive queries. Con-
tainment in MMSNP was known to be decidable due to a re-
sult by Feder and Vardi, but its exact complexity has remained
open. We prove 2NEXPTIME-completeness and extend this
result to monadic disjunctive Datalog and to OMQs.

Introduction
In knowledge representation with ontologies, data centric
applications have become a significant subject of research.
In such applications, ontologies are used to address incom-
pleteness and heterogeneity of the data, and for enriching it
with background knowledge (Calvanese et al. 2009). This
trend has given rise to the notion of an ontology-mediated
query (OMQ) which combines a database query with an on-
tology, often formulated in a description logic (DL). From a
data centric viewpoint, an OMQ can be viewed as a normal
database query that happens to consist of two components
(the ontology and the actual query). It is thus natural to study
OMQs in the same way as other query languages, aiming to
understand e.g. their expressive power and the complexity
of fundamental reasoning tasks such as query containment.
In this paper, we concentrate on the latter.

Containment of OMQs was first studied in (Levy and
Rousset 1996; Calvanese, De Giacomo, and Lenzerini 1998)
and more recently in (Calvanese, Ortiz, and Simkus 2011;
Bienvenu et al. 2014; Bienvenu, Lutz, and Wolter 2012). To
appreciate the usefulness of this reasoning task, it is impor-
tant to recall that real-world ontologies can be very large and
tend to change frequently. As a user of OMQs, one might
thus want to know whether the ontology used in an OMQ
can be replaced with a potentially much smaller module ex-
tracted from a large ontology or with a newly released ver-
sion of the ontology, without compromising query answers.
This requires to decide equivalence of OMQs, which can be
done by answering two containment questions. Containment
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can also serve as a central reasoning service when optimiz-
ing OMQs in static analysis (Bienvenu, Lutz, and Wolter
2012).

In the most general form of OMQ containment, the two
OMQs can involve different ontologies and the data schema
(ABox signature, in DL terms) can be restricted to a sub-
set of the signature of the ontologies. While results for this
form of containment have been obtained for inexpressive
DLs such as those of the DL-Lite and EL families (Bien-
venu, Lutz, and Wolter 2012), containment of OMQs based
on expressive DLs turned out to be a technically challeng-
ing problem. A step forward has been made in (Bienvenu
et al. 2014) where it was observed that there is a close re-
lationship between three groups of formalisms: (i) OMQs
based on expressive DLs, (ii) monadic disjunctive Datalog
(MDDLog) programs, and (iii) constraint satisfaction prob-
lems (CSPs) as well as their logical generalization MMSNP.
These observations have given rise to first complexity re-
sults for containment of OMQs based on expressive DLs,
namely NEXPTIME-completeness for several cases where
the actual query is an atomic query of the form A(x), with
A a monadic relation.

In this paper, we study containment in MDDLog, MM-
SNP, and OMQs that are based on expressive DLs, conjunc-
tive queries (CQ), and unions thereof (UCQs). A relevant
result is due to Feder and Vardi (1998) who show that con-
tainment of MMSNP sentences is decidable and that this
gives rise to decidability results for CSPs such as whether
the complement of a CSP is definable in monadic Datalog.
As shown in (Bienvenu et al. 2014), the complement of MM-
SNP is equivalent to Boolean MDDLog programs and to
Boolean OMQs with UCQs as the actual query. While these
results can be used to infer decidability of containment in the
mentioned query languages, they do not immediately yield
tight complexity bounds. In particular, Feder and Vardi de-
scribe their algorithm for containment in MMSNP only on a
very high level of abstraction, do not analyze its complexity,
and do not attempt to provide lower bounds. Also a subse-
quent study of MMSNP containment and related problems
did not clarify the precise complexity (Madelaine 2010).
Other issues to be addressed are that MMSNP containment
corresponds only to the containment of Boolean queries and
that the translation of OMQs into MMSNP involves a double
exponential blowup.



Our main contribution is to show that all of the men-
tioned containment problems are 2NEXPTIME-complete. In
particular, this is the case for MDDLog, MMSNP, OMQs
whose ontology is formulated in a DL between ALC and
SHI and where the actual queries are UCQs, and OMQs
whose ontology is formulated in a DL between ALCI and
SHI and where the actual queries are CQs. This closes
open problems from (Madelaine 2010) about MMSNP con-
tainment and from (Bienvenu, Lutz, and Wolter 2012) about
OMQ containment. In addition, clarifying the complexity
of MDDLog containment is interesting from the perspec-
tive of database theory, where Datalog containment has re-
ceived a lot of attention. While being undecidable in gen-
eral (Shmueli 1993), containment is known to be decidable
for monadic Datalog (Cosmadakis et al. 1988) and is in
fact 2EXPTIME-complete (Benedikt, Bourhis, and Senellart
2012). Here, we show that adding disjunction increases the
complexity to 2NEXPTIME. We refer to (Bourhis, Krötzsch,
and Rudolph 2015) for another recent work that generalizes
monadic Datalog containment, in an orthogonal direction. It
is interesting to note that all these previous works rely on the
existence of witness instances for non-containment which
have a tree-like shape. In MDDLog containment, such wit-
nesses are not guaranteed to exist which results in significant
technical challenges.

This paper is structured as follows. We first concen-
trate on MDDLog containment, establishing that contain-
ment of a Boolean MDDLog program in a Boolean conjunc-
tive query (CQ) is 2NEXPTIME-hard and that containment
in Boolean MDDLog is in 2NEXPTIME. We then general-
ize the upper bound to programs that are non-Boolean and
admit constant symbols. The lower bound uses a reduction
of a tiling problem and borrows queries from (Björklund,
Martens, and Schwentick 2008). For the upper bound, we
essentially follow the arguments of Feder and Vardi (1998),
but provide full details of all involved constructions and
carefully analyze the involved blowups. It turns out that
an MDDLog containment question Π1 ⊆ Π2 can be de-
cided non-deterministically in time single exponential in the
size of Π1 and double exponential in the size of Π2. To-
gether with some straightforward observations, this also set-
tles the complexity of MMSNP containment. We addition-
ally observe that FO- and Datalog-rewritability of MDDLog
programs and (the complements of) MMSNP sentences is
2NEXPTIME-hard.

We then consider containment between OMQs, starting
with the observation that the 2NEXPTIME lower bound for
MDDLog also yields that containment of an OMQ in a CQ is
2NEXPTIME-hard when ontologies are formulated in ALC
and UCQs are used as queries. The same is true for the con-
tainment of an OMQ in an OMQ, even when their ontologies
are identical. We then establish a matching upper bound by
translating OMQs to MDDLog and applying our results for
MDDLog containment. It is interesting that the complex-
ity is double exponential only in the size of the actual query
(which tends to be very small) and only single exponential in
the size of the ontology. We finally establish another 2NEX-
PTIME lower bound which applies to containment of OMQs
whose ontologies are formulated in ALCI and whose ac-

tual queries are CQs (instead of UCQs as in the first lower
bound). This requires a different reduction strategy which
borrows queries from (Lutz 2008).

Due to space limitations, we defer proof details
to the appendix, available at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

Preliminaries
A schema is a finite collection S = (S1, . . . , Sk) of relation
symbols with associated non-negative arity. An S-fact is
an expression of the form S(a1, . . . , an) where S ∈ S is
an n-ary relation symbol, and a1, . . . , an are elements of
some fixed, countably infinite set const of constants. An
S-instance I is a finite set of S-facts. The active domain
adom(I) of I is the set of all constants that occur in the
facts in I .

An S-query is semantically defined as a mapping q that
associates with every S-instance I a set of answers q(I) ⊆
adom(I)n, where n ≥ 0 is the arity of q. If n = 0, then
we say that q is Boolean and we write I |= q if () ∈ q(I).
We now introduce some concrete query languages. A con-
junctive query (CQ) takes the form ∃yϕ(x,y) where ϕ is
a conjunction of relational atoms and x, y denote tuples of
variables. The variables in x are called answer variables.
Semantically, ∃yϕ(x,y) denotes the query
q(I) = {(a1, . . . , an) ∈ adom(I)n | I |= ϕ[a1, . . . , an]}.

A union of conjunctive queries (UCQ) is a disjunction of
CQs with the same free variables. We now define disjunc-
tive Datalog programs, see also (Eiter, Gottlob, and Mannila
1997). A disjunctive Datalog rule ρ has the form

S1(x1) ∨ · · · ∨ Sm(xm)← R1(y1) ∧ · · · ∧Rn(yn)

where n > 0 and m ≥ 0.1 We refer to S1(x1) ∨ · · · ∨
Sm(xm) as the head of ρ, and to R1(y1) ∧ · · · ∧ Rn(yn)
as the body. Every variable that occurs in the head of a rule
ρ is required to also occur in the body of ρ. A disjunctive
Datalog (DDLog) program Π is a finite set of disjunctive
Datalog rules with a selected goal relation goal that does
not occur in rule bodies and appears only in non-disjunctive
goal rules goal(x) ← R1(x1) ∧ · · · ∧ Rn(xn). The arity
of Π is the arity of the goal relation. Relation symbols that
occur in the head of at least one rule of Π are intensional
(IDB) relations, and all remaining relation symbols in Π are
extensional (EDB) relations. Note that, by definition, goal is
an IDB relation. A DDLog program is called monadic or an
MDDLog program if all its IDB relations except goal have
arity at most one.

An S-instance, with S the set of all (IDB and EDB) rela-
tions in Π, is a model of Π if it satisfies all rules in Π. We use
Mod(Π) to denote the set of all models of Π. Semantically,
a DDLog program Π of arity n defines the following query
over the schema SE that consists of the EDB relations of Π:
for every SE-instance I ,

Π(I) = {a ∈ adom(I)n | goal(a) ∈ J for all
J ∈ Mod(Π) with I ⊆ J}.

1Empty rule heads (denoted ⊥) are sometimes disallowed. We
admit them only in our upper bound proofs, but do not use them
for lower bounds, thus achieving maximum generality.



Let Π1,Π2 be DDLog programs over the same EDB schema
SE and of the same arity. We say that Π1 is contained in
Π2, written Π1 ⊆ Π2, if for every SE-instance I , we have
Π1(I) ⊆ Π2(I).
Example 1. Consider the following MDDLog program Π1

over EDB schema SE = {A,B, r}:
A1(x) ∨A2(x) ← A(x)

goal(x) ← A1(x) ∧ r(x, y) ∧A1(y)
goal(x) ← A2(x) ∧ r(x, y) ∧A2(y)

Let Π2 consist of the single rule goal(x) ← B(x). Then
Π1 6⊆ Π2 is witnessed, for example, by the SE-instance
I = {r(a, a), A(a)}. It is interesting to note that there is
no tree-shaped SE-instance that can serve as a witness al-
though all rule bodies in Π1 and Π2 are tree-shaped. In
fact, a tree-shaped instance does not admit any answers to
Π1 because we can alternate A1 and A2 with the levels of
the tree, avoiding to make goal true anywhere.

An MMSNP sentence over schema SE has the
form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with X1, . . . , Xn monadic
second-order variables, x1, . . . , xm first-order variables, and
ϕ a conjunction of formulas of the form

α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0,

where each αi takes the formXi(xj) orR(x) withR ∈ SE ,
and each βi takes the form Xi(xj). This presentation is
syntactically different from, but semantically equivalent to
the original definition from (Feder and Vardi 1998), which
does not use the implication symbol and instead restricts
the allowed polarities of atoms. An MMSNP sentence ϕ
can serve as a Boolean query in the obvious way, that is,
I |= ϕ whenever ϕ evaluates to true on the instance I .
The containment problem in MMSNP coincides with log-
ical implication. See (Bodirsky, Chen, and Feder 2012;
Bodirsky and Dalmau 2013) for more information on MM-
SNP.

It was shown in (Bienvenu et al. 2014) that the com-
plement of an MMSNP sentence can be translated into an
equivalent Boolean MDDLog program in polynomial time
and vice versa. The involved complementation is irrele-
vant for the purposes of deciding containment since for any
two Boolean queries q1, q2, we have q1 ⊆ q2 if and only if
¬q1 6⊇ ¬q2. Consequently, any upper bound for contain-
ment in MDDLog also applies to MMSNP and so does any
lower bound for containment between Boolean MDDLog
programs.
Example 2. Let SE = {r}, r binary. The complement of
the MMSNP formula ∃R∃G∃B∀x∀y ψ over SE with ψ the
conjunction of

> → R(x) ∨G(x) ∨B(x)
C(x) ∧ r(x, y) ∧ C(y)→ ⊥ for C ∈ {R,G,B}

is equivalent to the Boolean MDDLog program

r(x, y)→ C(x) ∨ C(x) for C ∈ {R,G,B}
r(x, y)→ C(y) ∨ C(y) for C ∈ {R,G,B}

R(x) ∧G(x) ∧B(x)→ goal()
C(x) ∧ r(x, y) ∧ C(y)→ goal() for C ∈ {R,G,B}.

MDDLog and MMSNP: Lower Bounds
The first main aim of this paper is to establish the follow-
ing result. Point 3 closes an open problem from (Madelaine
2010).

Theorem 3. The following containment problems are
2NEXPTIME-complete:

1. of an MDDLog program in a CQ;
2. of an MDDLog program in an MDDLog program;
3. of two MMSNP sentences.

We prove the lower bounds by reduction of a tiling prob-
lem. It suffices to show that containment between a Boolean
MDDLog program and a Boolean CQ is 2NEXPTIME-hard.
A 2-exp square tiling problem is a triple P = (T,H,V)
where

• T = {T1, . . . , Tp}, p ≥ 1, is a finite set of tile types;

• H ⊆ T× T is a horizontal matching relation;

• V ⊆ T× T is a vertical matching relation.

An input to P is a word w ∈ T∗. Let w = Ti0 · · ·Tin .
A tiling for P and w is a map f : {0, . . . , 22n − 1} ×
{0, . . . , 22n − 1} → T such that f(0, j) = Tij for 0 ≤
j ≤ n, (f(i, j), f(i + 1, j)) ∈ H for 0 ≤ i < 22n

,
and (f(i, j), f(i, j + 1)) ∈ V for 0 ≤ i < 22n

. It is
2NEXPTIME-hard to decide, given a 2-exp square tiling
problem P and an input w to P , whether there is a tiling
for P and w.

For the reduction, let P be a 2-exp square tiling problem
and w0 an input to P of length n. We construct a Boolean
MDDLog program Π and a Boolean CQ q such that Π ⊆ q
iff there is a tiling for P and w0. To get a first intuition, as-
sume that instances I have the form of a (potentially partial)
22n×22n

-grid in which the horizontal and vertical positions
of grid nodes are identified by binary counters, described in
more detail later on. We construct q such that I |= q iff I
contains a counting defect, that is, if the counters in I are
not properly incremented or assign multiple counter values
to the same node. Π is constructed such that on instances
I without counting defects, I |= Π iff the partial grid in I
does not admit a tiling for P and w0. Note that this gives
the desired result: if there is no tiling for P and w0, then
an instance I that represents the full 22n × 22n

-grid (with-
out counting defects) shows Π 6⊆ q; conversely, if there is
a tiling for P and w0, then I 6|= q means that there is no
counting defect in I and thus I 6|= Π.

We now detail the exact form of the grid and the coun-
ters. Some of the constants in the input instance serve
as grid nodes in the 22n × 22n

-grid while other constants
serve different purposes described below. To identify the
position of a grid node a, we use a binary counter whose
value is stored at the 2m leaves of a binary counting tree
with root a and depth m := n + 1. The depth of count-
ing trees is m instead of n because we need to store the
horizontal position (first 2n bits of the counter) as well as
the vertical position (second 2n bits). The binary relation
r is used to connect successors. To distinguish left and
right successors, every left successor a has an attached left
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Figure 1: A grid cell (counting trees in grey).

navigation gadget r(a, a1), r(a1, a2), jump(a, a2) and ev-
ery right successor a has an attached right navigation gadget
r(a, a1), jump(a, a1)—these gadgets will be used in the for-
mulation of the query q later on.

If a grid node a2 represents the right neighbor of grid node
a1, then there is some node b such that r(a1, b), r(b, a2).
The node b is called a horizontal step node. Likewise, if a2

represents the upper neighbor of a1, then there must also be
some b with r(a1, b), r(b, a2) and we call b a vertical step
node. In addition, for each grid node a there must be a node
c such that r(a, c), r(c, a) and we call c a self step node. We
make sure that, just like grid nodes, all three types of step
node have an attached counting tree. Figure 1 illustrates the
representation of a single grid cell.

We need to make sure that counters are properly incre-
mented when transitioning to right and upper neighbors via
step nodes. To achieve this, each counting tree actually
stores two counter values via monadic relationsB1, B1 (first
value) and B2, B2 (second value) at the leaves of the tree,
where Bi indicates bit value one and Bi bit value zero.
While the B1-value represents the actual position of the
node in the grid, the B2-value is copied from the B1-values
of its predecessor nodes (which must be identical). In fact,
the query q to be defined later shall guarantee that

(Q1) whenever r(a1, a2) and a1 is associated (via a count-
ing tree) with B1-value k1 and a2 is associated with B2-
value k2, then k1 = k2;

(Q2) every node is associated (via counting trees) with at
most one B1-value.

Between neighboring grid and step nodes, counter values are
thus copied as described in (Q1) above, but not incremented.
Incrementation takes place inside counting trees, as follows:
at grid nodes and at self step nodes, the two values are iden-
tical; at horizontal (resp. vertical) step nodes, the B1-value
is obtained from the B2-value by incrementing the horizon-
tal part and keeping the vertical part (resp. incrementing the
vertical part and keeping the horizontal part).

We now construct the program Π. As the EDB schema,
we use SE = {r, jump, B1, B2, B1, B2} where r and jump
are binary and all other relations are monadic. We first de-
fine rules which verify that a grid or self step node has a
proper counting tree attached to it (in which both counters

are identical):

left(x)← r(x, y) ∧ r(y, z) ∧ jump(x, z)
right(x)← r(x, y) ∧ jump(x, y)
lrok(x)← left(x)
lrok(x)← right(x)

levGm(x)← B1(x) ∧B2(x) ∧ lrok(x)

levGm(x)← B1(x) ∧B2(x) ∧ lrok(x)

levGi (x)← r(x, y1) ∧ levGi+1(y1) ∧ left(y1)∧
r(x, y2) ∧ levGi+1(y2) ∧ right(y2)

for 0 ≤ i < m. We call a constant a of an instance I g-
active if it has all required structures attached to serve as a
grid node. Such constants are marked by the IDB relation
gactive:

gactive(x)← levG0 (x) ∧ r(x, y) ∧ levG0 (y) ∧ r(y, x)

We also want horizontal and vertical step nodes to be roots of
the required counting trees. The difference to the counting
trees below grid / self step nodes is that we need to incre-
ment the counters. This requires modifying the rules with
head relation levGi above. We only consider horizontal step
nodes explicitly as vertical ones are very similar. The rela-
tions B1, B1 and B2, B2 give rise to a labeling of the leaf
nodes that defines a word over the alphabet Σ = {0, 1}2
where symbol (i, j) means that the bit encoded via B1, B1

has value i and the bit encoded via B2, B2 has value j. En-
suring that the B1-value is obtained by incrementation from
the B2-value (least significant bit at the left-most leaf) then
corresponds to enforcing that the leaf word is from the regu-
lar language L = (0, 1)∗(1, 0)((0, 0) + (1, 1))∗. To achieve
this, we consider the languages L1 = (0, 1)∗, L2 = L, and
L3 = ((0, 0) + (1, 1))∗. Instead of level relations levGi , we
use relations levH,`i where ` ∈ {1, 2, 3} indicates that the
leaf word of the subtree belongs to the language L`:

levH,1m (x)← B1(x) ∧B2(x) ∧ lrok(x)

levH,2m (x)← B1(x) ∧B2(x) ∧ lrok(x)

levH,3m (x)← B1(x) ∧B2(x) ∧ lrok(x)

levH,3m (x)← B1(x) ∧B2(x) ∧ lrok(x)

levH,`3i (x)← r(x, y1) ∧ levH,`1i+1 (y1) ∧ left(y1)∧
r(x, y2) ∧ levH,`2i+1 (y2) ∧ right(y2)

where 1 ≤ i < m and (`1, `2, `3) ∈ {(1, 1, 1), (1, 2, 2),
(2, 3, 2), (3, 3, 3)}. We call a constant of an instance h-
active if it is the root of a counting tree that implements
incrementation of the horizontal position (left subtree of the
root) and does not change the vertical position (right subtree
of the root), identified by the IDB relation hactive:

hactive(x)← r(x, y1) ∧ levH,`21 (y1) ∧ left(y1)∧
r(x, y2) ∧ levH,`31 (y2) ∧ right(y2)

We omit the rules for the corresponding IDB relation
vactive. Call the fragment of Π that we have constructed
up to this point Πtree.



Recall that we want an instance to make Π true if it admits
no tiling for P and w. We thus label all g-active nodes with
a tile type: ∨

Ti∈T
Ti(x)← gactive(x)

It then remains to trigger the goal relation whenever there
is a defect in the tiling. Thus add for all Ti, Tj ∈ T with
(Ti, Tj) /∈ H:

goal()← Ti(x) ∧ gactive(x) ∧ r(x, y) ∧ hactive(y)∧
r(y, z) ∧ Tj(z) ∧ gactive(z)

and for all Ti, Tj ∈ T with (Ti, Tj) /∈ V :

goal()← Ti(x) ∧ gactive(x) ∧ r(x, y) ∧ vactive(y)∧
r(y, z) ∧ Tj(z) ∧ gactive(z)

The last kind of defect concerns the initial condition. Let
w0 = Ti0 · · ·Tin−1

. It is tedious but not difficult to write
rules which ensure that, for all i < n, every g-active element
whose B1-value represents horizontal position i and vertical
position 0 satisfies the monadic IDB relation posi,0. We then
put for all j < n and all T` ∈ T with T` 6= Tij :

goal()← posj,0(x) ∧ T`(x).

We now turn to the definition of q; recall that we want it to
achieve conditions (Q1) and (Q2) above. Due to the pres-
ence of self step nodes and since the counting trees below
self step nodes and grid nodes must have identical values for
the two counters, it can be verified that (Q1) implies (Q2).
Therefore, we only need to achieve (Q1). We use as q a mi-
nor variation of a CQ constructed in (Björklund, Martens,
and Schwentick 2008) for a similar purpose. We first con-
stuct a UCQ and show in the appendix how to replace it with
a CQ, which also involves some minor additions to the pro-
gram Πtree above.

The UCQ q makes essential use of the left and right navi-
gation gadgets in counting trees. It uses a subquery qm(x, y)
constructed such that x and y can only be mapped to corre-
sponding leaves in successive counting trees, that is, (i) the
roots of the trees are connected by the relation r and (ii) x
can be reached from the root of the first tree by following
the same sequence of left and right successors that one also
needs to follow to reach y from the root of the second tree.
To define qm(x, y), we inductively define queries qi(x, y)
for all i ≤ m, starting with q0(x, y) = r(x0, y0) and setting,
for 0 < i ≤ m,

qi(xi,yi) = ∃xi−1∃yi−1∃zi,0 · · · ∃zi,i+2∃z′i,1 · · · ∃z′i,i+3

qi−1(xi−1, yi−1) ∧ r(xi−1, xi) ∧ r(yi−1, yi)∧
jump(xi, zi,i+2) ∧ jump(yi, z

′
i,i+3)∧

r(zi,0, zi,1) ∧ · · · ∧ r(zi,i+1, zi,i+2)∧
r(zi,0, z

′
i,1) ∧ r(zi,1, z′i,2) ∧ · · · ∧ r(z′i,i+2, z

′
i,i+3)

The r-atom in q0 corresponds to the move from the root of
one counting tree to the root of a successive tree, the atoms
r(xi−1, xi) and r(yi−1, yi) in qi correspond to moving down
the i-th step in both trees, and the remaining atoms in qi
make sure that both of these steps are to a left successor
or to a right successor. We make essential use of the jump
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Figure 2: The first CQ in q.

relation here, which shortcuts an edge on the path to the root
for left successors, but not for right successors. Additional
explanation is provided in the appendix. It is now easy to
define the desired UCQ that achieves (Q1):

q=∃xm∃ym qm(xm, ym) ∧B1(xm) ∧B2(ym)

∨∃xm∃ym qm(xm, ym) ∧B1(xm) ∧B2(ym)

The first CQ in q is displayed in Figure 4.
Lemma 4. Π 6⊆ q iff there is no tiling for P and w0.

This finishes the proof of the lower bounds stated in Theo-
rem 3. Before proceeding, we note that the lower bound can
be adapted to important rewritability questions. A query is
FO-rewritable if there is an equivalent first-order query and
(monadic) Datalog-rewritable if there is an equivalent (non-
disjunctive) (monadic) Datalog query. FO-Rewritability of
a query is desirable since it allows to use conventional
SQL database systems for query answering, and likewise for
Datalog-rewritability and Datalog engines. For this reason,
FO- and Datalog-rewritability have received a lot of atten-
tion. For example, they have been studied for OMQs in (Bi-
envenu et al. 2014) and for CSPs in (Feder and Vardi 1998;
Larose, Loten, and Tardif 2007). Monadic Datalog is an in-
teresting target as it constitutes an extremely well-behaved
fragment of Datalog. It is open whether the known decid-
ability of FO- and (monadic) Datalog-rewritability gener-
alizes from CSPs to MMSNP. We observe here that these
problems are at least 2NEXPTIME-hard. The proof is by a
simple modification of the reduction presented above.
Theorem 5. For MDDLog programs and the complements
of MMSNP sentences, rewritability into FO, into monadic
Datalog, and into Datalog are 2NEXPTIME-hard.

MDDLog and MMSNP: Upper Bounds
The aim of this section is to establish the upper bounds
stated in Theorem 3. It suffices to concentrate on MDDLog
since the result for MMSNP follows. We first consider only
Boolean MDDLog programs and then show how to extend
the upper bound to MDDLog programs of any arity.

Our main algorithm is essentially the one described in
(Feder and Vardi 1998). Since the constructions are de-
scribed by Feder and Vardi only on an extremely high level



of abstraction and without providing any analysis of the al-
gorithm’s running time, we give full details and proofs (in
the appendix). The algorithm for deciding Π1 ⊆ Π2 pro-
ceeds in three steps. First, Π1 and Π2 are converted into
a simplified form, then containment between the resulting
programs ΠS

1 and ΠS
2 is reduced to a certain emptiness prob-

lem, and finally that problem is decided. A technical com-
plication is posed by the fact that the construction of ΠS

1 and
ΠS

2 does not preserve containment in a strict sense. In fact,
Π1 ⊆ Π2 only implies ΠS

1 ⊆ ΠS
2 on instances of a certain

minimum girth. To address this issue, we have to be careful
about the girth in all three steps and can finally resolve the
problem in the last step.

We now define the notion of girth. For an n-ary re-
lation symbol S, pos(S) is {1, . . . , n}. A finite struc-
ture I has a cycle of length n if it contains distinct facts
R0(a0), . . . , Rn−1(an−1), ai = ai,1 · · · ai,mi

, and there are
positions pi, p′i ∈ pos(Ri), 0 ≤ i < n such that:

• pi 6= p′i for 1 ≤ i ≤ n;

• ai,p′i = ai⊕1,pi⊕1
for 0 ≤ i < n, where ⊕ denotes addi-

tion modulo n.

The girth of I is the length of the shortest cycle in it and∞
if I has no cycle (in which case we say that I is a tree).

For MDDLog programs Π1,Π2 over the same EDB
schema and k ≥ 0, we write Π1 ⊆>k Π2 if Π1(I) ⊆ Π2(I)
for all S-instances of girth exceeding k.

Throughout the proof, we have to carefully analyze the
running time of the algorithm, considering various measures
for MDDLog programs. The size of an MDDLog program
Π, denoted |Π|, is the number of symbols needed to write
Π where relation and variable names are counted as having
length one. The rule size of an MDDLog program is the
maximum size of a rule in Π. The atom width (resp. variable
width) of Π is the maximum number of atoms in any rule
body (resp. variables in any rule) in Π.

From Unrestricted to Simple Programs An MDDLog
program ΠS is simple if it satisfies the following conditions:

1. every rule in ΠS comprises at most one EDB atom and
this atom contains all variables of the rule body, each vari-
able exactly once;

2. rules without an EDB atom contain at most a single vari-
able.

The conversion to simple form changes the EDB schema and
thus the semantics of the involved queries, but it (almost)
preserves containment, as detailed by the next theorem. The
theorem is implicit in (Feder and Vardi 1998) and our con-
tribution is to analyze the size of the constructed MDDLog
programs and to provide detailed proofs. The same applies
to the other theorems stated in this section.

Theorem 6. Let Π1,Π2 be Boolean MDDLog programs
over EDB schema SE . Then one can construct simple
Boolean MDDLog programs ΠS

1 ,Π
S
2 over EDB schema S′E

such that

1. Π1 6⊆ Π2 implies ΠS
1 6⊆ ΠS

2 ;
2. ΠS

1 6⊆>w ΠS
2 implies Π1 6⊆>w Π2

where w is the atom width of Π1 ∪ Π2. Moreover, if r is the
number of rules in Π1 ∪Π2 and s the rule size, then

3. |ΠS
i | ≤ p(r · 2s);

4. the variable width of ΠS
i is bounded by that of Πi;

5. |S′E | ≤ p(r · 2s);
where p is a polynomial. The construction takes time poly-
nomial in |ΠS

1 ∪ΠS
2 |.

A detailed proof of Theorem 6 is given in the appendix.
Here, we only sketch the construction, which consists of sev-
eral steps. We concentrate on a single Boolean MDDLog
program Π. In the first step, we extend Π with all rules that
can be obtained from a rule in Π by consistently identifying
variables. We then split up each rule in Π into multiple rules
by introducing fresh IDB relations whenever this is possible.
After this second step, we obtain a program which satisfies
the following conditions:

(i) all rule bodies are biconnected, that is, when any single
variable is removed from the body (by deleting all atoms
that contain it), then the resulting rule body is still con-
nected;

(ii) if R(x, . . . , x) occurs in a rule body with R EDB, then
the body contains no other EDB atoms.

In the final step, we transform every rule as follows: we re-
place all EDB atoms in the rule body by a single EDB atom
that uses a fresh EDB relation which represents the conjunc-
tion of all atoms replaced. Additionally, we need to take
care of implications between the new EDB relations, which
gives rise to additional rules. The last step of the conversion
is the most important one, and it is the reason for why we
can only use instances of a certain girth in Point 2 of Theo-
rem 6. Assume, for example, that, before the last step, the
program had contained the following rules, where A and r
are EDB relations:

P (x3)← A(x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x1)
goal()← r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x1)∧

P (x1) ∧ P (x2) ∧ P (x3)

A new ternary EDB relation Rq2 is introduced for the EDB
body atoms of the lower rule, where q2 = r(x1, x2) ∧
r(x2, x3) ∧ r(x3, x1), and a new ternary EDB relation Rq1
is introduced for the upper rule, q1 = A(x1) ∧ q2. Then the
rules are replaced with
P (x3)← Rq1(x1, x2, x3)
goal()← Rq2(x1, x2, x3) ∧ P (x1) ∧ P (x2) ∧ P (x3)
goal()← Rq1(x1, x2, x3) ∧ P (x1) ∧ P (x2) ∧ P (x3)

Note that q1 ⊆ q2, which results in two copies of the goal
rule to be generated. To understand the issues with girth,
consider the S′E-instance I defined by

Rq1(a, a′, c′), Rq1(b, b′, a′), Rq1(c, c′, b′).

The goal rules from the simplified program do not apply. But
when translating into an SE-instance J in the obvious way,
the goal rule of the original program does apply. The intu-
itive reason is that, when we translate J back to I , we get
additional facts Rq2(a′, b′, c′), Rq2(b′, c′, a′), Rq2(c′, a′, b′)
that are ‘missed’ in I . Such effects can only happen on in-
stances whose girth is at most w, such as I .



From Containment to Relativized Emptiness A dis-
jointness constraint is a rule of the form ⊥ ← P1(x)∧ · · · ∧
Pn(x) where all relations are of the same arity and at most
unary. Let Π be a Boolean MDDLog program over EDB
schema SE and D a set of disjointness constraints over SE .
We say that Π is semi-simple w.r.t. D if Π is simple when all
relations that occur in D are viewed as IDB relations. We
say that Π is empty w.r.t. D if for all SE-instances I with
I |= D, we have I 6|= Π. The problem of relativized empti-
ness is to decide, given a Boolean MDDLog program Π and
a set of disjointness constraintsD such that Π is semi-simple
w.r.t. D, whether Π is empty w.r.t. D.
Theorem 7. Let Π1,Π2 be simple Boolean MDDLog pro-
grams over EDB schema SE . Then one can construct a
Boolean MDDLog program Π over EDB schema S′E and
a set of disjointness constraints D over S′E such that Π is
semi-simple w.r.t. D and

1. if Π1 6⊆ Π2, then Π is non-empty w.r.t. D;
2. if Π is non-empty w.r.t. D on instances of girth > g, for

some g > 0, then Π1 6⊆>g Π2;
Moreover,

3. |Π| ≤ |Π1| · 2|SI,2|·v1 , |D| ≤ O(|SI,2|);
4. the variable width of Π ∪ D is bounded by the variable

width of Π1 ∪Π2;
5. |S′E | ≤ |SE |+ |Π2|.
where v1 is the variable width of Π1 and SI,2 is the IDB
schema of Π2. The construction takes time polynomial in
|Π ∪D|.

Note that, in Point 2 of Theorem 7, girth one instances are
excluded.

To prove Theorem 7, let Π1,Π2 be simple Boolean
MDDLog programs over EDB schema SE . For i ∈ {1, 2},
let SI,i be the set of IDB relations in Πi with goal relations
goali ∈ SI,i and assume w.l.o.g. that SI,1 ∩ SI,2 = ∅. Set
S′E := SE∪SI,2∪{P | P ∈ SI,2}. The MDDLog program
Π is constructed in two steps. We first add to Π every rule
that can be obtained from a rule ρ in Π1 by extending the
rule body with
• P (x) or P (x), for every variable x in ρ and every unary
P ∈ SI,2, and

• P () or P () for every nullary P ∈ SI,2; for P = goal2,
we always include P () but never P ().

In the second step of the construction, we remove from Π
every rule ρ whose body being true implies that a rule from
Π2 is violated, that is, there is a rule whose body is the CQ
q(x) and with head P1(y1) ∨ · · · ∨ Pn(yn) and a variable
substitution σ such that2

• σ(q) is a subset of the body of ρ and

• Pi(σ(yi)) is in the body of ρ, for 1 ≤ i ≤ n.
The goal relation of Π is goal1(). The set of disjointness
constraints D then consists of all rules ⊥ ← P (x) ∧ P (x)
for each unaryP ∈ SI,2 and⊥ ← P ()∧P () for each nullary

2Of course, each yi consists of either zero or one variable.

P ∈ SI,2. It is not hard to verify that Π and D satisfy the
size bounds from Theorem 7. We show in the appendix that
Π satisfies Points 1 and 2 of Theorem 7.

Deciding Relativized Emptiness We now show how to
decide emptiness of an MDDLog program Π w.r.t. a set of
disjointness constraints D assuming that Π is semi-simple
w.r.t. D.

Theorem 8. Given a Boolean MDDLog program Π over
EDB schema SE and a set of disjointness constraintsD over
SE such that Π is semi-simple w.r.t. D, one can decide non-
deterministically in time O(|Π|3) · 2O(|D|·v) whether Π is
empty w.r.t. D, where v is the variable width of Π.

Let Π be a Boolean MDDLog program over EDB schema
SE and let D be a set of disjointness constraints over SE
such that Π is semi-simple w.r.t.D. To prove Theorem 8, we
show how to construct a finite set of SE-instances satisfying
D such that Π is empty w.r.t. D if and only if it is empty
in the constructed set of instances. Let SD be the set of all
EDB relations that occur in D. For i ∈ {0, 1}, an i-type is a
set t of i-ary relation symbols from SD such that t does not
contain all EDB relations that co-occur in a disjointness rule
in D. The 0-type of an instance I is the set θ of all nullary
P ∈ SD with P () ∈ I . For each constant a of I , we use ta
to denote the 1-type that a has in I , that is, ta contains all
unary P ∈ SD with P (a) ∈ I .

We build an SE-instance Kθ for each 0-type θ. The ele-
ments of Kθ are exactly the 1-types and Kθ consists of the
following facts:

• P (t) for each 1-type t and each P ∈ t;
• R(t1, . . . , tn) for each relation R ∈ SE \ SD and all 1-

types t1, . . . , tn;

• P () for each nullary P ∈ θ.

Note that, by construction, Kθ is an SE-instance that satis-
fies all constraints in D.

Lemma 9. Π is empty w.r.t. D iff Kθ 6|= Π for all 0-types θ.

By Lemma 9, we can decide emptiness of Π by construct-
ing all instances Kθ and then checking whether Kθ 6|= Π.
The latter is done by guessing an extension K ′θ of Kθ to the
IDB relations in Π that does not contain the goal relation,
and then verifying by an iteration over all possible homo-
morphisms from rule bodies in Π to K ′θ that all rules in Π
are satisfied in K ′θ.

Lemma 10. The algorithm for deciding relativized empti-
ness runs in time O(|Π|3) · 2O(|D|·v).

We still have to address the girth restrictions in Theo-
rems 6 and 7, which are not reflected in Theorem 8. In fact, it
suffices to observe that relativized emptiness is independent
of the girth of witnessing structures. This is made precise by
the following result.

Lemma 11. For every Boolean MDDLog program Π over
EDB schema SE and set of disjointness constraints D over
SE such that Π is semi-simple w.r.t. D, the following are
equivalent for any g ≥ 0:

1. Π is empty regarding D and



2. Π is empty regarding D and instances of girth exceed-
ing g.
The proof of Lemma 11 uses a translation of semi-simple

MDDLog programs with disjointness constraints into a con-
straint satisfaction problem (CSP) and invokes a combina-
torial lemma by Feder and Vardi (and, originally, Erdős), to
transform instances into instances of high girth while pre-
serving certain homomorphisms.

Deriving Upper Bounds We exploit the results just ob-
tained to derive upper complexity bounds, starting with
Boolean MDDLog programs and MMSNP sentences. In the
following theorem, note that for deciding Π1 ⊆ Π2, the con-
tribution of Π2 to the complexity is exponentially larger than
that of Π1.
Theorem 12. Containment between Boolean MDDLog pro-
grams and between MMSNP sentences is in 2NEXPTIME.
More precisely, for Boolean MDDLog programs Π1 and Π2,
it can be decided non-deterministically in time 22p(|Π2|·log|Π1|)

whether Π1 ⊆ Π2, p a polynomial.
We now extend Theorem 12 to MDDLog programs of

unrestricted arity. Since this is easier to do when con-
stants can be used in place of variables in rules, we actu-
ally generalize Theorem 12 by allowing both constants in
rules and unrestricted arity. For clarity, we speak about
MDDLogc programs whenever we allow constants in rules.
First, we show how to (Turing) reduce containment between
MDDLogc programs of unrestricted arity to containment be-
tween Boolean MDDLogc programs. The idea essentially is
to replace answer variables with fresh constants.

Let Π1, Π2 be MDDLogc programs of arity k and let C
be the set of constants in Π1 ∪ Π2, extended with k fresh
constants. We define Boolean MDDLogc programs Πa

1 , Πa
2

for each tuple a over C of arity k. If a = (a1, . . . , ak),
then Πa

i is obtained from Πi by modifying each goal rule
ρ = goal(x)← q with x = (x1, . . . , xk) as follows:
• if there are i, j such that xi = xj and ai 6= aj , then

discard ρ;
• otherwise, replace ρ with goal() ← q′ where q′ is ob-

tained from q by replacing each xi with ai.
In the appendix, we show the following.
Lemma 13. Π1 ⊆ Π2 iff Πa

1 ⊆ Πa
2 for all a ∈ Ck.

This provides the desired Turing reduction to the Boolean
case, with constants. Note that the size of Πa

i is bounded
by that of Πi, and likewise for all other relevant measures.
The number of required containment tests is bounded by
2|Π1∪Π2|2 , a factor that is absorbed by the bounds in The-
orem 12.

It remains to reduce containment between Boolean
MDDLogc programs to containment between Boolean
MDDLog programs. The general idea is to replace constants
with fresh monadic EDB relations. Of course, we have to be
careful because the extension of these fresh relations in an
instance need not be a singleton set. Let Π1, Π2 be Boolean
MDDLogc programs over EDB schema SE and let C be the
set of constants in Π1 ∪ Π2. The EDB schema S′E is ob-
tained by extending SE with a monadic relation Ra for each

a ∈ C. For i ∈ {1, 2}, the Boolean MDDLog program Π′i
over EDB schema S′E contains all rules that can be obtained
from a rule ρ from Πi by choosing a partial function δ that
maps the terms (variables and constants) in ρ to the relations
in S′E \ SE such that each constant a is mapped to Ra and
then

1. replacing every occurrence of a term t ∈ dom(δ) in the
body of ρ with a fresh variable and every occurrence of t
in the head of ρ with one of the variables introduced for t
in the rule body;

2. addingRa(x) to the rule body whenever some occurrence
of a variable x0 in the original rule has been replaced with
x and δ(x0) = Ra.

For example, the rule P1(y) ∨ P2(y)← r(x, y, y) ∧ s(y, z)
in Πi gives rise, among others, to the following rule in Π′i:

P1(y3) ∨ P2(y1)← r(x1, y1, y2) ∧ s(y3, z) ∧Ra1
(x1)∧

Ra2
(y1) ∧Ra2

(y2) ∧Ra2
(y3).

The above rule treats the case where the variable x from
the original rule is mapped to the constant a1, y to a2, and
z not to any constant in C. Note that the original vari-
ables x and y have been duplicated because Ra1

and Ra2

need not be singletons while a1 and a2 denote a single ob-
ject. So intuitively, Π′i treats its input instance I as if it was
the quotient I ′ of I obtained by identifying all a1, a2 with
Rb(a1), Rb(a2) ∈ I for some b ∈ C. In addition to the
above rules, Π′2 also contains goal() ← Ra1

(x) ∧ Ra2
(x)

for all distinct a1, a2 ∈ C.

Lemma 14. Π1 ⊆ Π2 iff Π′1 ⊆ Π′2.

It can be verified that |Π′i| ≤ 2|Π
′
i|

2

and that the rule size
of Π′i is bounded by twice the rule size of Πi. Because of
the latter, the simplification of the programs Π′i according to
Theorem 6 yields programs whose size is still bounded by
2p(|Πi|), as in the proof of Theorem 12, and whose variable
width is bounded by twice the variable width of Πi. It is
thus easy to check that we obtain the same overall bounds as
stated in Theorem 12.

Theorem 15. Containment between MDDLog programs of
any arity and with constants is in 2NEXPTIME. More pre-
cisely, for programs Π1 and Π2, it can be decided non-
deterministically in time 22p(|Π2|·log|Π1|) whether Π1 ⊆ Π2,
p a polynomial.

Ontology-Mediated Queries
We now consider containment between ontology-mediated
queries based on description logics, which we introduce
next.

An ontology-mediated query (OMQ) over a schema SE is
a triple (T ,SE , q), where T is a TBox formulated in a de-
scription logic and q is a query over the schema SE∪sig(T ),
with sig(T ) the set of relation symbols used in T . The TBox
can introduce symbols that are not in SE , which allows it to
enrich the schema of the query q. As the TBox language, we
use the description logic ALC, its extension ALCI with in-
verse roles, and the further extension SHI of ALCI with



transitive roles and role hierarchies. Since all these log-
ics admit only unary and binary relations, we assume that
these are the only allowed arities in schemas throughout the
section. As the actual query language, we use UCQs and
CQs. The OMQ languages that these choices give rise to are
denoted with (ALC,UCQ), (ALCI,UCQ), (SHI,UCQ),
and so on. In OMQs (T ,SE , q) from (SHI,UCQ), we dis-
allow superroles of transitive roles in q; it is known that al-
lowing transitive roles in the query poses serious additional
complications, which are outside the scope of this paper,
see e.g. (Bienvenu et al. 2010; Gottlob, Pieris, and Tendera
2013). The semantics of an OMQ is given in terms of cer-
tain answers. We refer to the appendix for further details
and only give an example of an OMQ from (ALC,UCQ).
Example 16. Let the OMQ Q = (T ,SE , q) be given by

T = { ∃manages.Project v Manager,
Employee v Male t Female }

SE = {Employee,Project,Male,Female,manages}
q(x) = Manager(x) ∧ Female(x)

On the SE-instance

manages(e1, e2),Female(e1),Project(e2),
manages(e′1, e2),Employee(e′1),

the only certain answer to Q is e1.
Let Qi = (Ti,SE , qi), i ∈ {1, 2}. Then Q1 is contained

in Q2, written Q1 ⊆ Q2, if for every SE-instance I , the cer-
tain answers toQ1 on I are a subset of the certain answers to
Q2 on I . The query containment problems between OMQs
considered in (Bienvenu, Lutz, and Wolter 2012) are closely
related to ours, but concern different (weaker) OMQ lan-
guages. One difference in setup is that, there, the definition
of “contained in” does not refer to all SE-instances I , but
only to those that are consistent with both T1 and T2. Our
results apply to both notions of consistency. In fact, we show
in the appendix that consistent containment between OMQs
can be reduced in polynomial time to unrestricted contain-
ment as studied in this paper, and in our lower bound we
use TBoxes that are consistent w.r.t. all instances. We use
|T | and |q| to denote the size of a TBox T and a query q,
defined as for MDDLog programs.

The following is the main result on OMQs established in
this paper. It solves an open problem from (Bienvenu, Lutz,
and Wolter 2012).
Theorem 17. The following containment problems are
2NEXPTIME-complete:

1. of an (ALC,UCQ)-OMQ in a CQ;
2. of an (ALC,UCQ)-OMQ in an (ALC,UCQ)-OMQ;
3. of an (ALCI,CQ)-OMQ in an (ALCI,CQ)-OMQ;
4. of a (SHI,UCQ)-OMQ in a (SHI,UCQ)-OMQ.
The lower bounds apply already when the TBoxes of the two
OMQs are identical.

We start with the lower bounds. For Point 1 and 2 of
Theorem 17, we make use of the lower bound that we
have already obtained for MDDLog. It was observed in
(Bienvenu et al. 2013; 2014) that both (ALC,UCQ) and

(SHI,UCQ) have the same expressive power as MDDLog
restricted to unary and binary EDB relations. In fact, every
such MDDLog program can be translated into an equiva-
lent OMQ from (ALC,UCQ) in polynomial time. Thus, the
lower bounds in Point 1 and 2 of Theorem 17 are a conse-
quence of those in Theorem 3.

The lower bound stated in Point 3 of Theorem 17 is
proved by a non-trivial reduction of the 2-exp torus tiling
problem. Compared to the reduction that we have used for
MDDLog, some major changes are required. In particular,
the queries used there do not seem to be suitable for this
case, and thus we replace them by a different set of queries
originally introduced in (Lutz 2008). Details are in the ap-
pendix. It can be shown exactly as in the proof of Theo-
rem 3 in (Bienvenu, Lutz, and Wolter 2012) that, in the lower
bounds in Points 2 and 3, we can assume the TBoxes of the
two OMQs to be identical.

We note in passing that we again obtain corresponding
lower bounds for rewritability.

Theorem 18. In (ALC,UCQ) and (ALCI,CQ),
rewritability into FO, into monadic Datalog, and into
Datalog is 2NEXPTIME-hard.

Now for the upper bounds in Theorem 17. The translation
of OMQs into MDDLog programs is more involved than the
converse direction, a naive attempt resulting in an MDDLog
program with existential quantifiers in the rule heads. We
next analyze the blowups involved. The construction used in
the proof of the following theorem is a refinement of a con-
struction from (Bienvenu et al. 2013), resulting in improved
bounds.

Theorem 19. For every OMQ Q = (T ,SE , q) from
(SHI,UCQ), one can construct an equivalent MDDLog
program Π such that

1. |Π| ≤ 22p(|q|·log|T |)
;

2. the IDB schema of Π is of size 2p(|q|·log|T |);
3. the rule size of Π is bounded by |q|
where p is a polynomial. The construction takes time poly-
nomial in |Π|.

We now use Theorem 19 to derive an upper complexity
bound for containment in (SHI,UCQ). While there are
double exponential blowups both in Theorem 15 and in The-
orem 19, a careful analysis reveals that they do not add up
and, overall, still give rise to a 2NEXPTIME upper bound.
In contrast to Theorem 12, though, we only get an algo-
rithm whose running time is double exponential in both in-
puts (T1,SE , q1) and (T2,SE , q2). However, it is double
exponential only in the size of the actual queries q1 and q2

while being only single exponential in the size of the TBoxes
T1 and T2. This is good news since the size of q1 and q2

is typically very small compared to the sizes of T1 and T2.
For this reason, it can even be reasonable to assume that the
sizes of q1 and q2 are constant, in the same way in which the
size of the query is assumed to be constant in classical data
complexity. Note that, under this assumption, we obtain a
NEXPTIME upper bound for containment.



Theorem 20. Containment between OMQs from
(SHI,UCQ) is in 2NEXPTIME. More precisely, for
OMQs Q1 = (T1,SE , q1) and Q2 = (T2,SE , q2), it can be
decided non-deterministically in time 22p(|q1|·|q2|·log|T1|·log|T2|)

whether Q1 ⊆ Q2, p a polynomial.

Outlook
There are several interesting questions left open. One is
whether decidability of containment in MMSNP generalizes
to GMSNP, where IDB relations can have any arity and rules
must be frontier-guarded (Bienvenu et al. 2014) or even to
frontier-guarded disjunctive TGDs, which are the extension
of GMSNP with existential quantification in the rule head
(Bourhis, Morak, and Pieris 2013). We remark that an exten-
sion of Theorem 19 to frontier-one disjunctive TGDs (where
rule body and head share only a single variable) seems not
too hard.

Other open problems concern containment between
OMQs. In particular, it would be good to know the complex-
ity of containment in (ALC,CQ) which must lie between
NEXPTIME and 2NEXPTIME. Note that our first lower
bound crucially relies on unions of conjunctive queries to
be evailable, and the second one on inverse roles. It is
known that adding inverse roles to ALC tends to increase
the complexity of querying-related problems (Lutz 2008),
so the complexity of containment in (ALC,CQ) might in-
deed be lower than 2NEXPTIME. It would also be inter-
esting to study containment for OMQs from (ALCI,UCQ)
where the actual query is connected and has at least one an-
swer variable. In the case of query answering, such a (prac-
tically very relevant) assumption causes the complexity to
drop (Lutz 2008). Is this also the case for containment?
Acknowledgements. Bourhis was supported by CPER Data
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MDDLog Hardness: Missing Details
We first repeat the details of the construction of a UCQ
which achieves (Q1) along with additional information, then
prove Lemma 4, and subsequently describe how the UCQ
can be replaced by a CQ. Finally, we prove Theorem 5.
Since the constructed queries will make use of the count-
ing gadgets in counting trees, we show these gadgets again
in Figure 3. There, a is a node in a counting tree, b is its left
successor, and c is its right successor.

To define the UCQ that achieves (Q1), set q0(x, y) =
r(x0, y0) and, for 0 < i ≤ m,

qi(xi,yi) = ∃xi−1∃yi−1∃zi,0 · · · ∃zi,i+2∃z′i,1 · · · ∃z′i,i+3

qi−1(xi−1, yi−1) ∧ r(xi−1, xi) ∧ r(yi−1, yi)∧
jump(xi, zi,i+2) ∧ jump(yi, z

′
i,i+3)∧

r(zi,0, zi,1) ∧ · · · ∧ r(zi,i+1, zi,i+2)∧
r(zi,0, z

′
i,1) ∧ r(zi,1, z′i,2) ∧ · · · ∧ r(z′i,i+2, z

′
i,i+3)

The idea is that I |= qm[a, b] if a and b are leafs in succes-
sive counting trees that are at the same leaf position, that is,
(i) the roots of the trees are connected by the relation r and
(ii) a can be reached from the root of the first tree by fol-
lowing the same sequence of left and right successors that
one also needs to follow to reach b from the root of the sec-
ond tree. In fact, the r-atom in q0 corresponds to the move
from the root of one counting tree to the root of a successive
tree, the atoms r(xi−1, xi) and r(yi−1, yi) in qi correspond
to moving down the i-th step in both trees, and the remain-
ing atoms in qi make sure that both of these steps are to a
left successor or to a right successor.

To understand the latter, note that jump is the relation used
in the navigation gadgets attached to tree nodes. The vari-
able zi,i+2 can only be mapped to the target of the jump re-
lation in the navigation gadget at xi, and likewise for z′i,i+3
and the target of the jump relation in the navigation gadget
at yi. Note that there must be a zi,0 from which zi,i+2 can
be reached along an r-path of length i + 2 and from which
z′i,i+3 can be reached along an r-path of length i + 3. If xi
and yi are both left successors, then this zi,0 is the root of
the first counting tree. If xi and yi are both right successors,
then zi,0 is the r-predecessor of the root of the first counting
tree, which must exist at all relevant nodes: at grid nodes
because of the self step nodes and at horizontal/vertical step
nodes because they have a grid node as r-predecessor. If xi
is a left successor and yi a right successor or vice versa, then
there is no target for zi,0 because this target would have to
reach the root of the first counting tree on a path of length
one and on a path of length zero, but there is no reflexive
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Figure 4: The first CQ in q (again).

loop at the root of counting trees (only a length two loop via
self step nodes).

It is now easy to define the desired UCQ:

q=∃xm∃ym qm(xm, ym) ∧B1(xm) ∧B2(ym)

∨∃xm∃ym qm(xm, ym) ∧B1(xm) ∧B2(ym)

The first CQ in this UCQ is displayed in Figure 4. As re-
quired, it evaluates to true on an instance if there are succes-
sive counting trees (whose roots have an r-predecessor and)
which contain two leafs at the same position that are labeled
differently regarding B1, B1 and B2, B2. This finishes the
construction for the case of UCQs. We first establish cor-
rectness and then show how to replace the UCQ with a CQ.
Lemma 4. Π 6⊆ q iff there is no tiling for P and w0.
Proof.(sketch) Assume first that there is no tiling for P and
w0. Let I be the instance that represents the 22n × 22n

-grid
with counting trees in the way described above. It can be
verified that I 6|= q. We aim to show that I |= Π and thus
I witnesses Π 6⊆ q. Assume to the contrary that I 6|= Π.
Then there is an extension J of I that satisfies all rules in Π,
but does not contain goal(). In particular, J must contain at
least one atom Ti(c) for each constant cwith gactive(c) ∈ J ,
thus we can choose a concrete Ti(c) for each such c. Since
none of the goal rules in Π applies, these chosen atoms must
represent a tiling for P and w0. We have thus obtained a
contradiction to the assumption that no such tiling exists.

Now assume that there is a tiling f for P and w0. Take
an instance I with I |= Π. Assume to the contrary of what
is to be shown that I 6|= q. Then I satisfies Conditions (Q1)
and (Q2). Extend I to a new instance J as follows. Since
I satisfies (Q2), every g-active constant c in I is associated
with a unique counter value, thus with a unique horizontal
position x ∈ {0, . . . , 22n −1} and a unique vertical position
y ∈ {0, . . . , 22n − 1}. Include Ti(c) ∈ J if f(x, y) = Ti
and then exhaustively apply all non-disjunctive rules from
Πtree. One can verify that J satisfies all rules in Π while
making the goal relation false, in contradiction to I |= Π.
In particular, satisfaction of (Q1) and the way in which we
have added facts Ti(c) to J imply that none of the goal rules
that check for a tiling defect applies. o



To replace the UCQ q by a CQ, we again use a coding trick
from (Björklund, Martens, and Schwentick 2008). The ba-
sic idea is to replace B1, B1 and B2, B2 with suitable bit
gadgets and then to use a construction that is very similar to
the one used above for ensuring that we consistenly follow
left successors or right successors in corresponding steps of
the navigation in the two involved trees.

We replace B1(x) with the following bit one gadget:

r(x, x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x4)∧
jump1(x, x1) ∧ jump1(x, x4)

where jump1 is a fresh EDB relation and B1(x) with the
following bit zero gadget:

r(x, x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x4)∧
jump1(x, x2) ∧ jump1(x, x3).

B2 and B2 are replaced with corresponding gadgets in
which only jump1 is replaced with jump2. The existence
of these bit gadgets needs to be verified in the rules of Πtree

that ensure the existence of counting trees. In addition to
that, we require one further modification to Πtree: the self
step loops of length two at each grid node are replaced with
self step nodes of length four. All three intermediate nodes
on these loops behave exactly like a self step node before.
We then replace the above UCQ by

q=∃xm∃ym∃z0 · · · ∃zm+2∃z′1 · · · ∃zm+5

qm(xm, ym)∧
jump1(xm, zm+2) ∧ jump2(ym, z

′
m+5)∧

r(z0, z1) ∧ · · · ∧ r(zm+1, zm+2)∧
r(z0, z

′
1) ∧ r(z1, z

′
2) ∧ · · · ∧ r(z′m+4, z

′
m+5)

Note that the xm and ym must be leafs in successive count-
ing trees with the same leaf position. Additionally, the vari-
able zm+2 can only be mapped to a target of the jump1 re-
lation in the bit gadget at xm, and likewise for z′m+5 and a
target of the jump2 relation in the bit gadget at ym. There
must also be a z0 from which zm+2 can be reached along
an r-path of length m + 2 and from which z′m+5 can be
reached along an r-path of length m+ 5 (thus the difference
in lengths is three). If the bit value at xm is zero and the bit
value at ym is one, then this z0 is the root of the first count-
ing tree. If the bit value at xm is one and the bit value at ym
is zero, the we can use for z0 an r-predecessor of the root
of the first counting tree. It can be verified that when the bit
values at xm and ym are identical, then the possible target
for z0 must have r-paths to the root of the first counting tree
of length i and j steps, for some

(i, j) ∈ {(0, 2), (0, 3), (1, 0), (1, 3)}.
However, since we have extended the length of self loops at
grid nodes from two to four, there is no such target. This fin-
ishes the construction of the CQ q and establishes the lower
bounds stated in Theorem 3.

We now come to the proof of Theorem 5.
Theorem 5. For MDDLog programs and the complements
of MMSNP sentences, rewritability into FO, into monadic
Datalog, and into Datalog are 2NEXPTIME-hard.

Proof.It suffices to consider Boolean MDDLog programs.
First note that, by Rossman’s theorem, any such pro-
gram that is rewritable into FO is rewritable into a UCQ.
Consequently, FO-rewritability implies monadic Datalog-
rewritability implies Datalog-rewritability. Based on this ob-
servation, we deal with all three kinds of rewritability in a
single proof: we show that from a 2-exp square tiling prob-
lem P and an input w0 to P , we can construct in polynomial
time a Boolean MDDLog program Π′ such that

1. if there is a tiling for P and w0, then Π′ is FO-rewritable;

2. if there is no tiling for P and w0, then Π′ is not Datalog-
rewritable.

Reconsider the reduction of the 2-exp square tiling problem
to MDDLog containment given above. Given a 2-exp square
tiling problem P and an input w0 to P , we have shown how
to construct a Boolean MDDLog program Π and a Boolean
CQ q such that Π ⊆ q iff there is a tiling for P and w0. Let
SE be the EDB schema of Π and q. To obtain the desired
program Π′, we modify Π as follows:

1. in every goal rule, change the head to A(x);

2. add goal()← q,

3. add R(x) ∨ G(x) ∨ B(x) ← A(x), goal() ← C1(x) ∧
C2(x) for all distinct C1, C2 ∈ {R,G,B}, and goal()←
C(x) ∧ s(x, y) ∧ C(y) for all C ∈ {R,G,B}

where s is a fresh EDB relation and A,R,G,B are IDB re-
lations. Let S′E = SE ∪ {s}. We now show that Π′ satisfies
Points 1 and 2 above.

For Point 1, assume that there is a tiling for P and w0.
Then Π ⊆ q. We claim that q is a rewriting of Π′. By
construction of Π′, I |= q clearly implies I |= Π′ for all S′E-
instances I . For the converse, let I |= Π′. First assume I 6|=
Π. Then there is an extension J of I to the IDB relations in
Π′ such that the extension of A is empty. Consequently, we
must have I |= Π′ because I |= q and we are done. Now
assume I |= Π. Since Π ⊆ q, this implies I |= q as desired.

For Point 2, assume there is no tiling for P and w0. Then
Π 6⊆ q. Given an undirected graph G = (V,E), let the
instance I+

G be defined as the disjoint union of the instance
I0 which represents the 22n

-grid plus counting gadgets and
the instance IG that contains the fact s(v1, v2) for every
{v1, v2} ∈ V .

Since there is no tiling for P and w0, we have I0 |= Π and
thus I+

G |= Π. By construction of Π′ and since Π 6|= q, this
implies that IG |= Π′ iff G is not 3-colorable. Assume to
the contrary of what is to be shown that there is a Datalog-
rewriting Γ of Π′. It is not difficult to modify Γ so that its
EDB schema is S′′E = {s} and on any S′′E-instance IG rep-
resenting an undirected graph G, the modified program Γ′

yields the same result that Γ yields on I+
G . We only sketch

the idea: for every n-ary IDB relation S of Γ, all sets of
positions P = {i1, . . . , ik} ⊆ {1, . . . , n}, and all tuples
t = (d1, . . . , dk) of elements of I0, introduce a fresh n− k-
ary IDB SP,t. Intuitively, SP,t is used to represent facts
S(d1, . . . , dk) where every position ij ∈ P is mapped to
the element dj (which is not part of the input instance) and
every position that is not in P is mapped to an element of



the input instance IG. It remains to introduce additional ver-
sions of each rule that use the new predicates, in all possible
combinations.

We have thus shown that non-3-colorability of graphs can
be expressed in Datalog, which is not the case (Afrati et al.
1995). o

MDDLog Upper Bound: Missing Details
From Unrestricted to Simple Programs
Theorem 6. Let Π1,Π2 be Boolean MDDLog programs
over EDB schema SE . Then one can construct simple
Boolean MDDLog programs ΠS

1 ,Π
S
2 over EDB schema S′E

such that

1. Π1 6⊆ Π2 implies ΠS
1 6⊆ ΠS

2 ;
2. ΠS

1 6⊆>w ΠS
2 implies Π1 6⊆>w Π2

where w is the atom width of Π1 ∪ Π2. Moreover, if r is the
number of rules in Π1 ∪Π2 and s the rule size, then

3. |ΠS
i | ≤ p(r · 2s);

4. the variable width of ΠS
i is bounded by that of Πi;

5. |S′E | ≤ p(r · 2s);

where p is a polynomial. The construction takes time poly-
nomial in |ΠS

1 ∪ΠS
2 |.

To prove Theorem 6, we first concentrate on a single
Boolean MDDLog program Π over EDB schema SE . We
first construct from Π an equivalent MDDLog program Π′

such that the following conditions are satisfied:

(i) all rule bodies are biconnected, that is, when any single
variable is removed from the body (by deleting all atoms
that contain it), then the resulting rule body is still con-
nected;

(ii) if R(x, . . . , x) occurs in a rule body with R EDB, then
the body contains no other EDB atoms.

To construct Π′, we first extend Π with all rules that can be
obtained from a rule in Π by consistently identifying vari-
ables and then exhaustively apply the following rules:

• replace every rule p(y)← q1(x1)∧ q2(x2) where x1 and
x2 share exactly one variable x but both contain also other
variables with the rules p1(y1) ∨ Q(x) ← q1(x1) and
p2(y2) ← Q(x) ∧ q2(x2), where Q is a fresh monadic
IDB relation and pi(yi) is the restriction of p(y) to atoms
that are nullary or contain a variable from qi, i ∈ {1, 2};

• replace every rule p(y)← q1(x1)∧ q2(x2) where x1 and
x2 share no variables and are both non-empty with the
rules p1(y1)∨Q()← q1(x1) and p2(y2)← Q()∧q2(x2),
where Q() is a fresh nullary IDB relation and the pi(yi)
are as above;

• replace every rule p(y) ← R(x, . . . , x) ∧ q(x) where R
is an EDB relation and q contains at least one EDB atom
and the variable x, with the rules Q(x) ← R(x, . . . , x)
and p(y) ← Q(x) ∧ q(x), where Q is a fresh monadic
IDB relation.

It is easy to see that the program Π′ is equivalent to the orig-
inal program Π. We next construct from Π′ the desired sim-
plification ΠS of Π. The intuition is that in every rule of
Π′, we replace all EDB atoms in the rule body by a single
EDB atom that uses a fresh EDB relation which represents
the conjunction of all atoms replaced. We also need to take
care of implications between the new EDB relations. In the
following, we make the construction precise.

For every conjunctive query q(x) and schema S, we use
q(x)|S to denote the restriction of q(x) to S-atoms. The
EDB schema S′E of ΠS consists of the relations Rq(x)|SE

,
p(y) ← q(x) a rule in Π′; the arity of Rq(x)|SE

is the num-
ber of variables in q(x) (equivalently: in q(x)|SE

).
Let SI be the IDB schema of Π′. The program ΠS con-

sists of the following rules:
(∗) whenever p(y)← q1(x1) is a rule in Π′, Rq2(x2) an EDB

relation in S′E , and h : x1 → x2 an injective homomor-
phism from q1(x1) to q2(x2), then ΠS contains the rule
p(y)← h−1(Rq2(x2)) ∧ q1(x1)|SI

where h−1(Rq2(x2)) denotes the result of replacing in
Rq2(x2) every variable x with y if x = h(y) and every
variable that does not occur in the range of h with a fresh
variable. The case where q1(x1) is identical to q2(x2) and h
is the identity corresponds to adapting rules in Π′ to the new
EDB signature and the other cases take care of implications
between EDB relations, as announced.

The last step of the conversion just described is the most
important one, and it is the reason for why we can only use
instances of a certain girth in Point 2 of Theorem 6. An
example illustarting this step and the issue with girth can be
found in the main part of the paper. We next analyze the size
of the constructed program ΠS .
Lemma 21. Let r be the number of rules in Π and s the rule
size of Π. Then there is a polynomial p such that

1. |ΠS | ≤ p(r · 2s);
2. the variable width of ΠS is bounded by that of Π;
3. |S′E | ≤ p(r · 2s).

Proof.We start with Point 1. Let r be the number of rules
in Π, v the variable width, and w the atom width. Regarding
the size of ΠS , note that the first (identification) step replaces
each rule of Π with at most k! rules, where k is the number of
variables in the original rule. After this step, we thus have at
most r·v! rules. The subsequent rewriting in the construction
of Π′ splits each rule into at most one rule per atom in the
original rule. The number of rules in Π′ is thus bounded
by r · v! · w. The number of rules in ΠS is clearly at most
quadratic in the number of rules in Π′, thus their number is
bounded by (r · v! ·w)2. None of the steps increases the rule
size, i.e., the rule size of ΠS is bounded by the rule size of
Π. This yields the bound stated in Point 1.

Point 2 is very easy to verify by analyzing the construction
of ΠS .

For Point 3, note that the program Π′ has the same EDB
schema as Π. In the construction of ΠS , the number of EDB
relations is bounded by the number of rules in Π′, thus by
r · v! · w. o



So far, we have concentrated on a single program. To obtain
Theorem 6, we have to jointly simplify that two involved
programs Π1 and Π2. This only means that, when construct-
ing ΠS

i from Π′i in the second step of the normalization pro-
cedure, then we use the set of EDB relations introduced for
both Π′1 and Π′2 instead of only those for Π′i. The bounds
in Lemma 21 then cleary give rise to those in Theorem 6.
It remains to show that the joint simplification ΠS

1 ,Π
S
2 of

Π1,Π2 behaves as expected regarding containment.
Lemma 22.

1. Π1 6⊆ Π2 implies ΠS
1 6⊆ ΠS

2 ;
2. ΠS

1 6⊆>w ΠS
2 implies Π1 6⊆ Π2.

where w is the atom width of Π1 ∪Π2.
Proof.It is obvious that the construction of the program

Π′i from Πi preserves equivalence. We can therefore assume
that the programs Π1 and Π2 in Lemma 22 are in fact the
programs Π′1 and Π′2. For i ∈ {1, 2}, let SI,i be the IDB-
schema of Πi (and thus also of ΠS

i ), and let goali be the goal
relation of Πi.

For Point 1, let I be an SE-instance such that I |= Π1 and
I 6|= Π2. Let J be the S′E-instance that consists of all facts
Rq(a1, . . . , an) such that I |= q[a1, . . . , an]. It remains to
show that J |= ΠS

1 and J 6|= ΠS
2 .

For J |= ΠS
1 , assume to the contrary of what is to be

shown that there is an extension J ′ of J to schema S′E∪SI,1
that satisfies all rules of ΠS

i and does not contain the goal1
relation. Let I ′ be the corresponding extension of I , that
is, I ′ extends I with the SI,1-facts from J ′. It suffices to
show that J ′ satisfies all rules in Π1 to obtain a contradiction
against I |= Π1. Thus, let p(y)← q(x) be a rule in Π1 and
let h be a homomorphism from q(x) to I ′. Then ΠS

1 contains
the rule p(y) ← Rq(x)|SE

(x) ∧ q(x)|SI1
. By construction

of J ′ and I ′, h is also a homomorphism from Rq(x)|SE
(x)∧

q(x)|SI1
to J ′. Since J ′ satisfies all rules of ΠS

1 , one of the
disjuncts of p(y) is satisfied under h, as required.

For J 6|= ΠS
2 , let I ′ be an extension of I to SE ∪ SI,2

that satisfies all rules of Π2 and does not contain the goal2
relation. Let J ′ be the corresponding extension of J . It
suffices to show that J ′ satisfies all rules of ΠS

2 . Thus, let
p(y)← q(x) be a rule in ΠS

2 and let h be a homomorphism
from q(x) to J ′. Then there is a rule p(y) ← q′(x′) in Π2,
a relation Rq′′(x′′) in S′E , and an injective homomorphism g

from q′(x′) to q′′(x′′) such that q(x) = g−1(Rq′′(x′′)(x
′′))∧

q′(x′)|SI2
. By construction of J and J ′, h is also a homo-

morphism from q′(x′) to I . Since I ′ satisfies p(y)← q′(x′),
one of the disjuncts of p(y) is satisfied under h, as required.

Now for Point 2. Let I be an S′E-instance of girth ex-
ceeding w such that I |= ΠS

1 and I 6|= ΠS
2 . Let J be

the SE-instance that consists of all facts r(ai1 , . . . , aik)
such that for some fact Rq(x1,...,xn)(a1, . . . , an), we have
r(xi1 , . . . , xik) ∈ q. We show that J |= Π1 and J 6|= Π2.

For J |= Π1, assume to the contrary of what is to be
shown that there is an extension J ′ of J to schema SE∪SI,1
such that all rules of Π1 are satisfied and goal1 /∈ J ′. Let I ′
be the corresponding extension of I to S′E ∪SI,1. It suffices
to show that all rules of ΠS

1 are satisfied in I ′ to obtain a

contradiction against I |= ΠS
1 . Thus, let p(y) ← q(x) be a

rule in ΠS
1 and let h be a homomorphism from q(x) to I ′.

Then there is a rule p(y)← q′(x′) in Π1, a relation Rq′′(x′′)
in S′E , and an injective homomorphism g from q′(x′) to
q′′(x′′) such that q(x) = g−1(Rq′′(x′′)(x

′′)) ∧ q′(x′)|SI2
.

By construction of J and I ′, h is also a homomorphism from
q′(x′) to I . Since J ′ satisfies p(y)← q′(x′), one of the dis-
juncts of p(y) is satisfied under h, as required.

For J 6|= Π2, let I ′ be an extension of I to S′E ∪ SI,2
that satisfies all rules of ΠS

2 and does not contain the goal2
relation. Let J ′ be the corresponding extension of J . It
suffices to show that J ′ satisfies all rules of Π2. Thus, let
p(y) ← q(x) be a rule in Π2 and let h be a homomorphism
from q(x) to J ′. Let the query q′(x′) be obtained from q(x)
by identifying all variables that h maps to the same target.
For simplicity, let us assume first that q′ is connected.

Partition the EDB atoms of q′(x′) into components as fol-
lows: every reflexive atom r(x, . . . , x) forms a component
and every maximal biconnected set of non-reflexive atoms
forms a component. Let q1(x1), . . . , qn(xn) be the compo-
nents obtained in this way, enriched with IDB atoms in the
following way: if P (x) is in q(x) with P IDB and x occurs
in qi(xi), then qi(xi) contains P (x). It can be verified that
distinct components share at most one variable and that the
undirected graph obtained by taking the non-reflexive com-
ponents as nodes and putting edges between components
that share a variable is a tree. For ech tree in the tree, choose
a component that is the root to turn the undirected tree into a
directed one, allowing us to speak about successors, prede-
cessors, etc. Slightly extend the tree by adding each reflexive
component as a leaf below some node that contains the vari-
able in the reflexive component; if there is no such node, the
component forms an extra tree.

For every component qi(xi), Π2 contains an associated
rule. Recall that we assume Π2 to be the result of the
first step of the construction of ΠS

2 . If the qi(xi) is a
leaf in the tree, then the associated rule takes the form
pi(yi) ∨ Qi(xi) ← qi(xi) where pi(yi) is the restriction
of p(y) to atoms that are nullary or contain a variable from
xi,Qi is a fresh unary relation, and xi is the variable that the
component shares with the component which is its predeces-
sor in the tree. For non-leafs, the rule body is additionally
enriched with atoms Qj(x) where Qj is a fresh IDB intro-
duced for a successor node. For the root node, no fresh IDB
relation is introduced.

We now make a bottom-up pass over the tree as follows.
Consider the rule p′i(yi) ← q′i(xi) associated with the cur-
rent node. The homomorphism h from above is also a ho-
momorphism from q′i(xi) to J ′; this is clear for leaf nodes
and can inductively be verified for inner nodes. Take the cor-
responding rule ρ in ΠS

2 , the one that introduces a new EDB
relation for the EDB atoms in q′i(xi). By construction of J ′,
since q′i(xi) is biconnected without reflexive loops or a sin-
gle reflexive loop and because the girth of I ′ is higher than
that of q′i(xi), the h-image of all EDB-atoms in q′i(xi) must
have been derived from a single fact in I . There is another
rule ρ′ in ΠS

2 in which the EDB-relation in the body of ρ is
replaced with the relation from that fact. This rule applies in



I ′ and thus one of the atoms from its head is true. If this is
an atom from p(x), we are done with the entire proof. If this
is a fresh IDB atom, we are done with this tree node and can
continue in our bottom-up tree walk. We will be done at the
root at latest since the associated rule contains no fresh IDB
relation.

This finishes the case where the query q′(x′) is connected.
the general case, the tree has to be replaced by a forest.
There will be exactly one tree in the forest in which the rule
associated with the root does not have a fresh IDB relation
in the head. For those trees where the root rule has a fresh
such relation, we find another tree where that relation occurs
in the body of the rule associated with a leaf. This defines
an order on the trees, which is acyclic. We process the trees
in this order, each single tree essentially as in the connected
case. o

From Containment to Relativized Emptiness
Lemma 23. For any g > 0,

1. if Π1 6⊆ Π2, then Π is non-empty w.r.t. D.
2. if Π is non-empty w.r.t. D on instances of girth > g, for

any g > 0, then Π1 6⊆>g Π2.
Proof.For Point 1, assume Π1 6⊆ Π2. Then there is an

SE-instance I such that I |= Π1 and I 6|= Π2. Let J be an
extension of I to signature SE∪SI,2 such that all rules in Π2

are satisfied and goal2() /∈ J . Add P (a) to J if P (a) /∈ J
for all unary P ∈ SI,2 and a ∈ adom(J), and add P () to J
if P () /∈ J for all nullary P ∈ SI,2. Clearly, (the extended)
J is over schema S′E and satisfies D. To show that Π is
non-empty w.r.t. D, it thus remains to argue that J |= Π.

Assume to the contrary that this is not the case. Then
there is an extension J ′ of J to signature S′E ∪ SI,1 such
that all rules of Π are satisfied, but goal1() /∈ J ′. Since the
restriction of J ′ to SE-facts is I , it remains to argue that J ′
satisfies all rules in Π1. Let ρp(y) ←= q(x) be such a rule
and let h be a homomorphism from q to J ′. We define an
extension q′ of q as follows: conjunctively add to q all P () ∈
J ∩ SI,2 and all P () ∈ J with P ∈ SI,2; moreover, for all
variables x in q and all facts P (h(x)) ∈ J with P ∈ SI,2,
conjunctively add the atom P (x) to q, and likewise for facts
P (h(x)) and atoms P (x). Since J ′ satisfies all rules in Π2,
it can be verified that the rule p(y)← q′(x), which is added
to Π in the first step of its construction, is not removed in the
second step of the construction. Since h is a homomorphism
from q′ to J ′ and J ′ satisfies all rules in Π, J ′ |= p[h(y)]
and thus J ′ satifies ρ as required.

Now for Point 2. Assume that Π is non-empty w.r.t. D
on instances of girth > g, with g > 0. Then there is an
S′E-instance I of girth > g with I |= Π and I |= D. By
construction of Π, this implies that (i) P () ∈ I or P () ∈ I
for every nullary P ∈ SI,2 (otherwise no rule of Π would
be applicable, implying I 6|= Π). Moreover, we can assume
w.l.o.g. that (ii) every a ∈ adom(I) satisfies P (a) ∈ I or
P (a) ∈ I for every unary P ∈ SI,2; in fact, it this is not
the case, then we can simply replace I with its restriction to
those elements a that satisfy the condition (elements which
do not can never be involved in rule applications). Let J

be the restriction of I to schema SE . By construction of Π
and due to Conditions (i) and (ii), I |= Π implies J |= Π1.
To finish the proof, it would this be sufficient to show that
I witnesses J 6|= Π2. This, however, need not be the case:
while we know that goal2() ∈ I as otherwise no rule of Π
would be applicable, it need not be the case that all rules in
Π2 are satisfied in I . We thus show how to first manipulate I
such that I |= Π still holds, I does still not contain goal2(),
and I satisfies all rules in Π2. In fact, we exhaustively apply
the following.

Assume that there is a rule ρ in Π2 that is not satisfied in I .
Since Π2 is simple, ρ has the form Q1(y1)∨· · ·∨Q`(y`)←
A(x) ∧ P1(x1) ∧ · · · ∧ Pk(xk) with A EDB and all Pi and
Qi IDB. Let h be a homomorphism from the rule body to
I such that Qi(h(yi)) /∈ I for 1 ≤ i ≤ `. We modify
I by removing the fact A(h(x)), resulting in instance I−.
Clearly, the application of ρ via h is no longer possible and
it remains to show that I− |= Π. Assume that this is not the
case, that is, there is an extension J− of I− to schema S′E ∪
SI,1 such that goal1() /∈ J− and J− satisfies all rules of Π.
Let J be the corresponding extension of I , that is, J and J−
differ only in the presence of the fact A(h(x)). We show
that J satisfies all rules of Π, contradicting I |= Π. Clearly,
we need to consider only rules ρ′ whose only SE-atom is of
the form A(x′) and only homomorphisms h′ from the body
of ρ′ to J such that h(x′) = h(x). Fix such a ρ′ and h′.
Since I and thus also J has girth > 1 and since x′ contains
all variables from the body of ρ′, h′ must be injective. By
definition of Π and because of the homomorphism h′, we
must have

• P () ∈ J (resp. P () ∈ J) implies that the body of ρ′ has a
conjunct P () (resp. P ) for every nullary P ∈ SI,2;

• P (h′(x)) ∈ J (resp. P (h′(x)) ∈ J) implies that the body
of ρ′ has a conjunct P (x) (resp. P (x)) for unary P ∈ SI,2
and all variables x from x′.

Because of the homomorphism h and since Qi(h(yi)) /∈ I
for 1 ≤ i ≤ `, the rule ρ ∈ Π2 and the variable substitution
h◦h′−1 mean that the rule ρ′ was removed during the second
step of the construction of Π, in contradiction to ρ′ ∈ Π.

o

Deciding Relativized Emptiness

Lemma 9. Π is empty w.r.t. D iff Kθ 6|= Π for all 0-types θ.

Proof.Clearly, Kθ |= Π means that Kθ is a witness for Π
being non-empty w.r.t. D. Conversely, assume that there is
an SE-instance I with I |= D and I |= Π. Let θ be the 0-
type of I . Then the mapping h defined by setting h(a) = ta
for all constants a in I is a homomorphism from I to Kθ.
It is well-known (and can be proved using a disjunctive ver-
sion of the chase procedure) that truth of MDDLog queries
is preserved under homomorphisms, thus I |= Π implies
Kθ |= Π. o

Lemma 10. The algorithm for deciding relativized empti-
ness runs in time O(|Π|3) · 2O(|D|·v).



Proof.Let us first analyze the time that it takes to check
whether Kθ 6|= Π, for one instance Kθ. The number of
elements in Kθ is bounded by 2|D|. Note that the interpre-
tation of the relations in SE \ SD is trivial, and thus we do
not need to explicitly construct these relations when build-
ing Kθ. Thus, 2O(|D|) is a bound on the number of facts in
(the constructed part of) Kθ and on the time needed to build
it. The number of guesses to be taken when constructing
K ′θ is bounded by 2|D| · |SI | where SI is the IDB schema
of Π, thus by 2|D| · |Π|. For each rule in Π, the number of
candidate functions for homomorphisms from the rule body
to K ′θ is bounded by 2|D|·v and it can be checked in time
O(|Π| · (|D| + |SI |)) whether a candidate is a homomor-
phism. We thus need time O(|Π|2) · 2O(|D|·v) per rule and
timeO(|Π|3)·2O(|D|·v) overall to deal with the instanceKθ.
There are at most 2|D| many instancesKθ, a factor that is ab-
sorbed by the bound that we have already computed. o

The next lemma is a main ingredient to the proof
of Lemma 11. Intuitively, it shows that a semi-simple
MDDLog programs with disjointness constraints can be un-
derstood as a constraint satisfaction problem (CSP). For two
instances I and J , we write I → J if there is a homomor-
phism from I to J , which is defined in the standard way.
Of course, homomorphisms also have to respect nullary re-
lations. In the following, we call a finite instance a template
when we use it as a homomorphism target, as in the CSP
literature.
Lemma 24. For every 0-type θ, there are templates
T0, . . . , Tn in signature SE such that, for every SE-instance
I of some 0-type θ′ ⊆ θ, we have I 6|= Π iff I → Ti for some
i ≤ n.

Proof.Just like the construction of the instances Kθ, the
construction of the templates T0, . . . , Tn is based on types.
However, the types used for this purpose are formed over the
schema S = SI ∪SD instead of over the schema SD, where
SI is the IDB schema of Π. To emphasize the difference
between the two kinds of types, we from now on call the
types introduced above types for SD.

A type for S is a set t ⊆ S that satisfies all rules in Π, that
is, if a rule ρ mentions only nullary and unary relations (and
thus involves at most a single variable since Π is semi-simple
w.r.t. D) and all these relations are in t, then at least one of
the relations from the head of ρ is in t. Note that, in contrast
to 0-types for SD and 1-types for SD defined before, a type
for S contains both unary and nullary relation symbols. The
restriction δ of a type t for S to nullary relations is a 0-type
for S. There is no need to define 1-types for S. We say that
a type t for S is compatible with a 0-type δ for S if δ is the
restriction of t to nullary relations.

Let θ be a 0-type for D. To construct the set of templates
stipulated in Lemma 24, we define one template Tδ for every
0-type δ for S that agrees with θ on relations from SD and
does not contain the goal relation. The elements of Tδ are
the types for S that are compatible with δ and Tδ consists of
the following facts:

1. all factsR(t1, . . . , tn) such thatR ∈ SE \SD is of arity n
and there is no rule ρ in Π and variables x1, . . . , xn such

that the following conditions are satisfied:

• R(x1, . . . , xn) occurs in the body of ρ;
• if P (xi) or P () occurs in the body of ρ with P ∈ S,

then P ∈ ti;
• for none of the disjuncts P (xi) in the head of ρ, we

have P ∈ ti;
• for none of the disjuncts P () in the head of ρ, we have
P ∈ δ;

2. all facts P (t) with P ∈ t ∩ SD;

3. all facts P () with P ∈ δ ∩ SD.

We have to show that the templates Tδ are as required, that
is, for every SE-instance I that has some 0-type θ′ ⊆ θ for
SD, we have I 6|= Π iff I → Tδ for some 0-type δ for S.

“if”. Assume that I is an SE-instance of 0-type θ′ ⊆ θ
for SD and that there is a homomorphism h from I to Tδ .
Extend I to an SE ∪SI -instance J by adding P () whenever
P () ∈ δ ∩ SI and P (a) whenever P ∈ h(a) ∩ SI . Since
the goal relation is not in δ, it is not in J ; it thus remains to
show that every rule ρ of Π is satisfied in J . First for rules
ρ that contain a body atom whose relation is from SE \ SD.
Since Π is semi-simple w.r.t. D, the body of ρ consists of
one atom R(x1, . . . , xn) with R ∈ SE \ SD plus atoms of
the form P (xi) and P () with P ∈ S. Assume that g is
a homomorphism from the body of ρ to J . Then we have
R(g(x1), . . . , g(xn)) ∈ Tδ . Moreover,

1. when P (xi) is in the body of ρ and P ∈ S, then P ∈
g(xi) and

2. when P () is in the body of ρ and P ∈ S, then P ∈ g(xi)
for 1 ≤ i ≤ n.

In fact, Point 1 follows from Point 2 of the construction of Tδ
when P ∈ SD and from the definition of J when P ∈ SI .
Point 2 similarly follows from Point 3 of the construction
of Tδ . With Points 1 and 2 above, Condition 1 from the
construction of Tδ yields that the head of ρ contains an atom
P (xi) with P ∈ g(xi) or P () with P ∈ J . Thus, ρ is
satisfied in J . For rules ρ that contain no atom with a relation
from SE \ SD, one can first observe that, since Π is semi-
simple w.r.t. D, there is at most one variable in the rule. We
can now argue in a similar way as before that the rule is
satisfied in J , using in particular the fact that types for S
satisfy the rules in Π.

“only if”. Assume that I is an SE-instance of 0-type θ′ ⊆
θ for SD and that I 6|= Π. Then there is an extension J of
I to signature SE ∪ SI that satisfies rules of Π and does not
contain the goal relation. For every constant a in I , let ta be
the set of all unary relations P ∈ S such that P (a) ∈ J and
of all nullary relations P ∈ S such that P () ∈ J . Clearly,
ta is a type for S. Set h(a) = ta for all constants a in I . It
remains to verify that h is a homomorphism from I to Tδ .

First consider facts P (a) ∈ I with P ∈ SD. Then P ∈ ta,
thus P ∈ h(a), thus P (a) ∈ Tδ by definition of Tδ .

Now consider facts R(a1, . . . , an) ∈ I with R ∈ SE \
SD. Assume to the contrary of what is to be shown that
R(h(a1), . . . , h(an)) /∈ Tδ . By definition of Tδ , there is a
rule ρ of Π and variables x1, . . . , xn such that



1. R(x1, . . . , xn) occurs in the body of ρ,
2. if P (xi) or P () occurs in the body of ρ with P ∈ S, then
P ∈ ti;

3. for none of the disjuncts P (xi) in the head of ρ, we have
P ∈ ti;

4. for none of the disjuncts P () in the head of ρ, we have
P ∈ δ.

By definition of Tδ and of h, Points 2 to 4 imply that
5. if P (xi) (resp P ()) occurs in the body of ρ with P ∈ S,

then P (ai) ∈ J (resp. P () ∈ J);
6. for none of the disjuncts P (xi) in the head of ρ, we have
P (ai) ∈ J ;

7. for none of the disjuncts P () in the head of ρ, we have
P () ∈ J ;

Since R(x1, . . . , xn) occurs in the body of ρ and Π is semi-
simple w.r.t. D, the variables x1, . . . , xn are all distinct. We
can thus define a function g by setting g(xi) = ai. Since
R(a1, . . . , an) ∈ I and by Point 5, g is a homomorphism
from the body of ρ to I . By Points 6 and 7, g witnesses that
ρ is violated in J , in contradiction to J satisfying all rules
in Π. o

A second important ingredient to the proof of Theorem 11
is the following well-known lemma which is originally due
to Erdős and concerns graphs of high girth and high chro-
matic number and was adapted to the following formulation
in (Feder and Vardi 1998).
Lemma 25. Let SE be a schema. For every SE-instance I
and g, s ≥ 0, there is an SE-instance I ′ such that

1. I ′ → I ,
2. I ′ has girth exceeding g, and
3. for every SE-instance J with at most s elements, J → I

iff J → I ′.

Lemma 11. For every Boolean MDDLog program Π over
EDB schema SE and set of disjointness constraints D over
SE such that Π is semi-simple w.r.t. D, the following are
equivalent for any g ≥ 0:

1. Π is empty regarding D and
2. Π is empty regarding D and instances of girth exceed-

ing g.

Proof.Clearly, we only need to prove that if Π is non-empty
w.r.t. D, then this is witnessed by an instance of girth ex-
ceeding g. By Lemma 9, Π being non-empty w.r.t. D im-
plies that Kθ |= Π for some 0-type θ. By Lemma 24, we
find templates T0, . . . , Tn in signature SE such that, for ev-
ery SE-instance I of some 0-type θ′ ⊆ θ, we have I 6|= Π
iff I → Ti for some i ≤ n. Thus Kθ 6→ Ti for all i ≤ n. By
Lemma 25, there is an SE-instance K ′θ such that K ′θ → Kθ

(and thus K ′θ satisfies the constraints in D and has some
0-type θ′ ⊆ θ), K ′θ has girth exceeding h, and for every
SE-instance I of size at most s := max{|T0|, . . . , |Tn|}, we
have K ′θ → I iff Kθ → I . The latter implies K ′θ 6→ Ti for
all i ≤ n, and thus K ′θ |= Π as desired. o

Deriving Upper Bounds
Theorem 12. Containment between Boolean MDDLog pro-
grams and between MMSNP sentences is in 2NEXPTIME.
More precisely, for Boolean MDDLog programs Π1 and Π2,
it can be decided non-deterministically in time 22p(|Π2|·log|Π1|)

whether Π1 ⊆ Π2, p a polynomial.
Proof.To decide whether Π1 ⊆ Π2, we first jointly simplify
Π1 and Π2 as per Theorem 6, giving programs ΠS

1 and ΠS
2 .

These programs and Theorem 7 give another program Π and
a set of constraintsD such that Π is semi-simple w.r.t. Π. We
decide whether Π is empty w.r.t.D and return the result. The
size and complexity bounds given in Theorems 6, 7, and 8
give the complexity bound stated in Theorem 12. In fact, it
can be verified that |ΠS

i | ≤ 2p(|Πi|), |Π| ≤ 22p(|Π2|·log|Π1|) ,
and |D| ≤ 2p(Π2) where p is a polynomial. Moreover, the
variable width of Π is bounded by that of Π1 ∪ Π2 and it
remains to plug these bounds into the time bounds stated in
Theorem 8.

It remains to argue that the algorithm is correct. If Π1 6⊆
Π2, then ΠS

1 6⊆ ΠS
2 , thus Π is non-empty w.r.t. D, thus “no”

is returned. Let w be the atom width of Π1 ∪ Π2 (with the
exception that w = 2 if that atom width is one). If “no” is
returned by our algorithm, then Π is non-empty w.r.t. D. By
Theorem 11, Π is non-empty w.r.t. D on instances of girth
> w. Thus ΠS

1 6⊆>w ΠS
2 , implying Π1 6⊆ Π2. o

For the following lemma, let SE be the EDB schema of
Π1 and Π2, and let SI,i be the IDB schema of Πi, i ∈ {1, 2}.
Lemma 13. Π1 ⊆ Π2 iff Πa

1 ⊆ Πa
2 for all a ∈ Ck.

Proof.Assume that Π1 6⊆ Π2. Then there is an SE-instance
I and a tuple a ⊆ adom(I)k such that a ∈ Π1(I) \ Π2(I).
Let CΠ be the constants which occur in Π1 ∪ Π2, and ob-
serve that CΠ ⊆ C. We can assume w.l.o.g. that all con-
stants in a are from C; if this is not the case, we can first
rename constants in I and a that are from C \ (CΠ ∪ a)
with fresh constants and then rename constants in I and a
that are from a \C with constants from C \CΠ. By choice
of C, there are enough constants of the latter kind. It can
now be verified that I |= Πa

1 and I 6|= Πa
2 . In particular, an

extension J of I to schema SE ∪ SI,1 that satisfies all rules
in Πa

1 and does not contain the goal relation gives rise to an
extension J ′ of I that satisfies all rules in Πa

1 and does not
contain goal(a): start with J ′ and then apply all goal rules
of Π1. By construction of Πa

1 and since goal() /∈ J ′, we
have goal(a) /∈ J ′. Similarly, an extension J of I to schema
SE ∪ SI,2 that satisfies all rules in Π2 and does not contain
goal(a) gives rise to an extension J ′ of I that satisfies all
rules in Πa

2 and does not contain goal().
Conversely, assume that Πa

1 6⊆ Πa
2 . Then there is an SE-

instance I with I |= Πa
1 and I 6|= Πa

1 . By considering appro-
priate extensions of I to the schemas SE∪SI,i, it can be ver-
ified in a very similar way as above that a ∈ Π1(I) \Π2(I).

o

Lemma 14. Π1 ⊆ Π2 iff Π′1 ⊆ Π′2.

Proof.Assume that Π1 6⊆ Π2. Then there is an SE-instance
I such that I |= Π1 and I 6|= Π2. Let J be the S′E-instance



obtained from I by adding Ra(a) whenever a ∈ adom(I) ∩
C. It can be verified that J |= Π′1 and J 6|= Π′2.

Conversely, assume that Π′1 6⊆ Π′2. Then there is an S′E-
instance I such that I |= Π′1 and I 6|= Π′2. Let J be the
SE-instance which is obtained from I by

• dropping all facts that use a relation from S′E \ SE and
then

• taking the quotient according to the following equivalence
relation on adom(I):

{(a, b) | ∃c ∈ C : Rc(a), Rc(b) ∈ I};

note that this is indeed an equivalence relation because the
rules goal() ← Ra1

(x) ∧ Ra2
(x) in Π′2 (for all distinct

a1, a2) imply that for any a ∈ adom(I), there is at most
one b ∈ C with Rb(a) ∈ I .

It can be verified that J |= Π1 and J 6|= Π2. o

Ontology-Mediated Queries
Preliminaries We first introduce the relevant OMQ lan-
guages and then provide missing proofs.

A ALCI-concept is formed according to the syntax rule

C,D ::= > | ⊥ | A | ¬C | C uD | C tD |
∃r.C | ∃r−.C | ∀r.C | ∀r−.C

whereA ranges over a fixed countably infinite set of concept
names and r over a fixed countably infinite set of role names.
An ALC-concept is an ALCI-concept in which the con-
structors ∃r−.C and ∀r−.C are not used. An ALC-TBox
(resp. ALCI-TBox) is a finite set of concept inclusions
C v D, C and D ALC-concepts (resp. ALCI-concepts).
A SHI-TBox is a finite set of

• concept inclusions C v D, C and D SHI-concepts,

• role inclusion r v s, r and s role names, and

• transitivity statements trans(r), r a role name.

DL semantics is given in terms of interpretations. An inter-
pretation takes that form I = (∆I , ·I) where ∆I is a non-
empty set called the domain and ·I is the interpretation func-
tion which maps each concept nameA to a subsetAI ⊆ ∆I

and each role name r to a binary relation rI ⊆ rI × rI .
The interpretation functions is extended to concepts in the
standard way, for example

(∃r.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}
(∃r−.C)I = {d ∈ ∆I | ∃e ∈ CI : (e, d) ∈ rI}.

We refer to standard references such as (?) for full details.
An intepretation is a model of a TBox T if it satisfies all
statements in T , that is,

• C v D ∈ T implies CI ⊆ DI ;

• r v s ∈ T implies rI ⊆ sI ;

• trans(r) ∈ T implies that rI is transitive.

In description logic, data is typically stored in so-called
ABoxes. For uniformity with MDDLog, we use instances
instead, identifying unary relations with concept names, bi-
nary relations with role names, and disallowing relations of
any other arity. An interpretation I is a model of an instance
I if A(a) ∈ I implies a ∈ AI and r(a, b) ∈ I implies
(a, b) ∈ rI . We say that an instance I is consistent with a
TBox T if I and T have a joint model. We write T |= r v s
if every model I of T satisfies rI ⊆ sI .

An ontology-mediated query (OMQ) takes the form Q =
(T ,SE , q) with T a TBox, SE a set of concept and role
names, and q a UCQ. We use (L,Q) to refer to the set of
all OMQs whose TBox is formulated in the language L and
where the actual queries are from the language Q. For ex-
ample, (ALC,UCQ) refers to the set of all OMQs that con-
sist of an ALC-TBox and a UCQ. For OMQs (T , q) from
(SHI,UCQ), we adopt the following additional restriction:
when T contains a transitivity trans(r) and T |= r v s, we
disallow the use of s in the query q. Let I be an SE-instance
and a a tuple of constants from I . We write I |= Q[a] and
call a a certain answer to Q on I if for all models I of I
and T , we have I |= q[a] (defined in the usual way).

Containment between OMQs is defined in analogy
with containment between MDDLog programs: Q1 =
(T1,SE , q1) is contained in Q2 = (T2,SE , q2), written
Q1 ⊆ Q2, if for every SE-instance I and tuple a of con-
stants from I , I |= Q1[a] implies I |= Q2[a]. This is differ-
ent from the notion of containment considered in (Bienvenu,
Lutz, and Wolter 2012), here called consistent containment.
We say that Q1 = (T1,SE , q1) is consistently contained in
Q2 = (T2,SE , q2), written Q1 ⊆c Q2, if for every SE-
instance I that is consistent with T1 and T2 and every tuple
a of constants from I , I |= Q1[a] implies I |= Q2[a]. We
observe the following.

Lemma 26. In (SHI,UCQ), consistent containment can
be reduced to containment in polynomial time.

Proof.(sketch) Let Q1 = (T1,SE , q1) and Q2 =
(T2,SE , q2) be OMQs from (SHI,UCQ). Assume with-
out loss of generality that all concept that occur in T1 are
in negation normal form, that is, negation is only applied
to concept names but not to compound concepts. For every
concept name A in SE ∪ sig(T1), introduce fresh concept
names A′ and A

′
that do not occur in Q1 and Q2. For every

role name r in SE ∪ sig(T1), introduce a fresh role name r′.
Define the TBox T ′2 as the extension of T2 with the follow-
ing:

• A v A′ for all concept names A in SE ∪ sig(T1);

• r v r′ for all role names r in SE ∪ sig(T1);

• every concept inclusion, role inclusion, and transitivity
statement from T1, each concept name A replaced with
A′, each subconcept ¬A replaced with A

′
, and each role

name replaced with r′;

• the inclusions > v A′ t A′ and A′ u A′ v B for all
concept names A in SE ∪ sig(T1), where B is a fresh
concept name.



Set q′2 = q2 ∨ ∃xB(x). It suffices to establish the following
claim. The proof is not difficult and left to the reader.

Claim. Q1 ⊆c Q2 iff Q1 ⊆ Q′2. o

Upper Bound
Theorem 19. For every OMQ Q = (T ,SE , q) from
(SHI,UCQ), one can construct an equivalent MDDLog
program Π such that

1. |Π| ≤ 22p(|q|·log|T |)
;

2. the IDB schema of Π is of size 2p(|q|·log|T |);
3. the rule size of Π is bounded by |q|
where p is a polynomial. The construction takes time poly-
nomial in |Π|.
Proof.LetQ = (T ,SE , q0) be an OMQ from (SHI,UCQ).
We use sub(T ) to denote the set of subconcepts of (con-
cepts occurring in) T . Moreover, let Γ be the set of all
tree-shaped conjunctive queries that can be obtained from
a CQ in q0 by first quantifying all answer variables, then
identifying variables, and then taking a subquery. Here,
a conjunctive query q is tree-shaped if (i) the undirected
graph (V, {{x, y} | r(x, y) ∈ q}) is a tree (where V is
the set of variables in q), (ii) r1(x, y), r2(x, y) ∈ q im-
plies r1 = r2, and (iii) r(x, y) ∈ q implies s(y, x) /∈ q
for all s. Every q ∈ Γ can be viewed as a ALCI-concept
provided that we additionally choose a root x of the tree.
We denote this concept with Cq,x. For example, the query
∃x∃y∃z r(x, y) ∧ A(y) ∧ s(x, z) yields the ALCI-concept
∃r.A u ∃s.>. Let con(q0) be the set of all these concepts
Cq,x and let SI be the schema that consists of monadic re-
lation symbols PC and PC for each C ∈ sub(T ) ∪ con(q0)
and nullary relation symbols Pq and P q for each q ∈ Γ. We
are going to construct an MDDLog program Π over EDB
schema SE and IDB schema SI that is equivalent to Q.

By a diagram, we mean a conjunction δ(x) of atoms over
the schema SE ∪ SI . For an interpretation I, we write I |=
δ(x) if there is a homomorphism from δ(x) to I, that is, a
map h : x→ ∆I such that:

1. A(x) ∈ δ with A ∈ SE implies h(x) ∈ AI ;
2. r(x, y) ∈ δ with r ∈ SE implies (h(x), h(y)) ∈ AI ;

3. Pq() ∈ δ implies I |= q and P q() ∈ δ implies I 6|= q;

4. PC(x) ∈ δ implies h(x) ∈ CI and PC() ∈ δ implies
h(x) /∈ CI .

We say that δ(x) is realizable if there is an interpretation I
with I |= δ(x). A diagram δ(x) implies a CQ q(x′), with
x′ a sequence of variables from x, if every homomorphism
from δ(x) to some interpretation I is also a homomorphism
from q(x′) to I. The MDDLog program Π consists of the
following rules:

1. the rule Pq() ∨ P q() ← R(x) for each q ∈ Γ, each R ∈
SE , and each R ∈ SE where x = x1, . . . , xn, n the arity
of R;

2. the rule PC(x)∨PC(x)← R(x) for each C ∈ sub(T )∪
con(q0), each R ∈ SE , and each tuple x that can be ob-
tained from x1, . . . , xn by replacing a single xi with x (n
the arity of R);

3. the rule ⊥ ← δ(x) for each non-realizable diagram δ(x)
that contains a single variable x and only atoms of the
form PC(x), C ∈ sub(T ) ∪ con(q0);

4. the rule⊥ ← δ(x) for each non-realizable connected dia-
gram δ(x) that contains at most two variables and at most
three atoms;

5. the rule goal(x′) ← δ(x) for each diagram δ(x) that im-
plies q0(x), has at most |q0| variable occurrences, and
uses only relations of the following form: Pq , PC with
C a concept name that occurs in q0, and role names from
SE that occur in q0.

To understand Π, a good first intuition is that rules of type 1
and 2 guess an interpretation I, rules of type 3 and 4 take
care that the independent guesses are consistent with each
other, with the facts in I and with the inclusions in the
TBox T , and rules of type 5 ensure that Π returns the an-
swers to q0 in I.

However, this description is an oversimplification. Guess-
ing I is not really possible since I might have to contain
additional domain elements to satisfy existential quantifiers
in T which may be involved in homomorphisms from (a
CQ in) q0 to I, but new elements cannot be introduced by
MDDLog rules. Instead of introducing new elements, rules
of type 1 and 2 thus only guess the tree-shaped queries that
are satisfied by those elements. Tree-shaped queries suffice
because SHI has a tree-like model property and since we
have disallowed the use of roles in the query that have a
transitive subrole. The notion of ‘diagram implies query’
used in the rules of type 4 takes care that the guessed tree-
shaped queries are taken into account when looking for ho-
momorphisms from q0 to the guessed model. A more de-
tailed explanation can be found in the proof of Theorem 1
of (Bienvenu et al. 2013). In fact, the construction used
there is identical to the one used here, with two excep-
tions. First, we use predicates PC and PC for every concept
C ∈ sub(T ) ∪ con(q0) while the mentioned proof uses a
predicate Pt for every subset t ⊆ sub(T ) ∪ con(q0). And
second, our versions of Rules 3-5 are formulated more care-
fully. It can be verified that the correctness proof given in
(Bienvenu et al. 2013) is not affected by these modifications.
The modifications do make a difference regarding the size of
Π, though, which we analyse next.

It is not hard to see that the number of rules of type 1
is bounded by 2|q|

2

, the number of rules of type 2 is
bounded by |T |, the number of rules of type 3 is bounded
by 22|q|·log|T | , the number of rules of type 4 is bounded by
2p(|q|·log|T |) for some polynomial p, and the number of rules
of type 5 is bounded by 2p(|q|). Consequently, the overall
number of rules is bounded by 22p(|q|·log|T |)

and so is the size
of Π. The bounds on the size of the IDB schema and number
of rules in Π stated in Theorem 19 are easily verified. The
construction can be carried out in double exponential time
since for a given diagram δ(x) and CQ q(x′), with x′ a se-
quence of variables from x, it can be decided in 2EXPTIME
whether δ(x) implies q(x′). o



Theorem 20. Containment between OMQs from
(SHI,UCQ) is in 2NEXPTIME. More precisely, for
OMQs Q1 = (T1,SE , q1) and Q2 = (T2,SE , q2), it can be
decided non-deterministically in time 22p(|q1|·|q2|·log|T1|·log|T2|)

whether Q1 ⊆ Q2, p a polynomial.
Proof.We convert Q1 and Q2 into MDDLog programs

as per Theorem 19 and then remove the answer variables
according to the proof of Theorem 15. Analyzing the lat-
ter construction reveals that it produces programs of size
r ·2s·as where r is the number of rules of the input program,
s is the rule size, and a the arity. Moreover the IDB schema
is not changed and rule size at most doubles. The Π1,Π2 ob-
tained by these two first steps thus still satisfy Conditions 1-
3 of Theorem 19 except that |q| in the last point has to be
replaced by 2|q|.

The joint simplifications ΠS
1 and ΠS

2 from Theorem 6 then
have size |ΠS

i | ≤ 22p(|qi|·log|Ti|) and their variable width is
bounded by (the rule size of Πi and thus by) 2|q|. Let us
analyze the size of the IDB schema of ΠS

i . First note that
the initial variable identification step can be ignored. In
fact, we start with at most 22p(|qi|·log|Ti|) rules, each of size
at most 2|qi|. Thus variable identification results in a fac-
tor of (2|qi|)!, which is absorbed by 22p(|qi|·log|T |) . The other
parameters are not changed by variable identification.

When making rules biconnected in the construction of ΠS
1

and ΠS
2 , we need not worry about rules of type 1-2 and 4-

5. The reason is that there are only 2p(|qi|·log|Ti|) many such
rules, each of size at most 2|qi|, and thus the number of ad-
ditional IDB relations introduced for making them bicon-
nected is also bounded by 2p(|qi|·log|Ti|). Rules of type 3, on
the other hand, are of a very restricted form, namely

⊥ ← PC1(x) ∧ · · · ∧ PCn(x)

withC1, . . . , Cn ∈ sub(T )∪con(q0). These rules are bicon-
nected and thus we are done in the Boolean case. In the non-
Boolean case, rules of the above form are manipulated in the
second step of the reduction of non-Boolean MDDLog pro-
grams to Boolean MDDLog programs. The result are rules
of exactly the same shape, but also rules of the form

⊥ ← PC1
(x1) ∧Ra(x1) ∧ · · · ∧ PCn

(xn) ∧Ra(xn).

The latter rules have to be split up to be made biconnected.
This will result in rules of the form

⊥ ← Q1() ∧ · · · ∧Qn() and Qi()← PC(x) ∧Ra(x)

where Ra is one of the fresh IDB relations introduced in the
mentioned reduction. Clearly, there are only 2p(|qi|·log|Ti|)

many rule bodies of the latter form and thus it suffices to
introduce at most the same number of fresh IDB relations
Qi. In summary, we have shown that a careful construction
of ΠS

i can ensure that the size of the IDB schema of ΠS
i is

bounded by 2p(|qi|·log|Ti|).
It can now be verified that the program Π from Theo-

rem 7 has size at most 22p(|q1|·|q2|·log|T1|·log|T2|) and D has size
2p(|q2|·log|T2|). Applying Theorem 8 gives the complexity
bound stated in Theorem 20. o

Lower Bound The following result establishes the lower
bound in Point 3 of Theorem 17. We state it here even in a
slightly stronger form. ELIU denotes the description logic
that admits only the concept constructors>, u, t, and ∃ and
ELI⊥ denotes the DL with the constructors >, ⊥, u, and ∃.
With BAQ, we denote the class of Boolean atomic queries,
that is, queries of the form ∃xA(x) with A a concept name.

Theorem 27. Containment of an (ELIU ,BAQ)-OMQ in an
(ELI⊥,CQ)-OMQ is 2NEXPTIME-hard.

The overall strategy of the proof is similar to that of our
proof of the lower bounds stated in Theorem 3, but the de-
tails differ in a number of respects. Instead of reducing 2-
exp square tiling problem, we now reduce the 2-exp torus
tiling problem. The definition is identical except that a
tiling f for the latter problem additionally needs to satisfy
(f(22n−1, i), f(0, i)) ∈ H and (f(i, 22n−1), f(i, u)) ∈ V
for all i < 22n

.
We first implement the reduction using UCQs instead of

CQs and then adapt the proof to CQs. In the previous re-
duction, the role name r was used to connect neighboring
grid nodes and nodes in counting trees. In the current reduc-
tion, we replace r with the role composition r−; r where r−
denotes the inverse of r and which behaves like a reflexive-
symmetric role. We use S as an abbreviation for r−; r. In
particular, ∃S.C stands for ∃r−.∃r.C and ∀S.C stands for
∀r−.∀r.C. Some other details of the reduction are also dif-
ferent than before. Counting trees now have depth m + 2
instead of m, but no branching occurs on the last two levels
of the tree. We also have three different versions of counting
trees: one which uses the concept namesB1, B1 andB2, B2

to store the two counters, one that uses B3, B3 and B4, B4,
and one that uses B5, B5 and B6, B6. We say that the trees
are of type 0, 1, or 2 to distinguish between the different ver-
sions. In the grid representation, we cycle through the types:
from left to right and bottom to top, every tree of type 0 is
succeeded by trees of type 1 which are succeeded by trees
of type 2 which are succeeded by trees of type 3. Note that
this refers to trees below grid nodes, but also to trees below
horizontal and vertical step nodes. All this prepares for the
construction of the UCQ later on.

Let P be a 2-exp torus tiling problem and w0 an input
to P of length n. We construct TBoxes T1, T2 and OMQs
Qi = (Ti,SE , qi), i ∈ {1, 2}, such that Q1 ⊆ Q2 iff there
is a tiling for P and w0. The schema SE consists of

• the EDB symbols r, Bi, Bi, i ∈ {1, . . . , 6};
• concept names A0, . . . , Am−1 and A0, . . . , Am−1 to im-

plement a binary counter that identifies the position of
each leaf in a counting tree;

• concept names L0, . . . , Lm+2 that identify the levels in
counting trees.

We now construct the TBox T1. We first define concept in-
clusions which verify that a grid node has a proper attached
counting tree. We start with identifying nodes on levelm+2

by the concept name levG,tm+2 where t ∈ {0, 1, 2} describes
the type of the counting tree as explained above. We only



give the construction explicitly for levG,0m+2, which imple-
ments the two counters using B1, B1 and B2, B2:

Ai v Vi Ai v Vi 0 ≤ i < m

V0 u · · · u Vm−1 uB1 uB2 u Lm+2 v levG,0m+2

V0 u · · · u Vm−1 uB1 uB2 u Lm+2 v levG,0m+2.

To make the UCQ work later on, we need that level m +
1-nodes are labeled complementarily regarding the concept
namesAi, Ai, i ≤ m. We thus identify nodes on levelm+1
as follows:

Ai u ∃S.(levG,0m+2 uAi) v Aoki 0 ≤ i ≤ m
Ai u ∃S.(levG,0m+2 uAi) v Aoki 0 ≤ i ≤ m
Aok0 u · · · uAokm−1 u Lm+1 v levG,0m+1

Note that the first two lines may speak about different S-
successors. It is thus not clear that they achieve the in-
tended complementary labeling. Moreover, we have not
yet made sure that level m + 2-nodes are labeled with only
one of Ai, Ai for each i and with only one Bj , Bj for each
j ∈ {1, 2}. We fix these problem by including the following
concept inclusions in T2:

Lm+1 u ∃S.(Lm+2 uAi) u ∃S.(Lm+2 uAi)v⊥
Lm+1 u ∃S.(Lm+2 uBj) u ∃S.(Lm+2 uBj)v⊥

where i ranges over 0, . . . ,m−1 and j over {1, 2}. These in-
clusions ensure that all relevant successors are labeled iden-
tically regarding the relevant concept names: otherwise the
instance is inconsistent with T2 and thus makes Q2 true,
which rules it out as a witness for non-containment.

We next make sure that every levelm node has a levelm+
1 node attached and that its labeling is again complementary
(in other words, the labeling of the level m node agrees with
the labeling of the level m+ 2 node below the attached level
m+ 1 node):

Ai u ∃S.(levG,0m+1 uAi) v Aok
′
i 0 ≤ i ≤ m

Ai u ∃S.(levG,0m+1 uAi) v Aok
′
i 0 ≤ i ≤ m

Aok′0 u · · · uAok
′
m−1 u Lm+1 v levG,0m

We also include the following in T2:

Lm u ∃S.(Lm+1 uAi) u ∃S.(Lm+1 uAi) v ⊥

where i ranges over 0, . . . ,m − 1. We next verify the re-
maining levels of the tree. To make sure that the required
successors are present on all levels, we branch on the con-
cept names Ai, Ai at level i of a counting tree and for all
j < i, keep our choice of Aj , Aj :

∃S.(levG,0i+1 uAi) u ∃S.(lev
G,0
i+1 uAi) v Succ

Aj u ∃S.(levG,0i+1 uAj) v Okj

Aj u ∃S.(levG,0i+1 uAj) v Oki

Succ u Ok0 u · · · u Oki−1 u Li v levG,0i

where i ranges over 0, . . . ,m − 1 and j over 0, . . . , i − 1.
Again, lines one to three may speak about different succes-
sors and we need to make sure that all those successors are

labeled identically. This is done by adding the following in-
clusions to T2:

Li u ∃S.(Li+1 uAj) u ∃S.(Li+1 uAj) v ⊥

where the ranges of i and j are as above. This finishes the
verification of the counting tree. We do not use self step
nodes in the current reduction, so a grid node is simply the
root of a counting tree where both counter values are identi-
cal:

levG,00 v gactive0.

The superscript ·0 in gactive0 indicates that the counting
tree of which this node is the root is of type 0. Concept
inclusions that set gactive1 and gactive2 are defined analo-
gously, replacing B1, B1 and B2, B2 appropriately, as ex-
plained above. In a similar way, we can verify the existence
of counting trees below horizontal step nodes and vertical
step nodes, signalling the existence of such trees by the con-
cept names hactivet and vactivet, t ∈ {0, 1, 2}. In contrary
to the counting trees between grid nodes, counting trees be-
low horizontal and vertical step nodes need to properly in-
crement the counters, as in the previous reduction. Details
are slightly tedious but straightforward and thus omitted.

We also use T1 to enforce that all grid nodes are labeled
with a tile type. However, as we shall see below we cannot
use all nodes labeled with a gactivet-concept as grid nodes,
but only those ones that have an S-neighbor which is la-
beled with hactivet⊕1 or with vactivet⊕1 where ⊕ denotes
addition modulo three.3 We call such nodes g-active and add
the following to T1:

gactivet u ∃S.hactivet⊕1 v t
Ti∈T

Ti t ∈ {0, 1, 2}

We next add inclusions to T1 which identify a defect in the
tiling and signal this by making the concept name D true:

1. horizontally neighboring tiles match; for all Ti, Tj ∈ T
with (Ti, Tj) /∈ H and t ∈ {0, 1, 2}:

Tiugactivetu∃S.(hactivet⊕1u∃S.(gactivet⊕2uTj)) v D

2. vertically neighboring tiles match; for all Ti, Tj ∈ T with
(Ti, Tj) /∈ V and t ∈ {0, 1, 2}:

Tiugactivetu∃S.(vactivet⊕1u∃S.(gactivet⊕2uTj)) v D

3. The tiling respects the initial condition. Let w0 =
Ti0 · · ·Tin−1 . As in the previous reduction, it is tedious
but not difficult to write concept inclusions to be included
in T which ensure that, for 0 ≤ i < n, every element
that is in gactivet for some t and whose B`-value rep-
resents horizontal position i and vertical position 0, sat-
isfies the concept name posi,0. Here, (t, `) ranges over
(0, 1), (1, 3), (2, 5). We then add the following CQ to q2

for 0 ≤ j < n and all T` ∈ T with T` 6= Tij :

posj,0 u T` v D.

3This is the reason why we reduce torus tiling instead of square
tiling: in a square, grid nodes on the upper and right border are
missing the required successors.
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Figure 5: Counting strategy.

Note that Points 1 and 2 achieve the desired cycling through
the three different types of counting trees: horizontal and
vertical neighborships of g-active nodes whose types are not
as expected are simply ignored (i.e., not treated as neighbor-
ships in the first place).

This completes the construction of the TBox T1. The
query q1 simply takes the form ∃xD(x), thus Q1 is true
in an instance I iff the (potentially partial) grid in I does
not admit a tiling, as desired. The construction of T2 is
also finished at this point. It thus remains to construct q2.
As in the previous reduction, the purpose of q2 is to en-
sure that counter values are copied appropriately to neigh-
boring counting trees and that the two counter values below
each grid and step node are unique. We call two counting
trees neighboring if their roots are connected by the relation
S. Since S is symmetric, we cannot distinguish successor
counting trees from predecessor ones. The three different
types of counting trees still allow us to achieve the desired
copying of counter values. More precisely, we need to en-
sure that
(Q1) the Bi-value of a counting tree coincides with the
Bi+3-value of neighboring trees, for all i ∈ {1, 2, 3};

(Q2) every g-active node is associated (via counting trees)
with at most one Bi-value, for each i ∈ {1, . . . , 6}.

The counting strategy is illustrated in Figure 5, displaying a
horizontal fragment of the grid. Arrows annotated with “=”
indicate identical counter values and arrows annotated with
“+h” indicate incrementation of the horizontal component
of the counter. A vertical fragment would look identical,
except that hactivei is replaced with gactivei and incremen-
tation of the horizontal counter component with incrementa-
tion of the vertical component.

Before we start constructing q2, we observe that it actu-
ally suffices to ensure (Q1) because (Q2) is then guaranteed
automatically. The reason is that we are only interested in
nodes that are g-active and thus have an S-neighbor which
is labeled with hactivet⊕1 or with vactivet⊕1. Assume for
example that a node a is in gactive0 and has an S-neighbor
b which is labeled with hactive1. By (Q1), all leaves with a
given position in the tree below a must agree regarding their
B1, B1-value with the B4, B4-value of all leaves with the
same position in the tree below b. Since both trees contain
at least one leaf for each position, this achieves (Q2) for the
B1-value. It also achieves (Q2) for the B2-value since that
value is identical toB1-value. Obviously, the other cases are
analogous.

The UCQ q1 for achieving (Q1) includes six CQs. We
first construct a query q which is true in an instance I if
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Figure 6: Component query for (Q1) and two identifications.

(∗) there are two leaves in neighboring counting trees that
have the same position and such that one leaf is labeled
with B1 and the other one with B4.

The other five queries are then minor variations of q. We
construct q from component queries p0, . . . , pm−1, which
all take the form of the query show on the left-hand side of
Figure 6. Note that all edges are S-edges and that the only
difference between the component queries is which concept
names Ai and Ai are used. We assemble p0, . . . , pm−1 into
the desired query q by taking variable disjoint copies of
p0, . . . , pm−1 and then identifying (i) the x-variables of all
components and (ii) the x′-variables of all components.

To see why q achieves (∗), first note that the variables x
and x′ must be mapped to leaves of counting trees because
of their Lm+2-label. Call these leaves a and a′. Since x is
labeled withB1 and x′ withB4, a and a′ must be in different
trees. Since they are connected to x in the query, both x0 and
x′0 must then be mapped either to a or to its predecessor;
likewise, x2m+4 and x′2m+4 must be mapped either to a′ or
to its predecessor. Because of the labeling of a and a′ and
the predecessors in the counting tree with Ai and Ai, we are
actually even more constrained: exactly one of x0 and x′0
must be mapped to a, and exactly one of x2m+4 and x′2m+4
to a′. Since the paths between leaves in different trees in the
instance have length at least 2m + 5 and q contains paths
from x0 to x2m+4 and from x′0 to x′2m+4 of length 2m+ 4,
only the following cases are possible:
• x0 is mapped to a, x′0 to the predecessor of a, x′2m+4 to
a′, and x2m+4 to the predecessor of a′;

• x′0 is mapped to a, x0 to the predecessor of a, x2m+4 to
a′, and x′2m+4 to the predecessor of a′.

This gives rise to the two variable identifications in each
query pi shown in Figure 6. Note that the first case implies
that a and a′ are both labeled with Ai while they are both
labeled with Ai in the second case. In summary, a and a′
must thus agree on all concept names Ai, Ai. Note that with
the identification x0 = x (resp. x′0 = x), there is a path from
x to x′ in the query of length 2m + 5. Thus, a and a′ are
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in neighboring counting trees. Since a must satisfy B1 and
a′ must satisfy B4 due to the labeling of x and x′, we have
achieved (∗).

We now show how to replace the UCQ used in the reduc-
tion with a CQ. This requires the following changes:

1. every node on level m now has two successors instead
of one (while nodes on level m + 1 still have a sin-
gle successor); in gactive0-trees, one of the leafs below
the same level m node carries the B1,B1-label while the
other leaf carries the B2,B2-label; the labeling of the two
leaves with Ai,Ai is identical; similarly for gactive1 and
gactive2;

2. the predecessors of leaf nodes in counting trees receive
additional labels: when the leaf node is labeled with Bi
(resp. Bi), then its predecessor is labeled with Bi (resp.
Bi) and withBj andBj for all j ∈ {1, . . . , 6} \ {i}; these
concept names are added to SE ;

3. the roots of counting trees receive an additional label R0

or R1, alternating with neighboring trees; these concept
names are added to SE , too;

4. the query construction is modified.

Points 2 and 3 are important for the CQ to be constructed to
work correctly. Point 2 does not make sense without Point 1.
Note that Points 1 to 3 can be achieved in a straightforward
way by modifying the previous reduction, details are omit-
ted. We thus concentrate on Point 4. The desired CQ q is
again constructed from component queries. We use m com-
ponents as shown in Figure 6, except that the B1 and B4-
labels are dropped. We additionally take the disjoint union
with the component (partially) shown in Figure 7 where
again x and x′ are the variables shared with the other com-
ponents. The dotted edges denote S-paths of length 2m+ 4.
For readability, we show only some of the paths. The gen-
eral scheme is that every variable xi,0 has a path to every
variable xj,2m+4 unless the two variables are labeled with
complementary concept names, that is, with concept names
Bi and Bj such that i ∈ {1, 2, 3} and j = i+ 1 or with con-
cept names Bi and Bj such that i ∈ {1, 2, 3} and j = i+ 1.

In the figure, we only show the paths outgoing from x1,0.
The edges that connect u and u′ with the dotted paths al-
ways end at the middle point of a path, which has distance
m + 2 to the xi,0 variable where the path starts and also
distance m+ 2 to the xj,2m+4 variable where it ends.

We have to argue that the CQ q just constructed achieves
(Q1). As before, x and x′ must be mapped to leafs of count-
ing trees because of their Lm+2-label. Call these leaves a1

and a2. All xi,0 must then be mapped to a or its predecessor,
and all xi,2m+4 must be mapped to a′ or its predecessor. In
fact, due to the labeling of a and a′ and their predecessors
in their counting tree with the concepts Bi, Bi, exactly one
variable xi,0 from x0,0, . . . , x12,0 is mapped to a while all
others are mapped to the predecessor of a; likewise, exactly
one of the xj,2m+4 from x0,2m+4, . . . , x12,2m+4 is mapped
to a′ while all others are mapped to the predecessor of a′.
To achieve (Q1), we have to argue that xi,0 and xj,2m+4 are
labeled with complementary concept names, and that a and
a′ are in neighboring computation trees.

Assume to the contrary that xi,0 and xj,2m+4 are not la-
beled with complementary concept names. Then they are
connected in q by a path of length 2m + 4 whose middle
point y is connected to the variables u and u′. In a homo-
morphism to the grid with counting trees, there are four pos-
sible targets for u and u′ and for the predecessor y−1 of y on
the connecting path and the successor y1 of y on that path:

1. u, y−1 map to the same constant, and so do u′ and y;
2. u, y map to the same constant, and so do u′ and y1;
3. u′, y−1 map to the same constant, and so do u and y;
4. u′, y map to the same constant, and so do u and y1.
However, options 1 and 3 are impossible because there
would have to be a path of length 2m + 1 from a node la-
beled R0 or R1 to the leaf a. Similarly, options 2 and 4 are
impossible because there would have to be a path of length
2m + 1 from a node labeled R0 or R1 to the leaf a′. Thus,
we have shown that xi,0 and xj,2m+4 are labeled with com-
plementary concept names.

This together with the labeling scheme of Figure 5 also
means that a and a′ (to which xi,0 and xj,2m+4 are mapped)
are not in the same counting tree. Moreover, they cannot be
in counting trees that are further apart than one step because
under the assumption that x = xi,0 and x′ = xj,2m+4, there
is a path of length 2m + 5 in the query from x to x′. Note
that we can identify u with the 2m + 2nd variable on any
such path and u′ with the 2m + 3rd variable (or vice versa)
to admit a match in neighboring counting trees.

An OMQ Q = (T ,SE , q) is FO-rewritable iff there is an
FO-query that is equivalent toQ. Rewritability into monadic
Datalog and into unrestricted Datalog are defined accord-
ingly.
Theorem 18. In (ALC,UCQ) and (ALCI,CQ),
rewritability into FO, into monadic Datalog, and into
Datalog is 2NEXPTIME-hard.

Proof.For (ALC,UCQ), it suffices to note that every
MDDLog program with only unary and binary EDB re-
lations can be translated into an equivalent OMQ from



(ALC,UCQ) in polynomial time (Bienvenu et al. 2014).
Thus, the lower bounds for (ALC, UCQ) are an immediate
consequence of Theorem 5.

For (ALCI,CQ), we adapt the above hardness proof for
containment, essentially in the same way as in the proof of
Theorem 5. Our aim is thus to show that, from a 2-exp torus
tiling problem P and an input w0 to P , we can construct in
polynomial time an (ALCI,CQ)-OMQ Q such that

1. if there is a tiling for P and w0, then Q is FO-rewritable;
2. if there is no tiling for P and w0, then Q is not Datalog-

rewritable.
We have shown how to construct from a 2-exp torus tiling
problem P and an input w0 to P , two (ALCI,CQ)-OMQs
Q1, Q2 such that Q1 ⊆ Q2 iff there is a tiling for P and w0.
Moreover,Q2 consists only of inclusions of the formC v ⊥
with C an ELI-concept (a concept built only from con-
juntion and existential restrictions, possibly using inverse
roles). As above, let Qi = (Ti,SE , qi) for i ∈ {1, 2}. The
desired OMQ Q = (T ,S′E , q) is constructed by choosing
q = q2, S′E = SE ∪ {s, u}, and choosing for T the union of
T1 and T2, extended with the following CIs:

1. ∃u.D v R t G t B (where D is the concept name used
in q1);

2. C1 u C2 v Cq2 for all distinct C1, C2 ∈ {R,G,B}
whereCq2 is an (easy to construct) ELI-concept such that
CIq2 6= ∅ implies I |= q2 for all interpretations I;

3. C u ∃s.C v Cq2 for all C ∈ {R,G,B}.
We now show that Q satisfies Points 1 and 2 above.

For Point 1, assume that there is a tiling for P and w0.
Then Q1 ⊆ Q2. We claim that we obtain a UCQ-rewriting
ϕ of Q by taking the disjunction of q2 and of ∃xC(x) for
every CI C v ⊥ in T2. To see this, let I be an S′E-instance.
Clearly, I |= ϕ implies I |= Q. Conversely, assume that
I |= Q. If I 6|= Q1, then there is a model I of I and T1 such
that DI = ∅. Thus the additional CIs from the construction
of Q are inactive and I |= Q implies I |= Q2, thus I |= ϕ.
Now assume I |= Q1. Then I |= Q2 since Q1 ⊆ Q2. Thus,
again, I |= ϕ.

For Point 2, assume there is no tiling for P and w0. Then
Q1 6⊆ Q2. Given an undirected graph G = (V,E), let
the instance I+

G be defined as the disjoint union of the in-
stance I0 which represents the 22n

-grid plus counting gad-
gets, the instance IG which contains a fact s(v1, v2) for ev-
ery {v1, v2} ∈ V , extended with the fact u(v, g) for every
v ∈ V and element g of I0.

Since there is no tiling for P and w0, we have I0 |= Q1

and thus I+
G |= Q1. By construction of Q and since

Q1 6⊆ Q2, this implies that I+
G |= Q iff G is not 3-colorable.

It remains to argue that, consequently, a Datalog-rewriting
of Q gives rise to a Datalog-rewriting of non-3-colorability
(which doesn’t exist). This can be done as in the proof of
Theorem 5. o


